61 research outputs found

    Virtual Blocks: a serious game for spatial ability improvement on mobile devices

    Full text link
    This paper presents a novel spatial instruction system for improving spatial abilities of engineering students. A 3D mobile game application called Virtual Blocks has been designed to provide a 3D virtual environment to build models with cubes that help students to perform visualization tasks to promote the development of their spatial ability during a short remedial course. A validation study with 26 freshman engineering students at La Laguna University (Spain) has concluded that the training had a measurable and positive impact on students spatial ability. In addition, the results obtained using a satisfaction questionnaire show that Virtual Blocks is considered an easy to use and stimulating application.This work has been partially supported by the (Spanish) National Program for Studies and Analysis project "Evaluation and development of competencies associated to the spatial ability in the new engineering undergraduate courses" (Ref. EA2009-0025) and the (Spanish) National Science Project "Enhancing Spatial REasoning and VIsual Cognition with advanced technological tools (ESREVIC)" (Ref TIN2010-21296-C02-02)Martín Dorta, NN.; Sanchez Berriel, I.; Bravo, M.; Hernández, J.; Saorin, JL.; Contero, M. (2014). Virtual Blocks: a serious game for spatial ability improvement on mobile devices. Multimedia Tools and Applications. 73(3):1575-1595. https://doi.org/10.1007/s11042-013-1652-0S15751595733Baartmans BG, Sorby SA (1996) Introduction to 3-D spatial visualization. Prentice Hall, Englewood CliffsClements D, Battista M (1992) Geometry and spatial reasoning. In: Grouws DA (ed) Handbook of research on mathematics teaching and learning. New York, pp 420–464Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Erlbaum, HillsdaleDe Lisi R, Cammarano DM (1996) Computer experience and gender differences in undergraduate mental rotation performance. Comput Hum Behav 12:351–361Deno JA (1995) The relationship of previous experiences to spatial visualization ability. Eng Des Graph J 59(3):5–17Feng J, Spence I, Pratt J (2007) Playing an action video game reduces gender differences in spatial cognition. Psychol Sci 18(10):850–855French JW (1951) The description of aptitude and achievement tests in terms of rotated factors. Psychometric monograph 5Guilford JP, Lacy JI (1947) Printed classification tests, A.A.F. Aviation Psychological Progress Research Report, 5. US. Government Printing Office, Washington DCHalpern DF (2000) Sex differences and cognitive abilities. Erlbaum, MahwahHöfele C (2007) Mobile 3D graphics: learning 3D graphics with the Java Micro Edition. Editorial ThomsonKajiya JT, Kay TL (1989) Rendering fur with three dimensional textures. In Proceedings of the 16th Annual Conference on Computer Graphics and interactive Techniques SIGGRAPH ’89. ACM Press, New York pp 271–280Linn MC, Petersen AC (1985) Emergence and characterization of gender differences in spatial abilities: a meta-analysis. Child Dev 56:1479–1498Martin-Dorta N, Sanchez-Berriel I, Bravo M, Hernandez J, Saorin JL, Contero M (2010) A 3D educational mobile game to enhance student’s spatial skills, ICALT, pp.6–10, 2010 10th IEEE International Conference on Advanced Learning TechnologiesMartin-Dorta N, Saorin J, Contero M (2008) Development of a fast remedial course to improve the spatial abilities of engineering students. J Eng Educ 27(4):505–514Martin-Dorta N, Saorin JL, Contero M (2011) Web-based spatial training using handheld touch screen devices. Educ Technol Soc 14(3):163–177McGee MG (1979) Human spatial abilities: psychometric studies and environmental, genetic, hormonal, and neurological influences. Psychol Bull 86:889–918Noguera JM, Segura RJ, Ogayar CJ, Joan-Arinyo R (2011) Navigating large terrains using commodity mobile devices. Comput Geosci 37:1218–1233Okagaki L, Frensch PA (1994) Effects of video game playing on measures of spatial performance: gender effects in late adolescence. J Appl Dev Psychol 15(1):33–58Pulli K, Aarnio T, Miettinen V, Roimela K, Vaarala J (2007) Mobile 3D graphics with OpenGL ES and M3G. Editorial Morgan KaufmannQuaiser-Pohl C, Geiser C, Lehmann W (2005) The relationship between computer-game preference, gender, and mental-rotation ability. Personal Individ Differ 40(3):609–619Smith IM (1964) Spatial ability- its educational and social significance. The University of London Press, LondonSorby S (2007) Developing 3D spatial skills for engineering students. Australas Assoc Eng Educ 13(1):1–11Terlecki MS, Newcombe NS (2005) How important is the digital divide? The relation of computer and videogame usage to gender differences in mental rotation ability. Sex Roles 53(5/6):433–441Terlecki MS, Newcombe NS, Little M (2008) Durable and generalized effects of spatial experience on mental rotation: gender differences in growth patterns. Appl Cogn Psychol 22:996–1013Thurstone LL (1950) Some primary abilities in visual thinking (Tech. Rep. No. 59). IL University of Chicago Psychometric Laboratory, ChicagoThurstone LL, Thurstone TG (1941) Factorial studies of intelligence. Psychometric monographs. Chicago Press, ChicagoVanderberg S, Kuse A (1978) Mental Rotation, a group test of three dimensional spatial visualization. Percept Mot Skills 47:599–604Zimmerman WS (1954) Hypotheses concerning the nature of the spatial factors. Educ Psychol Meas 14:396–40

    2011-2012

    Get PDF
    Contains information on courses and class descriptions as well as campus resources at Collin College.https://digitalcommons.collin.edu/catalogs/1023/thumbnail.jp

    Technology intergration in context-aware learning spaces

    Get PDF

    2012-2013

    Get PDF
    Contains information on courses and class descriptions as well as campus resources at Collin College.https://digitalcommons.collin.edu/catalogs/1024/thumbnail.jp

    Softwares de Geometria Interativa para Deficientes Físicos e Intelectuais: Um Mapeamento Sistemático

    Get PDF
    O uso de softwares de Geometria Interativa pode facilitar o aprendizado e melhorar a qualidade de ensino para pessoas que possuem limitações físicas e intelectuais. Apesar disto, as abordagens sobre o desenvolvimento destes softwares são pouco investigadas. Para oferecer uma visão geral dos resultados já obtidos nesta área, um mapeamento sistemático foi conduzido com o objetivo de analisar quais softwares atendem este público e em quais dispositivos adicionais estes softwares utilizam. No total foram 451 estudos analisados em mais de 10 anos de pesquisa na área de geometria interativa. Dentre estes estudos, 24 deles estavam relacionados com softwares de geometria interativa e apenas 20 deles satisfizeram os critérios de inclusão e exclusão definidos neste trabalho. Como resultado, verificou-se que maioria dos estudos apresentam softwares voltados para deficientes visuais e auditivos, sendo sua maioria para crianças. Este resultado demonstra que existem diversas oportunidades de pesquisa no desenvolvimento de softwares para deficientes físicos e intelectuais para aprendizagem de geometria

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Myriad : a distributed machine vision application framework

    Get PDF
    This thesis examines the potential for the application of distributed computing frameworks to industrial and also lightweight consumer-level Machine Vision (MV) applications. Traditional, stand-alone MV systems have many benefits in well-defined, tightly- controlled industrial settings, but expose limitations in interactive, de-localised and small-task applications that seek to utilise vision techniques. In these situations, single-computer solutions fail to suffice and greater flexibility in terms of system construction, interactivity and localisation are required. Network-connected and distributed vision systems are proposed as a remedy to these problems, providing dynamic, componentised systems that may optionally be independent of location, or take advantage of networked computing tools and techniques, such as web servers, databases, proxies, wireless networking, secure connectivity, distributed computing clusters, web services and load balancing. The thesis discusses a system named Myriad, a distributed computing framework for Machine Vision applications. Myriad is composed components, such as image processing engines and equipment controllers, which behave as enhanced web servers and communicate using simple HTTP requests. The roles of HTTP-based distributed computing servers in simplifying rapid development of networked applications and integrating those applications with existing networked tools and business processes are explored. Prototypes of Myriad components, written in Java, along with supporting PHP, Perl and Prolog scripts and user interfaces in C , Java, VB and C++/Qt are examined. Each component includes a scripting language named MCS, enabling remote clients (or other Myriad components) to issue single commands or execute sequences of commands locally to the component in a sustained session. The advantages of server- side scripting in this manner for distributed computing tasks are outlined with emphasis on Machine Vision applications, as a means to overcome network connection issues and address problems where consistent processing is required. Furthermore, the opportunities to utilise scripting to form complex distributed computing network topologies and fully-autonomous federated networked applications are described, and examples given on how to achieve functionality such as clusters of image processing nodes. Through the medium of experimentation involving the remote control of a model train set, cameras and lights, the ability of Myriad to perform traditional roles of fixed, stand-alone Machine Vision systems is supported, along with discussion of opportunities to incorporate these elements into network-based dynamic collaborative inspection applications. In an example of 2D packing of remotely-acquired shapes, distributed computing extensions to Machine Vision tasks are explored, along with integration into larger business processes. Finally, the thesis examines the use of Machine Vision techniques and Myriad components to construct distributed computing applications with the addition of vision capabilities, leading to a new class of image-data-driven applications that exploit mobile computing and Pervasive Computing trends
    corecore