2,879 research outputs found

    Prototype for a high school geometry tutorial

    Get PDF

    Collaborative trails in e-learning environments

    Get PDF
    This deliverable focuses on collaboration within groups of learners, and hence collaborative trails. We begin by reviewing the theoretical background to collaborative learning and looking at the kinds of support that computers can give to groups of learners working collaboratively, and then look more deeply at some of the issues in designing environments to support collaborative learning trails and at tools and techniques, including collaborative filtering, that can be used for analysing collaborative trails. We then review the state-of-the-art in supporting collaborative learning in three different areas – experimental academic systems, systems using mobile technology (which are also generally academic), and commercially available systems. The final part of the deliverable presents three scenarios that show where technology that supports groups working collaboratively and producing collaborative trails may be heading in the near future

    A Formative Evaluation Research Study to Guide the Design of the Categorization Step Practice Utility (MS-CPU) as an Integral Part of Preparation for the GED Mathematics Test Using the Ms. Stephens Algebra Story Problem-solving Tutor (MSASPT)

    Get PDF
    abstract: The mathematics test is the most difficult test in the GED (General Education Development) Test battery, largely due to the presence of story problems. Raising performance levels of story problem-solving would have a significant effect on GED Test passage rates. The subject of this formative research study is Ms. Stephens’ Categorization Practice Utility (MS-CPU), an example-tracing intelligent tutoring system that serves as practice for the first step (problem categorization) in a larger comprehensive story problem-solving pedagogy that purports to raise the level of story problem-solving performance. During the analysis phase of this project, knowledge components and particular competencies that enable learning (schema building) were identified. During the development phase, a tutoring system was designed and implemented that algorithmically teaches these competencies to the student with graphical, interactive, and animated utilities. Because the tutoring system provides a much more concrete rather than conceptual, learning environment, it should foster a much greater apprehension of a story problem-solving process. With this experience, the student should begin to recognize the generalizability of concrete operations that accomplish particular story problem-solving goals and begin to build conceptual knowledge and a more conceptual approach to the task. During the formative evaluation phase, qualitative methods were used to identify obstacles in the MS-CPU user interface and disconnections in the pedagogy that impede learning story problem categorization and solution preparation. The study was conducted over two iterations where identification of obstacles and change plans (mitigations) produced a qualitative data table used to modify the first version systems (MS-CPU 1.1). Mitigation corrections produced the second version of the MS-CPU 1.2, and the next iteration of the study was conducted producing a second set of obstacle/mitigation tables. Pre-posttests were conducted in each iteration to provide corroboration for the effectiveness of the mitigations that were performed. The study resulted in the identification of a number of learning obstacles in the first version of the MS-CPU 1.1. Their mitigation produced a second version of the MS-CPU 1.2 whose identified obstacles were much less than the first version. It was determined that an additional iteration is needed before more quantitative research is conducted.Dissertation/ThesisDoctoral Dissertation Educational Technology 201

    Proceedings of the 1993 Conference on Intelligent Computer-Aided Training and Virtual Environment Technology, Volume 1

    Get PDF
    These proceedings are organized in the same manner as the conference's contributed sessions, with the papers grouped by topic area. These areas are as follows: VE (virtual environment) training for Space Flight, Virtual Environment Hardware, Knowledge Aquisition for ICAT (Intelligent Computer-Aided Training) & VE, Multimedia in ICAT Systems, VE in Training & Education (1 & 2), Virtual Environment Software (1 & 2), Models in ICAT systems, ICAT Commercial Applications, ICAT Architectures & Authoring Systems, ICAT Education & Medical Applications, Assessing VE for Training, VE & Human Systems (1 & 2), ICAT Theory & Natural Language, ICAT Applications in the Military, VE Applications in Engineering, Knowledge Acquisition for ICAT, and ICAT Applications in Aerospace

    Exploring the visualization of student behavior in interactive learning environments

    Get PDF
    My research combines Interactive Learning Environments (ILE), Educational Data Mining (EDM) and Information Visualization (Info-Vis) to inform analysts, educators and researchers about user behavior in software, specifically in CBEs, which include intelligent tutoring systems, computer aided instruction tools, and educational games. InVis is a novel visualization technique and tool I created for exploring, navigating, and understanding user interaction data. InVis reads in user-interaction data logged from students using educational systems and constructs an Interaction Network from those logs. Using this data InVis provides an interactive environment to allow instructors and education researchers to navigate and explore to build new insights and discoveries about student learning. I conducted a three-point user study, which included a quantitative task analysis, qualitative feedback, and a validated usability survey. Through this study, I show that creating an Interaction Network and visualizing it with InVis is an effective means of providing information to users about student behavior. In addition to this, I also provide four use-cases describing how InVis has been used to confirm hypotheses and debug software tutors. A major challenge in visualizing and exploring the Interaction Network is network's complexity, there are too many nodes and edges presented to understand the data efficiently. In a typical Interaction Network for twenty students, it is common to have hundreds of nodes, which to make sense of, has proven to be too many. I present a network reduction method, based on edge frequencies, which lowers the number of edges and nodes by roughly 90\\% while maintaining the most important elements of the Interaction Network. Next, I compare the results of this method with three alternative approaches and show our reduction method produces the preferred results. I also present an ordering detection method for identifying solution path redundancy because of student action orders. This method reduces the number of nodes and edges further and advances the resulting network towards the structure of a simple graph. Understanding the successful student solutions is only a portion of the behaviors we are interested in as researchers and educators using computer based educational systems, student difficulties are also important. To address areas of student difficulty, I present three different methods and two visual representations to draw the attention of the user to nodes where students had difficulty. Those methods include presenting the nodes with the highest number of successful students, the nodes with the highest number of failing students, and the expected difficulty of each state. Combined with a visual representation, these methods can draw the focus of users to potentially important nodes, which contain areas of difficulty for students. Lastly, I present the latest version of the InVis tool, which is a platform for investigating student behavior in computer based educational systems. Through the continued use of this tool, new researchers can investigate many new hypotheses, research questions and student behaviors, with the potential to facilitate a wide range of new discoveries

    Sketchography - Automatic Grading of Map Sketches for Geography Education

    Get PDF
    Geography is a vital classroom subject that teaches students about the physical features of the planet we live on. Despite the importance of geographic knowledge, almost 75% of 8th graders scored below proficient in geography on the 2014 National Assessment of Educational Progress. Sketchography is a pen-based intelligent tutoring system that provides real-time feedback to students learning the locations, directions, and topography of rivers around the world. Sketchography uses sketch recognition and artificial intelligence to understand the user’s sketched intentions. As sketches are inherently messy, and even the most expert geographer will draw only a close approximation of the river’s flow, data has been gathered from both novice and expert sketchers. This data, in combination with professors’ grading rubrics and statistically driving AI-algorithms, provide real-time automatic grading that is similar to a human grader’s score. Results show the system to be 94.64% accurate compared to human grading

    EDM 2011: 4th international conference on educational data mining : Eindhoven, July 6-8, 2011 : proceedings

    Get PDF

    The sequence matters: A systematic literature review of using sequence analysis in Learning Analytics

    Full text link
    Describing and analysing sequences of learner actions is becoming more popular in learning analytics. Nevertheless, the authors found a variety of definitions of what a learning sequence is, of which data is used for the analysis, and which methods are implemented, as well as of the purpose and educational interventions designed with them. In this literature review, the authors aim to generate an overview of these concepts to develop a decision framework for using sequence analysis in educational research. After analysing 44 articles, the conclusions enable us to highlight different learning tasks and educational settings where sequences are analysed, identify data mapping models for different types of sequence actions, differentiate methods based on purpose and scope, and identify possible educational interventions based on the outcomes of sequence analysis.Comment: Submitted to the Journal of Learning Analytic
    • …
    corecore