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ABSTRACT

Geography is a vital classroom subject that teaches students about the physical features

of the planet we live on. Despite the importance of geographic knowledge, almost 75%

of 8th graders scored below proficient in geography on the 2014 National Assessment of

Educational Progress. Sketchography is a pen-based intelligent tutoring system that pro-

vides real-time feedback to students learning the locations, directions, and topography of

rivers around the world. Sketchography uses sketch recognition and artificial intelligence

to understand the user’s sketched intentions. As sketches are inherently messy, and even

the most expert geographer will draw only a close approximation of the river’s flow, data

has been gathered from both novice and expert sketchers. This data, in combination with

professors’ grading rubrics and statistically driving AI-algorithms, provide real-time au-

tomatic grading that is similar to a human grader’s score. Results show the system to be

94.64% accurate compared to human grading.
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1. INTRODUCTION

Geography is an essential part of modern education and cartography is a cornerstone of

geography. The importance of geography education and the need for research and innova-

tion in the same highlighted to the federal and state governments in the United States. The

Geography Education Research report which was part of the efforts led to the national ge-

ography organizations such as the National Geographic Society and the National Council

for Geographic Education coming together to create the Road Map for 21st Century Geog-

raphy Education Project which provided recommendations for geography pedagogy [2].

1.1 Benefits of sketching for geography education

Maps are the visual encoding of the information we gather about the earth. Besides

questions requiring descriptive answers for explaining various atmospheric and earth’s

physical phenomena, labeling of geographical features already drawn on maps is another

common way the knowledge of geography is tested. Learning with maps involves build-

ing spatial thinking and cognition. Instructors convey important concepts and features of

various entities through different maps while the students also develop reasoning skills

comprehending the same [3, 4, 5]. Unlike biology, the case for sketching by students

for geography education has not yet been made. While sketching is commonly used in

problem-solving and creative processes for illustrating ideas [6], it also aids in develop-

ing problem-solving [7] and analytical skills [8]. A good grasp of geography demands

three-dimensional spatial recognition ability which can be improved with sketching [9].

1.2 The need for a new interface and technology for education

Digital media and devices are ubiquitous in today’s world and children exposed to the

same from an early age which has lead to great possibilities with their reach and ease of
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use. However, the in-place on-line tutoring videos and multiple choice question answering

do not cover the entire spectrum of what students need to be involved in so as to be trained

in various disciplines. An interactive application would help students learn many things

on their own e.g. learning to draw the Rio Grande river on a map with political bound-

aries, students would realize that it lies along the US-Mexico border and the experience of

drawing the same imbibes the knowledge in a more intimate way than just visual memory.

Also, as class size increases, students are deprived of one-on-one time with instructors and

consequently receive less feedback which is essential for improvement. The instructors

also get less time for preparing for classes and other activities such as grading, answering

questions become prolonged. This state of affairs provided us with a clear motivation to

build Sketchography, an intelligent sketching based tutoring system for geography, with a

web interface which allows students to sketch geographical features on maps and obtain

on-demand feedback and assessment.

1.3 Benefits of feedback

Feedback is crucial to gauge the progress while learning something. Confirmation

of the right steps reinforces the concepts well understood and knowing the missteps also

points a learner in the right direction. Immediate feedback was identified as being imper-

ative to an ideal experience while engaging in web-based activities by Chen et al. [10].

Feedback without a wait time can keep a user motivated and hence, gain knowledge and

develop skills at a faster pace than when the learning process halts for lack of an instruc-

tor being immediately available. Artificial intelligence algorithms can fill in the shoes of

instructors by providing immediate feedback when students practice to test their compre-

hension of the subject material.
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1.4 AI, machine learning for improved grading

Machine Learning algorithms are now widely deployed and powering commonly used

applications such as recommendation systems on shopping websites to speech recognition

in voice-controlled assistants such as Apple’s Siri [11] and Amazon’s Alexa. Artificial In-

telligence techniques can learn as well as discover new features of systems from adequate

datasets [12]. For this thesis research work, we planned to utilize artificial intelligence

to realize automatic grading of sketches in Sketchography which would involve discover-

ing and validating features which essentially distinguish sketches of geographical entities

which instructors would deem to be correct. Aligning the results with the input of the ex-

perts, this would also involve finding the relative importance of each feature in determining

the correctness of a sketch.
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2. RELATED WORK

2.1 Sketch recognition

Sketch recognition can be broadly summarized under three classes, namely Gesture-

based, Geometry-based, and Vision-based. Gesture-based algorithms [13, 14, 15] such

as the $ family algorithms are powerful discriminators for gestures independent of affine

transformations. However, one can perform the same gesture on a map in multiple strokes,

directions, sizes and locations, thus making it impossible to model geographical features as

gestures. Geometry-based algorithms [16] such as PaleoSketch [17, 18, 19], Tahuti [20],

and Ladder [21, 22, 23, 24, 25, 26, 27, 28, 29, 30] are used as low-level recognizers to

detect primitive shapes in strokes. Alvarado and Davis, in their paper SketchRead [31],

describe a domain independent recognition engine that uses dynamic Bayesian nets to

interpret strokes based on a set of defined patterns and constraints. However, this approach

requires a user to define a high level language to describe the symbols in the domain. This

method is helpful for domains such as circuit diagrams where a set of standard shapes can

be defined based on relationships between strokes. While these are powerful for regular

shapes, our domain has little scope for regularity. Curvature graphs [32, 33] and corner

finding algorithms [34, 35, 36, 37] provide an interesting way of analysing the k-largest

curvature changes in a template against those in the sketch. However, the need to merge

multiple strokes and explicitly define stroke segments makes this approach too complex for

our context since the sketch has to be represented as a point cloud rather than as temporally

ordered strokes. Vision-based algorithms [38, 39, 40, 41] focus on the visual appearance of

the image rather than its geometric features. These were found to be useful in our context.
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2.2 Sketching in education

The use of touch interfaces in education has also been vastly studied to develop Sketch-

based Intelligent Tutoring systems (ITS). Mechanix [42, 43, 42, 44, 45, 46, 47, 48, 49, 50,

51, 52, 53, 54, 55, 56, 57] is an automated system which has been adopted by physics

teachers for setting interactive assignments in solid dynamics and mechanics. Math-

pad [58] is useful for recognizing mathematical equations, which is helpful since sketching

is pervasive in mathematics [59]. Feng et al. [60] have built a system that can recognize

electrical circuit symbols. Several systems have provided sketched-based input to enhance

foreign language learning [61, 62, 63, 64, 65, 66, 67, 68], drawing skills [69, 70, 71, 72, 73,

74], biology [75], music [76, 77], and even children development [78, 79, 80, 81, 82, 83].

CogSketch [84] with its Sketch Worksheets [85] model allows teachers to create do-

main specific worksheets for students to complete, and analyses the assignments using

spatial sparsity, and does not automatically evaluate the solutions. The design of CogS-

ketch is generalizable but equally hinders the use of available datasets because they have

to be recoded as per CogSketch’s encoding strategy. We have focused on geography ed-

ucation and not aimed at evaluating the cognition using parameters such as pauses, etc.

CogSketch revolves around the understanding spatial phenomena but in case of maps,

other aspects such as direction, shape, etc. can also be critical. We have to take inspiration

from CogSketch on how students could demonstrate their understanding of causal and re-

lationship information. The application of sketch recognition algorithms to the geography

domain however, is novel and has not been attempted before. While many GIS applica-

tions as well as third party tools provide a rich drawing toolkit to doodle on maps, none

of them have a recognition engine that can understand a user’s gestures on a map beyond

the conventional ones for zooming and panning. Additional systems have been created for

children to help them learn state geography [86].
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2.3 Sketching in GIS

Godwin et al. [87] describes a visualization tool used by the Atlanta police department

for making queries by drawing paths and boxes on a map, which does not use any recog-

nition component beyond superimposing pre-defined data points against a drawn path.

Drawing on paper maps has also been studied [88] , where a digital pen is used to get co-

ordinates of symbols drawn on a map and then transmit them to a database. Geographical

mining [89] has also been subject to a huge body of work, which is a possible extension

of our approach. Substantial progress in this direction has also been made by Hammond

et al.[90, 91] in their work for recognizing free hand course of action diagrams. They

make use of a primitive shape recognizer [17] combined with a high level heuristic and

statistical-based recognizer [92] to return the top interpretations of symbols and characters

drawn on a map. However, this approach operates on a canvas over a regular map, and

does not explore the possibility of integrating the symbol information with GIS data.
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3. RIVER SKETCHING

3.1 Traditional pedagogy

For education systems across the world, a major challenge is to improve the geographic

knowledge of students. In most schools, students are evaluated based on multiple choice

questions on a labelled map (Figure 3.1) which tends to drastically confine the conceptual

understanding to a mere mental image of the features.

3.2 Why river sketching makes sense

On the other hand, freehand sketching encourages learners to apply their knowledge

and intuition by dynamically constructing visual perspective of the geographic features,

resulting in a highly involved process of learning by doing. More importantly, the interac-

tive process helps students to appreciate subtle and peripheral aspects of a feature, such as

the countries that have common borders or the drainage patterns of certain rivers (eg. the

Euphrates river flows from the Syrian border right thorough Iraq). The responsibility of

the our system is to recognize the user’s intent by extracting a set of shape descriptors from

the user’s sketch, and validate it against some pre-defined knowledge about the geograph-

ical feature using a reasonable notion of ’correctness’, along with providing interactive

feedback.

3.3 Google Maps JavaScript API

Google Maps has a rich JavaScript API which provides drawing tools as well as utility

methods for various functions such as knowing if a points lies within an area defined with

latitude and longitude coordinates. Google Maps has also become ubiquitous and hence,

provided a great option to develop Sketchography as most users would be familiar with its

look and feel, as well as its usage.
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Figure 3.1: The conventional method of teaching maps, where students are asked to label
already drawn features. [1]
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4. SKETCHOGRAPHY

"Sketchography", an intelligent tutoring system for geography with automatic grading

capability, was conceptualized by Dr. Tracy Hammond. Dr. Hammond, had worked on

similar systems for areas such as mechanics and course-of-action diagrams. I, along with

two other students developed the initial prototype as a web application. The prototype

provided the users a choice of seven rivers to draw on to a Google Map. The users can

draw a river and check their accuracy on the submission while also having the option of

seeing the solution i.e. the exact sketch of the chosen river. The accuracy was determined

by an empirically derived formula which assigns different weights to the scores calculated

by various sketch recognition algorithms. This thesis aimed to develop a more accurate

and robust means of assessment driven by a sketch grading algorithm which incorporates

the general and unique features of rivers that illustrate the knowledge and understanding

of various geographical concepts.

The current implementation of our system focuses on rivers, helping students learn to

identify and draw them based on visual appearance. The following two factors define the

visual appearance of a river:

1. Shape: This primarily refers to the visual appearance of the feature. More specifi-

cally, it refers to the relative position of each point to every other point in an image.

Such shape descriptors can be used to gauge the visual similarity between two ob-

jects.

2. Location: The location information is available through the latitude-longitude in-

formation of a sketch and can directly be compared.

We employ a recognition method that exploits these two distinctive features, by com-
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bining two techniques, namely shape context [41, 93] and Hausdorff distance [38, 39].

Prior to this, we examine the option of flagging incorrect sketches early, by preprocessing

the candidate sketch using metrics including bounding box, and path length.

When building a sketch recognition system in this domain, it is also important to con-

sider some of the common constraints, especially in regard to accommodating the trade-off

between user’s drawing freedom and ease of recognition. This system, in particular, re-

quires that the students get complete freedom to reproduce the mental map in mind. The

challenges in building such a robust recognizer are therefore manifold.

• Unlike regular sketches which are drawn in an iterative improvement manner [18],

we don’t expect rivers to be drawn using touch-up strokes. However, there would be

continuation strokes as river can be long and have converging or diverging branches.

The recognition therefore has to be stroke-independent.

• The system needs to be receptive even towards poor and messy sketches, as long as

the essential aspects of a feature are sufficiently captured.

• The sampling rate is heavily dependant on the input device used, and is influenced

by the zoom level of the map while sketching.

• Sketches need to be stored as strokes in the geographic coordinate system. However,

we do not need to use geodesic distance as we consider 2D maps.

• Geographical features are extremely irregular , and the resulting sketches will vary

greatly with drawing style. In fact, there is little uniformity even within the same

class of physical features.

The remainder of this section details the three main stages of our system and its algo-

rithms, as shaped according to our goals and recognized constraints.

10



4.1 User interaction

The system consists of a UI which allows the user to select a river, draw the river, and

get the similarity between the actual river information (shape, size, and location) and the

drawn river. Comparison with the original river is made possible with a data set of rivers.

The details of the UI and data set are provided in the following sections.

4.1.1 Data set

Natural Earth [94] is an open source community funded by some of the leading car-

tographical research institutions, and hosts a vast pool of map data that is free to use.1

For this application, we use the Lake Centerlines and Rivers data set that con-

tains the information for over a 1000 rivers worldwide. This data is generally in shapefile

format which is directly usable on the Google Maps professional version but not the free

one. It is, therefore, first converted using Quantum GIS to an array of strokes, where each

stroke is represented by an array of points. A lot of the data is also hosted on Google

Fusion Tables [95], which is used for gathering, visualizing and sharing data. This data is

in SVG(Scalable Vector Graphics) and KML format, thus making conversion easier. We

converted the final strokes for all the rivers to an internal representation of strokes.

4.1.2 UI design

The user interface is built using AJAX, PHP, jQuery [96], and the Google Maps API

[97], with styling controls to define map appearance, behavior, and its event model. First,

the user has to select a geographical feature from the list of known features, following

which the template for the choice made gets loaded from the database. Once the user

starts sketching, stroke points start getting generated as the pen is moved, depending on the

sampling rate of the device. If the user lifts the pen, a new stroke is recorded and appended

1The complete data set of all physical features including reefs, coasts, geographic lines and glaciers can
be obtained at http://www.naturalearthdata.com/downloads/10m-physical-vectors/
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to the list of strokes for the session. The user also has an option to clear the sketch and

restart his drawing. For practicing by tracing, an option called "Show Solution" is also

provided in the "Learn" mode of the system, to serve as a memory aid for the user before

he or she attempts to sketch in the "Test" mode. Finally, on submitting of an attempt by a

user for evaluation, their sketch is compared with the template, and the automatic grading

results presented on overlay screen.

4.2 Preprocessing

Preprocessing can help reduce the computation to a large extent by identifying grossly

incorrect attempts as early as possible. Although currently, our system does not require

high computation power, preprocessing would certainly be beneficial as our system evolves

to incorporate more sophisticated calculations to improve accuracy. However, we would

also explore in future, broader studies whether students would still prefer to see their

breakdown of the scores in such cases. The following cases can arise when the student

draws a river. Figure 4.5 shows a few examples of these cases.

• The total stroke length of the candidate stroke varies drastically from that of the

template stroke

• The candidate is drawn nowhere close to the template, i.e there is a little or no

overlap between their bounding boxes.

In the first case, the candidate gets removed from consideration based on the difference

in stroke length. The system computes the total stroke length or path length by summing

the Euclidean distances between every pair of consecutive stroke points.

d = ‖TotalStrokeLengthcandidate − TotalStrokeLengthtemplate‖

The sketch will be flagged as being incorrect if d ≤ 0.5×TotalStrokeLengthtemplate.
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Figure 4.1: Sketchography home screen

Figure 4.2: Sketchography instructions
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Figure 4.3: Sketchography - choosing a river in ’Learn’ mode
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Figure 4.4: Sketchography - choosing a river in ’Test’ mode (’Show Solution’ option
hidden)
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Figure 4.5: The figures on the top show possible stroke length errors. Bounding box errors
are shown in the two figures on the bottom (the template is shown in red, and the user’s
drawing in blue)
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This ensures that the template stroke is not smaller than half of the stroke length of the

template and not larger than 1.5 times of the stroke length of the template.

In the second case, the candidate sketch is marked as being wrong if the percentage of

the points of the candidate stroke in the bounding box of the template is less than 10%,

i.e., if the sketch is too far from the template.

4.3 Recognition

Vision-based approaches are suitable for recognizing shapes that are irregular, and they

primarily try to find the intra-point and inter-point relationships, given two images.

4.3.1 Shape similarity using shape context

The Shape Context algorithm proposed by Belongnie, Malik, and Puzicha [41, 93]

gives a measure of similarity between shapes. It tries to find which point in one shape

corresponds to which point in another one with the use of a descriptor named ’shape con-

text’ which gets calculated for each point. The shape context for a point in a shape gives

an indication of how the remaining points in the shape are distributed relative to it. An

aligning transform is estimated using the agreement between the shape contexts. The

matching errors between the points on the two shapes viz. the template and the attempt of

the user are summed and combined with the magnitude of the aligning transform to give

the dissimilarity between those two shapes.

For each point on the shape, a coarse histogram of the relative coordinates of the re-

maining points is computed by taking the vector distance of the point with respect to all

other points. The histogram is defined to be the shape context of p(i). Bins that are uniform

in log-polar space are used (similar to the Bullseye features diagram), resulting in shape

context being affected by the positions of nearby sample points rather than away ones.

Chi-square test statistic is used to get a measure of the cost of matching two points. After

getting the set of costs between all pairs of points on the two shapes, bipartite graph match-
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Figure 4.6: Sketchography - river drawn too far

Figure 4.7: Sketchography - river drawn too long
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Figure 4.8: Case 1 - the wrong shape in the wrong place
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Figure 4.9: Case 2 - the wrong shape in the right place
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Figure 4.10: Case 3 - the right shape in the wrong place
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Figure 4.11: Case 4 - the right shape in the right place
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ing is done to minimize the total cost of matching, i.e. we need to find the permutation of

the points of the second shape such that the matching has minimum cost.

The sketched input is in the form of an array of points with stroke identifiers. The

Shape Context method is used for object recognition, and hence stroke information is not

needed. We use a helper method to convert our input data into the SVG format to pass

onto the method which gives a similarity measure based on the Shape Context method.

4.3.2 Location similarity using Hausdorff distance

The location similarity is an important aspect for sketches drawn on maps. If the

shapes are similar, but the location is incorrect, it will result in a low similarity ratio.

The Hausdorff distance measure is used to find the similarity with respect to distance. In

this paper, we have used a modified version of Hausdorff distance. For calculating the

Hausdorff distance, we calculate two distance vectors DA and DB such that

DA = min
b∈PB

|a− b|, a ∈ PA

where PA is a vector of the points in A and PB is a vector of points in B. Similar to

DA, DB is calculated. The Hausdorff distance is the maximum value from the average of

DA and DB. The modification of the original Hausdorff method is that it uses the average

of the minimum values to find h(A,B), rather than taking the maximum. The reason to use

the modified version of Hausdorff is to avoid large h(A,B) or h(B,A) value caused due to

a small number of outliers. By taking average we make sure that the distance from all the

points, i.e. all the values in DA and DB are contributing to h(A,B) and h(B,A) respectively.

h(A,B) =

∑
(DA)

NA

where NA is the number of points in A, defines the distance h(A,B). We calculate
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h(B,A) similarly using DB. The Hausdorff distance H(A,B) is the maximum value from

h(A,B) and h(B,A). The maximum is taken so as to take into consideration the difference

in stroke length of the candidate and the template.

We restricted the Hausdorff distance to a high of 10 while finding the similarity. If

the Hausdorff distance value is more than 10, we consider it to have zero similarity with

respect to location. This similarity is measured as:

similarityHausdorff = 1−H(A,B)/10

4.3.3 Stroke length ratio

The stroke length also is an important feature while we consider similarity between two

sketches. To take this into consideration, we take into account the ratio of the difference in

stroke lengths to the total stroke length of the template. The following gives the similarity

measure based on stroke length:

similaritystrokeLength = 1− d

TotalStrokeLengthtemplate

4.3.4 Bounding polygon

Based on the graded (labelled) river sketches, we can estimate a polygon shape which

bounds the sketches which were graded as being correct. There would be other factors

which the instructors would look for, but this bounding area should be a strong indicator

of the correctness of a sketch if the majority of the points lie within it.

4.3.5 Unique features

The instructors teaching geography teach important features unique for rivers such as

the countries a river is located in, the direction of the flow, distribution at important deltas,

etc. A river drawn into a country where the actual river doesn’t flow would lead to the

24



sketch being graded as incorrect even though other features would give it a high score

(e.g., the Mississippi river flows entirely in the United States).
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5. GRADING RUBRIC

To simulate the grading process, we consulted Dr. Erik Prout, who teaches the Intro-

ductory Geography course at Texas A&M University, to gather a grading rubric as well

as information on any setup that should ought to be done for each river. Dr. Prout en-

visaged an intelligent tutoring system which would help students to learn about rivers and

also serve as an automated evaluation system to test the knowledge and comprehension of

the students. Dr. Prout’s feedback resulted in the formulation of the following criteria for

Sketchography.

5.1 Question set-up and grading rubric for grading the sketches of the 7 rivers in

Sketchography

5.1.1 Weight or importance for each feature

Table 5.1 contains the information regarding the weight assigned by Dr. Prout for the

main aspects of a river.

Feature Percentage
Origin point/area 25%
Course (shape) 25%
End point 50%

Table 5.1: Weight or importance for each feature

5.1.2 General criteria such as deviation allowed or approximate origin location

Table 5.2 contains the information regarding the general criteria that Dr. Prout thought

should dictate the grading of a river sketch.
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Feature Criteria
Origin general area (mountain range and/or country if different

from course/end)
Course/shape must follow terrain/contour when its visual on map; very

close to places along
End point specific point at Ocean or (arc of) delta; must be in correct

country

Table 5.2: General criteria such as deviation allowed or approximate origin location

5.1.3 Set-up (things to be shown such as state borders, terrain, etc. and custom

lines, labels, etc.) and unique features for each river (countries through which

the river passes, direction of flow, etc.)

Table 5.3 contains the information explaining what references should be available to a

students in order to remember the location of a river.

River Setup
All terrain layer should be on; students can switch between

satellite image and reference map
Nile Political borders, Cairo, Mediterranean Sea, Aswan High

Dam
Danube Political borders, capital cities along river (Vienna, Bu-

dapest, Belgrade, etc.), Black Sea
Amazonas Political borders (Brazil/Peru), Andes, cities (Iquitos, Man-

aus)
Euphrates Political borders (Iraq, Syria, Turkey), Persian Gulf
Ganges Political borders (India, Bangladesh), regional Indian bor-

ders, Bay of Bengal
Yangtze Regional Chinese borders, cities (Shanghai, etc.), Sichuan

basin, Plateau of Tibet, Three Gorges dam
Mississippi US regional borders (states), cities (along the river: Min-

neapolis, St. Louis, Memphis, New Orleans), Gulf of Mex-
ico

Table 5.3: Setup instructions
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5.2 Data collection

To train machine learning classifiers, we had to prepare a dataset with good as well

as bad sketches. To ensure the same, we asked study participants to draw a river thrice

in the following sequence i.e. Test, Learn, and Test. The first sketch for each river in the

Test mode made without looking at the solution template was meant to produce the most

examples of bad sketches. On the other hand, the second one in the Learn mode with

option of seeing the actual river sketch and tracing over the same available to the user was

expected to yield the most number of good examples.

The exceedingly poor sketches got eliminated by preprocessing, and we noted the

scores for each feature for the remaining sketches while also grading the same using Dr.

Prout’s rubric. Dr. Prout verified the grading of the river sketches. This process resulted

in a labeled dataset.

5.3 Classification

Weka [98, 99, 100], an open-source machine learning tool, was used to perform the

following:

1. To test if the features can distinguish between correctly and badly drawn rivers: Ta-

ble 5.4 shows the results of Random Forest classification [101] (10-fold cross-validation [102,

103]) on the labeled dataset.

Accuracy Precision Recall F-measure
94.64% 0.947 0.946 0.946

Table 5.4: Results of random forest classification

2. To obtain a final score for the course of the river, the feature weights were deter-

mined using gain ratio analysis. Gain Ratio is calculated using multi-fold (k=10) cross-
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Figure 5.1: Sketchography - after choosing Nile
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validation where the set is divided into k sets randomly, and one set is used for testing

every time. The process is repeated k times.

Feature Weight
Modified Hausdorff’s Distance 4/14
Ratio of points inside the bounding polygon 4/14
Stroke Length Offset 3/14
Shape Context Score 3/14

Table 5.5: Feature weights for grading

5.4 Automatic grading

Based on the feature weights, the total score for the course of the river is calculated

according to the following formula (See also Table 5.5.):

Total score for the course of a river sketch = (Modified Hausdorff’s

Distance score * 4/14 + Ratio of points inside the bounding polygon *

4/14 + Stroke Length Offset * 3/14 + Shape Context Score * 3/14) *

100.
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Figure 5.2: Sketchography - solution shown for Amazonas
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Figure 5.3: Sketchography - solution shown for Danube
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Figure 5.4: Sketchography - solution shown for Ganges in satellite mode of Google Maps
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Figure 5.5: Sketchography - solution shown for Mississippi
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Figure 5.6: Sketchography - solution shown for Nile
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Figure 5.7: Sketchography - solution shown for Yangtze

Figure 5.8: Drawing the bounding polygons for a river
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Figure 5.9: Sketchography - after choosing Nile in ’Test’ mode
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Figure 5.10: Sketchography - tracing the solution for Nile stopped mid-way in ’Learn’
mode
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Figure 5.11: Sketchography - tracing the solution for Nile and ready to submit in ’Learn’
mode
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Figure 5.12: Sketchography - Ganges drawn in ’Test’ mode

Figure 5.13: Sketchography - automatic grading results for a bad case
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Figure 5.14: Sketchography - automatic grading results for a good case
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6. EVALUATION

To validate our assumption that Sketchography has the potential to become a useful

way of learning geography in an intimate and interactive way, we performed a user study

with students at Texas A&M University.

6.1 Study method

We performed the user study in the following way: First, we explained the purpose

and usage of the system to the users. After obtaining consent, the users would draw all

the rivers in the system, first in the ’Learn’ mode with as many attempts as they liked till

they felt confident of going for the ’Test’ mode, for which only one attempt was allowed to

simulate the feeling of an actual exam. The following details were noted for each attempt:

• The mode (Learn or Test)

• The number of times the user used the ’Clear Sketch’ option

• Time taken

• Whether the user got the origin of the river right (Yes or No)

• Whether the user got the end of the river right (Yes or No)

• Shape Context score

• Modified Hausdorff’s distance score

• Ratio of points inside the bounding polygon

• River length offset

• Final score calculated for the course of the river calculated by the system

42



Afterwards, the user study participants were requested to fill in a post-study question-

naire in order to gauge their perception of the usability and effectiveness of the system.

6.2 Study results

6.2.1 Demographics

Tables 6.1, 6.2, 6.3, 6.4, 6.5 show the demographics of the participants.

Major Number of participants
Aerospace Engineering 1
Biochemistry & Genetics 1
Biology 1
Business-Marketing 1
Communication 1
Computer Science 6
Computer Engineering 1
Curriculum and Instruction 1
Electrical Engineering 1
Environmental Geoscience 1
Geology 1
GIS&T 1
Geography 1
Information Systems 1
Urban Planning 1

Table 6.1: Educational background of the study participants - majors

Classification Number of participants
American 8
International 12

Table 6.2: Composition of the study participants
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Gender Number of participants
Male 13
Female 7

Table 6.3: Gender of the study participants

Proficiency Number of participants
Beginner 13
Intermediate 6
Expert 1

Table 6.4: Proficiency in geography

Introductory geography course Number of participants
Taken 13
Not taken 7

Table 6.5: Introductory geography course experience

6.2.2 System use

Tables 6.6, 6.7, 6.8, 6.9, 6.10, 6.11, 6.12, 6.13, 6.14, and 6.15 show the results of the

students participating in the user study:

Mode Number of attempts
Total 305
Learn 165
Test 140

Table 6.6: Attempts breakdown
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Mode Number of times option used
Total 146
Learn 74
Test 72

Table 6.7: ’Clear Sketch’ option usage

Mode Average time (in seconds)
Total 46.62
Learn 50.82
Test 41.66

Table 6.8: Average time taken (in seconds)

Mode Yes No No result due to pre-processing
Total 282 20 3
Learn 151 11 3
Test 131 9 0

Table 6.9: Origin identified correctly

Mode Yes No No result due to pre-processing
Total 251 51 3
Learn 135 27 3
Test 116 24 0

Table 6.10: End identified correctly

Mode Average score
Total 0.77
Learn 0.78
Test 0.75

Table 6.11: Shape context scores
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Mode Average score
Total 0.977
Learn 0.982
Test 0.972

Table 6.12: Modified Hausdorff distance scores

Mode Average score
Total 0.956
Learn 0.988
Test 0.918

Table 6.13: Ratio of points inside the bounding polygon for the course of a river

Mode Average score
Total 0.893
Learn 0.904
Test 0.881

Table 6.14: River length offset scores

Mode Average score (%)
Total 90.67
Learn 92.62
Test 88.40

Table 6.15: Final percentage scores for the river course

6.2.3 Usability

Figures 6.1, 6.2, and 6.3 show the usability feedback from our user studies.

Of the 20 study participants, 10 experienced one or multiple issues while using the

Sketchography application. The following issues were highlighted by the users:

• Sometimes the Submit button wouldn’t work.
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Figure 6.1: Sketchography user study results - ease of use

Figure 6.2: Sketchography user study - feedback ratings
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Figure 6.3: Sketchography user study - learning rating
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• It was not clear as to how to get back to the tab that lets you choose between "Learn"

and "Test".

• Sometimes the system did not work with the full rivers.

• Markers disturb the line sketched.

• Sometimes it took time for the results to be displayed

• Resolution issues occurred when there was confusion if the map or the whole browser

was being zoomed.

• Stylus sensitivity and freezing.

• Minor problems when wrongly clicked instead of dragging

6.3 Analysis

The average time taken as well as the mean scores obtained by the users in each mode

did not differ significantly. The average duration for attempts in either mode is less than a

minute. This is a strong indicator that they were able to learn and retain information about

the rivers in an effective way.

The various issues face by the users can be explained as follows:

• Currently the x, y coordinates are not collected accurately if touch input (instead of

the stylus) is used during sketching. This cause errors during various calculations

which are logged on the JavaScript console but not shown to the users.

• The UI can be improved using principles of human-computer interaction so as to

make the application more intuitive and not cause confusion if a user wishes to

switch between the modes.
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• The markers currently have a higher z-index (elevation) than the surrounding areas.

They should be both lowered users should also be allowed to sketch over them.

• An alert should be generated if a user tried to zoom-in or zoom-out while in the

sketching mode to prevent causing the browser resolution to change.
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7. FUTURE WORK

We plan to enhance and improve Sketchography in multiple ways. The current version

of Sketchography is bare-bones with a lot of scope for UI improvements. We intend to

use a UI library to standardize the UI elements and ensure that the web application ren-

ders well across different browsers. Currently, the level to which a user can zoom on the

Google Map in Sketchography is fixed and uniform for all rivers in the system. We ob-

served that for some rivers such as the Nile and Amazonas, a noticeable amount of details

were visible while others were far less conspicuous. We plan to investigate this and have a

dynamic limit for the zoom level to ensure consistency concerning the degree of detail that

is presented to a user. We will prioritize allowing users to easily draw over the reference

markers for each river so that their sketching experience is not hindered. We will work to

merge the different parts of a river if they are listed under different names in the Natural

Earth dataset so that a unified picture is presented to the user and any misunderstanding

is avoided. We plan to add hints for remembering the characteristics of a river and info

boxes to supplement the knowledge about a river in the learning mode. Besides the gen-

eral UI improvements, we also plan to introduce visual means of help and instructions

through videos, animation, and overlay markers. Also, we plan to improve the feedback

by highlighting the differences between an attempted solution and the exact template.

As Sketchography developed, the application codebase kept increasing, and as more

researchers join the project, maintainability becomes a concern. Modularity and proper

documentation of the code base are some of the ways we can ensure the long-term stability

of the project. We plan to introduce session and identity management in the Sketchography

web application so that the system is practically deployable in classrooms. That would also

necessitate getting the user results stored in a database rather than just display on the user.
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We also plan to explore other datasets which would be more comprehensive, especially for

rivers, and ensure normalization between the user sketches and the river templates from

such databases so as to ensure fair comparisons for a user’s sketches.

We plan to introduce an "Instructor" mode which would allow instructors to create new

custom problems, define how each problem should be set up such as the level of details

shown and any reference markers or labels to added and see the student submissions.

Geography involves the study of many other things besides rivers, and we plan to expand

to other kinds of geographical features and phenomena such as mountain ranges, contours,

and ocean currents, to make Sketchography a more comprehensive tool for geography

education and research.
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8. CONCLUSION

Knowledge of geography is essential for all students. In this research, we kicked off

the development of an intelligent tutoring system to help students learn geography in a

novel and interesting way. The grading rubric provided by a geography professor was the

basis for the evaluation of user sketches and feedback given to users. The grading rubric

required the system to evaluate different aspects of a user’s attempt. While the origin and

end of the river drawn could be checked conclusively with the Google Maps JavaScript

API, assessing the course of a river needed the calculation of various features which could

satisfactorily determine the accuracy of an attempt. A combination of four features was

used to give a score for the course of a river which aligned closely with the way a human

grader would rate the same. The user study reaffirmed our expectations for the system

as students from varied backgrounds found our system to be effective in improving their

knowledge about some of the major rivers in the world. There is much scope for im-

provements and enhancements which could make Sketchography a comprehensive tool

aiding geography education in varied ways and hopefully, herald a new era of improved

geographical awareness among the masses.
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