
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

1986

Prototype for a high school geometry tutorial Prototype for a high school geometry tutorial

Timothy Spangler
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Spangler, Timothy, "Prototype for a high school geometry tutorial" (1986). Graduate Student Theses,
Dissertations, & Professional Papers. 8069.
https://scholarworks.umt.edu/etd/8069

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F8069&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/8069?utm_source=scholarworks.umt.edu%2Fetd%2F8069&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

COPYRIGHT ACT OF 1976
Th i s is a n u n p u b l i s h e d m a n u s c r i p t in w h i c h c o p y r i g h t s u b ­

s i s t s . A n y f u r t h e r r e p r i n t i n g o f its c o n t e n t s m u s t b e a p p r o v e d
BY t h e a u t h o r .

Ma n s f i e l d L i b r a r y
Un i v e r s i t y o f Mo n t a n a1986Da t e ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A PROTOTYPE FOR A
HIGH SCHOOL GEOMETRY TUTORIAL

By
Timothy Spangler

B.A., Whitman College, 1967

Presented in partial fulfillment of the requirements
for the degree of
Master of Science

University of Montana
1986

Approved by

Chairman, Board of Exaialner;

Deé/n, Graduate S^'ool

Sj. / y L>Date

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: EP38870

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI*
Dissertation Riblishmg

UMI EP38870
Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest
ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sparser, Timothy, M.S., Aî ust Computer Science

A Prototype for a Hi^ School Geometry Tutorial (208 pp.)

Director: Alden H. Wrijght

This thesis examines requirements of an Intelligent Tutorir̂
System (ITS) for tutoring proof learning in geometry. Coipjterized
systems for tutoring high sdiool geometry can be designed and
implemented with current technolĉ y usir̂ tools of Artificial
Intelligence, high resolution graphics, and knwle<%e gained from
pioneerir̂ ITSs. This thesis describes the components of a typical
ITS and compares it to a geometry tutor currently under
development at Carnegie Mellon University by a group led by John
Anderson.

Using a method known as rapid prototyping, the programming part
of this this thesis impltmmnted a user interface for a gecmetry
tutor on a Macinto^ microcomputer for demonstration to local high
school teachers and geometry students. The lesson implemented with
this prototype dealt with developmwt of :̂ dJLLs needed to apply
both geometric and heuristic rules to problems encountered in the
construction of a proof. The leamir% transition considered by the
project was based on ^ill levels described by the van-Hiele mcxlel
of geometric learning.
The thesis also begins the top down development of a second

prototype and points out requirements for expert components of an
ITS that mist be develĉ ed. It was concluded that an ITS for
geometry would require several additional software and hardware
tools currently not available at this school. Development of an
effective ITS for proof in geometry would also require several
individuals possessir̂ different fields of expertise includir̂ :
geometry, geometry education, and system development skills.

UL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

A B S T R A C T Ü

TABLE OF CONTENTS ... i ü

1. INTRODUCTION .. 1

2. THE INTELLIGENT TUTORING S Y S T E M 7

2 .1 The Domain Expert 9

2 . 2 The Student Model 14

2.3 The Tutor ...18

2.4 Problem Solution As Heuristic Search 2 6

2.5 ACT (Problem Solving Mind Model) 29

2.6 Learning By Doing (The Open System) 31

2.7 Geometry Education Today 3 4

3 . PROTOTYPE D E V E L O P M E N T 3 5

3.1 Initial Analysis 38

3.2 The van Hiele Model for Geometry Learning39

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Preliminary Implementation43

3.4 Initial C r i t i c i s m 47

3.5 Incremental Extensions to the Prototype 48

3.6 User Reactions ... 51

3.7 Teaching Objectives and Methods54

4. FURTHER DEVELOPMENT 56

4.1 Human Constraints 57

4.2 System Constraints and Alternatives 58

4.3 The Second Prototype61

4.3.1 Improve Input/Output61

4.3.2 Implement a Domain Expert as Part of the
S y s t e m 63

4.3.3 Design a Student Model 64

4.3.4 Upgrade the Tutor and the User Interface ...65

4.4 Conclusions .. 67

APPENDIX A. SCREENS

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B. PARSING RULES 87

APPENDIX C. STRUCTURE CHARTS 91

APPENDIX D. GLOBALS..Ill

APPENDIX E. CODE .. 121

Start File .. .130

Utilities File .. 141

System Array File ... 160

Input/Output File 177

Parser File .. 184

Lesson File .. 201

SELECTED BIBLIOGRAPHY 205

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER

INTRODUCTION

This thesis is an investigation into the feasibility
of building a computerized Intelligent Tutoring System
(ITS) for high school geometry. Geometry proof, often
considered critical to the development of a student's rea­
soning skills, is difficult for the average student to
learn in a typical classroom. Statistical studies have
shown that up to 85% of high school students cannot do
proofs, a "skill that underlies the structure of a stan­
dard geometry course (Senk, 1985 / p. 85).

Individualized instruction, such as one-on-one tutor­
ing makes geometry proof much easier to learn. Good stu­
dents are able to learn much faster and slower students
are able to understand concepts they fail to grasp in the
classroom environment. A study by John Anderson a
psychologist at at Carnegie Mellon University indicates
that private tutoring can speed up geometry learning by as
much as four times (Anderson, 1985).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The advent of the computer in the 1950s offered much
hope to mathematics educators who saw the machines as new
educational tools. Systems to "instigate and control
learning" called Computer Aided Instruction (CAI) were
developed to perform individual instruction. Most of these
programs were only a form of "drill and practice". They
lacked the individualized analysis of a student's perfor­
mance which is necessary to correct misconceptions. The
CAI systems of the 1960s lacked most of the resources to
build a truly intelligent educational system and were con­
sidered failures by many (Barr, 1982 / p. 226).

Today, major constraints upon the development of
intelligent systems are beginning to loosen. Both com­
puter speed and memory size have increased while costs for
these more powerful machines have dropped significantly.
Machines are now available whose hardware is designed to
quickly implement LISP, a primary language of intelligent
systems. A recent article in Mini-Micro Systems pointed
out that:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Last year, Xerox Corp. introduced two low-cost AI
workstations, the Xerox 1185 and 1186. At $9,995,
the 1186 may be the cheapest LISP machine on the
market (Tucker, 1986 / p. 73).

Machines like the 118 6 are much faster, have more
memory, and are more versatile than the PDP-11, a computer
used to build experimental intelligent tutors over the
past 15 years. Thirty years of research into artificial
intelligence is also available to today's developer of
intelligent systems. Today's developers have access to
highly interactive graphic interfaces and often can use
software tools that are designed for expert systems and
other AI applications.

In order to develop an Intelligent Tutoring System
for geometry, it is necessary to compile much knowledge
about geometry, the process of tutoring geometry, and
requirements needed to create a system. This thesis points
out several of those requirements. It also attempts to
determine the scope of a feasible system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

An important constraint that influenced this study
was the need to limit both the size and scope of the
attempted system. In Intelligent Tutoring Systems Sleeman
and Brown point out:

ITS has clearly abandoned one of C A I 's early ob­
jectives ̂ namely that of providing total courses,
and has concentrated on building systems which
provide supportive environments for more limited
topics (Sleeman, 1982 / p . 8).

They go on to say that the existing intelligent sys­
tems for education concentrate on bottlenecks in the
development of a subject. In those systems each topic
"represents an educational 'watershed' in that if any of
these skills are not acquired, further progress is greatly
inhibited" (Sleeman, 1982 / p . 8).

In an attempt to limit the educational scope of a
small system, this study has concentrated on the problem
geometry students have in making a formal inference from
a rule. The problem corresponds to what mathematicians
call modus ponens. It also corresponds to the transition
between two "levels" for geometry learning described by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the van-Hiele model (Shaughnessy, 1985) discussed later in
this paper.

To begin the development of system requirements,
several ideas are borrowed from existing experimental ITS
systems. This paper also investigates research of
mathematics educators and attempts to apply some of their
ideas to the creation of an adequate system.

The bulk of this project has been the development of
a prototype geometry tutorial. To get a feeling for what
the tutoring system could be, an environment was created
on the Macintosh microcomputer. A short geometry lesson
was implemented in this environment that involved a
three-step proof. Tutoring of high school geometry stu­
dents and informal conversations with mathematics teachers
were held concurrent with the development of this proto­
type. Minimal requirements for the prototype were based
on these sessions.

After describing the prototype, this paper reports
the reactions of some mathematics teachers and geometry
students who worked through the prototype's lesson. It

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

describes changes that were made to accommodate the criti­
cism, and other changes that could be made easily. A
potential second prototype is then described.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

THE INTELLIGENT TUTORING SYSTEM

This chapter describes the basic components found in
most Intelligent Tutoring Systems (ITS). It examines some
experimental systems which are classified as intelligent
tutorials and establishes a context for a geometry
tutorial. Included is a description of an ITS for geometry
currently under development by John Anderson at Carnegie
Mellon University.

A primary goal of an ITS system is to establish stu­
dent driven educational environments by simulating a human
tutor. Traditional CAI systems attempt to simulate a
human tutor by guiding a student through the learning of
a particular subject. However, CAI systems tend only to
lecture and drill students while

a good human tutor does not merely traverse a
predetermined network of knowledge in selecting
material to present. Rather it is the process of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

the tutor's ferreting out student misconceptions
that drives the dialogue. (Barr, 1982 / p. 231)

Attempting to emulate a human tutor, most experimen­
tal ITS systems include three basic modules: 1) an domain
expert, 2) a student model, and 3) a tutor (Barr, 1982 /
p. 229).

The domain expert of an Intelligent Tutoring System
has the function of generating problems and evaluating the
correct solutions to those problems. Usually the domain
expert is driven by an inference engine operating on
domain knowledge. This knowledge often has a declarative
representation in the form of if-then production rules.

The student model of an ITS maintains a record of
selected student knowledge and skills. As Sleeman and
Brown point out;

If a conversational system is to manage realistic
dialogues, it must have some representation of the
user's conceptualization of the domain. Without
such a model, the system may provide comment at
the wrong level of detail or mistake the user's
current focus of attention (Sleeman, 1982 / p . 5).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

By creating a student model, an ITS is able to evalu­
ate a student's performance and determine misconceptions.
This is often done with an "overlay model" which compares
the student's knowledge with knowledge in the domain
expert (Barr, 1982 / p. 231)

The third necessary ITS module, the tutor, has two
basic functions. Using the student model, the tutor
evaluates student performance and determines possible
misconceptions. Also the tutor handles all communications
from the system that help a student realize errors.

2.1. The Domain Expert

Ideally an ITS domain expert can solve all the prob­
lems presented by the system during a tutorial session.
For example WEST, a type of ITS called a "computer coach",
employs an expert to solve problems in arithmetic and game
playing. WEST is based on a game similar to a popular
board game called "Chutes and Ladders". In the computer
game, "How The West Was Won", players move their playing
piece along a path toward a goal. with three numbers

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

obtained from spinners, players can use any combination
derivable with arithmetic operators and parentheses as
their step count. There are different game playing stra­
tegies that players can use to their advantage such as
jumping to the next town when they land on a town, or
sending their opponent back when they land on the
opponent's square. (Burton, 1982)

WEST helps students learn skills in mathematics and
gamesmanship. Each time a player spins, WEST'S domain
expert ranks the different correct answers in order of
optimality. It also identifies the skills, which it calls
"issues", necessary to come up with those answers. WEST'S
expert divides these skills into three levels: 1) math
skills, 2) WEST playing skills, and 3) general game play­
ing skills (Barr, 1982 / p. 257). With this information,
WEST is able to identify what an expert game player would
do in a given situation.

Like WEST, other intelligent tutorials should be able
to evaluate any possible action by the student, identify
skills needed for expert performance, and discriminate
among the types of skills needed to perform a task.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

Another domain expert used in an ITS is MYCIN, a
well-known expert system containing domain-specific
knowledge needed to diagnose bacterial infections. Using
patient data obtained through interactions with doctors
and built-in production rules, MYCIN "provide(s) consul­
tative advice ... and therapy for infectious diseases"
(Barr, 1982 / p. 184) , MYCIN is the domain expert for
GUIDON, a system designed to help medical students learn
both the domain specific knowledge of MYCIN and the logic
used in its diagnostic process. Within the framework of
an AND-OR search tree, MYCIN solves a "case" and provides
GUIDON with the solution.

The student and GUIDON start at the beginning stages
of the diagnosis and proceed through MYCIN's solution of
the case. GUIDON walks a student through the logical
chain created by MYCIN thus demonstrating MYCIN's obscure
rules and methods. The important contribution GUIDON
made to ITS was its demonstration that:

In addition to the domain knowledge ... a tutorial
... requires teaching expertise such as the abili­
ty to tailor presentation of domain knowledge to
the students competence and interests (Clancey,
1982 / p. 204).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

GUIDON serves as an important contrast to a geometry
tutorial. A proof tree created for a geometry problem is
similar to that created by MYCIN. However, the theorem
prover for a geometry tutorial should create solutions
that are more intuitive and understandable by students.

In contrast to WEST and GUIDON, BUGGY is an ITS sys­
tem whose expert does more than generate correct solutions
to problems. It also generates incorrect solutions. It
is designed to discover why students make errors in the
application of basic arithmetic algorithms. BUGGY's
expert

represents a skill, such as addition , as a col­
lection of subskills, ... The subprocedures in
BUGGY that correspond to human subskills are
linked into a procedural net, which is BUGGY's
representation of the entire human skill (Barr,
1982 / p. 280).

BUGGY will solve problems correctly when it is using
the proper subskills. It also has "buggy rules" which if
substituted for the correct subskills produce errors.
Matching performance of buggy solutions with a student's

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

wrong answers help determine what the student is doing
wrong. This feature of BUGGY'S expert module performs
functions found in the student model of other systems.

The principles of BUGGY'S domain expert have been
adopted in the development of an intelligent geometry
tutorial. Anderson has created a geometry tutorial based
on a memory model called ACT. ACT is a production system
where; "Essentially, every production in the system
encodes a meaningful step of cognition." ACT serves as the
system expert and solves geometry problems using produc­
tion rules for geometry in a human like way. The expertise
module of Anderson's tutorial uses a set of ideal and
buggy rules rules called an IBR, and works in a way simi­
lar to BUGGY. The ideal rules represent subskills neces­
sary to solve geometry problems correctly, and the buggy
rules represent misconceptions which, when applied, will
produce incorrect results. This extensive knowledge is
stored in a production system. Anderson thinks that with
these rules "it is possible to outperform human tutors
..." (Anderson, 1985 / p. 1-2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

Based on the 1ER, the expertise module of Anderson's
tutorial can solve geometry problems using the ideal rules
of the knowledge base. Like a human problem solver, ACT
activates both forward chaining from the given information
and backward chaining from the goal to create a proof tree
that solves the problem (Anderson, 1983). Like BUGGY, ACT
uses buggy rules in the knowledge base to generate
incorrect solution paths that match the activity of stu­
dents with misconceptions. Anderson is the definitive
reference for any computerized geometry tutor. More will
be said about his memory model and its attempt to emulate
a human problem solver.

2.2. The Student Model

The goal of a student model is to record what the
student knows while working problems within the system.
Burton and Brown, in their description of WEST give a
strong justification for the student model component of an
ITS.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

Apart from outright errors, the main window a com­
puter based coach has to a student's misconcep­
tions is through a 'differential' modeling tech­
nique that compares what the student is doing with
what the expert would do in his place. (Burton,
1982 / p. 81)

In WEST the differential model has two tasks: 1)it
must evaluate the current move of the student and 2) it
must determine the skills that were necessary to make that
move. Potential skills can be found by "looking at the
expert’s problem-solving trace for generating a given move
..." (Burton, 1982 / p. 82). By comparing this informa­
tion, the system can discover skills the student knows and
skills to be learned.

Each skill or "issue" necessary for good moves has
two procedures related to it: 1) an issue recognizer that
"watches student's behavior for evidence that a student
does or does not use its particular concept or skill "
and 2) an issue evaluator that is used by the tutor module
to decide the student's weaknesses (Burton, 1982 / p. 83) .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

Like arithmetic, geometry problem solving requires
various skills. A tutoring system must be able to deter­
mine a user's skills and to discover missing skills.
Furthermore it would be beneficial to maintain a record of
this information to use later in the tutoring session.

GUIDON also creates a student model. The record GUI­
DON keeps of student performance helps choose "knowledge
to present to a student based on his competence and
interests." GUIDON goes a step further than WEST in main­
taining this record. The GUIDON system "acts as an agent
that keeps track of the knowledge that has been presented
to the student in previous sessions". (Clancey, 1982 / pp.
201-205)

GUIDON maintains a history of a student's knowledge
by means of a three-part, iterative "USE" cycle. To do
this, GUIDON borrows the concept of "certainty or confi­
dence factors" from MYCIN that give truth value to beliefs
held by the system. One of the components of the USE
cycle is a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

cumulative record of which rules the student knows
called the USE-HISTORY ... [which] is

represented by a certainty factor that combines
the background evidence with the implicit evidence
stemming from needs for assistance and verbalized
partial solutions, as well as explicit evidence
stemming from a direct question that tests
knowledge of the rule (Barr, 1982 / p. 271).

GUIDON updates the student model at critical times
using active components of the model. Another part of the
USE cycle is updated each time the system receives input
concerning the student's understanding. In the other com­
ponent, whenever MYCIN fires a rule in its solution of the
case, GUIDON records the system's belief that the student
could use the newly fired rule.

GUIDON maintains this complex student model in coor­
dination with its parent, MYCIN. GUIDON's design is impor­
tant to a geometry tutorial because it indicates the com­
plexity involved in maintaining information about student
knowledge and misconceptions over time. GUIDON makes an
attempt to simulate a human tutors who know their stu­
dents' capabilities from a familiarity that builds up over
several sessions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

Rather than maintain an explicit student model, both
BUGGY and Anderson's geometry tutorial have the student
model built into buggy rules. These systems use a process
of searching through the buggy subskills to find a combi­
nation of skills, both good and buggy, that will reproduce
the incorrect answers given by a student. In certain
situations this may be very effective. However, it
presents some problems. First, it assumes the system
knows all of the subskills needed to solve a problem.
Second, it does not appear to form an image of individual
students over time. Tutors are able to effectively help
students because they know them personally and can help
them on individual problems.

2.2̂ . The Tutor

Both the expert and the student model become opera­
tional by means of the tutoring component of an ITS. This
module acts as the communication link between the user and
the expert. It maintains the educational dialogue of an
interactive session.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

The WEST tutor or "coach” takes a "constructivist
position" when helping a student. It distinguishes between
what it calls constructive and non-constructive bugs.

If the student has enough information to determine
what caused the error and can correct it, the bug
is referred to as constructive. If, however, the
student does not have sufficient information to
change his behavior as a result of the perceived
error, the bug is termed non-constructive. (Bur­
ton, 1982 / p. 80)

Following this philosophy the WEST tutor is very
careful about interrupting the fun of the game to help the
student. As the student plays the game, a student model
is created as described above. If a student makes a less
than optimal move, the student model is evaluated to
determine those issues in which a student is weak. The
tutor may respond by:

providing both the description of a generic issue
(a concept) and a concrete example of its use in­
creasing the chance that the student will in­
tegrate this piece of tutorial commentary into his
knowledge. (Burton, 1982 / p. 90)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

WEST'S tutor uses goal-directed "Issue evaluators"
that find the student weaknesses and tutoring principles
to determine how and if it should interrupt (Barr, 1982 /
p. 2 57). If it decides to interrupt, it does so through a
special procedure attached to each issue called a speaker.

WEST'S tutor reveals three things that help determine
requirements for a geometry tutor: it gives only con­
structive help, its use of "issues and examples" to teach
abstract concepts using concrete examples could be copied
by a geometry tutorial, and it uses a set of tutoring
principles to determine how and when the student should be
interrupted.

The GUIDON tutor observes a student's progress
through a case diagnosis. As Barr and Feigenbaum point
out:

(The) record of what the expert (i.e., MYCIN)
'knows' at any time during the student-run consul­
tation forms, the basis for evaluating a student's
partial solutions and providing assistance. ...

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

Referring to the rules that MYCIN uses to solve
subproblems, ... GUIDON decides which of these
rules, if any, might have been used by the stu­
dent. That is, what inference chains are con­
sistent with the student behavior? (Barr, 1982 /
p. 270-274)

GUIDON'S tutor gets information about the student
from a communication model. This model is made up of the
student overlay described above, a case syllabus which
includes information to be learned from the specific case,
and a focus record that indicates those interests the stu­
dent is pursuing at the time. This information allows
GUIDON to present students with material that is
appropriate to their abilities and interests.(Burton,
1982)

Using the information of the communication model, the
tutor selectively activates a "discourse procedure" which
communicates with the student. These procedures conduct a
"goal directed dialogue" in which; the system is geared to
teach the student a particular phase of the MYCIN solu­
tion, and the student is given a degree of flexibility in
choosing the depth of detail. (Burton, 1982)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

GUIDON-WATCH, another system which is an extension of
GUIDON, gives students even more access to information.
Using a graphic interface, it provides users with mouse
controlled access to multiple views of the system. They
can choose to look at MYCIN's solution tree as it dynami­
cally processes the diagnosis. They can also watch the
changing stacks of subgoals which MYCIN must examine to
come up with a solution. (Richer, 1985)

The original GUIDON tutor followed a set of tutoring
rules that function as productions within the system.
These rules were not the productions of MYCIN which encode
the medical knowledge of the system. Instead they had
access to 1) knowledge about dialogue patterns, 2) forms
of domain knowledge for carrying on dialogues and 3)
knowledge of the communication situation (Clancey, 1982).
The tutoring rules worked together with the discourse pro­
cedures to create interaction with the student.

A discourse procedure step specifies in a schemat­
ic form WHEN a type of remark might be appropri­
ate. WHETHER to take the option ... and WHAT to
say exactly ... will be be dynamically determined
by tutoring rules ... whose preconditions refer to
the student model, case syllabus, and focus
record. (Clancey, 1982 / p. 209)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

GUIDON provided a concrete example of a method for
presenting information from a diverse array of help pro­
cedures, The GUIDON tutor presented necessary material
based on student knowledge and interest. The tutor com­
ponent of a geometry tutorial can use several of the
features which GUIDON provides including; 1) tutoring
rules to drive the interaction and 2) discourse procedures
that are tailored to a variety of situations and abili­
ties. GUIDON-WATCH demonstrates the potential of a graphic
interface that reveals inner workings of an expert system
which might be incorporated into an expert geometry
solver.

The tutor of Anderson's geometry tutorial controls
communication between the user interface and the system
expert, the IBR. The two methods of interaction with the
1ER are:

(a)It can look at which ideal and buggy rules are
currently instantiated in the IBR and use these to
interpret the student's behavior.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

(b)It can request of the ideal model whether a
statement can be proven, subject to certain con­
straints. This will cause the IBR to attempt a
proof and report back information such as whether
such a proof exists, how long it is, how optimal
it is, what rules it involves, etc. (Anderson,
1985 / p. 2)

The first method allows the tutor to determine
correct progress and misconceptions of the student. The
second can be used to determine whether a new assertion
made by a student is both logical and constructive.

The tutor also communicates with the interface, the
third component of Anderson's tutorial. The purpose of
the interface is to "communicate to the student the logi­
cal structure of a proof and the structure of the
problem-solving process by which the proof is
generated." (Anderson, 1985 / p. 4) Essentially the inter­
face provides students with a means to build a graph of
the proof. They can either forward chain from the givens
or backward chain from the conclusions of the problem. As
Anderson describes it:

The student grows the graph by a combination of
pointing to statements on the screen and typing in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

information. Each step of the inference involves
a set of premises, a reason, and a conclusion.
Reasoning forward, the student points to the prem­
ises, types in the reason, and points to the con­
clusion or types it. ... The student is finished
when there is a set of logical inferences connect­
ing the givens to the statements to be proven.
(Anderson, 1985 / p . 4)

This interface is very effective. It is supported
with syntax checks and help windows that provide state­
ments of applicable rules. Anderson has implemented a
"minimal tutor" which

can be described with respect to three steps a
student must go through to complete an inference:
selecting a set of statements from which to make
an inference, specifying the rule of inference
that will apply to these statements and then
specifying the statements that result from apply­
ing this rule of inference. (Anderson, 1985 / p.
6)

Anderson's tutorial is an ambitious project in the
development of Intelligent Tutoring Systems. The human­
like expert and stimulating interface should be copied or
used if possible. However, the present minimal tutor has
some serious gaps that need to be filled. Anderson admits

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

that the system falls short in its ability to help con­
fused students who do not know what to do. Also, he
points out that the system lacks "remedial problems
tailored to student weaknesses"(Anderson, 1985 / p. 7).
Anderson's geometry tutorial could use features like the
student model and discourse procedures of GUIDON. These
features could work together with tutoring rules and an
IBR to control the system interface.

2.4. Problem Solution as Heuristic Search

In the development of a geometry tutorial, Anderson's
group has found that students use a mixture of forward
chaining and backward chaining in the development of a
geometry proof. He points out that:

This mixture along with various search heuristics
they acquire, enables students to deal with search
demands of proof problems in high school geometry
texts. (Anderson, 1983 / p. 194)

Heuristics, the ancient study of "the methods and
rules of invention and discovery" (Polya, 1945 / p. 112)
can well serve as part of the knowledge base of an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

intelligent tutor. These methods can be encoded as rules
used by the expert to solve problems in a humanlike way.
Also problem solving heuristics can be incorporated in the
framework of an overlay student model.

George Polya in How To Solve It describes several
problem solving heuristics that could be used by a
geometry tutor. Polya established a list of heuristic
questions which builds a foundation for interaction
between a teacher and a student who is learning to solve
problems. Using the explicit questions listed in this
book, a teacher can attempt to instill a heuristic method
of problem solving in students. In his translation of
Pappus, an ancient Greek mathematician, Polya describes
the problem solving process which uses heuristics.

"In analysis, we start from what is required, we
take it for granted, and we draw consequences from
it, and consequences form the consequences, till
we reach a point that we can use as starting point
in synthesis. For in analysis we assume what is
required to be done as already done (what is
sought is already found, what we have to prove as
true). We inquire from what antecedent the
desired result could be derived; then we inquire
again ... This procedure we call analysis, or
solution backwards.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

"But in synthesis,... we start from the point
which we reached last of all in the analysis, from
the thing already known or admittedly true. We
derive from it what preceded it in the analysis,
and go on making derivations .. we finally succeed
in arriving at what is required. (Polya, 1945 / p.
142)

Polya's rendering of Pappus is an ancient description
of what computer scientists now call backward chaining
(analysis) and forward chaining (synthesis). It points
out a very powerful problem solving technique that good
problem solvers use all of the time. The questions used
to drive Polya's method could become a part of the student
model that records the strengths and weaknesses of a
user's problem solving ability while progressing through
an interactive session.

Polya's method also describes a method that can be
used by the expert module of an ITS for human like problem
solving. Anderson's tutorial appears to be doing this
with ACT.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

2̂ .5. ACT (Problem Solving Mind Model)

Anderson's mind model, ACT, is based on production
rules and their application to appropriate situations.
These production rules, which are stored in a declarative
representation, must undergo a transformation that Ander­
son calls "knowledge compilation" before they can be
applied. As Anderson describes it:

Knowledge compilation is the process by which sub­
jects go from the declarative representation of a
skill to a procedural representation. The de­
clarative representation is applied to the task by
means of general interpretive productions.
After achieving a procedural form, in contrast,
the knowledge applies directly because it is en­
coded in production form. (Anderson, 1983 / p.
202)

Anderson claims that the ACT model simulates
processes used by students doing inferences in a geometry
proof. This includes a simulation of the human tendency
to compose several productions into a single production.
However, this is not the whole of Anderson's model. He
also includes the elements of heuristic search.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

Having operators proceduralized is not enough to
guarantee successful proof generation. There is
still a potentially very large search space of
forward and backward inferences. Finding the
proof tree in this net would often be infeasible
without some search heuristics that cause the sys­
tem to try the right inferences first. (Anderson,
1983 / p. 209)

Anderson uses heuristics extensively in the develop­
ment of his ACT model. In his description of heuristic
search he points out that "at the general level, expertise
does not develop by becoming more restrictive in search,
rather it develops by becoming more appropriately restric­
tive." He recognizes several heuristics used by problem
solvers including analogy, generalization, discrimination,
and composition. (Anderson, 1983 / p. 209)

ACT has been implemented to solve geometry problems
of a level found in high school textbooks. It appears
able to build a proof tree using backward and forward
chaining. However, its use of other heuristics and the
extent of the implementation appears somewhat unclear.
Regardless, ACT does form a framework for the development
of a geometry tutorial's expert module.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

2.6. Learning by Doing (The Open System)

The work of Jean Piaget and Seymour Papert has
greatly influenced computer education. In learning situa­
tions, they have found "evidence that (a) child's activity
is the key — learning must take place by 'doing'" (Barr/
1982 / p. 291) This has led to the idea of the open sys­
tem, an environment that allows unstructured learn­
ing.

Papert, the most vocal advocate of unstructured
learning, promotes a learning environment of "'Piagetian
learning* or learning without being taught" (Papert, 19 8 0
/ p . 7). By "Piagetian leaning" he means:

the natural spontaneous learning of people in in­
teraction with their environment, .. contrasted
with the curriculum-driven learning characteristic
of traditional schools. (Papert, 1980 / p. 156)

The computer language, Logo, is Papert's implementa­
tion of this environment. Papert's theory of cognition is
based on Piaget's "notion of assimilation". In
Mindstorms, Papert observes:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

Anything is easy if you can assimilate it to your
collection of models. ... The understanding of
learning must be genetic. It must refer to the
genesis of knowledge. What an individual can
learn, and how he learns it, depends on what
models he has available. (Papert, 1980 / p. ii)

These ideas are very powerful. Papert has many fol­
lowers and Logo has spawned a generation of educational
systems attempting to be open. As pointed out by the
developers of GUIDON-WATCH:

Papert offers a provocative view of AI and comput­
ers in education; he influenced us to consider how
we can provide students with conceptual software
tools to explore computational models. (Richer,
1985 / p. 61)

Papert bases his model on the creation of "body syn­
tonic" and "ego syntonic" objects. The turtle, a
"computer-controlled cybernetic animal" (Papert, 1980)
found in the Logo computing environment, is "body syn­
tonic" in the sense that it can be related "to children's
sense and knowledge about their own bodies." Also it is
"ego syntonic in that it is coherent with children's sense
of themselves as people with intentions, goals. ... Turtle

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

geometry is learnable because it is syntonic" (Papert,
1980 / p. 63). The trees established in both Anderson’s
tutorial and GUIDON-WATCH might be viewed as ego syntonic
objects. Use of these objects is a very powerful means of
teaching the concepts in those systems.

Papert’s "conjecture is that the computer can concre­
tize (and personalize) the formal" (Papert, 1980 / p. 21).
Optimistically he perceives an environment where children
become epistemologists via the process of computer pro­
gramming. He sees the turtle and LOGO "as a vehicle for
Piagetian learning, which (to him) is learning without
curriculum" (Papert, 1980) p. 31).

AI developers of ITS recognize the importance of
Papert’s position and attempt to incorporate many of his
ideas into their systems. However Papert holds an extreme
position in education and most ITS developers temper his
perspective. They feel there are many other things that
AI can contribute to education besides providing a
strictly open environment. As Barr and Feigenbaum point
out: "A tutor is a learning resource, and 'hybrids’

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

between (ITS) ideas and learning-by-doing systems are pos­
sible.” (Barr, 1982 / p. 293)

The implementation of experts in intelligent systems
such as WEST, GUIDON, and Anderson's geometry tutorial
allow educational systems which are much more open than
traditional CAI systems. As simulators of human tutors
the experts of these systems achieve flexibility in their
presentation of material and responsiveness to student
needs.

2,7̂ . Geometry Education Today

Traditionally geometry has had a place in the curri­
culum because it is an excellent environment to learn
skills of reasoning and logic. As Polya points out in How
To Solve It :

If the student failed to get acquainted with this
or that particular geometric fact, he did not miss
so much; he may have little use for such facts in
later life. But if he failed to get acquainted
with geometric proofs, he missed the best and sim­
plest examples of true evidence and missed the
best opportunity to acquire the idea of strict
reasoning. Without this idea, he lacks a true

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

standard with which to compare alleged evidence of
all sorts aimed at him in modern life. (Polya,
1945 / p. 216)

For this reason proof in geometry is still considered
a very important part of the high school curriculum. An
ITS for geometry should develop skills that promote the
learning of proof. It should be rigid enough to direct
users toward learning needed skills, but open enough to
allow them the freedom necessary to develop confidence in
the mathematical structures they build in their minds.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER

PROTOTYPE DEVELOPMENT

The prototype created in this project is a user
interface for an intelligent geometry tutorial. The sys­
tem it anticipates would allow students to learn construc­
tion of simple proofs in geometry and help them develop
skills necessary to write those proofs. The projected sys­
tem would be an expert system similar to those described
in chapter 2. This prototype, while not an expert system,
is attempting to lay groundwork for an expert geometry
tutorial. In the development of an expert system:

You cannot interrogate the experts, then go off
and code up what they said. Instead, you must
enter into a longer-term relationship, in which
you keep coming back to them for criticism and ex­
tensions of the program, until it begins to solve
a significant fraction of problems in the domain.
A program of this kind must be open-ended; it is
never finished, and must be easy to modify at all
times. (Charniak, 1983 / p. 438)

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

In order to implement this kind of program, the
development method known as "rapid prototyping" was used.
Rapid prototyping

means building or designing with a new technology
or for a new application while the feasibility of
the design remains in question. (it is) basically
a feasibility study that serves to demonstrate
system aspects critical to the user.
(Ramamoorthy, 1984 / p. 193)

Also described as "incremental development", rapid
prototyping builds a system from the bottom up by creating
a visible coded system. This allows requirements to be
discovered in the process of development. The method con­
trasts with traditional Software Engineering methods
which follow lengthy steps of analysis and design before
implementation in actual code.

This paper describes three iterations through the
development cycle of the rapid prototype. In the first
iteration, a simple interface was developed and criti­
cized. Int the second iteration, an analysis was made of
the existing system and priorities were made of feasible
enhancements to the system. Using incremental

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

development, some of these enhancements were constructed
and a second evaluation was held which included reactions
from high school students. The third iteration begins
with the fourth chapter of this paper in a top down
approach to a second prototype.

Initial Analysis

The initial purpose of this prototype is to establish
an interactive dialogue between system developers at the
university and our counterparts in the high schools.
Those high school counterparts include geometry teachers
who are the experts and high school geometry students who
are the users. By establishing this dialogue, the process
of accumulating necessary knowledge for an expert geometry
tutorial can proceed.

A dialogue was established with two teachers and two
students at a Missoula high school, an urban setting of
about 50,000 people, to develop the first prototype.
Several meetings were held with one of the teachers in the
high school and about 3 0 tutorial sessions were conducted

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

with the students to get a feeling for the process of
learning geometry.

3.2. The van Hiele Model for Geometry Learning

Geometry education at the school is in a state of
controversy. Traditionally, proof has been introduced
early in a geometry course. For example the text used was
Geometry published by Scott Foresman and Company, which
immediately introduces formal proof. (Hirsch, 1984) In
contrast to this, the two teachers involved with this
development spent the first semester teaching informal
geometry. For one semester, the students informally
applied several rules used in geometry and did no proofs
until the second semester. These teachers are beginning
to implement a change in geometry education which is best
understood by looking at a learning model developed by the
Dutch couple, Pierre van Hiele and Dina van Hiele-Geldof
(Shaughnessey, 1985). It describes levels of geometry
learning. The five van Hiele levels of geometry learning
are described by Shaughnessey and Burger in The Mathemat­
ics Teacher where they number them level 0 to level 4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

Level 0 students according to the van Hiele model
have a simple visual understanding of geometry. For exam­
ple when asked why a picture is a rectangle, a student at
this level will give reasons like: "Because it looks like
a rectangle".

Level 1 students are able to analyze objects and
think of them as a collection of properties. When asked
the above question about a rectangle, a student at this
level would list properties: "Opposite sides are parallel,
opposite sides are congruent, opposite angles are equal ..
etc. "

Level 2 students are able to do are able to do infor­
mal deduction. They can select sufficient conditions of
objects such as rectangles. They understand definitions
and can make informal inferences. students at this level
of understanding can infer things like: "squares are rec­
tangles" .

Level 3 students are able to exercise formal deduc­
tion. With skills needed for this level, students under­
stand the role of axioms and theorems and they can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

construct proofs. Problems like proving that the diago­
nals of a rectangle have equal length since two triangles
are congruent is possible at this level.

Level 4 students can make comparisons between dif­
ferent axiomatic systems. For example level 4 students
can consider questions like: "What happens to geometry if
we do not assume the parallel postulate". This level of
rigor is rarely found in high school students.
(Shaughnessy, 1985)

Shaughnessy and Burger point out that most geometry
classes in the United States are taught at level three
while most students are reasoning at level one
(Shaughnessy, 1985). Senk in another study makes similar
observations (Senk, 1985).

Hoffer also puts the American geometry experience in
the light of the van Hiele model. He feels that more
attention should be given to non-proof skills such as the
verbal, drawing and modeling skills which can be learned
in a geometry class (Hoffer, 1981).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

The consensus seems to be that many informal skills
must be developed before proof is introduced. As Hoffer
puts it:

By beginning formal proofs too early in a geometry
course, we may not account for those students who
have not yet reached a sufficiently high level of
mental development to enable them to function ade­
quately at the formal level. (Hoffer, 1981 / p.
14)

One of the recommendations made by Shaughnessy and
Burger was for educators to "develop activities that will
move students through the (van Hiele) levels"
(Shaughnessy, 1985 / p. 426). By considering the van
Hiele model, bottlenecks in geometry learning can be made
explicit and addressed.

Using the van Hiele model as a reference, development
of this prototype attempts to address problems encountered
by students in their transition from level 2, informal
deduction, to level 3, formal deduction. Specific differ­
ences in these two skill levels are pointed out by Hoffer
in the Mathematics Teacher.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

Level 2 students have the visual ability to
••recognize interelationships between different
types of figures" and "recognize common properties
of different types of figures". The level 3 stu­
dent "uses information about a figure to deduce
information."
Verbal skills known by level 2 students include
the ability to "formulate sentences showing in­
terrelationships between figures". The level 3
student can "recognize what is given in a problem
and what is required to find or do".
At level 2, students' logical skills include the
ability to "understand qualities of a good defini­
tion" while a level 3 student "uses rules of logic
to develop proofs" and "is able to deduce conse­
quences from given information". (Hoffer, 1981 /
p. 15)

The present prototype system builds toward an
environment that accommodates students possessing the
level 2 skills described above. The geometry exercise
implemented within this system is a problem that tries to
help a user achieve level 3 skills.

2*2' Preliminary Implementation

The prototype was developed on a Macintosh under
Exper-LISP and the VAX-750 under Franz LISP. The current
system runs on a Macintosh with 512 kilobytes. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

Quickdraw Library which is built into the Macintosh was
used extensively to provide the graphic interface.

Early development concentrated on establishing win­
dowed Input/Output (I/O) and use of the menu facility of
Quickdraw. Many of the low level Input/Output routines
such as text input, text scrolling and character rubout
had to be written with LISP functions. Exper-LISP
presented problems because it does not allow an applica­
tion developer access to the event queue. This made it
difficult for the system to accept either text input or
mouse input at the same time. Initially the system util­
ized three windows, one for the drawing and problem
description, another for proof construction, and a black­
board for user interaction. It also gave the user access
to one help menu.

After a limited I/O was established, a simple parser
was built to allow text input by the user. It accepts
keyboard input of geometry assertions, but recognizes only
a subset of the assertions used in geometry proofs. The
parser uses a simple set of four parsing rules (see

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

Appendix B) and does limited error response. It was
developed on the VAX and ported to the Macintosh.

Tutoring sessions with the students revealed a few
basic requirements for the tutor. The early prototype
system included code that attempts to address the follow­
ing requirements.

* Help on the syntax of geometry assertions
must be available.

* Explicit statements of rules needed to
solve the problems and illustrations
to clarify their meaning must be available.

* The problem statement and drawing must
always be visible.

* Students who jumped steps in the proof
should be notified of this fact.

A simple problem interaction was coded into the sys­
tem to experiment on the environment. Given that B is the
midpoint of segment AC, the problem requires the user to
prove that segment AB is congruent to segment BC (Hirsch,
1984 / p . 65). To solve this problem, a user must write
three geometric assertions and give reasons for those

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

assertions. The reasons are input by a choice from a list
of numbered rules.

The interface is an open system which allows the user
to write an assertion in the proof, when the user is
incorrect the system indicates a mistake. If the user
makes a correct assertion, the system asks for the reason.
As the user progresses, the system writes the proof in the
proof window until the problem is proved.

In terms of van Hiele level 2 skills as described by
Hoffer above, a student working the problem must be able
to: 1) recognize relationships within a provided drawing
of a midpoint on a segment. 2) formulate sentences showing
the relationships of equal length and congruence, and 3)
understand how to apply the definitions of midpoint and
congruent segments. The level 3 skills which the lesson
hopes to encourage include: 1) the inference of knowledge
about equal segment length and segment congruence from the
figure provided, 2) exposure to a problem with given
information and consequents to be proved, 3) an exercise
in logical chaining with more than one inference.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

A primitive help facility was established. It shows
syntax needed to write assertions and gives explicit exam­
ples of definitions that can be applied in the proof.

With a running program, prototyping of the geometry
tutorial began. Since the system is quite small and must
grow to become effective, only those improvements that can
be considered within the constraints on the prototype are
discussed in this chapter. Comparison of the prototype
with a complete ITS will be made in Chapter 4.

Initial Criticism

At this stage in the development, the system was
viewed and criticized by university faculty members and
one of the high school teachers. This simple system was
found to be weak in its interaction with the user. It
allowed a user to solve the problem correctly but it
failed to prompt and respond effectively. There were too
many windows and the help was hard to use. System
response to user errors was minimal and often uninforma­
tive.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

After this initial round of criticism, the system was
viewed in terms of five feasible problem areas that could
be worked on.

1. The parser: Instances of error response
could be handled by more extensive work
on the parser.

2. The screen: Window management was
a difficult problem due to the small size
of the screen and use of different
windows for different interactions.

3. Verbal responses: There are problems of
how the system communicates with the
user and what it should say in different
circumstances.

4. Tutoring: The system needs the ability to
guide a student through the problem, show
him examples and point out heuristic rules
that will help him solve the problem.

5. Help: Help must be easy to access and
automatically provided when needed.

2'5. Incremental Extensions to the Prototype

The first round of criticism completed the first
iteration in the prototyping cycle. A second iteration of
the cycle began with an analysis of the criticisms of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

first cycle and design of feasible enhancements that would
expand the system.

A complete correction of the above problems was
beyond the scope of this project. The parser for example
was hardly touched since it appeared that an extension at
this point would provide limited new information about the
requirements for a more complete system..

The screen needed some immediate work since it was
confusing. The blackboard was cleared at appropriate
times and the help window was expanded for clarity.

Attempts were made to clarify verbal responses by the
system. Help procedures were created which asked ques­
tions of the user and gave him verbal information that
might help him solve the problem.

The most extensive improvement was the addition of a
tutoring feature which gives automatic help. With this
feature the system responds when a user gives an incorrect
reason for an assertion. It attempts to show the user why

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

an incorrect reason is not valid. By showing a picture
with the incorrect rule instantiated, the system points
out why the rule can not be used.

The automatic help is designed to draw on a user's
van Hiele level 2 skills. It requires that the student
recognize the relationships in the figures in both the
help window and proof window. It also requires that the
user understand the demonstrated definition. It then
points toward the correct reason by mentioning a general
heuristic. System response to the mistake will promote
the van Hiele level 3 skills needed to deduce information
from a figure and to infer consequences from given infor­
mation.

User selected access to help was simplified slightly
but no major changes were made due to lack of the neces­
sary facilities in Exper-LISP. Constraints on both the
development time frame and the limited computer memory
halted any further extensions to the current system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

^.6. User Reactions

After the first extension was written, the prototype
was demonstrated and tried out by 10 users. They included
a university professor, two high school geometry teachers,
a college student in mathematics education, and seven high
school geometry students. They all helped uncover flaws
in the interface and provided suggestions for an improved
system.

Some of the problems with the interface can be fixed
with minor changes. These include:

BUG
*Confusing Menu Bar

*Cluttered Blackboard,

*Where is action?

*Rule window is
redundant.

*Hard words.
"Assertion"
"Syntax"

REMEDY
Remove development
menus and simplify,
Clear screen more
often.
Provide flashing
prompt.
Eliminate rule
window.
Change words to
"Statement"
"Statement form".

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

*User does not know
wrong reason was given.
*Proof window too far
from blackboard.

*Confusion with
meaning of prompt.

Tell user reason
is wrong.
Have student write
assertions in proof
window.
Provide simple prompt
explanations.

There exist some problems with Exper-LISP and the
Macintosh system which must be solved. This could be
facilitated with better documentation from ExperTelli-
gence. The bugs include:

BUG
*Menu crashes.

*More than one
method to ask help,
♦Students do not
use help.

POSSIBLE REMEDY
Access to Quickdraw
event queue.
Create single help
method using mouse.
Simplify user
requested help.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

There are potential improvements to the system in
modifications to existing modules. These include changes
to screen management functions and the parser.

PROBLEM
*Parser crash on
unrecognized assertions,

*Space limited.
Screen busy and
hard to read.

*Students don't know
difference between
equal and congruent.

♦Student difficulty in
writing assertions.

POTENTIAL IMPROVEMENT
Strengthen parser with
error recovery
routines and error
messages.
Use fewer windows(3),
overlapping windows,
10 point type, or use
a computer with a
larger higher
resolution screen.
Call help routines
from the parser.

Provide automatic help
on syntax from the
parser.

Some shortcomings of the interface could be improved
by the addition of new modules. These modules include:

PROBLEM
♦No initial instruction
on use of system.

♦Student failure to
proceed with proof.

NEW MODULE
Introduction module,

Help modules that
create interaction,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

*Rules difficult to find
and read

*Too short.
*Problem too simple.

Functions to find
and scroll rules.
More problem modules.
Interesting
problems.

Demonstration of the prototype not only provided
suggestions for changing the system but also stimulated
an analysis of the educational goals of the tutorial,

2.2» Teaching objectives and Methods

Prototype demonstration revealed different objectives
and methods teachers deal with in teaching geometry. It
was an opportunity to learn from teachers what they would
do, if they could program such a tutorial system.

Development of the prototype system required a
detailed analysis of the geometry problem to be solved by
the student. Several observers felt that the main geometry
lesson to be learned from this problem was the misconcep­
tion many students have about the difference between
congruence and equal distance. Known misconceptions such

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

as this and others uncovered as a result of implementation
should be exploited by the tutor.

Educational methods suggested by observers included:
active marking of congruent segments as the proof pro­
gressed, activity by the student to choose which part of
an if and only if rule to apply, and techniques to teach
the student the skill of applying a rule.

The prototype let observers point out places in the
proof process where problem solving heuristics could be
taught. Suggestions were given as to which heuristic
rules to teach, when to teach them, and how to present
them.

Finally the prototype includes specific places in the
code that a ITS student model could be used. One place to
build on the student model is the condition arising when a
student writes an incorrect assertion. A good example of
this is when a user calls line segments equal rather than
congruent. Another time is the condition when a student
chooses the wrong rule as a reason.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER

FURTHER DEVELOPMENT

The objective of this project was to initiate
development of an ITS for high school geometry. The
method used involved bottom up incremental development of
a user interface while maintaining a continuous interac­
tion with geometry teachers and high school geometry stu­
dents. To limit the scope of the project, it was decided
to concentrate on a transition that is needed by these
students between skill levels and is described by a
geometry learning model known as the van Hiele model. The
prototype attempts to help students possessing skills of
informal deduction progress to a level of formal deduc­
tion. Transformation between these two van Hiele skill
levels could well form the educational foundation for
another prototype.

This chapter will consider constraints on the
development of a second prototype and present alternatives

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

for dealing with those constraints. It will consider the
results of the first prototype and begin another iteration
in the prototyping cycle. It will also describe areas of
potential system development some of which were neglected
by the first prototype.

4.1. Human Constraints

Development of an effective ITS for geometry would
require several man-years of work. An individual could
continue a study of the requirements for such a project,
but substantial development would require a team of
programmer-analysts working with educators and students.

Expert geometry teachers are needed to provide exper­
tise for establishing the student model and the tutor
modules. Finding an expert with the time to spend is
often one of the most difficult problems in developing an
expert system. High school geometry students must also
become involved since they are the ultimate users.
Involving these students can be difficult since they must
see an immediate and obvious benefit before they partici­
pate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

4.2^. System Constraints and Alternatives

The first prototype was developed on the Macintosh
computer using Exper-LISP. The Macintosh offered portabil­
ity, due to its size, and was transportable to the high
school for demonstrations and feedback. Exper-LISP pro­
vided the project with a potential AI language, a neces­
sity in the expert stage of development.

However, the 512 kilobyte Macintosh with Exper-LISP
offers a very poor development environment. Exper-LISP
needs much improvement in its access to Quickdraw, and the
Macintosh has limitations due to its small screen size and
slow speed. The memory requirements and complexity of a
comprehensive ITS make development on the small system
provided by the Macintosh and Exper-LISP difficult.

A much better development environment would exist
using a terminal emulator for the Macintosh that had
extensive access to Quickdraw. With such an emulator, the
Macintosh could act as a smart graphics terminal for a
mainframe or minicomputer. This would allow for an
environment that included a VAX computer, the Unix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

operating system, Franz LISP, and Macintosh graphics. If
written properly, a system developed on the VAX could be
ported to the Macintosh and use the Exper-LISP compiler to
create a self-contained system on the Macintosh. In the
development of the first prototype, the parser was easily
ported from the VAX 750 to the Macintosh. Alternatively,
the emulator itself could be used in the schools. An emu­
lator like this is currently being developed at the
University of Montana.

LISP machines such as the Xerox 1186 mentioned ear­
lier, or the Sun-3/160M would be ideal environments to
develop an ITS for geometry. For example features of the
Sun machine include: a screen with four times the screen
resolution of a Macintosh, 2 Mbytes of memory, 256 Mbytes
of virtual memory, a Unix programming environment, and
Common LISP with full graphics capabilities (Sun, 1986). A
machine similar to these, the Xerox Dandetiger, is being
used to develop and test Anderson's geometry tutorial
(Anderson, 1985). The environment of a LISP machine would
be much better than the Macintosh used for the first pro­
totype. With a software environment such as ART
(Automated Reasoning Tool), which is a shell specifically

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

designed for the development of expert systems, very
effective prototyping of an ITS could proceed. ART pro­
vides system tools such as an inference engine that does
both forward and backward chaining on a knowledge base of
rules and facts (Inference, 1985). However, the cost of
LISP machines and expert system shells is quite expensive.

The development of a second prototype could be under­
taken using the Macintosh and Exper-LISP. The present
tutorial system is reaching the limits of 512 kilobytes,
but the Macintosh is potentially expandable using commer­
cially available tools such as a hard disk and memory
expansion modules. Also ExperTelligence has been improv­
ing the Exper-LISP environment. They are currently
developing a more sophisticated object-oriented environ­
ment which might be helpful in the development of an ITS.
(Ritz, 1985 / p. 12). The description of a second proto­
type which follows will assume further development with an
upgraded Macintosh system since they appear to be the best
tools locally available.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

4.2* The Second Prototype

The structure of the first prototype can be used to
begin top-down development of a second prototype (see
Appendix C). Functions of the existing system could be
reorganized and incorporated as increments of a second
prototype. The first prototype could provide I/O primi­
tives (Appendix E) , discourse procedures (Appendix E) , and
perhaps some data structures (Appendix D) to be used for
development of a production system for the tutor module.

To simplify further development of an ITS for
geometry, the system has been factored into modules. A
complete ITS needs to address each of these modules but
substantial effort would be required to implement any one
of them.

£.2*1* Improve Input/Output

The parser in the existing system is a minimal imple­
mentation of four parsing rules (see Appendix B) . It
parses the assertions necessary for the lesson in the
first prototype but does not adequately handle errors. It

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

must be extended to recognize more assertions and respond
better to errors. Enhanced error handling should include
access to help procedures of the tutor module.

If access to the event queue of Quickdraw can be
established, system control of I/O should be restructured
to accept both mouse and keyboard input. Alternatively,
mouse interaction that does not access Quickdraw should be
implemented in new LISP utility functions. In future pro­
totypes, the system should not return control to Exper-
LISP as it does in the first prototype. (see Appendix D)

A system where keyboard input was used only to input
geometric assertions would be sensible. Such a system
would allow all other user inputs with a mouse. For exam­
ple a rule choice given as a reason for an assertion could
be made from a scrolling rule list.

Window management should be treated as a separate
submodule of I/O. One way to create a more useful and
simplified screen is to use only three windows; one for
the problem, one for the proof, and a help window. Reasons
could be scrolled through the proof window and selected

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

with a mouse. Alternatively, due to the small screen of
the Macintosh, windows could overlap and be activated as
needed using the mouse.

4.3.2. Implement a Domain Expert as Part of the System

The domain expert of the existing system is hard
coded for the sample problem. However, an ITS for
geometry needs a domain expert with the ability to con­
struct proofs for given problems and check the truth of
assertions made by users. To solve the simple problems
used in the present implementation, an expert as sophisti­
cated as ACT would not be necessary.

To begin implementation of the domain expert, a
inference engine to solve geometry problems needs to be
constructed. A theorem prover such as Gelernter's
"Geometry Machine" (Bundy, 1983 / p. 134) could exist as a
separate module more independent than the parser. With
the theorem prover and a geometry knowledge base, the
tutorial could ask the domain expert about the correctness
of assertions and for proofs of simple theorems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

4.2*2' Design a Student Model

A student model could be implemented as a data object
in the system. Geometric and problem solving subskills
must be determined by talks with teachers and work with
students. Demonstration of the prototype versions can
serve to uncover subskills necessary to solve the prob­
lems. Once subskills have been determined, an object
representing the student can be constructed.

A simple frame-like implementation of a student model
could involve the use of property lists in LISP. The pro­
perty could be the subskill name and the value could be
the student's level of competence with that subskill. As a
global object, the student model could be updated anywhere
in the system where skill competence is determinable.
Also the tutor could access this object when it needed
information about the students skill history. A more com­
plex student model could be developed using the method of
prototyping.

A simple student model would begin to organize and define
the subskills needed to solve the problems. As a set of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

subskills was developed, buggy rules could be written into
the knowledge base and experimented with using the infer­
ence engine to find matches for incorrect assertions.
Information about the student determined by use of the
buggy rules could be used to update the student model.
The student model could be used to heuristically direct
the system on which buggy rules to use for generation of
incorrect assertions. By having both methods of determin­
ing student misconceptions in the same system, other ways
might be found where the two methods would complement each
other.

A'2'A' Upgrade the Tutor and the User Interface

High level control of the system rests with the tutor
module. A major problem encountered by the existing pro­
cedural system involves the different modes of interaction
that exist in the process of solving a geometry problem.
For example, an assertion by a student related to the
proof must be handled by the system differently than an
assertion by a student during a help session. To handle
this problem, there must be different functions to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

evaluate the assertion corresponding to the different
situations the user is in.

In the first prototype the system is procedurally
controlled by various functions and global data struc­
tures. In a complete ITS, the system might be driven by
data from student input and a production system similar to
that of GUIDON. Using existing data structures that
represent the state of the system and a student model, a
component called "working memory" could be established. By
building two other components, a "production memory" made
up of a set of tutoring rules in if-then form, and a
"rule interpreter" that applys the the tutoring rules to
the working memory (Charniak, 1983 / p. 438), the tutorial
could function as a production system.

If a rule interpreter was available with capabilities
of matching declarative rules to the state of the system,
programming the tutor could change from procedural to
declarative prototyping of the system. This would allow
the prototyping of a geometry tutor to function at a level
of development now practiced by expert system developers.
The tutoring system could be extended using knowledge

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

engineering techniques of writing declarative rules that
drive the system rather than writing procedural functions
in LISP. With rule based control established in the
tutor, the encoding of tutoring rules with information
gained from expert teachers could establish rapid progress
in the prototyping of an ITS for geometry.

Development of AI tools for a rule driven tutoring
module might delay implementation of another prototype.
Alternatively, it might be beneficial to implement a new
procedural control module that did not let the system
return to Exper-LISP. This would allow the creation of
more discourse procedures for the tutor and further
development of other modules in the system such as design
of the student model. With an expert system shell such as
ART this would not be as big a problem, since a rule
interpreter and a means to write tutoring rules could
easily be made available.

4, Conclusions

The environment needed to develop an effective ITS
for geometry does not currently exist on the University of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

Montana campus. Software, like the existing expert system
shells, that could implement a knowledge based system, and
the hardware necessary to run that software using a
graphic interface is necessary to create a state-of the-
art ITS for geometry.

Development of an ITS on the Macintosh could continue
but would require more hardware to extend both primary and
secondary memory. Possibly expert system tools from Exper-
Telligence such as ExperOpsS or ExperFacts (ExperTelli-
gence, 1986) could be used to develop the expert com­
ponents of the Domain Expert and Tutor.

Development on the VAX using the Macintosh as a
graphic interface would be a preferable alternative. This
would req[uire a sophisticated terminal emulator for the
Macintosh but would open up several available tools that
exist on the VAX. Software tools on the VAX such as MRS,
a logic based AI system, and Franz LISP would be available
to facilitate development of an ITS. The VAX would also
offer higher speeds and larger memories.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

Lisp Machines such as the Xerox 1186 or the Sun
machine coupled with a shell like ART offer a new dimen­
sion to development of an ITS for geometry. Components for
controlled screen management, graphic display routines, an
inference engine, and other useful AX tools are provided
with ART. Configurations possible with these tools could
set in motion development of state-of-the art expert sys­
tems such as GUIDON-WATCH and Anderson's Geometry
Tutorial.

Tools needed for the development of effective ITS
systems are now commercially available. Creation of expert
systems in those fields which are commercially profitable
is progressing at a rapid pace. Probably, an effective
ITS for geometry could be made available in the near
future. Experiments like the one currently being conducted
by Anderson's group, which puts the Geometry Tutor using
Dandetiger LISP machines in Pittsburg classrooms (Ander­
son, 1985), should help establish the effectiveness of
these systems with school-children.

The problem of technology transfer may be the biggest
hurdle for the implementation and distribution of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

Intelligent Tutoring Systems, Computers have been around
since the 1940s but they did not appear in classrooms
until this decade. Due to the current high costs for
expert systems, ITS systems may not reach the classrooms
for several years. ITS systems are now becoming techno­
logically feasible but they must also be affordable, which
they currently are not. When they exists and are afford­
able they must be sellable or somehow acceptable to users.
Past experience of technology transfer (TI, 1986) shows
that many products which are both feasible and affordable
are never used because the public does not buy them.

The most important thing that can be learned from the
development of this prototype is the need to maintain con­
tact with potential users of the system. Any further
development beyond creation of a rule interpreter and
parser needs the continual interaction with the geometry
teachers and high school students. The experience of
tutoring geometry is a good means of developing this
necessary relationship.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

By creating an ITS that helps the student develop
simpler skill levels of geometry, the system has the
potential of growing into an effective educational tool.
Since the higher skill levels build on the lower skill
levels, a system which instructs the higher skill levels
could draw knowledge from the system that instructs the
lower skill levels.

The method of rapid prototyping can continue in the
development of an ITS for geometry. Feedback from demons­
trations of new versions can help avoid serious mistakes
in the overall system. The exposure of prototype demons­
trations in high schools will also help overcome the prob­
lems of technology transfer which is encountered by many
newly emerging technologies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A

SCREENS

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

A B C

GIVEN:
B IS THE MIDPOINT OF AC

PROVE: AB = BC

DRAWING WINDOW

This window is used to show the problem to the user. It

has a drawing, the given and the to prove for a proof
problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

IDi BLOCKBOmmO
?MAKE ASSERTIONS HERE

BLACKBOARD WINDOW

This window is used for all user keyboard input. It is

used to make assertions, give reason choices, make selections

for help.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

_________ PROOF
ASSERTION REASON

]> B IS THE MIDPOINT OF AC 1

PROOF WINDOW

This window is used to record the progress of the proof.

When an assertion is correctly made or a correct reason is

given, it is written in the proof window.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

REflSON CHOtCES

1 GIVEN

* * ’̂ DEF IN IT IO N S ** *
12 SEGHENT BISECTOR
13 CONGRUENT SEGMENTS
14 CONGRUENT ANGLES
15 MIDPOIf'fT

16 ALGEBRA RULES

HELP AND REASON WINDOW

This window is used for several messages to the user
including: reason choices, rule selection choices, and several

kinds of help.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

^ é n ie CUM u m id u u /» c u m p iie h e l p u i in d o u i

DRRUIING PROOF

A B C *------------ » #

GIVEN: __
B IS THE MIDPOINT OF AC

ASSERTION REASON

PROVE: AB = BC RULE

BLACKBOARD ~~ GEOMETRV

i

1
1

” \

7

STARTING SCREEN
This screen is the initial screen shown after try is called

from ExperLISP. At this level, the user can type an assertion
in the Blackboard or ask for help with the mouse.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78
é File Edit UJindouis Compile HELP IHINOOIH

DRRIUING PROOF

A B C.. ♦ ■ ■ ' ■ ♦

GIVEN: __
B IS THE MIDPOINT OF AC

ASSERTION REASON

PROVE: AB = BC RULE

11 BLHCKBOnRD ------------ GEOMETRV !

1
i

i
S!

? B IS THE MIDPOINT OF AC

FIRST ASSERTION
This screen shows the first correct assertion made by

the user for this problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79
é File Edit Ulindoms Compile HELP WINDOW

DRAWING PROOF

B

GIVEN:
B IS THE MIDPOINT OF AC

PROVE: ÂB = BC

ASSERTION __
1> B IS THE MIDPOINT OF AC

REASON

RULE

BLACKBOARD i n * REASON CHOICES
? B IS THE MIDPOINT OF AC
* * * *g o o d c h o ic e * * * *
VVHV?7 CHOOSE NUMBER ===>

1 GIVEN

''*»DEF INITIONS’ ’ ’ *
12 SEGMENT BISECTOR
13 CONGRUENT SEGMENTS
14 CONGRUENT ANGLES
15 MIDPOINT

16 ALGEBRA RULES

bfi

REASON CHOICE
This screen shows the situation after a correct assertion

has been made. The user is given choices to make from the
keyboard for the reason.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60
 ̂ é File Edit Lüindoii>$

DRAWING

B

iWINDOW
I fli I I —

Rssertlon-SyntaH |oqf

GIVEN: __
B IS THE MIDPOINT OF AC

PROVE; AB = BC

------------------------------------- REASON
RULE: Formal k U OF AC 1

RULE

BLACKBOARD REASON CHOICES
?B IS THE MIDPOINT OF AC
* * * *g o o d choice^^**
WHY?? CHOOSE NUMBER ===>
==> I
CORRECT
w r i te next assertion
7

1 GIVEN

D EF HATIO NS
12 SEGMENT BISECTOR
13 CONGRUENT SEGMENTS
14 CONGRUENT ANGLES
15 MIDPOINT

16 ALGEBRA RULES

on

CALL FOR HELP
This screen shows a call for help using the mouse. This

example calls for help on rules and the user wants to see an
example of a rule.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81
é File Edit Ulindoiits fo m p ü r HELP WINDOW

DRAWING PROOF

B
" i

C

GIVEN: __
8 IS THE MIDPOINT OF AC

PROVE: AB S BC

ASSERT IC|1 __
1> B IS THE MIDPOINT OF AC

REASON

RULE

ID ! BLACKBOARD RULE CHOICES
* * * * g o o d c h o i c e * * * *
WHY?? CHOOSE NUMBER ===>
==> I
CORRECT
w r i t e next assert ion
r = >
rule help; CHOOSE NUMBER
==> 12

CHOOSE By NUMBER

* * * DEFINITIONS * *

12 SEGMENT BISECTOR
13 CONGRUENT SEGMENTS
14 CONGRUENT ANGLES
15 MIDPOINT

9 RETURN-TO LESSON m

HELP CHOICE
This screen shows the menu after a call for help on rule

examples. The user chooses 12 which will give the definition
of segment bisector.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

 ̂ 6 File Edit LLMndoms HELP tUINOOLU
DRRUIING PROOF

B

GIVEN: __
B IS THE MIDPOINT OF AC

PROVE: AB

ASSERTION REASON
1> B IS THE MIDPOINT OF AC 1

BC RULE
A Bisector of a segment is a set of points
that in te rsects the segment at i ts midpoint

IDI DLRCKBORRD SEGMENT BISECTOR RULE
==> I
CORRECT
Y/rite next assertion

rule help: CHOOSE NUMBER
==> \ 2
hit space-bar to continue

R S T

CIUEN; __
S BISECTS RT

CONCLUDE:
S I S THE __
MIDPOINT OF RT

GIUEN:
S IS THE
MIDPOINT OF RT

CONCLUDE: __
S BISECTS RT

SEGMENT BISECTOR HELP
This screen gives the user help about the meaning of the

segment bisector definition.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

é File Edit UHndouJs I: ompiie HELP HMNOOUI
DRRUIING PROOF

A B C # ♦ ' #

GIVEN: __
B IS THE MIDPOINT OF AC

ASSERTION __ REASON
1> B IS THE MIDPOINT OF AC 1
2> AB = BC

PROVE: AB = BC RULE
A B isector of a segment is a set of points
that in te rsec ts the segment at i ts midpoint

BLACKBOARD ' p s
h i t space-bar to continue
==>
rule help: CHOOSE NUMBER

?AB = BC
* * * * g o o d c h o i c e * * * *
WHY?? CHOOSE NUMBER ===>
==.> 13

I GIVEN 1
"DEFWWTinNS^ 1

12 SEBf'lEriT BISECTOR I
13 CONGRUENT SEGMEMTS |
14 CONGRUENT ANGLES \
15 MIDPOINT ^

16 ALGEBRA RULES ^
_i

1

INCORRECT REASON
This screen shows an incorrect reason choice. It creates

a situation for automatic help from the system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

é File Edit Windows I: umpUe HELP WINDOW
DRAWING

A B C
—*

GIVEN: __
B IS THE MIDPOINT OF AC

PROVE: ÂB = BC

PROOF
ASSERTION REASON

1> B IS THE MIDPOINT OF AC 1
2> AB zB C

RULE

!□! BLRCKBORRO
A t the r ight is an ei^ample
of the rule you chose %=%=;
WHICH PART DO YOU MEAN
ENTER 6 l e t t e r for side

L = LEFT
R z RIGHT
N = NEITHER

CONGRUENT SEGMENT RULE

R'

GIUEN:
kSzST

CONCLUDE:
RS = TÜ

GIUEN;
RS = TI

CONCLUDE:
RSzST

AUTOMATIC HELP - 1
This screen shows the system’s response to the incorrect

reason choice of page 83. It asks the user to clarify use of the
misused rule.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85
é File Edit LLMndotifs ù) mir HELP WINDOW

DRAWING PROOF

A B
- f -

C

GIVEN: __
B IS THE MIDPOINT OF AC

PROVE: ÂB = i c

ASSERTION __
b B IS THE MIDPOINT OF AC

RULE

REASON

| D ^ = BLACKBOARD
PRETTY GOOD TRY
Your new assert ion
matched the CONCLUSION
of th is rule ========>

hit space bar to continue

CONGRUENT SEGMENT RULE

R S u
GIUEN:

RS = 1

AUTOMATIC HELP - 2
This screen shows the system’s response to the user's

choice on page 84. The system points out the misuse of
backward chaining by the user.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86
é File Edit Lüindouis u>{r<p HELP IHINDOm

D R n U ilN fi

A B
-4 -

GIVEN: _ _
B IS THE MIDPOINT OF AC

PROVE: ÂB = ic

PROOF
ASSERTION REASON

l> B IS THE MIDPOINT OF AC I
2> AB = BC

RULE

IDI BLRCKBORRO C ONGRUENT SEGMENT RULE
HOWEVER You have not proven
that GIVEN!! ===============>

HINT: match e a r l ie r assert ions
to the GIVEN ol a rule

h i t space bar to continue

R LI

GIUEN:
RS = TtJ

CONCLUDE;
RSrsr

AUTOMATIC HELP - 3
This screen is a continuation of the help for an incorrect

reason choice shown on the previous two pages. The system
trys to help the user by pointing at a heuristic rule.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B

PARSING RULES

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

It was necessary in this system to create a simple parser that

would accept geometric assertions users made while solving proofs.

The following grammer was written to establish a design for the

parser. It is based on traditional methods for language design which

employ Backus-Naur form. ([Hayes85] p. 49) The Syntax rules and

Lexical rules of the parser design were then translated into code for

the parser. The assertions are the form used In the Scott

Foresman GEOMETRY text (Hirsch84).

B. 1 Key to Parsing Operators

;:= rewrites as

0 optional element

1 or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89
B.2 Key to Geometric Operators

symbol char

JL

A

X

//

•]”

operator

equal

plus

minus

angle

triangle

segment

line

congruent

perpendicular

parallel

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

6 3 Syntax Rules

Assertion ;;= Expression Relop Expression

Expression Simple-Expression (Logop Simple-Expression)

Simple-Expression Object (Combop Object)

Object ::= (M I m) Geo-Entity Identifier

I Identifier

I number

6.4. Lexical Rules

Identifier ::= Letter (Letter)

Number :;= digit (digit)

Logop "and"

Relop = 1 - 1 1 1 / ^ 1 "bisects"

I "is the midpoint of"

Combop ::= + ! -

Geo-Entity A.

I ~

1
I A

Letter "a".. "z" I "A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX C

STRUCTURE CHARTS

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

Ç.l. STATE TRANSITION DIAGRAM

The chart on page 93 is the state transition diagram
that shows the flow of control within the system

Ç.2. HIGH LEVEL STRUCTURE

The chart on page 94 shows the high level logic of
the tutorial system. This system was built using bottom
up methods and incremental development, so the high level
chart is the structure established after development. The
high level chart is not a rigorous reflection of the
actual system but gives a clearer description of the
actual process. A couple of modules are implied by the
system rather than implemented in actual code. This chart
could be the precursor of the top down development of a
second prototype. Descriptions of each module ar on the
pages that follow the chart.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

Exper-LISP

evaluate-
assertjon

evaluate-
menu

correcl-
reason

space
evaluate-

reason display
rule

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

Exper-LISP

Control-
TutorIn it-

Globals

Give-
Help

Accept-
Read-
Flles Read-

Mouse
Check-
ValidityRead-

Keyboard

Evaluate-
Choice

Help-
RuleParee-

Assertion
Show-
Error

Help-
Syntax

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

C ,̂ ,1. Init-Globals

This module is not implemented as a function inside
the system. Rather, the globals are declared throughout
the system in different files. The initialization is done
when the source files are compiled or the compiled files
loaded. The initialization establishes the environment for
the system including; windows, menus, the problems
description static mode values, the problem solution, and
other environmental necessities.

C .̂ .2. Control-Tutor

This module is implemented in event-control and vari­
ous globals used to maintain control. It is a polling
loop that accepts both mouse and keyboard input.

Ç.2.3, Accept-Statement

This module is implemented by the read-line function.
It collects input characters into statements and evaluates
them based on the current state of the system, (i.e.
which mode global is active)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

C .2.^ . Parse-Assertion

This module parses geometric assertions. It is
implemented in the subtree of functions shown on 105 and
106, The language is described in Appendix B.

C .2.5. Show-Error

Show-Error works in conjunction with Help-Rule
described below. It shows a user the possible error made
when making a reason choice to justify an assertion. It
is implemented by the prototype function choose-rule-
direction.

C.^.6. Check-Validity

Check-Validity in this system checks to see if a
predicate calculus expression successfully returned from
the parser matches the next required assertion of the
proof. In a more substantial system, Check-Validity would
call an inference engine to determine whether the asser­
tion logically follows from the knowledge base.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

Ç.2.7. Give-Help

Give Help is the help subsystem activated by user
requests with the mouse. It gives help on both rules and
syntax. Currently it is controlled from Exper-LISP with
mode globals that activate the evaluate-menu and display-
rule functions

C .̂ .8. Evaluate-Choice

This module represents the function evaluate-reason
in the prototype. If the reason is incorrect, it
activates a routine from the Help-Rule array of functions
together with a routine that points out the error made in
choosing the reason.

Ç.2.9. Help-Rule and Help-Syntax

These modules represent arrays of lambda functions
that display information in the help window.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9 8

C.2- FUNCTION STRUCTURE

Pages 102 to 110 show the hierarchical structure
chart of the prototypes defined functions. These function
charts better reflect the actual structure of the system
than the high level chart.

A cross reference for the function charts is included
on page 99.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

Function Chart Cross Reference

PAGE OF OTHER PAG]
FUNCTION NAME ORIGIN CALLED ON
1. choose-men 103 102
2. initjob 104
3. setup-proof-win 104
4. continue-job 103
5. erase-blackboard 104 108
6. try 104 102
7. draw-segments 102 108
8. mark-point 102
9. draw-text-lines 107 107
10. show-syntax 103 107
11. show-rules 103 107
12. arr-to-string 106 103
13. arr-to-list 106
14. cleanout-array 103 106
15. save-new-string 105 103,106
16. pop-mode-stack 107 107
17. push-mode-stack 105 107
18. provide-reactions 105 103,107

108,109
19. evaluate-assertion 108 106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

20. assertion-to-proof
21. evaluate-reason
22. choose-rule-direction
23. reason-to-proof
24. evaluate-menus
25. display-rule
26. check-validity
27. provide-reasons
28. is-reason-correct
29. restart-reasons
30. GL-OPTION-AKRAY
31. GL-HSYNTAX-ARRAY
32. GL-EXRULES-ARRAY
33. fill-screen
34. refresh
35. rubout-character
36. read-line
37. event-control

38. translate-line
39. get-token
4 0. peek-token
41. c-membs

108
107
107
107
107
107
108
108

not used
107
107
107
107
105
105
105
105
105

106
109
109
110

106

106
106

107
103,108

102,103
104
105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

4 2. check-members
43. next-word
44. peek-word
45. make-token
4 6. new-token
47. is-numb
48. p-identif1er
49. p-object
50. addition-error
51. combop-check
52. p-simple-expression
53. p-expression
54. p-assertion
55. p-error
56. error-response
57. find-is-token
58. GL-LESSON-ONE drawing

110
110
110
110
110
110
109
109
109
109
109
109
109
109
109
110
102

109

108

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

choose-men
(p 103)

37
event-control

(p 105)

try
(p 104)

58
GL-LESSON-ONE

drawing

mark-
point

draw -
segments

Exper-LISP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

30

Cleanout-
array

continue-
job

show-
syntax

choose-men

show-
rules

37
event-control

(p 105)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

37
event-control

(p 105)

setup-
proof-win

try

inltjoP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

34
refresh

save-
new-string

provide-
reactions

37
event-contro)

36
read-line

push-mode-
stack

33
fill-screen

35
rubout-

character

38
translate-line

(P 106)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

evaluate
reason

a rr-to -
lis t

(p a6)

38
translate-

line

25
display-

rule

a rr -to -
string24

evaluate
menu

evaluate-
assertion

(p 108)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SPECIAL EVALUATORS

107

24
evaluate-

menu

25
display-

rule
evaluate-

reason

23
reason-
to-proof

draw-
text-lines

22
choose-

rule-direction
pop-mode-

stack

30
GL-OPTION-

ARRAY
29

res tart-
reasons

32
GL-EXRULES-

ARRAY
GL-HSYNT AX

ARRAY

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

30

26
check-

validity

20
assertion-

to-proof

54
p-assertion

(p 109)

27
provide-
reasons

evaluate-
assertion

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

combop-
check

49
p-object

39
get-

token

56
error-

response

48
p-1dentifier

40
peek-
token

50
additlon-

error

53
p-expression

52
p-simple

expression

46
new-token

55
p-error

54
p-assertion

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 10

46
new-
token

44
peek-
word

57
find-

is-token

42
check-

members

45
make-
token n

41
c-membs47

is-numb 56

43
next-
word

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX D

GLOBALS

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

The nature of Exper-LISP made it necessary to create
several globals in the implementation of this system. It
was both necessary and convenient to make global objects
visible from several places in the system that were main­
tained as static values throughout the lesson. More
specific reasons for the globals will be given for each
type of global mentioned,

D.1. WINDOWS

These variables were based on Exper-LISP’s implemen­
tation of a window class and were defined as global using
system functions. Objects of this class were instan­
tiated in the following windows and window specific pro­
perties were maintained for each window.

gl-awin
STRUCTURE : window.
DECLARED IN: A-START.
PURPOSE: Drawing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

gl-bwin
STRUCTURE : window.
DECLARED IN: A-START.
PROPERTIES; x~start, y-start
PURPOSE: Proof.

gl-cwin
STRUCTURE: window,
DECLARED IN: A-START.
PROPERTIES: lines, size, input-line,
input-xval, in-loc, array-loc, x-start,
y-start, upkeep

PURPOSE : Blackboard.
gl-helpwin

STRUCTURE : window.
DECLARED IN: A-START.
PROPERTIES: x-start, y-start
PURPOSE: Geometry help.

gl-rulewin
STRUCTURE : window.
DECLARED IN: A-START.
PROPERTIES: X-start, y-start
PURPOSE: Rule help.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

D.^. MENUS

These globals were used to implement menus in the
ExperLisp system.

gl-ch-menu
STRUCTURE: menu.
DECLARED IN: A-START.
PURPOSE: Window control

gl-w-menu
STRUCTURE: menu.
DECLARED IN: A-START.
PURPOSE: Help control.

p.3. CONTROL

The current Exper-Lisp system did not allow access to
the event queue of Quickdraw. This complicated a system
which required both keyboard and mouse input during the
same time period. In order to access menu procedures of
Quickdraw, the system dropped down to the Exper-LISP con­
trol level to allow mouse input. To allow this, globals
were created to maintain information about current states
of the system. Depending upon which of the states was

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

active at the help call, a mode variable with records in a
property list was pushed onto a stack and was later used
to recreate the system. Some of the control globals are
simply flags to maintain control of input.

gl-curwin
STRUCTURE: atom.
DECLARED IN: A-START.
PURPOSE : I/O control.

gl-first-click
STRUCTURE: boolean.
DECLARED IN: A-START.
PURPOSE: Input control

gl-help-avail
STRUCTURE: list.
DECLARED IN: A-START.
PURPOSE : Input control.

gl-hrulesl-mode
STRUCTURE: property list.
DECLARED IN: A-START.
PROPERTIES: prompt, available-options,
help-array-name, evaluator, help-choice.

PURPOSE: Text evaluation and output control.
gl-hrules2-mode

STRUCTURE : property list.
DECLARED IN: A-START.
PROPERTIES: prompt, available-options,
help-array-name, evaluator, help-choice

PURPOSE: Text evaluation and output control.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

gl-hsyntax-mode
STRUCTURE: property list.
DECLARED IN; A-START.
PROPERTIES: prompt, available-options,
help-array-name, evaluator, help-choice

PURPOSE; Text evaluation and output control.
gl-lesson-one

STRUCTURE: property list.
DECLARED IN: F-LESSON.
PROPERTIES: prompt, rules-avail,
assertion-1ist, solution-size, solution-step,
mode-stack, reason-choice, evaluator,
latest-as-list, save-line, drawing.

PURPOSE: Text evaluation and output control.
gl-m-pos

STRUCTURE: list.
DECLARED IN: D-INPUT/OUTPUT.
PURPOSE : Input control.

gl-menu-call
STRUCTURE: boolean.
DECLARED IN: D-INPUT/OUTPUT.
PURPOSE: Input control.

gl-present-lesson
STRUCTURE: property list.
DECLARED IN: A-START and F-LESSON.
PROPERTIES: solution-step, mode-stack,
assertion-1ist.

PURPOSE: Text evaluation and output control.
gl-present-mode

STRUCTURE: atom.
DECLARED IN: A-START.
PURPOSE : Evaluation control.

gl-reason-mode
STRUCTURE: property list.
DECLARED IN: A-START.
PROPERTIES: prompt, restart, correct-response,
evaluator.

PURPOSE: Text evaluation and output control.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

g l - t e s t
STRUCTURE list.
DECLARED IN: B-UTILITIES,
PURPOSE: trace.

gl-tst
STRUCTURE list.
DECLARED IN: B-UTILITIES
PURPOSE: trace.

D.4. FUNCTION ARRAYS

These arrays were established to provide help in an
organized way. There is an array of functions for each
type of help available An element of each array is used
for the corresponding rule for which help is asked.

gl-exrules-array
STRUCTURE: array(20) of lambda functions.
DECLARED IN C-SYSAR.
PURPOSE: To give help on application of rules
of geometry.

gl-hsyntax-array
STRUCTURE : array(10) of lambda functions.
DECLARED IN C-SYSAR.
PURPOSE: To give help on the syntax of
geometric assertions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

g l - o p t i o n - a r r a y
STRUCTURE: array(5) of lambda functions.
DECLARED IN C-SYSAR.
PURPOSE: To output menus for keyboard choices.

D.5. STRING ARRAYS

These arrays were established to organize message
strings. They are accessible from functions that need to
print them.

gl-error-message
STRUCTURE: array(20) of strings.
DECLARED IN: E-PARSER.
PURPOSE: Error messages for parser.

gl-formal-rule
STRUCTURE: array(20) of string lists.
DECLARED IN C-SYSAR.
PURPOSE : Text for output on formal rules of
geometry.

gl-wrong-reason
STRUCTURE: array(7,7,2) of integer indices.
DECLARED IN C-SYSAR.
PURPOSE: Decision table of indices to access
textual responses of heuristic rules.

gl-wrong-response
STRUCTURE: array(20) of string lists.
DECLARED IN C-SYSAR.
PURPOSE: Text for output on heuristic rules.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

D.6. PARSING GLOBALS

These variables were established as global objects
accessible from any place in the parser. They are lists
of symbols needed to parse the assertions made in the sys­
tem.

gl-all-symbols
STRUCTURE: list.
DECLARED IN: E-PARSER.
PURPOSE: List of all special characters used
for geometric symbols to be parsed.

gl-combinationa1s
STRUCTURE: list.
DECLARED IN: E-PARSER.
PURPOSE: List of characters that are
combinational operators to parse.

gl-figures
STRUCTURE: list.
DECLARED IN: E-PARSER.
PURPOSE: List of characters
used for geometric figures.

gl-p-list
STRUCTURE: list.
DECLARED IN: E-PARSER.
PURPOSE : Token list to be parsed.

gl-points
STRUCTURE: list.
DECLARED IN: E-PARSER.
PURPOSE: List of points in figure of problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

gl-properties
STRUCTURE: list.
DECLARED IN: E-PARSER.
PURPOSE: List of strings that are geometric
properties.

gl-relationals
STRUCTURE: list.
DECLARED IN: E-PARSER,
PURPOSE: List of characters that represent
geometric relationships to be parsed.

gl-t-list
STRUCTURE: list.
DECLARED IN: E-PARSER.
PURPOSE: Token list to be parsed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a p p e n d i x e

CODE

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

The following list corresponds to the code on the
following pages. It includes numbered functions which map
from the functional chart of Appendix C to the coded func­
tions of this chapter. It also lists those functions
called by each function.

E.l. A-START file

1. choose-men
a. show-syntax 10
b. show-rules 11
c. continue-job 4
d. event-control 37

2. initjob
a. erase-blackboard 5
b. setup-proof-win 3

3. setup-proof-win
4. continue-job

a. cleanout-array 14
5. erase-blackboard
6. try

a. initjob 2
b. event-control 37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

E.2. B-UTIL file

7. draw-segments
a. mark-point 8
b. draw-segments 7

8. mark-point
9. draw-text-lines
10. show-syntax

a. save-new-string 15
b. arr-to-string 12
c. provide-reactions 18
d. GL-OPTION-ARRAY(l) 3 0

11. show-rules
a. save-new-string 15
b. arr-to-string 12
c. provide-reactions 18
d. GL-0PTI0N-ARRAY(4) 30

12. arr-to-string
13. arr-to-list
14. cleanout-array
15. save-new-string

a . upkeep props
i) fill-screen 33
ii) refresh 34

16. pop-mode-stack
a. restart props

i) restart-reasons 29
17. push-mode-stack
18. provide-reactions

a. save-new-string 15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

19. evaluate-assertion
a. p-assertion 54
b. check-validity 2 6
c. assertion-to-proof 20

20. assertion-to-proof
21. evaluate-reason

a. reason-to-proof 2 3
b. provide-reactions 18
c. push-mode-stack 17
d. erase-blackboard 5
e. help-array-name prop

i) GL-HSYNTAX-ARRAY 31
ii) GL-EXRULES-ARRAY 3 2

f. choose-rule-direction 2 2
g. GL-OPTION-ARRAY() 3 0

22. choose-rule-direction
a. erase-blackboard 5
b. provide-reactions 18

23. reason-to-proof
24. evaluate-menu

a. help-array-name prop
i) GL-HSYNTAX-ARRAY 31
ii) GL-EXRULES-ARRAY 32

b. pop-mode-stack 16
c. draw-text-lines 9
d. provide-reactions 18
e. help-choice prop

i) show-syntax 10
ii) show-rules 11

25. display-rule
a. provide reactions
b. pop-mode-stack 16
c. draw-text-lines 9
d. show-rules 11

26. check-validity
a. provide-reasons 27
b. provide-reactions 18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

27. provide-reasons
a. provide-reactions 18
b. GL-OPTION-ARRAY 30

28. is-reason-correct
a. provide-reactions 18

29. restart-reasons
a. provide-reactions 18
b. GL-OPTION-ARRAY 3 0

E.3. C-SYSTEM-ARRAYS file

30. GL-OPTION-ARRAY
#1a. draw-text-lines 9
#4

a. draw-text-lines 9
31. GL-HSYNTAX-ARRAY

#0
a. provide-reactions 18

#1a. draw-segments 7
#2

a. draw-segments 7
#3

a. draw-segments 7
#4

a . draw-segments 7
#5

a . draw-segments 7
#9

a. pop-mode-stack 16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

32. GL-EXRULES-ARRAY
#0

à. provide-reactions 18
#1
#9

a. pop-mode-stack 16
#12

a. draw-segments 7
#13

a. draw-segments 7
#14

a. draw-segments 7
#15

a. draw-segments 7
#16

E.4. D-INPUT/OUTPUT file

33. fill-screen
34. refresh
35. rubout-character
36. read-line

a, transiate-line 38
b. rubout-character 3 5

37. event-control
a. provide-reactions 18
b. push-mode-stack 17
c. read-line 3 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

38. translate-line
a. arr-to-list 13
b. arr-to-string 12
c. save-new-string 15
d. cleanout-array 14
e. evaluator prop

i) evaluate-assertion 19
ii)evaluate-reason 21
iii) evaluate-menu 24
iv) display-rule 25

E .5. E-PARSER

39. get-token
a. new-token 4 6

40. peek-token
a. new-token 4 6

41. c-membs
a. c-membs 41
b. error-response 56

42. check-members
a. error-response 56
b. c-membs 41

43. next-word 43
44. peek-word
45. make-token

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

46. new-token 46
a. next-word 4 3
b. is-numb 47
c. make-token 45
d. find-is-token 57
e. peek-word 4 4
f. check-members 4 2

47. is-numb
a. is-numb 47

48. p-identifier
a, peek-token 40
b. p-error 55

49. p-object
a. get-token 39
b. p-identifier 48
c. error-response 56

50. addition-error
51. combop-check

a. addition-error 50
52. p-simple-expression

a. p-object 49
b. combop-check 51
c. peek-token 4 0
d. get-token 39

53. p-expression
a. p-simple-expression 52
b. get-token 39
c. peek-token 40

54. p-assertion
a. peek-token 4 0
b. p-expression 53
c. get-token 3 9
d. p-error 55

55. p-error

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

56. error-response
a, provide-reactions 18

57. find-is-token
a. next-word 4 3
b. error-response 56

E.6. F-LESSON file

58. GL-LESSON-ONE drawing
a. draw-segments 7

59. GL-OPTION-ARRAY
#2

a. draw-text-lines 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

/ / A-START / /

THIS FILE IS THE FIRST FILE COMPILED
IT SETS UP THE WINDOWS AND MENUS
IT ALSO HAS THE STARTUP FUNCTIONS

, IT INCLUDES THE FOLLOWING AREAS

1. windows
A. window creation
B. window properties

2. menu creation
[1] choose menu ()

3. MODE CREATION
1. 6L-help-avai1 (which modes available with help)

A. GL-reason-mode
B. GL-hsyntax-mode
C. GL-hrulesl-mode
D. GL-hrules2-mode

4. begin and continue
[2] initjobO
[3] setup-proof-win
[4] continue-job
[5] erase-blackboard
[6] try

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

; WINDOWS

;WINDOW CREATION

;this SECTION is for establishing a windowed enviornment for
;the current system

,the following assertions set up the menu enviornment

;(1) this sets up three instances of the class window for
interaction
(setq gl-awin (newgrafwindow ’(39 0 180 250)))
(setq gl-bwin (newgrafwindow (39 250 180 510)))
(setq gl-cwin (newgrafwindow (200 0 340 200)))

;this sets up a window for help pictures

(setq gl-helpwin (newgrafwindow (200 200 340 500)))
(setq gl-rulewin (newgrafwindow (140 200 180 510)))

(gl-awin setwtitle "DRAWING")
(gl-bwin "setwtitle ""PROOF")
(gl-cwin "setwtitle "BLACKBOARD")
(gl-helpwin "setwtitle "GEOMETRY")
(gl-rulewin "setwtitle "RULE")

;THE FOLLOWING SET THE FONTS FOR EACH WINDOW

(textfont 17 gl-cwin)
(textfont 17 gl-bwin)
(textfont 17 gl-awin)
(textfont 17 gl-helpwin)
(textfont 17 gl-rulewin)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132

**f
*##**#*##****
; WINDOW PROPERTIES

;THE FOLLOWING AREA ESTABLISHES CERTAIN GLOBALS FOR THE
SYSTEM
; THEY ARE ESTABLISHED WHEN THIS FILE IS COMPILED

;THESE ARE GL-CWIN PROPERTIES

(putprop gl-cwin (make-array 7) lines)
(putprop gl-cwin 6 size)
(putprop gl-cwin (make-array 40) input-line) ; input buffer
(putprop gl-cwin (make-array 40) input-xval) ;input point ;

JHESE ARE GL-HELPWIN PROPERTIES

(putprop gl-helpwin -140 ’x-start)
(putprop gl-helpwin -55 y-start)

;THE5E ARE GL-RULEWIN PROPERTIES

(putprop gl-rulewin -145 x-start)
(putprop gl-rulewin -3 y-start)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

;MENU CREATION

;(2) this creates the new menus called WINDOW and HELP

(setq gl-w-menu (newmenu 6 " HELP "))
(appendmenu gl-w-menu "Assertion-5yntax;RULE: Example;RULE:
Formal")
(Insertmenu gl-w-menu 0)

(setq gl-ch-menu (newmenu 7 "WINDOW"))
(appendmenu gl-ch-menu "Drawing,Proof;Blackboard;Help")
(insertmenu gl-ch-menu 0)

(drawmenubar)
;(3)
.(,] >
;This function is called when a menu selection of HELP-SYN or
; BUILD is chosen
;a menu selection function
(defun choose-men (themenu theitem)
(cond ((= themenu 6)

(cond((= theitem 1)
(setq gl-present-mode ’gl-hsyntax-mode)
(show-syntax)
)
((= theitem 2)
(setq gl-present-mode ‘gl-hrulesl-mode)
(show-rules)
)

((= theitem 3)
(setq gl-present-mode ’gl-hrules2-mode)
(show-rules)
)
)

)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

((= themenu 7)
(cond((= theitem 1)

(gl-awin ’selectwindow)
)

((= theitem 2)
(gl-bwin ‘selectwindow)
)

((= theitem 3)
(gl-cwin 'selectwindow)
)

((= theitem 4)
(gl-helpwin selectwindow)
)
)

)
)

(setq gl-first-click t)
(continue-job gl-cwin)
(event-control)
)

;(4) this sets the hook for menu calls to try-menu

(setq ^menuhook choose-men)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135

/ / MODE-OBJECTS/ /

JHE FOLLOWING PART CONTAINS ESTABLISHMENT OF MODE OBJECTS
; USED TO CONTROL THE OPERATION OF THE SYSTEM

; 1. GL-help-avail
; A. GL-reason-mode
; B. GL-hsyntax-mode
; C. GL-hrules1-mode
; D. GL-hrules2-mode

(setq GL-help-avail '(gl-reason-mode)) ;have restart prop

GL-REASON-MODE

;THE FOLLOWING CALLS ESTABLISH A NEW MODE GL-REASON-MODE
; WHICH IS USED TO GET REASONS FOR ASSERTIONS IN A PROOF

;this frame includes
; evaluator
; prompt
; restart
; correct-response initialized in initjob
; save-line ;this will be string to compare to correct-response
; latest-as-list REDUNDANT - used in translate-line
(putprop ’GL-reason-mode '==> " ’prompt)
(putprop ’GL-reason-mode restart-reasons ’restart)
(putprop GL-reason-mode nil ’correct-response)

(putprop ‘GL-reason-mode evaluate-reason evaluator)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136

;GL-HSYNT AX-MODE

;THE FOLLOWING IS FOR SETTING UP THE OBJECT GL-HSYSNTAX-MODE
; it includes the following slots

prompt
save-line .entered in translate-line
available-options
help-array-name
evaluator

(putprop GL-hsyntax-mode "==> “ prompt)
(putprop *GL-hsyntax-mode

'(' I " "2" "3" "4" "5" "9") available-options)

(putprop GL-hsyntax-mode GL-hsyntax-array help-array-name)
(putprop GL-hsyntax-mode ‘evaluate-menu evaluator)
(putprop ‘GL-hsyntax-mode ‘show-syntax ‘help-choice)=

;F0LL6wiNG IS THE BEGINNING OF HELP-RULES SECTION OF THE SYSTEM

F̂OLLOWING ARE SOME MORE MODES STARTING WITH GL-HRULES1-MODE
;it has following slots
; prompt
; available-options
; help-array-name
; evaluator
; save-line --inserted in translate line
; rule-choice — inserted in save-rule-choice

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

137

(putprop 'GL-hrulesl-mode "==> " prompt)
(putprop "GL-hrulesl -mode

.(.. 12 13" " 14" "] 5 ")

’available-options)
(putprop GL-hrulesl-mode ‘GL-EXrules-array ’help-array-name)

(putprop GL-hrulesl-mode 'evaluate-menu evaluator)
(putprop GL-hrulesl-mode 'show-rules help-choice)

FOLLOWING ARE SOME MORE MODES STARTING WITH GL-HRULES2-M0DE
it has following slots

prompt
available-options
help-array-name
evaluator
save-line —inserted in translate line

; rule-choice — inserted in save-rule-choice

(putprop ’GL-hru1es2-mode "==> " prompt)
(putprop ’GL-hrules2-mode

' (” 12 " " 13" " 14 " " 15")

available-options)
(putprop ’GL-hrules2-mode 'GL-formal-rule help-array-name)

(putprop 'GL-hru1es2-mode 'display-rule evaluator)
(putprop GL-hrules2-mode ’show-rules help-choice)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

JHE FOLLOWING ARE FUNCTIONS TO MAINTAIN THE GLOBALS FOR
GL-CWIN
; WHEN THE SYSTEM GOES DOWN BY A MENU CALL

.[2] >

;this sets up the blackboard properties for refresh
; IT IS CALLED EACH TIME A NEW SESSION IS STARTED
(defun initjob 0

(erase-blackboard)
(setup-proof-win)

(setq gl-present-mode GL-present-lesson)
(putprop GL-present-lesson 1 ’solution-step)
(putprop GL-present-lesson (list gl-present-lesson)

mode-stack)
(putprop 'GL-reason-mode

(cadr (get gl-present-lesson assertion-11st))
correct-response)

(cs gl-rulewin)
(cs gl-helpwin)
(setq gl-first-click t)

)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139

;[3]--------------------------------- >
;THE FOLLOWING FUNCTION SETS UP THE PROOF WINDOW FOR A NEW
PROOF

(defun setup-proof-win 0
(norecord gl-bwin)
(cs gl-bwin)
(record gl-bwin)
(moveto -85 -55 gl-bwin)
(drawstring "ASSERTION" gl-bwin)
(moveto 75 -55 gl-bwin)
(drawstring "REASON" gl-bwin)
(putprop gl-bwin -120 "x-start)
(putprop gl-bwin -40 y-start)
)

;[4]----------------------------->
;FOLLOWING IS A FUNCTION FOR REESTABLISHING THE INPUT BUFFER
; AFTER EACH SYSTEM SHUTDOWN WITH A MENU CALL

(defun continue-job (screen)
(cleanout-array screen)
(putprop gl-cwin 0 in-loc)) ;array index for Input buffer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MO
;[5]-------------------------------->
;THE FOLLOWING FUNCTION CLEARS THE BLACKBOARD WINDOWN.

(defun erase-blackboard ()
;th1s gives us a setup for our cwin
(cs gl-cwin)
(putprop gl-cwin 0 ‘array-loc)
(putprop gl-cwin -95 x-start)
(putprop gl-cwin -55 ’y-start)
(putprop gl-cwin fill-screen upkeep) ;refreshing fct for screen
(putprop gl-cwin 0 in-loc) ; array index for input buffer
;first we move to the input start for the blackboard
(moveto (get gl-cwin x-start) (get gl-cwin y-start) gl-cwin)
(gl-cwin 'selectwindow)
(setq gl-curwin gl-cwin)
)

;16] >
;THIS FUNCTION IS JUST FOR STARTUP
(defun try ()
(initjob)
(event-controD
)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ml
// B-UTILITIES / /

JHI5 FILE CONTAINS SEVERAL UTILITIY FUNCTIONS USED IN THE
SYSTEM

IT IS BROKEN INTO 2 PARTS:: UTILITIES AND EVALUATION UTILITIES

I. UTILITIES
A. Drawing utilities

[7] draw-segments
[83 mark-point
[9] draw-text-lines

B. Prompting utilities
[10] show-sytax
[11] show-rules

C. General utilities
[12] arr-to-string
[13] arr-to-list
[M] cleanout-array
[15] save-new-string
[16] pop-mode-stack
[17] push-mode-stack
[18] provide reactions

II. EVALUATION UTILITIES
A. Assertions

[19] evalutate-assertion
[20] assert ion-to-proof

B. Reasons
[21] evaluate-reason
[22] choose-rule-direction
[23] reason-to-proof

C. Menus

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M 2
[24] evaluate-menu
[25] display rule

D. Lesson utilities
[26] check-validity
[27] provide-reasons
[28] is-reason-correct(scratched)
[29] restart-reasons

^UTILITIES

;DRAWING UTILITIES

FOLLOWING ARE FUNCTIONS THAT WERE FROM THE OLD HELP FILE

;[7]------------------------------>
JHIS FUNCTION DRAWS SEGMENTS IN A WINDOW AND CALLS A FCT TO
; DRAW POINTS AND LABEL

(defun draw-segments (segment-1 ist screen)
(cond ((null segment-1 ist) nil)

(t (le t* ((segment (car segment-1 ist))
(firstpt (car segment))
(secondpt (cadr segment)))

(moveto (car firstpt)
(cadr firstpt)
screen)

(mark-point firstpt screen)
(lineto (car secondpt)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M 3
(cadr secondpt)
screen)

(mark-point secondpt screen))
(draw-segments (cdr segment-]ist) screen))

)
)

;[8] >
;THIS FUNCTION MAKES A BLACK CIRCLE FOR A POINT.
(defun mark-point (new-point screen)

(let ((x (car new-point))
(y (cadr new-point)))

(paintoval (list (isub y 2)
(isub X 2)
(iadd y 2)
(iadd X 2))

screen)
(moveto (isub x 4) (isub y 6) screen)
(drawstring (caddr new-point) screen)
(moveto X y screen))

)
;[9]------------------------- >
;THiS FUNCTION DRAWS A LIST OF LINES ON A SCREEN Y-DI5T APART.

(defun draw-text-lines (s-list screen y-dist)
(do ((x-loc (get screen x-start))

(y-loc (get screen y-start) (iadd y-dist y-loc))
(next-string (car s-list) (car rem-list))
(rem-list (cdr s-list) (cdr rem-list)))

((null next-string))
(moveto x-loc y-loc screen)
(drawstring next-string screen))

)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144

■PROMpflN̂ ^

FOLLOWING ARE FUNCTIONS FOR PROMPTING FROM THE OLD HELP FILES

[10] >
this is the controller for showing syntax help based on an index
choice from a query

(defun show-syntax ()
(le t* ((query " syntax help: CHOOSE NUMBER")

(old-prompt (get GL-present-mode ’prompt))
(help-index 0))

(setq gl-present-mode "gl-hsyntax-mode)
(gl-helpwin ’selectwindow)

;THE FOLLOWING SAVES WHAT WAS LEFT WHEN MOUSE CLICKED
(save-new-string gl-cwin

(arr-to-string gl-cwin)
old-prompt)

(provide-reactions (list query
))

(apply (GL-option-array 1) nil)
)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145
[M]

the following is the function called from the menu
to implement the rule-help routines

(defun show-rules 0
(le t* ((query "rule help: CHOOSE NUMBER")

(old-prompt (get GL-present-mode ‘prompt))
(help-index 0))

(gl-helpwin ‘selectwindow)
;THE FOLLOWING SAVES WHAT WAS LEFT WHEN MOUSE CLICKED
(save-new-string gl-cwin

(arr-to-string gl-cwin)
old-prompt)

(provide-reactions (list query
))

(apply (GL-option-array 4) nil)
)

)
GENERAL UTILITIES

[12] >

this function changes an array to a string It is called by
translate-line
the array changed is the current input-line of the screen

(defun arr-to-string (screen)
(le t* ((i 0)

(ch-arr (get screen input-line))
(character (ch-arr i))
(new-string "")
)

(while (not (null character))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146
(setq new-string (string-append new-string

character))
(setq 1 (addl i)>
(setq character (ch-arr 1))
)

new-string)

[13]

THE FOLLOWING FUNCTION CONVERTS THE ARRAY TO A LIST OF
STRINGS
; THIS IS NEEDED TO PARSE THE ASSERTION, called from translate-line

(defun arr-to-list (screen)

(do ((ch-arr (get screen ’input-line))
(new-list nil)
(ind 0 (addl ind)))

((equal (ch-arr ind) nil) new-list)
(do ((next-char (ch-arr ind) (ch-arr ind))

(new-string "")
(new-ell nil)
(stop nil))

((equal stop t) (setq new-list
(append new-list new-ell)))

(cond ((null next-char)
(setq stop t)
(cond ((equal new-string "“))

(t (setq new-ell (list new-string)))
))

((or
(equal next-char ” ")
(equal next-char (char 9)))

(cond ((equal new-string ””)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

147
(setq Ind (addl ind)))

(t (setq stop t)
(setq new-ell (list new-string)))

))
((member next-char

GL-all-symbols)
(cond ((equal new-string "“)

(setq new-ell (list next-char)))
(t (setq new-list

(append new-list
(list new-string)))

(setq new-ell (list next-char))))
(setq stop t))

(t (setq ind (addl ind))
(setq new-string (string-append

new-string
next-char)))

)
)))

ill 4] --->

;THIS FUNCTION CLEANS OUT THE INPUT ARRAY AND REPLACES WITH
NILS

(defun cleanout-array (screen)
(let ((cur-loc (get screen in-loc))

(cur-line (get screen input-line)))
(dotimes (index cur-loc)

(cur-line index nil))
)

)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148

![1 5]--->

JHIS FUNCTION SAVES THE NEW STRING IN ITS BUFFER

(defun save-new-string (screen n-string prompt)

(funcall (get screen ’upkeep)
screen
(string-append prompt n-str1ng))

)
.(161 >

; THIS FUNCTION TAKES A MODE AND POPS ITS FIRST STACK ELEMENT
; FROM THE PROPERTY mode-stack
(defun pop-mode-stack (con-mode)

(le t* ((stack-Hst (get con-mode mode-stack))
(ell (carstack-Hst))
(restarter (get el I ’restart)))

(cond (restarter (setq Inside el 1)
(apply restarter nil)))

(cond ((equal con-mode el 1)
e ll)

(t (putprop con-mode (cdr stack-11st) ’mode-stack)
e ll)

))
)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149
; (1 7] -- >
99B999999

, THIS FUNCTION SAME AS ABOVE EXCEPT IS A PUSH
(defun push-mode-stack (new-mode con-mode)

(let ((stack-list (get con-mode mode-stack)))
(putprop con-mode

(cons new-mode stack-list)
’mode-stack)

)
)

[18] >
BELOW IS A UTILITY USED BY error-response and provide reason
to output strings to the gl-cwin

9t9

(defun provide-reactions (string-1 ist)
(do ((next-string (car string-list) (car rem-list))

(rem-list (cdr string-list)(cdr rem-list)))
((null next-string))
(drawstring next-string gl-cwin)
(save-new-string gl-cwin next-string "")
)

)
; EVALUATION UTILITIES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150
. [1 9] --->

;THE FOLLOWING FUNCTION IS CALLED FROM translate-line
;AFTER AN ASSERTION
;HAS BEEN ENTERED INTO THE SYSTEM
(defun evaluate-assertion (cur-mode)

(let ((parse-1 ist (get cur-mode *latest-as-list))
(new-pee nil)
(reason-loc nil)) (setq gl-tst parse-1 ist)

;;;;;;the following 2 lines set up globals for the parser
(setq g l-t-lis t nil) ;these are two globals used by

;; parser.
(setq gl-p-list parse-1 ist)
(setq new-pce (p-assertion))
(setq gl-test new-pce)
(cond ((null new-pce)

nil)
(t (setq reason-loc

(check-validity new-pce))
(cond ((numberp reason-loc) ;if a number returns

;then it it was a correct assertion.
(cond ((equal gl-present-mode

gl-present-lesson)
(assertion-to-proof

gl-present-lesson))
)

(setq gl-present-mode GL-reason-mode))
))

)
)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

151
.[2 0] >

;THE FOLLOWING FUNCTION ADDS A NEW ASSERTION TO THE PROOF
(defun assertion-to-proof (cur-lesson)

(let ((pre-string
(printrep (sub I (get gl-present-lesson ‘solution-step)))))

(moveto (get gl-bwin ’x-start)
(get gl-bwin ’y-start)
gl-bwin)

(drawstring (string-append
pre-string
”> ■
(get gl-present-lesson ’save-line))

gl-bwin)
(moveto 95 (get gl-bwin y-start) gl-bwin)
(putprop gl-bwin (iadd (get gl-bwin y-start) 17) y-start)
)

)
.[21] >

; the following function is the evaluator for gl-reason-mode
(defun evaluate-reason (cur-mode)

(let ((correct-choice (get cur-mode ’correct-response))
(cur-choice (get cur-mode save-line))
(solution-length (length

(car
(get gl-present-lesson

assertion-list)))))
(cond ((equal correct-choice cur-choice)

(reason-to-proof cur-mode)
(cond ((< solution-length

(get gl-present-lesson ’solution-step))
(provide-reactions (list "EXCELLENT"

"YOU SOLVED THE PROBLEM”)))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

152
(t

(provide-reactions (list "CORRECT"
"write next assertion"))))

(setq gl-present-mode gl-present-lesson))
((equal "0" cur-choice)
(provide-reactions

(list "if you don't know the correct answer"
" then study the rules in the HELP menu"))

(push-mode-stack gl-present-mode gl-present-lesson))
((member cur-choice

(get gl-present-lesson ’rules-avail))
(erase-blackboard)
(prov ide-react i ons

(list "At the right is an example"
"of the rule you chose ====>"
"WHICH PART DO YOU MEAN"
"ENTER a letter for side"
" L = LEFT"
" R = RIGHT"
" N = NEITHER"))

(cs gl-rulewin)
(apply ((get 'GL-hrulesl-mode ’help-array-name)

(stringtonum cur-choice)) nil)
(send gl-cwin selectwindow)
;following will respond to choice of rule used
(choose-rule-direction cur-mode)
(apply (GL-option-array 2) nil)
(provide-reactions ("WHAT IS THE REASON"

"FOR YOUR LAST ASSERTION?"))
)

(t (provide-reactions ("NOT AN OPTION"
"CHOOSE AGAIN")))

)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

153

;(221 >
;the following finds which side of the rule is being used
(defun choose-rule-direction (cur-mode)

(let ((choice (printrep (readchar)))
(correct-rule (stringtonum (get cur-mode ’correct-response)»
(rule-chosen (stringtonum (get cur-mode ‘save-line)))
(side nil)
(right-inv (cdr GL-INV-RECT))
(left-inv (car GL-INV-RECT))
(chosen-inv niOdeft nil)(right nil)
(pr-high (- (get gl-bwin ’y-start) 32))
(pr-low (- (get gl-bwin y-start) 15))
(response-out nil))

(while (not (member choice ’("L” ”1" ”R" "r” "N” ”n")))
(erase-blackboard)
(provide-reactions

(list choice
“is not an option”
"ENTER a letter for side “
“ L = LEFT”
“ R = RIGHT”
" N » NEITHER’’))

(setq choice (printrep (readchar)))
)

(cond ((member choice (”L ” ”1’’ "R” ”r ”))
(penpat white gl-helpwin)
(cond ((member choice (“L” "D)

(setq chosen-inv left-inv)
(setq left -1 35)(setq right -10)
(paintrect‘(-20 0 60 150) gl-helpwin)
(setq side 0)
)

(t
(setq chosen-inv right-inv)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

154
(setq left lOKsetq right 135)
(paintrect'(-20 -150 60 1) gl-helpwin)
(setq side 1))
)

(penpat black gl-helpwin)
(erase-blackboard)
(cond ((= correct-rule I))

(t (setq correct-rule (- correct-rule 10))))
(cond ((= rule-chosen I))

(t (setq rule-chosen (- rule-chosen 10))))
(invertrect (list pr-high -120 pr-low 70) gl-bwin)
(invertrect (list

(cadr chosen-inv) left
(cddr chosen-inv) right) gl-helpwin)

(setq response-out (GL-WR0NG-REA50N
correct-rule

rule-chosen
side))

(provide-reactions (GL-WR0NG-RE5P0NSE
response-out)
)

(provide-reactions ("hit space bar to continue"))
(while (not (keyp))) (readchar)
(setq response-out (iadd response-out 10))
(erase-blackboard)
(invertrect (list pr-high -120 pr-low 70) gl-bwin)
(invertrect (list

(cadr chosen-inv) left
(cddr chosen-inv) right) gl-helpwin)

(provide-reactions (GL-WRONG-RESPONSE
response-out)
)

(provide-reactions ("hit space bar to continue"))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

155
(while (not (keyp))) (readchar)))

(erase-blackboard))
)

[23] --- >
THE FOLLOWING PCI IS LIKE ASSERTION TO PROOF BUT USED FOR THE
REASON

(defun reason-to-proof (cur-mode)
(drawstring (get cur-mode ’correct-response)

gl-bwin
)

)

[24] -------------------------------------->

FOLLOWING IS ANOTHER EVALUATION FUNCTION WHICH EVALUATES
MENU CHOICES

(defun evaluate-menu (cur-mode)
(let^ ((choice (get cur-mode ’save-line)))

(cond ((equal choice "0")
(apply ((get GL-present-mode ’help-array-name) 0) nil))
((equal choice “9")
(cs gl-helpwin)
(gl-helpwin ’setwtitle "GEOMETRY”)
(setq gl-present-mode

(pop-mode-stack GL-present-lesson)))
((member choice

(get GL-present-mode ’available-options))
(send gl-rulewin selectwindow)
(cs gl-rulewin)
(draw-text-lines

((get ‘6L-hrules2-mode help-array-name)
(stringtonum choice))

gl-rulewin 18)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156
(send gl-helpwin selectwindow)
(apply ((get GL-present-mode help-array-name)

(stringtonum choice)) nil)
(provide-reactions ("hit space-bar to continue"))
(send gl-cwin ’selectwindow)
(while (not (keyp)))(readchar)
(apply (get GL-present-mode ’help-choice)

nil)

)
(t (provide-reactions (list "NOT AN OPTION"

"try again =======>')))
)

)
)

il25 l--->

'Thl^FUNcflON EV^^ THE PROPER FORMAL RULE

(defun display-rule (cur-mode)
(let ((rule-string (get cur-mode ’save-line)))

(send gl-rulewin selectwindow)
(norecord gl-rulewin)
(cs gl-rulewin)
(record gl-rulewin)
(cond ((equal rule-string ”0")

(provide-reactions ’("Statements of Rules"
"in the RULE window"
"CHOOSE NUMBER ===>”)))

((equal rule-string "9")
(cs gl-helpwin)
(gl-helpwin 'setwtitle "GEOMETRY")
(setq gl-present-mode

(pop-mode-stack GL-present-lesson)))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

157
((member rule-string (get cur-mode available-options))
(draw-text-lines

((get cur-mode help-array-name)
(stringtonum rule-string))

gl-rulewin
18)

(cs gl-helpwin)
(gl-helpwin ‘setwtitle "GEOMETRY")
(provide-reactions ("hit space-bar to continue"))
(moveto -70 5 gl-helpwin)
(drawstring "LOOK AT RULE WINDOW" GL-helpwin)
(send gl-cwin selectwindow)
(while (not (keyp)))(readchar)
(show-rules)
)

(t (provide-reactions ’("NOT AND OPTION "
“choose another number"
)))

)

;[26]

;THI5 FUNCTION IS FOR CHECKING THE VALIDITY OF A PCE IN LESSON
ONE
(defun check-validity (new-pce)

(le t* ((mem-1 ist (member new-pce
(car(get

GL-present-mode
"assertion-list))))

(list-len (length mem-list))
(ssize-ref (get GL-present-mode "solution-size))
(new-step (isub ssize-ref list-len)))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

158
(cond ((= new-step (get GL-present-mode ‘solution-step))

(putprop ‘GL-reason-mode
(nth

(sub I new-step)
(cdr (get

GL-present-mode
’assertion-list)))

’correct-response)
(putprop GL-present-mode

(addl new-step)
’solution-step)

(provide-reasons GL-present-mode)
new-step)

((= new-step ssize-ref)
(provide-reactions (list "this does not follow ”

"TRY AGAIN”))
nil)

(t (provide-reactions (list "you jumped a step”
"TRY AGAIN"))

nil)
)

)
)

[27]-------------------------------------->
FOLLOWING IS THE BEGINNING OF THE REASON PROVISION STEP

(defun provide-reasons (lesson)
(provide-reactions (list "****good choice^*^”

"WHY?? CHOOSE NUMBER ===>”'))
(funcall (GL-OPTION-ARRAY (get lesson ’reason-choice)))

)
j

;[28] (scratched)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

159
F̂OLLOWING IS THE FUNCTION TO CHECK IF A GIVEN REASON IS

CORRECT

(defun is-reason-correct (selection)
(cond ((= 1 selection)

(provide-reactions (list "very good"
"what is the next assertion")))

)

)

[291----------------------------------->
THIS FUNCTION IS USED AFTER A HELP SESSION TO PUT THE USER
BACK IN THE MODE TO INPUT A REASON FOR AN ASSERTION.

(defun restart-reasons 0
(provide-reactions (list "REASON FOR LAST ASSERTION?"

"CHOOSE NUMBER ======>"))
(funcall (GL-OPTION-ARRAY (get gl-present-lesson ’reason-choice)))

)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

160

; / / SYSTEM-ARRAYS / /

;THE FOLLOWING FILE CONTAINS SEVERAL ARRAYS USED THRU THE
SYSTEM

I. HELP FUNCTION ARRAYS
[301 GL-option-array
[311 GL-hysntax-array

[32] GL-EXrules-array

II STRING-ARRAYS
A. GL-rule-name
B. GL-formal-rule

[30]

GL-OPTION-ARRAY
THE FOLLOWING CALLS SET UP HELP GLOBALS FOR PARTICULAR RULES
THAT HELP WITH SYNTAX

(setq GL-OPTION-ARRAY (make-array 5))

(GL-OPTION-ARRAY I
(lambda 0

(cs gl-helpwin)
(gl-helpwin ‘setwtitle "SYNTAX CHOICES")
(textsize 10 gl-helpwin)
(draw-text-lines

•(
CHOOSE BY NUMBER"

" 1 CONGRUENT SEGMENTS'
”2 CONGRUENT ANGLES"

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

161

"3 MIDPOINT"
"4 = SEGMENT MEASURE"
"5 = ANGLE MEASURE"

"9 RETÜRN-TO LESSON")
gl-helpwin
1 1)

(textsize 12 gl-helpwin)
(textfont 17 gl-helpwin))

;GL-OPTION ARRAY 2 WILL BE FOUND IN THE PARTICULAR LESSON FILE
; IT IS DEPENDENT ON WHICH LESSON IS IN EFFECT

;HELP ON RULES
(GL-OPTION-ARRAY 4

(lambda 0
(cs gl-helpwin)
(gl-helpwin setwtitle "RULE CHOICES")
(textsize 10 gl-helpwin)
(draw-text-lines

CHOOSE BY NUMBER"

DEFINITIONS

"12 SEGMENT BISECTOR"
" 13 CONGRUENT SEGMENTS'
"14 CONGRUENT ANGLES"
"15 MIDPOINT"

"9 RETURN-TO LESSON")

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

162

gl-helpwin
1 1)

(textsize 12 gl-helpwin)
(textfont 17 gl-helpwin))

[311----------------------

GL-HSYNTAX̂ ^

(setq GL-H5YNTAX-ARRAY (make-array 10))

FOLLOWING 15 SYNTAX HELP FOR CONGRUENT SEGMENTS
(GL-HSYNTAX-ARRAY 0

(lambda 0
(provide-reactions

(list "GRAMMAR HELP"
"To write proper grammar "
"You must use a language "
"the computer understands!"
"Choose a number at right"
"for help ===>")
)))

(GL-HSYNTAX-ARRAY 1
(lambda 0

(cs gl-helpwin)
(gl-helpwin "setwtitle "CONGR. SEGMENT SYNTAX")
(draw-segments
*(((-80 -30"R ")(-15 -30 "5"))

((15 -30 "T") (80 -30 "U ")))
GL-helpwin)

(moveto -85 0 gl-helpwin)
(drawstring “TO ENTER;" gl-helpwin)
(moveto -75 12 gl-helpwin)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

163

(textsize 10 gl-helpwin)
(drawstring

"SEGMENT R5 IS CONGRUENT"
gl-helpwin)

(moveto -60 22 gl-helpwin)
(drawstring

"TO SEGMENT TU"
gl-helpwin)

(textsize 12 gl-helpwin)
(textfont 17 gl-helpwin)
(moveto -65 40 gl-helpwin)
(drawstring "WRITE:" gl-helpwin)
(moveto -40 60 gl-helpwin)
(drawstring "1RS / ITU" gl-helpwin)
)

)

;F0LL0W1NG IS SYNTAX HELP FOR CONGRUENT ANGLES
(GL-HSYNTAX-ARRAY 2

(lambda 0
(gl-helpwin "setwtitle "CONGR. ANGLE SYNTAX")
(cs gl-helpwin)
(draw-segments
*(((-60 -22 "K ")(-I5 -22 "L"))

((-80 -22 "K") (-20 -52 "J"))
((15 -22 "Q") (80 -22 "R "))
((15 -22 "Q") (75 -52 "P")))

GL-helpwin)
(moveto -65 0 gl-helpwin)
(drawstring "TO ENTER:" gl-helpwin)
(moveto -75 12 gl-helpwin)
(textsize 10 gl-helpwin)
(drawstring

"ANGLE JKL IS CONGRUENT"
gl-helpwin)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

164

(moveto -60 22 gl-helpwin)
(drawstring

“TO ANGLE PQR"
gl-helpwin)

(textsize 12 gl-helpwin)
(textfont 17 gl-helpwin)
(moveto -85 40 gl-helpwin)
(drawstring "WRITE:" gl-helpwin)
(moveto -40 60 gl-helpwin)
(drawstring “,JKL / ,PQR“ gl-helpwin)
)

FOLLOWING IS SYNTAX HELP FOR THE MIDPOINT
(GL-HSYNTAX-ARRAY 3

(lambda 0
(gl-helpwin "setwtitle "MIDPOINT SYNTAX")

(cs gl-helpwin)
(draw-segments
•(((-55 -30 "X") (0 -30 "Y"))

((0 -30 "Y") (55 -30 "Z")))
GL-helpwin)

(moveto -85 -5 gl-helpwin)
(drawstring

“TO ENTER:"
gl-helpwin)

(moveto -75 10 gl-helpwin)
(drawstring

"Point Y is the midpoint"
gl-helpwin)

(moveto -75 25 gl-helpwin)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

165

(drawstring
"of segment XZ"
gl-helpwin)

(moveto -85 43 gl-helpwin)
(drawstring "WRITE; " GL-helpwin)
(moveto -75 60 gl-helpwin)
(drawstring

"Y IS THE MIDPOINT OF [XZ" gl-helpwin)
)

)

F̂OLLOWING IS SYNTAX HELP FOR = SEGMENT MEASURE
(GL-HSYNTAX-ARRAY 4

(lambda 0
(gl-helpwin 'setwtitle "EQUAL SEGMENT SYNTAX")
(cs gl-helpwin)
(draw-segments
’(((-80 -45 "R")(-15 -45 "S"))

((15 -45 "T") (80 -45 "U")))
GL-helpwin)

(moveto -85 0 gl-helpwin)
(drawstring "TO ENTER:" gl-helpwin)
(moveto -75 12 gl-helpwin)
(textsize 10 gl-helpwin)
(drawstring

"SEGMENT RS HAS LENGTH"
gl-helpwin)

(moveto -60 22 gl-helpwin)
(drawstring

"EQUAL TO SEGMENT TU"
gl-helpwin)

(textsize 12 gl-helpwin)
(textfont 17 gl-helpwin)
(moveto -85 40 gl-helpwin)
(drawstring "WRITE:" gl-helpwin)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

166

(moveto “40 60 gl-helpwin)
(drawstring ”R5 = TU" gl-helpwin)
)

)

;FOLLOWING 15 SYNTAX HELP FOR = ANGLE MEASURE
(GL-HSYNTAX-ARRAY 5

(lambda 0
(gl-helpwin 'setwtitle "EQUAL ANGLE SYNTAX")
(cs gl-helpwin)
(draw-segments
‘(((-80 -22 "K")(-15-22 "L"))

((-60 -22 "K") (-20 -52 "J"))
((15 -22 "Q") (80 -22 “R"))
((15 -22 "Q") (75 -52 "P")))

GL-helpwin)
(moveto -85 0 gl-helpwin)
(drawstring "TO ENTER;" gl-helpwin)
(moveto -75 12 gl-helpwin)
(textsize 10 gl-helpwin)
(drawstring

"THE MEASURE OF ANGLE JKL "
gl-helpwin)

(moveto -60 22 gl-helpwin)
(drawstring

"AND ANGLE PQR ARE EQUAL"
gl-helpwin)

(textsize 12 gl-helpwin)
(textfont 17 gl-helpwin)
(moveto -85 40 gl-helpwin)
(drawstring "WRITE:" gl-helpwin)
(moveto -40 60 gl-helpwin)
(drawstring “M,JKL = M,PQR“ gl-helpwin)
)

)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

167

;F0LL0WIN6 IS help to return to the system from help on syntax
(GL-HSYNTAX-ARRAY 9

(lambda 0
(gl-helpwin setwtitle "GEOMETRY")
(pop-mode-stack gl-present-lesson))

)

' [32] -- >

F̂OLLOWING A% FUNCTIONS FOR HELP ON RULES

;GL-EXRULES-ARRAY

(setq GL-EXrules-array (make-array 20))

;THIS ELEMENT GIVES YOU HELP ON RULES

(GL-EXrules-array 0
(lambda ()

(provide-reactions
•("RULE HELP"

"You must first select the"
" rule which you want help on!'
"CHOOSE A NUMBER ===>")))

)
;THIS IS HELP ON THE GIVEN RULE
(GL-EXrules-array I

(lambda ()
(gl-helpwin setwtitle "GIVEN")
(cs gl-helpwin)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

168

(moveto -140 -30 gl-helpw1n)
(drawstring

"YOU CHOSE GIVEN " GL-helpwin)
(drawstring “LOOK AT " gl-he1pwin)
(drawstring "YOUR PROOF” gl-helpwin)
)

;THIS ELEMENT DROPS YOU BACK TO THE LESSON FROM HELP ON RULES

(GL-EXrules-array 9 (lambda ()
(pop-mode-stack gl-present-lesson)
(setq g 1-present-mode

(pop-mode-stack gl-present-lesson)))
)

FOLLOWING IS RULE HELP FOR SEGMENT BISECTOR
(GL-EXRULES-ARRAY 12

(lambda 0
(setq GL-INV-RECT *(((-5 . 9). (28 . 57)).

((-5 . 9). (40 . 57))))
(gl-helpwin ‘setwtitle "SEGMENT BISECTOR RULE")
(cs gl-helpwin)
(draw-segments

‘(((-60 -35 "R") (0 -35 "S"))
((0 -35 "S") (60 -35 "T”)))

GL-helpwin)
(moveto 0 -0 gl-helpwin)
(lineto 0 50 gl-helpwin)
(textfont 0 gl-helpwin)
(moveto -140 -8 gl-helpwin)
(drawstring “GIVEN:" gl-helpwin)
(moveto -140 25 gl-helpwin)
(drawstring "CONCLUDE:" gl-helpwin)
(moveto 20 -8 gl-helpwin)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

169

(drawstring "GIVEN;" gl-helpwin)
(moveto 20 40 gl-helpwin)
(drawstring "CONCLUDE:" gl-helpwin)
(textfont 17 gl-helpwin)
(moveto -130 7 gl-helpwin)
(drawstring "5 BISECTS (RT" gl-helpwin)
(moveto -130 38 gl-helpwin)
(drawstring “S IS THE " gl-helpwin)
(moveto -130 53 gl-helpwin)
(drawstring "MIDPOINT OF [RT" gl-helpwin)
(moveto 30 7 gl-helpwin)
(drawstring "S IS THE " gl-helpwin)
(moveto 30 22 gl-helpwin)
(drawstring "MIDPOINT OF [RT" gl-helpwin)
(moveto 30 55 gl-helpwin)
(drawstring "S BISECTS [RT " gl-helpwin)

)
)

(GL-EXrules-array 13
(lambda 0

(setq GL-INV-RECT '(((-5 . 9). (40 . 65)).
((-5 . 9). (40 . 65))))

(gl-helpwin 'setwtitle "CONGRUENT SEGMENT RULE")
(cs gl-helpwin)
(draw-segments
•(((-60 -30 "R") (-1 5 -3 0 "S"))

((I5 -3 0 "T ")(6 0 -30 "U")))
GL-helpwin)

(moveto 0 -0 gl-helpwin)
(lineto 0 50 gl-helpwin)
(textfont 0 gl-helpwin)
(moveto -110 0 gl-helpwin)
(drawstring "GIVEN:" gl-helpwin)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

170

(moveto -110 40 gl-helpwin)
(drawstring "CONCLUDE;" gl-helpwin)
(moveto 15 0 gl-helpwin)
(drawstring "GIVEN:" gl-helpwin)
(moveto 15 40 gl-helpwin)
(drawstring "CONCLUDE:" gl-helpwin)
(textfont 17 gl-helpwin)
(moveto -75 20 gl-helpwin)
(drawstring "RS=ST" gl-helpwin)
(moveto -75 60 gl-helpwin)
(drawstring "[R5 / [TU" gl-helpwin)

(moveto 30 20 gl-helpwin)
(drawstring "[RS / [TU" gl-helpwin)
(moveto 30 60 gl-helpwin)
(drawstring "RS=ST" gl-helpwin)
)

FOLLOWING IS SYNTAX HELP FOR CONGRUENT ANGLES
(GL-EXRULES-ARRAY 14

(lambda 0
(setq GL-INV-RECT '(((-5 . 9). (40 . 65)).

((-5 . 9). (40 . 65))))
(cs gl-helpwin)
(gl-helpwin 'setwtitle "CONGRUENT ANGLE RULE")
(draw-segments
•(((-80 -22 "K")(-15-22 "L"))

((-80 -22 “K") (-20 -52 "J"))
((15 -22 "Q“)(80 -22 "R"))
((15 -22 "Q") (75 -52 "P")))

GL-helpwin)
(moveto 0 -0 gl-helpwin)
(lineto 0 50 gl-helpwin)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

171

(textfont 0 gl-helpwin)
(moveto -140 0 gl-helpwin)
(drawstring "GIVEN:" gl-helpwin)
(moveto -140 35 gl-helpwin)
(drawstring "CONCLUDE:" gl-helpwin)

(moveto 15 0 gl-helpwin)
(drawstring "GIVEN:" gl-helpwin)
(moveto 15 35 gl-helpwin)
(drawstring "CONCLUDE:" gl-helpwin)

(textfont 17 gl-helpwin)
(moveto -130 15 gl-helpwin)
(drawstring "M,JKL=M,PQR" gl-helpwin)
(moveto -130 55 gl-helpwin)
(drawstring ",JKL / ,PQR” gl-helpwin)
(moveto 25 15 gl-helpwin)
(drawstring ",JKL / ,PQR“ gl-helpwin)
(moveto 25 55 gl-helpwin)
(drawstring "M,JKL=M,POR" gl-helpwin)
)

F̂OLLOWING IS SYNTAX HELP FOR MIDPOINT
(GL-EXRULES-ARRAY 15

(lambda 0
(setq GL-INV-RECT '(((-5 . 9). (45 . 65))

((-5 . 9). (27 . 65))))
(gl-helpwin setwtitle "MIDPOINT RULE")
(cs gl-helpwin)
(draw-segments
'(((-60 -35 "M") (0 -35 "N"))

((0 -35 "N") (60 -35 "P"»)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

172

GL-helpwin)
(moveto 0 -0 gl-helpwin)
(lineto 0 50 gl-helpwin)
(textfont 0 gl-helpwin)
(moveto -1 4 0 -8 gl-helpwin)
(drawstring "GIVEN;" gl-helpwin)
(moveto -140 40 gl-helpwin)
(drawstring "CONCLUDE:" gl-helpwin)
(moveto 20 -8 gl-helpwin)
(drawstring "GIVEN:" gl-helpwin)
(moveto 20 25 gl-helpwin)
(drawstring "CONCLUDE:" gl-helpwin)
(textfont 17 gl-helpwin)
(moveto -130 7 gl-helpwin)
(drawstring "N 15 THE “ gl-helpwin)
(moveto -130 22 gl-helpwin)
(drawstring "MIDPOINT OF [MP" gl-helpwin)
(moveto -130 60 gl-helpwin)
(drawstring "MN = NP" gl-helpwin)
(moveto 30 7 gl-helpwin)
(drawstring "MN = NP" gl-helpwin)
(moveto 30 38 gl-helpwin)
(drawstring "N IS THE " gl-helpwin)
(moveto 30 53 gl-helpwin)
(drawstring "MIDPOINT OF [MP" gl-helpwin)
)

)

(GL-EXRULES-ARRAY 16
(lambda 0

(gl-helpwin 'setwtitle "ALGEBRA RULES")
(cs gl-helpwin)
(moveto -80 0 gl-helpwin)
(textsize 18 gl-helpwin)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

173

(drawstring “NOT YET IMPLEMENTED" gl-helpwin)
(textsize 12 gl-helpwin)
)

)

;FOLLOWING SETS UP AN ARRAY OF RULES DESCRIBING ^ AND NAME

;THE FOLLOWING ARRAY 15 A LIST OF FORMAL RULES
(setq GL-formal-rule (make-array 20))

(GL-formal-rule 12
’("A Bisector of a segment is a set of points"

"that intersects the segment at its midpoint"))

(GL-formal-rule 13
("Congruent segments are segments"
"that have the same length"»

(GL-formal-rule 14
■("Congruent angles are angles"

"that have the same measure"))

(GL-formal-rule 15
’("The Midpoint of segment [MP ”

"is a point N such that MN NP"))

.FOLLOWING IS A DOUBLEY INDEXED SET OF HEURISTIC MESSAGES
; FOR WRONG REASONS GIVEN FOR ASSERTIONS

(setq GL-WR0N6-REA50N (make-array (7 7 2)))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

174

(GL-wrong-reason 12 0 0)
(GL-wrong-reason 13 0 4)
(GL-wrong-reason 14 0 4)
(GL-wrong-reason 15 0 4)
(GL-wrong-reason 16 0 9)

(GL-wrong-reason 12 14)
(GL-wrong-reason 13 14)
(GL-wrong-reason 14 14)
(GL-wrong-reason 15 10)
(GL-wrong-reason 16 19)

(GL-wrong-reason 3 10 1)
(GL-wrong-reason 3 2 0 2)
(GL-wrong-reason 3 4 0 2)
(GL-wrong-reason 3 5 0 2)
(GL-wrong-reason 3 6 0 9)

(GL-wrong-reason 3 111)
(GL-wrong-reason 3 2 12)
(GL-wrong-reason 3 4 12)
(GL-wrong-reason 3 5 12)
(GL-wrong-reason 3 6 19)

(GL-wrong-reason 5 10 1)
(GL-wrong-reason 5 2 0 2)
(GL-wrong-reason 5 3 0 2)
(GL-wrong-reason 5 4 0 2)
(GL-wrong-reason 5 6 0 9)

(GL-wrong-reason 5 111)
(GL-wrong-reason 5 2 12)
(GL-wrong-reason 5 3 13)
(GL-wrong-reason 5 4 12)
(GL-wrong-reason 5 6 19)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

175

(setq GL-WRONG-RESPONSE (make-array 20))

(GL-WR0NG-RE5P0NSE 0 ("PRETTY GOOD! "
"Your new assertion"
"matched the CONCLUSION"
"of this rule ========>"
""))

(GL-WRONG-RESPONSE 1 ("Was your last assertion"
"Given in the problem?"

"LOOK IN THE PROOF WINDOW"
"AT YOUR ASSERTIONS"
))

(GL-WRONG-RESPONSE 2 ("Look at your assertion "
"in the PROOF window"

"Look at the CONCLUSION"
"in the rule ===========>"
"THEY DO NOT MATCH!"
""))

(GL-WRONG-RESPONSE 3 ("PRETTY GOOD TRY"
"Your new assertion"
"matched the CONCLUSION"
"of this rule ========>"
....))

(GL-WRONG-RESPONSE 4 ("Look at your assertion
"in the PROOF window"

"Look at the CONCLUSION"

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

176

"in th© rule ===========>"
"THEY DO NOT MATCH!"

(GL-WRONG-RESPONSE 9 ("NOT YET IMPLEMENTED"))

(GL-WRONG-RESPONSE 10 ("HOWEVER"
"The GIVEN of this rule"
"has not been proven"

"HINT."
"See the Problem GIVEN!"
""))

(GL-WRONG-RESPONSE 12 ("HINT."
"Look at rules that"
"have the same CONCLUSION"
"as your new assertion"
""))

(GL-WRONG-RESPONSE 13'(
"HOWEVER You have not proven”

"that GIVEN!!

"HINT: match earlier assertions
"to the GIVEN of a rule"
""))

(GL-WRONG-RESPONSE 14 '("HINT:"
"Look at the GIVEN"
"in the DRAWING window"
" "))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

177

.---/D-INPUT-OUTPUT/--------------------------

JUNCTIONS WRITTEN IN THIS FILE FOR INPUT-OUTPUT

; [331 fill-screen
; [34] refresh
; [351 rubout-character
; [361 read-line
; [371 event-control
; [381 translate-] ine

;[331

;THIS FUNCTION SAVES A NEW STRING IN THE ARRAY OF STRINGS FOR
; REFRESHING THE SCREEN
;it puts the first 6 lines in the screen on startup

(defun fill-screen (screen save-string)
(let ((a-loc (get screen array-loc))

(size (get screen size)))
((get gl-curwin lines) a-loc save-string)
(setq a-loc (addI a-loc))
(putprop screen a-loc array-loc)
(moveto (get screen x-start)

(+ (cadr (penpos screen)) 17)
screen)

(cond
((> a-loc size)
(putprop screen refresh upkeep)
(putprop screen (remainder a-loc (add 1 size))’array-loc))
)

)
)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Î78

[341------------------------------------->
THIS FUNCTION DOES SCREEN REFRESH AND SCROLLING FOR A SCREEN
GIVEN AS AN ARG. IT ALSO SAVES NEW STRING IN ARRAY OF STRINGS

. FOR REFRESHING THE SCREEN.

(defun refresh (screen new-string)
(cs screen)

(do ((x-loc (get screen ’x-start))
(y-loc (get screen ‘y-start) (+ y-loc 17))
(location 0 (addi location)) .curline array location
(new-loc (get screen ’array-loc))
(a-loc (remainder (addl (get screen ’array-loc))

(add 1 (get screen ’size)))
(remainder (addl a-loc) size))

(size (addl(get screen size)))
(last-loc (get screen size)) ;lastline array location
)

((> location last-loc)
(putprop screen a-loc array-loc)
(moveto x-loc y-loc screen)
)

(cond ((= location 0)
((get screen lines)
new-loc
new-string)))

(moveto x-loc y-loc screen)
(drawstring ((get screen lines)

a-loc)
screen)

)
)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

179

;[3 5]-- >

;THE FOLLWOING FUNCTION IS CALLED FROM read-line TO RUBOUT A
CHARACTER
;FROM THE INPUT (BLACKBOARD) WINDOW.

(defun rubout-character (screen cur-line line-pos last-loc)
(let ((rubout-pos (line-pos last-loc)))

(putprop screen last-loc in-loc)
(penpat white screen)
(paintrect (list (- (cadr rubout-pos)

(cond ((member (cur-line last-loc)
■(••[” *■]"))

15)
(t 10)))

(car rubout-pos)
(+ (cadr rubout-pos) 5)
(+ (car rubout-pos) 30))

screen
)

(penpat black screen)
(moveto (car rubout-pos) (cadr rubout-pos) screen)
(cur-line last-loc nil)
(line-pos last-loc nil)
nil)

;[36]

;this is an implementation of read-line which accepts a
^character (it is a string) and updates the current new line for
;a given window
;it also does backspace

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

180

(defun read-line (screen new-char)
(1et*(

(strlng-char new-char)
(cur-line (get screen 'input-line)) ;THIS 15 ARRAY WITH THE
(line-pos (get screen ’input-xval)) ; CURRENT LINE IN IT
(cur-loc (get screen in-loc))
(last-loc (subi cur-loc))
)
(uprstring string-char t)
(cond

;this is the end of line
((equal string-char (char 13))
(translate-line screen)
)

;this is the rubout to delete a character
((and (equal string-char (char 8)) (> cur-loc 0))
(rubout-character screen cur-line line-pos last-loc))

;this enters a character and displays on screen
((not (equal string-char (char 8)))
(cur-line cur-loc new-char)
(line-pos cur-loc (penpos screen))
(putprop screen (addl cur-loc) in-loc)
(drawstring string-char screen)
nil)
))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

181

.[3 7]--->
»

;this is the event loop for the system

(defun event-control ()
(initcursor)

(gl-curwin 'selectwindow)
(drawstring (get gl-present-mode prompt) gl-curwin)
(setq X 1)
(setq gl-menu-call nil)
(while (not gl-menu-call)

(cond ((button)
(setq gl-m-pos (getmouse))
(cond ((member gl-present-mode gl-help-avail)

(cond ((not(null gl-first-click))
;first click since toplevel
(cond ((and (> -320 (cadr gl-m-pos))

(< -250 (car gl-m-pos))
(> -140 (car gl-m-pos)))

(setq gl-menu-call gl-m-pos))))
((equal gl-curwin gl-cwin)

;currently blackboard
(cond ((and (> -250 (cadr gl-m-pos))

(< 100 (car gl-m-pos))
(>210 (car gl-m-pos)))

(setq gl-menu-call gl-m-pos))
))))

(t (provide-reactions
■(■‘called for help "))))

(cond ((and gl-menu-call
(not (member ;its not already on stack

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

182

gl-present-mode
(get gl-present-lesson

'mode-stack»))
(push-mode-stack

gl-present-mode
gl-present-lesson))

))
((keyp)
(setq gl-first-click nil)
(read-line gl-curwin (printrep (read-char)))

)
)

[38]

THE FOLLOWING FUNCTIONS TRANSLATE KEYBOARD INPUT
THEY ARE CONTOLLED BY THE FIRST FUNCTION translate-line
. WHICH IS CALLED FROM read-line two functions above

(defun translate-line (screen)
; the following will put redundant info in gl-reason-mode plist
(putprop gl-present-mode (arr-to-list screen) ‘latest-as-llst)
(let ((new-string (arr-to-string screen)))

;the following call saves the line in the pres mode object
; this may be redundant EG. GL-REASON-MODE
(putprop gl-present-mode new-string save-line)
(save-new-string screen new-string

(get GL-present-mode prompt))
(cleanout-array screen) jthis will set input-array to nils
(putprop screen 0 'in-loc)
(apply (get GL-present-mode evaluator)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Î83

(list GL-present-mode))
;;;the following call returns the next prompt for whatever
; is now the present mode which may have changed in the
; evaluator of the mode
(drawstring (get GL-present-mode prompt) screen)
)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

184

; / / PARSER / /
FOLLOWING IS A LIST OF THE FUNCTIONS IN THIS FILE

[39 get-token
[40 peek-token
[41 c-membs
[42 check-members
[43 next-word
[44 peek-word
[45 make-token
[46 new-token
[47 is-numb
[48 p-identifier
[49 p-object
[50 addition-error
[51 combop-check
[52 p-simple-expression
[53 p-expression
[54 p-assertion
[55 p-error
[56 error-response
[57 find-is-token

THESE CALLS establishe the global list for new token
THESE ARE THINGS NEEDED FOR THE PARSER

(setq g l-t-lis t nil)
(setq gl-p-list nil)
(setq gl-points ("A" “B" "C" “D“ "E" "F"))
(setq GL-al 1-symbols '("/' [" "]" """ "+“))
(setq gl-figures '(",“ "]" "."))
;(setq gl-properties ("supplementary " "complementary"

"adjacent"))
(setq gl-relationals "("="' "/" bisects"'))
(setq gl-combinationals "("+" "-"))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

185

;1391

;this function get-token changes the global t-lls t
;it returns the first element of the t-lis t after getting
necessary tokens

(defun get-token ()
(let ((nt-list D)

(cond ((null g l-t-lis t)
(setq nt-list (new-token))
(setq g l-t-lis t (append g l-t-lis t nt-list)))

)
(cond ((null nt-list)

nil)
(t
(progl (car g l-t-lis t)

(setq g l-t-lis t (cdr g l-t-list))))
)

)
)

;[40]--- >
;this function returns the next token but does not remove it
from the token list

(defun peek-token ()
(cond ((null g l-t-lis t)

(setq g l-t-lis t (append g l-t-lis t (new-token))))
)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

186

(cond ((null g l-t-lis t)
nil)

(t (car g l-t-lis t))
))

;141]

jthis function is a recursive check on a list of atoms to see if
they
;are all contained in another list of atoms

(defun c-membs (id-list g-el-list)
(cond ((null id-list)

nil)
((member (car id-list) g-el-list)

(cons (car id-list)
(c-membs (cdr id-list) g-el-list)))

(t (let ((string-list nil))

(setq string-list (cons
(string-append

(GL-error-message 0)
(printrep (car id-list))
(GL-error-message 2))

string-list))
(setq string-list (cons (GL-error-message 1)

string-list))
(error-response (reverse string-list))
)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

187

error)
)
)

[42]-->
this function is the superior of
c-membs and sets up to check the elements
of the first list against the elements of the second list

(defun check-members (id-string g-el-list)
(let ((id-list nil))

(cond ((or (equal ' ' id-string)
(null g-el-list))

(error-response (list
"error parsing check-members"))

)
(t

(setq id-list (explode id-string))
(c-membs id-list g-el-list))

))
)

;[43]

;the two following functions are simple input to be used by
new-token

;the following function currently returns a single string
;from the gl-p-list
(defun next-word 0

(progl (car gl-p-list)
(setq gl-p-list (cdr gl-p-list))

)
)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

188

[44] >
returns a single string currently on the gl-p-list

(defun peek-word 0 ; POSSIBLE BUGGGG6GGG
(car gl-p-list))

;[45]--- >
;this function makes a token given the token type and the new
word
;however the word must have a property that tells the atom
name

;th1s function is set up to return tokens in the form of dotted
;pairs , the first being the token the second being the
represetation

(defun make-token (token-type word)
(list (cons token-type

(cond ((equal word ”/*)
angle)

((equal word
‘triangle)
((equal word "[")
’segment)

((equal word "]"')
line)

((equal word ’’+")
■plus)

((equal word "-")
’minus)

((equal word '=")
equal)

((equal word "/“)
’congruent)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

189

((equal word
‘perpendicular)
((equal word "*")
‘parallel)

((equal word "BISECTS")
‘bisects)

)))
)

[46]--->
this is the new-token function that returns the next token to

be
;parsed
;from the list of words from the assertion
;it uses several globals prefixed by gl
;it gets a word from next word which takes words off of the
;assertion

(defun new-tokenO
(le t* ((new-word (next-word))

(points nil))
(cond ((null new-word)

nil)

({is-nump new-word)
(list (cons numb (StringToNum new-word))))

((member new-word gl-figures)
(make-token g-e new-word))

;((member new-word gl-propertles)
;(list (cons property (intern new-word))))

((member new-word gl-combinationals)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

190

(make-token c-o new-word))

((member new-word gl-relationals)
(make-token r-o new-word))

((equal new-word "IS”)
(find-is-token))

((and (or (equal new-word "m”)
(equal new-word "M"))
(equal (peek-word) "*,"))

;this should take care of measure.
(list (cons measure (intern new-word))))

((setq points (check-members new-word gl-points))
(list (cons id points)))

(t
nil)

)
)

)
■147]-- >
;this function determines if a string is a number
; it is used by new-token
; it returns t if it is a number and nil if not

(defun is-nump (str)
(let ((front (schar str))

(back nil))
(cond ((equal str "")

-999)
((member fronf("0" T ”2" "3" "4” "5" "6" "7" "8” ”9"))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

191

(setq back (is-nump (string-butfirst str)))
(cond ((numberp back)

t)
((null back)
nil)

(t)))
(t nil))

[48]--- >
this function returns a predicate list beginning with the
predicate = figure
arguments = points of the figure
the m-sign is the measure sign

;from the superior function p-object

(defun p-identifier (figure m-sign)
(cond ((equal (car (peek-token)) id)

(le t* ((id-list (cdr (get-token)))
(letter-count (length id-list))
)

(cond ((null id-list)
nil)
(t

(cond ((and (equal figure ’triangle)
(- letter-count 3)
(null m-sign))

(cons figure id-list))
((and (or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

192

(equal figure ‘segment)
(equal figure 'line))

(= letter-count 2))
(cons figure id-list))

((and (equal figure angle)
(or (= letter-count 1)

(■= letter-count 3)))
(cons figure id-list))

((and (equal figure ‘point)
(=• letter-count 1)
(null m-sign))

id-list)
(t (p-error identifer figure)

nil)
)

)
)

)
)

(t
nil)
)

■,[49]--- >
;this function parses for an object
;it takes no parameters
;it returns a list which describes the object

(defun p-object 0
(let ((o-list nil)

(measure-sign (get-token))
(figure nil))
(cond ((equal (car measure-sign) measure)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

193

(setq figure (get-token)))
(t

(setq figure measure-sign)
(setq measure-sign nil))
)

(cond ((equal (cdr figure) error)
nil)

((numberp (cdr figure))
(setq 0- list (cdr figure)))
((equal (car figure) *g-e)
(setq o-list (p-identifier (cdr figure)

(cdr measure-sign))))
((and (= (length (cdr figure)) 1)

(equal (car figure) id))
(setq o-list (cadr figure)))

((equal (car figure) id)
;this happens
;when you have
;the syntax that allows
;the measure of a
;line segment
;eg

(setq measure-sign ‘(measure . m))
(setq o-list (cons segment (cdr figure))))

(t
(error-response (list (GL-error-message 3)

(GL-error-message 1)))
nil)
)

(cond ((null o-list)
nil)

((null measure-sign)
o-list)

(t (list (car measure-sign) o-list)))))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

194

[50] -->
this function is an error handler for simple expression
it takes care of the case when an assertion trys to add two
incompatible numbers

(defun addition-error (long-list short-list)
(princ long-list)
(terpri)
(princ short-list)
(terpri))

[51] --- >
this function makes sure that comb-op is combining

compatible
^expressions

(defun combop-check (comb-op se-list new-obj)
(le t* ((first-se (car se-list))

(op-sign (cond ((equal first-se 'plus) ;VERY IMPORTANT
JHIS REPLACES A GLOBAL
;50 WATCH OUT HERE

first-se)))
;if the first element
;of se-list

;is a comb-op then it is given
;to op-sign

(first-meas (cond ((null op-sign) ;if no
;comb-op sign
jthen must be
/measure

first-se)
((equal first-se plus)
(caadr se-list)))))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

195

;5AME GLOBAL PROBLEM
; AS ABOVE.

(cond ((not (equal first-meas ‘measure))
(princ (cadr se-list))
(princ “ is not a measured number")
(terpri))

((not (equal first-meas ’measure))
(princ (cadr new-obj))
(princ " is not a measured number")
(terpri))

(t
(let ((second-meas (car new-obj))

(first-geo (cond ((null op-sign)
(caadr se-list))

(t (caadadr se-list))))
(second-geo (caadr new-obj)))

(cond ((and (equal first-meas ‘measure)
(equal second-meas ‘measure)
(equal first-geo second-geo)
)

(list comb-op new-obj se-list))
((null new-obj)
(setq se-list nil))

(t
(princ "Those numbers added ")
(princ "are not the same.")
(terpri)
(addition-error se-list new-obj)
nil)
))

)
)))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

196

.[52]------------------------ >
(defun p-simple-expression ()

(do ((se-list (p-object)
(combop-check comb-op se-list new-obj))

(comb-op nil)
(new-obj nil))

((or (null se-list)
(not (equal (car (peek-token)) c-o))) se-list)

(setq comb-op (cdr (get-token)))
(setq new-obj (p-object))
))

;[53]

; this is similar to p-simple-expression but deals with
gl-log-ops

(defun p-expression ()
(do ((e-list (p-simple-expression)

(list (cdr (get-token))
(p-simple-expression)
e-list))

)
((not (equal (car (peek-token)) *l-o)) e-list)
))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

197

;[54]-- >
;this is the top level of the parser and demands a form that
; reads expression rel-op expression
; assumes property is in gl-prop-list from new-token

(defun p-assertion 0
(cond ((null (peek-token))

(print (no assertion was made)))
(t

(let ((a-list (p-expression))
(relation (get-token))
)

(cond ((null a-list)
nil)
((and

(equal (cdr relation) ‘isa)
(equal (car (peek-token)) prop))

(list (cdr (get-token)) a-list))
((equal (car relation) r-o)
(let (dhs (p-expression)))

(cond ((null Ihs)
nil)

(t
(list (cdr relation)

a-list
Ihs))

)
))

(t
(p-error ‘p-assertion relation))
)))))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

198

.[5 5]---------------------------------
(defun p-error (funct item)

(princ "ERROR")
(terpri)
(princ "function is;")
(princ funct)
(terpri)
(princ "place is: ")

(princ (cdr item))
(terpri)
nil

)
[561-- >
THIS IS A FUNCTION THAT WILL ATTEMPT TO HANDLE ALL
SYNTAX ERROR
; MESSAGES. IT WILL RECEIVE A LIST OF INDICES FOR PRINTING
;FROM THE GL-error-message list.

(defun error-response (string-list)
(provide-reactions string-list)
)
[57]--- >
THIS FUNCTION TAKES CARE OF THE CASES WHEN THERE IS AN
IS IN
; THE ASSERTION AND RETURNS THE APPROPRIATE TOKEN IF IT
HAS ONE
; OR NIL IF IT DOESN'T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

199

(defun find-is-token ()
(let (Cnew-word (next-word)))

(cond ((equal new-word "THE")
(setq new-word (next-word))
(cond ((equal new-word "MIDPOINT")

(setq new-word (next-word))
(cond ((equal new-word “OF")

(list (cons r-o midpoint)))
(t

(error-response (list
(GL-error-message 4)
(GL-error-message I)))

nil)))
(t nil)))

(t nil))
))

;THE FOLLOWING CALLS SET UP AN ARRAY OF ERROR MESSAGES

(setq GL-error-message (make-array 20))
(GL-error-message 0 "^ERROR*^ ")
(GL-error-message I "*^*TRY AGAIN*^*")
(GL-error-message 2 " is not a point")
(GL-error-message 3 "**ERROR^^ This is not complete!")
(GL-error-message 4 "^ERROR̂ Do you mean MS THE MIDPOINT
0F\")

*******************»

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

200

;NOT YET IMPLEMENTED

* *
* * * * * * * * * * * * * * *
* *
* * * * * * * * * * * * * * *
* *

f
* * * * * * * * * * * * * * *
* *

j
* * * * * * * * * * * * * * *

;THI5 FUNCTION TAKES A STRING AND RETURNS A SORTED LIST
OF ITS
jREPRESENTED ATOMS

;THIS FUNCTION SHOULD BE CALLED FROM check-members
(defun sort-string-list (single-list)

(do ((new-single (cadr single-list)
(car rem-list))

(rem-list (cddr single-list)
(cdr rem-list))

(sorted-list (list (car single-list))))
((null new-single) (slist-to-alist sorted-list))

)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

201

; / / F-LES50N / /

;FUNCT10NS WRITTEN IN THIS FILE
; [58] GL-LESSON-ONE
; [30] GL-OPTION-ARRAY

FOLLOWING ARE THE CALLS THAT INITIATE THE NEW LESSON
;IT REQUIRES THAT GL-1esson-one HAS ALREADY BEEN COMPILED
(record gl-awin)

(setq GL-present-lesson ‘GL-lesson-one)

(setq gl-present-mode GL-present-lesson)

(setq GL-help-avail (cons 'GL-lesson-one GL-help-avaiD)

.FOLLOWING IS A FRAME STRUCTURE FOR GL-lesson-one
IT INCLUDES THE FOLLOWING SLOT NAMES;

prompt
assertion-list
solutlon-size
solution-step
mode-stack
reason-choice
latest-as-list
evaluator
save-line

; drawing

(putprop "GL-lesson-one "?" prompt)
(putprop "GL-lesson-one '(""1" "12" ""13"" "1 <4" "15" "16") "rules-avail)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

202

(putprop’GL-lesson-one
•(((midpoint "B" (segment "A" "C"))

(equal (measure (segment "A" “B"))
(measure (segment “B" ”C”)))

(congruent (segment “A" "B")
(segment ”B" "C”))) . ("I" " 15” " 13”))

assertion-list)

(putprop ‘GL-lesson-one 4 ’solution-size)
(putprop ’GL-lesson-one 1 solution-step)
(putprop GL-lesson-one (GL-lesson-one) ’mode-stack)
(putprop ’GL-lesson-one 2 ’reason-choice)
(putprop ’GL-lesson-one ’evaluate-assertion ’evaluator)
(putprop GL-lesson-one nil latest-as-list)
(putprop GL-lesson-one nil save-line)

. [58] --- >

;THE FOLLOWING LAMBDA FUNCTION IS THE DRAWING FOR THIS LESSON

(putprop ‘GL-lesson-one
(lambda 0

(cs gl-awin)
(norecord gl-awin)
(record gl-awin)
(draw-segments
’(((-60 -40 ”A”) (0 -40 "B"’))

((0 -40 ”B") (60 -40 ”C”)))
GL-awin)
(moveto - too -5 gl-awin)
(drawstring

’’GIVEN."
gl-awin)

(moveto -60 10 gl-awin)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

203

(drawstring
“B IS THE MIDPOINT OF [AC“
gl-awin)

(moveto -100 30 gl-awin)
(drawstring "PROVE; [AB / [BC" gl-awin)
)

'drawing
)

(funcall (get GL-present-lesson ’drawing))

[30]

"PLEASE NOTE

F0LL0WININ6 IS THE OPTION MENU WHICH WILL BE ONE OF THE
6L-0PTI0N-ARRAY SELECTIONS NAMELY
GL-OPT ION-ARRAY 2

(GL-OPTION-ARRAY 2
(lambda 0

(cs gl-helpwin)
(gl-helpwin 'setwtitle "REASON CHOICES")
(gl-helpwin 'selectwindow)
(textsize 10 gl-helpwin)
(draw-text-lines
•("“

1 GIVEN"

DEFINITIONS"
12 SEGMENT BISECTOR"

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

204

” 13 CONGRUENT SEGMENTS"
"14 CONGRUENT ANGLES"
”15 MIDPOINT"

”16 ALGEBRA RULES")
gl-helpwin
1 1)

(textsize 12 gl-helpwin)
(textfont 17 gl-helpwin))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SELECTED BIBLIOGRAPHY

Anderson, John R. "Acquisition of Proof Skills in
Geometry." Machine Learning An Artificial Intelli­
gence Approach. Ed. Ryszard S. Michalski, Jaime G.
Carbonell, and Tom M Mitchell. Palo Alto Calif.
Tioga Publishing. Co. 1983.

Anderson, John R. , Boyle, C. Franklin, and Gregg Yost.
"The Geometry Tutor". Proceedings of the Ninth
International Joint Conference on Artificial Intel­
ligence . Sponser. International Joint Conferences
on Artificial Intelligence, Inc. Vol 1. Los Altos,
Calif. Morgan Kaufmann Publishers. 198 5.

Barr, Arron, and Feigenbaum, Edward R. The Handbook of
Artificial Intelligence. Vol 2. Los Altos, Calif.:
William Kaufmann, Inc. 1982.

Bundy, Alan. The Computer Modelling of Mathematitical Rea­
soning. London; Academic Press Inc. Ltd. 1983.

205

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

206

Burton, Richard R . , and John Seely Brown. "An investiga­
tion of computer coaching for informal learning
activities". Intelligent Tutoring Systems. Ed. D.
Sleeman and J.S. Brown. London: Academic Press
Inc. Ltd. 1982.

Charniak, Eugene, and Drew McDermott. Introduction to
Artificial Intel1igence. Reading Mass.: Addison-
Wesley, 1985.

Clancey, William J. "Tutoring rules for guiding a case
method dialogue." Intelligent Tutoring Systems. Ed.
D. Sleeman and J.S. Brown. London: Academic Press
Inc. Ltd. 1982

ExperTelligence, Inc The ExperTelligence Guide to Expert
System Shells. Document-D22. Santa Barbara, Calif:
1986.

Hayes, Brian. "A Mechanic's Guide to Grammar, Part III: A
homemade compiler". Computer Language. December,
1985.

Hirsh, Christian, R. et al. GEOMETRY Scott, Foresman.
1984.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

207

Hoffer, Alan. "Geometry Is More than Proof." Mathematics
Teacher 74 (January 1981); 11-16.

Inference Corporation. ART Automated Reasoning Tool. Los
Angeles, Calif 1985.

Papert, Seymour. Mindstorms. New York: Basic Books Inc.
1980.

Polya, G. How To Solve It. Princeton, New Jersey: Prince­
ton University Press, 1945.

Ramamoorthy, C. V. et al. "Software Engineering: Problems
and Perspectives". IEEE Computer, October, 1984.

Richer, Mark H. and William J. Clancey. "GUIDON-WATCH: A
Graqhic Interface for Viewing a Knowledge-Based Sys­
tem" . IEEE Computer Graphics and Applications
Novemeber 1985.

Ritz, Dean A., Celmins, Emily K . , and Jon R. Richter. {
The ExperLisp Manual. ExperTelligence, Inc 1985.

Senk, Sharon L. "How Well Do Students Write Geometry
Proofs?" Mathematics Teacher 78 (September 1985)
448-456.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

208

Shaughnessy, J. Michael, and William F. Burger. "Spadework
Prior to Deduction in Geometry." Mathematics Teacher
78 (September 1985): 419-427.

Sleeman, D. , and J.S. Sleeman, ed. Intelligent Tutoring
Systems. London: Academic Press Inc. Ltd. 1982

SunMicrosystems, Inc. Sun-3/160M Workstation. Mountain
View, Calif: 1986.

Texas Instruments. The Second Artificial Intelligence
Satellite Symposium. 25 June 1986.

Tucker, Michael. "Expert systems blaze trails to AI suc­
cess." Mini-Micro Systems. March 1986.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Prototype for a high school geometry tutorial
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1459884606.pdf.jWZwl

