1,370 research outputs found

    An Analytical Model for Repositioning of 6 D.O.F Fixturing System

    Get PDF
    Lien vers la version éditeur: http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8749247&fulltextType=RA&fileId=S2257777712000164Dimensional errors of the parts from a part family cause the initial misplacement of the workpiece on the fixture affecting the final product quality. Even if the part is positioned correctly, the external machining forces and clamping load cause the part to deviate from its position. This deviation depends on the external load and the fixture stiffness. In this article, a comprehensive analytical model of a 3-2-1 fixturing system is proposed, consisting of a kinematic and a mechanical part. The kinematic model relocates the initially misplaced workpiece in the machine reference through the axial advancements of six locators taking all the fixturing elements to be rigid. The repositioned part then shifts again from the corrected position due to the deformation of fixturing elements under clamping and machining forces. The mechanical model calculates this displacement of the part considering the locators and clamps to be elastic. The rigid cuboid baseplate, used to precisely re-locate the workpiece, is also considered elastic at the interface with the locators. Using small displacement hypothesis with zero friction at the contact points, Lagrangian formulation enables us to calculate the rigid body displacement of the workpiece, deformation of each locator, as well as the stiffness matrix and mechanical behavior of the fixturing system. This displacement of the workpiece is then finally compensated by the advancement of the six axial locators calculated through the kinematic model

    Contact Stiffness Study: Modelling and Identification

    Get PDF

    Constructing minimum deflection fixture arrangements using frame invariant norms

    Get PDF
    This paper describes a fixture planning method that minimizes object deflection under external loads. The method takes into account the natural compliance of the contacting bodies and applies to two-dimensional and three-dimensional quasirigid bodies. The fixturing method is based on a quality measure that characterizes the deflection of a fixtured object in response to unit magnitude wrenches. The object deflection measure is defined in terms of frame-invariant rigid body velocity and wrench norms and is therefore frame invariant. The object deflection measure is applied to the planning of optimal fixture arrangements of polygonal objects. We describe minimum-deflection fixturing algorithms for these objects, and make qualitative observations on the optimal arrangements generated by the algorithms. Concrete examples illustrate the minimum deflection fixturing method. Note to Practitioners-During fixturing, a workpiece needs to not only be stable against external perturbations, but must also stay within a specified tolerance in response to machining or assembly forces. This paper describes a fixture planning approach that minimizes object deflection under applied work loads. The paper describes how to take local material deformation effects into account, using a generic quasirigid contact model. Practical algorithms that compute the optimal fixturing arrangements of polygonal workpieces are described and examples are then presented

    New Method of Machining Teeth on Unspecialised Machine Tools

    Get PDF
    In the present work, the authors describe elaborated method of machining teeth with the use of unspecialized machine tools. In the first part of the work the need to develop such a method has been shown and the drawbacks of the known methods have been indicated. Further part of the work describes the process of mathematical modelling the purpose of which was to determine the tool paths during machining. Next, the kinetics of teeth machining with the use of a universal CNC milling centre is presented. Further on, the operation of the algorithm, the user’s interface of the elaborated software and the parameters influencing the machining process have been shown. In the final part of the work, the results of examination of the obtained details have been shown on a gear wheel as an example. The origin of machining errors and their significance has been discussed. In conclusions, summary of obtained results is presented. In last paragraphs, authors discuss machining accuracy of developed method, and application possibilities of described method are emphasised as well. Performed verification proved that developed method is capable of machining gears of quality comparable with these machined with specialised equipment

    Advancement in robot programming with specific reference to graphical methods

    Get PDF
    This research study is concerned with the derivation of advanced robot programming methods. The methods include the use of proprietary simulation modelling and design software tools for the off-line programming of industrial robots. The study has involved the generation of integration software to facilitate the co-operative operation of these software tools. The three major researcli'themes7of "ease of usage", calibration and the integration of product design data have been followed to advance robot programming. The "ease of usage" is concerned with enhancements in the man-machine interface for robo t simulation systems in terms of computer assisted solid modelling and computer assisted task generation. Robot simulation models represent an idealised situation, and any off-line robot programs generated from'them may contain'discrepancies which could seriously effect thq programs' performance; Calibration techniques have therefore been investigated as 'a method of overcoming discrepancies between the simulation model and the real world. At the present time, most computer aided design systems operate as isolated islands of computer technology, whereas their product databases should be used to support decision making processes and ultimately facilitate the generation of machine programs. Thus the integration of product design data has been studied as an important step towards truly computer integrated manufacturing. The functionality of the three areas of study have been generalised and form the basis for recommended enhancements to future robot programming systems

    Pathfinder autonomous rendezvous and docking project

    Get PDF
    Capabilities are being developed and demonstrated to support manned and unmanned vehicle operations in lunar and planetary orbits. In this initial phase, primary emphasis is placed on definition of the system requirements for candidate Pathfinder mission applications and correlation of these system-level requirements with specific requirements. The FY-89 activities detailed are best characterized as foundation building. The majority of the efforts were dedicated to assessing the current state of the art, identifying desired elaborations and expansions to this level of development and charting a course that will realize the desired objectives in the future. Efforts are detailed across all work packages in developing those requirements and tools needed to test, refine, and validate basic autonomous rendezvous and docking elements

    Exploring Attacks and Defenses in Additive Manufacturing Processes: Implications in Cyber-Physical Security

    Get PDF
    Many industries are rapidly adopting additive manufacturing (AM) because of the added versatility this technology offers over traditional manufacturing techniques. But with AM, there comes a unique set of security challenges that must be addressed. In particular, the issue of part verification is critically important given the growing reliance of safety-critical systems on 3D printed parts. In this thesis, the current state of part verification technologies will be examined in the con- text of AM-specific geometric-modification attacks, and an automated tool for 3D printed part verification will be presented. This work will cover: 1) the impacts of malicious attacks on AM using geometrically-modified 3D models, 2) a 3D part reconstruction approach from medical imaging scans, 3) a mesh alignment technique based on point set registration, de- signed to handle abnormal part geometries, and 4) an automatic error detection and defect visualization tool for comparing the geometric similarity of 3D printed parts to their intended geometries

    The Impact of Active Aerodynamics on Motorcycles Using Computational Fluid Dynamics Simulations

    Get PDF
    Motorcycles are mostly utilized by commuters whose requirements are cheap and affordable transportation from point A to point B. Motorcycles also provide means to tour various places and have a leisure time for the majority of motorcyclists. Unfortunately, with pros also come cons such as accidents which are disabling or life-taking. According to motorcycle crash statistics produced every year, the majority of motorcycle crashes are caused due to facing unexpected obstacles in the path causing collisions due to insufficient braking time. Thus, this thesis serves as a mean to overcome this issue and provide a technological solution to the world of motorcyclists. The thesis initially covers the introduction to the history of Computational Fluid Dynamics and Simulations. Consequently, the modeling aspects of the motorcycle and the active aerodynamics concepts are studied and explained in detail in conjunction with the usage of PTC Creo 3.0. The subsequent chapters explain the Computational Fluid Dynamics simulations setup, processing and post processing of the results utilizing ANSYS Workbench and its modules Design Modeller, Mesh, FLUENT and Post Process. Finally, the rapid prototyping using Stratasys UPrint 3D Printing and wind tunnel validation aspects of the project are discussed leading to key conclusions and discussions. This thesis is aimed to be an innovation to help protect motorcyclists from fatalities and also stands as a means to demonstrate engineering capabilities in producing real-world solutions through low-cost and viable simulation sciences

    Space Sciences Division

    Get PDF
    Spacecraft instrumentation, biological sampling of Martian soil, Jupiter red spot data and solar wind variations, dielectric function of cold electron gas, and microwave spectra of ion radica

    The NASA/industry Design Analysis Methods for Vibrations (DAMVIBS) program: McDonnell-Douglas Helicopter Company achievements

    Get PDF
    This paper presents a summary of some of the work performed by McDonnell Douglas Helicopter Company under NASA Langley-sponsored rotorcraft structural dynamics program known as DAMVIBS (Design Analysis Methods for VIBrationS). A set of guidelines which is applicable to dynamic modeling, analysis, testing, and correlation of both helicopter airframes and a large variety of structural finite element models is presented. Utilization of these guidelines and the key features of their applications to vibration modeling of helicopter airframes are discussed. Correlation studies with the test data, together with the development and applications of a set of efficient finite element model checkout procedures, are demonstrated on a large helicopter airframe finite element model. Finally, the lessons learned and the benefits resulting from this program are summarized
    corecore