

This item is held in Loughborough University’s Institutional Repository
(https://dspace.lboro.ac.uk/) and was harvested from the British Library’s
EThOS service (http://www.ethos.bl.uk/). It is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

ADVANCEMENT IN ROBOT PROGRAMMING WITH SPECIFIC

REFERENCE TO GRAPHICAL METHODS

BY

Sun Fat Chan

A Doctoral Thesis

submitted in partial fulfilments of the requirements

for the award of

Doctor of Philosopy

of Loughborough University of Technology

April 1989

Department of Manufacturing Engineering

Loughborough Uni'versitý of Techn , 616gy

Qý) Copyright by Sun Fat Chan, 4989

TO MY FAMILY FOR THEIR LOVE, ENCOURAGEMENT AND SUPPORT

ACKNOWLEDGMENTS

I am grateful to the Science and Engineering Research Council for

its scholarship.

I would like to express my sincere thanks to my supervisors

Professor R. H. Weston and Dr K. Case for their invaluable supervision,

encouragement and help throughout this research study. Thanks must

also extend to my director of research Dr E. Roberts, and those staff

of the Department of Manufacturing Engineering who have-been kind

and helpful.. These people include: Mr G. P. Charles, Mr J. D. Gascoigne,

Mr S. I. Murgatroyd and Mr D. Walters., I F, I

I would like to take this opportunity to express my thanks to BYG

Systems limited for their collaborative work and mutually beneficial

discussions in the first year of this study.

SYNOPSIS

This research study is concerned with the derivation of advanced robot

programming methods. The methods include the use of proprietary

simulation modelling and design software tools for the off-line

programming of industrial robots. The study has involved the generation

of integration software to facilitate the co-operative operation of these

software tools.

The three major researcli'themes7of "ease of usage", calibration and the

integration of product design data have been followed to advance robot

programming. The "ease of usage" is concerned with enhancements in the

man-machine interface for robo t simulation systems in terms of computer

assisted solid modelling and computer assisted task generation.

Robot simulation models represent an idealised situation, and any off-line

robot programs generated from'them may contain'discrepancies which could

seriously effect thq programs' performance; Calibration techniques have

therefore been investigated as 'a method of overcoming discrepancies

between the simulation model and the real world.

At the present time, most computer aided design systems operate as

isolated islands of computer technology, whereas their product databases

should be used to support decision making processes and ultimately

facilitate the generation of machine programs. Thus the integration of

product design data has been studied as an important step towards truly

computer integrated manufacturing.

The functionality of the three areas of study have been generalised and

form the basis for recommended enhancements to future robot programming

systems.

TABLE OF CONTENTS

ACKNOVLEDGEMENTS-

SYNOPSIS

CHAPTER ONE INTRODUCTION

CHAPTER TWO LITERATURE SURVEY

2.0 Introduction 5

2.1 Development of Robots in Relation to Robot Programming 7

2.2 Robot Programming Classifications 10

2.3 Definition of On-line and off-line Robot Programming 17

2.4 Comparison of On-line and Off-line Programming 10

2.5 Current Applications of Off-line Robot Programming 21

2.6 Review of Robot Languages and Robot Simulators 25

2.6.1 Explicit - Structured High Level Robot Programming 2H

2.6.2 Implicit - Model Based Off-line Robot Programming 28

2.6.3 Implicit - Graphics Based Off-line Programming 29

2.7 Limitations of the Present Generation of Robot Simulators 46

CHAPTER THREE GENERALISED FEATURES OF FUTURE ROBOT
PROGRAMMING SYSTEMS

3.0 Introduction 48

3.1 Conceptual Robot Simulation Systems 411

3.1.1 Computer Assisted Robot Model Building, 50

3.1.2 Computer Assisted Solid Modelling of Tooling 52

3.1.3 Computer Assisted Product Modelling Through Integration
with Product Databases 53

3.1.4 Potential Role of Expert Sub-systems 53

3.1.5 Computer Assisted Task Program Generation 54

3.2 Conceptual System Mapped onto Reality and the Role of Existing
and Emerging Standards 55

3.2.1 Product Design Data Format 55

3.2.2 Robot Program Data Format 57

3.3 Integration Architectures 5S,

3.4 Conclusions 64

CHAPTER FOUR ROBOT SIMULATION SYSTEM ARCHITECTURES

4.0 Introduction 65

4.1 Objectives Of Simulation 66

4.2 Requirements Of Simulation Models 68

4.3 Architecture_of Simulators 69

4.3.1 Robot Modelling, 70

4.3.2 Object Modelling 8S)

9r 4.3.3 Geometric and Spatial Description 4.

4.3.4 Motion Specification 91ý

4.3.5 Animation 96

CHAPTER FIVE METHODOLOGIES OF POST-PROCESSING FOR OFF-LINE
PROGRAM GENERATION

5.0 Introduction 98

5.1 Discrepancies Between Robot Simulators and Real Robot Systems 101

5.2 Theories Used in Post-processing for Different Generations
of Robots 102

5.3 Basic Approaches of Post-processing for Off-line Programs 103

5.4 Methods of Downloading Off-line Programs to the Robot'Controller 121

5.5 Generalised Approach 124

CHAPTER SIX IMPROVEMENTS IN MAN-MACHINE INTERFACE

6.0 Introduction 128

6.1 Computer Assisted Model Building 130

6.2 Computer Assisted Task Program Generation of Simulated Tasks 134

6.3 General Considerations 147

6.4 Limitations of Computer Assisted Solid Modelling and
Task Program Generation 153

CHAPTER SEVEN OFF-LINE ROBOT PROGRAM CALIBRATION

7.0 Introduction 155

7.1 Sources Of Error in Off-line Robot Programming Systems 157

7.2 Methods Of Calibration 163

7.2.1 Simulation Model Calibration 163

'7.2.2 Robot Calibration 177

7.2.3 On-line Calibration Methods Mapped Onto Operation Classes 186

7.3 General Conclusions 191

CHAPTER EIGHT INTEGRATION OF CAD PRODUCT DESIGN DATA WITH
AN OFF-LINE ROBOT PROGRAMMING SYSTEM

8.0 Introduction 194

8.1 Discrepancies Between the Design and off-line Robot
Programming Systems 198

8.2 Design Approach Used for-Integrat'ing'a CAD System with
an Off-line Robot Programming System 202

8.2.1 SFC Pre-processor 209

8.2.2 SFC Post-processor for GRASP 211

8.2.3 SFC Insertion Sequencer 213

8.2.4 Integrating the Simulation Model with a Task Program
to Generate an Off-line Robot Program 216

8.3 Difficencies of the - Approac]

8.4 Experiment and Analysis

8.4.1 Experimental Set Up

8.4.2 Error Analysis, for-the

8.4.3 Practical Problems and

8.5 General Conclusions

h Implemented 218

218

218

Demonstrator System. 220

Considerations 226

234

CHAPTER NINE CONCLUSIONS AND RECOMMENDATIONS

9.0 Introduction 238

9.1 Contribution to Knowledge 238

9.2 General Implications and Recommendations 245

REFERENCES 250

APPENDIX A. 1 Example Output of World-State Post-processing
Methodology 265

APPENDIX A. 2 Example Output of Hierarchical - Top Down
Post-processing Methodology 261'

APPENDIX A. 3 Example Output of Hierarchical - Appearance
Post-processing Methodology 271

APPENDIX A. 4 Example Output of Valtotrack module 273

APPENDIX B. 1 CRASP Syntax Cenerated for Solid Modelling Through
Computer Assisted Solid Modelling module 274

APPENDIX B. 2 GRASP Syntax Generated for Task Simulation Through
Computer Assisted Task Program Generation Module 275

APPENDIX C. 1 Example Data Sheet of Robot Kinematic Characteristics
Supplied by Robot Manufacturers 284

AppENDIX C. 2 Illustrative Example of Valtograsp Calibration Hodule 286

APPENDIX D. 1 Differences in Data Formats Between REDBOARD and
GRASP Systems 288

APPENDIX D. 2 Analysis of Assembly Tolerance and Robot Accuracy 302

APPENDIX D. 3 Specification Data Sheet of the NC Drilling Machine Used 311

iý

CHAPTER ONE

INTRODUCTION

The increasing pressure of international competition has forced

manufacturers to increase their product range and models, and to improve

their product quality. An increase in product models and product range

results in changes in production processes, and a requirement to minimise

set up and programming time. This must be-accomplished with the minimum of

disruption to, 'production. For these'reasons, manufacituring industry has

sought to employ advanced automation to achieve the flexibility and

productivity levels required. One solution'to this problem has been the

introduction of robots - machines that can be reprogrammed. As a result,

robots'have become important tools'and can play a significant role in

today's flexible manufacturing systems (FMS) and flexible assembly systems

(FAS).

Almost all-, robots are currently programmed by a combination of teach and

on-line-textual programming methods including: teach'by showing, 'teach by

pendant, and teach by showing a replica. Rapid growth and technology

developments in the electronics industry have made robot controllers and

computers more powerful, and this has led to the development of the current

generation of robots, and subsequently the development of numerous robot

languages. The use of on-line robot programming languages has improved

their flexibility when dealing with complexities in the programming

environmentp but there are still limitations. The limitations of these

on-line programming methods have hindered the wider application of robots.

Advances with 'respect to graphical displays have allowed simulation on

graphical terminals to become a reality. - Many of'the current generation of

robot simulators have been designed and implemented for the specific task of

- 1-

- designing the layout of robotic systems. Graphical off-line robot

programming based on the use of these robot simulators, is a subsequent and

natural development.,

Graphics-based off-line robot programming systems involve high capital

investment and -their introduction must be justified both on economic and

technical grounds. At present, off-line robot programming should still be

considered to. represent an evolving research topic, which to date has had-

only limited industrial use. However, it represents a future method

that will be used very commonly by manufacturing industry for the

programming of robotic devices. The restricted usage of graphical- off7lina

programming methods can often be traced to the original intention of the

robot simulators as layout design tools rather than off-line programming

tools. However, there are also practical, problems associated with this

method of programming, where modelling accuracy can cause a serious problem.

Off-line robot programming can be widely applied so long as accuracy and

other practical problems can be design out or-suitable methods found for

reducing their effect.

At the start of this research (October 1985), there were only a limited

number of robot simulation tools available and very few of these were

capable of generating off-line robot programs. The graphical, simulation

system (GRASP) chosen for this research was considered, appropriate as it was

a developing system capable of further research and development. At the

time the GRASP system had virtually no language post-processors capable of

translating graphics output to robot programming languages. It therefore

provided a good starting point for the research in studying the

- 2-

methodologies involved in language post-processors and the subsequent

construction of a language post-processor suitable for the robots, availab'L-z

to the-author. -Although readily accepted today, the concept of usingý

post-processors for robots was in its infancy even in 1985. BYG Systems

(the vendor of GRASP) completed its commercial version of the VAL II

post-processors during the winter of 1986-and this software was supplied to

Loughborough University of Technology for-ýpre-release testing. Both the BYG

and the author's post-processor versions were evolved concurrently and used

in this research.

The main topic-of-this thesis is the study, of off-line robot programming in

the context of computer integrated manufacturing, with particular reference

to handling andýassembly tasks. Thisýhas involved an appraisal of robot

simulation and, off-line programming methods. The limitations of recent

commercially available off-line robot programming systems have been

identified and an extensive study has been made into the provision of

practical solutions. The research work progressed along three themes with

software being produced to facilitate calibration, an interface to product

design, and improved man-: machine interface capabilities. The idea of

re-using product design data when programming robot tasks is a direct

parallel of using design information in the NC arena during the early

sixties, but the target robots and their application areas demonstrate far

greater variability and hence complexity. Although the project software has

been designed specifically to operate with the GRASP robot simulator, the

functionality was subsequently generalised.

- 3-

This thesis is essentially comprised of three parts. The first four

chapters provide an introduction and describe the background evolution and

development of programming methods. The fundamental concepts of using

simulation for designing the layout of robot systems are also considered.

The second part (chapters five to eight) constitutes the main body of the

study. Chapter five discusses the methodologies used in language

post-processing. Techniques, algorithms and practical solutions to

providing improvements to the man-machine interface are reviewed in chapter

six. Chapters seven and eight describe the calibration methods used to

update the information used in a CAD model and to describe the methods

employed to enable the use of product design data in a robot simulator. The

third and final part of this thesis shows how off-line robot programming

methods can be utilised within existing manufacturing systems and discusses

future possibilities for using off-line robot programming.

- 4-

CHAPTER TWO

LITERATURE SURVEY

2.0 Introduction

Computer IntegratedýManufacture (CIM) is an approach to, manufacturing which

uses computer--technology to improve productivity through the availability

and processing of information from all phases of manufacturing [Kusiak. and

Heragu, 1988]. A CIM system is commonly thought of as a truly integrated

CAD/CAM system, [Allen, 1987; Crookall, 19871 consisting of. all the

activities from the planning and design to manufacture of a product. As.

with traditional manufacturing approaches, the purpose of a CIM system is to

transform product designs-and materials into saleable products at a minimum

cost in the shortest possible period of time.

During the last decade, industrial robots have become an efficient tool in

many manufacturing operations [El-Zorkany, -19851 and have been applied to an

ever increasing number of manufacturing tasks with different, levels of

complexity. This advancement was due,, to the significant improvement in

performance capabilities and sophistication. of computerst associated

computer, languages, and robots themselves. Today's production systems must

be able to cope with varying production volumes, and be flexible, to handle a

wide range of product models [Dooner, 1987]. Industrial robots are becoming

more, advanced and play an important role in many manufacturing areas of a

CIM system including assembly where operational-flexibility is required for

handling the variability implied by small batch sizes [Sata. et al, 1987].

To apply robots effectively to these more demanding tasks requires an

increase in the flexibility of the robot system and places new demands on

the skills of the human operators. Jn order to achieve such flexibility,

robot systems should incorporate more sensing devices [Crosnier and

Fournier, 19871 and make more use of effective ways of programming robots

- 5-

such as off-line programming [Paul, 1983]. Where possible robot systems

should be programmed off-line so as to achieve more rapid development of

programs and thus better machine utilization. Off-line robot programming

methods normally involve the use of design layout informationcaptured in a.

model structure database. This provides the possibility of linking up

different areas within manufacturing industry, for example, integration of

product design data for programming robots and vision systems, planning,

scheduling and control [Appleton et al, 1988]. Therefore, robot-programming

methods are an important stage of development for the integratio In of robots

into complex manufacturing systems [Duelen and Bernhardt, 1986], but, most

available systems still have the disadvantage of being tailored only to one

type of robot [Weck et al, 1984].

There are some parallels in the development of programming methods for

robots with the development of part programming for numerically controlled

(NC) machinesp where initial requirements were for methods of programming

single, relatively simple machines through the-facilities of their own-

controllers (on-line programming). Advances in computer-aided design and

manufacturing (CADCAM), and the advent, of computer and direct numerical

control (CNC/DNC) made off-line programming a realistic proposition for

groups of more complex machines indirectly communicating with each other

through shopfloor computer systems [Milner and Brindley, 1978; Groover,

1987]. Unfortunately, the design and programming of a manufacturing system

which includes industrial robots can involve greater complexity than that

for a system solely of NC machines. This is a direct consequence of the

wider variety of, possible'application areas and potential solutions given

the enhanced flexibility offered by robotics.

-6-

2.1 Development of Robots in Relation to Robot Programmin

The development of robots is a continuous process and thus far three

distinct generations [Ambler, 1984] can be classified as follows.

(a) First Generation

The first generation robots were mainly designed for use in applications

where large batch sizes and repetitive tasks were involved. For this

reason, robot programming was emphasised in methods of teaching where the

programming time is relatively small when compared to its total program

running time. Early-robots were capable of repeating a strictly

specified set of Operations under conditions completely determined in

advance [Ayres et al, 1985], and programming involved a combination of

simple command statements and teach pendant. This type of robot language

is known as a "motion level" language [Snyder, 19851. First generation

robots continue to be used in industry but with advances in computer

technology, enabling the creation of second and third generation

machinesp they are no longer produced.

(b) Second Generation

Since second generation robots are designed to cope with small batch

operations, they are reprogrammable and are capable of easily switching

from one program to another. This can include adaptive robots capable of

operating under variable or partially unknown conditions and able to

respond to environmental changes [Vukobratovic and Stokic, 1982]. These

robots incorporate sensors which provide information about changing

- 7-

external conditions. They perform a set of operations determined in

advance and are capable of accomplishing the same operations under

changing operating conditions. This type of robot language is described

as a "structured language".

(c) Third Generation

This involves intelligent robots,. possessing certain features of

artificial intelligence, [Kochan,,. 1987a]. They are capable of responding

to their operating environment in defining instantaneous tasks, of

self-learning to provide solutions to particular problems including

automatic error correction, and of changing their own action in

accordance with the variations in operating conditions. Thus the

planning of operations can be generated by robots themselves. This

generation of robots is still not yet fully available for industrial

implementation [Wolovicht 1987].

If off-line robot programming is, to be applied to first generation

robots,, extra computation is required to be done within a post-processor

to compute inverse kinematics (calculate the equivalent robot joint

angles for, achieving the Cartesian coordinates of the robot's

end-effector). Although the first generation of robots are commonly

programmed by teach pendant, [Ambler, 1984],
-their

positioning accuracy

(the ability of the. robot to attain a commanded position) is commonly not

good enough for,, assembly tasks, which often require reasonably tight

tolerances. These robots will suffer greater problems with accuracy

[Chen and Chao,. 1987] if target positions are generated by off-line robot

programming methods (robot accuracy normally deteriorates significantly

- 8-

if positions are defined by off-line robot programming methods, due to

the approximations made in modelling the kinematics and dynamics and when

implementing control algorithms in the robot controller). The languages

used for these robots are normally very simple and the program flow

control is. limited. The robot controller can only process'one program, 'It

a time (a_fundamental-problem of processing capability of, firS't

generation robot controller) and is therefore not suitable for complex

operations where sensory feedback is considered necessary for'-monitoring

the robot movement-[Gini et-al, 1987]. Off-line robot programming'is

feasible only for, simple robot tasks, where the accuracy required is not

critical. -ý1 -1 1- 11 . _,,

The second generation of robots have commonly been designed to achieve

better accuracy and repeatability. Communication facilities between tha

off-line computer systems and the robot controller are also commonplace

[Groover et a1v 19861. The processing capability of the second

generation robot controllers is far more powerful than that of their

predecessors. Off-line robot programming of second generation robots can

be applied to assembly tasks where precision is required. The increasel

complexity of task and computational power. makes off-line programming

both desirable and achievable.

As more intelligent third generation robots become available with

enhanced capabilities for coping with changing operating conditions,

these robots are expectedto demonstrate even better accuracy-, than

previous generations. This makes off-line robot programming even more

suitable and more desirable because these robots could easily meet the

accuracy requirement.

- 9-

2.2 Robot Programming Classifications

There is no standard way of classifying robot programming methods, and

various approaches have been adopted by different authors and

researchers. Some authors classify robot programming methods according

to on-line and off-line categories [Storr and Schumacher,, 1987] and

language syntax [Rock, 1989]. The most commonly used method of

classification is according to the way of task specification [Yong et al,

1985; Gini, 1987; Van Aken and Van Brussel, 19881. This refers to the

levels of abstraction that can be made in formulating a task.

Lozano-Perez (1983), and El-Zorkany (1985), classify robot programming

systems into guiding and language based categories with the inclusion of

level of task specification as shown in figure 2-1.

ROBOT PROGRAMMING

GUIDING METHODS LMGUAGE BASED MENODSI

JOINT LEVEL ROBOT LE01- TASK LEVEL

Figure 2-1 Traditional classification of robot programming methods

- 410 -

(a) Guiding Methods

Guiding was the earliest and still the most widespread and commonly used

method of programming industrial robots [Weck et al, 1987]. Basically,

the robot isImanually. Toved to each desired position. and the sequence, of

motions is obtained by sampling the robot joint angles. The replay of

the motion is achieved by moving the robot through the recorded joint

angles.

Guiding can be done in a number of ways: -

(i) The robot is physically moved by the operator.

(ii) The robot is moved by using. its own servo system'e. g. via a teach

pendant.

(iii) A replica of the robot arm is used. It is lighter but less

accurate and-obviously more costly than (i) and, (ii) above.

(b) Language Based Programming Methods

Language based programming methods [Volz, 19881, where the robots are

programmed through the use of high level robot languages, permit the

locations and orientations of target positions (to which the robot

movements are referred) to be assigned without any need to use the robot

itself [Gini, 1987]. Language based programming systems could be

subdivided into four levels according to motion specification: - joint

level, robot level, task/object level, and objective level. Figure 2-2

- 11 -

shows-the inter-relationships of these programming levels. Gini (1987),

Van Aken and Van Brussel (1988) classified language based programming

methods within these-subdivisons.

OBJECTIVE LEVEL

e g. insert IC chip on PCB board

TASK/OBJECT

e. g. approach IC chip
onto IC chip
grip the IC chip

etc.

ROBOT

e. g. move to world coordinates

JOINT VEL

e. g. drive joint 2 by 8

Figure 2-2 Relationships between levels of programming

(i) Joint level programming

The robot movement is programmed in terms of the individual joint

movement to achieve the required positions [Lozano-Perez, , 1983]. This

method is typically used for the restricted programming tasks found with

first generation robots. This would be the natural level of programming

only in the case of cartesian robots, where the joint description (in

this case, prismatic joints) of the end-effector position (location and

- 12 -

orientation) is'naturally in Cartesian coordinates.

(ii) Robot level programming

Robot level programming systems incorporate computer programming

languages with commands to obtain information from sensors and to specify

robot motions, [Milovanovic, 19871. Robot actionsare specified in-terms

of the robot's end-effector locations and orientations, usually in

cartesian co-ordinate space. Robot level languages enable the data from

external sources, such as vision and force sensors, to be used in

modifying robot motions. Robots can cope with a'greater degree of

uncertainty in the position'of objects through the use of sensors,

thereby increasing their range of application, especially where high

precision is required. However, robdt level language'systems require the

robot programmer to be an expert in computer programming and in the

design of sensor-based motion strategies where complex robot tasks are to

be defined.

(iii) Task/Object level. programming

The aim of task/object level programming is to provide the power of robot

level languages without-requiring-robot programming expertise [Yong et

al, 1985]. The focus of attention is on the object being manipulated and

the programmer specifies the robot motion in terms of target objects.

The objects' coordinate frames are. used for, computing the robot movement.

This requires a complete geometric model of the robot system from which

information can be extracted to determineýthe necessary manipulator

locations.

- 13 -

(iv) Objective level programming

Objective level (application) programming is that in which tasks are

specified in the most general form. This requires a comprehensive

database containing complete geometric models of the robot and of the

environment (similar to object'level). In addition to this, a knowledge

base containing application techniques must be available to support an

intelligent planning facility for generating collision free robot paths.

objective level programming is a future goal which at present is a

research goal for many university, government agencies and industrial

research institutes [Adler, 1986; Rodighiero and Canciani, 1987; ý Halme

et al, 1987; ' Sata et al, 1987; Howe and Fothergill, 1988 and Hoermann,

1988]. At the present time, objective level programming systems are not,

commercially available [Van Aken and Van Brussel, 1988]. ,

As an alternative to'the above, Bonner and Shin (1982), have suggested

that robot languages can be subdivided into five loosely formulated

levels'according to language emphasis. The five levels-are machine cod, e

programming of microcomputer, point to pointp primitive motion,

structured programming, and task-oriented levels. Hocken and Morris

(1986), use very similar classifications but the classification emphasi.;

is according to motion and language (mixed) specifications.

Definitive classification of robot programming methods is a difficult

task since some robot language characteristics overlap at different

levels. Different ways of classification (according-to motion

specification'or'language emphasis) have been presented here, but these

only represent other authors, points of view.

- 14 -

This author suggests that robot programming languages 'can also be'

classified according to their chronological development, 'from which

future development trends can be predicted. ' Language based methods of

robot programming are a development of teach methods so as t6provide

more flexibility. The language based'methods can be subdivided into

explicit and'implicit robot programming'. 11 !I-

(i) explicit robot programming languages

When using explicit robot programming tools, the programmer must specify

the robot motion in a complete and detailed way [Storr and Schumacher,

1987]. The programming statements must be sufficient to fully define the

required operation sequences together with the required positional and

orientational data.
_,

Based on this definition, most on-line and some

off-line robot programming languages can in appropriate circumstances be

considered explicit' [Ranky, 1984]. Typical examples of explicit robot

languages are AL [Gini and Gini, 1985], VAL [Shimano et al, 1984], AML

[Grossman, 19851, MCL [Wood and Fugelso, 1983), RAIL [Gruver et al, 1983]

and KAREL [GMF Robotics, 1986].

(ii) implicit robot programming languages

Implicit languages acquire a significant pr'oportion of information from a

source other than the human robot programmer. Model and graphical based

languages are available. Model based languages involve the use of model

databases which capture geometric and spatial information relating to

workplace entities [Sata et al, 1987]. Graphics-based languages use

similar model based concepts but are extended to include simulation and

- 15 -

animation [Chawla and Gruver, 1984; Leu and Mahajan, 1984]. These

graphics-based languages are also known as robot simulators, and can

further be. subdivided into kinematic and dynamic robot simulators '

[Kretch, 1982; Thomson, 1984]., The author's view of the spectrum of

current robot programming methods is depicted in figure, 2-3. Detailed

descriptions of each classification, with a representative selection of

robot simulators are presented in section 2.6.

I ROBOT PROGRAMMING SYSTEMS I

GUIDING METHODS II LANGUAGE BASED METHODS

SENSOR ASSI;;; D;
ý

r
EXPUCrr LANG-UA-G-E-S IMPLJVT LANGUAGES

CAD SYSTEMS MODEL BASED LANGUAGESI I ROBOT SIMULATORS

KINEMATIC DYNAMIC

ON-LINE ROBOT PROGRAMMING07 OFF-UNE ROBOT PROGRAMMING
Figure 2-3 Author's classification of robot programming methods

- 16

2.3 Definition of On-line and Off-line Robot Programmin

"On-line" programming of a robot requires the use of the actual robot

(and its controller) which is physically put through, a sequence of

motions in the real environment [Schreiber, 1984a]. This is sometimes

alternatively referred to as guiding'. ., -

"Off-line" programming means-off-line with respect to the robot rather

than the robot controller [Gini, - 19871. Off-line programming can be

considered as the process of generating robot programs and control logi. z,

where the need to involve the robot is minimised,, and only a final tuni. ig

(calibration) might be done with the real robot.
I-Possible

methods

include structured robot languages, model based languages, and

graphics-based languages (involving the use of model data describing 31)

objects and spatial relationships between objects). For more detail se'!

section 2.6.3. '

2.4 Comparison of On-line and Off-line Programmin

The widespread use of multi-axis robots can still result in excessive

programming time and so*on-line programming is not satisfactory in many

application areas [Weck et'al, 19841. In addition, frequent

reprogramming of robots in small and medium batch production increases

the production down time of the whole robotic system. The batch size Mly

be so small that it takes more time to programme the robot than to run

it. This problem is even more pronounced where the robotic system is

part of a wider, highly automated production system such as a flexible

manufacturing system or flexible assembly system [Lambourne, 19861. Fo,:

- 17 -

example, in an automotive plant where hundreds of robots areused in an

assembly line, it'is very"inefficient to tra . in robots on-line during the

change over-period as once a robot is interrupted for'training, the'whole

assembly-line is stopped [Schreiber, 1984a]. Although-thes'e robots are

infrequently reprogrammed, ' it could take up to'several months't6'

reprogramme the robots. If the robot programming I method is`modi'fiýd so'-

that new task can be programmed before parts are manufactured and without

disrupting-the existing system, 'then'car manufa'cturers can reap the

advantages of productivity, 'flexibility and'safety. The ability to

shorten lead time'for the introduction of new models is most highly

valued by industry [George and Mital, 1987]. -A typical example i found

at Renault, where"off-line robot programming is applied to car panel

assembly, [Renaultt- 19871.

An alternative solution is to purchase and set up a complete second or

training work environment in order to-minimize production downtime [Howie

and Williams, 1984]. However, this is rarely economically justifiable

due to the'increased capital investment.

Off-line'programming will facilitate the change over from manufacturing

one product to another to be carried'out in the shorte'st possible time

[Yong et al, 1985]. '-Off-line programming'will allow'robots to remain in

the workplace performing manufacturing operations while being programmed

for another task.

Computer Aided Design (CAD) systems are widely used worldwide, and

off-line programming is the best way of using the-design data captured in

CAD systems [Stobart, 1987]. The use of robot simulators will make it

- 18 -

easier to specify and develop the optimum sequence of robot motions

[Rembold et al, 1988]. Integration with CAD systems could take various

formsv for example in printed circuit board (pcb) assembly, although the

same size pcbs and same electronic components are used, the assembly

position of each component may vary. If on-line teach methods are used,

the production downtime becomes significant and the location data may not

be as accurate as those obtained from the CAD database. Since on-line

programs are taught for a specific robot they can only be used on, that

robot. Teaching hundreds of separate points in a complex welding or-

riveting tasks by the guiding method leads to increased chance of error

[Schreiber, 1984a]. Furthermore, the integration of a CAD system with an

off-line robot programming system allows better communication and enables

faster modelling where the duplication of model description is no longer

required.

Off-line programming systems can generate task location data in a

robot-independent format, and hence the replacement of one robot by

another should not prove too difficult [Okino and Shono, 1987]. In this

way, a variety of robots can be programmed with the use of an appropriate

post-procesor-for each specific robot controller. In such an, off-line

programming system, the programmer need not be an expert in many robot

programming languages, but ought to be familiar with the programming

language of the robot simulator [Chan et al, 1988]. This obviously

improves flexibility.

tI

Some tasks, such as programming spherical or circular motion [Gettelman,

1985] cannot be taught satisfactorily by an operator using on-line

guiding methods. Another typical example might be the cutting of a 45

- 19 -

degree bevel, measured normal'to'a curved surface. However,, these

difficult tasks can be performed successfully through off-line, ', -?

programming systems which utilise information from the product design

database. -This method improves the programming efficiency and the

quality of work. I- - -1-

Since robot simulators are commonly used for workshop layout design and

task evaluationy- robot tasks can be programmed, before equipment arrives

or parts are manufactured [Pickett,, 1984]. A good example is the welding

of space shuttle engines [Fernandez, 19881, where each engine has a

variety of weld geometry and parameters. With the availability of both

computing power and workplace model database, ýtask cycle time can be

estimated and used for process planning and scheduling [Chan et al,

19881.

Robots can be dangerous to operators and surrounding auxillary equipment.

However, using graphical programming methods to debug programs and to

train operators, the human operator is removed from dangerous

environments [Ambler, 1984]. As more-tasks are programmed away from the

robot, the time during which the programmer is at risk from aberrant

robot behaviour-is reduced [Yong et al, *1985].

As off-line programming of robots will provide many potential advantages

over the traditional on-line programming methods, off-line robot

programming methods are expected to have potentially wider industrial

application. Currently the major hurdles to more widespread usage is

user confidence, cost and learning.

- 20 -

Since robot performance is affected by repeatability (the ability of the

robot to return to a taught position), the on-line robot programming

method is most frequently used. It is therefore natural of robot

manufacturers to focus on the problem of repeatability rather than

accuracy. Off-line robot programming methods require good robot accuracy

as target positions are generated from sources other than human

operators. Improvements in robot accuracy will lead to the use of

off-line robot programming in an ever increasing number of applications

and will accelerate the trend towards fully utilized robot-based flexible

manufacturing or assembly systems.

2.5 Current Applications of Off-line Robot Programmin

Off-line robot programming has been increasingly applied in various

industrial sectors. Many manufacturing companies that are using CAD/CAM

facilities, and particularly those involved in using robot simulation for

factory design, have great potential for applying off-line robot

programming. Although off-line robot programming can offer many

potential advantages, some applications involving simple tasks would find

off-line robot programming methods too complicated; this may mean that

more time is required to programme the task programs than to run them (in

some cases, it is more time consuming to programme the task off-line than

on-line). However, other advantages can be gained through the use of

off-line robot programming methods as discussed in section 2.4. Some

representative current applications of off-line robot programming are

described below.

- 21 -

(a) Aerospace. - Welding

The Rockwell Science Centre, California, USA., (under contract to the

National Aeronautics & Space Administration NASA), uses the McDonnell

Douglas off-line robot programming system to design and program robot

welding cells [Kuvin, 1985]. NASA engineers programmed the operation

before the equipment arrived [Fernandez, 1988] (based. on the welding

parameter database specified by welding engineers and on CAD databases

that describe the parts to be welded). The simulation relates to a

production cell that welds Space Shuttle main engines [Ruokangas et al,

19871. The welding cell uses at least nine Cybotech H8 electric robots

which are controlled by RC-6 robot controllers. Each engine has 14,000

inches of weld and a variety of weld geometries., Obviously, on-line

teaching would require extensive debugging and lengthy downtime. The

off-line robot programming system holds a weld parameter database, which

is processed to facilitate programming of robotic tungsten arc welding.,

(b) Automobile Industry -. Spray Painting

Robot programming for spray painting applications is currently almost

exclusively done by manual guiding methods. This has serious drawbacks

since the. worker cannot produce the best quality of coating, (being

hindered by the weight and stiffness of the robot arm and skill of the

programmer) especially in the case of large surfaces [Klein, 1986], such

as bus bodies [Grunewald, 1984; Frederikson 1984].

Advances in CADCAM methods and a growing interest in off-line robot

programming led to this technique being applied for painting robots at

- 22 -

the Computer and Automation Institute, Hungarian Academy of Sciences,

Budapest, Hungary [Klein, 1987]. Their work led to a better quality of

coa'ting and a decrease of paint loss'. The approach involves modelling

the spatial distribution of the paint'particles..,,. The paint particles

sprayed should form a cone (which is the usual case [Hauke, 1982]) andby

considering its intersection with the surface the amount of paint

delivered to any point can be evaluated and visualized in different

colours on a CAD system. Theoretically, when the workpiece has large

surfaces, which are planar or close to planar and the surface normal

changes regularly, automatic path generation is possible. Based on this

a workpiece of arbitrary shape can also be painted by segmenting the

workpiece into planar patches; that is curved surfaces-are approximated

by polyhedra. From their experimentation, the efficiency of the painting

process increases with the size of the surface to be painted.

Efficiencies of 70-80 % have been achieved through off-line programming

which are better than with current practice where'a 55-60 X efficiency*is

typical (Efficiency is defined as being the ratio of paint usefully

applied to the total consumed).

(c) Automobile, Industry - Spot Welding

The General Motors Corporation plant in'Doraville, ýUSA, applies off-line

robot programming for automotive spot welding [Yoffa, 1988]. This

involves the use of the IGRIP simulation system to model the body framing

station (a station that holds the car body-in place ready for welding tO

proceed). The framing station includes six GMF S-48OR robots, with two

arranged on either side of the car body, and one at the front and rear*

During the framing and spot welding process, the car body is driven intO

- 23 -

the station by an automatic guided vehicle (AGV), and is locked in place

by fixtures. The robot then performs the required welding operations,

and after the fixture release the AGV moves out of the-station. This is

an efficient means for programming robots, as approximately 60'hours"'were

required to generate the robot programs through simulation and off-line

robot programming whereas 300 hours were required when using on-line

methods.

(d) Glass Cutting (Nottingham) --I

Nottingham University has investigated the automation of the cutting of

patterns on glassware [Knight et al, 1986], by generating off-line robot

programs from a CAD system. The initial implementation was interfaced to

a Cincinnati Milacron T3-726 robot. Once the patterns are designed, the

surface profile of each glass is measured using sensors so as to

determine a bi-cubic surface patch model of the glass surface. The

pattern definition from the CAD system is then mapped onto this surface

patch-in order to calibrate the robot program. This robot program is

tailored to an individual glass and hence the whole process must be

repeated for each blank glass.

The research work is continuing [Edwards and Howarth, 19881 with a

replacement ASEA IRB1000 robot, and the authors conclude that a

traditional highly skilled glass cutting operation can be automated and

the control processes can be applied'to a wide range of other industries.

-- 24 -

2.6 Review of Robot Languages and Robot Simulators

The limitations of teach-mode programming havelbeen-recognized by users

from industry and research-institutions [Hocken and-Morris,, 198610 ý This,

together with the rapid growth and functionality developments in the

electronics industry which has made computers more powerful, -has resulted

in the development of numerous robot languages [Van Aken and Van Brussel,

1988]. '- Developmentszin on-line robot programming languages have improved

the programming environment,, but suffer from a set of limitations

inherited from teach-mode programming [Ambler, 1982] which are:

(i) Programming in explicit robot languages does not allow the programmer

to resolve critical'-design and operational issues.

(ii) Updating a highly 'complex application with a huge database may be

difficult. '

In order to overcome the disadvantages of on-line programming, numerous

off-line programming-languages and systems of variousAegrees of

sophistication have been developed [Hocken and Morris, 1986]. The

majority of these languages and systems were developed by robot

manufacturers, major industrial users, CAD suppliers and research

institutions [Dooner, 1984; ' Boren, 19851.

Current commercial CAD systems and off-line robot simulators are

generally very expensive so that companies using such tools are likely to

be major users of industrial robot systems and/or robot system

manufacturers [Dooner, 1984]. Seemingly and notably, the majority of

- 25 -

available off-line robot programming simulators, are limited to a

particularýmanufacturerls product range. Since the majority of off-line

robot programming simulators are produced by the robot system

manufacturers and robot users, there are obvious reasons for the limited

range of applications.. Firstly, they do not have sufficient, knowledge of

robot-systems manufactured, by, their competitors. Secondly, they prefer

to promote their own products. Thirdly, they are likely to have

excellent access to and can accomplish calibration of their own robot

system in developing off-line programming facilities.. _-

A number of robot simulators have become available in the world

marketplace including GRASP [Bonney, 1987], McDonnell Douglas Robotics

Software [Carter, 1987], ComputerVision's Robographix [Mattis and Gill,

1988], Intergraph system [Intergraph, 1985]p AutoSimulations [Stauffer,

1984] and ROBCAD [Robotics World, 1986a]. These CAD/CAM packages, provide

a set of modelling and simulation tools which can be used to represent a

robot manipulator, and it's attendant equipment, in graphical form and

hence simulate a manufacturing task. The use of such packages can allow

the manufacturing engineer to try several solutions for robotic cells

before purchasing any equipment. Hence these workplace design tools can

be used to improve the choice and layout of robot, systems, reduce set-up

costs, reduce installation times and improve system performance. Certain

manufacturers claim-that "engineers can design and lay out robot cells up

to 70 per cent faster through the use of a robot simulator" [Industrial

Robot, 1982; Robotics World, 1986a].

An. additional feature-of many robot simulators is the availability of

post-processing software for the off-line programming of robots. Such a

- 26 -

post-processor reformats the geometric and sequential information

generated by the modeller and simulator, to produce a robot task program

in the native language of the robot. -, Obviously this p6st-processing

function is robot dependant (currently there is no internationally

accepted neutral language for robots) and hence this facility will only

be readily available for commonly used industrial robots.

The McDonnell Douglas robotic system [Carter, 19871 is generally

recognised as the most sophisticated kinematic robot simulator

commercially available today. However, these kinematic robot simulators

do not take dynamic effects (damping and following errors etc) into

consideration. This has provided the motive for researchers to generate

robot simulators that can simulate dynamic effects. As a result, a

limited number of dynamic robot simulators are being applied to the

off-line robot programming problem. Among these are ROBOT-SIM [Novak,

19841, ROSI [Industrial Robot, 1987], and STAR [Hornick and Ravani,

19861.

There are many different robot simulators and off-line robot programming

systems which have been developed for in house use or academic research.

It would be impossible to gather all the information for every software!

package available today. It should be noted that the comparison of these

simulators is a rather difficult task as the information provided by the

suppliers of simulators is not presented in a uniform manner and is oftýn

only superficial in nature. Furthermore, without practical hands on

experience on individual software package, a thorough evaluation is not

possible. The following paragraphs describe a representative selection

of robot simulators. The following classification is according to the

- 27 -

chronological order as mentioned in section 2.2. '

2.6.1 Explicit'--; Structured High Level Robot Programminý Languages

ROPS (Robot Off-line Programming System) is a. simulation package

offered by Cincinnati Milacron. It contains several modules specially

developed for T3 700, T3 800 series, and version 3 and, 4 robot

controllers. ROPS. is available on IBM PC-AT and DEC VAX computers,

and is capable of communicating with CAD/, CAM systems [Cincinnati

Milacron, 1985]. This menu driven programming system provides the

programmer with assistance in developing an off-line robot program.

The ASEA off-line programming system [ASEA, 1986] has similar functions

to ROPS. The survey papers by-[Bonner and Shin, 1982], [Gruver et al,

1983], [Soroka, 19831 and [Schreiber, 1984b] reviewed some of these

languages including AL, AML, HELP, JARS, MCL, RAIL and VAL.

, 2.6.2 Implicit - Model Based Off-line Robot Programming Systems

AUTOPASS is the automatic parts assembly system developed by IBM

[Wesley et al, 19801. It is a high level, object oriented, compiled

language for assembly, based on a world model of the workplace., This

language describes assembly operations rather than robot movements

[Ranky and Ho, 19851 thereby allowing a programmer to specify assembly

procedures implicitly. The compiler then transforms the assembly-

procedure into motion commands through the use of data from a

geometric database or world model where the geometric. information

- 28 -

(spatial, relationships between objects) is stored. The programmer il

allowed to use commands such as "PLACEI't "OPERATE", and "RIVET" for

assembly, tool functions and fastening respectively. There are other

similar systems such as RAPT (Robot APT), developed within the

Department of Artificial Intelligence, at the, University of Edinburgh

[Ambler, 1982; Ambler et al, 1982; Durham, 1985;. Howe and

Fothergill, 19881., ROBEX (ROBoter EXapt) developed in Germany

[Eversheim et al, 1981; Neck et al, 1981,1984 and 1987;. Weck and

Niehaus, 1984]. Both-RAPT and ROBEX can link up with graphics display

via a pre-processor to the graphics system. _

2.6.3 Implicit - Graphics Based Off-line Programming Systems

Graphics based off-line programming systems include CAD systems and

robot simulators. As previously stated, robot simulators can be

classified into kinematic and dynamic robot simulators (this being

considered in greater detail in chapter 4 section 4.3.1). The

Dýnavit-Hartenberg algorithm [Denavit and Hartenberg, 19551, is the

most commonly used [Gupta, 1986] in kinematic robot simulators. These

kinematic robot simulators do not take dynamic-effects into

consideration. Dynamic robot simulators-can only produce a dynamic

model which closely approximates to certain dynamic characteristics of

a given robot. A kinematic model also forms part of the essential

framework of a dynamic robot simulator. The frequently referenced

algorithms in the context of dynamic simulation include the Lagrangian

method [Murray and Neuman, 1984; Wang and Kohli, 1985] and the

Newton-Euler method [Khosla and Neuman, 1985; Featherstone, 1987].

- 29 -

(a) CAD Systems

This involves the use of common CAD systems. These systems do not

have the capability of modelling robot kinematics nor dynamics, and

can only produce 2D or 3D designs of products. Typical examples

are to be found in the Department of Production Engineering and

Production Management, at Nottingham University, where a CAD system

is used'to design glass patterns. The output of these patterns is

used to programme a robot in carrying out glass cutting [Knight et

al, 19861. Similarly, another CAD system has been applied for

off-line programming of painting robots at the Computer and

Automation Institute, Hungarian Academy of Sciences [Klein, 1987].

(b) Kin matic Robot Simulators

(1) AutoSimulation system

The AutoSimulation suite includes AutoBots, AutoMod, AutoGram and

InterFaSE modules [Robotics World, 1986b]. The AutoBots module

allows robot'simulation and off-line programming. The InterFaSE

module is a simulation-base factory scheduler which allows the user

to test and change operating and decision making rules to optimise

the performance of facilities.

AutoMod is a numerical simulation package based on the GPSS '

simulation language, whereas AutoGram works In conjunction with

AutoMod to produce graphic representations [Stauffer, 19841. The

AutoMod simulation package uses English language inputs thereby

- 30 -

allowing programmers to describe robotic devices and associated

manufacturing system elements. From this a simulation model is

constructed. Subsequently the model data is utilised by-AutoGram,

in providing a graphic display.

(2) CATIA

The Computer Aided Three dimensional Interactive Applications

(CATIA) package [Crosnier and Fournier, 1987; Forestier, 1985] was

developed in France by Dassault Systems. It consists of five

modules:

(i) a wireframe module providing 3D geometric definitions.

(ii) surface descriptions used to define complex 3D surfaces and

volumes, together with NC machining capabilities. iý

(iii) polyhedral solids used to define simple volumes or solids.

(iv) kinematics to define 2D joint mechanisms.

(v) a robotics off-line programming system.

CATIA runs on IBM workstations and can be used to communicate with

the MCL (Manufacturing Control Language) language developed by

McDonnell Douglas [Gettelman, 1985].

- 31 -

(3) GMF syste

The GMFýoff-line programming system has'several analogies with NC

part programming languages in that a set of S and G codes may be

used to construct robot programs. Alternatively English-like -,

mnemonics may be used to indirectly specify the S and G codes. It

is difficult for the programmer to input point. data since input is

required in joint axis form [Jacobs, 1984].

(4) GRASP

GRASP is the acronyn chosen for the General Robot Arm Simulation

Program developed at-the RensselaerýPolytechnic Institute in the

United States (and should not be confused with the identically

named software used. in connection with this research study). It

can model robot arms with up to six joints, describe robot tasks

and evaluate proposed robotic systems by providing animation in

wireframe representation. The capabilities of the simulation

program include cycle time estimation, joint violation detection,

along with torque and member bending simulation. The data

generated by GRASP [Derby 1984a, 1984b] has been translated into

VAL programs for the PUMA and into a language specially designed

for the Cincinnati T3.

(5) HERON

HERON is described as a stan&-alone CAD/CAM workstation [Miller,

19851, which allows the programmer to perform workcell design and

- 32 -

optimizationt off-line programming of robots, animation and

collision detection. The system provides 3D wireframe models and

3D solid models. 'It consists of six modules:

(i) ROBOLIB provides libraries of available robots and accessories.

(ii) ROBOGEO allows geometric modelling and mechanism design.

(iii)-ROBOSIM facilitates vorkcell, design, task description and

animation.

(iv) ROBOLOAD translates a task description into a robot program

and downloads, it to the specific robot controller.

(v) ROBODOC produces drafts and documents.

(vi) ROBOPERT provides*project management analysis. '

IGRIP

IGRIP (Interactive Graphic Robot InstructionýProgram) was developed

by DENEB Robotics. IGRIP claims to be computer system independent,

being designed in modular form to provide flexibility and enabling

the software'package to be ported from one machine to another

through changes to two of the modules [Schreiberp 1984b; Harrison

and Mahajan, 19861. There are four graphics modes and thus

graphics models of different devices can be displayed [Yoffa, 1988]

in any of the following forms.

- 33 -

(i) wire frame (which is the fastest mode).

(ii) wire frame with hidden lines removed (which can avoid

ambiguity).

(iii) a simple shading mode (which provides a more realistic

representation).

(iv) sophisticated shading (this being the best but slowest).

IGRIP also provides display modes at three levels: world, device

and link. Simulation control is specified via GSL (Graphical

Simulation Language) which is device independent [Robotics World,

1986c]. Interestingly, IGRIP allows the user to enter or load

programs written in an actual robot language or code such as VAL II

and KAREL. This is then converted to GSL for use in the graphical

simulation. Hence it possible for example to verify whether an

existing program is correct in different workplace arrangements, or

for calibration purposes. IGRIP displays the maximum and minimum

reachable workspace of a robot as a transparent shell around the

robot. It also offers automatic collision detection which runs

concurrently with the animation. '

(7) INTERGRAPH

INTERGRAPH robotic software was originally developed in conjunction

with GMF Robotics. It supports robot programming via two types of

workstations which include on-board processors with significant

- 34 -

memory storage'area, thereby-providing display generation

capabilities. This capability can be used to significantly enhance

modelling responses and improve real time animation. The off-line

programming of a-robot is divided into 5 phases [Intergraph, 1985;

Kacala, 1985].

(i) operations planning and definition: this is a group of

libraries of definitions including robots and accessories;

(ii) workplace composition which enables programmers to design

workplace layouts;

(iii) process simulation, editing and verification: the robot task

program can be simulated and-if-, any error is detected during

simulation (including joint, violation, collision and program

sequence) it can be modified.

(iv) output program: verified robot task program output can be

translated into a robot program or an engineering drawing; and

(v) process feedback and workplace calibration: the operating

conditions measured during the actual real world performance-are

Ied into the system, and a simulation is performed which calibrates

the workplace to produce a more precise factory environment model.

4, t

- 35 -

(8) McDonnell Douglas Robotics Suite

McDonnell Douglas's graphic simulation package, was designed for

off-line robot programming-and comprises four modules called PLACE,

BUILD, COMMANDp and ADJUSTý[Howie, 1984; Haffenden, 1984;

McDonnell Douglas, 1986].

(i) BUILD as its name implies, allows users to build their own

robot models which may be configured in some specialised way. This

module allows the analysis of user defined robot, devices of up to

six degrees of freedom.

(ii) PLACE (Positioner Layout And Cell Evaluation system) is a

simulation tool for designing and evaluating robotic cells in 3D

with smooth motion animation.

(iii) COMMAND is a module-for the creation of robot off-line

programs based on PLACE sequences. Off-line robot programs can be

generated in a format suitable for Unimation, Cincinnati T3 and GMF

robots. -

(iv) ADJUST is robot independent calibration software which allows

errors between the CAD model and actual robot system to be

adjusted.

PLACE accepts data directly. from, UNIGRAPHICS or via an IGES

interface from other CAD modellers.

- 36 -

(9) ROBCAD

ROBCAD implements 2D and, 3D wireframe models'or colour shaded

solids, and the IGES standard is implemented to interface with

general purpose engineering CAD/CAM systems. ROBCAD includes

powerful "canned" cycles and subroutines for specific applications

like welding and palletising, which can be selected from a menu of

operations [Adler, 1986]. In 1986, the developers claimed that

ROBCAD was the only system in the world [Robotics World, 1986a]

which could produce concurrent parallel shaded simulation.

.1.

(10) ROBOCAM

The ROBOCAM simulation package [Craig, 1985] was developed by

SILMA, Inc. and offers two programming methods, one of which uses

a high-level robot language'called RISE, whereas 'the other uses a

graphical approach via menu control., Models can be saved in files

and transferred between ROBOCAM and other CAD systems through the

use of IGES interfacing. After a RISE program has been generated

and debugged by simulation, the program can then be translated into

a specific robot language by the use of an intermediate language

called RCODE.

A special feature of, ROBOCAM called "AUTOPLACE" can assist the

programmer in assessing the performance of different robots in

achieving the same task. By inputting all the important points

which are necessary to be reached, AUTOPLACE will suggest a

location in the workplace for the chosen robot.

- 37 -

(11) ROBOGRAPHIX

The ROBOGRAPHIX package is a product of'Computervision, -a major

supplier of-CAD/CAM systems, and has four major functions [G6ndert,

1984; Mattis and Gill, '1988]:

(i) design and build the workplace models.

(ii) create robot programs.

(iii) verification-of robot programs.

(iv) post-processing and output of robot programs to actual robots.

The package includes a library of three dimensional models of

standard robots and accessories. Users can expand the library by

building their own robots and equipment. Since'the CAD/CAM system

database and the ROBOGRAPHIX library are integrated, ' users can

easily manipulate information between the two. A robot language

processor within ROBOGRAPHIX translates robot programs into'

specific robot programming languages such as VAL for Unimation,

robots, RAIL for Automatix and code'for Cincinnati robots. A

distinguishing feature of ROBOGRAPHIX is the use of an electronic

pen and digitising tablet to specify point to point motion for the

robot on the graphical terminal.

- 38 -

(12) RoPL "

RoPL (Robot Programming Language) was developed by E. S-I

Incorporated in New York. It provides wireframe display on 16 or

32 bit microcomputer systems with sophisticated capabilities such

as hidden line removal, zooming and angular viewing, collision

avoidance, and joint violation detection [Price, 1984].

Furthermore, this system provides looping constructs, macro

capability and user defined input/output devices. It is written as

a menu driven graphic system, comprising of several sub-menus which

guide the programmer. Animation, where needed, can be shown with

two different views concurrentlY.

(13) 'WRAPS

WRAPS (Welding Robot Adeptive off-line Programming) was developed

in the Department of Manufacturing Engineering at Loughborough

University of Technology. The system is implemented on

microcomputers (IBM compatibles) as'a relatively low I cost

simulation system [Goh and Middle, 1985] and is specifically aimed

at the off-line programming of robotic arc welding tasks. This

system is also integrated with an expert system [Middle and Goh,

1987] which is responsible for welding procedure selection and

optimisation.

- 39 -

(14) VSO Syste

The VSO system [Marklund, 1986] is a 3D CAD/CAM system designed for

robotic layout. design and off-line robot programming. There are

two types of WSO system available:

(i) general purpose CAD/CAM systems with WSO modules which have a

common database available for. both product development and

production engineering.

(ii) dedicated WSO systems which are more likely to be able to

support the, real time graphics. that are needed for simulation.

The system consists of libraries of robots, accessories and

peripheral equipment. It can communicate with other systems for

receiving CAD geometric data, and drafting and dimensioning for

documentation. It has a language post-processor which translates

output to the ASEA ARLA language. A calibration function can be

used for adjustment of the robot program for any discrepancies

between the idealised model and the real installation. If absolute

accuracy is required, a TEACH function can be used to upload

reference positions to be included in the off-line programs.

(15) GRASP

GRASP [Bonney et al, 1984; Bonney, 1987] stands for Graphical

Robot Applications Simulation Package and was derived from SAMMIE

(System for Aiding Man-Machine Interface Evaluation) [Case et al,

-, 40 -

1986 and Porter et al, 1986]. SAMMIE and GRASP were developed in

the Department of Production Engineering and ProductionýManagement

at the University'-of, -Nottingham. The Nottingham group [Dooner,

1984] developed GRASP with funding from the Science and Engineering

Research Council and subsequently formed a company called BYG"

Systems. -
-,

GRASP allows kinematic, modelling of serial link manipulators and

complex joint mechanisms-forming'specific manipulator structures.

Since there is no general solution in forming kinematic models of

complex joint mechanisms, the modelling of non-standard

configurations requires the assistance of BYG Systems in writing

specific Fortran subroutines.

Once the'world model has been built using typical solid modelling

techniques, there are two ways of achieving robot/workplace

simulation viz

(i) high level robot textual programming to describe geometric and

sequence information.

(ii) by graphical interactive programming.

After an event sequence (or track) has been created, the programmer

can generate a time dependent continuous motion simulation known as

a Process. '

- 41 -

Animated motion can be displayed in a variety of views.

Furthermore, the display can be shown in projection mode with

either first or third angle projection being selected.

GRASP was originally designed as a powerful CAD simulation tool for

workplace design rather than as an off-line robot programming tool.

GRASP is continuing to be developed"and is now being extended to

cope with off-line robot programming. This has been achieved by

writing post-processors for the GRASP output, converting this robot

independent output into a specific robot language or codes

(including VALp VAL II and ASEA AR-Language).

(c) Dynamic Robot Simulators I

(1) ROBOT-SIH

Calma has introduced the ROBOT-SIM simulation software package for

robot workplace design and evaluation. The software permits robot

and workplace design, robot motion programming, cycle time

estimation and dynamic properties simulation of the robot. Dynamic

data, including velocities, accelerations, link inertias and motor

torque characteristics are input to the simulation process thereby

offering facilities to determine robot performance. However, this

is restricted to robots, with a, maximum of six, degrees of freedom.

With a specific robot pre-programmed desired path, the simulation

package may be used to predict the actual path of the robot arm

(i. e. path tracing error, overshoot error etc are predicted).

- 42 -

Principal capabilities [Imam et al, 1984; Novak, 1984] of the

simulation include:

(i) kinematics and dynamics of a multiple link robot arm

(comprising revolute and prismatic joints),

(ii) models of the robot drive systems, including inertia and

torsion and bending effects in motor transmission elements,

(iii) digital controls for individual joint servo loops, including

finite sampling rate and amplitude quantization effects,

(iv) algorithms used for coordinate transformation, path

interpolation, and to provide special programming features such as

rough positioning, dwellsp and smooth decelerations.

(2) ROSI

RObot dynamic SImulator (ROSI) was developed in the Department of

Artificial Intelligence at the University of Edinburgh and is

marketed through Cambridge Controls Limited. Cambridge Controls

claim that ROSI uses highly efficient Walker-Orin recursive

Newton-Euler algorithms [Hemami et al, 1975]. This system has no

limitation on the number of degrees of freedom that can be

modelled, and comprises two major parts:

(i) a comprehensive dynamics engine

This is a library of functions for constructing robot models and

- 43 -

performing dynamic computations [Industrial Robot, 1987]. It is

designed specifically for use as a component in a larger software

package. This is system independent module and canibe used for

custom built software.

(ii) a user interface for communication between the dynamic engine

and the programmer in graphical form.

Libraries are available storing information relating' to joint

types, electric and'hydraulic parameterised actuator modelst and

control systems parameters.

(3) STAR

STAR (Simulation Tool for Automation and Robotics), was developed

for off-line robot motion planning and programming. As STAR is not

a CAD program [Hornick and Ravani,. 19861, the graphic shape of the

robot can not be. developed. However, it is'equippeýd with a CAD

interface, which allows animation of solid geometric models of

objects generated. on the GMOS solid geometric modeller system.

This simulation software package consists of four basic modules:

(i) an input module for model building;

communication between the programmer and the software takes place

at a conversational level through the use of a high level input

language.

- 44 -

(ii) a-mathematical module for kinematic and dynamic calculations;

this module automatically formulates kinematic and dynamic

equations and uses an iterative procedure to solve the inverse

kinematic equations. Iý-1.11 1

(iii) a trajectory planner;

this module is claimed to calculate optimal trajectories so that

cycle times can be minimised.

(iv) an interactive motion planning, programming and editing

environment.

The programming of robot motion, is assisted by the use of 3D

interactive computer graphics and a high level programming

language. At the operational level, robot motions are implicitly

defined by specifying motion operations that are to occur, between

the objects being manipulated. Thus for example, it is possible to
I issue commands such as "MOVE PEG TO HOLE", in a way which is very

similar to AUTOPASS and RAPT.

STAR can display multiple views of the robot and its environment,

and can visually detect any potential interferences between the

robot and objects in its environment.

-- 45 -

2.7 Limitations of the Present Generation of Robot Simulators

Here we consider three key functional areas in which the present

generation of robot simulators, demonstrate limitations, these limitations

reducing their effectiveness and widespread usage. These functional

areas are "calibration"i "integration" and "ease of use".

4-

(a) Calibration

With off-line robot programming, the use of the robot as a digitiser is

lost, and the robot end-effector may not be positioned at the location as

commanded (i. e. in operation, performance is dependant on accuracy

rather than repeatability). This results in a need for standardised

calibration procedures. Generic robot calibration procedures have yet to

evolve in an internationally accepted sense, resulting from the

complexity involved in accurately measuring the position and orientation

of workplace elements. Workplace calibration is undertaken to ensure

that errors between the robot simulator and the real robot system are

accounted for. The need for, error correction procedures and tools is

vital before language programming can be, use in isolation,, i. e. without

the need for a teach pendant., A major theme in this research study, has

been to investigate various error correction methods, the-detail of which

is discussed in chapter 7.

(b) Integration

Robot simulators are still largely isolated systems. They should be

integrated into CAD/CAM facilities so that existing CAD databases can be

- 46 -

used to speed up the programming process. The robot simulator should

also be capable of providing integration with expert systems for the

planning of robot tasks. The activities of a robot simulator has been

integrated with a PCB CAD design package so that previously created PCB

layout information can be used in creating product models in the

subsequent simulation of robot insertion of various electronic

components. The integration methods studies have also addressed the

inclusion of process planning activities. The integrated pcb design,

planning, simulation and programming system for pcb assembly demonstrates

novel features. The principles involved and actual implementation is

described in chapter 8. The principles so described can be widely

extended in defining various product realisation activities. The

principles can also be applied in various industrial domains with the

overall goal of reducing the design to manufacture time involved in

creating new products.

(c) e2se of use

Robot simulators may be difficult to use and are becoming so complex that

sometimes very simple tasks are difficult to program. A friendly user

interface is required together with facilities for computer assisted

solid modelling and robot task generation. This is similar to parametric

programming which is used to ease the task of generating models of

families of parts in mechanical design. Chapter 6 illustrates the

principles involved and describes the implementation attempted.

- 47 -

CHAPTER THREE

GENERALISED FEATURES OF FUTURE ROBOT

PROGRAMMING SYSTEMS

3.0 Introduction

Many of the simulators described in the foregoing chapter were constructed

in modular form and offer the common operational features that are essential

for robot simulation. However, other features included are different fron

system to system. Generalised features of a future robot programming system

are discussed to provide a backcloth to subsequent observations and

recommendations. A knowledge of generalised features is important so that

standards can be developed and applied to robot simulators such that

post-processing effort can be reduced and the versatility of new robot

simulators can be improved. Furthermore, the simulation model can be

transferred from one simulator to another, and this is particularly useful.

for a CAD/CAM service house to provide a conversion facility for different,

robot simulators used at customers' design offices.

3.1 Conceptual Robot Simulation Systems

When considering features of the next generation of robot simulators we

should not be bound by conventional approaches nor necessarily consider

the constraints imposed by available processing power. For example,

future physical implementations of robot simulators may be distributed

and thus cross the conventional off-line/on-line boundaries. Thus we

will consider logical robot simulators to describe the logical

functionality required from future systems. The logical system will be

distinct from the physical system which will reference the physical

implementation techniques and enabling technologies involved. Figure 3-1

illustrates the possible features of a logical or'conceptual robot

simulator deduced by the author through referencing existing systems and

48

c 0 . 16

0

V)
x

ii7 -0
0

E

0

x

rM
E
00

' i) -� ,:

ß_ IM Q) -+I
41

E

C U)

.2c-
-13

-0
(L)

0
Er

r. M C ED, -t ý0-ý-.
i cm

0E -e ,00-
CL 0-0 :po0
x -, 0 0.5. -,

, 00 w-, > -0 ,0

-00 Ec :3

.e0
4) 1

x0

1.0

7B
U) 0 CY,

-0 LU 0
0E 76 -ii

00

.0
IL

0

- 49 -

research initiatives reviewed in chapter two. Subsequent paragraphs

describe the major functional elements of this logical robot simulator.

For example, the purpose of computer assisted robot. model building,

computer assisted solid modelling of tooling, and computer assisted

product modelling through integration with product databases are

considered. Furthermore, the potential role of expert sub-systems and

computer assisted task program generation in such a schema will also be

described.

3.1.1 Computer Assisted Robot Model Buildin

There are hundreds of different robot models available from a variety

of manufacturers. The designer or robot user faces a difficult

problem in choosing the optimum robot for-a particular task from am6ng

the large number of available alternatives. For this reason some

degree of-automation or computer assistance in robot selection is

essential to minimise manual analysis and assist the. human decision

making process. -Currently there are several computer assisted robot

selection systems available such as ROSE [Mauceri, 1985] and CARSP

[Offodile et al, 19871. These computer assisted robot selection

packages comprise a database containing information on a range of

robot models. Through questions and answers, the. computer will select

a suitable robot model based on given information.

In addition to the difficulty experienced in making the selection, the

designer will also have to develop a robot model before any proposed

robot and workplace arrangement can be verified and simulated thereby

enabling performance measures to be evaluated. An obvious solution is

- 50 -

through making a library of robot models available which, although ý

possibly restricted to the most common and widely used robot'models,

could be extended as needs dictate. Computer assisted'robot'modelling

software is desirable, to provide a proven and, consistent method of

adding information to the library. -I

The purpose of computer assisted robot model building is to partially

automate an important aspect of robotic simulation. The concept is"'

based on the existing computer assisted robot selection packages,

which allow the user to choose an appropriate robot for the job. A'

CAD robot model can be generated based on the selection of robot model

giving access to the appropriate part of the database.)

Computer assisted robot selection can be based on available expert

system technology. Expert systems applied in this field have three

basic elements: ' the'control system (questions and decision rules), an

inference engine and a knowledge base. The way in which such

knowledge is accessed may vary depending upon the requirements'of the

user. At the present time, the inference engine' and the content of

the knowledge base are different from system to system. The contents

of almost all of the existing robot databases are insufficient and

inappropriate for use in computer assisted robot modelling'

[Loucopoulos and Champion, 1988]. Therefore some additions and

modifications to the information stored is necessary.

Present systems have neither standard decision rules nor standard

database structures [Van Assche et al, 1988]. The wide acceptance of

this concept is only possible if standard database structures are

- 51 -

evolved-[Hayes-Roth et al, 1983; Offodile et al, 1987; and Cronk et

al, 1988]. The additional data required as part of the database

should include parameters of robots such as the type of joints

(revolute or, prismatic),. geometric relationships between links (common

normal, -offset, twist angle and rotation angle) together with the

limits to motion. Some of the requirements are the same as the input

requirements for CAD robot modelling and are discussed in chapter

four. - Due to the wide variety of possible geometric shapes for links,

it, is impossible for, any system to automatically generate CAD models

[Szeto and Lichten, 19851. However, it is possible to synthesise the

robot body by features (i. e. a method that allows user to choose from

an existing library of geometric shape of, robots)., [Dudko et al, 1984].

The shape of the robot is not, as important as. its kinematic structure

and equations.

3.1.2 Computer Assisted Solid Modelling of Toolin

As new robot models are continually introduced, along with models of

ancillary equipment (e. g. grippers and, tooling),, the designer will,

also experience difficulties of building modelslas earlier discussed.

Additional complexity will also be involved if data structures are to

be entered into databases so that computer assisted procedures can be

utilised.

- 52 -

3.1.3 Computer Assisted Product Modelling Through Integration with

Product Databases

In a simulation, the inclusion of product descriptions can also play a

very important role. Information concerning the product specification

may be obtained through access to product databases, and ideally it

should not be necessary to duplicate existIng information. The

modelling of the product could in fact be achi eved, through use of

expert sub-systems which could for example synthesise products by

features. The efficiency with which computer assisted solid modelling

can be achieved will be dependant of the existence and use of

standards which can enable the timely and reliable sharing of

information between various manufacturing entities.

3.1.4 Potential Role of Expert Sub-systems

Future expert sub-systems will perform various functions such as-robot

selection, the definition of optimum layout solutions, assembly

planning, calibration of models and generation of exception handling

conditions. In achieving this functionality the 'experts' must

reference data structures stored in databases which model the robotic

devices, their workplace elements, product descriptions, process and

production planning information and state history representations of

the robot and its workplace sensors and tools. Again it is important

to stress that such facilities can be viewed from both a 'logical' and

'physical, viewpoint. However, whatever the physical implementation

this will imply the use of standardised data structures and

information transfer mechanisms. The reader should again refer to

- 53 -

figure 3-1 which illustrates the logical interaction between

sub-systems when accomplishing robot selection and designing workplace

layouts. Similar logical interactions could be constructed for

assembly planning and exception-handling.

3.1.5 Computer Assisted Task Program Generation

The discussion so far has centred upon computer assisted (CAD)

modelling and robot simulation. Robot task simulation will have an

increasing role in predicting system performance and identifying

potential, problem. areas thereby, creating more directly useable

programs. Let us consider the potential role of expert systems in

automating or semi_-automating the simulated execution of task

programs.

Using today's commercially available simulation tools the task

programs will be stored and executed using the syntax of proprietary

simulation systems. Obviously standard data structures for simulation

systems are desirable, but, currently there are no standards which can

be applied appropriately.

Having created the robot workplace and product models according to an

optimised layout design, the simulated robot task should be verified.

Discrepancies between theoretic and measured models should be

accounted for. Any problems should be identified and modified before

the, simulated task program is post-processed into a robot language

which can be executed. Again, ideally a standardised or neutral

language should be adopted here so a given simulation system can be

- 54 -

widely applied without the need to generate bespoke post-processors

for each robot model.

3.2 Conceptual System Mapýed onto Reality and the Role'of Existing and

Emerging Standards

Here we will consider various standardisation initiatives which should be

referenced when mapping logical robot simulators onto physical computer

hardware and software.

3.2.1 Product-Design Data Format

There are several related standards which currently address problems

in product data transfer [Owen and Bloor, 1987].

(i) IGES (Initial Graphics Exchange Specification) developed under US

Air Force ICAM programme.

(ii) PDDI (Product Definition Data Interface) is another research

project initiated'by the US Air Force ICAM Project.

(iii) XBF (Experimental Boundary File) developed by CAM-I (Computer

Aided-Manufacturing-International).

v

(iv) PDES/STEP (Product Data Exchange Specification) developed by the

CAM-I as a follow up standard to IGES.

(v) EDIF (Electronic Design Interchange Format) was developed under

- 55 -

the user initiatives to- form standard for the exchange of electronic

CAD design data.

(vi) SET (Standard dlEchange et de Transfert)'developed by

AerosPatiale in France.

(vii) VDA-FS (Verband des Automobilindustrie Flach , en-Schnittstelle)

developed-under the initiatives of the Association of German Car

Manufactureri.

The Initial Graphic's Exchange Specification (IGES) [Wilkinson and

Hallam, 1987] is a neutral datzi format1or describing drawings -and

more recently solid models. SET is a French national standard which

provides more compact data structures than IGES, and SET has provision

for transferring information relating to curved surfaces. Future

versions will enable finite element modelling data, solid models,

polyhedral models, schematics and NC paths to be'-transferred.

A standardisation initiative known as the Product Data Exchange

Specification (PDES) [Smith, 1987] seeks to build on'IGES and

the Product Definition Data Interchange (PDDI) model [Owen and Blool: '

1987]. - Furthermore the recent amalgamation of PDES and STEP should

lead to an ISO standard for the part description in the not too

distant future. ' This standard also seeks to'identify methods of

utilising product design data in various manufacturing activity areas.

- 56 -

3.2.2 Robot Program Data Format

In West Germany considerable effort has been directed towards defining

interface standards for robots, and has been referred to as the,.,

Industrial Robot Data (IRDATA) [Weck et al, 1984]. The IRDATA

concepts are based on the existing CLDATA (Cutter Location DATA)

standard for numerically controlled machines. IRDATA includes

descriptions of robots, tools, sensors, working space, -frame lists,

motion specifications and execution criteria, arithmetic and boolean

operations, program flow control and input/output, operations. Various

data types areincluded, such as, integer, reall boolean, character,

string, pointer, vectort orientation and joint angle. IRDATA text,,

comprises a sequence of records of unlimited length, each record

consisting of at least 2 and at-most 125 words ot6 characters.

The user does. not, programme in IRDATA but in some other high levelý,

programming language. Subsequently IRDATA is used as the interface

message format between, the off-line programming system and the, robot

controller. There has been considerable support for IRDATA [Rembold

et al 1985,1987] although standardisation in this area. has been

superceded to some extent by MMS (see sub-section 3.3) and its robot

companion standard [Rembold, 1988]. It may, be that IRDATA will not

stand the test of time with changes in enabling tools and the

emergence of other more generally applicable and widely supported

standards [Rembold, 1988] such as MMS and its robot companion standard

representing an advancement towards more comprehensive and widely

adopted data structures.

- 57 -

Since 1981 in Japan, standardisation of robot programming has been

encouraged [Arai et al, 1985] by a committee of the Japanese

Industrial Robot Association. The committee was originally formed

from working groups, " initiating surveys into existing robot languages.

Each working group has beeii responsible for a specific activity, such

as robot language functiong protocol, and language syntax. As the

result of these activities, in 1984 the committee proposed a generic

set of functions for'robot controllers-along with associated function

codes which introduce notation in-a robot language called STROLIC

(STandard RObot Language'in Intermediate Gode)'[Arai and Matsumoto,

1983]. STROLIC can be considered to be a generic-robot instruction

set, represented by binary codes. The main reason for adopting binary

code was to improve the machine-machine interface. Since it is not

convenient to'programme in binary, codes, a programming language called

STROL (STandard RObo't Langauge) Was proposed as a programming language

as'sociated with STROLIC. The main programming capability is similar

to that of AML (A Manufacturing Language) [Gini and Gini, -19851, but

stack operations'and program flow control are inherited from FORTH

[Toppenp 1985]. Each function has an associated update routine whicil

makes debugging, tracing and teaching easier. Motion and sensor

commands are defined with pointers to appropriate registers relating

to position, velocity or sensor information. Various data structure

types are available including arrays, strings, records, etc.

Although both IRDATA and STROUSTROLIC are being used within their

respective host countries there is no evidence that they are being

adopted internationally.

- 58 -

3.3 Integration Architectures

Systems integration methods are evolving on worldwide basis to create

more responsible manufacturing systems [Albus, 1984; -, O'Grady, 1986;

Jones and McLean, 1986; and Veston et al, 1988].

A major problem in this area isýtýe need to account for the differences

between proprietary machines. Integration of a stand-alone machine with

other manufacturing entities can be achieved through making the machine

conform with the Virtual Manufacturing Entity (VME) concept [MMS draft 6

document, 1987]. Essentially this concept involves making a. proprietary

machine (such as a robot) act like a standard machine when viewed by

external manufacturing entities. Thus for a robot, integration is

implemented through establishing a physical connection and appropriate

protocols which enable the transmission, of a standard set of robot

"words" or "messages" (including programs and information) from one

machine to another. The approach can enable. remote operation of the,

machine and the transmission of information, as shown in figure 3-2.

physical connections

& standard 'words'

Figure 3-2 Integration through physical connections and protocol

- 59 -

In manufacturing industry, there have been a number of, different

solutions to integration problems; both'proposed and implemented. Some

representative physical cOnnections-include the use of an RS232 data link

[Putman, 1987] running proprietary (non-standard) protocol. Such an

approach yields bespoke solutions and high integration costs [Weston et

al, 1988]. The use of MAP/TOP [Hollingham, 1986; Weston et al, 1986 and

1987a; and McGuffin et al, 1988] interfaces, which represents an

internationally accepted standard mechanism (embodying the VME concept),

is becoming commonplace and overcomes certain of these integration

problems. However both approaches provide a physical connection which

merely provides the capability of transmitting data from one machine to

another, and there is a fundamental difference between data and

information transfer. Although, data storage and manipulation on

machines may be identical, the information represented by these data are

not necessarily'the same. This means that data may be successfully -

transferred from one machine to another but the recipient machine may not

understand its meaning. Thus standardised techniques can be devised for

the automatic storage and dissemination of information [Rui et al, 1988].

Here we describe, two di, fferentItypes of integration hard integration

and flexible integration. Almost invariably today's factory integration

schemes incorporate 'hard, integration with its software being written in

accordance with some previously defined specification even if the

physical connection is based-on OSI protocols such as MAP/TOP. This

approach is specific-to the manufacturing entities involved. Conversely,

manufacturing entities in flexible integration will interact in a

reconfigurable manner whereby changes in product, production processes

and resources and manufacturing organisation can be accommodated. To

- 60 -

facilitate flexible integration a generic framework'is necessary. This

requires three inter-dependant architectures (see figure 3-3): - namely

the Application, Information and Network architectures [Weston et al,

19881., 1

f

Information

Application Network

Figure 3-3ýA generic framework for flexible integration

The application architecture contains action (manufacturing) causing

statements which define the interactions between different machines on a

shopfloor and with their organisational planning and control systems.

Certain problems of flexibly creating this architecture have been
LI

addressed in AUTOMAIL [Weston et al, 1987b], and the Manufacturing

Message Ser vices (MMS) provided within the application layer services

defined by the MAP/TOP specification.

The information architecture is concerned with the control of access and

sharability of information, i. e. a library of manufacturing information.

Access to this library must be controlled ideally by a distributed

- 61 -

database management system which can provide controlled access,,, to the-

data distributed across the whole CIM system. An example of this kind of

work is the information administration system evolved as part of the US

Air Force ICAM programme. This system is known as the Integrated

Information Support System (IISS) [ICAMf 19831. Another example is the

initiative'of the US National Bureau of Standards (NBS) -an Automated

Manufacturing Research Facility (AMRF). The aim of this initiative was

to study the hierarchical modelling of the future factory, the standard

interfaces between, component systems and the integration of distributed

databases [Su et alt 1986]. This workýhas resulted in the specification

of an Integrated Manufacturing Data Administration System (IMDAS). ý

Recently work at Loughborough University by Rui [Rui et al, 1988] has

enhanced these concepts in creating a specification of an information

adminstration system for distributed heterogeneous databases.

The network architecture is responsible for the transmission of

information and is primarily based on physical connections, and protocols

(e. g a set of "words" relating to classes of manufacturing, entities such

as robots, PLCs. and NC machines). Various implementations of the ISO/USI

reference model such as the broadband MAP, TOP, and MAP-EPA will provide

a limited range of widely accepted network architectures. The'top-most

layer of the seven layer ISO/OSI reference model is the-applicationýlayer

which provides support functions for the users application software so

that virtual, connection between distributed computers can be achieved.

Part of this philosophy is the evolving MMS specification which has

companion standards which will define the "words" for manufacturing

entities. With respect to robots, it is not clear as to the eventual

extent of the robot companion, but draft 6 of the MMS specification

- 62 -

includes standard high level access protocol for starting, stopping, arid

downloading robot task programs along with a protocol for reading and

writing variables associated with robot control and monitoring functions.

There is some overlap of functionality between MMS and IRDATA but

generally MMS can be considered to provide an integration protocol

whereas IRDATA is mainly concerned with robot task program formats.

In the context of off-line robot programming, the robot programs should

be generated in a,, standard format and transferred to the target robot via

a standard robot words and connection mechanisms (the network

architecture). The manufacturing "sentences" (formed from an association

of "words") will define the way in which manufacturing entities interact

to create products and will be created by the application architecture.

The robot information will form part of library of manufacturing

information which will be administered by the information architecture.

In this thesis, the, author has aimed to generate generic solutions to

robot simulation problems while-referencing standards development which

can yield flexible implementations of the logical systems derived.

However, it has been necessary to utilise available software and hardware

sub-systems (e. g. GRASP, RACAL REDBOARD, ADEPT ONE robots) which were

not designed with integration in mind. Thus the solutions implemented

represent a mapping of the logical system onto specific hardware which

provides knowledge which can enable more generic and flexible solutions

to be derived in the future.

- 63 -

3.4 Conclusions

Computers are becoming more powerful with faster processing capability

which allows robot simulation to be animated at much faster speeds

approaching real time animation. Simulation has been successfully

applied in the workplace layout design and the evolution of many complex

robot and robotic systems.

As robots are becoming more sophisticated with more degrees of freedom

(and hence dexterity), more complex sensory and tooling systems and

improved kinematic control, more complicated robot tasks are applied. As

robot tasks become more complex and hence also the programming, the

effectiveness of robot simulation and off-line robot programming are

becoming apparent. The evolution of CAD/CAM integrated with robotics and

incorporating computer assisted modelling and programming facilities,

makes further automation in the design and programming phases possible.

Together with this the distributed management databases, simulation

neutral data format, robot program data format and communication

standards, considerable enhancement of CIM systems can be achieved.

- 64 -

CHAPTER'FOUR

ROBOT SIMULATION SYSTEM ARCHITECTURES

4.0 Introduction

Methods of simulating robots as an integral part of CADCAM systems will

represent a major step towards the planning and designing of manufacturing

'systems. Simulation techniques offer a very powerful tool which can be used

-for designing manufacturing cells from initial conceptual design, right

--through to detailed design and actual implementation in the factory. *

The word "simulation" has been used widely in manufacturing industry, and it

is necessary to make'a definitive statement as'to'the use' of the term

"simulation" in this thesis.

Computer simulation can-be categorised into two levels [BYG, 1987]. The

highest level, usually referred to as the strategic planning level, is used

to evaluate alternative factory strate-gies, 'deter'mine the required number 6f

manipulators or'machining stations to carry outa particular task 'and so oli.

ECSL [ECSL, 19861, HOCUS [P-E publication, 1986], "and SIMAN [Pegden and Ham,

1982] are commonly used examples of such systems of which there are many

[Miller, 19851. The simulation output normally consists of performance

measures such as reliability*, machine utilisation, throughput times, work in

progress, buffer queue performance and product arrival pattern

contingencies. It is not possible to use these systems to assist in the

design of individual robot/machine workplaces or to evaluate how robotic

systems will behave.

This is where a second and more detailed level of simulation is required.

This type of simulation makes use of powerful 3D computer graphics to help

engineers to design installations and in"the case of robotic systems to

- 65 -

evaluate the interaction of robotic devices and other devices within the

workcell. Detailed graphical simulation can be used for robot workcell

design and thereby enable feasibility studies to evaluate certain robot

attributes and to predict how a system will perform. This is useful for

example where there is a need, to check robot-reach capability, detect

collisions, 'and-estimate cycle times, and finally generate'robot programs

which are verified off-line. It will be possible to predict problems which

can only normally be experienced after purchasing and installing the

complete production system. This type of simulation will be referred to as

"simulation" or "robot simulation" throughout this thesis.

Although a clear distinction between strategic planning and detailed

graphics simulation'has been made, it is useful and often desirable for'a

hybrid simulation system to function in both areas. The performance-

evaluation, of the total system obtained from a strategic planning simulation

can be broken down and'utilised in detailed graphics simulation of a

particular work station., -AutoSimulation and Heron are systems which use

this approach as described in the previous chapter.

4.1 Objectives Of Simulation

The broad objectives of simulation applied to manufacturing systems, are

to:

train personnel in basic principles governing the design and use of -

manufacturing systems;

(ii) illustrate the elements of manufacturing systems so as to provide

- 66 -

experience in seeking alternatives and thereby improve decision making;

(iii) demonstrate feasibility of a design;

(iv) and in, the case of robotic systems to: provide a programming

facility whereby the robot task can be programmed without disrupting

production;

I

(v) reduce the on-line programming hazard.

In recent years improvements have, been made in robotics both in terms of

hardware and software. This has made robots valuable work tools in the-

industrial environment-and many new-robotic installations continue to be

developed. Unfortunatelyp the potential benefits which may be gained by

using these advanced mechanisms are not automatically achieved simply by

the purchase of a robot. A proper evaluation plan [Dooner, 1984] must be

followed to correctly assess the many details and options concerned with

the installation of robotic equipment. This robotic evaluation plan must

seek to balance the many complicated system interfaces and wisely select

from alternatives to create an efficient and cost effective system.

Simulation has proven effec. tive for evaluating manufacturing systems to

determine the relative merits, efficiency, and cost effectiveness of

alternative system designs. A close approximation simulation model of a

proposed robotic system-can be developed and exercised to predict how the

proposed system will perform and to illustrate the sensitivity of the

design to-various machine performance, and product arrival pattern

contingencies [Welch, 1983]. This model may provide valuable insights

- 67 -

into system performance before the purchase and installation of the

robotic system. Robot programs, can also be developed'off-line without

disrupting the production system.

4.2 Requirements'Of Simulation Models

There are a number of problems, that must be overcome before robot

simulators can be a very cost effective tool in real world situations.

In the robot simulators developed thus far kinematic models are used for

the manipulator. However the large majority of these robot simulators do

not account for"the dynamic effects that are inherent in the actual robot

[Sjolund and-Donatho 1983] i. e. 'the robot simulators represent an-

idealisation;

(i) with no backlash-in the joints, as feedback control dynamics is

considered to be instantaneous. ,

(ii)'with, no gravitational or inertial effects, so the effects of any

loads are not considered.

(iii) with no overshoot errors, as the links have infinite acceleration

and deceleration-capabilities.

A dynamic model would be required to truly simulate a manipulator in

terms of kinematics and dynamics. This model would vary for each robot

type. Most effort today involving the development of dynamic models is

motivated by a wish to improve the control or structural performance of

- 68 -

the actual robot., Although the motivation is apparent, simulation of

dynamic effects for animated graphics has not been implemented to any

great extent. It is evident from the literature overview that only a

limited number of dynamic simulation systems exist. Solutions for the

dynamic models are relatively difficult to develop and often involve

large computations. However even if the solutions are slow, it will

still be useful to simulate a dynamic model of the task in non-real time,

store the results for verification before downloading the program to the

real system. This opens up new application areas where high precision is

required.

Another modelling requirement is the creation of workplace entities.,

There is a need to consider how accurately the model should reflect the

entire workplace environment (i. e. how detailed the model should be).

This leads to further consideration of the conflicting aspects of very

detailed simulation models which can provide better accuracy and

visualization but are slow in animation.

4.3 Architecture of Simulators

Simulation involves the description of the robot's working environment

and simulation of motion. The robot's working environment will consist

of a variety of items of varying complexity.

This can be furt4er considered as "Robot Modelling", "Object Modelling",

"Geometric and Spatial Description", "Motion Specification" and.

"Animation".

- 69 -

4.3.1 Robot, Modellin

Robot behaviour modelling, was initiated as an application'of

time-and-motion methodologies to predict cycle times. In the model,

robot displacements are calculated baýed on the assumption that all

links'are rigid, and the graphics are updated as the robot'moves about

the workplace.

(a) Robot Joint Definitions -

Robot joints 'can be prismatic'or revolute and will be constrained

between minimum and maximum extensions. Figure 4-1 shows a revolute

joint with three degrees'of rotational freedom. For control

simplicity, the orientation' represented by is governed

by the following mýaximum constraints:

Y, Z)

x
Figure 4-1 A sin týle revolute robot joint with

ree degrees of freedom

n<ý<n
0 ý- 0

-< n
n<*<n

- 70 -

With this set of constraints, there will only be one possible

configuration which allows the end point (x, y, z) to be reached.

However, relaxation'of the joint constraints may result in

degeneracies (i. e. more than one set of joint variables that result

in the same position and orientation). In some instances this

degeneracy is used to provide additional flexibility in positioning

(e. g. as in the Adept robot). For this reason, robot simulation arid

robot control systems require robot configuration rules to avoid

ambiguity.

(b) Homogeneous Transformations for a Single Joint

Before the simulation-of robotAinematics and dynamics are discussed,

it is necessary to consider some basic mathematics of robot modelling.

Homogeneous transformations are'used to represent the translations and

rotations of prismatic and revolute joints. The homogeneous

transformation matrix for rotation about the X axis through 0

degrees (denoted by ROT[X, 01) is given by

0

ROT[x, ei 0
L0

0 0

cosO -sinO

sinE) cosE)

0 0

Similarly, the homogeneous transformation matrices for rotation about

the'Y and Z axes through 0 degrees (denoted by ROT[Y, 01 and

ROT[Z, O] respectively) are given by

- 71 -

cose 0 sinG 0

0100

ROT[Y, 01
-sinE) 0 cose 0

L0 -0- 011

cosO -sinE) 00

sinO cose 00
ROT[Z, G] 0010

0001-

The-displacement of a coordinate frame along the X, Y, and Z axes is

known as a translation transformation, and is given by

100 dx

010 dy

TRANS[XoYPZI 001 ýdz

0001

These transformations are used in the formulation of joint models.

Thus for example a roll-pitch-yaw angle set is defined as sequential

rotation about the Z, Y, and X axes [Ranky and Ho, 1985]. This method

is ambiguous and rarely used in robot simulation or robot control as

the interdependence of these rotations results in multiple angle

values when performing the inverse transformation.

An Eulerian (independent), angle set4s described in terms of a

rotation about Z axis followed by a rotation about the transformed Y

- 72 -

axis and a final rotation about the twice rotated Z axis. Eulerian

angle sets are normally used for simulation or actual robot control

because the inverse transformation may be performed without ambiguity.

Denoting the Z-Y-Z rotations as 0, P respectively, and

writing Cosý, Siný etc as Cý, Sý etc, the total transformation

matrix for a three degree of freedom revolute joint is given by: -

ROT[Z, fl ROT[Y, 01 ROT[Z, *]

or,

Cý -Sý 00 ce 0 so 0 cq, -sq, 00

Sý Cý 00 0, - 1-0ý0 sq, cl, 00
0010

-SE) 0 Co 0 0010

000 1- 000 1-
. -000

1-

The general form of the transformation matrix is given as

C4C0c, p-Ses, p -cýcosg, -sýCP ceseý 0
secec, P+Cýsq, -sýCosecýCp sese 0

-SE)C%P sestp Co 0

0- ,0- 1-

(c) Homogeneous Transformations for a Sequence of Joints

The above approach can be extended to represent two or more joints

which are sequentially linked. As the first example, consider a robot

- 73 -

arm which has a prismatic joint followed by one thatAs revolute about

Z (see-figure 4-2). By multiplying these matrices

P(X, Y, Z)

I

., I
P(X I Sy 0

PZI)
dx 0

Figure. 4-2 Example of translation before rotation

translation matrix rotation matrix link vector

X100 dx cý -sý 00x

YI 010 dy sý cý 00y

zp 001 dz 0010

-1- ý-
0001--0001--1-

The Cartesian transformation in the general form are given by: -

X? XCý-YSý+dx

yr XSý+YCý+dy

Zi Z+dz

11

- 74 -

Secondly, consider a robot'arm-which undergoes a rotation ý degrees

about the Z axis before translation along the X, Y, and Z axes (see

figure 4-3). Similarly, by multiplying these matrices

dx

P(X, Y, Z)

P(X', Y , Z')

P(X, Y, Z) _0

X X

Figure 4-3 Example of rotation before translation

rotation matrix translation matrix link vector

Xf Cý -Sý 00 10 0 dx X

yf SO CO 00 01 0 dy y

0 0. 10 00 1 dz

-1- -00
01-

-00
01-

-1-

The Cartesian transformation in the general form are given by: -

xf (X+dx)Cý-(Y+dy)Sý

yl (X+dx)Sý+(Y+dy)Cý

I zo z

75 -

(d) Inverting Homogeneous Transformations

In robot simulation and control, the system must be capable of

performing forward transformation (to convert joint angles to

Cartesian coordinates) and inverse transformation (to convert

Cartesian coordinates into individual joint-angles).
_

The inverting of

a homogeneous transformation is one of the basic elements for inverse

transformation and-for calculating the relationships between objects.

For a given homogeneous transformation T

,
Nx Ox Ax Px-

Ny Oy Ay Py
T

Nz Oz Az Pz

0 0 0 1

then the inverse of the transformation T is

Nx Ny Nz -P. N

T'1 Ox Oy Oz -P. 0

Ax Ay Az -P. A
Lo001-

The first 3x3 elements (rotational elements) of the matrix can simply

be inverted by transposition, while the elements of the last column of

the matrix are the dot products of the vectors concerned. The element

P. N is the dot product of vectors P and N, thus

P. N = Px*Nx + Py*Ny + PZ*Nz

- 76 -

4,

Similarly,

P. 0 = Px*Ox + Py*Oy + Pz*Oz and

P. A - Px*Ax + Py*Ay + Pz*Az

(e) Forward Kinematics of a Robot with two Revolute Joints

Consider a manipulator which consists of only two degrees of freedom,

with motion restricted to the X and Y plane (see figure 4-4). The

forward kinematic transformation is performed to determine the

end-effector or tool centre point (TCP) in Cartesian space. For

simplification, Cosýl and Sinýl are written as C1 and S1 etc.

x1l cl -Si 0 0 1 -0 0 Ll C2 'ý-S2 0 0 L2

yo, si cl 0 0 0 1 0 0 S2 C2 0 0 0

z1f 0 0 1 0 0 0 1 0 0 0 1 0 0

1-
-0

0 0 1 0 0 0 1 0 0 0 1 1-

The robot's end-effector or TCP in Cartesian coordinates are

XU = Ll*Cl+L2*Cl*C2rL2*Sl*S2 (2)

Yll = Ll*Sl+L2*Sl*C2+L2*Cl*S2 ý (3)ý, ý
Zf# =Z

- 77 -

Y

A

Y

tion

II I, Y"Z,)

Y

Ll

Figure 4-4 A robot with two revolute joints

A

Second joint rotation

Pit (Xil'y 11'e)

L2 02

- 78 -

(f) Inverse Kinematic Transformation of a Robot vith tvo Revolute

Joints

If the position (XII, Y11, Z11) of the robot's end-effector and the arm

lengths L1, L2 are known then inverse kinematics can be used to

determine the arm joint angles. In the inverse situation, ý1 and

ý2 can be calculated through solving equations (2) and (3).

XII - U*Cý1+U*Cý1*Cý2-U*Sý1*Sý2 (2)

Y" - L1*SO1+L2*Sý1*CO2+L2*CO1*SO2 , (3)

Half angle rules are used to simplify the complex angle
multiplications.

S(01+02) = Cý1S02 + Sý1Cý2

C(01+02) = C01C02 - S01S02

Rearrange (2) and (3), XII and Y" becomes

X" = U*Cý1+U*C(ý1+ý2)

Y" = LI*Sý1+U*S(ý1+ý2)

Substitute 01 = (01+02), we obtain

XII = U*Cý1+U*Cý, , (4)

Y" = U*Sý1+U*Sý, (5)

Square both sides of equations (4) and (5)

X, 12= Ll 2*C2 01+L2 2*C2 V+2*U*L2*CýMý1 (6)

y,, 2
= Ll 2*S2 ý1+U 2*S2 01+2*U*U*Sý1*Sýf (7)

Adding equations (6) and (7)

X, 12+y, 12. Ll 2
+L2

2
+2*U*U*(CýI*CýJ+Sý, *SýJ)

X,, 2+y, 12 = L12 +L2
2
+2*L1*L2*C(OF-ý1)

X,, 2+y,, 2
= Ll 2

+L2
2

+2*U*U*Cý2

which results in

- 79 -

02= Cos- 1 X, 12+y, 12 -LI
2

-L2
2 I

2*Ll*L2

Since 02 is known, therefore Sin02 and Cos02 are also known. If

we let constants a and b be defined by

a= Ll+L2*Coso2, and b= L2*SinO2

Substitute a and b into (2) and (3), we have

X" = a*CosO - b*Sinýl , (8)

Y" = b*CoOl + a*Sinýl 1 (9)

multiplying (8) and (9) by a and b respectively, we obtain

aX" =a2 *Cosýl - a*b*Sinýl (10)

bY" -b
2*CosOl

+ a*b*Sin0l (11)

Adding (10) and (11) lead to

aX11+ bY"= (a 2
+b

2)*Cosol

01 = Cos-1 -
aý +

+b
2)

This inverse transformation solution is specific to this example only,

as there is no general inverse solution which is appropriate for

robots with different configurations. If a robot has a more complex

configuration, then the inverse kinematics is more difficult. This

may involve the inverting of homogeneous transformations to perform

the require manipulation. For example, the location of the robot's

end-effector can be described as
RT

H= Tl*T2*T3*T4*T5*T6

where T1, T2 etc are the transformations for single degrees of

freedom.

- 80 -

In solving for individual joint angles, matrix inversion is frequently

a useful mathematical technique. For example once one joint is solved

then:

Tl- 1 *RT H- T2*T3*T4*T5*T6

etc

These specific inverse solutions may be applied to a range of robots

with a similar configuration, and several may be found in Snyder

(1985), Craig (1985), and Ranky and Ho (1985).

(g) Common Algorithms Used in Robot Simulators

Robot simulators can be classified as being kinematic or dynamic. In

the context of robotics, kinematic analysis is a study of robot

postures adopted at different times. The properties of the robot

motion depend on the geometry of its configuration and hence rigid

links are simulated to maintain fixed configurations between joints.

Most of today's industrial robots are kinematically simple, (although

some multiple axis robots are configured with complex joint

interconnection mechanisms to connect several links, which may be

simplified to serial joint mechanisms). The present generation of

kinematic robot simulators are capable of modelling robots with serial

links but complex joint interconnections would require special

treatment to deal with this ad hoc situation. Thus usually a robot is

represented by a series of links and each link is jointed with

reference to a coordinate frame. The robot link representation is

modelled in the same way as object modelling using the same object

modeller.

- 81 -

The Denavit-Hartenberg algorithm [Denavit and Hartenberg, 1955; Paul,

1981; Goldenberg and Lawrence, 1985; Cook and Vu-Dinh, 1985;

McCarthy, 1986] is the most commonly used [Gupta, 19861 in kinematic

robot simulators. The Denavit-Hartenberg analysis uses closed form

equations (the most efficient means of expressing their kinematics

[Paul and Zhang, 19861) where the transformation of the robot

end-effector to the robot base is directly equivalent to the

concatenation of the sequential transformations between each robot

link from the robot end-effector to its base. The general expression

of the forward kinematics of an n-jointed robot is:

robot base base joint 1 joint n-1
TTTT

end-effector joint 1 joint 2 joint n

Z4

ze as
L

X6

do
ZI

zi

94

ez

as

JrO-xI

Figure 4-5 Assignment of coordinate frame to each robot joint for the
formulation of homogeneous transformation matrices

- 82 -

Figure 4-5 shows a six degrees of freedom Puma robot with a coordinate

frame assigned to each joint. The formulation of an homogeneous

transformation matrix for each joint is discussed later.

The Denavit-Hartenberg method is based on 4x4 homogeneous

transformation matrices with special conventions for applying

coordinate frames to the structure of a robot. These conventions

include:

(i) The analysis starts with joint 1 (the moveable Joint
attached to a fixed reference) and finishes at link n.

(ii) A right handed coordinate frame must be applied to
a joint with its Z axis always arranged to be in line
with the axis of joint rotation/translation.

(iii) The X-axes of all of the joint frames are aligned in
the same direction as the robot base frame.

(iv) All revolute joints must rotate about their respective Z axes.

(V) All prismatic joints must translate along their respective Z axes.

The following rotation and translation parameters (see figure 4-6) are

required to form the 4x4 homogeneous transformation matrix at joint i.

JOINT I

JOINT 1- 1 JOINT(4-1

LINKj-1 LINK

zi-I
Xi-I

NKj+j

N
Figure 4-6 Rotation and translation parameters required for the formulation

__
of homogeneous transformation matrix at joint i

- 83 -

al
distance between Z(i+l)and Z(i) axis translated along
the X(i) axis

cc rotation about the X axis of joint i+1 with respect
to joint i

d distance between X(i) and X(i-1) axis translated along
the Z(i) axis

0i rotation about the Z axis of joint i

The relationship between the joint coordinate frame i-I and i can be

expressed by a homogeneous transformation (Denavit-Hartenberg) matrix

Ti, and

cei -Cctisei SociSOi aicei
Ti S E)i CotiCE)i -Saic01 aiSE)i

0 S oc ca d i i
0 0 0 1

The kinematic model requires kinematic data for the robot involved. A

typical example of input data required for the GRASP robot simulation

package includes:

(i) Spatial relationships between joints and the type of degree of

freedom (either revolute or prismatic);

(ii) Spatial relationship between the tool attachment point (i. e.

mounting flange) and the last joint of the robot;

- 84 -

configuration rules that the robot has to obey (for reaching

positions which can be attained with different configurations);

(iv) the initial position of the robot expressed as a set of joint

extensions;

(v) minimum and maximum joint constraints;

robot park position;

(vii) joint velocities;

(viii) joint accelerations.

An example of such inputs for an industrial robot with six degrees of

freedom is to be found in the STAR syntax as shown in figure 4-7. The

syntax of STAR is chosen because this is a dynamic robot simulation

system which can be used to illustrate that the kinematic input data

is the skeleton of dynamic robot simulation.

Kinematic robot simulators face problems when there is a need to model

high precision tasks in which the dynamic characteristics of the robot

affect its performance. This provides the motive for taking dynamic

effects into consideration, and as a result a few dynamic robot

simulators have been developed.

- 85 -

1: ! -
2. STAR MODEL OF A SIX DEGREE OF FREEDOM INDUSTRIAL ROBOT.

3:! CONNECTIVITY DEFINITION STATEMENTS.
6: REVOLUTE(BASE, WALST)- PIVOT
7: REVOI. UTE(WALST. LOWERAR. M)- SHOULDER
8: REVOLUTE(LOWERARM. UPPERARM)- ELBOW
9: REVOLUTC(UPPERAR. M. WALM- BEND
10: REVOLErrt(WAIST. HAND)- TWIST
11. REVOLUTE(HAND. TOOLHOLDER)- SPIN
12.! JOINT LOCATION DEFINITION STATEMENTS.
13: COORDINATES(PfVOT)- 0 10 0.0 50 0.50 10 0.50 10 0
14: COORDDIATr-S(SIIOULDER)- 0 70 0.0 70 50.50 70 0.50 70 0
11. COORDINATES(ELBOW)- 0 139 0.0 139 50-T 139 0.50 139 0
16: COORDINATES(BEND)- 67 139 0.67 139 50.150 139 0,150 139 0
17. COORDINATES(TWIST)- 75 139 0.100 139 0.75 139 -100.75 139 -100
IS: COORDINATES(SP! N)- 95 130 0.95 0 0.200 130 0. =O 130 0
19: ! TOOL CENTER POINT (TCP) LOCATION STATEMENTS.
20: COORDINATES(TCP)- 93 130 0.83 0 0.200 130 0
21: 1 OR AVFTATIONAL CONSTANT AND FIELD VECTOR STATEMENTS.
r- CONSTANT GRAVITY- 1.0
23; DATA GRAVITY- 0 -980 0
24: ! LIN K INERTIAS DEFINITION STRAEMENTS.
25. WEIGHT(WAIST. PIVOT)- 25.35 00
26: WEIGHT(LOWERARM, SHOULDER)- 15,0 35 0
21.7. WEIGHT(UPPERAR. M. ELDOW)- 15.35 00
23-. WEIGHT(WRIST. BEND)- 5,5 00
29: WEIGHT(HAND. TWIST)- 5.5 00
30: WEIGHT(TOOLHOLDER, SPIN)- ZO 01
31- 1 JOINT ACTUATOR TORQUE LIMITS.
32. LIM IT FORCE(PIVOT) - 3E7.. 3E7
33: LIMIT FORCE(SHOULDER). -. 35E7.35E7
34: LIMIT FORCE(ELBOW)- -. 25E7, ME7
35: LDAIT FORCE(BLND)- 25E6.. 25E6
36: LIMIT FORCI! (TWIST)- -. 4113. AES
37: LIMIT FORCE(SPV4)- -. 2E5. =
38; 1 STATEMENTS FOR RETRrVAL OF ROBOT
39: 1 LINKS'GRAPHICS DATABASE FROM DATA FILES.
40: SHAPE BASH @ PIVOT- G: BASE
41-. SHAPE WAIST @ SHOULDER- G. WAIST
42. SHAPE LOWERARM 0 ELBOW- GIOWER
43: SHAPE UPPERARM @ ELBOW. G: UPPER
": SHAPE WAIST BEND- G. WAIST
45: SHAPE HAND TWIST- G. HAND
46: !--
47: 1 DEFINITION OF OBJECTS IN THE ROBOT ENVIRONMENT.
48:! --
49: 1
50: 1 DEPINR AN OBJECT CALLED TOOL FOR GRIPPING.
51. OBJECT- TOOL
52.! PUT IT AT THE END OF THE ROBOT ARM.
53: COORDINATES(TOOL)- 85 130 0.83 0 V, 00 130 0
54: WEIGHT(TOOL)- 1.2 .10-
55: 1 AFFIX AN AUXILIARY COORDINATE NAMED GRIPPER TO THE
56: MOOL AT THE CENTER OF THE TOOL'S GRIPPER FINGERS.
37: AFFIX GRIPPER - 3, TOOL
58: COORDDIATES(CRIPPr-R)- 00 10.0 10 10,10 0 10
59: 1 DEFINE AN OBJECT NAMED TABLE III FRONT OF THE ROBOT ARM.
60: OBJECT- TABLE
61: COORDINATES(TABLE). 100 0 0.100 0 10.200 00
62.1 DEFINE AN OBJECT NAMED STOCK 0*4 THE TABLE.
63: OBJECT- STOCK
64: COORDINATES(STOCK)- 90 60 40.90 60 100,100 60 40
65: WEIGHT(STOCX)- 4,2 25 0
66:! AFFIX AUXILIARY COORDINATES TO STOCK.
67: AFFIX STOCKTOP - 3- STOCK
68: AFFIX Alk)VESTOCK-)- STOCK
69: COORDINATES(STOCKTOP)- 0 33 0.0 35 35.35 35 0
70-. COORDINATES(ABOVESTOCK)- 0 45 0.0 45 45.45 45 0
71: 1 DEFINE AN OBJECT NAMED FIXTURE ON THE TABLE.
72. OBJECT- FIXTURE
73: COORDINATES(FIXTURB). 110 60 -40,110 60 0.200 60 -40
74-. WEIGHT(FIXTURS)- 3.13 0
75: 1 AFFIX AN AUXILIARY COORDINATE TO FIXTURE.
76: AFFIX HOLE - 3- FIXTURE
77: COORDINATES(HOLE)- 050.0 3 5.3 30
79.1 AUXILIARY COORDINATE SYSYTEM FIXED IN SPACE.
79: AFFIX HOME - 3, BASE
SO: COORDINATES(HOME)- 85 120 0.93 120 100.200 120 0
11.1 STATEMENTS TO RETRIEVE THE GRAPHICS DATABASE FOR THE OBJECTS.
Ill SHAPE TOOL- G. TOOL
93: SHAPE STOCK- O: STOCK
84: SHAPE FIXTURE- O. FIXTURB
15: SHAPE TABLE- G. TABLE
m RETURN

Figure 4-7 Excimple robot simulctor inputs for a robot with six degrees of
freedom (adopted from Hornick and Ravani, 1986)

- 86 -

These simulators represent a step change which indicates the direction

of future robot simulators, and open up the opportunity for more

precise operations where the accuracy requirement is critical. A

kinematic model also forms an essential part of a dynamic robot

simulator. The frequently referenced algorithms in the context of

dynamic simulation include the Lagrangian method [Murray and Neuman,

1984; Wang and Kohli, 1985] and Newton-Euler method [Khosla and

Neuman, 1985]. The Lagrangian method is based on energy law in which

the forces or torques are described in terms of the differences in

kinetic and potential energy, whilst the Newton-Euler method is

deduced from Newton's laws of motion. The Lagrangian method presents

a systematic way of forming dynamic equations in closed form whereas

the Newton-Euler method is based on a recursive algorithm. The

computation required for dynamic robot simulation is significant when

compared with kinematic robot simulation due to the complexity

involved in the equations. The computation involved in these two

methods has been quoted [Ramaswamy et al, 1985] in terms of the number

of links involved. With the Newton-Euler method, the amount of

computation increases linearly with the number of links, whereas the

Lagrangian method increases with the fourth power of the number of

links.

The Lagrangian algorithm for a robot with n joints can be

described as

E-K-P

where K is the kinetic energy
P is the potential energy
E is the difference between the kinetic and

potential energy

- 87 -

The Newton-Euler equation of motion for a robot with n joints

can be described as

T- I(q) q'I + C(q, ql) + G(q)

where

T is the torque/ force applied
I is anxn inertia matrix
C is anx1 vector defining the coriolis and centrifugal

terms
G is anx1 vector defining the gravitational term
q is coordinates
q, is velocities
q'I is acceleration

In addition to input data required for the kinematic model, the

dynamic robot model takes the weight of a robot arm into

consideration# and formulates the relationships between forces acting

at each joint and its associated displacements, velocities and

accelerations, to predict the dynamic properties of a robot. As is to

be expected, dynamic robot simulators can only represent the dynamic

behaviour of a single robot since no two robots are identical in every

aspect even though they were of the same model supplied from the sanlýa

manufacturer. The robot model is constructed based on dynamic

information obtained from experiments. To complicate the problem

further, individual robots would suffer different dynamic

characteristics over time. Thus a dynamic robot simulator is a

representation of a close approximation of real robots' dynamic

behaviour provided that parameters of the model can be established.

Although different algorithms are used in different robot simulators,

their eventual aim is the same (i. e. modelling and off-line robot

programming). Both kinematic and dynamic simulations are integral

parts of a robot simulator.

- 88 -

4.3.2 Object Modellin

Let us consider some of the necessary features of the geometric part

of the modeller of the robot simulator. Geometric representation can

be broadly divided into wireframe and solid representation. Although

wireframe representation can be ambiguous, the data structure is

relatively simple (containing edges and vertices). The visual

ambiguity of wireframe representation can be reduced [Woodwark, 1986]

by using perspective projection and by depth-cueing techniques in

which the intensity of the lines in the wireframe is reduced with

distance away from the viewer. A wireframe picture can be obtained

quickly by applying a projection to each vertex. Picture segments are

normally held in a display list, and special hardware performs

transformations on every element in the list so quickly that fast

manipulation of objects in graphics space can be achieved (i. e.

wireframe can be made to move or spin on the screen). The McAuto

simulator is an example of this when it uses an Evans and Sutherland

refresh graphics terminal with hardware transformation. The modelling

transformations just described can also be handled dynamically in the

same way. The wireframe technique is useful for motion animation and

constraint checking, but collision detection among objects is not

possible.

Commonly either "Constructive Solid Geometry" [Requicha, 1980] or

"Boundary Representation" [Braid, 1975] solid modelling techniques are

used to allow a three dimensional model of the robot and workplace to

be constructed from simple primitive shapes such as cuboids, regular

prisms and cylinders or generally by closed polyhedra. Figure 4-8

- 89 -

WIREFRAME PRESENTATION

BOUNDARY REPRESENTATION

bounded primitives

mait spaces

six planar half spaces
CONSTRUCTIVE SOLID GEOMETRY

Figure 4-8 Differences between Wireframe. Boundary
Representation and Constructive Solid Geometry

(adopted from Requicha, 1980)

- 90 -

shows the differences between wireframe, Boundary Representation and

CSG.

In Boundary Representation (Brep), a solid is represented by a number

of segments or faces, bounded by edges and vertices. This face

information (possibly including simply curved surfaces) gives a method

of determining solidity. The Constructive Solid Geometry (CSG) (also

known as Set-theoretic) defines solids based on primitives or sets of

half spaces linked together by boolean operators. It contains no

explicit data about edges or vertices.

Since the data structure of solid modelling is relatively complex, the

retrieval of a model would take a long time. Although many simulation

systems use solid modelling representations, wireframe models can be

produced using converting algorithms for faster screen display. Since

Set-theoretic solid models contain no explicit data about edges and

vertices, producing wireframe models from Set-theoretic models is more

difficult than from Boundary models.

Typical robot simulators will facilitate model creation, using "ease

of use" data input methods, and allow the created models to be stored

in, and recalled from, a library. When created the robot and

workplace model may be viewed and manipulated in standard ways e. g.

displayed graphically in plan, front and side elevations, and in

perspective and plane parallel projections from any viewpoint. The

spatial relationship between entities in the model (the robot and its

equipment for example) can be controlled using the normal CAD input

and display practices.

- 91 -

4.3.3 Geometric and Spatial Descriptio

All model based programming languages (including robot simulators) use

a structured geometric database (figure 4-9). The geometric database

has complete knowledge on the geometry of the environment to the. needs

of the modelling objective. The simulation model is normally

constructed based on coordinate frame concepts [Van Aken and Van

Brussel, 1987] to represent the physical environment layout (figure

4-10), and each frame is described with reference to the owner frame

in the hierarchy above. An important element of such coordinate

frames is known as the "Centre Frame". If an object is gripped in a

robot gripper, it is no longer evident to reason on the gripper motion

in order to obtain the desired robot motion for the object. Any frame

which belongs to an object gripped by the robot can be declared as the

new centre frame. Any subsequent motion specification then refers to

that frame (figure 4-11).

WORLD COORDINATE FRAME

-T

ROBOT

JOINT IL TUR

LV

Figure 4-9 Structure of a geometric database

- 92 -

OBJECT FRAME

ROBOT
BASE
FRAME

WORLD FRAME

Figure 4-10 Coordinate frame concept

- 93 -

Before gripping object
Centre frame = Gripper frame

After object is gripped
Centre frame = Object frame

Figure 4-11 Centre frame concept

4.3.4 Motion Specification

Typically input data methods are also provided to allow robot

movements to be controlled in conventional ways such as in "world",

"tool" and "joint" coordinate systems. For example, the user may

specify the desired position of the tool centre point in world

coordinates with the robot simulator performing the inverse

- 94 -

OBJECT FRAME

transformations required to determine all the Joint extensions of the

manipulator. A number of such positions can be stored as a series of

sequential events in a manner analogous to the teach method of robot

programming. Subsequently, a time based simulation can be executed to

represent the movement of the robot (relative to it's peripheral

equipment, such as machines, feeders, conveyors and components),

between these various workplace coordinate positions. During this

simulation process, interference detection software can be executed so

that collisions in the workplace can be flagged. This is inherently

possible through the use of Set-theoretic or Boundary Representation

modelling techniques, although it can be extremely time-consuming.

As stated earlier, the present generation of robot simulators, can be

considered essentially to be kinematic in nature, although commonly an

estimate of the cycle times related to various workplace movements can

be obtained by the assignment of velocity information to the

manipulator model. Thus the dynamic characteristics of the robot and

it's workplace elements are not usually accurately modelled. For

example, in a high speed contouring application the real manipulator

will be subject to backlash, deflection of manipulator links,

following error, etc. However, facilities for obtaining cycle time

estimations can be particularly useful as this information can be used

in investment appraisal and resource planning exercises.

- 95 -

4.3.5 Animation

Normally, robot simulation systems can offer capability analysis

including joint violation checking,. reach verification, cycle time

estimation and collision detection. Vhen robot motions are specified,

animation is essential for performing the robot capability analysis.

The incremental method and the swept-volume method are the two known

methods for collision detection.

The swept-volume method exists in current solid modellers, but its

application to interference checking is still a research topic [Leu,

1985]. The principle involves the computation of the volume swept by

the robot and checks if any object lies within this swept-volume. The

advantage of this method is that checking has to be done only once.

However, there are major shortcomings with this method. The

computation of the appropriate representation of the swept volume

creates major difficulties. In addition, we are often concerned with

several moving objects with a degree of unpredictability in their

movement (at least as to when it might happen). The swept volume

technique could not be used in such instances. It should therefore be

consider only as an initial check. If any collision is likely to

happen then the incremental method should be followed as an accurate

check.

Checking of interference with the incremental method is performed at

every small increment of robot movement. Interference checking based

on this method is readily available if a solid modeller is used. The

checking is done incrementally for collision between any number of

- 96 -

specified objects, and although this method is relatively simple, it

is very time consuming when there are many objects involved.

If any potential problems or difficulties are identified, the

programmer can modify the planned robot motion before the robot

program is post-processed and downloaded to the target robot. Some

robot systems are extended from robot workplace layout design tools to

off-line robot programming tools, and include a robot language

post-processor. Methodologies involving post-processing will be

discussed in the following chapter.

This chapter has attempted to briefly outline the way in which current

robot simulators work and to identify shortcomings and potential for

future development. This forms the basis for future chapters where an

architecture of the type described is used as the basis for creating

an enhanced off-line programming environment featuring ease of use

interface facilities, novel calibration tools and novel facilities for

product design integration.

- 97 -

CHAPTER FIVE

METHODOLOGIES OF POST-PROCESSING FOR OFF-LINE

ROBOT PROGRAM GENERATION

5.0 Introduction

The post-processor is an important element of an off-line robot programming

system, as it allows the commercially available robot simulators (design

tools) to be used as off-line robot programming tools. The post-processor

translates output statements from a robot simulator to a target robot

language. Typically the sequence of motion and data required to drive the

robot can be transmitted through the use of a serial or parallel data link

between an off-line computer (where the proposed system is usually designel

and simulated) and a robot controller. When using contemporary systems th.,

post-processor translates from the model output into a vendor specific robot

language, and extracts location information from the simulation model. The

design of a general post-processor which is capable of translating the

output of multiple robot simulators to multiple robot programming languages

is an extremely complex problem and requires further consideration

(discussed later in this chapter). Figure 5-1 describes a general off-line

robot programming system.

There are two basic ways of describing robot movements in robot control

systems; one describes the manipulator movements in terms of the

manipulator end effector location (in compound transformation or absolute)

whilst the other describes the movements in terms of manipulator joint

angles. The former approach is suitable for future and present generation

robots with a language processor installed in their controllers, whilst the

latter is only specifically linked to earlier generation robot languages.

In the U. K. p there have been several efforts to establish a post-processor

for robot simulators including GRASP. There are a number of acadamic

institutions working on this topic involving different robots and

- 98 -

ROBOT SIMULATOR

ROBOT
MODELLER

GEOMETRIC WORKCELL TASK ORKCELL VISUAL

MODELLER UT) LLAYOUT DESIGN DESCRIPTIONE DISPLAY
UNIT

I RNAL NTERNAL
1

ROCESS(PRE-PROCESS(0`

W RKSTATION

KEYBOARD

ool,
ROBOT MOTION
WITH LOCATIONS
AND ORIENTATIONS DATA

CORRECTED
PARAMETERS

I
POST-PROCESSORI

ROBOT
PROGRAM ADEPT ONE
WITH DATA

F-1

ROBOT SYSTEM

_CALIBRATION

-I
REAL ROBOT SYSTEMýý=

I

Figure 5-1 General off-line robot programming system

- 99 -

applications. These efforts include the work being carried out in the

Department of Engineering at Bristol Polytechnic [Andrews and Cliffe, 1986],

where a post-processor is coded to translate the output of GRASP into the

high level robot language AR-BASIC for the programming of a Reflex

industrial robot. At Queen's University in Belfast [Wright, 1987], work is

based on the post-processing of the output of GRASP into joint angles via an

APPLE microcomputer to the ASEA IRB6 robot. BYG systems, has also

contributed its effort in making its robot simulator more versatile by the

development of post-processors for different robot languages. So far there

are essentially two different post-processors developed by that company to

service, VAL I, VAL II and ASEA AR Language which are suitable for the

Unimation family robots, Adept and ASEA series robots.

As a starting point for this research, the author carried out a study

regarding available post-processors as these provide an essential link for

an off-line programming system. The feasiblilty of generalising the

post-processor was also studied. In the early phases, the author devised a

specific post-processor which required sufficient knowledge of the chosen

robot simulator (GRASP), available target robots (two Adept Ones) and

methods for dealing with peripheral devices such as sensors, vision systerta

and tooling, and the functionality available from the corresponding robot

language (VAL II). The findings of this work have been used in formulating

the following observations.

- 100 -

5.1 Discrepancies Between Robot Simulators and Real Robot Systems

There are a number of facilities available in robot simulators which are

not available in real robot languages and vice versa (e. g. the real

operation of sensors and vision systems cannot be easily simulated and

instead the robot simulators use control conditions to emulate sensors

and vision systems).

As previously described, the coordinate frame concept is used in most

simulators. In fact the majority of robot simulators use an eulerian

angle set (chapter 4) for any kinematic (direct forward and inverse)

calculation. However, in the case of the Adept One robot, although the

eulerian angle set is used, the coordinate frame uses a right-handed axis

set but it's tool reference frame is rotated through 180 degrees about

the Y axis and 90 degrees about the rotated Z axis (see figure 5-2).

Y

Y
x Adept One robot tool frame

GRASP world frame
z

Figure 5-2 Difference in frame concepts between GRASP and
Adept One robot systems

In order to overcome this discrepancy, the tool attachment poirkt of the

robot has to be rotated about the Y axis by 180 degrees in the robot

- 101 -

simulation model, this leads to the programming of the robot TRACK (a

specific name used in the GRASP system which comprises event-dependant

motion sequences) to include the rotation of 180 degrees about the Y axis

(except all locate statements).

In simulation, the robot end-effector's coordinate frame is the

coordinate frame of any tool or object currently attached to the robot

flange. However, in real robot systems, the robot end-effector is always

referred to as the robot flange. The difference between these two frames

should be corrected by using the TOOL statement in VAL II. Nevertheless,

the translation between outputs from a robot simulator and a robot

language can be made into a one to one conversion.

5.2 Theories Used in Post-processing for Different Generations of

Robots

Early generation robots such as the ASEA IRB6, do not include a robot

programming language, but use very simple command statements and

condition looping. Such a robot can only take Joint angles corresponding

to individual robot joints and so the post-processor must be capable of

converting simulation output from cartesian coordinates into individual

robot joint angles. The robot controller is not sophisticated enough to

deal with high level languages and the data communication capabilities

for supervisory' systems are too simple for data transmission, although

a microcomputer can be used as an external supervisor which can cope with

high level to lower level robot language conversion. This approach has

been adopted by Queen's University, Belfast [Wright, 19871.

- 102 -

Modern robot controllers are likely to incorporate a language processor

such that the robot movement can be driven by language command statements

and location data. This makes the development of a post-processor

easier. This type of post-processing involves a conversion of the

simulated sequences of motion into corresponding robot language

statements. This approach was used for the development of the

post-processor which is described later in this chapter.

5.3 Basic Approaches of Post-proCessing for Off-line Programs

Post-processing facilities can be system dependentt application dependent

or generic. System dependent post-processors are the most commonly used,

and function by interpreting and translating program statements of a

robot simulator into a specific robot language. In other words, system

dependent post-processors are specific to one robot simulator and one

robot language. System dependent post-processing facilities are the

building blocks for application dependent post-processors which are

tailored specifically for a particular application with custom "macro"

sequences. Generic post-processors are theoretically capable of

translating the output of multiple robot simulators into robot languages

for different robot controllers. Since robot languages differ from one

another, the creation of a generic post-processor as described is not

considered to be an achievable task. The most probable solutions for

future implementation are thus expected to rely on standard data formats

or enabling technology (see chapter three).

Assuming access to the source code of a robot simulator, post-processing

software modules can be written to modify certain data structures used by

- 103 -

the robot simulator to provide new data structures as required by a

particular robot. We will see from the following discussion that the

person writing the post-processor may only have limited access to the

various data structures used internally by the simulator. This utimately

can limit the available functionality of the post-processor. For

example, in certain cases the vendor of the robot simulator provides

limited access data structures via a so called standard, interface. In

such circumstances after a simulation exercise, internally created data

structures can be post-processed into a robot-independent data format,

which in the case of GRASP, is known as GRDATA. Here the post-processing

function within the GRASP system outputs those entities that have been

referenced in the robot TRACK, the program logic and sequence and the

gripper or tooling to be used. This is effectively fast post-processing

since it does not need to post-process every entity in the simulation

model. However, the GRDATA format cannot be used for any other purpose

except for off-line robot program translation and to convert a VAL II

program into a TRACK. This robot-independent data format (e. g. GRDATA)

is then translated into a specific robot language (VAL II in this study)

using a specific robot language translator. The concepts involved are

depicted by figure 5-3. This approach of post-processing has the

advantage of more efficient use of data, reduced processing time, and,

more importantly, a reduced chance of error (computation error) during

the processing.

For the study purposes and without the supplier's source code, the author

derived a system dependant Post-processor (see figure 5-4) which was

coded in PASCAL and created in a modular fashion. Access to the

simulator's data structures was through GRASP model output. The first

- 104 -

ROBOT SIMULATOR
ROBOT

MODELLER

VISUAL
WORKCELL TASK --- - ---- DISPLAY

LAYOUT DESIGN DESCRIPTION

Zý;

ý
UNIT

INTERNAL L-1
r-PR OCESSOO

WORKSTATION
ROBOT MOTION &
WITH LOCATIONS KEYBOARD
AND ORIENTATIONS DATA
(e. g. GRDATA OR
INTERNATIONAL STANDARD)

POST-PROCESSOR

ROBOT
PROGRAM
WITH DATA

Figure 5-3 Post-processing methodology used by vendors of simulators

ROBOT SIMULATOR
ROBOT

MODELLER VISUAL
DISPLAY

WORKCELL TASK
UNIT

EXTERNAL

WORKSTATION

KEYBOARD
WORLD MODEL
WITH LOCATIONS
AND ORIENTATIONS DATA

POST-PROCESSOR

ROBOT
PROGRAM
WrrH DATA

Figure 5-4 Post-processing methodology derived by the author

105

module extracts spatial relationships between entities in the workplace

of a simulation model. This information is stored in a data file ready

to be used as a reference data file. The second module of the

post-processor translates motion sequences (TRACK statements) into a

specific robot language (VAL II). During the study, the post-processing

facility has been enhanced through several stages.

(a) Vorld State Post-processin

During the GRASP simulation, if the programmer stores the robot move

positions relative to the robot base, the problem of post-processing the

GRASP output source file can be simplified. It would actually be very

easy within GRASP to ensure that this always happened on output of data

intended for post-processing. However, there are drawbacks with this

approach. For example, if any entity being referenced in the TRACK has

been re-arranged in the simulation model then the TRACK will be invalid.

Furthermore, calibration of robot programs generated off-line and

conversion of robot programs into a TRACK are not possible with this

approach. Assuming the robot base and global workplace coordinate

systems coincide then complex transformations for processing the output

source file are not necessary. At this stage, the post-processor

consists of three modules (see figure 5-5a, b and c). Appendix A. 1 shows

an example of the original TRACK and the off-line robot program generated

by this approach.

The first module, referred to as SELECTION, operates so that the

programmer will be asked whether a TRACK is to be processed and is

prompted to provide a name for it. Dependant on the operator responsest

- 106 -

$to rt
enter name of

GRASP
GRASP source file source

file

enter TRACK name F-
which is to be processed

[-s-eqaýých through liný b line
u until TRACK name is

70und

read a lin-e7
+

new
write a line F TRACK

file
Lno

is line
cont9inin a ?
semi-co o

yy ee Ss

end

Figure 5-5a Flow chart of SELECTION module

start

enter name ýf GRASP
new TRACK file TRACK

file
i

enter name of
output data file

call procedure INITLAUZINGMATRIX
to initialize matrix conditions

assign 0 to each matrix element
i

call procedure POSITION
to start extracting positional information

(:::
enDd

Figure 5-5b Flow chart of EXTRACTION module
- main program

107

E while not end
of new TRACK file 'A

GRASP
TRACK
file

new
location
file

Figure 5-5b Flow chart of EXTRACTION module
- procedure POSITION

- 108 -

enter name of
new location

Lfifle
i

enter name of
output VAL fl program I

write '. PROGRAM' &
-80 program name I

i

write comments
i

r
write SPEED

new
read a line location

file

if line
contains keyword

POSITIO

-0

+yes

a yes
10

write 'SEr POINT - TRANS(

rite the locatio VAL 11
orientations program

rite NI (to make sure the
gripper is opened before I

any robot movement)

read from top
of data file

read a line

if line yes
contains key ord write MOVE point

OSITIO

no

if Ii
contains le)IImi'd writ, CMI. El

GRIP

no
ý0
CY

4)"D if line
0V contains keywo, ý,

...........
LEA

write
-STOP

write -------------------------- -

end

Figure 5-5c Flow chart of VALFORMATTING module

- 109 -

the post-processor will automatically select the appropriate TRACK from

the GRASP output source format.

Example output from SELECTION
TRACK EXAMPLE
STEP1 : POSITION WORKPLACE (SHIFT X 200 Y 200 Z 800 ROTATE Y 180),
STEP2 : POSITION WORKPLACE (SHIFT X 200 Y 200 Z 780 ROTATE Y 180),
STEP3 : GRIP OBJECT,
STEP4 : POSITION WORKPLACE (SHIFT X 200 Y 200 Z 800 ROTATE Y 180),
STEP5 : RELEASE OBJECT TO BENCH,
STOP;

The second module, referred to as EXTRACTIONp operates to enable the

selected TRACK to be processed further to obtain move coordinates and

orientations of the robot end effector and present the data in an

appropriate format, as follows:

Example output from EXTRACTION
POSITION 200 200 800 0 180 0
POSITION 200 200 780 0 180 0
GRIP
POSITION 200 200 800 0 180 0
RELEASE

The third module, referrred to as VALFORMATTING, generates a VAL II robot

program based on the accumulated data. This gives the flexibility of

processing data and then using a different formatting program to convert

into specific robot programs or codes.

Example output from VALFORMATTING

. PROGRAM EXAMPLE_A
Job number 888

SPEED 50 ALWAYS
SET POINT1 TRANS(200,200,800,0,180,0)
SET POINT2 TRANS(200,200,780,0,180,0)
SET POINT3 = TRANS(200,200,800,01 180t 0)
MOVES POINTly
MOVES POINT2,
CLOSEI,
MOVES POINT3,
OPENI,

. END

- 110 -

The World-state post-processing modules are simple but do not facilitate

the conversion of VAL II robot programs into TRACKs. Calibration and CAD

model updating are also not possible as there is inadequate information

about the model. These shortcomings lead to the evolution of a

Hierarchical-State Post-processing approach.

(b) Hierarchical State Post-processing - 'Top-Downt Approach

The second approach to post-processing investigated by the author is

similar to the first except that it can deal with more complex

situations. For instance CAD programmers are allowed to record move

positions in either absolute form (i. e. relative to the global workplace

coordinate frame) or relative form (i. e. relative to the coordinate

frame of an entity within the model). This has the advantage of

permitting the modification of the relative positions of entities in the

model without the need to reprogramme the task locations. This

post-processor version comprises three modules coded in PASCAL (see

figures 5-6a, b and c).

The first of these modules, called PROCESSOR1, is used to extract the

spatial relationships between entities and objects in the model. This

information is stored in a data file, ready for use in the second module.

PROCESSOR1 extracts information using a top down approach (figure 5-7).

The data file comprises random access data records, and each record

stores the name of the object and the name of its owner object, with

their spatial relationships defined within a simulation model presented

in a4x4 matrix. These data can be used for calibration and updating

of the CAD model. They can also be used as a neutral data format for

- ill -

C
sta rt

ýF

enter name of
GRASP model

GRASP
lip read a line model

source
file

no if entity at
the top-most hierarch

is found

yes

extract spatial relationship
of first entity which belongs to workplace

10,

IF
-

extract spatial relationship

v

down the hierarchy GRASP

> i. e. search the source file database
0

Y

r- 0

X. C
V
Ca 3C atial relationsh xtra SIPC tr(sp e c ý

,
l

unti I on entity which o

[

u l
D. C s ot It own any item do e s n aC
X _ _

no until the lowest t h 10 w e st
hierarchy is reached hy

e
13 r e a ched

yes

no t the lost is it the lost
th e top_most e top-most

h ierarchy ierarchy

yes

en-d--)

Figure 5-6a Pre-processor adopted with "TOP DOWN" approach

- 112 -

start

enter name of
GRASP database ýreate in pre-processing

GRASP
read spatial relotionshipL database between entities

enter name of GRASP
GRASP rqjdeI sErce,.

].

4 model le source
file

er name of TRACK
Fw_eh7jct'h

is to be processel

earch for PATH and
convsert to SPEEDcomman

s:
id

extract too[offsets

take care of looping
loccation
information
ready for
VAUI

I

__*c take care of LOCATE statements module
land

extract spatial relationships

1191ptss
take care of PARK stateme? ts
and extract the actual locatiDons __00

take care of POSITION statem: e]nt
0 0s and extract the actual locations

Lno

is it
end of file ?

yes

-4

Yes)

end

Figure 5-6b Post-processor for "TOP DOWN" approach

- 113 -

Cýp
enter name of

new location file
i

enter name- of
output VAL 11 program

write %PROGRAM' &
Droararn name

i

write comments lip

write SPEED lip
i

write OPEN l
(to make sure the

I

gri ger is opened befQre II
, robot movement)

read a line
new
location
file

if line yes
contains ke ord write MOVE point

OSITI

no

if line yes
contains ke Vo write CLOSE!

GRIP

no 2-
- - VAL 11

00 0 If line program
contains ke)lvu,,,, write OPE I

write STOP

'. END'

read from top
of data file

i

read a line

= P if line
- r contains keyword

0 OSITIO
Wo Q. C 1! 0 es Yes

write location ! le
orh

Pnt
otions as lements

end

Figure 5-6c Flow chart of VAL11 module

- 114 -

N. B. In 70P DOWN' approach, the spatial relationships of entities

are extracted from the top hierarchy to the lowest level.

For example, Turn Table related to World Coordinate Frame, Pallet B related to

Turn Table, then Object 1 and Object 2 related to Pallet B respectively.

Figure 5-7a "TOP DOWN" post-processing approach

2 OBJECT 11 OBJECT 2
JOINT 1

A JOINT 2 r P-AL-LET 8 PAL 3

TURN TA13LE I ... I BENCH

I ROBOT I

WORLD COORDINATE FRAME

N. B. In 'APPEARANCE' approach, the spatial relationships of entities are

extracted according to their order of appearance in the simulation model. It is

normally started with smaller items to build up larger entities in the model.
For example, the spatial relationships of Object 1. Object 2 related to Pallet
A is first extracted as they appear earlier in the model. The order of
extraction followed is Pallet A related to Turn Table, Turn Table related to
World Coordinate Frame respectively.

Figure 5-7b "APPEARANCE" post-processing approach

- 115 -

data exchange between different robot simulators with similar data

structures.

Example of random access data file

owner object name object name spatial relationship
4x4 matrices

WORKPLACE PLATFORM
PLATFORM PLATFORM TOP
PLATFORM STAND
PLATFORM ROTOR1
ROTOR1 CYLINDER1
ROTOR1 CYLINDER2

The second module, called PROCESSOR2, is used to extract from the robot

TRACK the motion sequences, locations and orientations of the move

positions relative to a particular entity in the simulation model. Since

we are interested in the location and orientation of a position in space

to which the robot should be driven, the locations and orientations of

such positions are defined with reference to the robot base, e. g.

robot workplace -1 workplace platform
TTTT

position robot platform position

This module searches through the data file produced in PROCESSOR1 for the

name of the object and retrieves the 4x4 spatial matrix. This is

multiplied by the transformation used in the TRACK movement. The data

file is repeatedly searched and the matrices concatenated until the

highest level is reached. The final location information is written in

absolute coordinates relative to the robot base. The information

representing the robot movement is then converted into a robot specific

language called VAL II via VALII module which is similar to VALFORMATTING

module as described earlier. The VAL II robot program and the location

data are produced in one text file (see appendix A. 2 for example output).

- 116 -

Since the robot program uses numbers to identify positions instead of the

actual entity name used in the CAD model, the conversion of VAL II robot

programs into GRASP TRACKs is not possible.

Example of output from PROCESSOR2

absolute position for robot movement is used to drive the actual
robot (calculated vith respect to the Robot base coordinate frame,
for example,

. PROGRAM EXAMPLE-B
SET POINT1=TRANS(200,200,800,0,180,0)
SET POINT2=TRANS(200,200,750,0,180,0)
SET POINT3=TRANS(500t 500,800,0,180,0)
SET POINT4=TRANS(500,500,750,0,180,0)
SET POINT3=TRANS(500,500,800,0,180,0)
SPEED 50 ALWAYS
MOVE POINT1
MOVE POINT2
CLOSEI
MOVE POINT2
MOVE POINT3
MOVE POINT4
OPENI
MOVE POINT4
MOVE POINT5
. END

(c) Hierarchical State Post-processing -'Appearance' Approach

The version 3 post-processor produced in this study comprises two

modules. The first module, called PROCESSOR11, is quite similar to the

stage two PROCESSOR1 module (previous subsection), except that it is

modified to increase the speed of processing such that the processing

time is reduced to approximately 10 percent of that in stage two

approach. This module extracts spatial relationships concerning each

object and its owner in the order of their appearance. Figure 5-7

illustrates the difference between the "Top Down" and "Appearance"

approaches.

- 117 -

The second module of the post-processor is called PROCESSOR22, which

translates the robot TRACK into a VAL II robot program with all the move

positions stored in a separate text file (see figure 5-8a and b). This

allows compound transformations to be used in the robot program whereas

in the previous stage only absolute positions were allowed. Appendix A. 3

shows an example of the original TRACK and the off-line robot program

with location data generated by this approach.

for example, Compound transformations

MOVE REFERENCE: TRANSFORM

where REFERENCE is the location of the referenced object with
respect to the robot base, i. e.

robot workplace -1 workplace platform
TTTT

reference robot platform reference

TRANSFORM is the object's location with respect to the
referenced object

This method allows the off-line generated programs to be calibrated, the

simulation model to be updated, data exchange between robot simulators

with similar data structures may be implemented, and the actual robot

programs can be reconverted into GRASP TRACKs. The format of actual

robot programs can be reconverted into GRASP TRACKs by using the

VALTOTRACK module created by the author. The VALTOTRACK module reads the

robot program and its corresponding location data file which allows

locate, path control, movements, and gripper control statements to be

converted into GRASP syntax (see appendix A. 4 for example output). This

VALTOTRACK module allows robot simulation systems to be used in a

relatively comprehensive manner. For example, the verification of a

robot program, for different workshop layout configurations and for

- 118 -

start

4
enter name of
GRASP model

0
a or .

no iff 1, iSne consists
of "SE7 &

r "To" & "ADC

GRASP
model
source

file

--------- ---------- fym --------------------------------

extract spatial relationship
10 of entity and its owner from the line SECTION BY SECTION

IF

te names and spatial writ wrl
3tio GRASP relationship expressed in

F

h hom ornogeneous matrix database

no if line consists of

-------- -- --------- ---- -yes ---------------------------------

20-
yes

endD

Figure 5-8a Pre-processor adopted with "APPEARANCE" approach

- 119 -

sta rt

enter name of
GRASP database create

in pre-processing

7 GRASP
read spatial relationshi ipL database between entities

enter name of GRASP
GRASP rqjdeI source

ie model
source

file

enter name of TRACK j

which is to be processe

sea rch for PATH and -_1110
4

__ conveat to SPEEDcommand converl

extract tool offsets

VAL 11
take care of looping robot

program

take care of LOCATE statementsý -nts
and extract spatial relationships in compound transformations location

file

take care of PARK statements i ts] ts
and extract the actual locations

take care of POSITION staterr ent ý
10 o and extract the actual cations i

l

s in compound transformatio ns

no is it
end of file ?

yes

end

Figure 5-8b Post-processor for "APPEARANCE" approach

- 120 -

different robots to perform the same task, or the same robot for

different applications to be simulated and edited. The flow chart of

VALTOTRACK is shown in figure 5-9.

5.4 Methods of Downloading Off-line Programs to the Robot

Controller

When post-processing is complete, the program may be transmitted to the

robot controller in one of three possible ways: -

(a) The Robot program can be downloaded via a robot specific medium (such

as magnetic tapes, paper tapes, floppy diskettes etc.) which can be

transferred manually from the design office to the shopfloor. In the

context of highly automated CIM systems, this may require unwanted human

intervention and may lead to increased machine set up times.

(b) If it is desired to load programs electronically through an available

robot specific medium interface, then a communication protocol must be

implemented in software in order to interface to the robot controller.

The use of an RS-232 link to facilitate the communication between the CAD

system and the robot controllers is quite commonly used in industry.

However, this approach is too rigidly fixed to the specific machines and

will result in a low level of portability (or configuration flexibility)

as CIM systems become more commonplace and/or complex.

(c) A more flexible approach could be based upon the use of the

Manufacturing Automation Protocol (MAP). This new enabling technology

provides control data, monitoring status transmission etc, and

- 121 -

start (ýýp
enter name of

VAL 11 robot program
4

enter output file name

call procedure READLOC ýa I locatlion VAL 11
robot to read in all location datgj data prograrr file

read first line

is line no
containing not a VAL 11
'. PROGRAM' omp or incomplete

a progra

yes

re

read line into
arrays of strings

un

1,

----E: tIiE. EfND'

from second to lost strinýg
. 4

yes call procedure PATH
i

<fS
PE EE D'

>ex
is to obtain speed and type of path, then

convert to PATH statement
no

call procedure LOCATE
> ye
x1st >_ý if 'SET' exist

< to obtain spatial relationship
between object and owner. then
convert into LOCATYE statement

no

Figure 5-9 Flow chart of VALTOTRACK module

- 122 -

yes call procedure POSITION
'MOVE' exist to convert movement into

POSITION statement
no

yes call procedure PARK
OVE PARK' to convert into GRASP statement exist

with predetermined position

no

I--, ' yes call procedure GRIP
'CLOSEV exis to find the object to be gripped Is

and convert into GRIP statement

no
call procedure RELEASE

yes to find the new owner object
'ýOPENI, ' e3xiDsýýý and convert into RELEASE

Ina, statement

no is it lost
string

yes

write 'STOP' output
TRACK

file

process completed

end

Figure 5-9 Flow chart of VALTOTRACK module (continued)

- 123 -

potentially there is a much reduced need to write specific protocol

conversion for each robot. Furthermore, developments with respect to

layer 7, the application layer, including the manufacturing message

services (MMS) [MMS Draft 6 document, 1987] which is being evolved in the

wake of the MAP/TOP initiative should be monitored and could form the

basis of a third generation command language.

Although a MAP broadband network was available in the Department of

Manufacturing Engineering during the period of this study, for various

reasons (the major one being the Prime 550 computer, used by the author

for prototyping was not connected to the MAP network) the approach (b)

was used in this work.

5.5 Generalised Approach

Post-processors can be system or application dependent. Some of these

post-processors have been designed for use with an application dependent

robot simulator. These post-processors normally have "macro sequences"

built in for the particular application. However, most of the

post. -processors are system dependent, which means they can only be used

for one robot simulator and one robot language. If an internationally

accepted standard data format existed, it would be wise to develop the

post-processor in two modules (see figure 5-10), the first one being

responsible for converting information from the output of a robot

simulator to a neutral or standard data format, whilst the second module

translates the standard data format into a robot language. This reduces

the effort in developing a post-processor for each set of robot

simulators and robot languages. This idea has been incorporated in the

- 124 -

Robot Robot Robot
Simulator Simulator Simulator

AB... N

Model MModdel ...
Model I

Data DD oo tt cc Data

Pre-processor re-processor Pre-proces r
AEN

Standard
Data
Format

Post-processor Post-processor
...

Post-processor
A NN

Robot Robot Robot
Language Language ... Language

AN

Figure 5-10 Generalised post-processing methodology with
standard data format

- 125 -

processors created in this study and described in this chapter. However,

standard data formats are not yet available. Thus a random access data

file with consistent data structures has been used through providing a

prototype neutral data format. Suppose, there are 10 robot simulators

and 10 robot languages, then there is a need to write 10 pre-processors

and 10 post-processors. However, with no internationally accepted

standard data format (or neutral data format) there would be a need for

100 processors. This standard or neutral data format approach can be

regarded as a generalised approach. There is a further possibility of

generalising the post-processors so that common command statements are

used in robot languages and post-processors.

The success experienced with this study indicates that similar effort can

be applied to different systems. Of course, the total effort will be

significantly reduced if standards exist. However, at the moment, there

is no standardisation that has been successfully achieved in the field of

off-line robot programming. Apparently, there is a lack of user

enthusiasm for standardisation, and perhaps this is primarily due to the

fact that industrial users apply robots to perform simple, repetitive, or

mass-production tasks which do not require frequent reprogramming.

Secondly, major users may well have developed their own

interfaces/communication between their CAD system and their robotic

devices. However, with the advent of CIM methods this situation is

likely to change significantly over the next few decades.

When considering the 'level' at which standardisation is likely in the

near future, it is concluded that the robot interface data format is the

most likely initial target for standardisation with IRDATA and the MMS

- 126 -

robot companion standard both offering an important step in the right

direction. When internationally agreed robot interface data formats are

available, it will be the robot manufacturer who will be responsible for

adopting appropriate controller protocols. For commercial reasons,

manufacturers have appeared to resist standardisation initiatives and

this has resulted in user driven initatives in the area, such as MAP. As

technology advances, new enabling technologies such as MAP and TOP could

provide tremendous capability for information transfer, linking different

devices from different vendors, which would truly enhance Computer

Integrated Manufacturing and the off-line programming of robots.

- 127 -

CHAPTER SIX

IMPROVEMENTS IN MAN-MACHINE INTERFACE

6.0 Introduction

The premise on which off-line programming systems have evolved and are

marketed is that they are easy to use. Certain suppliers of robot

simulators claim that their system is user friendly so that most operators,

with no previous programming experience, can design workcells after one

day's training. These suppliers have also claimed that an operator can

become an expert in two to four weeks compared to six to nine months for a

general purpose CAD system [Robotics World, 1986a]. This may in fact be the

case in simple application areas but to date very little literature is

available comparing off-line and conventional robot language programming

procedures so that reliable conclusions cannot be drawn.

In the absence of information one can only suggest that the user interface

to the robot simulator should be as simple as possible with an extensive use

made of model libraries, containing not only the robots but also commonly

used workplace elements constructed from standard parameterised primitive

building blocks. Furthermore, where a product design interface cannot be

establishedv facilities could be included for the user friendly description

of products encompassing geometric and manufacturing/assembly sequential

information.

As a generalisation one could conclude that off-line programming will be

more easily justified in circumstances where complex robot tasks are

required and/or where the batch manufacture of large product families are

involved. However at the present time inadequacies in the simulators,

capabilities in dealing with sensory feedback, exception handling and the

debugging of task programs implies the continued use of on-line programming

- 128 -

for these aspects where a language such as VAL II combined with a teach

pendant has the necessary flexibility.

The man-machine interface to proprietary robot simulators can be considered

within two major groups of input facilities; one being related to the solid

modeller, with the other related to the robot task description.

As discussed earlier, the solid modelling facility within GRASP is based on

the boundary representation method using a combination of primitive solids

and generalised polyhedra. A robotic device or workplace entity is modelled

by defining geometric, spatial, and functional relationships. Definition of

geometry using primitive shapes is straight-forward, but generalised

polyhedra present a much more substantial problem which requires the

assistance of screen interaction techniques. Spatial relationships between

objects in three-dimensional space inevitably cause difficulties which can

be addressed by an improved user interface or by improved, but potentially

expensive, computer graphics techniques. Functional arrangement refers to

the need to encapsulate kinematic relationships between model items within

the data specification. For inexperienced users or complex situations this

can be an extremely daunting prospect.

Once the model has been created there still remains the often complex task

of building the kinematic simulation itself. Thus methods of enhancing the

user interface to GRASP have been studied and software modules produced to

assist both experienced and non expert programmers in dealing with solid

modelling and task programming.

- 129 -

6.1 COMDUter Assisted Model Buildin

Building a three-dimensional model is a requirement which robot

simulators have in common with CAD systems which are aimed at the more

traditional aspects of engineering design. Simulators which are an

extension of such systems are therefore likely to be able to call upon

highly developed man-machine interfaces for the specification of

geometry. A typical approach would be a parametric design programming

language often used to ease the generation of models of families of

parts. GRASP, a stand-alone simulator with its own modelling system,

does not have such facilities and thus provides both the need and

opportunity to study parametric design from the particular viewpoint of

robotic equipment. The distinguishing feature here is the need to easily

define the functional relationships between the components of the

equipment. An example would be in specifying geometry of a gripper such

that it will have the correct relationship to the robot on which it is to

be mounted. (In the case of GRASP, this involves careful modelling about

a set of axes which will be made coincident with those of the tool

attachment point). Careful modelling is again required when the object

being modelled is a mechanism which will be required to assume different

configurations under various kinematic conditions. Modelling the

kinematic structure of the robots themselves is of course a central

aspect of the simulators and hence is well catered for. However, the

kinematic modelling of grippers, assembly jigs, etc. can be extremely

difficult, and a parametric approach could provide a solution.

In this study, solid modelling software modules have been coded in Pascal

which can assist both experienced and inexperienced programmers when

- 130 -

creating models of entities which are commonly encountered in a robot

workplace, e. g. pallets (or racks), worktables (or benches), conveyors,

turntables, tool magazines, etc. Here the programmer is required to

input a limited set of parameters so that a text source file can be

generated automatically and be coded appropriately for input to the GRASP

solid modeller. The software modules produced have a common design

structure.

To illustrate the principles involved, consider a specific software

module which was produced to assist the user in creating objects in the

pallet or rack category. The parameter values, such as the pallet

dimensions and name, are supplied in response to prompts, and are used to

generate a textual GRASP source file. Documentation of the software

module is shown in Appendix B. 1. The GRASP pictorial representation of

typical pallets is illustrated by figure 6-1.

The same approach, of generating workplace entities based on user

responses to simple input prompts, was used in creating other commonplace

workplace entities.

Software modules were also produced for tool magazines and worksurfaces

as well as the kinematically functional turntable and conveyor based oll

the same principles. Figure 6-2 illustrates workplace models created in

this way where appropriate geometric, spatial and functional

relationships have been defined. Clearly, the time taken by a user in

creating a model depends upon the complexity involved and his/her level

of expertise. For the examples treated here, worksurface modelling is

the simplest, -this also being reflected in the level of complexity in the

- 131 -

rigure 6-1 GRASP pictorial representation of typical pallets

- 132 -

%0. -

0
E

I It

04
I

to

- 133 -

associated software module, whereas conveyor modelling is the most

complex. When using the modelling facilities of a typical robot

simulator a rough estimate of the time needed to create these solid

models is between 10 and 30 minutes, the actual time taken being

dependant on the experience of the user (although a significant part of

the time required is usually spent on calculating the correct geometric

location of the primitives). However, if the enhanced MMI software

modules are used in generating an entity model, then the time required

will be between 1 and 2 minutes. Thus significant time saving can be

achieved. Perhaps of greater significance, however, is the confidence

that can be placed in a parametrically defined model object. The

parameterisation will have been subjected to rigorous testing of its

suitability for the application and thus it is unlikely that model

shortcomings will be discovered inconveniently late in the simulation

process.

Using the system components created in this study, a limited range of

items can be produced through the use of specific software modules, and

this illustrates the general principles. However, it is recognised that

eventual full-scale implementation is likely to be via a general purpose

parametric language taking into account the special needs of this

technique in robot modelling.

6.2 Computer Assisted Task Program Generation of Simulated Tasks

GRASP does have a language for the definition of a sequence of events

vithin the simulation. This is very flexible, being accessed through

screen menus or by a textual command languagep and can be used to

- 134 -

explicitly define a wide range of tasks. It is however, still a complex

task to create new sequences in a generalised way, and therefore software

modules have also been produced which can simplify this activity. In

particular, common material handling tasks have been studied and software

modules produced for generating palletising, de-palletising and machine

tending tasks which are representative of tasks for which robots are

frequently used. Here the command inputs invoke commonly occuring

sequences of motion when performing simulations. For example, it is not

usual to pick up an object directly as collision between the

manipulator's end-effector and other workplace entities may occur.

Instead, the manipulator is normally commanded to move to a position

above the object (if this is clear of obstacles), from which the gripper

is moved in a controlled fashion onto the object, so as to be able to

grip it and lift it up before the remainder of the task continues.

Clearly there are many other "micro sequences" of this type, which when

defined and parameterised, would make extremely useful building blocks

for "macro sequences" or complete robot tasks.

a) Palletisin

To demonstrate this principle a software module was produced to simplify

the definition of a variety of palletising operations. This module

comprising a number of functional elements as shown schematically in

figure 6-3.

It is logical to create a GRASP model of a robotic device and its

workplace before a task is defined. However, all workplace entities must

have explicit names which are known to the user in order that the task

- 135 -

start (ýýp
enter name of
GRASP track

Have you 20
is se this before

<
Instruction

I" Yes

Display menu
of options

Enter option

Input section

If option <> If option Display menu
A, B, C, D.

<>

of B. C or F patterns
E, or F

Enter choice

If option
A, D or E

Take appropriate
Yes Choice No

action
4

G, H, I or J

Output to an
7

GRASP 10
external file source

E1

file

C
end:

D

Figure 6-3 Flow chart of PROG-PALLET module
(module structure used to define polletising operations)

- 136 -

programming software can be used to create a GRASP track (i. e. a task

program or motion sequences with reference to the various entities of the

model).

GRASP users are provided with different programming levels (e. g. for

simulation and off-line programming, for simulation only etc.) which in

turn provide diffefent options for generating palletising or

depalletising patterns. The programmer is required to respond to

terminal prompts with the user's responses, leading to the computer

assisted generation of task programs.

A software module (PROG_PALLET) was produced to simplify the definition

of a variety of palletising operations. An introduction for first time

users, can be invoked. This section describes the assumptions made and

the rules which must be followed (as listed below). Several assumptions

have been made in automatically generating the patterns.

(i) Workpieces are assumed to be identical.

Workpieces are assumed to be palletised at the centre

of each rack.

(iii) Sensory information is not incorporated within the

task definition.

(iv) Reference points are assumed to be at the height of workpieces.

(v) Number of reference pick (and or place) points and the

number of workpieces are to be equal.

A GRASP model which is built for programs generated by the software

module is shown in figure 6-4. In simulating a task, it is necessary to

define any reference points and these may take the form of an array. To

- 137 -

0

CL
0

r Cl

_ __ - Ll

0

0

E
a x

tz

- 138 -

simplify reference point definition, optional software based procedures

were written which accept the names of reference points. The resulting

simulation task is presented in GRASP syntax, ready to be used in the

simulation. To simplify/automate reference point definitions, a number

of optional procedures can be invoked by the user specifically for

palletising and de-palletising and these will find wider application in

general assembly task programming. The available options are described

below :

Option A is used where workpieces are to be picked up at fixed reference

points assigned to a pallet and placed at fixed reference points assigned

to another pallet. The sequence of these reference points describes the

order of picking and placing, and thus a variety of robot movements are

available. This option is suitable for both GRASP simulation and off-

line program generation.

Option B is similar to option A except all the workpieces are to be

placed at positions calculated from a fixed reference point on the

destination pallet (the frame of the destination pallet) and a variety of

palletising patterns are available (see later) at the destination pallet.

This option produces a GRASP track in terms of real variables and it is

to be used for GRASP simulation only, and is not suitable for off-line

robot programming due to the restriction imposed by the proprietary

post-processors (no real variables can be post-processed).

option C is similar to option B, but, it is suitable for both simulation

and off-line programming. No real variables are used for defi . ning the

location, but the program is effectively long winded in comparison with

option B.

- 139 -

Option D is a de-palletising option in which all workpieces are to be

picked up at fixed reference points on a pallet and are to be placed at a

fixed reference point, for example on a conveyor or a bin that collects

completed components. This option is also suitable for both simulation

and off-line programming.

Option E is designed to be used for picking up workpieces at a fixed

reference point (e. g. from a conveyor or from a feeding device) and to

unload workpieces at fixed reference points on a pallet. Again this

option is also suitable for both simulation and off-line programming.

In option F, workpieces are to be picked up at a fixed reference point

(e. g. a conveyor or feeding device) and placed at fixed reference points

on a pallet. This option is also suitable for both simulation and

off-line programming.

We are basically considering four different palletising or de-palletising

patterns from a variety of choices. These patterns are to be used at the

destination pallet and are the extension of the option B, C, and F. We

consider the available patterns in terms of motions along the X and Y

axes with reference to the pallet's own origin. The movement is

incremental in both axes. The robot is commanded to move to the first

row (Y axis) and then move along each column (X axis) until the final

column of that row is reached. The robot then proceeds to the next row.

This movement is repeated until the final position is reached.

- 140 -

For pattern choice G, the robot first visits Xmin, Ymin (with respect to

the pallet origin) then moves to each point along the X axis.

Subsequently the Y axis is incremented and the procedure repeated until

pallet positions have been visited (see figure 6-5). This is similarlý

applied to choice H, I and J with one of the four corners as its starting

point. Appendix B. 2 shows an example output of result generated by th-. 3

software module.

Some of the software modules were written so that they can be used in J: je

high level GRASP programming mode where real variables are used to

represent locations. Such an approach will yield a track that is simpl?

but is only suitable for GRASP simulation and not off-line

post-processing. In order to facilitate both simulation and

post-processing, special modules were written.

(b) Machine Tendin

To investigate further opportunities for simplifying task definition,

facilities for specifying machine tending tasks were included as such

tasks are very frequently required. There are three basic types

[Wilhelm and Sarin, 1985] of machine tending depending on the shopfloo)-

configuration viz :

Each part must be processed sequentially on all machines.

(ii) Each part requires one operation and could be assigned

to any machine.

(iii) Each part requires one operation and must be assigned

to a specific machine.

- 141

Palletising patterns are based on the four corner positions.
Four different palletising patterns are implemented for
illustration.

(i) Start from Xmin, Ymin to Xmax, Ymin and then repeat along Y

axis towards Xmax, Ymax.

(ii) Start from Xmax, Ymin to Xmin, Ymin and then repeat along Y

axis towards Xmin, Ymax.

(iii) Start from Xmin, Ymax to Xmax, Ymax and then repeat along Y

axis towards Xmax, Ymin.

(iv) Start from Xmax, Ymax to Xmin, Ymax and then repeat along Y

axis towards Xmin, Ymin.

Figure 6-5 Demonstration of palletising locations

- 142 -

Xmin, Ymax Xmax, Ymax

Among these shopfloor configurations, programming type (i) is the

simplest whilst type (iii) is the most complicated. Configuration type

(i) and (ii) may look simple, but it is laborious to programme. To

programme the shopfloor configuration type (iii), a vision system (or by

other means such as bar-code reading) is required to identify the part

and then assign the part to the appropriate machine. The loading,

unloading and production cycle times for each machine have to be

evaluated and used in the production scheduling. Since this research

study is not concerned with production scheduling, scheduling problems

for flexible manufacturing systems are not considered. Software modules

were coded for illustrating the principles involved in enhancing the

man-machine interface.

Machine tending software was developed to implement these three basic

configurations. The software is generic, such that variations in the

number of machines and parts, and the sequence in which these machines

require tending, can be varied according to the priority specified in the

input. In each case, programs for robot tending are generated together

with shell programs for each attendant peripheral machines. These

programs include simple sensory signal input/output for synchronising the

robot tending workplace.

PROG_TEND is a software module written to assist programmers in defining

such machine tending tasks. Appendix B. 3 shows an example robot tending

simulation program for configuration type (ii). When using this facility

the user will require a GRASP model and must have knowledge of the model

i. e. the number of machines that will need to be tended, the names of

these machinesp the order in which the machines require tending, the

- 143 -

number of workpieces to be manipulated, the names of workpieces, the

required sequence of manipulations for each workpiece, the pick up

reference point(s) and place reference point(s). The machines will share

a common pick up reference point (e. g. a bin which contains raw material

or a conveyor belt that drives material into the workcell) and a common

place reference point (e. g. a bin which collects finished workpieces or

a conveyor belt that drives workpieces out of the workcell). This

arrangement is shown in figure 6-6. The machine tending software assumes

that all workpieces are to be inserted in a clamping device or a jig with

reference to an assigned target (named with the machine name suffixed by

I-TARGI). The approaching movement is described in terms of the Z axis

of each target. For instance, if any machine requires a horizontal

feeding movement, for example, a lathe, the target will need to be

rotated about its Y axis by 90 degrees (such that the Z axis of the

target is horizontal) for the purpose of inserting workpieces

horizontally. The design structure of this software is depicted in the

flow chart of figure 6-7.

Subsequently during simulation, any joint violation and object collisions

can be detected. The computer assisted model building and task operation

facilities have been used in programming a number of tasks for two Adept

One robots, the off-line program generation being accomplished through

the use of a VAL II post-processor. These off-line programming exercises

have proven the validity of the approach and suggested many possible

enhancements.

- 144 -

0

a-
0

c

(D

-C

(D

4-
C
0

CL
E

co

a) lz

- 145 -

sta rt

enter name of
GRASP track

i

Have you l No
is> before seth%s before

<

I struction

iI"- Yes

Display menu
of options

Enter option

0 tion A
Yes Input Parameters

No

Option C
< Yes Input Parameters

i No

Yes <Option Input Parameters

Take appropriate
action

Output to an GRASP
external file source

i file

end
C: ý

Figure 6-7 Flow chart of PROG-TEND module
(module structure used to define machine tending operations)

- 146 -

6.3 General Considerations

At the present time, most general robot simulation systems are too

complex to learn and when programming a simple robot task it may be more

efficient to use manual guiding methods. On the other hand,

application-dependent systems, although inflexible, are very efficient

for task programming of the specific application. In order to gain

advantages from these systems, a parameterised task language should be

made available such that different types of robot motion can be

programmed without losing too much flexibility.

Most robot applications in manufacturing industry can be grouped into

pick and place, palletising, machine tending, assembly (including

mechanical and electronics assembly)j and welding (such as arc and spot

welding) operations. The robot motion required to carry out these

operations can be broken into subgroups (see table 6-1) and each subgroýp

can be dealt with using a parameterised task language. In order to

generalise this idea, an analysis of the robot task movements has been

conducted to arrive at a common ground on which the parameterised

language is to be based.

As a general recommendation, the implementation of this type of

parameterised task language should be done according to the type of

standard motion. The proposed language should comprise several

application modules, each module being responsible for each category of

task commonly encountered in manufacturing industry. Each category, in

turn, is divided into individual functions for carrying a specific part

of the task. The proposed generic task language is illustrated through

the examples in sections (a) to (f).

- 147 -

COMMON APPLICATIONS BASIC ROBOT MOVEMENTS

APPRO pick up position
ONTO pick up position
GRIP object

Pick and Place DEPART from pick up position
APPRO target position
ONTO target position
RELEASE object
DEPART from target position

APPRO binl APPRO machine
ONTO objectl ONTO objectl
GRIP objectl GRIP objectl
DEPART from bin 1 DEPART from machine

Machine tending APPRO target machine APPRO bin2
ONTO target machine ONTO place position
RELEASE objectl RELEASE objectl
DEPART from machine DEPART from bin2

APPRO pick up position
ONTO pick up position
GRIP objectl

Polletising
DEPART from pick up position
APPRO target position
ONTO target position
RELEASE objectl
DEPART from target position
APPRO objectl
ONTO objectl
GRIP objectl

Mechanical DEPART from pick up point
APPRO object2 (assembly in fixture)
ONTO object2
RELEASE objectl
DEPART from object2

Assembly APPRO feeding devicel
ONTO chipl
GRIP chip'l

Electronic
DEPART from feeding devicel
APPRO target position on pcb
ONTO target position with a transformation
RELEASE chipl
DEPART from pcb

START applying current/voltage
APPRO initial position
ONTO initial position
MOVE along to 2nd position

Arc welding DEPART
:
from workplece

STOP applying current/voltage

Welding START applying current/voltage
APPRO initial position
ONTO initial position
CLOSE jaws

Spot welding
RELEASE jaws

DEPART from workpiece STOP applying current/voltage

Table 6-1 Common robot applications and basic robot task movements

- 148 -

(a) ARC VELDING COMMANDS

APPLY voLTAGE/amEff <nunber/number>

WW SMAICHr LINE [NAME <roreD M <=O>
(COORD <pointl> M <point2>

nami, name2 (name given to global x, y, z coordinates and orientations
pointl, point2 (global x, y, z coordinates and orientations)

WELD CIRCULAR
(FAME <naý <naý) RADILIS <numberl> (A= <hunberD [COORD <pointl> <point2>

SMP VOLTAGE/CURRENr

namel, name2 (name given to global x, y, z coordinates and orientations
pointl, point2 { global x, y, z coordinates and orientations
radius of arc or circle

nunberl +ve real nuTher indicate clockwise
-ve real nunber indicate counter-clockwise

angle is angle of welding path
number2 +ve real nuTber indicate clockwise

-ve real nunber indicate counter-clockwise

(b) SPOT 'WELDING COMMANDS

SPOTWELD
(WE <namel> <name2> ...)
C COORD <pointl> <point2> ...

SPUMLDS
NAME <namel> M ehameD)(P= I <nunberl> cooRD <pointl> M <point2> INMVAL

NAME <namel> M <nameD) PTIM)
SPONUM CDORD <pointl> M <point2> D=AL fmnberl> RADIUS <hunberD AM <number3>

namel, name2 (name given to global x, y, z coordinates and orientations
pointi, point2 (global x, y, z coordinates and orientations
straight line pitch nunberl always +ve towards 2nd point
circular pitch numberl (+ve indicate clockwise towards 2nd point

(-ve indicate counter-clockwise towards 2nd point
interval is the number of points between the start and finish spot wdds:
radius of arc or circle

nunber2 +ve real number indicate clockwise
-ve real number indicate counter-ýclockwise

angle is angle of welding path
nunber3 +ve real number indicate clockwise

-ve real mm±er indicate counter-clockwise

- 149 ..

TRANSPORT COMMANDS

SEPARATE <objectl> <objectD ... SIREAM <pathl> <path2> ...

MMGE <objectD <objectD ... SIREAM <main pathD <pathD ...

TLIV <object> BY <angle>

CRIENL= <objectD BY <angle> (RELATIVE TO <object2>)

AULCATDU <nunber> <object> AT <pathD

objectI, object2 are names given to objects
pathl, path2 are the path of movement
mmiber is the nuTher of objects to be allocated to a path

(d) ASSEMBLY COMMANDS

(<point>
MOVES I To)(<object>

Ix)
MOVEC BY Y <number>

z

(NAME <object>)(x)
APFROS (WORD <pointl>) BY Y <numberl>

z

(WE <object>)(x)
APPROC (COORD <pointl> I BY Y <jurberl> PmIus <rý2> (ANm <rý3>

z

(NAME <object>)(x)
MARTS (COORD <pointl> I BY Y <nunberl>

z

(NAME <object>)(x)
VUAMC (COORD <pointl>) BY (YI <runberl> RADIUS <nunberD (RUE <nunber3>)

(zI

(x)
a4llF, <Object> BY Y <appro, dist> <depart dist> PICK AT COORD <point> x

- 150 -

(NAME <object> }(x)
PLACE AT (WORD <point> } BY Y <appro dist> <depart dist>

x

AUGN <objectl> M <object2>

(BY <depth>)Ix)
IN= <objectl> in <objectD (m DD UM <objectl> ABOUr Y BY <angle>

z

SCRLV <objectD aqM <objectD BY <angle>

R= mm <, =ýI> <, ý . ..)
COORD <pointl> <point2>

RIVErS
(NAME <namel> M <rkiw-2>)(PITCH) <nunberl> f COW <pointl> TO <point2> C INIERVAL }

Rrv= (NAME <namel> To <nwe2>)(PITCH)
(COORD <pointl> TO <point2>)(=VAL fiunberl> RADIUS <nunberD <nunber3>

EXMACr <objectl> FROM <object2>

ASSEMBLE <objectl> CNIO <object2>

DisAssamLE <objectl> Rw <object2>

PALLETISING COMMANDS

(FTX <start frame> <option>)
TO FIX <finish frame> <option>

PALLEI? TP (FLEX <nameD <nameD ---) FLEX <nameD <nameD ...)

pALL= is a command used to generate lower level caTuends for
the specific use of palletising objects from one pallet to another

<start frame> is the name given to the coordinate frame of the
starting pallet

<finish frame> is the name given to the coordinate frame of the
finishing Pallet

[PATIMN) is an optional command, once chosen the appropriate
option should be entered

PALIE= <start frame> TO FTX <finish frame> <option>
= qmmeD qzmeD ... I

- 151 -

PALLE= is a coarond used to generate lower level camands for
the specific use of palletising objects from one single position
to a pallet.

<start frame> is the name given to the coordinate frame of the
starting position

<finish frame> is the name given to the coordinate frame of the
finsihing pallet

PALLErFrSP FIX <start frame> <optial> TO <finisli frame> FLEX <namel> <romeD ...)

PALL=SP is a cormznd used to generate lower level cammids for
the specific use of palletising objects fran a pallet to a single
position.

<start frame> is the name given to the coordinate frame of the
starting pallet

<finish fraw-> is the name given to the coordinate frame of the
finishing position (e. g. conveyor, bin etc).

(f) TENDING COMMANDS

LOADIN3 <obj ect> OM

UNLO, ADIM <object> OM>

OPEN FIXIM <fixture> AND WAlT <time in se&

CLM FJXnM <fixture> AND WAIT <time in se&

TENDC <MCD <MC: 2> ...

TEME is a command used to generate lower level
commands for the machine tending operation where
machines are identical.
<MM <MC2> ... represent machines' rkmes

=ýcs <MCD <object ryw> OM <object VA)e>

TRUM is a command used to generate lower level
commands for the machine tending operation where
machines are not identical and object of certain
rype can be assigned to a specific machine.
*M> <MC2> ... represent machines' names
<object type> an integer represent object type

- 152 -

TMFS OED <MC2> <MC3>

MMFS is a camand used to generate lower level
commands for the machine tending operationwhere
machines are constructed to perform flow production
with the machines specified in order of tending.
OM> <MC2> ... represent mad-dnes' names

6.4 Limitations of Computer Assisted Solid Modelling and Task Program

Generation

When defining objects, GRASP users must assign a unique name to that

object. If two or more of these objects or entities (created by using

software modules) are to be used in a GRASP simulation, there may be name

clashes in the dictionary which causes the simulation to fail. The

problem that has been identified here is that models and tasks cannot

really be defined in isolation from the larger model and set of tasks

that they become part of. One of the consequences is this problem with

names. The proposed solution must be further pre-processing on input to

GRASP or alternatively the use of contextual (or tree) names. Such

operational procedures are also necessary with other simulation packages

and robot simulators.

The major limitation of using the software modules to generate object

models is that the flexibility of the solid modelling function of a robot

simulation package is reduced. However, it is only to a limited extent

since a certain part of an entity is often of particular importance with

respect to off-line robot programming. Another generic problem with

parameterisation is the infinite number of possibilities. Arguably, it

- 153 -

is not practical to provide an enhanced MMI facility for all possible

object classes, however, the user can resort to using the usual GRASP

syntax to define an entity which does not fall into the MMI classes

implemented.

Without manipulator joint violation checks and collision detection, the

task programs generated by computer assisted task generation software

module may include errors of this type. Thus users are advised to check

their generated programs through GRASP simulation, this being a normal

procedure for checking joint violations and collisions. Pre-processors

should not attempt to duplicate facilities which are more properly part

of the main system.

Once this type of task language is fully developed, programmers do not

need a graphical simulation, i. e. it would be good enough for

post-processing as an off-line program. But realistically the simulation

is there precisely for the kind of reasons identified in the above

paragraph. Therefore, these parameterised task language should be

included in the general purpose robot simulation system as built-in macro

sequences.

Although off-line task programs are generated together with all the

location information, the accuracy of these locations represent an

idealised situation and generally not good enough for the real robotic

arrangement. Furthermore, robot repeatability and accuracy may not be

adequate for precise operations. The accuracy problems are dependent

upon many factors and therefore off-line generated robot programs require

calibration -a topic discussed in the next chapter.

- 154 --

CHAPTER SEVEN

OFF-LINE ROBOT PROGRAM CALIBRATION

7.0 Introduction

In common with any simulation process, the usefulness of a robot simulatioi

is substantially governed by the available "accuracy" of modelling.

The present generation of computer systems provide sufficient processing

power to achieve very high precision modelling of any manipulator system,

albeit that "realtimell simulation may not be possible. However, in creating

such a model, specific input data concerning the manipulator's kinematic and

dynamic behaviour must be available from some source. When simulating

robots two obvious sources of this input data are:

(a) from the robot manufacturer, and

(b) through using manipulator and workplace measurement devices.

If the robot simulator is used only in choosing a robot and designing a

suitable workplace layout then the first of these sources can be

appropriate. This approach is the one favoured by current suppliers of

robot simulators. However, robot manufacturers usually supply only limited

statistically averaged kinematic data concerning their manipulator with

often little or no data relating to its dynamic behaviour. Thus whell

compared with simulated results, a specific industrial robot will

demonstrate both dimensional variations (resulting from manufacturing

tolerances, backlash, deflection in manipulator links, control system

resolution and deadband, etc) and unpredicted dynamic behaviour (viz:

damping, following error, etc) as it is moved through its working envelope.

- 155 -

Example data sheets of robot kinematic characteristics are shown in appendix

C. l. Clearly, any significant inaccuracies or omissions in specifying the

robot and workplace model can lead to lack of confidence in the simulation

results.

This situation is further exacerbated when attempting to use the simulator

to achieve the off-line generation of robot task programs. Here it is not

sufficient for workplace elements to assume nominal positions, shapes and,

where appropriate, dynamic behaviour. Nor can significantly large

dimensional and dynamic behavioural errors in the manipulator simulation be

tolerated.

To date very little detailed technical information is published in the

literature which documents the use of robot simulators in off-line

programming applications. However, two approaches have been used in

attempting to overcome modelling errors, (a) through two stage programming,

the second involving the use of a teach pendant [BYG, 1988], and (b) throligh

the use of workplace sensor(s) to calibrate the robot and it's workplace

[El-Zorkany, 1984; Paul, 1983; Tarvin, 1980].

The use of a teach pendant to overcome modelling errors must be viewed as a

retrograde step, unless the pendant is used only to establish a limited

number of reference or datum points, whereas the use of workplace sensors

vill incur a significant increase in complexity and additional cost. In

fact generic robot calibration procedures have yet to evolve in an

internationally accepted sense, resulting from the complexity involved in

accurately measuring the position and orientation of workplace elements, let

- 156 -

alone their dynamic characteristics [ISO/DP8373,1986; ISO/DP9283,19861.

However, the McDonnell Douglas Robotics Software suite includes an "ADJUST"

module as an example of a specific solution to this problem through the use

of a calibration probe, mounted on the face plate of the robot's gripper

(the probe supplying feedback/input data to the robot/workplace model).

Another common approach is the use of a trained vision system for

identifying objects. The vision system will compare the objects in its view

with the object models stored. When the vision system recognise an object,

it calculates its orientation and the location of its centroid. This

approach will be discussed in more detail later in this chapter.

7.1 Sources of Error in Off-line Robot Programming Systems

In practice, the robot does not go to the commanded location as predicted

by the model or conversely the entities comprising the workplace are not

precisely at the locations as defined in the CAD model. These

discrepancies can be attributed to the following [Jeyachandra et al 1986,

Yong et al 1985, Lau and Hocken 1984].

(a) Geometric/Static Errors

(i) Numeric Accuracy of an Off-line Programming System

The predicted location can be seriously affected by the numeric accuracy

of the off-line programming system which is influenced by the algorithms

used. In this way, for example, a small discrepancy in angle can lead to

- 157 -

a significant change in linear distance at a distance from the reference

rame.

(ii) Accuracy of an Off-line Robot Program

The accuracy of an off-line program can at best be as good as the

simulation model.

(iii) Robot Parameters

Insufficiently tight tolerances used in the manufacture of robot linkages

can give rise to variations in joint offsets. Small errors in the

structure can compound to produce quite significant errors at the robot

end effector.

(iv) Part Defects

The same off-line generated robot program can function perfectly in most

cases, but may occasionally fail resulting from the use of defective

parts.

Part and Tool Misalignment

Part misalignments can cause problems requiring static calibration.

However, tool misalignment is a serious problem which can not simply be

calibrated. For example in an off-line programming system, the tooling

or gripper is perfectly aligned with the robot end effector centre line.

- 158 -

The main problem is the actual tooling or gripper mounted on the robot

end-effector. This can be very different each time a new tool is

mounted.

(vi) Difficulty in Determining Object Locations

The difficulty in determining precise locations of objects with referelize

to a datum within the workplace. The robot usually encompasses a large

working envelope (i. e. variation in robot accuracy) but small tolerances

on components require very good resolution.

(b) Kinematic Errors

(i) Nominal Robot Parameters

The nominal geometry of a robot model (data obtained from design

drawings) is normally used to derive the nominal robot kinematic

functions (forward and inverse kinematic transformations). These nominal

kinematic functions are often used in the robot controller for robots of

the same model without taking into account variations in the assembled

robots [Azadivar, 1987].

(ii) Insufficient Feedback Information

Insufficient feedback information (e. g. position, velocity, acceleration

and torque) processed by the robot controller. This is seriously

affected by resolution which is defined as the smallest measurement

- 159 -

increment achievable by the feedback sensor(s), e. g. encoder, resolver,

tachogenerator, force sensor [Birk, 1976; Ho, 1982; Benhabib et al,

19871.

(iii) Joint Encoders Misalignment

Misalignment of joint encoders can cause serious problems, as eccentric

movement of joints can produce unpredictable results.

(iv) Numeric accuracy of the controller

This is affected by the effects of quantisation, roundoff, sampling rate

and other characteristics of the realtime control algorithms used i. e.

not overcoming effects such as limit cycling, deadband, changing robot

characteristics.

(c) Dynamic Errors

(i) Incompatibility between robots

No two robots of identical configuration and model will behave exactly

the same, and hence an off-line program for a robot with reasonably good

accuracy may perform differently with another robot.

(ii) Lack of rigidity of robot structure

Lack of rigidity of robot structure (caused by the clearance in bearings,

- 160

bent and twisted shaft under different loading conditions may change the

robot arm parameters). This can cause serious errors under heavy loading

conditions and/or at high speeds.

(iii) Numeric accuracy of the robot controller

This is the same as described in (b)(iv).

(iv) Steady State Error of Servomotors

Steady state errors of servomotors caused by factors such as hysteresis.
I

backlash in transmissions, and drift.

Transient errors

(i) Stabilization

Robots with hydraulic drives do not stablize until after a certain amount

of warm-up time [Warnecke et al, 1982].

(ii) Environmental Effects

Environmental effects such as temperature can adversely affect the

performance of the robot e. g. heat generated locally in an arc welding

operation. The effects of severe temperature changes may require the

programmed path to be reprogrammed. In the example given by Nissley

(1983), just the thermal expansion of the floor between the robot and

- 161 -

workpiece positioner amounts to about 0.18mm over a distance of 1.5 m due

to a 10 degree C temperature change.

The compounding effects of these errors across the whole off-line

programming system can lead to a significant magnitude of errors

particularly where dynamic characteristics are to be modelled. For

off-line programming to become a practical tool it must at least be

possible to accomplish final positioning adjustments automatically for a

limited set of application scenarios. To achieve this a combination of

approaches will be required:

(i) the positional accuracy of the robot or a knowledge of inaccuracies

has to be improved.

(ii) more reliable methods for determining locations of objects within

workplace need to be applied.

(iii) relaxations of the tolerances of the components on which the robot

has to work to improve the overall performance of the system.

(iv) the incorporation of sensory technology should cater for the

remaining discrepancies within a system but their inclusion will

inevitably contribute penalties of cost and processing time.

- 162 -

7.2 Hethods Of Calibration

Errors in off-line robot programming can be overcome by many methods,

each of which has its own value dependent upon the application. In

general, calibration can be categorised into three main groups viz:

Simulation Model Calibration, Robot Calibration, and On-line Calibration.

7.2.1 Simulation Hodel Calibration

Calibration is required to cope with static discrepancies (i. e.

geometric discrepancies) between the idealised CAD model and the real

working environment. The simulation model calibration can be -

subdivided into two sections, firstly, to measure correct location

data, and secondly to update the CAD workplace model.

(a) Measurement or Data Collection

(i) On-line Editin

This can be regarded as the simplest approach. The off-line

programming system is used to generate the robot's sequence of motioa

and location data. The off-line robot prdgram is verified by runninz

it to check each programmed location. If any alterations are

required, the robot is driven to the correct position by use of the

teach pendant and the corrected locations are stored. This method J;

applicable where a robot is being transferred from one workplace to

another. The main purpose of off-line programming in this context i.;

to generate the correct sequence of motions and logic with the correct

- 163 -

locations data taught by an on-line method. This method still

satisfies the requirement to improve robot downtime. Clearly

however, the 'percentage improvement' will be related to

characteristics of the application and may not alone justify the

increased sophistication introduced through utilising off-line

programming.

(ii) Datum Point Calibration

In this approach, the robot is moved to a number of important

reference points which are required to be as accurate as possible. Is

for on-line editing, the robot can be used in defining these locations

with the locations recorded and used to refine the original CAD model.

off-line programs generated by this approach should not require any

further on-line programming.

This method is particularly useful for flexible manufacturing and

assembly systems with a limited number of reference points.

Palletising is a good example (figure 7-1) as the palletising

positions are referenced to a single reference point. The teaching)f

this datum and a limited number of points, to define the orientation

of the reference frame should be sufficient to ensure that the whole

program will perform correctly as predicted.

(iii) Sensor Assisted Static Calibration

This involves a simple calibration to obtain the locations (relative

to the robot base) of the entities in the workplace by the use of

- 164 -

Figure 7-1 Datum point calibration used in palletising

sensors without manual intervention. The location data is then

uploaded to the CAD system and the original model updated using a

calibration program. This has the advantage of producing a model

which more closely represents the real workplace. This calibration

method is accurate enough for other classes of application which are

not properly dealt with using previous two approaches. Most of the

tasks programmed off-line (using this updated model) will be accurate

enough and there will be no need for inaccuracy correction (except in

the case of dynamic effects).

Spatial relationships between objects can be obtained through

different methods ranging from the simplest to the most sophisticated.

In one method, the robot is used as a digitiser to obtain the location

and orientation of objects. However, with this method special tooling

is required in order to obtain good accuracy. There are various ways

- 165 -

of achieving this calibration, and only two common groups of tooling

are considered here:

- probing/force sensing

- vision systems

First, we consider the simple form of probing. A pin with a square

top is made which fits in the gripper to provide adequate squareness

and alignment with the centre of the robot mounting flange. A force

sensor installed at the robot wrist ensures that when the pin touches

the object in calibration, the charge amplifier provides indications

such that the x, y and z dimension can be monitored. This method

remains simple whilst giving reasonably accurate readings. An even

better approach is to use a probe that can provide indications as it

attains the location required. However, these approaches can provida

calibration in 2D only.

A more sophisticated method might involve the use of a vision system

whereby the location information of certain objects can be obtained.

Robotic vision can broadly be classified into 2D and 3D.

2D robotic vision is generally based on visible band lumination data

and mainly deals with analysis, recognition and interpretation. In

some cases, the shape of the object is not important, and only the

features of the marks placed on these objects are desired for their

unique identification. These marks can be handwritten, printed

letters or geometric marks (i. e. fiducial marks). Also in some

- 166 -

applications, the locations of these marks are not desired, but the

interpretation of the content of the mark may yield part identity.

For example, a camera can be mounted on the robot arm at a fixed

spatial relationship to the robot arm. The spatial relationship of

the entities with respect to the robot base would be calculated

through the compound transformation. This method is far more accurate

than the previous method. However, the vision system has to be

trained to recognise objects or entities in the workplace before it

can pick up the location information of the entity concerned. This

can be very time consuming unless the vision system can be programmed

through integration with product design (i. e. access to product

information contained in manufacturing or design databases).

3D robotic vision is of growing importance in many applications. A

major requirement of any robotic vision system is "robustness" which

when properly enhanced will enable wider application of the techniqii, ý.

An important operational requirement for robotic vision is that it

should be capable of dealing with incomplete image or data due to

glare or shadow, partial occlusion by other objects or even the robot

arm itself. A desired attribute of a general robotic vision system

would be the ability to develop at least some partial information

about the situation such as a "hypothesis verification" so as to

identify the part type, location and orientation. This hypothesis

verification should be offered along with a measure of the system's

confidence regarding the verification. Positioning accuracy is

typically on order of 1 to 2 mm [Rueb and Wong, 1988].

- 167 -

Error in vision tasks can translate into errors in physical

manipulations. Manipulators, parts, and fixtures could be damaged or

destroyed. High "value added" assemblies might need to be scrapped, a

costly result of a sensory error.

(b) Static Error Correction Through Updating CAD Model

Currently, most of the available off-line robot programming systems

are open loop systems. Thus no feed back information is available to

the off-line robot programming system to refine the simulation model.

If any discrepancy is found between the real system and on idealised

simulation model, correction can only be made on-line without updati: ig

the simulation model. If the off-line robot programming system is

used for simulating manufacturing or assembly operations of families

of parts or products, the inability of the system to update its

simulation model may cause high inefficiency, especially in a CIM

context. Due to this obvious reason, calibration and updating

software modules were under consideration as one the necessary means.

Software modules were coded in PASCAL to deal with calibrating and

updating the simulation models, and thus a closed loop off-line

programming system is attained. Two separate approaches have been

used in this enhancement: single level approach and hierarchical

approach.

(i) Hierarchical Approac

The hierarchical approach is designed for calibrating and updating a

specific robot workcell with a four axis Adept One robot. The

- 168 -

hierarchical approach involves two separate software modules, namely

CALIB and UPDATE. The former reads in the location data file. The

location file contains the names of the locations and their positions

and orientations. Each location can be identified by one touch point

if the object is so small (normally used for small workpieces),

particularly in the case of an entity that is symmetrical i. e. the

orientations of the entity does not create any orientation problem.

The orientation of the robot gripper is used as the orientation of the

workpiece. The robot controller does not accept two locations of the

same name, and hence to keep more than one touch point for the same

entity at the same time, the name given to the locations must be the

same as used in CAD model but each with a suffix I'. aIIv ". b", 11.0 etc.

The calculation of the orientation of the entity frame is illustrated

in figure 7-2. Alternatively, the orientation of an entity can be

obtained through the FRAME function which is specific to VAL II or

could be done with equivalent functions that are available in other

robot languages. This function requires three positions to identify

the orientations of the entity relative to the robot.

The CALIB module reads in the location data file, and subsequently

identifies each unique object name with its corresponding location

data. The location information stored in this file represents spatial

relationships between entities and the robot base. Since the CAD

model stores information in a hierarchical order, the CALIB module

searches through the original CAD model database to obtain the name -)f

the owner object and its relationship with respect to the robot base.

It calculates the new spatial relationships between entities and their

owners at a level above in the hierarchical structure. The results

- 169 -

0 -<
(D

oE E
'D E!
U) Iz

. %
0

0
.0Q

% %%
>%

'a I:
--%

%. 0

(D
"a

0 G %
x a- -W

-0 T
o

% x

%
L

X

0 v
>- 1 C, 4

0 a a. C*4
A 0

.ý0 0

0 0E
2111

. L.
- + IR

o .40
:p
c

(L (D 0
r

-0 0
4) 0

L- E
co =
0

a

oE >
c

q) LL-
-0

.00
4, 1% 0E

0 e-
0 (D (D

0 . 4a
r-C 0

. 0
0C

J3 V
,

t
l %

-6
1x a- - 'G,

C7,

4-0 0 + "t)
V;

0 04 c
0

0.4- ir
e X1 'D A

A
v

c
0

-W

: tý 0
0
()

C)
0)

tr_

%6- R C4 I 0

0.2: 0 G-j .4
I 1- 7

61
x C (D

0 U) c
lcý - a 11 0

0

1 (D 0
c

. 1. fj) 4)

CL -0 c! E! 02
0

4-
a .. 4-

0 ---
I

0 M
C V)

000
.0W

,
" oE 0 1-4..,

0 C) 2
ý 0

0
-E

0%

a: %

-6ý a

c
O. s.
a:

0 0
%

%
% >1 X

(D (D 0 : rj

0 ,a0 (D 41

N0 X 04 0
0
0

A
v

c
0 04

a: c a r_ I 0E C14 >< ý! (D rI
am 11

CL a
- X :3
2 (D 0

. oa E
E!

5 0c 4)
0) ". a

-
- M O. 0 r-

0 .00 r
I -

-0 ý- -6ý a
0c I

. 0. 22 % i oE
0 0 > -6'

-- -I --- 0 V x -
CL

% a:
% T a: c 0

0 0a

% Ix = 0C L. %% x C 0 % %%, v
N V 0

u

.c S2 c q 7E! 2
IL 0 0 C

C 4) 0 :p
c

. C: -0 00

- 170 -

are stored in a new location file ready for updating the original

simulation model. The software design is described in figure 7-3.

The UPDATE module reads in the updated location and orientation

information and searches through the original GRASP model in order to

update the entity's location and orientation. A new GRASP model with

new entities is produced. Figure 7-4 illustrates the functionality

involved.

ii) Single Level Approac

The single level approach involves a PASCAL module called VALTOGRASP.

This module reads in the locations and orientations of entities that

have been calibrated, and the appropriate syntax for GRASP is produ(,, Bd

(with transformations between the entities concerned and the robot).

GRASP is automatically invoked, and the original GRASP simulation

model loaded. Finally the generated GRASP syntax inputs are fed int.)

the simulator. The simulator accepts the GRASP transformations which

are used to recalculate the spatial relationships between the robot

and the entities within the workplace model. Figure 7-5 is a

functional diagram representation of the logic design of the software

module. Appendix C. 2 shows an example output from this module. The ljýwly

created model should closely represent the real environment and thus

the inaccuracies are reduced.

There is another possible approach which is potentially a more

interactive method of updating a CAD model, but it is possible only if

the robot simulation software has the ability to read in calibrated

data directly from the robot controller via an interfacing unit.

- 171 -

I-T-1

MAD LOCAMN DATA

E --Dm ROOM WE

ENTER REFERENCE DATABASd

READ EACH IRD
FROM DA DPT

JE:
TýE AN[

t;: IN HEAP POINTIEURS
4

SEARCH FOR ROBOT TO
WOFW4ACE SPATLAL REIATIONSHIP

CMECK W" R
DATABASE FOR E

AND MS OWNER'S NAME

YES F0
Wfjj 0 -r. n AC

GRASP
REFERENCE

DATABASE

c

USE OWNER ILOCATION
DATA SIMRED IN

MREEFETRWNCE

DATABASE

00

CONCATENATE MATRICES
WORKPLACE WOR104ACE ROBOT

T-T*T

I

OBJECT ROBOT OBJECT I
IMME "rear Tj

CONCATENATE MATRICES
OMER wmar ROM

T IMRSE T*T
OBJECT OWNER OBJECT

REVERSE TO TRANstxnoNsý
l't s AND ORIENTATIONS

WRrTE CAUBRATED

LOCATION
DATA FILE

GRASP
REFERENCE
DATABASE

NO

R0130T I
INVERSE T1

CONCATENATE MATRM
OWNER RoBar Rowr

T INVERSE T* T

I

06= OWNER 0MZ-Y

II

CAUBRATED
LWAMON
DATA FILE

k END)

Figure 7-3 Flow chart of CALIB module

- 172 -

cEr

ENTER SOURCE
FILE NAM
I

----- ORIGINAL
READ A LINE L

GRASP
FROM FILE F RCE

DIRECT
STORE SAME DATA IN ACCESS ACCESS DATA FILE j DATA FILE

NO END OF
Ou GRASP SOURCE

FL? ILE ?

YYM ES

GET EACH

IF NE NO M
CONTA WORDS WRITE SAME LINE 'SEr OR 'ADD* ? TO A NEW TFYT F11 FI

YES

FROM FIRST TO UPDATED
LOCATION

LAST RECORD DATA FILE

GET OWNER AND ýN D
ENTITY NAMES

<F OWNER'S NAME >f
IS

ý
IS FIND IN THE DIRE

NEW ýWRITE SAME LINE ý FILE
ESý 2

WT ý1 F, ANM ILE To AN TF CESS RECOR - GRASP

YES

ENTITY'S NAM NO
IS ALSO FIND IN THE WRITE SAME LINE

ME DIRECT ACCE -1 TO A NEW TEXT
RECORD

YES

SET STATUS TO TRUE

WRITE THE SAME OWNER
AND ENTITY WITH NEW

POSITION DATA

12
Figure 7-4 Flow chart of UPDATE module

- 173 -

SA SEMI-COLO
YES

+

WRITE A SEMI-COLON NEW
INCLUDED IN TO A NEW TEXT FILE GRASP

FILE THE LIN
00 0 WE Cr NO
H

WRITE A 13LANK
TO A NEW TEXT FILE

YES NO
SEMI-COLON EXISTS

IN THE LIN

NO

GET THE NEXT RECORD IN
ITHE DIRECT ACCESS DATA F11.4

r ARCH THROUGH EACH RECORD SEA
,N THE UPDATED LOCATION DATA FILE

IF ENTITY A ME TO A NEW TEXT FILE 2
U EXI IN TH N

+

WRITE SAME LINE
NO

YES

WRITE THE SAME OWNER
AND ENT17Y WITH NEW

POSITION DATA

SA SEMI-COLO
YES

WRITE A SEMI-COLON NEW
INCLUDED IN TO A NEW TEXT FILE GRASP

FILE THE LIN

NO

WRITE A BLANK LINE
ý

IK T
E

1 nLýE TO A NEW TE

04

IF
UNTIL SEMI-COLON IS
FOUND ON THE LINE

UNTIL END OF DIRECT
ACCESS DATA FILE

END C:

40

Figure 7-4 Flow chart of UPDATE module (continued)

- 174 -

START

ENTER ROBOT NAME

ENTER LOCATION FILE

WRITE A SYSTEM OPERATION
FILE WHICH CAN BE USED TC

INVOKE GRASP

READ FIRST WORD
OF EACH UNE

IF WORD -ý>
<> END CALIBRATE

<

LOCATION
FILE

WRITE SYSTEM OPERATIOP SYSTEM
COMMANDS TO INITIATE OPERATION

THE ATTACHMENT OF THE COMMANDS
ENTITY TO ROBOT FILE

READ LOCATION L

& ORIENTATIONS 1-

MULrIPUED BY ROW104
Y 180 DEGREES I

MULTIPUED 13Y ROTATION1
Z 90 DEGREES

i

REVERSE TO LOCATIONJ
& ORIENTATIONS I

WRITE 'TO ROBOT ADD GRASP
ENTITY'S NAME WITH SYNTAX
TRANSFORMATIONS

I

FILE

END
,

Figure 7-5 Flow chart of VALTOGRASP module

- 175 -

Theoretically, once the calibration is accomplished at any one point,

the calibrated position and orientation would be transferred directly

and automatically into the robot simulation.

Calibrating and updating a CAD simulation model with the use of the

CALIB and UPDATE approaches can provide a new simulation model in a

source file (text) without any changes in the hierarchy of the data

structure in which the entities' geometric relationships are stored.

This provides the advantage of always keeping existing simulated robot

task programs in a valid condition. However, this method requires the

use of an existing reference database which has been generated when

the simulated robot task program has been pre-processed for off-line

robot program generation as described in chapter five. This method

restricts the calibration to be accomplished from top down i. e. thý.

entity at a higher hierarchy should be calibrated first and then

entities belonging to this entity. In the CALIB module, it is assumed

that there would be no change in the owner objects location and

orientation for any owner objects that have not been physically

calibrated. The geometric relationship of the owner object stored il

the database is used for transformation matrices concatenation. Thi3

may introduce error due to incomplete information obtained during thý

calibration.

The VALTOGRASP approach is flexible, and it utilises existing

facilities residing inside the robot controller and the GRASP robot

simulation package. For example, there is a frame function in VAL I*E

which can return the location and orientations of a datum position.

This approach is more efficient than the hierarchical approach.

- 176 -

The calibration procedures and software modules can also be used with

the on-line editing and the datum point method described above.

7.2.2 Robot Calibration

Industrial robots are generally applied to routine work and on-line

teaching methods are normally used to programme these robots. Since the

robots or manipulators are required to perform their programmed tasks

repeatedly, they are heavily reliant on their repeatability. Due to the

nature of the work and the programming methods, robot designers have

placed great emphasis on robot repeatability. Most of the currently

available robots show satisfactory repeatability but poor accuracy

[Driels and Pathre, 1987] (this being the de-facto situation unless

Cartesian robot coordinate systems are utilised).

Many robots can also be programmed by language commands. Moreover, wit, 11

the advent of Computer Integrated Manufacturing, robots must be

programmed off-line; hence robot accuracy is becoming important to

utilize off-line programming techniques based on CAD databases. This

means the robot end-effector is commanded to attain numerically specif-1--d

positions and orientations with respect to a reference frame or datum.

In other words, with this type of programming, positioning based on

commanded locations requires a high degree of robot accuracy. However,

the actual attained position may be quite different from that which the

programmer desires, for example, as Baird and Lurie (1983) observed with

the PUMA 600 manipulator, inaccuracies of up to 10 mm exist over a 200 mm

straightline path.

- 177 -

In the past, there was a lack of an explicit mathematical model to

analyze the errors. This means that the kinematic design of a robot

manipulator could not be optimized. There has been growing interest and

awareness in the importance of robot accuracy, and considerable

improvements have been made. Still, there are accuracy problems which

need to be drawn to the designers, and users, attention. These accuracy

problems are attributed to the kinematic functions (not perfect) and the

inaccurate knowledge of the workpiece reference frame in relation to the

robot reference frame. The nominal robot kinematic functions are derived

from the nominal geometry of a robot (with information obtained from the

design drawings). These kinematic functions are often used in the robot

controller for robots of the same model without taking into account the

variations (manufacturing tolerances of robot components) in the

assembled robots.

For off-line robot programming, the success or otherwise of the

programmed task relies on the accuracy of the robot used. Because of Oe

accuracy problem, programming a robot with off-line programming methods

(i. e. without teaching the desired locations) will not permit the robot

to perform satisfactorily. For this reason, it is important that the

nominal functions can closely fit in all of the robots of the same model.

This means that the tolerances specified in the design drawings have to

be tightened. The manufacture of accurate robot components would make it

a potentially expensive approach to improving positioning accuracy and

may be considered as commercially not possible. An alternative approac. -I

(and likely to be a more economically viable approach) is robot

calibration. Robot calibration is used to analyze the exact geometry o!

each individual robot to establish its unique kinematic functions [Cheri

- 178 -

and Chaop 1987]. once these robot kinematic functions are established,

its inverse kinematic functions can also be obtained. These forward and

inverse kinematic functions can replace the nominal ones used in robot

controllers. In its simplest form, robot calibration can be described is

a process whereby robot accuracy can be improved by modifying the robot

positioning software (i. e. forward and inverse kinematic functions).

The improved robot accuracy makes off-line robot programming methods more

readily applicable and suitable. This means that a robot task can be

programmed based upon (entirely) numerically specified locations or onl!,

a few reference frames (data) have to be taught and all other positions

can be specified as relative coordinates with respect to these taught

positions. This also makes robot task programs more readily

transportable from one robot to another (either a robot of the same or

different model).

(a) Robot Calibration Levels

Although the procedures involved in robot calibration vary widely it,

their complexity (some deal with joint transducer information, Some

consider the entire kinematic model, and some even consider the

dynamic model), most of the current robot calibration approaches call

be categorised into three levels [Whitney et al, 1984; Roth et al,

19871 viz: joint, entire robot kinematic model, and dynamic model.

(i) Joint Level Calibration

The purpose of calibration is to determine the correct relationship

between the signal produced by the joint displacement transducer and

- 179 -

the actual joint displacement. This usually involves calibration ot

the kinematics of the drive and the joint sensor mechanisms [Azavidar,

19871. The actual calibration procedure could be carried out using

laser interferometry or similar techniques [Driels and Pathre, 1987].

The error motions can be tabulated and stored as a function of the

joint variable. These error motions are likely to change very

gradually with change in the value of the joint variable and so will

be constant over a small range of motion of the Joint.

(ii) Entire Robot Kinematic Model Calibration

The goal is to determine the basic kinematic geometry of the robot a...

well as the correct joint angle relationships. With knowledge of the

manufacturing tolerances, the Cartesian error envelopes for the

designed kinematic parameters can be predicted [Stone et al, 1986;

Veitschegger and Wu, 1986]. Though a calibration method at this level

can correct the kinematic errors of a robot, it complicates the

controller's task in solving joint transformations.

(iii) Robot Dynamic Model Calibration

This applies to robots under dynamic control. If any changes in

dynamic conditions of a robot are identified, then a correction for

the changes will be made in the dynamic model. The dynamic errors

considered here, are also referred to as "non-geometric" or

"non-kinematic" errors in the literature. These non-kinematic errors

in positioning of a robot end effector are due to effects such as

those discussed earlier in section 7.1(c). At the present, not many

- 180 -

attempts have been made at this type of calibration.

(b) Robot Calibration Procedures

In general, the robot calibration process can be considered [Roth et

al, 1987; Okada and Mohri, 19851 to include four major steps viz:

(i) Modelling Ste

The first step in the calibration process is to choose a suitable

functional relationship (i. e. nominal kinematic functions).

(-ii) Measurement Step

This involves the collection of data (position and orientations) froia

the actual robot that relate the input of the model to the output.

There are three common methods available for measuring robot accuracy

and repeatability. The cost of the measuring equipment varies

according to the accuracy required which in turn depends on the

application. Some of the more commonly used methods can be found in

Lau and Hocken (1984).

(iii) Identification Step

The collected data from the measurement step are mathematically

processed to identify the coefficients in the model. This means the

process is to determine the expected error in the identified

coefficients due to measuring error.

- 181 -

(iv) Correction Step

After the coefficients of the model are identified, a new model of

position control software of the robot can be implemented.

(c) Possible Extensions of Robot Calibration

(i) Kinematic Error Happin

Robot kinematics can be considered as consisting of an infinite number

of static positions. If this assumption holds, kinematic errors can

be considered as a series of static errors i. e. kinematic errors

frozen at points in time. In this situation kinematic error mapping

can become a valid tool for error correction as an alternative to tll-!

kinematic equation formulation and calibration.

The mapping involves the accuracy testing of a certain area of the

workplace where the robot is to perform its tasks. Typically this

could be the assembly bench. The accuracy test is carried out at

different speeds within the allowable operating range. The results

are stored as a database which subsequently can be used in correcting

inaccuracy of the off-line generated locations and orientations. This

method also involves the writing of a software module for the search

through the database to obtain the required offset correction.

Suppose, the robot is commanded to move to location x at a certain

speed specified in a robot simulator, the correction software should

search through the database and use it as a look up table for the

offset at the right speed range and the approximate position. The

- 182 -

offset is then added to the off-line generated locations.

(ii) Adaptive Control - Dynamic Error Compensation At Robot

Controller

The method proposed by Lee et al (1989) was implemented by modifying

the resolver feedback signal by the predicted error. A new trajectory

control of a robot is proposed based on the off-line trajectory erroc

analysis of the system (see figure 7-6). An Adaptive Linear Modelli. ig

algorithm [Astrom and Eykhoff, 1971; Eykhoff, 1974] based on the

Recursive Least-Squares method [Strejc, 1980] is used to determine the

approximation model. The principle of the implementation is that

resolver signals are converted into joint angles (0i). The

world coordinates (Px, Py, Pz) corresponding to the measured joint

angles (01, ()21 e3) are calculated using the direct

kinematic transformations. These world coordinates are then modified

by the predicted error (Ex, Ey, Ez). The modified coordinates are

finally converted back to resolver signals and returned to the robot

controller. This method has been shown to achieve a 70 % reduction Ln

errors.

This method tackles the problems of control, and requires experiment-11

data to determine the approximate behaviour of the robot model. In

this respect, it is specific to the off-line programming system

concernedp and hence not general enough for different robot models.

Although the claims of improvement in error seems quite promising,

there are still problems of resolution and deadband.

- 183 -

Laser measurement
I

system

Ex Ey Ez

V17
Adaprive forecasting
control algorithm

Ex' Ey' Ez'

Robot
Resolver Controller

Sin &
Cosel

of Arctan
e Q0 j-14, r-

Px Px' C6 ---
ýin & Sin c-L, - I Cos L-. -ý a 10 E -C

0.4,
E

-E Sin
Cos

00 e -ý 3: (A 0
PY 1 PY 5.2,

. .0 r- - 2' -K L & 9.6.1 9"0

'
03 i

4D -C 0

C
00
0

Sin
Cos P 3

E
C0 o L- %-

Pz Pz E 1ý 26
04- 3' Fsin &1 , - sýArctan L--ý

() 0 L) - I Cos

Figure 7-6 Th e modified structure of signal feedback
(Adapted from Lee et al. 1989)

- 184 -

(iii) Dynamic Robot Simulators

This type of robot simulator considers dynamic effects as well as the

kinematic inaccuracy of a robot. At the present time only a very

small number of dynamic robot simulators are commercially available

(more detail was described in chapter two) including STAR, ROSI and

ROBOT-SIM. Using this type of robot simulator, the dynamic effects of

a robot can be predicted and therefore dynamic errors or inaccuracie3

can be corrected. Unfortunately, dynamic robot simulators can only)e

used to predict the performance of a limited number of robot types d., Ie

to the many difficulties involved in the formulation of correct

algorithms. Howeverl the algorithms themselves are subjected to

errors due to measurement errors and error sources that are

probablistic in nature. Thus, dynamic robot simulators provide a

solution to the specific problem and the generic solution has yet to

be developed. The development of a generic algorithm for predicting

dynamic behaviour of robots of different configurations can be

considered as an impossible task.

It is not simple to assess the relative significance among all dynan[c

error sources. The significance varies from model to model.

Experiments can be attempted to yield some measured values, but it 11? Ly

still be difficult to distinguish among the contributing sources JCII, ýn

and Chao, 1987). Furthermore, it will be very time consuming to

perform measurements for the individual robots to obtain error valu(!, -

which will be accurate enough to achieve the desired accuracy in

position computation.

- 185 -

The simulation model calibration relies on robot repeatability and

hence the data collected is not perfect. In addition, the robot

calibration itself is also subject to inaccuracy due to error in the

measuring devices and some unpredictable errors. On-line calibratioa

may therefore be necessary to deal with the remaining inaccuracy.

Normally, the simulation model, robot calibrations, and the refined

kinematic/dynamic functions should be good enough for most

applications.

7.2.3 On-line Calibration Methods Mapped Onto Operation Classes

As described earlier in chapter six, robot applications can be broadly

grouped into pick and place, palletising, machine tending, assembly and

welding. The existing calibration methods have been discussed in

previous section and these methods are to be mapped onto existing

application areas.

(a) Pick and Place Operation

Pick and place is the fundamental robot movement that other application:;

are based upon. Pick and place operation can be regarded as the simplest

and therefore a simple calibration method is suitable (in terms of cost

and accuracy). In most circumstances, the on-line editing approach is

suitable for this type of application where the number of operation

positions are limited.

- 186 -

(b) Palletising Operation

In palletising operations, the robot operation positions are normally

referred to a datum point such as the coordinate frame of a pallet, and

thus the datum point approach is more appropriate. This is simple and

yet accurate enough to provide good calibration. This calibration metlt)d

can only be applied to palletising operations where the objects which El.. -e

to be manipulated need not be distinguished from one another. If the

palletising operation is dependent upon the object type, then some mea113

of identification such as bar coding is required. The bar code reader is

then used before the palletising operation is to begin. An alternative

approach is to use a vision system to distinguish the object type as w(! Ll

as for calibration purposes. This will however generally result in

higher cost.

(c) Assembly Operation - Electronics

In electronics assembly, two-dimensional vision systems can be used for

calibrating the workcell arrangement. Here the datum point approach with

the assistance of a two-dimensional vision system is the most appropriate

method of calibration.

In printed circuit board (pcb) assembly, there are two major types of

entity that require calibration. With the off-line program, calibratioli

is required to locate the delivered location of the electronic components

and the location of the pcb where these components are to be assembled.

Force sensing on the pcb coordinate frame is not possible due to the fact

that a small external force disturbance can cause misalignment of the

pcb. The alternative is to apply vision techniques to locate the pcb

- 187 -

coordinate frame. However, in the absence of a multiple camera vision

system and for economic reasons, it would be better if the calibration if

the coordinate frame of the electronic components (delivered by the

feeding device) was carried out by teach without force sensing. The

calibrated locations and orientations can be stored at the robot

controller for use in assembly. Alternatively, in the case of assembliag

families of products then the locations and orientations of the

electronic components delivered should be fed back to the simulation

system for updating the simulation model.

(d) AssemblY Operation - Mechanical

The use of sensory information can provide a method for correcting both

static and dynamic errors. Let us consider the three possibilities of

this approach where the batch size is the determinant factor. The thre.!

possibilities are: one off, batch and large product families solutions. The

starting point in task calibration is that one is given a robot program

for a given task along with all location data. All locations where

accurate positioning is necessary are identified and assigned unique

names in the location data file (unique names are the same as used in a

CAD model). It is assumed that the robot will be stationary for some

duration during normal task execution. For accurate assembly tasks, su. -, h

as peg in hole insertion, assembly might require the assistance of a

force sensor at such stationary points during program execution (i. e. at

the points of insertion). The forces and torques exerted on the robot

gripper can be sensed assuming that the correct component is being

correctly fed and gripped. If this force is greater than the pre-set

threshold value then the robot control software will conclude that

insertion is not being attempted at the right location and therefore the

- 188 -

normal assembly routine is interrupted and a VAL II program with search

pattern is called up to find a location where the force exerted on the

gripper is less than the accepted value. From then the location is

either used for insertion or the location is updated and the normal

assembly routine is resumed. The choice is dependent upon the batch size

involved (i. e. dependent upon the period of repetition). Three

possibilities are open for consideration: one off, batch and large

product families solutions.

(i) One Off Solution

In this method, an off-line program is linked up to the on-line sensory

search program through the use of a compilation program. This involves

writing different VAL II (or other programs) to do a variety of search

patterns in which the precise locations can be found. Another VAL II

program is used to combine the off-line program with the search program.

These location search programs when completed should be stored to buila

up a library. As more programs are written, the library will be expanded

so that it will be easier for the programmer to retrieve the appropriat. a

program for the type of job required. Since the robot is to be used

once, the correcting of locations and orientations may not be necessary

(as the sensor search program may be used each time a task is performed).

This may take a long time and is inefficient for batch operations.

(ii) Batch Solution

This is similar to solution (i) above, except that the locations and

orientations are updated and stored in the robot controller. In this way

- 189 -

the search routine is not invoked for the second and subsequent

operations of the task, except possibly through exception handling

invocation. This significantly reduces the cycle time.

(iii) Large Product Families Solution

This is very much the same as solution (ii) above, but the updated

locations and orientations are fed back to the robot simulator to modify

the original simulation model. This solution has the advantage of beirg

capable of accommodating large families of products where frequent

reprogramming of the robot task is required. This raises interesting

issues as to whether the modelling/simulation tools could be used with

advantages in the robot controller where high speed information

access/processing can be utilised.

For any simple mechanical assembly with parts locations and orientatioll;

pre-determined, force sensing would be just good enough. However, for

complex assembly where parts and subassemblies are not always delivered

in a fixed sequence nor located at fixed locations and orientations,

compliance force sensing is not capable of identifying parts.

Three-dimensional vision can be advantageous in this application, which

can be used at a distance to identify and locate the parts in the field

of view. The assembly process is monitored by compliance force sensing

while the parts and subassemblies are in contact. This is particularly

relevant when the parts and or the subassemblies are seriously misalignad

and the compliance force sensing cannot accomplish the task alone

[Russell et al, 1989].

- 190 -

(e) Welding Operation

A welding operation also requires calibration before the welding process

is executed. Tactile sensors can be utilised to calibrate weld start EtAd

finish locations and orientations and to guide the robots in performing

the welding task. In this application vision systems are rarely used for

two major reasons viz: the severe lighting generated by the arc weldin,;

can seriously affect the performance of the vision system and the field

of view of the vision system can only cover a part of the object or

objects and hence it is not possible to train the vision system for

recognition.

7.3 General Conclusions

In general robot accuracy depends upon the rigidity of the robot

structure, link parameters and other factors earlier discussed.

prismatic Joint will generally be more rigid than a revolute joint and

hence the error or inaccuracy introduced by a revolute joint is

considered to be more significant.

It is evident that many of the error sources identified here are not

easily quantified. Sometimes the best that can be done is to make a

carefully judged estimate of error magnitude. It is probable that many

users of robotic systems do not have a complete understanding of the

positioning error sources involved. Even when error sources are well

understood, it is often difficult to get the required accuracy at an

acceptable cost. These factors lead many systems to operate on the ourm

fringes of acceptable accuracy. Such systems require constant monitori. ig

- 191 -

by the programmer and frequent "touch-up" is necessary to maintain the

path programmed.

In general, simulation model calibration is a sensible approach to modify

discrepancies between the idealised CAD model and the real world

environment. Although the robot calibration methods of formulating an

accurate kinematic function or static error mapping can be useful in

correcting kinematic error (assuming the robot is stationary at a certain

point in time), the variables involved which may affect the robot

performance makes the calibration too time consuming. In precise

operations where accurate robot movement is required, static error

mapping does not provide the necessary information on how a robot will

behave dynamically. For this reason, methods of dynamic error

compensation are required, in the form of dynamic robot simulators or

dynamic effects prediction. However, each robot model can only represent

a particular robot since no two robots are identical in every aspect eArBn

if they were of the same model and supplied from the same manufacturer.

Their dynamic behaviour will also suffer variation from time to time dil!

to maintenance, temperature changes, etc. This makes the dynamic

equations difficult to develop and the advantage of this approach will

not be realised until these barriers can be overcome. Perhaps, the

residence of a robot simulator in a robot controller would provide the

necessary functionality.

Although, geometric, kinematic and dynamic accuracies can be improved, It

is expected that there will always be residual inaccuracy inherited in

the whole off-line robot programming system. On-line sensory feedback

can be used for the remaining inaccuracy. Force sensing can assist the

- 192 -

robot in carrying out assembly tasks, but the searching time (for

ensuring the assembly is attempted at the right position and

orientations) involved are usually quite significant (depending on the

precision of the operation) even in a simple assembly operation. An

alternative solution is to use vision systems to locate the centroid of

each of the assembly points concerned. Although the search time can be

improved, recognition time can become significant and should require

further consideration. Furthermore, uncertainties arises in the centrold

positions (normally it is small and may be regarded as second order).

If one-off assembly with many assembly operations (i. e. assembly point3)

is to be carried out, force sensing and vision systems are inadequate 'L3

the searching/recognition becomes a large portion of the total cycle

time. This problem is particularly prevalent where families of product.;

are to be assembled. A typical example is in electronics components

insertion, where hundreds of items are to be inserted in a printed

circuit board. In addition to the long search time required, force

sensing could disturb the pcb location. An alternative is the

integration with CAD product design data so that there is no need for

searching, insteadv one teach point (i. e. the frame of pcb) can be used

as a reference point, to which other electronics components are referred.

This integration approach is discussed in chapter eight.

- 193 -

CHAPTER EIGHT

INTEGRATION OF PRODUCT DESIGN DATA WITH

AN OFF-LINE ROBOT PROGRAMMING SYSTEM

8.0 Introduction

At the present time most CAD systems operate as isolated islands of computer

technology. However, as previously discussed, the goals of CIM cannot be

fully realised without utilising electronically the information created at

product design for administering, organising and programming the

manufacturing machines. Thus the output from a CAD database will have

limited practical value unless it can be used to support decision making

processes and ultimately facilitate the generation of machine programs

(including NC programs, robot programs etc). Thus future CAD/CAM systems

will be more fully integrated with other factory computer systems with

design information forming part of an integrated database which is likely to

be distributed [Rui et al, 1988]. Thus for each product, design engineers

will develop a product model and enable manufacturing engineers to reference

it using a CAD/CAM system to perform operations such as manufacturing

planning, assembly and inspection. Each of these functions will access the

same product model and add its own information to the database.

As indicated earlier, future generations of robot simulator are expected to

have an increasingly important role in the evolution of CIM systems. To

provide an insight into one fragment of this problem, the possible form o.:

an interface to product design will be considered.

Consider the specific case of an electronic manufacturing environment where

a robot is to be used to insert "odd form" components into a family of

printed circuit boards (pcbls). Suppose also that the pcbls are to be

manufactured in small batches and have been designed using a proprietary CAD

facility. In such an instance, various information concerning the artwork

- 194 -

on the pcbls, the components types and their geometry and the required

location of the components on the pcbIs will be stored within libraries in

the pcb design system. Although this information is likely to be stored

using proprietary data formats, it will exist in a machine readable form and

can be utilised in generating the product model for robot simulation.

Clearly, however, a data link of some form (which may be automated or

involve manual intervention) must be established and processing facilities

provided to reformat the information into data structures which can be

integrated with the workplace model. Such an arrangement could yield

significant advantages where the importance of better integration into CIM

is evidenced as a measure of productivity [Groover, 1980 and 1987]. As

reported in Computing Equipment (1985), a productivity ratio of 4 to 1

exists in favour of using CAD in comparison with manual methods.

Furthermore, according to this study when CAD is fully integrated into CAM,

the productivity increase is of the order of 40 to 1. Although the

productivity increase attainable will be industry' and 'application'

specific in nature, the opportunities for lead time savings is a major

driving impetus for this study, and indeed other studies worldwide, where

robot/workplace simulation and off-line programming are involved.

The specific study presented in this chapter serves to illustrate that for

robot simulators the modelling process can be considered to comprise three

constituent elements, namely a model of (i) the robot manipulator, (ii) the

robot workplace and its tools, and (iii) the product. Having chosen a robot

and determined its attendant workplace equipment, the arrangement so formed

will remain fixed in most situations and so too will their associated model

elements in any simulation. However, when batch manufacturing is involved,

changes in the product occur which may or may not have implications with

- 195 -

regard to tools, feeders and fixtures. Thus where a large family of

products are involved, or where complex geometric descriptions of products

are concerned, a link to product design can be of significant benefit.

Furthermore, significant benefit can be gained by establishing data links to

other computer based manufacturing activity areas. For example an interface

to an automated process planning system could access valuable information

concerning the sequence of manufacturing operations to be performed. In our

pcb assembly example process planning information might already exist, in

machine readable form, describing the sequence in which sub-tasks should be

performed in the simulation process and subsequently in the robot task

program.

The success of any integrated solutions as described will utimately rely

heavily on the success of standards initiatives such as MAP/TOP, EDIF, IGES,

PDES, IMDAS and AUTOMAIL as described in chapter three. Such specifications

will allow manufacturers to supply their automation products with standard

interfacesy thereby allowing standard product descriptions to be stored and

transmitted across these interfaces.

Integration of a printed circuit board design system (REDBOARD) with an

off-line robot programming system (GRASP) has been implemented as part of

this study to illustrate possible problem areas in establishing integration

and thereby to evolve methodologies inherent in such integration exercises.

A printed circuit board design system will provide the designer with

facilities for pcb layout design, but it should also reduce the need to

manually produce a mask for pcb artworks, define electronic components

insertion locations etc. This linking of design and manufacture/assembly

- 196 -

information is of course not restricted to the electronics industry, but

also applies to the whole engineering spectrum. In many ways, however, pcb

application areas provide a sensible starting point for study as such

products are simple in the sense that their functionality is not usually

related to their 3D shape as is often found in many conventional

electro-mechanical and mechanical products.

The particular printed circuit board design system used in this study was

the REDBOARD software which was produced and supplied to run on an IBM PC/AT

by RACAL-REDAC Limited. When designing the layout of a printed circuit

board with REDBOARD, the module called PCB is invoked. A library of

electronic components is available within the system, and includes a 2D

description of most common integrated circuit chips (IC's) available today.

From this libraryt specific electronic components can be selected and

located with respect to a 2D graphical representation of the printed circuit

board. After all the electronic components have been placed at their

desired locations, connections can be routed either manually or

automatically using the AUTOROUTE function.

The completed design is stored in a binary format which is only meaningful

for this particular system, i. e. the information is stored using

proprietary data structures and formats. At the present time, the

RACAL-REDAC company supply various postprocessors to enable the design

output to be used for plotting the pcb artwork for photographic processing,

generating NC programs for drilling and cutting out the outline of the pcb,

and generating assembly programs e. g for Automatic Component Insertion (ACI)

machines. Although REDBOARD provides output information which can be used

in the programming of a variety of processes associated with pcb manufactitre

- 197 -

and assembly, there are many other CIM activities which require reformatted

fragments of this information. Examples of such entities are robots, vision

systems, cell controllers (i. e. computer systems used to support decision

making and control functions for a group of manufacturing machines or

assembly workers) and shop controllers (i. e. providing decision support and

control functions for a shop, such as an assembly or drilling shop). Here

we are primarily concerned with the use of the information for the

programming of robots (which can of course be classified as a general

purpose programmable machine).

The binary output from the REDBOARD design system is not directly suitable

for further post-processing for the creation of robot programs. The

information can however be converted into a text (ASCII) file, using a

REDBOARD system software module (called PASCH). The text file generated

contains information which can be processed via the author's processing

modules to produce three dimensional solid models (based on Boundary

representation) of electronic components, and the pcb for use in the GRASP

robot simulator. Significant potential, in terms of time savings in the

design to product cycle, is promised if robot-independent programs can be

generated for electronic component insertion, based on the use of existing

design data.

8.1 Discrepancies Between the Design and Off-line Robot Programming

Systems

Necessarily, this study has centered on the use of specific design and

off-line robot programming systems through the use of REDBOARD and the

GRASP simulator extended by the author. The study has highlighted six

- 198 -

major discrepancies between the specific pcb design system and that of

the chosen off-line robot programming system. Although those

discrepancies listed below are thus related to specific properties of the

combination of GRASP and REDBOARD, they illustrate features of the

general integration problem.

(a) Purpos

Generally, the current generation of pcb design software tools are

clearly intended for design purposes. Hence, apart from producing masks

for the artwork and NC tapes for drilling through holes, they have not

been conceived to serve other purposes. In particular there is no

information concerning assembly sequences or pick up points. A process

of iteration is considered by the author to be inevitable here, with the

needs of CIM specifying the characteristics of future design tools.

(b) Model Representation

The REDBOARD system produces a two dimensional pcb layout design whilst

GRASP uses a three dimensional solid model representation. There is a

lack of information in REDBOARD concerning the third axis (component

height) and generic conversion from a two dimensional to a three

dimensional model or representation is not possible. In the pcb assembly

application examples studied, this problem can largely be solved by

assigning individual parameters to the third dimension of components with

the thickness of the pcb usually being constant for a given product (this

being the method used in this study), --although pcb1s of different

thicknesses and types (e. g. multi-layered boards) must be catered for in

- 199 -

general case.

(c) Spatial Relationships

Major discrepancies relating to spatial relationships may occur. For

example with REDBOARD, the locations and orientations of electronic

components on the pcb are referred to the current pins at the bottom left

hand corners of the electronic components after any rotation. However,

with GRASP the objects' locations and orientations are defined by

relating the objects' frames to the frame of the pcb. The principles

embodied here are illustrated by figure 8-1.

Resolution

The increment in dimension (i. e. the resolution with which modelling

occurs) must be consistent. For example, the parameters given in

REDBOARD are normally (but can be modified as required) in units of

0.635mm (4 units being equivalent to 0.001 inch, i. e. the pitch between

pins on many IC's) compared to the 1mm unit of GRASP.

e) Dimensionin

A further problem identified relates to pcb design systems where

generally the outline dimensions of components are the nominal sizes

rather than the actual dimensions. The difference in dimensioning is

shown in figure 8-2, and clearly can have significant implications when

accomplishing the actual assembly functions.

- 200 -

Iy

ROTATE

z IL

0000000

0000 PIN 1x

Y
0 0

0
0 A ROTATE

-, X
zo

10r
a: c,

i

00000000

PIN I
00 qo 0000

x

REFERENCE pp, REFERENCE
FRAME RED130ARD SYSTEM X FRAME GRASP SYSTEM X0

Figure 8-1 Discrepancies in describing spatial relationships

X CAD X CAD ý- X ACTUAL
XAPTUIýL

(component dimension) (pin to pin distance)
1-00 -I-I

00

00 component
body

D 00
0

PINS PINS
00

00

00

00

REBOARD REPRESENTATION ACTUAL COMPONENT

Figure 8-2 Redboard representation of an IC chip

- 201 -

(f) Data Format

The way in which information is represented and stored will generally be

different between the design and programming systems. For example, the

syntax or data format used in the REDBOARD design software is

significantly different to that of the GRASP robot simulator and reflects

many of the observations made in (a) to (e) above. Appendix D. 1 provides

examples of the formats of the two systems.

8.2 Design Approach Used for Integrating a CAD System with an

off-line Robot Programming Syste

The purpose of the integration software evolved in this project is to

bridge the discrepancies between CAD and off-line robot programming

systems and to provide a platform for generalisation. Again the actual

software implementation which achieves this is specifically designed to

integrate REDBOARD and enhanced GRASP entities, but the underlying

rationalle was to create a mechanism for generalisation. This section

describes the software produced.

Since the REDBOARD design system can only provide two dimensional

information concerning electronic components, this information must be

converted into three dimensional form for subsequent GRASP solid

modelling and for robot task simulation. The required locations and

orientations of the components on the pcb are used as the destinations

at which the components should be assembled. However, no information

is available within REDBOARD to define the pick up positions

(i. e. the position of feeders for the electronic components) which

- 202 -

itself can present complex problems. The integration software evolved

generates text files which contain GRASP syntax describing (i) solid

models of pcbý and the associated components, (ii) pick up location

assignments and (iii) task simulation programs.

A program describing the robot assembly task is generated which is

suitable for the specific robot simulator.

In the case of creating a new model, spatial information may not be

available concerning the workcell arrangement. That is, the location of

pick up points and the working frame of the pcb board may not be known

initially, and the practice of teaching reference points of the model was

conceived, based on "on-line" teaching methods. When using this practice

human intervention takes place to calibrate the workplace such that

positional and orientational information of key elements (obtained using

the on-line teach methods described in the previous chapter) are fed back

to the simulation system. In this example the required feeder positions

and the pcb coordinate frame are updated, ready for simulating the

assembly performance and eventually producing an off-line robot program

for the assembly task (figure 8-3 conceptually illustrates the principles

involved).

The methodology derived does not exclude the approach of allowing the

simulation to proceed with key elements located at arbitrary

predetermined positions and orientations, thus permitting an initial

evaluation of the model. Subsequently, however, the exact locations and

hence the "on-line" teaching of locations and frames will be required.

In certain circumstances teaching can be viewed as a "fine tuning"

- 203 -

T3 C/)
Lq

16 ýs ,< _j c D
1 '0 0a

LL 0

U)
0

C:

2 :D0
00 C, . 410-

-0
V)

-0 K) = -C
0.2 C14 41

41

L
ly- E 0 0

12.
ý U) Q)

820 0ý W -0
C a) ý,

U) 00 -0 U)
ýva

0 '0 > a, - .0 :3 0)
--- low

0 C, CL 0 In.
9 -0 C: 5E0

-E 0

V) E
U) 0 a: CL
0 tr, -0 E
CL

-0P
0 L-
C: 0

.2- 0.
0
L- 41

0)0
zw -E Q) -Q LLJ 0-6 00

. 0-0 C) V) 0
0za2E

LLJ
D
Of 0
LLJ
U)

0 0
0a --mw 00,5

C', Q
-0

C c 0 '71"
MM 00 0

0

(n

c t0c

.00.
E
0 C) uj U) U) E

U) .90 LLJ c1 c U)
4)

< LLJ
0> no c 0)
[If V) i0- CL ý-- ý--

0z
C)

<m
-AN,

01C,
4 a t)

0-
o Of 0a Mon LL. OE

0 m C) D
ml

LLJ LLJ LJ (n V)
-0

-
I1 12- Lo- 2m

-0'0 a_ 0 4) -

0aE

0 r 0 4)
'2. E ý0

ýEo

0 :; 3
00

0
r)

kl.

Y-

-0 0

LLJ

LýM: D
Ln M. 0

%,
, 3g 0.

ID

mcý

- 204 -

exercise. For example the arbitrary positions can be calculated

approximately or may have been established in the generation of other

similar models. Since a gripping mechanism (which may involve vacuum

pick up) is required to hold each IC chip (normally at its centroid),

each component in the GRASP model is affixed with a pick up reference

frame midway from the object's frame as shown in figure 8-4. Clearly,

however, other offsets could be included as required. In order to

improve the human machine interface to the 3D simulation facility, a

drawing of each component is shown on the pcb such that any error can Iv!

visualised. In addition, a target frame is assigned to each

corresponding assembly position, to which the insertion locations are

referred (see figure 8-5).

Many of the integration problems that have been overcome are specific to

the facility created by the author. Using contemporary pcb design

systems like REDBOARD, the order in which components are assembled is r. ot

specified as part of the design process. Several ways of dealing with

this situation have been considered whereby sequential information can be

created. The first approach implemented is simple but is not

particularly practical as it involves a sequence assignment equivalent to

the order in which components appear in the CAD database. Subsequently

more realistic approaches were developed using a pseudo process plan

which specifies assembly sequences. In using these approaches, a motion

sequencing facility is incorporated in the post-processor which is based

on an illustrative set of rules (as explained in section 8.2.3).

The whole approach is depicted by figure 8-6a and b which illustrates the

role of the required pre- and post-processors.

- 205 -

IC CHIP
zi

Object
z

f rame
x

yx
Assi ne I
pilck! -UDp frame

Figure 8-4 Frame assigned for pick up position

GRIPPER

7

IC CHI
PICK UP FRAMEW

z TARGET FRAME
z

FOR IC CHIP

I.

X
AU-H

PC BOARD FRAME

Figure 8-5 Electronic component insertion

- 206 -

start

dispigy

PCB
desip
data
file

" is One ' yes
containinýý

no

enter name of
PCB design data rile

r-find sco-le of

I read a fine I

call procedure BOA
to eXtroct pcb board outline

I

and stored In DA. data file

I

board
outline
data
file

yes to ecall
procedure ULS

cO=Q
ý

xtract all IC chips being e
referred In the component library UB' 1-7

and stored in DA data file

no adjustment
database

W. 0

5i

CL

' Is 1ýn? : >yes
containin

'. ROU'

input location adjustTent
database for correcting

from pin to component frame

is ripo
ng yes call procedure COM

containing to extract the positIons and
I. COM' or RE orientations of IC chips with

or '. RE

>

respect to pcb
RE'"

no

call procedure ROU
not implemented

location
data
file

no

no Is it
end of rile

yes

and

Figure 8-6a Flow chart of product design data pre-processor

- 207 -

start board
outline
data

q

file

dis pI gay 19)
/

component tr uctlons instructions data
file

enter name of location
data PCB design data file file so that DAdata files are referenced

adjustment database display
menu

user defined
insertion

enter option height. 9

pcb yes call procedure DRILLING DID
drilling
option

+

NOT IMPLEMENTED

no

c i PC call procedure ROUTING
rou1 ng <
option

NOT IMPLEMENTED no

no

pcb yes call procedure BUILDBOA. BUILDUB.
assembly a tio

inseWion and BUILDCOM to construct
b A SP model and ro ot program GR

no

pcb call procedure SMI)
assembly opfio information of SM components i

I

(SMD are not ava lable within REDBOARD

no

no new
session

no

quit

yes

end

Figure 8-6b Flow chart of product design data post-processor

- 208 -

8.2.1 SFC Pre-processor

Since there was no neutral data format in existence, the integration

of the pcb design system with the robot simulator can be achieved

through using pre- and post-processors. The implementation of this

method is specific to the design system and robot simulator involved.

The purpose of a neutral data format is to provide a level of

standardisation, defining common data structures for pre- and

post-processing. Further discussion of pre- and post-processing

methods has been presented in chapter five.

The SFC pre-processor reads in the ASCII output file of pcb layout

design generated by the REDBOARD system, and transforms this

information into a description of the 2D board outline, component

definitions, and locations relative to the coordinate frame of the

pcb. The transformed information is stored in three direct access

data files. In addition a position adjustment database is

automatically generated for adjusting the discrepancies between the

reference frames as shown in figure 8-1. The offsets are calculated

based on the type (number of pins, etc) and orientation of the

components. The database functions as a look up table where the

offsets are used to achieve correction in frame locations. The

algorithms used for correcting these offsets are characterised by

table 8-1. The abbreviations of dXmin., Umax., dYmin., and dYmax.

are explained in figure 8-7.

- 209 -

dx max.

dx min.

I

y ýin 1
4-0-0-0-0-0-0-4-

Ic CHIP X

REFERENCE
FRAME

Rotation -0 degree

PCB
REFERENCE x
FRAME

JE E E

Rotation - 90 degrec3

0

0

0

0

0

00

c
w

0

r/

PCB
dy max.

REFERENCE
FRAME

4.

x

Y

Rotation - 180 degrees IC CHIP
REFERENCE X FRAME

ooooo lo
.,

y
pin 3

-0- 0- -0 - -0

dx max.

PCO
REFERENCE
FRAME

x

V

PCs
REFERENCE
FRAME

d min.

IC CHIPý
REFEREN
FRAME

0

0 CL

x
03

0

0

0

Rotation - 270 degrees

Figure 8-7 Correcting component location to frame location
x

- 210 -

ROTATION NEW X COORDINATE NEW Y COORDINATE

0 X - dXmin. Y - dYmin.
90 X + dYmax. Y - dXmin.

180 X + dXmax. Y + dYmax.
270 X - dYmin. Y + dXmax.

Table 8-1 Offsets Correction Algorithms

The formats adopted for these direct access data files were conceived

by the author and will be referred to as the Pre-Processor Neutral

Data Format or PPNDF- This information is thus readily available

for further processing by a variety of post-processors each of which

could transform the neutral data format into the customised syntax used

by a proprietary robot simulator. The PPNDF adopted is illustrated

by figure 8-8.

The SFC pre-processor is specifically design for processing data

stored in REDBOARD format into the neutral data format. If a

different pcb design system is used, a different pre-processor is

required to create the same PPNDF neutral data format, thus

maintaining the purpose of neutral data format.

8.2.2 SFC Post-processor for GRASP

The GRASP SFC post-processor reads PPNDF information from the

appropriate direct access files, and converts the 2D model data into a

corresponding 3D model in the GRASP syntax. This post-processor als)

generates a file which describes the relationships between the

- 211 -

NEUTRAL DATA FORMAT FOR PCB DIMENSIONS

RECORD BOARDNAME CORNERS POINTS

BOARDNAME - name given to a pcb
CORNERS - number of comers on pcb

POINTS = an array which stores coordinates of corners
relative to the reference frame

NEUTRAL DATA FORMAT FOR COMPONENT DETAILS

RECORD IDNUM NUMPIN XDIM YDIM PINLOC PADTYPE

IDNUM - component reference number
NUMPIN - number of pins available on component
XDIM =X dimension of component body
YDIM -Y dimension of component body

PINLOC an array which stores locations of pins on component
PADTYPE type of pad used on IC

NEUTRAL DATA FORMAT FOR COMPONENT LOCATIONS

RECORD NAME IDNUM NUMPIN ORIENTATION XSHIFT
YSHIFT DIST REPORTED

NAME - name given to a component
IDNUM - component reference number
NUMPIN - number of pins available on component
ORIENTATION - orientation of component on pcb
XSHIFr -X location of component on pcb
YSHIFT -Y location of component on pcb
DIST - absolute distance of component from pcb frame

REPORTED - status of data usage

NEUTRAL DATA FORMAT FOR LOCATION ADJUSTMENTS

RECORD IDNUM ORIENTATION XADJUST YADJUST

IDNUM component reference number
ORIENTATION orientation of component on pcb

XADJUST adjustment for offset in X location from pcb frame
YADJUST adjustment for offset In y location from pcb frame

Figure 8-8 Pre-processor neutral data format for pcb design data

- 212 -

required pick up positions of the electronic components and their

corresponding reference teach points. Vith the SFC insertion

sequencer (see section 8.2.3) and user pre-defined insertion height

for each component type, the sequence of electronic component

insertions is determined by the decision rule selected, thereby

illustrating the use of pseudo-process planning operations. The

simulation task program is generated in two files with one describing

the location of key entities in relation to their owner entities and

the other describing the sequence of operations to be performed in the

assembly task.

8.2.3 SFC Insertion Sequencer

At the present time there are no generally accepted rules or

methodologies relating to the order in which electronic components

should be inserted into or onserted onto pcb1s. Investigation has

revealed (through discussions with leading pcb manufacturing

companies) that commonly each company has derived its own set of rul-2s

which depend on the type of insertion or onsertion machines used (e. j.

axial, radial, IC, SMD, robot) and the auxilliary devices being used,

such as the gripper, and feeding device.

In the absence of a generic methodology the following rules have been

implemented and they should be treated as examples which demonstrate

the principles involved rather than exhaustive or particularly

realistic. Five simple rules which have been used fairly widely

[Marconi, 1987; ICLI 1988] are described below.

- 213 -

(i) In the electronic industry, components are normally assembled in a

pre-defined order at different assembly heights, e. g. the component

with the most pins would be assembled first at the lowest level.

Components with the largest number of pins and which appear first on

the database should have top priority. This rule is based on the

reasoning that in some circumstances, the assembly of smaller

components before larger ones can be impractical and result in

collision. This problem is usually referred to as the 'foot print'

problem.

(ii) Components with the largest number of pins should be inserted

first. If more than one component has that number of pins then the

one with its insertion/onsertion position at the closest distance to

the frame of the pcb should have top priority. This rule is based on

the same reason as (i) above but with a different sequence of

assembly.

(iii) For certain types of assembly machine, foot print, problems can

occur where the gripper may collide with the components already

assembled. The foot print problem occurs with certain types of

gripping and feeding mechanism but not for all. For example, the use

of a vacuum pick up mechanism to hold the electronic components will

not have attendant foot print difficulties. The gripping mechanisms

available for this research study exhibited foot print problems and

hence there was a need for a more realistic rule to produce successful

assemblies and avoid collisions. Assuming the gripper has two

locating faces arranged to pick up components along the Y axis of

componentp the following rule can be used to define the order in which

- 214 -

the components should be assembled such that components requiring the

least displacement of the robot's end effector along the Y axis are

assembled first. If more than one component satisfies this

requirement then preference is given to the component which require-,

the least displacement along the X axis from the taught frame

(normally the pcb frame). Subsequent assembly is then continued along

the X axis. Although this rule does not minimise the total distance

travelled by the robot's end effector (insertion head), it provides

the optimal solution (avoiding interference with previously inserted

components during the opening of the gripper) for the demonstrator

system constructed by the author.

(iv) Assuming there is no need to change the gripper or insertion head

during insertion (onsertion) of IC's, a rule based on minimum distance

of travel from the current position of the insertion head can be

implemented.

(v) Rules based on a minimum distance of travel from one assembly

position to the next (optimal cycle time) may be best if the

components are automatically fed into the gripper (insertion head).

There is no need for the gripper to pick up components from peripheral

feeding devices. Based on this reasoning, components are sequenced

according to component type (same definition in component library i. e.

number of pins) and minimum distance of travel. A component of each

type (with maximum number of pins first) which is to be inserted at

the minimum distance from the frame of the pcb is chosen to be

inserted first, and subsequently, any component of that type which is

to be inserted at the nearest position to the current position of the

- 215 -

insertion head should be inserted next and so on. This method reduces

the total movement of the insertion head (or end effector) and hence

the cycle time. Clearly, however, Iminimisation' of cycle time may

require complex rules particularly where multiple choices are

involved. If a different gripper or insertion head is required for

each component type, this rule also minimise the frequency at which

gripper changing is required. Most important of all, this rule can

provide a solution to foot print problems discussed earlier. Among

the specimen rules implemented this rule probably represents the most

commonly used in pcb assembly. However, this rule is not the most

appropriate for the demonstration system where components are fed by

peripheral feeders (see figure 8-9).

8.2.4 Integrating the Simulation Model with a Task Program to

Generate an Off-line Robot Program

The 3D product (pcb and components) model and the task sequence

together with the workplace equipment and robot model (selected from

the robotic device library) form the input information to the GRASP

robot simulator. Subsequent simulation of assembly operations can be

used to investigate the operational behaviour of the proposed system.

If no errors (including joint violation and object collision) are

detected, then the task can be post-processed to generate a VAL II

robot program for that assembly task along with information regarding

important locations and orientations. The robot program is then

downloaded to the Adept One robot controller via an RS 232 serial

link. This program is then used to drive the Adept One robot for the

intended sequence of motion.

- 216 -

Figure 8-9 Demonstration system for pcb assembly

- 217 -

8.3 Difficencies of the Approach Implemented

Since the REDBOARD design system like many other contemporary PCB CAD

systems can only produce meaningful information concerning the locations

and orientations of components, it is impossible for any integration

software to extract other types of information relating to assembly

actions. The REDBOARD design system regards every item as a 'standard'

electronic component (including edge connectors and switches etc), hence

the need for complex integration software which recognises special

features of the components in regard to their assembly needs. The need

to provide more meaningful and comprehensive information could be

addressed by adopting a new philosophy when implementing pcb design

systems. For example the CAD system could assign a fixed prefix to

components. In this way components requiring different assembly actions

such as edge connectors (EQ and switches (SW) can be distinguished

thereby providing the information with a contextual or semantic meaning.

Alternatively, incorrect assembly motion would need to be deleted

interactively, thus involving time consuming manual editing of the

generated task sequences.

8.4 Experiment and Analysis

8.4.1 Experimental Set Up

The integration approach was verified through the construction of a

demonstrator application and a series of experiments (see figure 8-9).

A currently manufactured pcb was obtained from ICL and is considered

to be representative of contemporary pcbIs. The use of such a board

- 218 -

thus represents a realistic situation so that the practical problems

encountered are likely to occur in conventional manufacture. The oIILy

reservation is that the only insertion hardware available for testirij

comprised a state of the art robot tooled-up for pcb assembly rather

than conventional equipment.

The workcell is comprised of a worksurface, on which two sets of
feeders are mounted, together with a clincher for the cutting and
bending of pins of the electronic components to ensure correct lead

lengths and fixing prior to soldering. Peripheral to the worksurface,

a small conveyor system is linked with a main conveyor system for

board transportation. A fixture holds the pcb while the assembly

robot carries out the assembly. An Adept One SCARA is used as the

assembly robot, and is located appropriately relative to the centre .)f

the worksurface with the robot manipulator mounted on a stand to

ensure that its height is suitable with respect to its working

environment. A special pcb assembly gripper supplied by Meta Machines

Ltd, was slightly modified for use in the assembly of a range of

electronic components. The assembly robot and its working environment

was modelled using the GRASP robot simulator. A camera was located on

the fourth axis of the Adept One (see figure 8-10), so as to identify

the board and find the location and orientation of the frame of the

board with respect to the robot base.

- 219 -

JoInt2 Joint3

Jointl

Joint4
Tool
Mounting r-U-- Flange

Adept One
Vision

IR

Camara

Adept One robot

I

Figure 8-10 Arrangement of a vision camera on Adept One robot
--.. i

8.4.2 Error Analysis for the Demonstrator Syste

The general sources of spatial inaccuracies which occur during

off-line robot programming are described in chapter seven. Here a

more detailed analysis of those errors is presented based on a

specific study of the demonstrator system. This analysis is limited

in its horizons but is used to partially verify the previous generic

categorisation.

Experiments were conceived to measure the accuracy of the robot over a

range of commanded translations with respect to a reference location

(position and orientation) and to measure the variation in diameter of

(drilled and plated) holes and pins (documentation of the results

- 220 -

obtained during these experiments are shown in appendix D. 2). The

emphasis of this experimentation is:

to provide an indication of how the robot accuracy may vary,

(ii) to determine the approximate critical point beyond which the

robot accuracy is worse than the part tolerance i. e. assembly becomes

unreliable or impossible without implementing other enhancements.

The problem of hysteresis becomes apparent when the robot is commanded

to move a long distance from its current position. In the electronic

insertion example previously discussed, a pseudo process plan

(insertion sequence) is chosen dependant upon features of the tooling

and feeding equipment used. Consider the case where the robot is

commanded to pick up an electronic component from a feeding device and

insert it at the required location on the pcb. After each insertion,

the robot is commanded to the pick up reference point, ready for the

next insertion. Generally the distance between the pick up reference

positions and the insertion locations will be large (up to 1 metre) so

that phenomena which result in hysteresis which can have a significant

effect on the robot accuracy. In theory, the robot accuracy is

dependant upon the position of the robot end effector within its

working envelope. The robot accuracy is also dependant upon the the

direction of approach [Morgan, 1980] and its actual approach speed.

The robot accuracy is expected to become worse during high speed and

acceleration conditions [Tanguy, 1982]. The type of robot motion

employed (such as straight line or circular path) can seriously affect

robot positioning accuracy. These path following errors are dependýnt

- 221 -

upon the controller resolution and control laws. Another factor is

the complexity of robot configuration, particularly when it is

commanded to attain awkward positions, that is, arm positions too

close to the joint restrictions. However, the Adept One robot of the

SCARA type does not exhibit such complexity, and the effect of problem

can be considered as negligible. The positioning inaccuracy due to

accelerations and decelerations is affected by the moment of inertia

due to the weight of the robot arm and the load carried. The dynami':

performance is complicated by unknown and changing mass of the payload

being manipulated [Mon and Broome, 19871. However, in the electronic

insertion application the payload can be considered to be negligible.

The results obtained from the experiments and the analysis presented

in Appendix D. 2 show that in general a small commanded distance from a

taught reference point will result in smaller static position errors

than those for large displacements. In fact the experimental resulta

also indicated that this improved accuracy is maintained for small

moves even when the robot approaches the required position at

different approach speeds. Although the results do not formally

quantify the approach for all robot types it is evident that the

effects of unknown hysteresis, transmission characteristics, bending

and controller characteristics should be smaller for small deviations

[Jeyachandra et al, 1986; Benhabib et al, 1987]. The technique can

thus be equated to a compromise between teach and off-line

programming. The results also show a dependance on the approach speed

and the commanded distance from the reference point. It is found tl . iat

the position errors accumulate (i. e. the accuracy becomes worse) with

in this case an increase of approximately 0.05mm for every 25mm

- 222 -

distance translated from a reference point. Hence assuming a

knowledge of the way in which inaccuracies accumulate, the robot

programmer must restrict the off-line programmed assembly positions so

that they lie within the maximum allowable translation (200 mm in the

case of the demonstration system: the derivation of this range will

be described later) from a taught reference position.

the general equation of position error is given as
position error = 0.2% of the distance travelled (translated)

Clearly the accuracy of the system is not the same as the accuracy of

the robot. Position errors also occur where component, fixture, and

tooling tolerances lead to errors in the robot/workplace model.

However, the use only of small movements from known taught reference

points should also minimise these errors. However, this conclusion

will only be true where errors can be predicted-in probablistic terms,

and unpredictable variations will not taken into consideration. Let

us cons ider the nature of some of these probablistic occurences,

(a) the manufacturing tolerances in the drilling and plating process

can be accommodated within one experiment which determines the

variation in hole sizes resulting from the manufacturing process,

provided that the process produces repeatable errors. If drift occurs

in the drilling and plating process, then additional methodologies

should be considered dependant on the nature of that drift.

(b) the manufacturing tolerance of the components can also be

determined, provided that they can be predicted. If not, it may be

necessary to restrict the type or suppliers of such components.

commonly the variation in pin size and hole size may be assumed

- 223 -

normally distributed with mean JJ and standard deviation a. However,

the robot positioning accuracy should not be assumed to be normally

distributed.

Since the standard deviation a of the whole population is unknown,

the programmer of the assembly machine will have to estimate it from a

small sample. It can be shown that if a sample of size n has a mean

of X and standard deviation S then

(i) the best estimate of P is X

(ii) the best estimate of a is n Jý(nn
1) S [White et al, 1985]

where
n represents
X represents
S represents
P represents
a represents

the size of the sample
the sample mean
the sample standard deviation
the mean value of the population
the standard deviation of the population

It can also be shown that the statistic t (X-P) follows

(alJn-)

the t-distribution with (n-1) degrees of freedom rather than a normal

distribution. As the sample size n is large the t-distribution curve

is close to the normal distribution curve. A sample size of 20 is

large enough to give a close approximation of the normal distribution

curve and therefore this sampling size is used in this error analysis.

From the readings of pin and hole diameters, a confidence interval

analysis of where the average size value of holes and pins should lie

can be carried out as shown in appendix D-2. The tolerance at a

certain confidence level can then be determined e. g. at 99 percent

confidence interval, the tolerance between the pin and hole is found

- 224 -

to be

0.36mm (lower tolerance) < tolerance < 0.40mm (upper tolerance).

In general, the robot accuracy tests show a mean accuracy of

approximately 0.05mm over a translated distance of 25mm from a taught

reference position (repeatability of 0.05mm was found as quoted by the

robot manufacturer). With specific reference to the commanded

translation from the reference location and the tolerances between

pins and holes determined, the estimated robot accuracy can be used to

determine the critical assembly range for achieving a successful

insertion of the electronic components. For example, by experiment

the critical range has been found to be bounded by-a 200mm translation

from the reference location. In these experiments involving the use,

of a specific type of component and the specific demonstration pcb,

the robot accuracy is found to be about 0-40mm at approximately 200mm

translation and about 0.36mm at approximately 175. Omm translation (see

appendix D-2).

At 99% confidence interval, if the robot accuracy at a commanded

translation from a taught reference frame is greater than 0.36mm (the

lower assembly tolerance limit) then the robot accuracy is at its

critical condition beyond which unsuccessful insertions are likely

with the probability of unsuccessful insertions increasing as the

translational distance from the taught location is increased. This

means that any commanded translations within 175mm range (i. e. robO: t

accuracy is smaller than the lower assembly tolerance limit) very high

success rate for insertion would be expected. Any translation between

175mm and 200mm will correspond as grey area and beyond 200mm (upper

- 225 -

assembly tolerance limit) failure is likely. Clearly, real problems

can be more complex than those analysed, but the results indicate a

methodology for a quick assessment of possible success when robot

assembly operations are programmed using off-line methods. From the

experimental experience gained, with the particular programming and

assembly arrangement created, Table 8-2 has been constructed to

quantify the relative importance of system components in regard to

their error contribution.

The accuracy of the robot, and gripper misalignment are considered to

be the major sources of error which warrent improvement in the

demonstrator system produced. The mounting of gripper on the robot

flange could contribute between 0.1 to I degree orientational

misalignment, the actual value being dependant on the skill of the

programmer. This orientational misalignment can be magnified as the

robot translates a long distance. Whereas the simulation system and

the feeder contribute errors of medium magnitude. Other items listed

in table 8-2 are considered to introduce relatively minor errors.

However it may be that, the accumulation of these error sources would

cause failure in off-line programmed operations. Any accuracy

improvements should be considered in relation to the cost involved, so

that economic assessments can be made for a given application area.

8.4.3 Practical Problems and Considerations

It is important to highlight some of the limitations of the approach

adopted by the author so that the above methodology can be placed in

context.

- 226 -

CATEGORIES SYSTEM ELEMENTS ESTIMATED ERROR RANGE

REDBOARD pcb design system
(depends on resolution chosen) minor o. ool <E<0.01mm

NC drilling machine minor positioning accuracy 0.01mm
accuracy minor drilling accuracy 0.05mm

Robot simulator (GRASP)
(resolution) minor 0.001 <E<0.0 1 mm (T)

medium - 0.02 <E<0.06 degrees (R)

FORWARD
PATH Language post-processors minor -E<0.000 1 mm (T)
ERROR (resolution) minor -E<0.0001 degree (R)

Robot controller and
arm accuracy major - 0.2% of distance moved (T)

Gripper misalignment depends on skill and method (R)

Feeder position error medium - 0.05 <E<0.1mm (T)

FEEDBACK

PATH Vision system medium - 0.05 <E<0.1 mm (T)
ERROR

Component size variat1ion
from nominol dimension medium - 0.05 <E<0.1mm (T)

PROCESS

ERROR Leads location variations major - 0.05 <E<0.2mm (T)

where
E= Error range

(T) = Translation
(R) = Rotation

Table 8-2 Relative significance of error sources

- 227 -

(a) Restrictions Imposed by Available Feeding Mechanisms and

Gripping Devices

Although the pcb used in the demonstrator system was supplied by a

manufacturer, and thus represents a realistic assembly task, suitable

gripping devices and feeding mechanisms for a wide range of electronic

assembly tasks were not available. Therefore the experimentation was

directed towards the assembly of electronic components for which

feeding mechanisms were available and which do not present gripping

problems with the available gripper and its attachments. Although

experiments were directed towards the assembly of ICý of various types

and sizes with the objective of illustrating the principles involved,

other component types, or indeed similar components from alternative

suppliers could present problems not encountered in this study.

(b) Inconsistency Of Component Body Dimension and Leads Locations

on COm2onent

one of the significant problem areas which must be faced when applying

robots to pcb assembly is concerned with the inconsistencies in the

component itself. Variation in component body dimension and locations

of leads on component, can be quite substantial especially in odd form

components [Cowan and Davies, 1986]. Ideally, components supplied by

any manufacturer should be standardised regarding their size and

shape, locations of leads and packaging. Suppliers are taking steps

towards satifying this user standardisation requirement [Kochan,

1986].

- 228 -

(c) An 'Inverted' Manufacture to Design Approach

In a typical electronic manufacturing environment the CAD model of the

pcb design would be created before manufacturing. However, the

experimental procedure followed in this project utilised an existing

industrial pcb and therefore the pcb CAD model was created through

measurement of parameters of that board. A conventional pcb NC

drilling machine was used for this work and this will have resulted in

small measurement errors (see ap pendix D. 3). However, it is likely

that tolerances caused by manufacturing process variations could be

significantly more troublesome in accomplishing successful assembly.

(d) Difficulty Introduced by the pcb Design System

The IC package sizes store,

not the exact sizes of the

This contributes modelling

the assembly, and leads to

in a factory situation, if

employed.

J in the database of the REDBOARD system are

IC chips (details as shown in figure 8-2).

errors and subsequent gripping errors in

more difficulties than would be experienced

methods of avoiding such errors were

(e) Numerical Accuracy of the Design and Simulation Systems

In general, if an item is required to perform several rotations in the

simulation process, the algorithms used (for forward and inverse

transformations) in the robot simulator will introduce numerical

inaccuracy. The magnitude of this inaccuracy will vary from system to

system. However, in this specific example, GRASP will introduce

- 229 -

cumulative orientation inaccuracy of between 0.02 and 0.06 degrees.

The inaccuracy becomes worse if the number of rotations increases or

if it involves more than one axis. This numerical inaccuracy is due

to the inaccuracy accumulated over the forward and inverse kinematic

transformation. Thus it would be advantageous to keep the number of

rotations to a minimum (sufficient to perform the required simulation)

so as to keep the error to a minimum.

(f) Gripping Consideration

Another practical problem involved was to ensure that the IC chips

were gripped at the midpoint (pick up points) along their Y axis. The

solution adopted was to place the IC's at the lowest position on the

feeder (i-e gravity fed for the particular feeders used) and then to

teach the manipulator this position by moving the gripper to the

position. The pick up positions are obtainable through a translation

(half of the Y dimension of the IC chips concerned) along the Y axis

of the IC's. A similar procedure could be followed for other feeder

types. This location and orientation information associated with

feeder positions must be feed back to the robot simulator so that IC's

can be placed at their pick up points (in the model). The robot

simulator uses information concerning these pick up points so that the

gripper tool centre point can coincide with them. This will only be

done once if the feeder position is fixed relative to the worksurface,

and hence maintains a constant spatial relationship with the

manipulator.

In a practical situation, there is uncertainty with regard to the

- 230 -

position and orientations of parts delivered by the feeding device and

this can result in problems when the robot picks up the parts at the

location specified. With the demonstrator workcell, occasional

problems of this type have proved to be unavoidable. If parts are to

be delivered at more precise positions and orientations, then

alternative specially designed feeding devices would be required.

This raises issues of cost against precision, and flexibility against

precision.

(g) pcb location consideration

Additional position errors can occur with regard to the feeding of

bare or partially populated pcbs into the assembly system. In the

demonstrator system, the pcb is located on a pallet which is stationed

at some point on the conveyor. In such situations position errors can

occur between the pallet and the conveyor. This implies that a

positioning mechanism is required to ensure that the coordinate

reference frame of any pallet or pcb will be located, within

predictable location errors, at some conveyor position and orientation

each time an assembly is required i. e. it is necessary to overcome

unpredictable errors. Again issues such as cost and flexibility are

raised when specifying dedicated' positioning mechanisms.

Alternatively, this could be achieved by utilising a vision system to

determine the position and orientation of the pcb1s coordinate

reference frame so that appropriate compensation for errors can be

made. Although the capital cost would be increased, the vision system

will provide a more flexible approach than that of using specialised

fixtures and in certain situations economic benefit could accrue.

- 231 -

(h) calibration consideration when using visio

In situations where a vision system can be used economically, vision

prototype training errors can occur where the centroid of the

prototype object does not correspond to that determined by the vision

system. When the vision system is used to identify the location of a

part in the working environment, factors such as variations in the

ambient lighting conditions can lead io measurement errors. The

accuracy of vision systems (including illumination equipment) will

vary from system to system (cost being a key factor).

Assuming the use of a vision system (a situation investigated through

use of the demonstrator system) the location and orientation of each

pcb board frame will usually be measured, prior to component assembly,

to overcome both predictable and unpredictable position errors. The

practice of using fiducial marks on pcbIs is a common one, being used

in pcb manufacture at various automatic machines including insertion,

onsertion and testing equipment. Fiducial marks are created on the

pcb (see figure 8-11 for detail) which are used by the vision system

to determine the coordinate reference frame of the board. The

required position of components on the pcb relative to the coordinate

reference frame maintain fixed spatial relationships. However, due to

the robot accuracy alone, these'component positions may not be

attainable if they are beyond the critical position.

- 232 -

fiducial marks

11
1 It

IC chips

pcb

Figure 8-11 Fiducial marks used on pc board

These locations and orientations can be used to update the GRASP model

if the set up is not going to be changed in the short term and the

product belongs to a family series. Otherwise they may be simply

stored at the robot controller. This implies that only positions and

orientations of those entities which are common to the series of

family products are required to be updated (in the simulation model).

other entities whose positions are subject to variations need not be

updated. In the demonstrator system, only the pcb frame is variable

and so it need not be updated in the simulation model.

The GRASP model update can be accomplished through the calibration

software modules described in chapter seven. As the position and

orientation of the pcb varies, it is reasonable to store the frame at

the robot controller and it is not necessary to update the CAD model.

- 233 -

8.5 General Conclusions

The experimental observations, and

to error sources, have illustrated

constructed the major error source

remaining error sources identified

relatively insignificant although

unsuccessful assembly operations.

specific conclusions made with regard

that for the demonstrator system

is the robot manipulator itself. The

can individually be considered to be

they can cumulate to result in

In the experiments carried out, the robot positioning error was found to

cumulate with an increase of approximately 0.05mm for every 25mm (i. e.

0.2%) distance travelled from a reference position. It should be stated

that the experiments performed, in establishing the robot accuracy,

cannot be considered to be precise or comprehensive but serve to

illustrate the scale of the errors involved. Clearly more comprehensive

testing could have been carried out (e. g. through using laser tracking)

but the difficulties involved in carrying out such testing did not permit

such a study.

One way of improving the robot accuracy and hence facilitating the use of

off-line programming in a wider range of application areas is to

manufacture and assemble the robot arm in such a way that very tight

tolerances are met. However, in general this will be too expensive and

even then certain error sources will remain. Clearly also the use of

high fistiffness" cartesian manipulator systems will result in improved

robot accuracy but may lead to to lack of dexterity and poor cycle times.

Arguably therefore the most effective and possibly least costly method is

to employ software based calibration procedures to assign a "signature"

- 234 -

to each robot.

Despite errors, the use of off-line robot programming in pcb assembly is

theoretically possible and has been practically demonstrated for a SCARA

arm provided that "a limited range of translated movement from the pcb

reference frame" is applied as an operating constraint. It is apparent

that further fiducial marks should be placed on the pcb so that the

effective maximum translated distance range for pcb assembly can be

increased. This would imply that a different set of fiducial marks

should be used to avoid confusion in any visual recognition process used

to establish different reference frame. This implies additional

complication in the simulation and modelling procedure and could involve

automatic updating of a stored model or could require a second stage,

more complex, manual teaching phase. Furthermore, the gripper used was

not ideal as it does not incorporate sensory feed back so that any

variation in the off-line programmed pick up positions (due to robot

position errors and discrepancy in the position of the electronic

components delivered) may cause difficulty or failure in certain assembly

tasks. This situation could have been improved by using sensory feed

back (such as force sensing) and hence achieving self adjustment to

reduce the magnitude of the errors involved.

The successful application of any off-line robot programming system will

be dependant upon the relative spatial arrangements of workplace devices.

Hence rigidly fixed arrangements should be employed where possible and

any variations should at least be predictable. In such a situation any

errors in the nominal positions of the workplace entities can be

accounted for by updating the 'model, through following calibration

- 235 -

procedures. After this initialisation process, if the physical

arrangement is rigidly fixed, then accurate spatial relationships can be

maintained. If entities are moved to alternative locations which are

outside acceptable tolerance limits, the robot programs generated

off-line will not result in successful assembly processes and calibration

procedures must be re-initiated.

Through providing integration software, shared electronic access of

information can be achieved, such as access to information stored in CAD

product design and robot simulator databases. This study has shown that

product design data, created using a conventional pcb CAD system can be

used to assist in model building. This can significantly simplify the

off-line programming of robots so that lead time benefits can accrue, a

fact of potentially great importance in certain industrial sectors where

reduced "time to market" is vital. The information stored in a

centralised or common database could utimately be distributed through the

use of appropriate database management tools including data modelling and

query language facilities. Information characterising the geometry of

the pcbt geometry of components and their locations and orientations with

respect to the frame of the board, plus the generated sequential and

spatial relationships defining robot motions can be downloaded to the

robot controller. In such a situation, the only unknown variable is the

location and orientation of the frame of the pcb relative to the robot,

for which teach methods can be employed. The teaching of the required

pcb location and orientation unknowns would be a relatively simple task.

In certain situations it may be possible to bypass the need for using a

robot simulatort but the robot simulator can provide program verification

before downloading to the robot controller. This is a rational,

- 236 -

practical, and implementable approach with current technology. Clearly

as the need for such integrated systems is realised, future approaches

may involve the redesign of the CAD, simulator and robot controller

tools.

To enable the widespread use and acceptance of off-line programming

methodologies, it is important that a neutral, format be agreed to

enable information transfer between the components of the generic

off-line programming system. Using contemporary practice this may

comprise a number of sub-system elements (e. g. CAD, simulator/modeller,

robot) which will be implemented by different vendors, using different

computer hardware, operating systems and development languages. In such

a situation the need for agreed neutral formats between CAD and

simulator/modeller subsystems is apparent whereby the subsystem suppliers

can write to an agreed information exchange specification. Similarly, an

agreed information exchange specification is required between the

modeller simulator and the robot controller.

- 237 -

CHAPTER NINE

CONCLUSIONS AND RECOMMENDATIONS

9.0 Introduction

In this chapter, the contribution to knowledge is first discussed,

followed by the general implications and recommendations for future work.

9.1 Contribution to Knowledge

This thesis has illustrated how a robot can be programmed off-line bast!)

on a robot simulator. This research study has investigated the

possibility of enhancing a robot simulator through user friendliness',

calibration and integration. These form a package which should be

considered for enhancement so as to achieve advantages of overall system

improvement rather than detailed improvement in a single aspect.

Therefore the theme of this research study has been the investigation of

the advancement of this package.

Aspects of integration have been implemented in two phases. The first

phase integrated a CAD pcb layout design system with a robot simulator

through the capture of product assembly data. The integration of the

robot simulator with the actual robot system has been implemented throlleh

a post-processing facility. In each phase of integration, neutral data

formats were conceived by the author. Furthermore, an insertion

sequencer was conceived to implement five commonly used rules when

generating pseudo process plans. Pseudo process plan generation, based

on the component type and minimum distance of travel from the current

position, is the most commonly used in pcb assembly.

- 238 -

CAD/CAM facilities should be integrated with robot modelling and

programming systems so that existing product design data captured in the

CAD database can be used to speed up the modelling and programming

process, improve productivity, reduce the chance of error etc. The

practical experiment described in chapter eight illustrates that product

design data can be used efficiently for modelling and robot task

programming with the task sequence being determined by the sequence

planner. Although the study findings could necessarily not be

exhaustive, they represent an important contribution to the literature,

pointing to areas of future study which ultimately could significantly

reduce the "time to market" of new products.

Thus integration of a CAD pcb layout design system with a robot simulator

has been demonstrated based on knowledge of parameterised model building,

parameterised task programming and post-processing. In the integration

investigation, the demonstrator system included a robot without on-line

sensing capability (sensing only being used during initialisation

procedures which could have been implemented using other methods). Such

a flexible pcb assembly system, programmed off-line through the

integration of a CAD pcb design system with a robot simulator, could bc

cost effectively employed in certain manufacturing situations.

Integration problems were identified and classified. It is essential

understand that contemporary CAD pcb design tools do not provide

information in an appropriate form for robot simulators, particularly as

they lack 3D information for modelling and insertion sequence planning.

This is understandable as design systems were intended for pcb NC

drilling, ATE and ACI but not for integration with other systems. The

- 2: 19 -

lack of a standard data format presents further problems such as

post-processing efforts for different systems (as discussed in chapter

five), and the author has derived a neutral data format approach as a

solution.

In addition to integration problems, there are sources of errors which

effect positional accuracy of off-line generated programs. These sources

of error have been analysed through the demonstrator system.

Understanding of the problems encountered enabled solutions to be

generated. There are two major sources of error which require attention:

the robot system accuracy (including robot controller and arm)

and

(ii) process error including accuracy of components delivered at the

reference pick up positions and component size variations from nominal

sizes (including body size variations of components and variations of pin

positions on the component body) leading to additional variations in

delivered positions.

Error compensation is therefore required in off-line programming systerri.

Consideration of the robot arm inaccuracy shows that there are two

possible ways of improving the demonstrator system. One solution is to

design and manufacture a robot to tight tolerances whilst another is to

use software calibration for each individual robot arm. This raises

issues of cost against precision and flexibility and the former approach

- 240 -

is considered too costly whilst the latter can provide the flexibility

required. The variations of component size from nominal size should be

tightened up so that the process error can be minimised to reduce

uncertainty.

In addition to process error, different electronic component

manufacturers supply functionally identical components in different

sizes, shapes and packaging. User driven initatives may be beneficial in

forcing suppliers to standardise on component size, shape and packaging.

The electronic assembly industry has initated steps towards the

standardisation in these aspects. The alternative approach of using

sensory feedback elements such as vision and force sensing for correcting

parameters from the nominal values is costly and inconvenient.

The post-processing module for integrating the robot simulator and the

actual robot system illustrates the practical problems together with th!

author derived neutral data format. Through this post-processing study,

it is concluded that whenever possible post-processing facilities for

off-line programming should be accomplished in two stages, one

responsible for generating neutral or standard data format with a second

for post-processing this format into specific target robot languages.

Furthermore, post-processing facilities should preferably be included In

the robot simulation system as an "off-the-shelf" optional function.

Since suppliers of robot simulation systems have the appropriate access

to the system data structures, the incorporation of a post-processor in a

simulator represents a more efficient use of data.

- 241 -

The lack of user friendliness of robot simulators has led to the

investigation of enhancement through parameterised model building and

parameterised simulation task generation (off-line robot programs). Jr,

demonstrating possible solutions, software modules have been implemented

for certain classes of robotic entities and robot task applications.

This study has concluded that parameterised model building and task

generation would be more appropriately implemented as "macros" within the

robot simulator. This is mainly because limitations on access to the

data structures of the CAD model restricts the scope for further

enhancement.

It is also concluded that modelling of common robotic workplace entities

can be accomplished through parameterised solid modelling facilities.

Similarly, it is also indicated that robot operations can be programmed

through parameterised task languages. A parameterised task language ha3

been proposed and discussed in chapter six. A full scale parameterised

task language could be used to program the robot without reference to vie

robot simulator, but verification and modification would still require

the simulator. This implies that it is more appropriate for

parameterised task languages to be implemented as application macros

within the robot simulation system. This study also demonstartes further

possibilities for integration of these parameterised facilities with

expert systems which have access to comprehensive knowledge bases.

It has been shown that off-line programming is not a viable propositioil

without the use of calibration techniques. Calibration can be carried

out in three phases. Firstly, calibration of the robot arm is carried

- 242 -

out to eliminate or reduce discrepancies between the actual robot arm

kinematics and the model derived kinematic equations based on nominal

robot parameters. This robot arm calibration can be further classified

into robot joint and entire arm calibration. Secondly, it is necessary

to calibrate the simulation model against the real robotic workplace.

Solutions have been derived and illustrated for calibrating and updating

the simulation model which encompass the discrepancies between an

idealised simulation workplace model and the actual robot workplace. To

deal with calibration of a simulation model it is necessary to consider

the appropriate options implied by the batch size. It is reasonable to

conclude that if a product batch belongs to a product family then

updating the simulation model is essential so that other off-line

programs can be generated based upon the updated model. In other

situations there is no need for long term retention of the calibrated

information and it should therefore be kept locally at the robot

controller.

With large batchesv conditions might change during manufacture or

assembly and in this case calibration is used to update all teach

reference points and store them at the robot controller until further

changes in the workshop arrangement. The need to update the original

simulation model becomes less important, especially where the batch size

is very small. However, any changes in the workplace spatial

relationships should be updated in the simulation model so as to maintain

a representative model.

- 243 -

The final phase of calibration concerns on-line dynamic calibration which

has not formed part of this research study.

If off-line rather than on-line methods are used for programming a robot,

a simulation model of the robotic workplace is required before robot

tasks can be simulated, verified and evaluated. This means that for a

simple task the time taken to programme a robot through off-line method;

could be longer than that needed for on-line programming methods. In

addition, off-line robot programming methods are associated with accuracy

problems and therefore fine tuning of the robot program is required.

However, in the batch manufacturing of large product families, off-line

programming methods are becoming more efficient as the size of the

product family increases. This is because the simulation model of the

robotic workplace is virtually the same for most members of the family

and therefore only a rearrangement of workplace elements and the new

product design are required. Even when batch manufacturing a product

which does not belong to a family, off-line programming methods still

reap the advantage of not disrupting actual production systems and

therefore higher utilisation of expensive equipments can be achieved.

Furthermore, integration with product design data improves lead times.

In some circumstances, robot applications which include synchronisation

of robotic devices are difficult to programme using on-line methods. Due

to the difficulties and cost implications of using robot simulation

tools, off-line robot programming will be more easily justified in

circumstances where complex robot tasks are required and/or where batch

manufacturing of large product families are -involved. Confidence in th-3

use of off-line robot programming techniques can be much improved when

- 244 -

satisfactory solutions are provided to overcome accuracy problems.

9.2 General Implications and Recommendations

It is essential that facilities for processing sensory information and

dealing with synchronisation and error conditions should be sufficiently

sophisticated to perform the required task in an efficient manner. The

allowable sophistication of any off-line programs generated will be

limited by the capabilities of the robot simulator, and thus simulation

of sensor conditions and capabilities for synchronisation and exception

handling should be provided. Currently available simulators can only

model very simple sensory conditions. It can be seen that off-line

programming by graphical computer methods has considerable potential

advantage, which must be tempered by a consideration of some fundamentitL

limitations of existing systems. In certain circumstances, the use of

off-line programming can be difficult due to the lack of good sensory

input and output. A compromise hybrid approach should be adopted where

off-line programming is used in conjunction with on-line programming such

that robot task programs can be prepared with higher efficiency and/or

functionality level.

A low cost flexible robot assembly system without sensing has major

disadvantages in coping with problems of inaccuracy. Furthermore, the

assembly process concerns not only the robot movement, but also the

identification and verification of components and sub-assemblies.

However, if the robot system involves the use of a gripper with sensing,

capability then any variations in component delivered by the feeding

- 245 -

mechanisms can be catered for. Furthermore, the use of sensing device!;

(such as bar codes and vision systems for identification) can ensure thit

the correct components are assembled satisfactorily (exception handling

and problem tracing in the workshop). Laser stripers and vision systems

for checking variations in component size and variations of locations of

pins on components can be used so that corrective action can be invoked

to ensure an improved success rate in assembly. The use of extra sensing

and correction means improved flexibility and accuracy can be achieved at

the expense of longer cycle time and high capital cost.

There are suggestions for further considerations and these are separated

into functional areas.

(a) Standards

There is a need for a standard robot data format, with each simulator

system having its own pair of processors to transfer data to and from

this neutral format. In such a way any one robot simulator can be used

to program multiple robots.

The development of product design data exchange based on the principle of

a standard neutral data format (such as IGES, PDES/STEP etc.) can be

applied in the field of 3D robot simulators. Data originally restricted

to 2D drawing data information has more recently been enhanced to deal

with more comprehensive product descriptions including 3D solid

modelling. Within the foreseeable future, it is possible to envisage .1

standard neutral data format for 3D robot simulators. This would include

- 246 -

robot kinematic/dynamic modelling descriptions and the program format for

robot task descriptions.

(b) Robot Simulation Systems

A robot simulation software designer should not be bound to one single

geometric modelling technique. A solid modelling system should be

capable of utilising more than one modelling technique and thus

facilitate wider scope for modelling and off-line programming

applications. For example, surface modelling techniques allow spherical

or continuous curved paths to be programmed by reference to the surface

normal. Applications include arc welding and cutting, surface grinding,

glass cutting, mould making, and drilling and riveting for aircraft

panels. Robot simulation involving improved geometric modelling

techniques could enable better accuracy in the simulation model and hen: e

improved off-line robot programming.

Parametric design and task programming languages should be a feature of

robot simulation systems so that generic robot simulators can be used

conveniently for specific applications. Further advantages can be gained

from the use of expert systems to access robot databases, tooling and

other robotic peripheries databases. This would be useful for selecting

the appropriate robot, tooling and attendant robotic equipment for the

right application and at the right price etc. In the computer assisted

task generation, it is preferred that the expert system be used for

selection, computer assisted model building and task program generation.

With the use of artificial intelligence or geometric reasoning, collision

- 247 -

free robot paths could be planned. The popularity of the parametric

design and programming language is based upon the success of

standardisation achieved in design data exchange between different robot

simulators.

(c) Calibration and Integration

Generic robot calibration procedures have yet to evolve in an

internationally accepted sense, resulting from the complexity involved In

defining a comprehensive scheme meaningful to the divergent areas of

application of robot systems.

Although various attempts (including dynamic robot simulation and dynallic

error correction at the robot controller) have been made to overcome or

at least to reduce dynamic errors, the result of the dynamic simulation

cannot closely predict the real dynamic error and hence correction.

Unfortunately, the collection of dynamic data is a difficult task.

However, integration of the robot controller with the simulation

sub-system (part of a robot simulator), provides a channel towards

incorporating robot modelling and error correction at the robot

controller. The installation of a robot simulation package into a robot

controller can potentially offer a more sophisticated method of

predicting and correcting dynamic errors with flexibility.

Theoretically, the robot dynamic behaviour can be monitored and models

updated during each robot task performance. Based upon this updated

dynamic robot model, new dynamic errors can be predicted and corrected

algorithmically. The discrepancies between the simulation model and the

- 248 -

real world can easily be assessed within the same robot controller and

the updating procedure may be simplified. This implies that further

research is required before this facility can become a reality. In the

foreseeable future this type of robot s imulat ion/ controller is likely t-ý

be commercially available.

The integration of robot simulators (off-line robot programming systems)

with expert systems will facilitate better manufacturing procedure and

parameter selection for various operations (e. g. welding voltage,

current and time will be provided for welding; power required, cutting

speed, feed rate and depth of cut for a certain material for turning and

milling etc). In addition, process scheduling can be achieved so that

the monitoring of the manufacturing or assembly process can be

accomplished for each work cell. With the advancement and application of

artificial intelligence in robotics, further improvements in CIM is

desirable and achievable.

- 249 -

REFERENCES

Adler, A. 11TDL A
it
Task Description Language for Programming Automated

Robotic Workcells I IEEE International Conference on Systems, Man and
Cybernetics? Atlanta, GA, USA. 14-17 Oct 1986, Vol. 1, pp65-68

Albus, J. S. "Roboticsllp Robotics and Artificial Intelligence (edited by
Brady, M. et al), NATO ASI series Vol. Fll, Springer-Verlag, 1984,
pp65-93

Allenp D. K. "Architecture for Computer-Integrated Manufacturing", ANNALS
of the CIRP, 1987, Vol. 36, No. 1, pp351-354

Ambler, A. P. "RAPT : An Object Level Robot Programming Language", IEEE
Colloq. on languages for industrial robots, 1982, pp4/1-4/5

Ambler, A. P.; Popplestone, R. J. and Kempf, K. G. "An Experiment in the
off-line Programming of Robots"t Proceedings of the 12th International
Symposium on Industrial Robots, 1982, pp491-504

Ambler, A. P. "Languages for Programming Robots", Robotics and Artificial
Intelligence (edited by Brady, M. et al), NATO ASI series Vol. F11,
Springer-Verlag, 1984, pp219-227

Andrews, S. and Cliffe, R. W. "The Development of a Robot Post-processor:
A Tool for Off-line Robot Programming", Proceedings of the 9th Annual
British Robot Association Conference, Stratforn-Upon-Avon, 13-14 May,
1986, ppl93-204

Appleton, E.; Fallside, F. and Richards, R. J. "Progress on an Automatic
Assembly System Linked to a CAD Databasellf ACME Research Conference
Proceedings, Nottingham University, 1988, Science and Engineering Research
Council

Arai, T. and Matsumoto, A. "Intermediate Language for Robot Controllerto
Proceedings of the 4th International Conference on Assembly Automation
(edited by Makino, H.), Tokyo, Japan, 11-13 Oct 1983, pp55-66

Arai, T.; Takashimal S.; Hirai, S. and Sata, T. "Standardization of
Robot Software in Japan", Proceedings of the 15th International Symposium
on Industrial Robots, 1985, pp995-1001

ASEA Limitedp 48 Leicester Square, London, England IIASEA Off-line
Programming System" CK09-1222E, 1986

Astromp K. J. and Eykhoff, P. "System Identification -A Survey",
Automatica, 1971, Vol. 7, ppl23-162

Ayres, R. U.; Millerp S. M.; Just, J.; King, K.; Osheroff, M.; Berke,
G.; Spidalieret P. and Ngoc, T. "Recent Developments in Robotics and
Flexible Manufacturing Systems", Robotics and Flexible Manufacturing
Technologies, Assessmentp Impacts and Forecastp Noyes Publicationst USA,
1985

- 250 -

Azadivar, F. "The Effect of Joint Position Errors of Industrial Robots on
Their Performance in Manufacturing Operations", IEEE Journal of Robotics
and Automation, April 1987, Vol. RA-3, No. 2, ppl09-114

Bairdp H. S. and Lurie, M. "Precise Robotic Assembly Using Vision in
Hand", Rovisec 83, Cambridge, Mass. 1983, pp660-666

Benhabib, B.; Fenton, R. G.; and Goldenberg, A. A. "Computer-Aided Joint
Error Analysis of Robots", IEEE Journal of Robotics and Automation, Aug
1987, Vol. RA-3, No. 4, pp317-322

Birk, J. R. "A Comparison for Robots to Orient and Position Hand-held
Workpieces", IEEE Transactions on Systems, Man and Cybernetics, Oct 1976,
Vol. SMC-60 No. 10, pp665-671

Bonner, S. and Shinp K. "A Comparative Study of Robot Languages", IEEE
Computer, Dec 1982, pp87-97

Bonney, M. C. "Off-line Programming - GRASP Robot Simulation System",
Off-line Robot Programming (edited by Storr, A. and McWaters, J. F.),
North-Holland, 1987, pp171-179

Bonney, M. C.; Edwards, P. J.; Gleave, J. A.; Green, J. L.; Marshallt R. J.
and Yong, Y. F. "The Simulation of Industrial Robot Systems"t OMEGA, Int.
J. of Management Science, 1984, Vol. 12, No. 3, pp273-281

Boren, R. B. "Graphics Simulation and Programming for Robotic Workcell
Design", Robotics Age, Aug 1985, pp30-33

Braid, I. C. "The Synthesis of Solids Bounded by Many Faces",
Communications, April 1975, pp209-216

BYG System, Highfield Science Parko Nottingham "Robot Simulation Using
GRASP", 1987

BYG System, Highfield Science Parky Nottingham "VAL II Postprocessors
Manual", 1988

Carterv S, "Off-line Robot Programming: the State of the Art"t The
Industrial Robot, 1987, Vol. 14, No. 4, pp213-215

Casev K.; Porter, J. M. and Bonney, M. c. "SAMMIE: A Computer Aided
Design Tool for Ergonomics", Paper presented to Human Factors Society,
Dayton, Ohio, 1986

Chan, S. F.; Weston, R. H. and Case, K. "Robot Simulation and Off-line
Programming", Computer-Aided Engineering Journalt Aug 1988, Vol. 5v No.
4v ppl57-162

Chawlap S. D.; and Gruver, W. A. "Off-line Robot Programming with an
Integrated Graphics Subsystem", International Conference Proceedings of
ASME Computers in Engineering, Aug 1984, pp111-114

- 251 -

Chen, J. and Chao, L. M. "Positioning Error Analysis for Robot
Manipulators with All Rotary Joints", IEEE Journal of Robotics and
Automation, Sept-Dec 1987, Vol. RA-3, No. 6, pp539-545

Cincinnati Milacron (UK) Co., Kingsbury Road, Birmingham, England.
Cincinnati Milacron Documentation, "ROPS" A362v 1985

Computing Equipment, "Seeing is Believing"o October 1985, p39

Cook, C. D. and Vu-Dinhp T. "A New General Algorithm for Describing
Manipulator Kinematics", Mechanical Engineering Transactions, 1985,
ppl69-174

Cowan, D. and Davies, D. "Automatic System Copes with Variable pcb
Production", Assembly Automation, Feb. 1986, Vol. 6, No. 1, ppl9-22

Craig, J. J. "Anatomy of an Off-line Programming System", Robotics Today,
Feb 1985, pp45-47

Cronk, R. N.; Callahant P. H. and Bernstein, L. "Rule-Based Expert
Systems for Network Management and Operations : An Introduction"r IEEE
Network, September 1988, Vol. 2, No. 5, pp7-21

Crookally J. R. "Education for CIM11, ANNALS of the CIRP, 19879 Vol. 36,
No. 2, pp479-494

Crosnier, A. and Fournier, A. "Simulation of Cameras and Proximity
Sensors for Computer Aided Design for Robotics and the Off-line Robot
ProgramminglIp Proceedings of the International Vorkshop on Industrial
Applications of Machine Vision and Machine Intelligence, Seilgen
Symposium, Tokyo, Japan, 1987, pp316-323

Denavitt J. and Hartenberg, R. S. "A Kinematic Notation for Lower-Pair
Mechanisms based on Matrices", Journal of Applied Mechanics, June 1955,
pp215-221

Derby, S. "Off-line Programming of Two Industrial Robotstop Robots 8
Conferencq Proceedingst Detroit, MI, USA 4-7 June 1984a, Vol. 2, pp20/65-
20/76

Derby, S. "GRASP from Computer Aided Robot Design to Off-line
Programming", Robotics Age, Feb 1984b, ppll-12

Dooner, M. "Robotics Software and CADCAH11, Computer-Aided Engineering
Journal# Dec 1984, pp217-220

Dooner, M. "Techniques for Designing Production Systems", Computer-Aided
Engineering Journal, Aug 1987, ppl57-159

Driels, M. R. and Pathrep U. S. "Generalized Joint Model for Robot
Manipulator Kinematic Calibration and Compensation", Journal of Robotic
Systems, Feb 1987, Vol. 4, No. 1, pp77-114,

- 252 -

Dudko, E. A.; Naidek, A. V.; and Yampolskii, L. S. "A CAD/CAM Sub-system
for Selecting a Suitable Industrial Robot", Soviet Engineering Research,
1984, Vol. 4, No. 12, pp45-48

Duelen, G. and Bernhardt, R. "Demands on Off-line Programming Systems
for Industrial Robots", Software for Discrete Manufacturing, (edited by
Crestin, J. P. and McWaters, J. F.) North-Holland, 1986, pp467-480

Durham, T. "Off-line Programming : Key to CAD/CAM Methods", Computing,
23 June 1985, pp26-27

ECSL menu 1986, CLEXOM Limited, King's Heath, Birmingham.

Edwards, P. R. and Howarth, M. "Computer Integrated Crystal Glass Pattern
Cutting", ACME Research Conference Proceedings, Nottingham University,
1988, Science and Engineering Research Council

El-Zorkany, H. I. "Automatic location correction in off-line programming
of industrial robots'lo Proceedings of the 14th International Symposium on
Industrial Robots and the 7th International Conference on the Industrial
Robot Technology, Gothernburgp Sweden, 2-4 Oct 1984, pp335-346

El-Zorkanyp H. I. "Robot Programming", INFOR, Nov 1985, Vol. 23p No. 4,
pp430-446

Eversheim, W.; Weck, M.; Scholing, H. and Zuhlkep D. "Off-line
Programming of Numerically Controlled Industrial Robots Using the
ROBEX-Programming Systems", ANNALS of the CIRP, 1981p Vol. 30, No.
pp419-422

Eykhoff, P. "System Identification; Parameter and Estimationllp John
Wiley & sons, 1974

Featherstone, R. "Robot Dynamics Algorithms", Kluwer Academic Publishers,
1987

Fernandez, K. "The Use of Computer Graphics Simulation in the Development
of Robotic Systems", ACTA Astronaut (UK), Jan 1988, Vol. 17, No. 1,
pp115-122,

Forestierv P. "The CATIA Integrated Geometry Modellerllp Computer
Graphics, Proceedings of the International Conferencep London. 1985,
pp381-391

Frederikson, L. B. "Robotics in a Spray-up Process", Proceedings of the
14th International Symposium on Industrial Robots, Gothenburg, 1984,
pp297-303

Gettelmanp K. "Off-line Programming Comes to Robots", Modern Machine
Shop, Nov 1985, pp60-67

- 253 -

George, L. and Mital, A. "Consequences od Robotization", Proceedings of
the IXth International Conference of Production Research, Cincinnati,
Ohio, USA., Aug 1987t

Gini, M. "The Future of Robot Programming"t Robotica, 1987, Vol. 5,
pp235-246

Gini, G. and Gini, M. "Dealing with World Model Based LAnguages11v ACH
Transactions on Programming Languages, April 1985, Vol. 7, pp334-347

Gini, G.; Gin, M.; Cividini, M. and Villap G. "Programming of Robot
Systems"t Computer-Aided Design and Manufacturing Methods and Tools
Second, Revised and Enlarged Edition, (Edited by Rembold, U. and
Dillmann, R.) Springer-Verlag, 1987, pp235-278

GMF Robotics Corp., Troy, MI, USA., "KAREL Operating Manual", 1986

Goh, K. and middle, J. E. "The WRAPS System -A Tool for Welding Robot
Adaptive Programming and Simulation", Proceedings of the first national
Conference on production research, Nottingham University, U. K., 9-10 Sept
1985

Goldenberg, A. A. and Lawrence, D. L. "A Generalized Solution to the
Inverse Kinematics of Robotic Manipulators"t Journal of Dynamic Systems,
Measurementp and Control March 1985, Vol. 107, ppl03-106

Gondert, S. "Off-line Programming Increases Robot Productivityllo Design
News, 26 Mar 1984, Vol. 40, pp60-66

Groover, M. P. "Automation, Production Systems, and Computer-Aided
Manufacturing" v Prentice-Hall, 19800 pp261-280

Groover, M. P "Automation, Production Systems, and Computer-Integrated
Manufacturing", Prentice-Hall, 1987

Groover, M. P.; Weissp M.; Nagel, R. N. and Odrey, N. G. "Industrial
Roboticso Technology, Programming, and Applications", McGraw-Hill Book
Company, 1986

Grossman, D. I'AML as a Plant Floor Language", Robotics and
Computer-Integrated Manufacturing 1985, Vol. 2, No. 3/4, pp215-217

Grunewaldt P. "Car Body Painting With the Spine Spray System",
Proceedings of the 14th International Symposium on Industrial Robots,
Gothenburg, 1984, pp663-641

Gruver, W. A.; Soroka, B. I.; Craig, J. J. and Turner, T. L. "Evaluation
of Commercially Available Robot Programming Languages", Proceedings of the
13th International Symposium on Industrial Robots, 1983, ppl2/58-12/68

Gupta, K. C. "Kinematic Analysis of Manipulators Using the Zero Reference
Position Description", International Journal of Robotics Research, Summer
1986, Vol. 51 No. 2, pp5-13

- 254 -

Haffenden, A. "Off-line Robot Programming", System International (G. B.),
Dec 1984, Vol. 12p No. 12, pp21-23

Halme, A. 2 Heikkila, T. and Torvikoski, T. "A Task Level Control and
Simulation System for Interactive Robotics", Theory of Robots, 1987,
pp289-296

Harrison, J. P. and Mahajan, R. "The IGRIP Approach to Off-line
Programming and Workcell Design", Robotics Today, Aug 1986, pp25-26

Hauke, W. "Stromungstechnische Untersuchungen an Dusen fur das
Druckluftstrahlenllp Machinenbautechnik 31p 1982, No. 21 pp87-90

Hayes-Roth, F.; Waterman, D.; and Lenat, D. "Building Expert Systems",
Addison-Wesleyo Reading, Mass., 1983

Hemami2 H. 2 Jaswa2 V. C. and McGee, R. B. "Some Alternative Formulations
of Manipulator Dynamics for Computer Simulation Studies", Proceedings of
the 13th Allerton Conference on Circuit and System Theory, University if
Illinois, Oct 1975, ppl24-140

Ho, C. Y. "Study of Precision and Calibration for IBM RS-1 Robot System",
Assembly Automation2 Nov. 1982, ppl98-201

Hockenp R. and Morrisp G. "An Overview of Off-line Robot Programming
Systems'19 ANNALS of the CIRP, 1986, Vol. 35p No. 2p pp495-503

Hoermann, K. "GRIPS -A Robot Action Planner for Automatic Part
Assembly", SIRI Symposium on Industrial Robots, Milan, Italy2 March 1988

Hollingham, J. "The MAP Report", IFS publications Ltd 1986

Hornick, M. L. and Ravani2 B. "Computer-aided Off-line Planning and
Programming of Robot Motion", The International Journal of Robotics
Research, Winter 1986, Vol. 4, No. 4, pp18-31

Howep J. A. M. and Fothergillt A. P. "Solid Modelling, Sensors, and the
Effects of Uncertainty on the Programming of Robots"t ACME Research
Conference Proceedings, Nottingham University, 1988, Science and
Engineering Research Council

Howie, P. "Graphic Simulation for Off-line Robot Programming", Robotics
Todayr 19842 Vol. 6, Part 1, pp63-66

Howie, P. V. and Williams, K. A. "Off-line Programming to the Factory
Floor", Conference Proceedings of Synergy 842 Chicago, IL, USA, 13-15 NOV
19842 pp206-211

ICAM Projectp "Computer Program Development Specification (DS) for ICAM
Integrated Support System (IISS) Configuration Item : Precomputerfl,
Prepared by Control Data Corporation and D. Appleton Company, USA, Dec
1983

- 255 -

ICL, Kidsgrove, England personal communication with Mr I. Hunt, 1988

Imam, I.; Sweet, L. M.; Davis, J. E.; Good, M. and Strobel, K.
"Simulation and Display of Dynamic Path Errors for Robot Motion Off-line
Programming", Robots 8 Conference Proceedingsp Detroit, MI, USA, 4-7 June
1984, Vol. 1, pp4-28/4-44

Industrial Robot, "Robotic Programming", Sept 1982, Vol. 9, No. 9, pp182

Industrial robotp "Cambridge Control Packages its Dynamic Approach"t Feb.
1987, Vol 14, No. 2, pp93-94

Intergraph (Great Britain) Limited, Norman House, Heritage Gatep Derby,
England. "Robot Programming - Preliminary", DMD 020BO, 1985.

ISO/DP 8373, "Manipulating Industrial Robots - Vocabulary", ISO Draft
Proposal ISO/DP 8373, ISO/TC 184/SC 2, April, 1986

ISO/DP 9283, "Pose Accuracy and Repeatability Characteristics", UK's
Recommendation for Revision of Sections 6.1 and 6.2 of ISO/DP 9283,1986

Jacobs, M. P. "Off-line Robot Programming: A Current Practical Approach",
Robots 8 Conference Proceedings, Detroit, MI, USA, 4-7 JUNE 1984t Vol. 1,
pp4/1-4/11

Jeyachandra, M.; Rosenshine, M. and Soyster, A. L. "Analysis of Robot
Positioning Errorllp International Journal of Production Research, 1986,
Vol. 25, No. 5, pp1159-1169

Jonesv A. T. and McLean, C. R. "A Proposed Hierarchical Control Model for
Automating Systems", Journal of Manufacturing Syst. ems, 1986, Vol. 19,
ppl5-25t

Kacala, J. "Robot Programming Goes Off-line", Machine Design, Nov. 1985,
pp89-92

Khoslav P. K. and Neumanp C. P. "Computational Requirements of
Customerized Newton-Euler Algorithm", Journal of Robotic System (USA),
1985, Vol. 2, No. 3, pp309-327

Kleinp A. "Off-line Programming of Painting Robots Using Colour Graphics
Technique", Off-line Programming of Industrial Robots, IFIP Conference,
Stuttgart, 1986, pp139-151

Kleinp A. "CAD-based Off-line Proogramming of Painting Robots", Robotica,
1987, Vol. 5, pp267-271

Knightp J. A. G.; Edwards, P. R.; and Taylor, J. "To Develop a
Manufacturing System for the Production of the Decorative Patterns on
Crystal Glassware", ACME Research Conference Proceedingst Salford, 1986,
Science and Engineering Research Council

- 256 -

Kochan, A. "Telecom Technology Brings pcb Problems for Plessey", Assembly
Automation, Nov. 1986, Vol. 6, No. 4, pp182-185

Kochan, A. "Advanced Robotics : Towards a Third Generationllp The
Industrial Robot, 1987p Vol. 14, No. 4, pp229-230

Kretchp S. J. "Robotic Animation", Mechanical Engineering, Aug 1982,
pp32-35

Kusiak, A. and Heragu, S. S "Computer Integrated Manufacturing: A
Structural Perspectivello IEEE Network, May 1988, Vol. 2, No. 3, ppl4-21

Kuvin, B. F. "Off-line Programming Keeps Robots Working", Welding Design
and Fabrication, Nov 1985, Vol. 58, pp34-39

Lambourne, E. B. "Towards Integration of Computer-Aided Design,
Manufacture and Production Management", Computer-Aided Engineering
Journal, Dec 1986, pp240-244

Lau, K. and Hockenp R. J. "A Survey of Current Robot Metrology Methods",
ANNALS of the CIRP, 1984, Vol. 33, No. 2, pp485-487

Lee, S. H.; Eman, K. F. and Wup S. M. "Trajectory Control in the World
Coordinate System by an Adaptive Forecasting Algorithm", Special Issue on
Robotics of the International Journal of Production Research, March 1989

Leu, M. C. "Robotics Software Systems", Robotics & Computer-Integrated
Manufacturingt 1985, Vol. 2, No. 1, ppl-12

Leu, M. C. and Mahajan, R. "Computer Graphic Simulation of Robot
Kinematics and Dynamics", Conference Proceedi ngs of Robots 80 Detroit,
Michigan, USA 4-7 June 1984, Vol. 1, pp4/80-4/101

Loucopoulosp P. and Champion, R. "Knowledge-based Approach to
Requirements Engineering Using Method and Domain Knowledge",
Knowledge-Based Systems, June 1988y Vol. 1, No. 3, ppl79-187

Lozano-Perez, T. "Robot Programming", Proceedings of the IEEE, July 1983,
Vol. 71, No. 7, pp821-841

Marconi Communication Branch, Charmsford, England. personal communication
with Mr J. Kyrtsoudis, 1987.

Marklundt P. "Using CAD/CAM for Robotic Systems", The Industrial Robot,
Oct 1986, pp30-32

Mattisp A. and Gill, K. D. "The Best Robot for the Job Simulation can Help Decide", The Industrial Robot, 1988, Vol. 15t No. 1, pp32-34

Maucerip J. G. "Robot Selection Expert 'Rose"', Journal of Automated
Reasoning, 1985, Vol. 1, pp357-390

- 257 -

McCarthy, J. M. "Dual Orthogonal Matrices in Manipulator Kinematics",
International Journal of Robotics Research, Summer 1986, Vol. 5, No. 2,
pp45-51

McDonnell Douglas publication BV 1504065-150,1986

McGuffinv L. J.; Reid, L. O.; and Sparks, R. S. "MAP/TOP in CIM
Distributed Computing", IEEE Network, 1988t Vol. 2, No. 3, pp23-31

Middle, J. E. and Goh, K. "WRAPS - Welding Robot Adaptive Off-line
Programming and Expert Control Systems", Second International Conference
Developments in Automated and Robot Welding, London, 17-19 Nov 1987

Miller, R. "Manufacturing Simulation: A New Tool for Robotics, FMS and
Industrial Process Design", Published SEAI Technical Publications, Sept
1985

Milner, D. A. and Brindley, J. D. "Hardware and Software Developments
for a DNC Manufacturing Cell", International Journal of Production
Research, 1978p Vol. 16, No. 6, pp441-452

Milovanovic, R. "Towards Sensor-based General Purpose Robot Programming
Language", Robotica, 1987, Vol. 5, pp309-316

MMS Draft 6 Document, 11EIA project 1393A Draft 6,1987, Manufacturing
Message Specification, Part 1: Service Specification, Appendix B:
Guidelines for writing Companion Standards",

Mon, D. L. and Broome, D. R. "Positioning Accuracy and Adaptive Control of
a Robot Manipulator'll International Conference on Software Engineering for
Realtime Systemsp Cirencester, U. K. p 28-30 Sept. 1987, pp97-103

Morgan, C. "The Rationalisation of Robot Testing", Proceedings of the
10th International Symposium on Industrial Robots, Milan, Italy, March 5-7
1980p pp399-406

Murray, J. J. and Neuman, C. P. "Computational Dynamic Robot Modelling",
Proceedings of the 27th MIDWEST Symposium on Circuits and Systems,
Morgantown, USA, 11-12 June 1984, Vol. 2, pp479-481

Nissley, L. "Understanding Positioning Errors in Your Robotic Arc Welding
System", Welding Journalp Nov 1983, pp30-37

Novak, B. "Robotic Simulation Facilitates Assembly Line Design",
Simulation, Dec 1984, pp298-299

O'Grady, P. J. "Controlling Automated Manufacturing Systems", Kogan paget 1986

Offodile, O. F.; Lambert, B. K. and Dudekp R. A. "Development of a
computer Aided Robot Selection Procedure (CARSP)II, International Journal
of Production Research, 1987, Vol. 25, No. 8, pp1109-1121

- 258 -

Okadap T. and Mohrip S. "A Method to Correct Structural Errors in
Articulated Robots", Bulletin of JSME, Oct 1985, Vol. 28, No. 244,
pp2400-2406

Okino, N. and Shono, M. "A Method to Correct Structural Errors in
Articulated Robots", Robotics & Computer-Integrated Manufacturing, 1987,
Vol. 3, No. 4, pp429-437

Owen, J. and Bloor, M. S. "Neutral Formats for Product Data Exchange:
The Current Situation", Computer Aided Design, 1987, Vol. 19, No. 8,
pp436-443

Paul, R. P. "Robot Manipulators: Mathematics, Programming, and Control",
The MIT Press, 1981

Paul, R. P. "Sensors and the Off-line Programming of Robots", Proceedings
of the 1983 International conference on Automated Manufacturing,
Birmingham, England, 16-19 May 1983, pp55-58

Paul, R. P. and Zhang, H. "Computationally Efficient Kinematics for
Manipulators With Spherical Wrists Based on the Homogeneous Transformation
Representation", International Journal of Robotics Research, Summer 1986,
Vol. 5, No. 2, pp32-34

P-E information systems Ltd, Park House, Vick Road, Egham, Surrey. 11HOCUS
simulation with colour graphics", 1986

Pegdenq D. and Ham, I. "Simulation of Manufacturing Systems Using
SIMANI't ANNALS of the CIRP, 1982t Vol. 31t No. 1, pp365-369

Pickettv M. S. "Graphical Applications in Robotics", GM Research
Publication GMR-4760j 23 July 1984

Porter, J. M.; Case$ K. and Bonney, M. C. "SAMMIE : An Ergonomics CAD
System for Vehicle Design and Evaluation'll BODITEK 1986, Institute of
British Carriage and Automobile Manufacturers, University of Keele.

Price, R. B. "Off-line Programming With a Microcomputer", Robots 8
Conference. Proceedings, Detroitt MI, USA, 4-7 June 1984, Vol. 2,
pp20/95-20/102

Putman, B. W. 'IRS-232 Simplified : Everything You Need to Know About
Connecting, Interfacing and Trouble Shooting Peripheral Devices",
Prentice-Hally 1987

Ramaswamyt V.; Homsup, W. and Anderson, J. N. "Dynamic Computer
simulation and Performance Evaluation of Robotic Mechanisms, it System
Theory Symposium - 17th Southeastern Symposium, March 1985, pp178-182

Rankyp P. G. "Programming Industrial Robots in FMS11, Robotica, 1984, Vol.
2v pp87-92

- 259 -

Ranky, P. G. and Ho, C. Y. "Robot Modelling : Control and applications
with software", IFS publications, 1985

Redboard menu, 1986 RACAL-REDAC limited, Tewkesbury, Gloucestershire,
England.

Professor Rembold, U., Personal communication 1988, Faculty for
Informatics, Institute for Real-Time and Computer Control and Robotics,
University of Karlsruhep Federal Republic of Germany.

Rembold, U.; Blume, C. and Frommherz, B. J. "The Proposed Robot Software
Interfaces SRL and IRDATAII, Robotics and Computer Integrated
Manufacturing, 1985, Vol. 2, No. 3/4, pp219-225

Rembold, U.; Dillman, R. and Negretto, U. Annual report 1987, Faculty
for Informatics, Institute for Real-Time and Computer Control and
Robotics, University of Karlsruhe (TH), Federal Republic of Germany.

Rembold, U.; Dillmanp R. and Huck, M. "A Softvare System for the
Simulation of Robot Based Manufacturing Process"t Faculty for Informatics,
Institute for Real-Time and Computer Control and Robotics, Publications
1988 of the University of Karlsruhe (TH), Federal Republic of Germany.

Renault, Personal Communication with an engineer at AUTOMAN, 1987

Requicha, A. A. G. "Representations for rigid solids: Theory, methods and
systems'19 Computing Surveyst Dec 1980, Vol. 12, No. 4, pp437-464

Robotics Worldt "Intelligent Workcells Expand With Software Advances",
March 1986at Vol. 13t NO. 3, pp30-33

Robotics World, "AutoSimulation'lo March 1986b, Vol. 13, NO. 3t pp3

Robotics World, "Workcells/Robots Programmed Off-line", July 1986c, Vol.
13v NO. 6t pp36-37

Rock, S. T. "Developing Robot Programming Languages Using Existing
Language as a Base -A Viewpoint", Robotica, 1989t Vol. 7, pp71-77

Rodighiero, F. and Canciani, A. "An Experience in Task Level Robot
Programming", 1987 IEEE Workshop on Languages for Automation, Vienna,
Austria, 26-27 Aug. 1987, pp86-89

Roth, Z. S.; Mooring, B. W. and Ravani, B. "An Overview of Robot
Calibration", IEEE Journal of Robotics and Automation, October 1987, Vol.
RA-3, No. 5, pp377-385

Rueb, K. D. and Wong, A. K. C. "Knowledge-Based Visual Part Identification
and Location in a Robot Workcell", International Journal of Machine Tools
and Manufacture, 1988, Vol. 28, No. 3, pp235-249

- 260 -

Rui, A.; Weston, R. H.; Gascoign, J. D.; Hodgson, A. and Sumpter, C. M.
"Automating Information Transfer in Manufacturing Systems", Computer-Aided
Engineering Journal, June 1988, Vol. 5, No. 3, pp113-121

Ruokangas, C. C.; Guthmiller, W. A.; Pierson, B. L.; Sliwinski, K. E. and
Lee, J. M. F. "Off-line Programming Motion and Process Commands for Robotic
Welding of Space Shuttle Main Engines", Journal of Robotic Systems, 1987,
Vol. $, No. 3, pp355-375

Russell, G. T.; Herd, J. T.; Duffy, N. D.; Davies, W. J.; aný Finlay, W. J.
"An Integrated Control and Error Interpretation System for Collaborating
Robots", Special Issue on Robotics of the International Journal of
Production Research, March 1989.

Sata, T.; Kimura, F.; Hiraoka, H.; Suzuki, H.; and Fujita, T.
"Comprehensive Modelling of a Machine Assembly for Off-line Programming of
-Industrial Robots", Off-line Robot Programming (edited by Storr, A. and
McWaters, J. F.), North-Holland, 1987, pp19-33

Schreiber, R. R. "How to Teach a Robot", Robotics Todayý June 1984a,
pp5l-56

Schreiber, R. R. "Robot System Simulation", Robotics Today, June 1984b,
PP81-90

Shimano, B. E.; Geschke, C. C.; and Spalding, C. H. "VAL II :A New Robot
Control System for Automatic Manufacturing", IEEE International Conference
on Roboticsp Atlanta, Georgia, 1984, pp278-292

Sjolund, P. and Donath, M. "Robot Task Planning: Programming Using
Interactive Computer Graphics", SME Technical Paper MS 83-344t 1983

Smith, B. M. "A Reporting of the PDES Initation Activities", Room A353,
Bldg 220, National Bureau of Standards, Gaithersburg, MD, USA, 1987

Snyder, W. E. "Industrial Robots: Computer Interfacing and Control",
Prentice-Hallp 1985

Soroka, B.
*
I. "What Can't Robot Languages Do? ", Proceedings of the 13th

International Symposium on Industrial Robots, 1983, ppl2/1-12/8

Stauffer, R. N. "Robot System Simulation", Robotics Today, June 1984,
pp81-90

Stobart, R. K. "Geometric Tools for the Off-line Programming of Robots",
Robotica, 1987, Vol. 5, pp273-280

Stone, H. W.; Sanderson, A. C.; and Neuman, C. P. "Arm Signature
Identification", Proceedings 1986 IEEE International Conference Robotics
and Automation, San Francisco, CA, April 1986, pp4l-48

- 261 -

Storr, A. and Schumacher, H. "Programming Methods for Industrial
Robots", Off-line Robot Programming (edited by Storr, A. and McWaters,
J. F.), North-Hollandt 1987, ppl-4.

Strejc, V. "Least Squares and Regression Methods, Trends and Progress in
System Identification", Edited by Eykhoff, P. Pergammon Press$ 1980

Su, S. Y. W.; Lam, H.; Khatib, M.; Krishnamurthy, V.; Kumar, A.; Malik,
S.; Mitchell, M. and Barkmeyer, E. "The Architecture and Prototype
Implementation of an Integrated Manufacturing Database Administration
System", Sprong COMPCON, 1986

Szeto, V. K. W. and Lichten, L. "Simulation of Parameterized Robots with
Solid Modelling", Proceedings of the IASTED International Symposium
Robotics and Automation, Lugano, Switzerland, 24-26 June 1985, pp258-262

Tanguy, F. "Assessment of the Mechanical Performance of Industrial
Robots", Proceedings of the 12th International Symposium on Industrial
Robots Paris, France? June 9-11,1982, pp349-358

Tarvin, R. L. "Considerations for Off-line Programming a Heavy Duty
Industrial Robot", Proceedings of the 10th International Symposium of
Industrial Robots, Milan, Italy, March 1980, pp109-117

Thomson, C. C. "Robot Modelling - The Tools Needed for Optimal Design and
Utilization", Computer Aided Design, Nov. 1984, Vol. 16, No. 6,
pp335-375

Toppen, D. L. "FORTH : An Application Approach", McGraw-Hill, 1985

Van Akent L. and Van Brussel, H. "A Structured Geometric Database in an
Off-line Robot Programming System", Robotica, 1987, Vol. 5, pp333-339

Van Akenp L. and Van Brussel, H. "Robot Programming Languages :A
Statement of Problem", Robotica, 1988, Vol. 6, ppl4l-148

Van Assche, F.; Layzell, P.; Loucopoulos, P. and Speltincx, G.
"Information Systems Development: A Rule-based Approach", Knowledge-Based
Systems, §ept 1988? Vol. 1, No. 4, pp227-234

Veitschegger, W. K. and Wu, C. "Robot Accuracy Analysis Based on
Kinematics", IEEE Journal of Robotics and Automation, Sept 1986, Vol.
RA-2, No. 3, ppl7l-179

Volzt R. D. "Report of the Robot Programming Language Working Group
NATO Workshop on Robot Programming Languages", IEEE Journal of Robotics
and Automationp Feb 1988, Vol. 4, No. 1, pp86-90

Vukobratovic, M. and Stokic, D. "Control of Manipulation Robots, Theory
and Applications", Scientific Fundamentals of Robots 2t Springer-Verlag,
1982

- 262 -

Wang, T. and Kohli, D. "Closed and Expanded Form of manipulator Dynamics
Using Lagrangian Approach", Transactions of ASME Journal of Mechanical,
Transmission and Automation Design, (USA), June 1985, Vol. 107, No. 2,
pp223-225

Warnecke, W. J.; Weck, M.; Brodbeck, B. and Engel, E. "Assessment of
Industrial Robots", Annals of the CIRP, 1982, Vol. 29, no. lt pp391-396

Weck, M.; Eversheim, V. and Zuhlke, D. 11ROBEX - An Off-line Programming
System for Industrial Robots", Proceedings of the llth International
Symposium on Industrial Robots, 1981, pp655-662

Weck, M.; Eversheimp V.; Zuhlke, D. and Scholing, H. "Requirements for
Robot Off-line Programming Shown at the Example ROBEXII, Advanced Software
in Robotics, North-Holland, 1984p pp321-330

Weck, M. and Niehaus, T. "Off-line Robot Programming via Standardized
Interfaces", Industrial Robot (C. B.)t September 1984, Vol. 11, No. 3,
ppl77-179

Weckt M.; Niehaus, T. and Osterwinter, M. "An Interactive Model Based
Robot Programming and Simulation Vorkstation", Off-line Programming of
Industrial Robots (edited by Storr, A. and McWaters, J. F.)t
North-Holland, 1987

Welch, T. L. "Evaluating Robotic Systems Through Simulation", SME
Technical paper MS 83-340,1983

Wesley, M. A.; Lozano-Perez, T.; Lieberman, L. I.; Lavin, M. A. and
Grossman, D. D. "A Geometric Modeling System for Automated Mechanical
Assembly", IBM Journal of Research and Development, Jan 1980t Vol. 24,
No. 1, pp64-74

Weston, R H.; Sumpter, C. M. and Cascoigne, J. D. "Industrial Computer
Networks and the Role of MAP, Part 111t Microprocessors and microsystems,
Sept 1986, Vol. 10, No. 7, pp363-370

Weston, R H.; Sumpter, C. M. and Gascoigne, J. D. "Industrial Computer
Networks and the Role of MAP, Part 211p Microprocessors and microsystems,
Jan 1987a, Vol. 11, No. 1, pp21-34

Weston, R H.; Cascoigne, J. D.; Sumpter, C. M. and Hodgson, A. "Methods
of Integrating the Elements of Flexible Assembly Systems", ACME Research
Conference Proceedings, Cambridge University, 1987bp Science and
Engineering Research Council

Weston, R. H.; Cascoigne, J. D.; Rui, A.; Hodgson, A.; Sumpter, C. M.
and Couttst I. "Steps Towards Information Integration in Manufacture,,,
International Journal of Computer Integrated Manufacturing, 1988, Vol. 1,
No. 3, pp140-153

- 263 -

White, J.; Yeates, A. and Skipworth, G. "Tables for Statisticians", 3rd
Edition, Stanly Thorne Publications, 1985

Whitney, D. E.; Lozinski, C. A. and Rourke, J. M. "Industrial Robot
Calibration Method and Results", Proceedings of ASME Conference Computers
and Engineering, Las Vegas, 1984, Vol. 1, pp92-100

Wilhelm, W. E. and Sarin, S. C. "A Structure for Sequencing Robot
Activities in Machine Tending Applications", International Journal of
Production Research, 1985, Vol. 23, No. 1, pp47-64

Wilkinson, D. and Hallam, R. "A Study of Product Data Transfer Using
IGES11, Computer-Aided Engineering Journal, June 1987, pp131-136

Wolovich, W. A. "Robotics: Basic Analysis and Design", CBS College
Publishing, 1987

Wood, B. O. and Fugelso, M. A. 11MCL, The Manufacturing Control Language",
13th International Symposium on Industrial Robots, Chicago, Il, 1983,
ppl2/84-13/0

Woodwark, J. R. "Generating Wireframes From Set-theoretic Solid Models by
Spatial Division"o Computer Aided Design, Jul/Aug 1986, Vol. 18, No. 6,
pp307-315

Dr Wright, E-P Personal communication 1987, Department of Mechanical
Engineeringt Queen's University, Belfast, Northern Ireland.

Yoffa, N. A. "Off-line Programming for Automotive Spot Weldingllp Robotics
World, April 1988, pp24-25

Yong, Y. F.; Gleave, J. A.; Green, J. L. and Bonney, M. C. "Off-line
Programming of Robots", Industrial Handbook on Robotics, Wiley, 1985

- 264 -

APPENDICES

APPENDIX A. 1 EXAMPLE OUTPUT OF WORLD-STATE
POST-PROCESSING METHODOLOGY

To illustrate the results obtained through the use of world-state
post-processing methodology, an original robot simulation program,
equivalent robot move positions (in absolute form) and VAL II robot
program are shown respectively. The immediately followed example is
the original track used for a pick and place operation. The robot
move locations were described in absolute form relative to the robot
base frame.

TRACK JOB10

LOC
-

OBJ1 : LOCATE OBJECT1 OWNER PLATFORM AT PLATFORM (SHIFT X 12.500 Y
12.500 Z 50.000),

LOC
-

OBJ2 : LOCATE OBJECT2 OWNER PLATFORM AT PLATFORM (SHIFT X 112.500 Y
112.500 Z 50.000),

PARKSTEP10 : PARK ,

APP
-

OBJ1 (MEDSPEED): POSITION ADEPTONE (SHIFT X 46.860 Y 403.130 Z
739.750 ROTATE Y 180.000 Z -90.000),

ONTO OBJ1 : POSITION ADEPTONE (SHIFT X 46.860 Y 403.130 Z 689.750 ROTAT';,
Y 180.000 Z -90-000),

GRIP_OBJ1 : GRIP OBJECT1

LIFT
-

OBJ1 (LOWSPEED): POSITION ADEPTONE (SHIFT X 46-860 Y 403.130 Z
739.750 ROTATE Y 180.000 Z -90.000)p

APP
-

OBJ2 : POSITION ADEPTONE (SHIFT X -53.140 Y 503.130 Z 749.750 ROTATE
y 180.000 Z -90-000),

PILL10 : POSITION ADEPTONE (SHIFT X -53.140 Y 503.130 Z 739.730 ROTATE
y 180.000 Z -90-000),

RELEASE10 RELEASE OBJECT1 TO OBJECT2

COMPLETE10 POSITION ADEPTONE (SHIFT X -53.140 Y 503.130 Z 752.250 ROTITE,
y 180.000 Z -90-000),

PARKSTEP20 PARK

- 265 -

The following shows the 3D location information extracted from the above
track using the world state post-processing methodology. The extracted
location information is presented as cartesian coordinates and eulerian
angle set.

POSITION
POSITION
GRIP
POSITION
POSITION
POSITION
RELEASE
POSITION

46.860
46.860

46.860
-53-140
-53.140

-53.140

403.130 739.750
403.130 689.750

403.130 739.750
503.130 749.750
503.130 739.730

503.130 752.250

0.000 180.000 -90.000 0.000 180.000 -90.000

0.000 180.000 -90.000 0.000 180.000 -90.000 0.000 180.000 -90.000

0.000 180.000 -90.000

The equivalent VAL II robot program is obtained through the valformatting
module. At the top of this robot program, operating speed and 3D location
information are defined. For safety reason, the robot gripper is opened
before any robot movement.

. PROGRAM JOB10
; PERFORM PICK AND PLACE
; FOR JOB 10
SPEED 50 ALWAYS
SET POINT1= TRANS(46.860 403.130 739.750 0.000 180.000 -90.000)
SET POINT2= TRANS(46.860 403.130 689.750 0.000 180.000 -90.000)
SET POINT3= TRANS(46.860 403.130 739-750 0.000 180.000 -90.000)
SET POINT4= TRANS(-53-140 503.130 749-750 0.000 180.000 -90.000)
SET POINT5= TRANS(-53.140 503.130 739-730 0.000 180.000 -90.000)
SET POINT6= TRANS(-53-140 503.130 752.250 0.000 180.000 -90.000)
OPENI
MOVE POINT1
MOVE POINT2
CLOSEI
MOVE POINT3
MOVE POINT4
MOVE POINT5
OPENI
MOVE POINT6
STOP

. END

- 266 -

APPENDIX A. 2 EXAMPLE OUTPUT OF HIERARCHICAL
TOP DOWN POST-PROCESSING METHODOLOGY

The following example shows the original track JOB1 which is equivalent
to track JOB10 as shown in appendix A. 1. All move positions are stored
relative to any reference object in the workplace (but not necessarily
referencing the robot base or world frame). This method of programming
is flexible when there are changes in the locations of reference objects.

TRACK JOB1

LOC OBJECT1 : LOCATE OBJECT1 OWNER PLATFORM AT PLATFORM (SHIFT X 12.500 Y
12.500 Z 50-000),

LOC OBJECT2 : LOCATE OBJECT2 OWNER PLATFORM AT PLATFORM (SHIFT X 112.500 Y
111.500 Z 50.000),

PARKSTEP1 : PARK ,

APP OBJECT1 (MEDSPEED): POSITION OBJECT1 (SHIFT Z 50.000 ROTATE Y 180.000),

ONTO_OBJECT1 : POSITION OBJECT1 (ROTATE Y 180.000),

GRIP_OBJECT1 : GRIP OBJECT1 ,

LIFT
-

OBJECT1 (LOWSPEED): POSITION PLATFORM (SHIFT X 12.500 Y 12.500 Z
100.000 ROTATE Y 180.000),

APP_OBJECT2 : POSITION OBJECT2 (SHIFT Z 60.000 ROTATE Y 180.00O)t

PILL : POSITION OBJECT2 (SHIFT Z 50.000 ROTATE Y 180.000),

RELEASING : RELEASE OBJECT1 TO OBJECT2 ,

COMPLETE : POSITION OBJECT1 (SHIFT Z 12.500 ROTATE Y 180.000),

PARKSTEP2 : PARK ,

- 267 -

The second part of this appendix shows the results of 3D location
information extracted from the simulation model and concatenated with
move positions and orientations specified in the track using the
hierarchical - top down approach. Although these robot move locations
were stored relative to objects in the workplace (rather than the robot
base or world frame), the intermediate format for location information
is similar to that of appendix A. 1. However, the location information are
described as matrix elements.

TCP G 1.000 0.000 0.000 0.000 1.000 0.000
_ 0.000 0.000 1.000 0.000 0.000 114.500

POSITION 0.174 0.985 0.000 0.985 -0.174 0.000
0.000 0.000 -1.000 208.067-694.872 755.500

POSITION 0.000 -1.000 0.000 -1.000 0.000 0.000
0.000 0.000 -1.000 46.860 403.130 739.750

POSITION 0.000 -1.000 0.000 -1-000 0.000 0.000
0.000 0.000 -1.000 46.860 403.130 689.750

GRIP
POSITION 0.000 -1.000 0.000 -1.000 0.000 0.000

0.000 0.000 -1.000 46-860 403.130 739.750
POSITION 0.000 -1.000 0.000 1.000 0.000 0.000

0.000 0.000 1.000 46.860 403.130 679.750
POSITION 0.000 -1.000 0.000 1.000 0.000 0.000

0.000 0.000 1.000 46.860 403.130 689.750
RELEASE
POSITION 0.000 -1.000 0.000 1.000 0.000 0.000

0.000 0.000 1.000 46.860 403.130 677.250
POSITION 0.174 0.985 0.000 0.985 -0.174 0.000

0.000 0.000 -1.000 208.067-694.872 755.500
POSITION 0.174 0.985 0.000 0.985 -0.174 0.000

0.000 0.000 -1.000 208.067-694.872 755.500
POSITION 0.000 -1.000 0.000 -1-000 0.000 0.000

0.000 0.000 -1.000 46.860 403.130 739.750
POSITION 0.000 -1.000 0.000 -1-000 0.000 0.000

0.000 0.000 -1.000 46.860 403.130 689.750
GRIP
POSITION 0.000 -1.000 0.000 -1-000 0.000 0.000

0.000 0.000 -1.000 46.860 403.130 739.750
POSITION 0.000 -1.000 0.000 -1-000 0.000 0.000

0.000 0.000 -1.000 -53-140 503.130 749.750
POSITION 0.000 -1.000 0.000 -1.000 0.000 0.000

0.000 0.000 -1.000 -53.140 503.130 739.730
RELEASE
POSITION 0.000 -1.000 0.000 -1-000 0.000 0.000

0.000 0.000 -1.000 -53.140 503.130 752.250
POSITION 0.174 0.985 0.000 0.985 -0.174 0.000

0.000 0.000 -1.000 208.067-694.872 755.500

- 268 -

The final part of this appendix shows the equivalent VAL II robot program. At the top of this robot program, a TOOL command statement is used to
correct the tool frame (from centre frame to robot mounting flange frame).
Robot operating speed and robot command statements are defined with the
robot move location information described in matrix form in one single file.

. PROGRAM JOB1
PROGRAM POST-PROCESSED BY TOP-DOWN APPROACH
FOR JOB 1

SPEED 50 ALWAYS
OPENI
TOOL G_TCP
MOVES PT1
MOVES PT2
MOVES PT3
CLOSEI
MOVES PT4
MOVES PT5
MOVES PT6
OPENI
MOVES PT7
MOVES PT8
MOVES PT9
MOVES PT10
MOVES PT11
CLOSEI
MOVES PT12
MOVES PT13
MOVES PT14
OPENI
MOVES PT15
MOVES PT16
STOP

. END

- 269 -

. LOCATIONS
G_TCP 1.000 0.000 0.000 0.000 1.000 0.000

0.000 0.000 1.000 0.000 0.000 114.500
PT1 0.174 0.985 0.000 0.985 -0.174 0.000

0.000 0.000 -1.000 208.067 -694.872 755.500
PT2 0.000 -1.000 0.000 -1.000 0.000 0.000

0.000 0.000 -1.000 46.860 403.130 739.750
PT3 0.000 -1.000 0.000 -1.000 0.000 0.000

0.000 0.000 -1-000 46.860 403.130 689.750
PT4 0.000 -1.000 0.000 -1.000 0.000 0.000

0.000 0.000 -1.000 46.860 403.130 739.750
PT5 0.000 -1.000 0.000 1.000 0.000 0.000

0.000 0.000 1.000 46-860 403.130 679.750
PT6 0.000 -1.000 0.000 1.000 0.000 0.000

0.000 0.000 1.000 46-860 403-130 689.750
PT7 0.000 -1.000 0.000 1.000 0.000 0.000

0.000 0.000 1.000 46.860 403.130 677.250
PT8 0.174 0.985 0.000 0.985 -0.174 0.000

0.000 0.000 -1.000 208.067 -694.872 755.500
PT9 0.174 0.985 0.000 0.985 -0.174 0.000

0.000 0.000 -1.000 208.067 -694.872 755.500
PT10 0.000 -1.000 0.000 -1.000 0.000 0.000

0.000 0.000 -1.000 46-860 403-130 739.750
PT11 0.000 -1.000 0.000 -1.000 0.000 0.000

0.000 0.000 -1.000 46.860 403.130 689.750
PT12 0.000 -1.000 0.000 -1.000 0.000 0.000

0.000 0.000 -1.000 46.860 403.130 739.750
PT13 0.000 -1.000 0.000 -1-000 0.000 0.000

0.000 0.000 -1.000 -53.140 503.130 749.750
PT14 0.000 -1.000 0.000 -1.000 0.000 0.000

0.000 0.000 -1.000 -53.140 503.130 739.730
PT15 0.000 -1.000 0.000 -1.000 0.000 0.000

0.000 0.000 -1.000 -53.140 503.130 752.250
PT16 0.174 0.985 0.000 0.985 -0.174 0.000

0.000 0.000 -1.000 208.067 -694.872 755.500

. END

- 270 -

APPENDIX A. 3 EXAMPLE OUTPUT OF HIERARCHICAL
APPEARANCE POST-PROCESSING METHODOLOGY

To illustrate the differences between the "TOP DOWN" and "APPEARANCE"
post-processing methodologies, the same GRASP track (as shown in appendix
A. 2) is used. This part of the appendix shows the equivalent VAL II robot
program with location information presented in relation to reference objects. The location information is stored in a separate file.

At the top of this robot program, a TOOL statement is used to correct the
tool frame (from centre frame to robot mounting flange frame). SET statements
are used to define the absolute positions of all move positions. Robot
operating speeds are defined in a similar way as used in the track. Robot
move location information is presented as matrix elements in a separate file.
This VAL II robot program can be re-converted into a track through the
VALTOTRACK module which is explained in appendix A. 4.

. PROGRAM JOB1
TOOL G TCP
SET OBjECT1=PLATFORM: TF1
SET OBJECT2=PLATFORM: TF2
OPENI
MOVES PARK
SPEED 100.000 MMPS ALWAYS
MOVES OBJECT1: TF3
MOVES OBJECT1: TF4
CLOSEI
SPEED 50.000 MMPS ALWAYS
MOVES PLATFORM: TF5
MOVES OBJECT2: TF6
MOVES OBJECT2: TF7
OPENI
MOVES OBJECTI: TF8
MOVES PARK

. END

- 271 -

. LOCATIONS
G_TCP 1.000 0.000 0.000 0.000 1.000 0.000

0.000 0.000 1.000 0.000 0.000 114.500
PLATFORM 0.000 1.000 0.000 -1-000 0.000 0.000

0.000 0.000 1.000 59.360 390.630 639.750
TF1 1.000 0.000 0.000 0.000 1.000 0.000

0.000 0.000 1.000 12.500 12.500 50.000
TF2 1.000 0.000 0.000 0.000 1.000 0.000

0.000 0.000 1.000 112.500 112.500 50.000
PARK 0.174 0.985 0.000 0.985 -0.174 0.000

0.000 0.000 -1.000 208.067 -694.872 755.500
TF3 -1-000 0.000 0.000 0.000 1.000 0.000

0.000 0.000 -1-000 0.000 0.000 50.000
TF4 -1-000 0.000 0.000 0.000 1.000 0.000

0.000 0.000 -1.000 0.000 0.000 0.000
TF5 -1-000 0.000 0.000 0.000 1.000 0.000

0.000 0.000 -1.000 12.500 12.500 100.000
TF6 -1-000 0.000 0.000 0.000 1.000 0.000

0.000 0.000 -1-000 0.000 0.000 60.000
TF7 -1-000 0.000 0.000 0.000 1.000 0.000

0.000 0.000 -1.000 0.000 0.000 50.000
TF8 -1-000 0.000 0.000 0.000 1.000 0.000

0.000 0.000 -1.000 0.000 0.000 12.500

. END

- 272 -

APPENDIX A. 4 : EXAMPLE OUTPUT OF VALTOTRACK MODULE

Through the use of VALTOTRACK module, a VAL II robot program can be
re-converted into a GRASP track. Thus the robot simulator can be used
in a different way. The original input VAL II robot program and location
information were presented in appendix A. 3. Since the robot program is
not associated with any path and step names, the module automatically use
PATH1, PATH2t STEP1, STEP2 etc for re-converting robot program into a
GRASP track.

PATH PATH1 STRAIGHT SPEED 100.000
PATH PATH2 STRAIGHT SPEED 50.000
TRACK JOBI
STEP1 : LOCATE OBJECT1 OWNER PLATFORM AT PLATFORM

50.000),
STEP2 : LOCATE OBJECT2 OWNER PLATFORM AT PLATFORM

50.000),
STEP3 : PARK

(SHIFT X 12.500 Y 12.50-) Z

(SHIFT X 112.500 Y 112.500 Z

STEP4 (PATH1): POSITION OBJECT1 (SHIFT Z 50.000 ROTATE Y 180.000),
STEP5 POSITION OBJECT1 (ROTATE Y 180.000),
STEP6 GRIP OBJECT1 ,
STEP7 (PATH2 POSITION PLATFORM (SHIFT X 12.500 Y 12.500 Z 100-000 ROTAXE Y

180.000),
STEP8 : POSITION OBJECT2 (SHIFT Z 60.000 ROTATE Y 180.000),
STEP9 : POSITION OBJECT2 (SHIFT Z 50.000 ROTATE Y 180.000),
STEP10 : RELEASE OBJECT1 TO OBJECT2 ,
STEP11 : POSITION OBJECT1 (SHIFT Z 12.500 ROTATE Y 180.000),
STEP12 : PARK
STOP ;

- 273 -

APPENDIX B. 1 GRASP SYNTAX GENERATED FOR SOLID MODELLING THROUGH
COMPUTER ASSISTED SOLID MODELLING MODULE

This appendix shows GRASP syntax of a pallet generated through one
of the software modules derived for parameterised solid modelling.

CUBOID PALLET_BASE 300.000 250.000 20.000;
CUBOID PALLET DBARI 20.000 250.000 100.000;
COPY PALLET DRAR1 PALLET DBAR2 ;
CUBOID PALLET DBAR3 20.000 210.000 100.000;
CUBOID PALLET DBAR4 20.000 210.000 100.000;
CUBOID PALLET

-
DBAR5 20.000 210.000 100.000;

CUBOID PALLET CBAR1 260.000 20.000 100.000;
COPY PALLET CBAR1 PALLET CBAR2;
CUBOID PALLET CBAR3 507.000 20.000 100.000;
CUBOID PALLET CBAR4 50.000 20.000 100.000;
CUBOID PALLET CBAR5 50.000 20.000 100.000;
CUBOID PALLET CBAR6 50.000 20.000 100.000;
CUBOID PALLET CBAR7 50.000 20.000 100.000;
CUBOID PALLET CBAR8 50.000 20.000 100.000;
CUBOID PALLET CBAR9 50.000 20.000 100.000;
CUBOID PALLET CBAR10 50.000 20.000 100.000;
CUBOID PALLET CBAR11 50.000 20.000 100.000;
CUBOID PALLET CBAR12 50.000 20.000 100.000;
CUBOID PALLET

-
CBAR13 50.000 20.000 100.000;

CUBOID PALLET_CBAR14 50.000 20.000 100.000;
SET PALLET = PALLET_BASE

PALLET DBAR1 (SHIFT Z 20.000)
PALLET DBAR2 (SHIFT X 280.000 Z 20.000)
PALLET

-
DBAR3 (SHIFT X 70.000 Y 20.000 Z 20.000)

PALLET
-

DBAR4 (SHIFT X 140.000 Y 20.000 Z 20.000)
PALLET DBAR5 (SHIFT X 210.000 Y 20.000 Z 20.000)
PALLET CBAR1 (SHIFT X 20.000 Z 20.000)
PALLET CBAR2 (SHIFT X 20.000 Y 230.000 Z 20.000)
PALLET CBAR3 (SHIFT X 20.000 Y 57.500 Z 20.000)
PALLET CBAR4 (SHIFT X 90.000 Y 57.500 Z 20.000)
PALLET CBAR5 (SHIFT X 160.000 Y 57.500 Z 20.000)
PALLET CBAR6 (SHIFT X 230.000 Y 57.500 Z 20.000)
PALLET CBAR7 (SHIFT X 20.000 Y 115.000 Z 20.000)
PALLET-CBAR8 (SHIFT X 90-000 Y 115.000 Z 20.000)
PALLET CBAR9 (SHIFT X 160.000 Y 115.000 Z 20.000)
PALLET

-
CBAR10 (SHIFT X 230.000 Y 115.000 Z 20.000)

PALLET
-

CBAR11 (SHIFT X 20.000 Y 172.500 Z 20.000)
PALLET CBAR12 (SHIFT X 90.000 Y 172.500 Z 20.000)
PALLET

-
CBAR13 (SHIFT X 160.000 Y 172-500 Z 20.000)

PALLET_CBAR14 (SHIFT X 230-000 Y 172.500 Z 20.000)

STOP

- 274 -

APPENDIX B. 2 GRASP SYNTAX GENERATED FOR TASK SIMULATION THROUGH
COMPUTER ASSISTED TASK PROGRAM GENERATION MODULE

(i) PALLETISING TASKS

In this appendix an example output of a robot palletising program
generated by the PROG

-
PALLET software module. Local variables are

declared at the top of this program. The program generated by the
software module is created in the high level GRASP language where
reference objects and workpieces can be defined as arrays. These
arrays can be advanced as the programmer desires. After the local
variable declarations, it is important to fill these arrays with
the names of reference objects and workpeices. Locate statements
are used to give an initial position for each objects that are to
be manipulated during the palletising, such that every time the
program is replayed the initial condition is maintained. The following
program was created for option C with palletising pattern G to illustrate
how parameterised tasks can be applied.

TRACK PCG
VARIABLES
REFOBJECT PICK. REF(1: 12)
VORKPIECE WPE (1: 12)
END
STEM : SET PICK. REF TO LIST (Tl, T2, T3, T4, T5, T6, T7, T8, T9, TlO, Tll, Tl2),
STEP2 : SET WPE TO LIST (BOX1, BOX2, BOX3, BOX4, BOX5, BOX6, BOX7, BOX8,

BOX9, BOX10, BOX11, BOX12),
STEP3 : ADVANCE PICK. REF TO 1
STEP4 : ADVANCE WPE TO 1
STEP5 : REPEAT 12 TIMES
STEP6 : LOCATE WPE OWNER PALLETI AT PICK. REF,
STEP7 : ADVANCE PICK. REF BY 1
STEP8 : ADVANCE WPE BY 1,
STEP9 : ENDREPEAT FROM STEP5
STEP10 : ADVANCE PICK. REF TO 1
STEP11 : ADVANCE WPE To 1,
STEP12 : POSITION PICK. REF (SHIFT Z 20.00 ROTATE Y 180.00),
STEP13 : POSITION PICK. REF (ROTATE Y 180.00),
STEP14 : GRIP WPE ,
STEP15 : POSITION PICK. REF (SHIFT Z 70.00 ROTATE Y 180.00),
STEP16 : POSITION PALLET2 (SHIFT X 30.00 Y 30.00 Z 70.00 ROTATE Y 180.00)
STEP17 POSITION PALLET2 (SHIFT X 30.00 Y 30.00 Z 50.00 ROTATE Y ý 180.00).
STEP18 RELEASE WPE TO PALLET2 ,
STEP19 POSITION PALLET2 (SHIFT X 30.00 Y 30.00 Z 70.00 ROTATE Y 180.00)ý
STEP20 ADVANCE WPE BY 1,
STEP21 ADVANCE PICK. REF BY 1
STEP22 : POSITION PICK-REF (SHIFT Z 20.00 ROTATE Y 180.00),
STEP23 : POSITION PICK. REF (ROTATE Y 180.00)9
STEP24 : GRIP WPE ,
STEP25 : POSITION PICK. REF (SHIFT Z 70.00 ROTATE Y 180.00),
STEP26 POSITION PALLET2 (SHIFT X 90-00 Y 30.00 Z 70-00 ROTATE Y 180.00)..
STEP27 POSITION PALLET2 (SHIFT X 90-00 Y 30.00 Z 50.00 ROTATE Y 180. OO)f
STEP28 RELEASE WPE TO PALLET2 ,
STEP29 POSITION PALLET2 (SHIFT X 90-00 Y 30.00 Z 70.00 ROTATE Y 180.00)t

- 275 -

STEP30 : ADVANCE WPE BY 1,
STEP31 : ADVANCE PICK. REF BY 1
STEP32 : POSITION PICK. REF (SHIFT Z 20.00 ROTATE Y 180.00),
STEP33 : POSITION PICK. REF (ROTATE Y 180.00)p
STEP34 : GRIP WPE ,
STEP35 : POSITION PICK. REF (SHIFT Z 70.00 ROTATE Y 180.00),
STEP36 : POSITION PALLET2 (SHIFT X 150.00 Y 30.00 Z 70.00 ROTATE Y 180.00),
STEP37 : POSITION PALLET2 (SHIFT X 150.00 Y 30.00 Z 50.00 ROTATE Y 180.00),
STEP38 : RELEASE WPE TO PALLET2 ,
STEP39 : POSITION PALLET2 (SHIFT X 150.00 Y 30.00 Z 70.00 ROTATE Y 180.00),
STEP40 : ADVANCE WPE BY 1p
STEP41 : ADVANCE PICK. REF BY 1
STEP42 : POSITION PICK-REF (SHIFT Z 20.00 ROTATE Y 180.00),
STEP43 : POSITION PICK. REF (ROTATE Y 180.00),
STEP44 : GRIP WPE ,
STEP45 : POSITION PICK. REF (SHIFT Z 70.00 ROTATE Y 180.00),
STEP46 : POSITION PALLET2 (SHIFT X 210.00 Y 30.00 Z 70.00 ROTATE Y 180.00),
STEP47 : POSITION PALLET2 (SHIFT X 210.00 Y 30.00 Z 50.00 ROTATE Y 180.00)
STEP48 : RELEASE WPE TO PALLET2 ,
STEP49 : POSITION PALLET2 (SHIFT X 210.00 Y 30.00 Z 70.00 ROTATE Y 180.00),
STEP50 : ADVANCE WPE BY 1,
STEP51 : ADVANCE PICK-REF BY 1
STEP52 : POSITION PICK. REF (SHIFT Z 20-00 ROTATE Y 180.00),
STEP53 : POSITION PICK. REF (ROTATE Y 180.00),
STEP54 : GRIP WPE ,
STEP55 : POSITION PICK. REF (SHIFT Z 70.00 ROTATE Y 180.00),
STEP56 : POSITION PALLET2 (SHIFT X 30.00 Y 90.00 Z 70.00 ROTATE Y 180.00),
STEP57 : POSITION PALLET2 (SHIFT X 30.00 Y 90.00 Z 50.00 ROTATE Y 180.00),
STEP58 : RELEASE WPE TO PALLET2 ,
STEP59 : POSITION PALLET2 (SHIFT X 30.00 Y 90.00 Z 70.00 ROTATE Y 180.00),
STEP60 : ADVANCE WPE BY 1,
STEP61 : ADVANCE PICK. REF BY 1
STEP62 : POSITION PICK. REF (SHIFT Z 20.00 ROTATE Y 180.00),
STEP63 : POSITION PICK. REF (ROTATE Y 180.00),
STEP64 : GRIP WPE ,
STEP65 : POSITION PICK. REF (SHIFT Z 70.00 ROTATE Y 180.00)t
STEP66 : POSITION PALLET2 (SHIFT X 90.00 Y 90.00 Z 70.00 ROTATE Y 180.00),
STEP67 : POSITION PALLET2 (SHIFT X 90.00 Y 90.00 Z 50.00 ROTATE Y 180.00)
STEP68 : RELEASE WPE TO PALLET2 ,

:

STEP69 : POSITION PALLET2 (SHIFT X 90-00 Y 90-00 Z 70.00 ROTATE Y 180.00):
STEP70 : ADVANCE WPE BY 1,
STEP71 : ADVANCE PICK. REF BY 1
STEP72 : POSITION PICK. REF (SHIFT Z 20.00 ROTATE Y 180.00),
STEP73 : POSITION PICK. REF (ROTATE Y 180.00),
STEP74 : GRIP WPE t
STEP75 : POSITION PICK. REF (SHIFT Z 70.00 ROTATE Y 180.00),
STEP76 : POSITION PALLET2 (SHIFT X 150.00 Y 90.00 Z 70-00 ROTATE Y 180.00),
STEP77 : POSITION PALLET2 (SHIFT X 150.00 Y 90.00 Z 50.00 ROTATE Y 180.00),
STEP78 : RELEASE WPE TO PALLET2 ,
STEP79 : POSITION PALLET2 (SHIFT X 150.00 Y 90.00 Z 70.00 ROTATE Y 180.00),

- 276 -

STEP80 : ADVANCE WPE BY 1,
STEP81 : ADVANCE PICK. REF BY 1
STEP82 : POSITION PICK-REF (SHIFT Z 20.00 ROTATE Y 180.00),
STEP83 : POSITION PICK-REF (ROTATE Y 180.00)p
STEP84 : GRIP WPE ,
STEP85 : POSITION PICK-REF (SHIFT Z 70.00 ROTATE Y 180.00),
STEP86 : POSITION PALLET2 (SHIFT X 210.00 Y 90-00 Z 70.00 ROTATE Y 180.00),
STEP87 : POSITION PALLET2 (SHIFT X 210.00 Y 90.00 Z 50.00 ROTATE Y 180.00),
STEP88 : RELEASE WPE TO PALLET2 ,
STEP89 : POSITION PALLET2 (SHIFT X 210.00 Y 90.00 Z 70.00 ROTATE Y 180.00).
STEP90 : ADVANCE WPE BY 1,
STEP91 : ADVANCE PICK. REF BY 1
STEP92 : POSITION PICK-REF (SHIFT Z 20-00 ROTATE Y 180.00),
STEP93 : POSITION PICK-REF (ROTATE Y 180.00),
STEP94 : GRIP WPE ,
STEP95 : POSITION PICK. REF (SHIFT Z 70.00 ROTATE Y 180.00),
STEP96 : POSITION PALLET2 (SHIFT X 30.00 Y 150.00 Z 70.00 ROTATE Y 180.00),
STEP97 : POSITION PALLET2 (SHIFT X 30.00 Y 150.00 Z 50-00 ROTATE Y 180.00),
STEP98 : RELEASE WPE TO PALLET2 ,
STEP99 : POSITION PALLET2 (SHIFT X 30.00 Y 150.00 Z 70.00 ROTATE Y 180.00: #I
STEP100 : ADVANCE WPE BY 1,
STEP101 : ADVANCE PICK. REF BY 1
STEP102 : POSITION PICK. REF (SHIFT Z 20.00 ROTATE Y 180.00),
STEP103 : POSITION PICK. REF (ROTATE Y 180.00),
STEP104 : GRIP WPE ,
STEP105 : POSITION PICK. REF (SHIFT Z 70.00 ROTATE Y 180.00),
STEP106 : POSITION PALLET2 (SHIFT X 90-00 Y 150.00 Z 70.00 ROTATE Y 180 00)
STEP107 : POSITION PALLET2 (SHIFT X 90.00 Y 150.00 Z 50.00 ROTATE Y 180: 00):
STEP108 : RELEASE WPE TO PALLET2 ,
STEP109 POSITION PALLET2 (SHIFT X 90-00 Y 150.00 Z 70.00 ROTATE Y 180.00)
STEP110 ADVANCE WPE BY 1, f
STEP111 ADVANCE PICK. REF BY 1
STEP112 POSITION PICK. REF (SHIFT Z 20.00 ROTATE Y 180.00),
STEP113 POSITION PICK. REF (ROTATE Y 180.00),
STEP114 GRIP WPE ,
STEP115 POSITION PICK. REF (SHIFT Z 70.00 ROTATE Y 180.00)p
STEP116 : POSITION PALLET2 (SHIFT X 150.00 Y 150-00 Z 70.00 ROTATE Y 180.0)),
STEP117 : POSITION PALLET2 (SHIFT X 150.00 Y 150.00 Z 50.00 ROTATE Y 180.0)),
STEP118 : RELEASE WPE TO PALLET2 ,
STEP119 : POSITION PALLET2 (SHIFT X 150.00 Y 150-00 Z 70.00 ROTATE Y 180.0)),
STEP120 : ADVANCE WPE BY 1,
STEP121 : ADVANCE PICK. REF BY 1
STEP122 : POSITION PICK. REF (SHIFT Z 20-00 ROTATE Y 180.00),
STEP123 : POSITION PICK. REF (ROTATE Y 180.00),
STEP124 : GRIP WPE ,
STEP125 : POSITION PICK. REF (SHIFT Z 70.00 ROTATE Y 180.00),
STEP126 : POSITION PALLET2 (SHIFT X 210.00 Y 150.00 Z 70.00 ROTATE Y 180.0)),
STEP127 : POSITION PALLET2 (SHIFT X 210.00 Y 150.00 Z 50.00 ROTATE Y 180.00),
STEP128 : RELEASE WPE To PALLET2 ,
STEP129 : POSITION PALLET2 (SHIFT X 210.00 Y 150.00 Z 70.00 ROTATE Y 180.00)v
STEP130 : ADVANCE WPE BY 11
STEP131 : ADVANCE PICK. REF BY 1

STOP

- 277 -

(ii) MACHINE TENDING TASKS

This appendix shows an example output of a machine tending program
generated by the FROG

-
TEND software module. The robot tending program

is created for one of the shopfloor configurations as described, where
any object can be assigned to any machine. A robot program is generated
together with shell programs for the attendant peripheral robotic devices.
The synchronisation of these robotic devices is through simple sensory
input and output.

Global variables are declared before any robot or peripheral programs.
In general three types of variable can be used, including signal,
workpiece and reference objects variables. It is important that signal
variables must be declared at the global level. Vithin one program a
signal variable can only be used for input or output purpose. If any
path control is to be used in controlling robot motion, the path must
be defined before it is used in any program for robot or other peripheral
peripheral devices. The author also illustrate how a path can be controlled
through this example.

GLOBAL
VARIABLES
SIGNAL PART

-
READY, PART

-
CLEAR INg

MILL1_START, MILL1 STOP, MILLI CLEAR,
DRILL1

-
START, DRIL-Ll_STOPt DRIl: Ll CLEAR,

LATHE1 START, LATHE1 STOP, LATHEl-CLEAR
WORKPIECE PART (1: 107
END ;
PATH ST_CONV STRAIGHT SPEED 80
PATH ST_MC PTPT ;

The following track describes the conveyor belt movement which
drives raw material or partially completed parts into the robot
workplace. Assuming a sensing device is installed at the Pick up
position on the conveyor system, and when a part is arrived at
such a position, a signal output is generated from the sensor
which stops the conveyor belt. The conveyor will not be re-started
until after the part is picked up by the robot.

TRACK CONV_IN_IN
VARIABLES
REAL DIST(1: 10)
END
CONV IN IN1 : SET PART TO LIST (OBJ1, OBJ10, OBJ2tOBJ3tOBJ9pOBJ4t

OBJ'5pOD6, OBJ7, OBJ8) I
CONV IN IN2 : SET DIST TO LIST(350.0,600.0,850.0,1100.0,1350.0,

160U. O-, 1850.0,2100.0,235O. Ot2600.0)
CoNV IN IN3 : ADVANCE PART TO 1
CoNV"-IN-IN4 : ADVANCE DIST TO 1
COW-Iff-IN5 : REPEAT 10 TIMES ,
coNV

-
INý'-IN6 : LOCATE PART OWNER CONV IN BELT AT CONV_IN_BELT(NULL),

CONV IN
"-

IN7 : LOCATE PART BY (SHIFT 2 DIST)
CONV_IN IN8 : ADVANCE PART BY 1,

- 278 -

COW IN IN9
COW INý-IMO
CONýYINll
COW IFIN12
COW IFIN13

(SHYFT-X 475
COW IN IN14
COW IN IN15
COW IN IN16
COW IN IN17
con IN IN18
CONV_IN_IN19

ADVANCE DIST BY 1,
: ENDREPEAT FROM CONV_IN_IN5
: ADVANCE DIST TO 1,
: SET PART READY TO FALSE
: LOCATE CUNV-IN_BELT OWNER CONV-IN AT CONV-IN
Y 11910 Z 750),

(ST CONV) : POSITION CONV IN TARG
: SET PART READY TO TRUE --
: WAIT UNTYL PART CLEAR IN
: SET PART READY TO FACSE
: ADVANCE DIST BY 1,
: GOTO CONV-IN_IN14

(SHIFT X -DIST) p

This track describes a second conveyor belt movement which drives
completed parts out of the robot workplace to other workshop in
the manufacturing system. This conveyor belt is not controlled by
any signal and moves continuously and stops when the robot task is
completed. This also illustrates different ways of programming.

TRACK CONV-OUT_OUT
CONV OUT OUT1 : LOCATE CONV OUT

-
BELT OVNER CONV-OUT AT CONV-OUT

(SHIFT R 475 Y 11910 Z 7507t
CONV OUT OUT2 : POSITION CONV OUT TARG
CONV_OUT_OUT3 (ST_CONV) : POSfTIOR CONV_OUT_TARG (SHIFT X -20000)

The following track describes the robot task and this robot track calls
different macros (sub-routines) for different attendant machines. When
the raw material is arrived at the pick up position, a signal is received
by the robot controller that the part is ready to be pick up. Initially,
every attendant machine is ready for processing raw material, the robot
will load each machine according to the priority order specified by the
programmer. Once the workpiece is loaded into the machine. A signal output
from the attendant machine to the robot controller preventing re-loading
before unloading process takes place and so avoid unnecessary collision
and breakage. Once the manufacturing process is completed, the attendant
machine outputs another signal to the robot controller signifies the
process is completed and the finished part is ready to be unloaded. When
the robot finishes unloading such machine, the machine is ready for the nect
workpiece and so on.

TRACK C
CSTEP1
CSTEP2
CSTEP3
CSTEP4
CSTEP5
CSTEP6
CSTEP7
CSTEP8

ADVANCE PART TO 1
CALL MILL1-LOAD ,
ADVANCE PART BY 1
CALL DRILL1 LOAD
ADVANCE PART BY 1
CALL LATHEl-LOAD
ADVANCE PART BY 1
ADVANCE PART TO 1

-)79 -

CSTEP_REP : REPEAT 2 TIMES
CSTEP9 CALL MILLI UNLOAD
CSTEP10 ADVANCE PXRT BY 3,
CSTEP11 CALL MILL1_LOAD , CSTEP12 ADVANCE PART BY 8,
CSTEP13 CALL DRILLI-UNLOAD
CSTEP14 ADVANCE PART BY 3,
CSTEP15 CALL DRILL1_LOAD , CSTEP16 ADVANCE PART BY 8,
CSTEP17 CALL LATHE1 UNLOAD
CSTEP18 ADVANCE PART BY 3,
CSTEP19 CALL LATHEI LOAD , CSTEP20 ADVANCE PART BY 8,
CSTEP-END : ENDREPEAT FROM CSTEP-REP
CSTEP21 : CALL MILLI-UNLOAD
CSTEP22 : ADVANCE PART BY 1
CSTEP23 : CALL DRILL1 UNLOAD
CSTEP24 : ADVANCE PART BY I
CSTEP25 : CALL LATHEl-UNLOAD
CSTEP26 : ADVANCE PART BY I

TRACK MILLI LOAD
MILLI LOAD1 : WAIT UNTIL PART READY,
MILLI LOAD2 : POSITION CONV

-
IN

-
TARG (SHIFT Y -400 Z 200.000)

MILLI LOAD3 : POSITION CONV
-

IN
-

TARG (SHIFT Z 200.000)
MILLI LOAD4 : POSITION CONV IN TARG (NULL)
MILLI LOAD5 : GRIP PART ,- MILLI LOAD6 : POSITION CONV IN TARG (SHIFT z 200.000)
MILLI LOAD7 : SET PART CLEAR IN TO TRUE
MILLI LOAD8 : SET MILCl CLEAR TO FALSE,
MILL1_LOAD9 : POSITION ZýONV_IN_TARG (SHIFT Y -400 Z 200.000)
MILL1_LOAD10 : SET PART_CLEAR_IN TO FALSE,
MILL1_LOAD11 : POSITION MILL1-TARG (SHIFT Y -400 Z 200.000)
MILLI LOAD12 : POSITION MILLI

-
TARG (SHIFT Z 200.000)

MILLI LOAD13 : POSITION MILLI TARG , MILL1_LOAD14 : RELEASE PART T'd MILLI TARG
MILLI LOAD15 : POSITION MILLI TARG (ýýHIFT Z 200.000)
MILLI LOAD16 : SET MILLI START TO TRUE , MILLI LOAD17 : POSITION RILL1 TARG (SHIFT Y -400 Z 200.000)
MILL1_LOAD18 : SET MILL1-START TO FALSE
MILL1-LOAD19 : RETURN ,

TRACK MILL1
MILL1 PROM
MILL1 PROG2
MILL1-PROG3
MILLI-PROG4
MILL1-PROG5
MILL1-PROG6

PROG
: WAIT UNTIL MILL1-START
: PAUSE 2.500 ,
: SET MILLI STOP TO TRUE
: WAIT UNTIE MILLI CLEAR
: SET MILLI STOP T'd FALSE
: GOTO MILCl-PROG1 ,

- 280 -

TRACK MILLI UNLOAD
MILLI UNLOAD1 : WAIT UNTIL MILLI STOP,
MILLI UNLOAD2 : POSITION MILLI TTRG (SHIFT Y -400 Z 200.000)
MILLI UNLOAD3 : POSITION MILLI TARG (SHIFT Z 200.000)
MILLI UNLOAD4 : POSITION MILLI TARG
MILLI UNLOAD5 : GRIP PART ,
MILLI UNLOAD6 : POSITION MILLI TARG (SHIFT Z 200.000)
MILLI UNLOAD7: POSITION MILLI TARG (SHIFT Y -400 Z 200.000)
MILLI UNLOAD8 : POSITION CONV

-
OUT

-
TARG (SHIFT Y -400 Z 200.000)

MILLI UNLOAD9 : POSITION CONV OUT TARG (SHIFT Z 200.000)
MILL1 UNLOAD10 : POSITION CONV OUT TARG (NULL)
MILLI UNLOAD11 : RELEASE PART TO CUNV OUT BELT,
MILLI UNLOAD12 : SET MILLI CLEAR TO TRUE ,
MILLI UNLOAD13 : POSITION ýýONV OUT TARG (SHIFT Z 200.000)
MILLI UNLOAD14 : POSITION CONV-OUT_TARG (SHIFT Y -400 Z 200.000)
MILLl-UNLOAD15 : RETURN ,

TRACK DRILLI-LOAD
DRILL1 LOAD1 : WAIT UNTIL PART_READY,
DRILL1 LOAD2 : POSITION CONV IN

-
TARG (SHIFT Y -400 Z 200.000)

DRILL1 LOAM : POSITION CONV IN
-

TARG (SHIFT Z 200.000)
DRILL1 LOAM : POSITION CONV IN TARG (NULL)
DRILL1 LOAD5 : GRIP PART ,
DRILL1 LOAD6 : POSITION CONV IN TARG (SHIFT Z 200.000)
DRILL1 LOAD7 : SET PART CLEAR IN TO TRUE
DRILL1 LOAD8 : SET DRICLI CLEXR TO FALSE,
DRILL1-LOAD9 : POSITION C'dNV IN TARG (SHIFT Y -400 Z 200.000)
DRILL1 LOAD10 : SET PART CLEKR lN TO FALSE,
DRILL1

-
LOAD11 : POSITION DRILL11

-
TARG (SHIFT Y -400 Z 200.000)

DRILL1
-

LOAD12 : POSITION DRILLI
-

TARG (SHIFT Z 200.000) ,
DRILL1 LOAD13 : POSITION DRILL1 TARG ,
DRILL1 LOAD14 : RELEASE PART TO DRILL1 TARG
DRILLI LOAD15 : POSITION DRILL1 TARG (9HIFT Z 200.000) ,
DRILLI LOAD16 : SET DRILL1 START TO TRUE ,
DRILL1

-
LOAD17 : POSITION DRILL1-TARG (SHIFT Y -400 Z 200.000)

DRILLI LOAD18 : SET DRILLI START TO FALSE
DRILL1_LOAD19 : RETURN ,

TRACK DRILL1
DRILL1-PROG1
DRILL1-PROG2
DRILL1-PROG3
DRILL1-PROG4
DRILL1-PROG5
DRILL1-PROG6

PROG
: WAIT UNTIL DRIM-START
: PAUSE 2.500 ,
: SET DRILL1 STOP TO TRUE
: WAIT UNTIL-DRILLl-CLEAR
: SET DRIM-STOP TO FALSE
: GOTO DRILL1_PROG1 ,

- 281 -

TRACK DRILL1 UNLOAD
DRILL1 UNLOA7Dl : WAIT UNTIL DRILL1_STOP,
DRILL1-UNLOAD2 : POSITION DRILL1 TARG (SHIFT Y -400 Z 200.000)
DRILL1 UNLOAD3 : POSITION DRILL1_TARG (SHIFT Z 200.000)
DRILL1-UNLOAD4 : POSITION DRILL1-TARG
DRILL1 UNLOAD5 : GRIP PART , DRILL1-UNLOAD6 : POSITION DRILL1 TARG (SHIFT Z 200.000)
DRILL1 UNLOAD7: POSITION DRILL1 TARG (SHIFT Y -400 Z 200.000)
DRILL1-UNLOAD8 : POSITION CONV '6UT TARG (SHIFT Y -400 Z 200.000)
DRILL1-UNLOAD9 : POSITION CONV_OUT_TARG (SHIFT Z 200.000)
DRILL1 UNLOAD10 : POSITION coNV OUT TARG (NULL)
DRILL1_UNLOAD11 : RELEASE PART TO C'6NV OUT BELT,
DRILL1_UNLOAD12 : SET DRILL1 CLEAR TO TRUE-,
DRILL1 UNLOAD13 : POSITION CUNV

-
OUT TARG (SHIFT Z 200.000)

DRILL1 UNLOAD14 : POSITION CONV-OUT_TARG (SHIFT Y -400 Z 200.000)
DRILL1_UNLOAD15 : RETURN ,

TRACK LATHEl-LOAD
LATHEl-LOADI : WAIT UNTIL PART_READY,
LATHE1

-
LOAD2 : POSITION CONV

-
IN TARG (SHIFT Y -400 Z 200.000)

LATHE1 LOAM : POSITION CONV INýTARG (SHIFT Z 200.000)
LATHEl-LOAD4 : POSITION CONV-IN-TARG (NULL)
LATHE1 LOAD5 : GRIP PART ,
LATHE1

-
LOAD6 : POSITION CONV IN TARG (SHIFT Z 200.000)

LATHE1 LOAD7 : SET PART CLEAR IN TO TRUE
LATHEl-LOAD8 : SET LATH*fl CLEKR TO FALSE,
LATHE1

-
LOAD9 : POSITION CUNV IN TARG (SHIFT Y -400 Z 200.000)

LATHE1 LOAD10 : SET PART CLETR IN TO FALSE,
LATHEl-LOAD11 : POSITION-LATHEY

-
TARG (SHIFT Y -400 Z 200.000)

LATHE1
-

LOAD12 : POSITION LATHE1
-

TARG (SHIFT Z 200.000)
LATHE1 LOAD13 : POSITION LATHE1 TARG , LATHE1 LOAD14 : RELEASE PART TO LATHE1 TARG
LATHE1 LOAD15 : POSITION LATHE1 TARG (-9HIFT Z 200.000)
LATHE1 LOAD16 : SET LATHE1 START TO TRUE ,
LATHE1

-
LOAD17 : POSITION IaTHE1 TARG (SHIFT Y -400 Z 200.000)

LATHE1 LOAD18 : SET LATHE1 START TO FALSE , LATHEl-LOAD19 : RETURN ,

TRACK LATHE1
LATHE1 PROG1
LATHE1 PROG2
LATHE1_PROG3
LATHEI-PROG4
LATHE1 PROG5
LATHE1_PROG6

PROG
WAIT UNTIL LATHEl-START
PAUSE 2.500 , SET LATHE1 STOP TO TRUE
WAIT UNTICLATHE1 CLEAR
SET LATHE1 STOP T'd FALSE
GOTO LATHE!

-PROG1 ,

- 282 -

TRACK LATHE1 UNLOAD
LATHE1-UNLOAD1 : WAIT UNTIL LATHEl-STOP,
LATHEl-UNLOAD2 : POSITION LATHEl-TARG (SHIFT Y -400 Z 200.000)
LATHEl-UNLOAD3 : POSITION LATHEI-TARG (SHIFT Z 200.000) , LATHEl-UNLOAD4 : POSITION LATHEl-TARG
LATHE1_UNLOAD5 : GRIP PART , LATHEl-UNLOAD6 : POSITION LATHE1

-
TARG (SHIFT Z 200.000) , LATHE1

-
UNLOAD7: POSITION LATHE1_TARG (SHIFT Y -400 Z 200.000)

LATHE1 UNLOAD8 : POSITION CONV OUT TARG (SHIFT Y -400 Z 200-000)
LATHE1-UNLOAD9 : POSITION CONVýOUT-TARG (SHIFT Z 200.000)
LATHE1 UNLOAD10 : POSITION CONV OUT TARG (NULL)
LATHE1 UNLOAD11 : RELEASE PART TO C'6NV OUT BELT,
LATHE1 UNLOAD12 : SET LATHE1 CLEAR TO TRUE-,
LATHE1 UNLOAD13 : POSITION CONV OUT TARG (SHIFT Z 200.000)
LATHE1 UNLOAD14 : POSITION CONV_OUT_TARG (SHIFT Y -400 Z 200.000)
LATHEl-UNLOAD15 : RETURN

SýOp

- 283 -

APPENDIX C. 1 EXAMPLE DATA SHEET OF ROBOT KINEMATIC CHARARTERISTICS
SUPPLIED BY A ROBOT MANUFACTURER

Acceleration Performance of Adept One Robot

Joint 1 and 2

Terminal velocity: 1.5 rps (rev. per second) (=10 rad/s)
Acceleration: 0-0.5 rps: 80 ms (6.2 r/s2) (39 rad/s2)

0.5 - 1.0 rps: 120 ms (4.1 r/s2) (25 rad/s2)
1.0 - 1.5 rps: 200 ms (2.5 r/s2) (15 rad/s2)

Joint 3

Terminal velocity: 20
Acceleration: 0-5

5- 10
10 - 15
15 - 20

Joint 4

ips
ips:
ips:
ips:
ips:

(Inche
26 ms
30 ms
48 ms

100 ms

s per second) (=0.5 m/s)
(192 i/s2) (4.8 m/s2)
(165 i/s2) (4.2 m/s2)
(104 i/s2) (2.7 m/s2)
(50 i/s2) (1.3 m/s2)

Terminal velocity: 10 rps (rev. per second) (=60 rad/s)
Acceleration: 0-5 rps: 10 ms (500 r/s2) (3100 rad/s2)

5-7.5 rps: 5 ms (500 r/s2) (3100 rad/s2)

Graphs which depict the acceleration curves for joint 1,3 and 4 are
shown on the next page. Joint 1 and 2 perform in a similar manner.
The joint 4 measurements were performed at half torque.

source of information: (Adept Technology Inc, June 1986)

Meta Machines Limited,
9 Blacklands Way,
Abingdon Business Park,
Abingdon, Oxford, England

.- 284 -

100000

90000

80000

70000

u 60000 E
L
0 50000 c
I
r 0000
y

30000

20000

IODDO

0

-10080

)'"LL-l U1, LUIIL-I------EULL-U9gUt

- 2' -

D 200
SERVO CYCLE Miser)

90000

00000

? DOM

L 60000
0
c 50000

y
40000

30000 7-r

0 10.20 30 40 50 60 9-0 au 90 100
SERIIO CYCLES (211S)

50090

40000

u
E
L 30000

y
20000

10000

0
.. i1 20

SERVU CYCLES (211S)

285 -

APPENDIX C. 2 ILLUSTRATIVE EXAMPLE OF VALTOGRASP CALIBRATION MODULE

The VALTOGRASP is a program used to convert any frame or teach positions
(all positions are stored as a robot TOOL frame) into equivalent frame used
in GRASP. Unaltered pcb frame is obtained from vision system and robot
program (VAL II). These unaltered frames are stored in a location file

called "filenameU. LCII. This location file is transferred to PRIME via
RS232 serial link. The TOOL frame is converted into GRASP frame through
rotation of 180 degrees about the y axis and then 90 degrees about the
rotated z axis. The final transformation matrix converted into eulerian
angles and Xt Y, Z translations.

The following shows the original calibrated location file called BOARDU. LC
which contains the location information of the board frame obtained through
the use of vision system and VAL II.

. LOCATIONS
BOARD -9.302992E-3 -0.9999567 1.46098E-5 -0.9999567 9.302992E-3 -2.161314E
2.147629E-5 -1.481025E-5 -1 623.2843 -87.916473 629.99499

. END

To run the VALTOGRASP calibration module type: SEG VALTOGRASP
the computer then prompts for the name of robot involved: ADEPTONE
the computer then prompts for the name of location file: BOARDU. LC

After locations are read from the file, the location information
is then presented in a4x4 homogeneous transformation matrix as
below :

-0.009 -1.000
-1.000 0.009

0.000 -0.000 0.000 0.000

0.000 623.284
-0.000 -87.916
-1.000 629.995
0.000 1.000

The rotation of 180 degrees about the y axis is transformed into
a4x4 homogeneous transformation matrix as:

-1.000 0.000 0.000 0.000
0.000 1.000 0.000 0.000
0.000 0.000 -1.000 0.000
0.000 0.000 0.000 1.000

The robot tool frame is then multiplied by a rotation of 180 degrees
about the y axis, the rotated frame becomes:

0.009 -1.000 -0.000 623.284
1.000 0.009 0.000 -87.916

-0.000 -0.000 1.000 629.995
0.000 0.000 0.000 1.000

The rotation of 90 degrees about the z axis is transformed into
a4x4 homogeneous transformation matrix as:

0.000 -1.000 1.000 0.000
0.000 0.000
0.000 0.000

0.000 0.000
0.000 0.000
1.000 0.000
0.000 1.000

- 286 -

After rotation of 90 degrees about the rotated z axis,
the calibrated location for robot simulator becomes:

-1.000 -0.009
0.009 -1.000

-0.000 0.000
0.000 0.000

-0.000 623.284
0.000 -87.916 1.000 629.995
0.000 1.000

The calibrated and updated location file called BOARDU. UP vhich contains
the location of calibrated and updated board frame through the
VALTOGRASP module as shovn belov:

TO ADEPTONE ADD BOARD (SHIFT X 623.284 Y -87.916 Z 629.995
EULER 0.000 0.000 179.467);

The listing of the Prime Operating System commands generated for GRASP
invokation and automatically loads in the updated locations or frames

so that updating simulation model can be performed. To run this operating
system command program type RUN BOARDU <name of original simulation model, 0,
these operating command invokes GRASP and load in the original simulation
model. The content of the operating system command file is explained below:

&args source (enter name of simulation model
GRASP (invoke GRASP

(two carriage returns are required
(by the GRASP system

4 (select type of graphics terminal or workstation
N (not loading simulation model in binary form

(select input/output menu
(select input data option

%source% (enter name of original simulation model to GRASP
(a carriage return is required at the end of data file

I (select input data option again
boardu. UP [enter name of calibrated and updated data file

(a carriage return is required at the end of data file
WORKPLACE [select workplace menu
ATTACH (select attach command to change ownership of objects
BOARD [object to be attached to a new owner
WORKPLACE (new owner

(a carriage return exit the workplace menu
OUT (select output option
WORKPLACE (output model from the top hierarchy
%source%. NEW (enter name of new simulation model, use original name

(with a suffix NEW
Y (output tracks and paths
STOP (finish GRASP session
N (select no binary storage
N [do not want another session
LD [list the directory so that the programmer can check

(the newly created GRASP simulation model

- 287 -

APPENDIX D. 1 : DIFFERENCES IN DATA FORMATS BETWEEN REDBOARD
AND GRASP SYSTEMS

(i) DATA FORMAT OF REDBOARD SYSTEM

This part of the appendix describes the data formats that are used in
the Redboard system. The overall data formats are given, but only the
relevant portions of the data formats are explained in full detail. Further
information can be found in the Redboard menu, 1986.

. REM REDBOARD STANDARD DEFAULTS

. IFL
BOARD. IND
/. CPI
/Icl SN7402
/IC2 SN7417
/IC3 SN7417
/IC4 SN7400

. EOD

. PCB

(To start the part name data }

(To end the part name data

[To start pcb data

ASS
Design Assignment - including pad code definitions,
track code definitions, text code definitions and
space limitation for checking.

MAR 14 1
CMD 0

MAX 2

UNI 40

These two lines are use by the REDAC systems other
than ASCII input/output

Defines the maximum number of layers on a board,
number between 1 and 16

Defines the structure data unit i. e. resolution,
number in range of 32 to 127 structure data
units (D. S. U.) per inch

(Definitions of pad code
(pad code, layer, pad size, pad shape, drill diameter, orientation,
(finger, plated
PAD 0- 55 1 28 0
PAD 1-0100
PAD 2- 60 2 32 0
PAD 3- 60 1 32 0
PAD 4- 60 3 32 0
PAD 5- 75 1 40 0

- 288 -

PAD 6- 75 2 40 0
PAD 7- 75 3 40 0
PAD 8- 100 1 44 0
PAD 9- 100 2 44 0
PAD 10 - 100 3 44 0
PAD 11 - 125 1 44 0
PAD 12 - 60 3 110 0
PAD 13 - 75 1 0 0
PAD 14 - 60 3 120 0
PAD 15 - 215 1 1 0
PAD 16 - 220 1 1 0
PAD 17 - 210 1 1 0
PAD 18 - 50 1 28 0
PAD 19 - 50 2 28 0
PAD 20 - 50 3 28 0
PAD 21 - 50 0 0 0 175 0
PAD 22 - 60 0 0 0 170 0
PAD 23 - 75 0 0 0 163 0
PAD 24 - 100 0 0 0 150 0
PAD 25 - 50 0 0 1 175 0
PAD 26 - 60 0 0 1 170 0
PAD 27 - 75 0 0 1 163 0
PAD 28 - 100 0 0 1 150 0
PAD 29 - 60 0 32 0 7 0
PAD 30 - 60 0 32 1 7 0
PAD 31 - 20 0 0 0 285 0

Definitions of track code
track width code number, layer,

1 0-7 1-16,
TRA 0- 50
TRA 1- 12
TRA 2- 15
TRA 3- 20
TRA 4- 25
TRA 5- 50
TRA 6- 50
TRA 7- 50

Definitions of
text size code,

1 0-3
TEX 0 2 12
TEX 1 3 15
TEX 2 5 20
TEX 3 8 25
TTS - 12
TPS - 12
PPS - 12

track width
0-255 (0.00111)

text
height of text characters, width of line

0-127 D. S. U. 1 0-255 (0.00111)

(Defines track to track spacing
(Defines track to pad spacing
(Defines pad to pad spacing

- 289 -

BOA
Definitions of board outline
Defines number of corners on the board outline with minimum
of 2 to maximum of 62, followed by x and y coordinates which
defines the outline of pcb. Coordinates must be positive integers
in the range of 0 to 1023 inclusive.

L5

00
352 0
352 500

0 500
00

LIB
The component library definition defines the physical characteristics,
i. e. overall dimensions and pad positions and size codes, of every
component type to be used on the circuit board.

L0882
243
643

L1 24 42
223

22 23
L2 32 16 14

423
823

12 23
16 23
20 23
24 23
28 23
28 14 3
24 14 3
20 14 3
16 14 3
12 14 3
8 14 3
4 14 3

L3 36 16 16
423
823

12 23
16 23
20 23
24 23
28 23
32 23
32 14 3
28 14 3
24 14 3
20 14 3
16 14 3
12 14 3
8 14 3
4 14 3

290

L4 84 28 40
423
823

12 23
16 23
20 23
24 23
28 23
32 23
36 23
40 23
44 23
48 23
52 23
56 23
60 23
64 23
68 23
72 23
76 23
so 23
80 26 3
76 26 3
72 26 3
68 26 3
64 26 3
60 26 3
56 26 3
52 26 3
48 26 3
44 26 3
40 26 3
36 26 3
32 26 3
28 26 3
24 26 3
20 26 3
16 26 3
12 26 3

8 26 3
4 26 3

L5 32 16
12 45
20 45
28 45
28 12 5
20 12 5
12 12 5

L6 12 4

10 23
L7 130 16

28 26
88 26

14 8 26
20 8 26
26 8 26

6

2

22

- 291 -

32 8 26
38 8 26
44 8 26
50 8 26
56 8 26
62 8 26
68 8 26
74 8 26
80 8 26
86 8 26
92 8 26
98 8 26

104 8 26
110 8 26
116 8 26
122 8 26
128 8 26

Index of library reference
library numbers in the disc
reqiured for assembly.

relates local library numbers to the
based library. This definition is not

. IDX
L0 7102
L1 5250
L2 1022
L3 1023
L4 1136
L5 13100
L6 7200
L7 12205

The components list preceded by -COM defines components with
reference markers. This list defines the name of component,

[orientation of component name, x and Y coordinates of the position
[of the component name relative to the centre of the component,
(library reference number for the component type, type of pad,

orientatiion of the component layout as compared with the attitude
of the outline in the library definition (defined as 0, lt, 2 and 3
quadrants of 90 degrees), and coordinates of the lower left hand pad
after rotation (in D. S. U. measured relative to layout). Components
are grouped together according to its own heading and then the pin

number.
This component list is requ ired for pcb assembly example.

. COM
IC29 0 0 0 L 4 0 0 32 232
IC32 0 0 0 L 4 0 0 32 328
IC33 0 0 0 L 4 0 0 32 360
IC57 0 0 0 L 4 0 0 176 440
IC8 0 0 0 L 3 0 0 8 160
IC9 0 0 0 L 3 0 0 8 180
IC10 0 0 0 L 3 0 0 32 212
icl5 0 0 0 L 3 0 0 12 436
IC28 0 0 0 L 3 0 0 80 212
IC49 0 0 0 L 3 0 0 180 20
IC56 0 0 0 L 3 0 0 224 20

- 292 -

CON
A connection is defined as a link between two pads. A connection definition is not used in this assembly example

REM UNROUTED : COD 2
. REM TREE 1

IC5 25 IC3 14
. REM TREE 2

IC5 18 IC3 6
. REM TREE 3

IC2 6 IC5 6
. REM TREE 4

IC3 12 IC5 23
. REM TREE 5

IC3 10 IC5 21
. REM TREE 6

IC5 5 IC4 3
IC4 3 IC4 4

. REM TREE 7
IC4 2 IC4 6

. REM TREE 8
IC5 2 IC2 2

. REM TREE 9
IC2 12 IC5 36

. REM TREE 10
IC5 11 R5 1
R5 1 Cl I
Cl 1 Dl 2

. REM TREE 11
IC4 1 Rl 2
Rl 2 swl 3

. REM TREE 12
R3 2 IC5 1
IC5 1 ici 2
ici 2 Icl 3
ici 3 PU 11

. REM TREE 13
IC5 4 Icl 1
ici 1 Dl 1

. REM TREE 14
IC3 13 PU 7

. REM TREE 15
IC5 38 IC2 14

. REM TREE 16
Slil 1 IC4 5
IC4 5 R2 2

. REM TREE 17
PU 12 R5 2

. REM TREE 18
PU 4 IC3 7

. REM TREE 19
IC2 3 PU 18

. REM TREE 20
PU 6 IC3 11

. REM TREE 21
IC3 9 PU 5

- 293 -

. REM TREE 22
PL1 16 IC2 11

. REM TREE 23
IC5 9 PL1 8

. REM TREE 24
PL1 15 IC2 7

. REM TREE 25
IC2 13 PL1 17

. REM TREE 26
PL1 14 IC5 17

. REM TREE 27
IC5 19 PL1 13

. REM TREE 28
PL1 9 IC5 8

. REM TREE 29
IC5 7 PL1 10

. REM TREE 30
IC5 26 R4 2

. COD 6

. REM TREE 31
IC5 40 R2 1
R2 1 R4 1
R4 1 C2 1
C2 1 PL1 22
PL1 22 C3 1
C3 1 R3 1
R3 1 Rl 1
Rl I Icl 14
Icl 14 IC4 14
IC4 14 IC2 16

. REM 10
IC2 16 IC3 16

. COD 7

. REM TREE 32
IC5 20 IC2 1
IC2 1 IC3 15
IC3 15 PL1 1
PU 1 C3 2
C3 2 C2 2
C2 2 Cl 2
Cl 2 IC5 39
IC5 39 IC5 10
IC5 10 swi 2
swi 2 Icl 7

. REM 10
ici 7 IC4 7
IC4 7 IC2 8
IC2 8 IC3 8

. REM NO DATA FOR ROU
A route defines the path which must be taken by a connection
to avoid other items on the pcb.
Route definitions are not used in this assembly example

- 294 -

. REM NO DATA FOR COP
(The copper list defines copper area on a layer.
{ The copper definitions are not used in this assembly example

. REM NO DATA FOR TEX
[Text definiitions are used to define text, layer on
[which it appears, orientation,, and position.
(Text definitions are not used in this assembly example

. COD 7

. EOD To end pcb data

- 295 -

(ii) DATA FORMAT OF GRASP SYSTEM

This appendix shows the GRASP syntax that describes the pcb and
electronic components, assignment of pick up positions and robot program.

SYNTAX OF SOLID MODELLING

The following GRASP syntax is created for generating solid models
of a pcb and electronic components.

POLYPRIS
0.000
0.000

317.500
317.500

0.000

M %BOA HEIGHT 2 AXIS Z
0.000

223.520
223.520

0.000
0.000

CUBOID %4 53.340 17.780 5;
SET L4 = %4 ;
SET XIC29 L4
SET IC29 %IC29 (ROTATE Z -90 SHIFT Y 26.670)
CUBOID PTIC29 53.340 17.780 2;
SET TARG_IC29 =;
SET TIC29 = PTIC29
TARG IC29(SHIFT X 26.670 Z2 ROTATE Z 90)

COPY L4 %IC32 ;
SET IC32 = %IC32(ROTATE Z -90 SHIFT Y 26.670)
CUBOID PTIC32 53.340 17.780 2;
SET TARG_IC32 =;
SET TIC32 = PTIC32
TARG IC32(SHIFT X 26.670 Z2 ROTATE Z 90)

- COPY L4 %IC33 ;
SET IC33 = %IC33(ROTATE Z -90 SHIFT Y 26.670)
CUBOID PTIC33 53.340 17.780 2;
SET TARG_IC33 =;
SET TIC33 = PTIC33

IC33(SHIFT X 26.670 Z2 ROTATE TARG Z 90)
- COPY L4 %IC57 ;

SET IC57 = %IC57(ROTATE Z -90 SHIFT Y 26.670)
CUBOID PTIC57 53.340 17.780 2;
SET TARG IC57 =;
SET TIC57 = PTIC57
TARG IC57(SHIFT X 26.670 Z2 ROTATE Z 90)

CUBOIU %3 22.860 10-160 5;
SET L3 = %3 ;
SET Y. IC8 L3
SET IC8 %IC8 ROTATE Z -90 SHIFT Y 11.430)
CUBOID PTIC8 22-860 10.160 2;
SET TARG-IC8 =;
SET TIC8 = PTIC8
TARG IC8(SHIFT X 11.430 Z2 ROTATE Z 90)

_

- 296 -

COPY L3 %IC9 ;
SET IC9 = %IC9(ROTATE Z -90 SHIFT Y 11.430)
CUBOID PTIC9 22.860 10.160 2;
SET TARG-IC9 =;
SET TIC9 = PTIC9
TARG

-
IC9(SHIFT X 11.430 Z2 ROTATE Z 90)

COPY L3 %IC10 ;
SET IC10 = %IC10(ROTATE Z -90 SHIFT Y 11.430)
CUBOID PTIC10 22.860 10.160 2;
SET TARG IC10 =;
SET TIClU = PTIC10
TARG

-
IC10(SHIFT X 11.430 Z2 ROTATE Z 90)

COPY L3 %IC15 ;
SET IC15 = %IC15(ROTATE Z -90 SHIFT Y 11.430)
CUBOID PTIC15 22.860 10.160 2;
SET TARG IC15 =;
SET TIC1'5 = PTIC15
TARG IC15(SHIFT X 11.430 Z2 ROTATE Z 90)

COPY L3 %IC28 ;
SET IC28 = %IC28(ROTATE Z -90 SHIFT Y 11.430)
CUBOID PTIC28 22.860 10.160 2;
SET TARG IC28 =;
SET TIC219 = PTIC28
TARG IC28(SHIFT X 11.430 Z2 ROTATE Z 90)

COPY L3 %IC49 ;
SET IC49 = XIC49(ROTATE Z -90 SHIFT Y 11.430)
CUBOID PTIC49 22.860 10.160 2;
SET TARG_IC49 =;
SET TIC49 = PTIC49
TARG

-
IC49(SHIFT X 11.430 Z2 ROTATE Z 90)

COPY L3 XIC56 ;
SET IC56 = %IC56(ROTATE Z -90 SHIFT Y 11.430)
CUBOID PTIC56 22.860 10.160 2;
SET TARG_IC56 -;
SET TIC56 = PTIC56
TARG_IC56(SHIFT X 11.430 Z2 ROTATE Z 90)

SET BOARD = %BOA
TIC29 (ROTATE Z 0.000 SHIFT X 17.780 Y 146.050)
TIC32 (ROTATE Z 0.000 SHIFT X 17.780 Y 207.010)
TIC33 (ROTATE Z 0.000 SHIFT X 17.780 Y 227.330)
TIC57 (ROTATE Z 0.000 SHIFT X 109.220 Y 278.130)
TIC8 (ROTATE Z 0.000 SHIFT X 2.540 Y 100.330)
TIC9 (ROTATE Z 0.000 SHIFT X 2.540 Y 113.030)
TIC10 (ROTATE Z 0.000 SHIFT X 17.780 Y 133.350)
TIC28 (ROTATE Z 0.000 SHIFT X 48.260 Y 133.350)
TIC49 (ROTATE Z 0.000 SHIFT X 111.760 Y 11.430)
TIC56 (ROTATE Z 0.000 SHIFT X 139.700 Y 11.430)
TIC15 (ROTATE Z 0.000 SHIFT X 5.080 Y 275.590)

STOP

- 297 -

SYNTAX OF COMPONENT PICK UP REFERENCE ASSIGNMENT

The following GRASP syntax is used for assignment of electronic component
to peripheral feeders (or teach positions) with component of the same type
being allocated to the same feeder.

SET TPOINT4 =;
TO TPOINT4 ADD IC29
TO TPOINT4 ADD IC32
TO TPOINT4 ADD IC33
TO TPOINT4 ADD IC57
SET TPOINT3 =;
TO TPOINT3 ADD IC8
To TPOINT3 ADD IC9
TO TPOINT3 ADD Iclo
TO TPOINT3 ADD IC15
To TPOINT3 ADD IC28
TO TPOINT3 ADD IC49
To TPOINT3 ADD IC56
STOP ;

SYNTAX OF ROBOT SIMULATION PROGRAM

This is a robot track generated for pcb assembly. The order of insertit)n
sequence is based on the component type and minimum distance of travel froR
the current position. The initial insertion of any component type is chos(!;,
to start with a component that is to be assembled at a position nearest to
the pcb frame, any subsequent insertion is based on the minimum distance of
travel from the current position. This rule represents the most commonly
used method. This is based on the reasoning that different componenttype
can be assembled at different height and sequence, resolve foot print
problems, minimises distance travelled and hence cycle time. If tooling
or gripper is required to be changed for each type of component, this rule
reduce the frequency at which tooling/gripper changing is necessary. This
appendix shows an example result generated from the integration software
modules.

PATH SLOW STRAIGHT SPEED 25.00 ACCELERATION 0.00;
PATH MEDIUM STRAIGHT SPEED 50.00 ACCELERATION 0.00;
PATH FAST STRAIGHT SPEED 100.00 ACCELERATION 0.00;
TRACK JOBD
LOC1 : LOCATE IC29 OWNER TPOINT4 AT TPOINT4 (SHIFT Y 18.67)
LOCSTI : LOCATE TIC29 OWNER BOARD AT BOARD (ROTATE Z 0.00 SHIFT X

17.78 Y 146.05) ,
LOCSTEP1 : LOCATE TARG_IC29 OWNER TIC29 AT TIC29 (SHIFT X 26.67 Z 2.00

ROTATE Z 90.00) ,
LOC13 : LOCATE IC32 OWNER TPOINT4 AT TPOINT4 (SHIFT Y 18-67)
LOCST13 : LOCATE TIC32 OWNER BOARD AT BOARD (ROTATE Z 0.00 SHIFT X

17.78 Y 207.01) ,
LOCSTEP13 : LOCATE TARG_IC32 OWNER TIC32 AT TIC32 (SHIFT X 26.67 z 2.00

ROTATE Z 90.00) ,
LOC25 : LOCATE-IC33 OWNER TPOINT4 AT TPOINT4 (SHIFT Y 18.67)
LOCST25 : LOCATE TIC33 OWNER BOARD AT BOARD (ROTATE Z 0.00 SHIFT X

17.78 Y 227.33) ,
LOCSTEP25 : LOCATE TARG_IC33 OWNER TIC33 AT TIC33 (SHIFT X 26.67 Z 2.00

ROTATE Z 90.00) ,

- 298 -

LOC37 : LOCATE IC57 OWNER TPOINT4 AT TPOINT4 (SHIFT Y 18.67) , LOCST37 : LOCATE TIC57 OWNER BOARD AT BOARD (ROTATE Z 0.00 SHIFT X
109.22 Y 278-13) , LOCSTEP37 : LOCATE TARG_IC57 OWNER TIC57 AT TIC57 (SHIFT X 26.67 Z 2.00
ROTATE Z 90.00) p

LOC49 : LOCATE IC8 OWNER TPOINT3 AT TPOINT3 (SHIFT Y 3.43)
LOCST49 : LOCATE TIC8 OWNER BOARD AT BOARD (ROTATE Z 0.00 SHIFT X

2.54 Y 100.33) ,
LOCSTEP49 : LOCATE TARG_IC8 OWNER TIC8 AT TIC8 (SHIFT X 11.43 Z 2.00
ROTATE Z 90.00) ,

LOC61 : LOCATE IC9 OWNER TPOINT3 AT TPOINT3 (SHIFT Y 3.43)
LOCST61 : LOCATE TIC9 OWNER BOARD AT BOARD (ROTATE Z 0.00 SHIFT X

2.54 Y 113.03) ,
LOCSTEP61 : LOCATE TARG_IC9 OWNER TIC9 AT TIC9 (SHIFT X 11.43 Z 2.00

ROTATE Z 90-00) 1
LOC73 : LOCATE IC10 OWNER TPOINT3 AT TPOINT3 (SHIFT Y 3.43)
LOCST73 : LOCATE TIC10 OWNER BOARD AT BOARD (ROTATE Z 0.00 ; HIFT X

17.78 Y 133.35) ,
LOCSTEP73 : LOCATE TARG_IC10 OWNER TIC10 AT TIC10 (SHIFT X 11.43 Z 2.00
ROTATE Z 90-00) ,

LOC85 : LOCATE IC28 OWNER TPOINT3 AT TPOINT3 (SHIFT Y 3.43)
LOCST85 : LOCATE TIC28 OWNER BOARD AT BOARD (ROTATE Z 0.00 SHIFT X

48.26 Y 133.35) ,
LOCSTEP85 : LOCATE TARG_IC28 OWNER TIC28 AT TIC28 (SHIFT X 11.43 Z 2.00
ROTATE Z 90-00) ,

LOC97 : LOCATE IC49 OWNER TPOINT3 AT TPOINT3 (SHIFT Y 3.43)
LOCST97 : LOCATE TIC49 OWNER BOARD AT BOARD (ROTATE Z 0.00 SHIFT X

111.76 Y 11.43) ,
LOCSTEP97 : LOCATE TARG_IC49 OWNER TIC49 AT TIC49 (SHIFT X 11.43 Z 2.00

ROTATE Z 90-00) ,
LOC109 : LOCATE IC56 OWNER TPOINT3 AT TPOINT3 (SHIFT Y 3.43)
LOCST109 : LOCATE TIC56 OWNER BOARD AT BOARD (ROTATE Z 0.00 SHIFT X

139.70 Y 11.43) ,
LOCSTEP109 : LOCATE TARG_IC56 OWNER TIC56 AT TIC56 (SHIFT X 11.43 Z 2.00
ROTATE Z 90-00) ,

LOC121 : LOCATE IC15 OWNER TPOINT3 AT TPOINT3 (SHIFT Y 3.43)
LOCST121 : LOCATE TIC15 OWNER BOARD AT BOARD (ROTATE Z 0.00 SHIFT X

5.08 Y 275.59) ,
LOCSTEP121 : LOCATE TARG_IC15 OWNER TIC15 AT TIC15 (SHIFT X 11.43 Z 2.00

ROTATE Z 90-00) ,
STEP1 (FAST): POSITION PKPOS1 (ROTATE Y 180)
STEP2 (SLOW): POSITION IC29 (SHIFT Z 25 ROTATE Y 180)
STEP3 (SLOW): POSITION IC29 (ROTATE Y 180)
STEP4 : GRIP IC29 ,
STEP5 (SLOW): POSITION TPOINT4 (SHIFT Z 25 ROTATE Y 180)
STEP6 (MEDIUM): POSITION PKPOS1 (ROTATE Y 180)
STEP7 (FAST): POSITION PKPOS2 (ROTATE Y 180) , STEP8 (SLOW): POSITION TARG

-
IC29 (SHIFT Z 25 ROTATE Y 180)

STEP9 (SLOW): POSITION TARG_IC29 (SHIFT Z2 ROTATE Y 180)
STEP10 : RELEASE IC29 TO BOARD , STEP11 (SLOW): POSITION TARG IC29 (SHIFT Z 50 ROTATE Y 180)
STEP12 (FAST): POSITION PKPOý2 (ROTATE Y 180) , STEP13 (FAST): POSITION PKPOS1 (ROTATE Y 180) , STEP14 (SLOW): POSITION IC32 (SHIFT Z 25 ROTATE Y 180)
STEP15 (SLOW): POSITION IC32 (ROTATE Y 180)
STEP16 : GRIP IC32 ,
STEP17 (SLOW): POSITION TPOINT4 (SHIFT Z 25 ROTATE Y 180)
STEP18 (MEDIUM): POSITION PKPOS1 (ROTATE Y 180) ,

- 299 -

STEP19 (FAST): POSITION PKPOS2 (ROTATE Y 180) ,
STEP20 (SLOW): POSITION TARG_IC32 (SHIFT Z 25 ROTATE Y 180)
STEP21 (SLOW): POSITION TARG_IC32 (SHIFT Z2 ROTATE Y 180)
STEP22 : RELEASE IC32 TO BOARD ,
STEP23 (SLOW): POSITION TARG_IC32 (SHIFT Z 50 ROTATE Y 180)
STEP24 (FAST): POSITION PKPOS2 (ROTATE Y 180) ,
STEP25 (FAST): POSITION PKPOSI (ROTATE Y 180) ,
STEP26 (SLOW): POSITION IC33 (SHIFT Z 25 ROTATE Y 180)
STEP27 (SLOW): POSITION IC33 (ROTATE Y 180)
STEP28 : GRIP IC33 ,
STEP29 (SLOW): POSITION TPOINT4 (SHIFT Z 25 ROTATE Y 180)
STEP30 (MEDIUM): POSITION PKPOS1 (ROTATE Y 180)
STEP31 (FAST): POSITION PKPOS2 (ROTATE Y 180) ,
STEP32 (SLOW): POSITION TARG IC33 (SHIFT Z 25 ROTATE Y 180)
STEP33 (SLOW): POSITION TARG_IC33 (SHIFT Z2 ROTATE Y 180)
STEP34 : RELEASE IC33 TO BOARD ,
STEP35 (SLOW): POSITION TARG

-
IC33 (SHIFT Z 50 ROTATE Y 180)

STEP36 (FAST): POSITION PKPO92 (ROTATE Y 180) ,
STEP37 (FAST): POSITION PKPOS1 (ROTATE Y 180) ,
STEP38 (SLOW): POSITION IC57 (SHIFT Z 25 ROTATE Y 180)
STEP39 (SLOW): POSITION IC57 (ROTATE Y 180)
STEP40 : GRIP IC57 ,
STEP41 (SLOW): POSITION TPOINT4 (SHIFT Z 25 ROTATE Y 180)
STEP42 (MEDIUM): POSITION PKPOS1 (ROTATE Y 180)
STEP43 (FAST): POSITION PKPOS2 (ROTATE Y 180) t
STEP44 (SLOW): POSITION TARG

-
IC57 (SHIFT Z 25 ROTATE Y 180)

STEP45 (SLOW): POSITION TARG_IC57 (SHIFT Z2 ROTATE Y 180)
STEP46 : RELEASE IC57 TO BOARD ,
STEP47 (SLOW): POSITION TARG_IC57 (SHIFT Z 50 ROTATE Y 180)
STEP48 (FAST): POSITION PKPOS2 (ROTATE Y 180) ,
STEP49 (FAST): POSITION PKPOS1 (ROTATE Y 180) ,
STEP50 (SLOW): POSITION IC8 (SHIFT Z 25 ROTATE Y 180)
STEP51 (SLOW): POSITION IC8 (ROTATE Y 180)
STEP52 : GRIP IC8 ,
STEP53 (SLOW): POSITION TPOINT3 (SHIFT Z 25 ROTATE Y 180)
STEP54 (MEDIUM): POSITION PKPOS1 (ROTATE Y 180)
STEP55 (FAST): POSITION PKPOS2 (ROTATE Y 180) ,
STEP56 (SLOW): POSITION TARG_IC8 (SHIFT Z 25 ROTATE Y 180)
STEP57 (SLOW): POSITION TARG_IC8 (SHIFT Z2 ROTATE Y 180)
STEP58 : RELEASE IC8 TO BOARD ,
STEP59 (SLOW): POSITION TARG_IC8 (SHIFT Z 50 ROTATE Y 180)
STEP60 (FAST): POSITION PKPOS2 (ROTATE Y 180) t
STEP61 (FAST): POSITION PKPOS1 (ROTATE Y 180) ,
STEP62 (SLOW): POSITION IC9 (SHIFT Z 25 ROTATE Y 180)
STEP63 (SLOW): POSITION IC9 (ROTATE Y 180)
STEP64 : GRIP IC9 ,
STEP65 (SLOW): POSITION TPOINT3 (SHIFT Z 25 ROTATE Y 180)
STEP66 (MEDIUM): POSITION PKPOSI (ROTATE Y 180)
STEP67 (FAST): POSITION PKPOS2 (ROTATE Y 180) ,
STEP68 (SLOW): POSITION TARG_IC9 (SHIFT Z 25 ROTATE Y 180)
STEP69 (SLOW): POSITION TARG_IC9 (SHIFT Z2 ROTATE Y 180)
STEP70 : RELEASE IC9 TO BOARD ,
STEP71 (SLOW): POSITION TARG_IC9 (SHIFT Z 50 ROTATE Y 180)
STEP72 (FAST): POSITION PKPOS2 (ROTATE Y 180)
STEP73 (FAST): POSITION PKPOS1 (ROTATE Y 180)
STEP74 (SLOW): POSITION IC10 (SHIFT Z 25 ROTATE Y 180)
STEP75 (SLOW): POSITION IC10 (ROTATE Y 180) t

- 300 -

STEP76 : GRIP IC10 ,
STEP77 (SLOW): POSITION TPOINT3 (SHIFT Z 25 ROTATE Y 180)
STEP78 (MEDIUM): POSITION PKPOS1 (ROTATE Y 180)
STEP79 (FAST): POSITION PKPOS2 (ROTATE Y 180) ,
STEP80 (SLOW): POSITION TARG

-
IC10 (SHIFT Z 25 ROTATE Y 180)

STEP81 (SLOW): POSITION TARG IC10 (SHIFT Z2 ROTATE Y 180)
STEP82 : RELEASE IC10 TO BOARD ,
STEP83 (SLOW): POSITION TARG IC10 (SHIFT Z 50 ROTATE Y 180)
STEP84 (FAST): POSITION PKPO'92 (ROTATE Y 180) ,
STEP85 (FAST): POSITION PKPOS1 (ROTATE Y 180) ,
STEP86 (SLOW): POSITION IC28 (SHIFT Z 25 ROTATE Y 180)
STEP87 (SLOW): POSITION IC28 (ROTATE Y 180)
STEP88 : GRIP IC28 ,
STEP89 (SLOW): POSITION TPOINT3 (SHIFT Z 25 ROTATE Y 180)
STEP90 (MEDIUM): POSITION PKPOS1 (ROTATE Y 180)
STEP91 (FAST): POSITION PKPOS2 (ROTATE Y 180) ,
STEP92 (SLOW): POSITION TARG_IC28 (SHIFT Z 25 ROTATE Y 180)
STEP93 (SLOW): POSITION TARG_IC28 (SHIFT Z2 ROTATE Y 180)
STEP94 : RELEASE IC28 TO BOARD ,
STEP95 (SLOW): POSITION TARG_IC28 (SHIFT Z 50 ROTATE Y 180)
STEP96 (FAST): POSITION PKPOS2 (ROTATE Y 180)
STEP97 (FAST): POSITION PKPOS1 (ROTATE Y 180)
STEP98 (SLOW): POSITION IC49 (SHIFT Z 25 ROTATE Y 180)
STEP99 (SLOW): POSITION IC49 (ROTATE Y 180)
STEP100 : GRIP IC49 ,
STEP101 (SLOW): POSITION TPOINT3 (SHIFT Z 25 ROTATE Y 180)
STEP102 (MEDIUM): POSITION PKPOS1 (ROTATE Y 180)
STEP103 (FAST): POSITION PKPOS2 (ROTATE Y 180) ,
STEP104 (SLOW): POSITION TARG IC49 (SHIFT Z 25 ROTATE Y 180)
STEP105 (SLOW): POSITION TARO-IC49 (SHIFT Z2 ROTATE Y 180)
STEP106 : RELEASE IC49 TO BOARD p
STEP107 (SLOW): POSITION TARG_IC49 (SHIFT Z 50 ROTATE Y 180)
STEP108 (FAST): POSITION PKPOS2 (ROTATE Y 180)
STEP109 (FAST): POSITION PKPOS1 (ROTATE Y 180)
STEP110 (SLOW): POSITION IC56 (SHIFT Z 25 ROTATE Y 180)
STEP111 (SLOW): POSITION IC56 (ROTATE Y 180)
STEP112 : GRIP IC56 ,
STEP113 (SLOW): POSITION TPOINT3 (SHIFT Z 25 ROTATE Y 180)
STEP114 (MEDIUM): POSITION PKPOS1 (ROTATE Y 180)
STEP115 (FAST): POSITION PKPOS2 (ROTATE Y 180) ,
STEP116 (SLOW): POSITION TARG_IC56 (SHIFT Z 25 ROTATE Y 180)
STEP117 (SLOW): POSITION TARG IC56 (SHIFT Z2 ROTATE Y 180)
STEP118 : RELEASE IC56 TO BOARD ,
STEP119 (SLOW): POSITION TARG_IC56 (SHIFT Z 50 ROTATE Y 180)
STEP120 (FAST): POSITION PKPOS2 (ROTATE Y 180) p
STEP121 (FAST): POSITION PKPOS1 (ROTATE Y 180) ,
STEP122 (SLOW): POSITION IC15 (SHIFT Z 25 ROTATE Y 180)
STEP123 (SLOW): POSITION IC15 (ROTATE Y 180)
STEP124 : GRIP IC15 ,
STEP125 (SLOW): POSITION TPOINT3 (SHIFT Z 25 ROTATE Y 180)
STEP126 (MEDIUM): POSITION PKPOS1 (ROTATE Y 180)
STEP127 (FAST): POSITION PKPOS2 (ROTATE Y 180) , STEP128 (SLOW): POSITION TARG IC15 (SHIFT Z 25 ROTATE Y 180)
STEP129 (SLOW): POSITION TARG-IC15 (SHIFT Z2 ROTATE Y 180)
STEP130 : RELEASE IC15 TO BOARD , STEP131 (SLOW): POSITION TARG IC15 (SHIFT Z 50 ROTATE Y 180)
STEP132 (FAST): POSITION PKPOý2 (ROTATE Y 180)

STOP

- 301 -

APPENDIX D. 2 : Analysis of Assembly Tolerance and Robot Accuracy

(i) Analysis of Assembly Tolerance: Pin Size Variations

Reading no.
Measured size

xi (mm)
Variations

Xi-F (mm)
-X X-) 2

1 0.56 -0.013 0.0002
2 0.56 -0.013 0.0002
3 0.56 -0.013 0.0002
4 0.54 -0.033 0.0011
5 0.54 -0.033 0.0011
6 0.56 -0.013 0.0002
7 0.56 -0.013 0.0002
8 0.56 -0.013 0.0002
9 0.56 -0.013 0.0002
10 0.54 -0.033 0.0011
11 0.61 0.037 0.0014
12 0.57 -0.003 0.000009
13 0.60 0.027 0.0007
14 0.60 0.027 0.007
15 0.62 0.047 0.0022
16 0.59 0.017 0.0002
17 0.60 0.027 0.0007
18 0.58 0.007 0.00005
19 0.57 -0.003 0.000009
20 0.58 0.007 0.00005

i-20

xi= 11.46

-
11.46

mean X=--ý-o 0.573

i-20
Z (X, -X-)2 =0.0108lg
i-1

0.010818= 0.02326
20

20 *0.02326=0.02386mm
19

- 302 -

From the equation x-t 72--0 R t* 4 i-O

we can deduce the range at which the mean of the population lies at 95 % confidence interval,

t= 2.093

2.093*0.02386 0.573- 4 -: 5 g: 5 0.573+ 2.093*0.02836
i-o 4 Mo

0.5618: 9 g: 5 0.5842

we can also deduce the range at which the mean of the population lies at 99 % confidence
interval,

2.861

0.573" 2.861*0.02386
:5g: 5 0.573+ 2.861*0.02836

4 Mo 4 Mo

0.55775 p: 5 0.5883

(ii) Analysis of Assembly Tolerance: Hole Size Variations

Reading no.
Measured size

Xi

Variations

xi-Y
(X, X-) 2

-X

1 0.9375 -0.01375 0.00019
2 0.9375 -0.01375 0.00019
3 0.9375 -0.01375 0.00019
4 0.9375 -0.01375 0.00019
5 0.9375 -0.01375 0.00019
6 0.9375 -0.01375 0.00019
7 0.9375 -0.01375 0.00019
8 0.9625 0.01125 0.0001265
9 0.9625 0.01125 0.0001265
10 0.9625 0.01125 0.0001265
11 0.9375 -0.01375 0.00019
12 0.9625 0.01125 0.0001265
13 0.9625 0.01125 0.0001265
14 0.9625 0.01125 0.0001265
15 0.9625 0.01125 0.0001265
16 0.9625 0.01125 0.0001265
17 0.9625 0.01125 0.0001265
18 0.9625 0.01125 0.0001265
19 0.9625 0.01125 0.0001265
20 0.9375 -0.01375 0.00019

- 303 -

i=20
Y, xj= 19.025
i=l

mean T--
19.025

= 0.95125
20

i=20
(X, _X-)2 =0.0029

0.0029
20 = 0.01204

er =q
20 *0.01204=0.0124 mm 19

From the equation x--1* -. 5 Z+ t*
6

4 ý-O 4 YO

we can deduce the range at which the mean of the population lies at 95 % confidence interval,

2.093

0.95125- 2.093*0.0124
:5 g-: 5 0.95125+ 2.093*0.0124

4 i-O 4 i-O

0.9455--g g: 5 0.9571

we can also deduce the range at which the mean of the population lies at 99 % confidcnce

interval,

2.861

0.95125-
2.861*0.0124

:5g: 5.0.95125+
2.861*0.0124

4 MO 4 MO

0.9431-5 g: 5 P. 9592

From the mean value of pin and hole size, we can determine the upper and lower assembly
tolerance limits at 95% and 99% confidence intervals respectively. At 95% confidence interval,
the mean value of pin size is found to lie between 0.5577mm and 0.5883mm, whilst the mean
value of plated hole size is found to lie between 0.9433mm and 0.9592mm. Therefore the
upper assembly tolerance limit is found to be 0.4015mm and the lower assembly tolerance is
found to be 0.3550mm.

Similarly, at 99% confidence interval, the mean value of pin size is found to lie between
0.5618mm and 0.5842mm, whilst the mean value of plated hole size is lie between 0.9455mm
and 0.9571mm. The upper and lower assembly tolerance limit are found to be 0.3953mm and
0.3613mm respectively.

.. 304 -

(iii) Analysis of Robot Accuracy

Since the robot accuracy of each target position is known as normally distributed, but the
robot accuracy varies over the working envelope. Robot accuracy tests were carried out at three
different actual approach speeds and at different commanded translations. The experiment was
aiming to provide an indication of how the robot accuracy varies at different commanded trans-
lations along one robot axis. Measured accuracy readings were obtained at corresponding com-
manded translations and presented in the following tables. The experimental set-up is as shown
in the diagram attached.

ng

Equipment set up for robot accurccy testing

- 305 -

Reference Flat Surface
Datum

Readings taken at actual speed of 6.25 mm per second

Commanded Variation in distance Average

Translation
(dial gauge reading) in 0.001" Yj (0.001 mm) x! (m M)

25 2.5 2.0 2.5 2.25 2.25 58.42
50 5.5 5.4 5.3 5.5 5.5 138.18
75 8.0 8.0 8.25 8.2 8.0 205.49
100 8.7 8.7 8.7 8.6 8.0 216.92
125 13.0 12.5 12.25 12.25 12.25 316.23
150 13.7 13.0 13.0 12.75 13.0 332.49
175 13.25 13.1 12.9 13.0 13.5 334.01
200 13.75 13.5 13.25 13.5 13.25 341.63

Readings taken at actual speed of 25 mm per second

Commanded Variation in distance Average

Translation
(dial gauge reading) in 0.001" Yj (0.001 mm) Xi (m M)

25 3.5 3.6 3.4 3.2 3.4 86.87
50 5.5 5.5 5.8 5.0 5.5 138.68
75 9.0 8.25 8.5 8.5 8.75 218.44
100 8.5 8.0 7.5 7.5 7.5 198.12
125 13.0 13.25 13.0 13.0 13.0 331.47
150 13.2 13.2 13.0 13.1 13.0 332.74
175 13.5 13.0 13.25 13.0 12.5 331.47
200 14.0 14.0 13.50 13.75 13.75 350.52

Readings taken at actual speed of 50 mm per second

Commanded Variation in distance Average

Translation

Xi (m M)
(dial gauge reading) in 0.001" Yj (0.001 mm)

25 2.0 0.5 1.5 1.3 2.0 37.08
so 5.0 4.9 5.3 4.8 4.8 125.98
75 6.65 6.35 5.55 6.85 6.25 160.78
100 10.7 10.4 10.5 10.5 10.7 268.22
125 10.1 10.5 10.2 9.8 10.2 258.06
150 12.95 13.0 13.0 12.65 13.15 328.93
175 14.25 14.0 13.8 14.2 14.2 357.89
200 14.7 14.5 14.5 14.8 14.5 370.84

- 306 -

0.40-

0.35-

0.30-

0.25

0.20-

U) -

0.15-

0.10-

0.05-

0.001
0

"0

_,
O

//'
i/I

(ft
/

/

Z/
4

* speed=6.25mm/s
* ýReed=25mmn/

..
2

* speed=50ryLm/ý_

50 100 150

Commanded franslafions (mm)
200

- 307 -

Since the actual speed for electronic component insertion is chosen to be 50mm per second,
the processing of measured data is illustrated below. Due to the non-linear and time varying
characteristics of robotic system, accurate equations or models are difficult to obtain. We con-
sider the best fit straight line that passes through these data presented in the graph. Based on
linear regression method, a straight line is represented by an equation in the form of

Yi=A O+A I*Xi

Using the least squares method, the best fit straight line can be found by solving the following
two equations with two unknowns A0 and A 1.

i-A i=M
n*AO+A, *I; Xi=EYi --------------- (1)

i-I i-I

i-fi i= Ot i-n
A o*ZXi+A I*FXi= ZXI*Yi ---------- (2)

i=1 i=1 i=1

where n is the total number of reading sets
A0 is the unknown initial accuracy value for the graph
A1 is the unkown gradient of the graph
Xi is the commanded translations and
Yj is the corresponding measured accuracy value

Illustration of Working Procedure

n= 8

I=A

y, xj= 900
i=l

i-M

Yj= 1.9078

ZXj= 127500
i- I
i=n F, Xj*Yj=264.5022
i-I

substitute these data into equations (1) and (2).

8*AO+900*Al= 1.9078-7 ------------------------- (3)

900*A 0+ 127500*A I= 264.5022 ------------------ (4)

multipy (3) by 112.5, it becomes

900*AO+101250*Al= 214.6275 ------------------- (5)

- 308 -

subtract (5) from (4) and rearranging,

AI=0.0019

We then substitute AI=0.0019 into (3) and rearranging,

A0=0.0247

The best fit straight line through the graph is described by an equation

Yi=0.0247+0.0019*Xi (mm)

It is found that the gradicnt of the best fit line is 0.002 (3msd). This gradient can also be
interpreted as the relationship between the robot accuracy and the commanded translation.
Thus the robot accuracy is about 0.2% of the distance translated.

Since the upper and lower assembly tolerance limits were known and shown earlier, we can
determine the critical assembly range beyond which assembly is considered unsuccessful based
on the robot accuracy along. The critical assembly range at 95% and 99% confidence intervals
can be determined.

At 95% confidence interval,

if assembly tolerance is at its upper limit,

0.4015=0.0247+0.0019*Xi (mm)

Xj= 198.32mm

if assembly tolerance is at its lower limit,

0.3550--0.0247+0.0019*Xi (mm)

Xj= 173.84mm

At 99% confidence interval,

if assembly tolerance is at its upper limit,

0.3953=0.0247+0.0019*Xi (mm)

Xi= 195.05MM

if assembly tolerance is at its lower limit,

, 0.3613=0.0247+0.0019*Xi (mm)

Xj= 177.16mm

- 309 -

Applying the same procedure to other approach speeds, we obtain equations

Yi=0.0629+0.0016*Xi (mm)

and

Yi=0.0685+0.0016*Xi (mm)

which represent the robot accuracy in terms of commanded translation for the actual speed
approach of 6.25mm/s and 25mm/s. From these equations critical assembly ranges can be
assessed.

- 310 -

APPENDIX D. 3 : SPECIFICATION DATA SHEET OF THE NC DRILLING MACHINE USED

Technical Specifications

Model Type MM470 MM470L MM600 MM600L MM470DH* MM470DHL*

Spindle KAVO 4025 KAVO 4031 KAVO 4025 KAVO 4031 KAVO 4025 x2 KAVO 4031 x2
Speed rpm 20,000 - 60,000 10.000 - 60,000 20,000 - 60,000 10,000 - 60,000 20,000 - 60.000 10,000 - 60,000
Power 125 IN 450 W 125 W 450 W 125 W 450 W
Drill sizes .3-3.5mm .3-6.5mm .3-3.5mm .3-6.5mm .3-3.5mm .3-6.5mm

(. 012' - A30') (. 012' -. 25') (. 012' - 130') (. 012' -. 25*) (. 012' -. 130')
-

(. 012' -. 25")
-Co--ilet size 1 3.175mm (. 125*) 13.175mm (. 125*) 1 3.175mm (A25 *) 3.175mm (. 125') 3.175mm (. 125') 3175mm (. 125')

Brushed pressure foot with integral swarf extraction.

Table
Work table dimensions 485x325mm 485x325mm 66Ox485mm 66Ox485mm 660x485mm 660x485mm

(19'x12.75') (19*x12.75*) (25'09') (25'09') (26'09') (26*xl9*)
-Maximum panel size 560x650mm 560x650mm 735x950mm 735x950mm 2x33Ox485mm 2x33Ox485mm

(22.6'x25.6') (22.6'x25.6') (29' x37 (13*09')
_

(13*09')
Programmable area 470x3lOmm 470x3i0mm 620x470mm 620x470mm 2x3IOx470mm 2x31Ox470mrn

(18.5 *x 12.2') (18.5*02.2') (24.4'xI8.5') (24.4'xI8.5*) (12.2'xl8.5*) (12.2'08.5')
Tooling Pin and slot Pin and slot Pin and slot Pin and slot Pin and slot Pin and slot

3.175mm (A25') 3.175mm (. 125') 3.175mm (A 25*) 3.175mm (. 125*) 3.175mm (. 125') 3: 175mm (125')
Positioning speed > 2000mm/min > 2000mm/min > 2000mmImm > 2000mm/min > 2000mm/min > 2000mm/min

(80 ins/min) (80 ins/min) (80 ins/min) (80 ins/min) (80 instmin) (80 ins/min)
Posit ionaFaccu racy : t. Olmm (. 0004*) ±. 01mm (. 0004') ±. 01mm (. 0004*) ±. 01mm (. 0004') ±. 01mm (. 0004') --t. Olmm (. 0004')

-Re- -pe at ab iIity ±. 01mm (. 0004') ±. 01mm (. 0004') ±. 01mm (. 0004') ±. 01mm (. 0004*) ±. 01mm (. 0004') t. olmrn (. 000p
ETFID-ing accuracy

(typical) ±. 05mm (. 002') ±. 05mm (. 002') ±. 05mm (. 002') ±. 05mm (002') ±. 05mm (. 0021) ±. 05mm (. 002*)

Z Axis movement
Variable stroke 1 to 12mm I to 12mm 1 to 12mm 1 to 12mm 1 to 12mm I to 12mm

(. 04' to. 5') (. 04' to. 5*) (. 04' to. 5') (. 04' to. 5*) (. 04' to. 5') (. 04' to. 5')
Feed rate 500 - 3050mm/min 500 - 3050mm/min 500 - 3800mmimin 500 - 3800mm/min 500 - 3800mmimin 500 - 3800mm/min

(20 - 120 ins/min) (20 - 120 ins/min) (20 - 150 ins/min) (20 - 150 ins/min) (20 - 150 ins/min) (20 - 150 ins/min)
-Hit rate 150 typical for 15U typical for 180typicalfor __ 180 typical for 180 typical for T80 typical for

7mm (. 25') stroke 7mm (. 25 ') stroke 7mm (. 25') stroke 7mm (. 25') stroke 7mm (. 25') stroke 7mm (. 2 5 *) stroke
over a 2.54mm over a 2.54mm over a 2.54mm over a 2.54mm over a 2.54mm over a 2.54mm
(. 1 ') matrix. I

(A') matrix.
1
(. 1') matrix. (. I') matrix. I

(I*) matrix. 1
(. 1 1) matrix.

Physical Specifications

Drill table
(including base)
Height 1220mm (48*) 1220mm (48') 1250mm (49.25') 1250mm (49.25*) 1250mm (49.25') 1250mm (49.25')
Width 795mm (31.25 795mm (31.25*) 996mm (38*) 996mm (38') 996mm (38') 996mm (38*)
Depth 990mm (39*) 990mm (39') 1260mm (49.5*) 1260mm (49.5*) 1260mm (49.5*) 1260mm (49.5')
Weight 320kg (704 Ibs) 330kg (726 fbs) 390kg (858 Ibs) 400kg (880 Ibs) 410kg (902 Ibs) 430kg (946 Ibs)

Monitor and computer
Height 450mm (17.75*) 450mm (17.75*) 450mm (17.75') 450mm (17.75') 450mm (17.75') 450MM (17.75')
Width 490mm (19.25') 490mm (19.25') 490MM (19.25') 490mm (19.25') 490mm(19.25*) 490mm (19.25*)
Depth 480mm(19*) 480mm(19') 480mm(Ig') 480mm (19') 480mm (19') 480mm (I V)
Weight 20kg (44 Ibs) 20kg (44 Ibs) 20kg (44 lbs) 20kg (44 Ibs) 20kg (44 Ibs) 20kg (44 Ibs)

Source of information: Dorniver Limited,
Sanders Lodge Industrial Estate,
Welingborough Road, Rushden,
Northants, England.

- 311 -

