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SYNOPSIS 

This research study is concerned with the derivation of advanced robot 

programming methods. The methods include the use of proprietary 

simulation modelling and design software tools for the off-line 

programming of industrial robots. The study has involved the generation 

of integration software to facilitate the co-operative operation of these 

software tools. 

The three major researcli'themes7of "ease of usage", calibration and the 

integration of product design data have been followed to advance robot 

programming. The "ease of usage" is concerned with enhancements in the 

man-machine interface for robo t simulation systems in terms of computer 

assisted solid modelling and computer assisted task generation. 

Robot simulation models represent an idealised situation, and any off-line 

robot programs generated from'them may contain'discrepancies which could 

seriously effect thq programs' performance; Calibration techniques have 

therefore been investigated as 'a method of overcoming discrepancies 

between the simulation model and the real world. 

At the present time, most computer aided design systems operate as 

isolated islands of computer technology, whereas their product databases 

should be used to support decision making processes and ultimately 

facilitate the generation of machine programs. Thus the integration of 

product design data has been studied as an important step towards truly 

computer integrated manufacturing. 

The functionality of the three areas of study have been generalised and 

form the basis for recommended enhancements to future robot programming 

systems. 
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CHAPTER ONE 

INTRODUCTION 



The increasing pressure of international competition has forced 

manufacturers to increase their product range and models, and to improve 

their product quality. An increase in product models and product range 

results in changes in production processes, and a requirement to minimise 

set up and programming time. This must be-accomplished with the minimum of 

disruption to, 'production. For these'reasons, manufacituring industry has 

sought to employ advanced automation to achieve the flexibility and 

productivity levels required. One solution'to this problem has been the 

introduction of robots - machines that can be reprogrammed. As a result, 

robots'have become important tools'and can play a significant role in 

today's flexible manufacturing systems (FMS) and flexible assembly systems 

(FAS). 

Almost all-, robots are currently programmed by a combination of teach and 

on-line-textual programming methods including: teach'by showing, 'teach by 

pendant, and teach by showing a replica. Rapid growth and technology 

developments in the electronics industry have made robot controllers and 

computers more powerful, and this has led to the development of the current 

generation of robots, and subsequently the development of numerous robot 

languages. The use of on-line robot programming languages has improved 

their flexibility when dealing with complexities in the programming 

environmentp but there are still limitations. The limitations of these 

on-line programming methods have hindered the wider application of robots. 

Advances with 'respect to graphical displays have allowed simulation on 

graphical terminals to become a reality. - Many of'the current generation of 

robot simulators have been designed and implemented for the specific task of 
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- designing the layout of robotic systems. Graphical off-line robot 

programming based on the use of these robot simulators, is a subsequent and 

natural development., 

Graphics-based off-line robot programming systems involve high capital 

investment and -their introduction must be justified both on economic and 

technical grounds. At present, off-line robot programming should still be 

considered to. represent an evolving research topic, which to date has had- 

only limited industrial use. However, it represents a future method 

that will be used very commonly by manufacturing industry for the 

programming of robotic devices. The restricted usage of graphical- off7lina 

programming methods can often be traced to the original intention of the 

robot simulators as layout design tools rather than off-line programming 

tools. However, there are also practical, problems associated with this 

method of programming, where modelling accuracy can cause a serious problem. 

Off-line robot programming can be widely applied so long as accuracy and 

other practical problems can be design out or-suitable methods found for 

reducing their effect. 

At the start of this research (October 1985), there were only a limited 

number of robot simulation tools available and very few of these were 

capable of generating off-line robot programs. The graphical, simulation 

system (GRASP) chosen for this research was considered, appropriate as it was 

a developing system capable of further research and development. At the 

time the GRASP system had virtually no language post-processors capable of 

translating graphics output to robot programming languages. It therefore 

provided a good starting point for the research in studying the 
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methodologies involved in language post-processors and the subsequent 

construction of a language post-processor suitable for the robots, availab'L-z 

to the-author. -Although readily accepted today, the concept of usingý 

post-processors for robots was in its infancy even in 1985. BYG Systems 

(the vendor of GRASP) completed its commercial version of the VAL II 

post-processors during the winter of 1986-and this software was supplied to 

Loughborough University of Technology for-ýpre-release testing. Both the BYG 

and the author's post-processor versions were evolved concurrently and used 

in this research. 

The main topic-of-this thesis is the study, of off-line robot programming in 

the context of computer integrated manufacturing, with particular reference 

to handling andýassembly tasks. Thisýhas involved an appraisal of robot 

simulation and, off-line programming methods. The limitations of recent 

commercially available off-line robot programming systems have been 

identified and an extensive study has been made into the provision of 

practical solutions. The research work progressed along three themes with 

software being produced to facilitate calibration, an interface to product 

design, and improved man-: machine interface capabilities. The idea of 

re-using product design data when programming robot tasks is a direct 

parallel of using design information in the NC arena during the early 

sixties, but the target robots and their application areas demonstrate far 

greater variability and hence complexity. Although the project software has 

been designed specifically to operate with the GRASP robot simulator, the 

functionality was subsequently generalised. 
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This thesis is essentially comprised of three parts. The first four 

chapters provide an introduction and describe the background evolution and 

development of programming methods. The fundamental concepts of using 

simulation for designing the layout of robot systems are also considered. 

The second part (chapters five to eight) constitutes the main body of the 

study. Chapter five discusses the methodologies used in language 

post-processing. Techniques, algorithms and practical solutions to 

providing improvements to the man-machine interface are reviewed in chapter 

six. Chapters seven and eight describe the calibration methods used to 

update the information used in a CAD model and to describe the methods 

employed to enable the use of product design data in a robot simulator. The 

third and final part of this thesis shows how off-line robot programming 

methods can be utilised within existing manufacturing systems and discusses 

future possibilities for using off-line robot programming. 

- 4- 



CHAPTER TWO 

LITERATURE SURVEY 



2.0 Introduction 

Computer IntegratedýManufacture (CIM) is an approach to, manufacturing which 

uses computer--technology to improve productivity through the availability 

and processing of information from all phases of manufacturing [Kusiak. and 

Heragu, 1988]. A CIM system is commonly thought of as a truly integrated 

CAD/CAM system, [Allen, 1987; Crookall, 19871 consisting of. all the 

activities from the planning and design to manufacture of a product. As. 

with traditional manufacturing approaches, the purpose of a CIM system is to 

transform product designs-and materials into saleable products at a minimum 

cost in the shortest possible period of time. 

During the last decade, industrial robots have become an efficient tool in 

many manufacturing operations [El-Zorkany, -19851 and have been applied to an 

ever increasing number of manufacturing tasks with different, levels of 

complexity. This advancement was due,, to the significant improvement in 

performance capabilities and sophistication. of computerst associated 

computer, languages, and robots themselves. Today's production systems must 

be able to cope with varying production volumes, and be flexible, to handle a 

wide range of product models [Dooner, 1987]. Industrial robots are becoming 

more, advanced and play an important role in many manufacturing areas of a 

CIM system including assembly where operational-flexibility is required for 

handling the variability implied by small batch sizes [Sata. et al, 1987]. 

To apply robots effectively to these more demanding tasks requires an 

increase in the flexibility of the robot system and places new demands on 

the skills of the human operators. Jn order to achieve such flexibility, 

robot systems should incorporate more sensing devices [Crosnier and 

Fournier, 19871 and make more use of effective ways of programming robots 
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such as off-line programming [Paul, 1983]. Where possible robot systems 

should be programmed off-line so as to achieve more rapid development of 

programs and thus better machine utilization. Off-line robot programming 

methods normally involve the use of design layout informationcaptured in a. 

model structure database. This provides the possibility of linking up 

different areas within manufacturing industry, for example, integration of 

product design data for programming robots and vision systems, planning, 

scheduling and control [Appleton et al, 1988]. Therefore, robot-programming 

methods are an important stage of development for the integratio In of robots 

into complex manufacturing systems [Duelen and Bernhardt, 1986], but, most 

available systems still have the disadvantage of being tailored only to one 

type of robot [Weck et al, 1984]. 

There are some parallels in the development of programming methods for 

robots with the development of part programming for numerically controlled 

(NC) machinesp where initial requirements were for methods of programming 

single, relatively simple machines through the-facilities of their own- 

controllers (on-line programming). Advances in computer-aided design and 

manufacturing (CADCAM), and the advent, of computer and direct numerical 

control (CNC/DNC) made off-line programming a realistic proposition for 

groups of more complex machines indirectly communicating with each other 

through shopfloor computer systems [Milner and Brindley, 1978; Groover, 

1987]. Unfortunately, the design and programming of a manufacturing system 

which includes industrial robots can involve greater complexity than that 

for a system solely of NC machines. This is a direct consequence of the 

wider variety of, possible'application areas and potential solutions given 

the enhanced flexibility offered by robotics. 
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2.1 Development of Robots in Relation to Robot Programmin 

The development of robots is a continuous process and thus far three 

distinct generations [Ambler, 1984] can be classified as follows. 

(a) First Generation 

The first generation robots were mainly designed for use in applications 

where large batch sizes and repetitive tasks were involved. For this 

reason, robot programming was emphasised in methods of teaching where the 

programming time is relatively small when compared to its total program 

running time. Early-robots were capable of repeating a strictly 

specified set of Operations under conditions completely determined in 

advance [Ayres et al, 1985], and programming involved a combination of 

simple command statements and teach pendant. This type of robot language 

is known as a "motion level" language [Snyder, 19851. First generation 

robots continue to be used in industry but with advances in computer 

technology, enabling the creation of second and third generation 

machinesp they are no longer produced. 

(b) Second Generation 

Since second generation robots are designed to cope with small batch 

operations, they are reprogrammable and are capable of easily switching 

from one program to another. This can include adaptive robots capable of 

operating under variable or partially unknown conditions and able to 

respond to environmental changes [Vukobratovic and Stokic, 1982]. These 

robots incorporate sensors which provide information about changing 
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external conditions. They perform a set of operations determined in 

advance and are capable of accomplishing the same operations under 

changing operating conditions. This type of robot language is described 

as a "structured language". 

(c) Third Generation 

This involves intelligent robots,. possessing certain features of 

artificial intelligence, [Kochan,,. 1987a]. They are capable of responding 

to their operating environment in defining instantaneous tasks, of 

self-learning to provide solutions to particular problems including 

automatic error correction, and of changing their own action in 

accordance with the variations in operating conditions. Thus the 

planning of operations can be generated by robots themselves. This 

generation of robots is still not yet fully available for industrial 

implementation [Wolovicht 1987]. 

If off-line robot programming is, to be applied to first generation 

robots,, extra computation is required to be done within a post-processor 

to compute inverse kinematics (calculate the equivalent robot joint 

angles for, achieving the Cartesian coordinates of the robot's 

end-effector). Although the first generation of robots are commonly 

programmed by teach pendant, [Ambler, 1984], 
-their 

positioning accuracy 

(the ability of the. robot to attain a commanded position) is commonly not 

good enough for,, assembly tasks, which often require reasonably tight 

tolerances. These robots will suffer greater problems with accuracy 

[Chen and Chao,. 1987] if target positions are generated by off-line robot 

programming methods (robot accuracy normally deteriorates significantly 
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if positions are defined by off-line robot programming methods, due to 

the approximations made in modelling the kinematics and dynamics and when 

implementing control algorithms in the robot controller). The languages 

used for these robots are normally very simple and the program flow 

control is. limited. The robot controller can only process'one program, 'It 

a time (a_fundamental-problem of processing capability of, firS't 

generation robot controller) and is therefore not suitable for complex 

operations where sensory feedback is considered necessary for'-monitoring 

the robot movement-[Gini et-al, 1987]. Off-line robot programming'is 

feasible only for, simple robot tasks, where the accuracy required is not 

critical. -ý1 -1 1- 11 . _,, 

The second generation of robots have commonly been designed to achieve 

better accuracy and repeatability. Communication facilities between tha 

off-line computer systems and the robot controller are also commonplace 

[Groover et a1v 19861. The processing capability of the second 

generation robot controllers is far more powerful than that of their 

predecessors. Off-line robot programming of second generation robots can 

be applied to assembly tasks where precision is required. The increasel 

complexity of task and computational power. makes off-line programming 

both desirable and achievable. 

As more intelligent third generation robots become available with 

enhanced capabilities for coping with changing operating conditions, 

these robots are expectedto demonstrate even better accuracy-, than 

previous generations. This makes off-line robot programming even more 

suitable and more desirable because these robots could easily meet the 

accuracy requirement. 
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2.2 Robot Programming Classifications 

There is no standard way of classifying robot programming methods, and 

various approaches have been adopted by different authors and 

researchers. Some authors classify robot programming methods according 

to on-line and off-line categories [Storr and Schumacher,, 1987] and 

language syntax [Rock, 1989]. The most commonly used method of 

classification is according to the way of task specification [Yong et al, 

1985; Gini, 1987; Van Aken and Van Brussel, 19881. This refers to the 

levels of abstraction that can be made in formulating a task. 

Lozano-Perez (1983), and El-Zorkany (1985), classify robot programming 

systems into guiding and language based categories with the inclusion of 

level of task specification as shown in figure 2-1. 

ROBOT PROGRAMMING 

GUIDING METHODS LMGUAGE BASED MENODSI 

JOINT LEVEL ROBOT LE01- TASK LEVEL 

Figure 2-1 Traditional classification of robot programming methods 
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(a) Guiding Methods 

Guiding was the earliest and still the most widespread and commonly used 

method of programming industrial robots [Weck et al, 1987]. Basically, 

the robot isImanually. Toved to each desired position. and the sequence, of 

motions is obtained by sampling the robot joint angles. The replay of 

the motion is achieved by moving the robot through the recorded joint 

angles. 

Guiding can be done in a number of ways: - 

(i) The robot is physically moved by the operator. 

(ii) The robot is moved by using. its own servo system'e. g. via a teach 

pendant. 

(iii) A replica of the robot arm is used. It is lighter but less 

accurate and-obviously more costly than (i) and, (ii) above. 

(b) Language Based Programming Methods 

Language based programming methods [Volz, 19881, where the robots are 

programmed through the use of high level robot languages, permit the 

locations and orientations of target positions (to which the robot 

movements are referred) to be assigned without any need to use the robot 

itself [Gini, 1987]. Language based programming systems could be 

subdivided into four levels according to motion specification: - joint 

level, robot level, task/object level, and objective level. Figure 2-2 

- 11 - 



shows-the inter-relationships of these programming levels. Gini (1987), 

Van Aken and Van Brussel (1988) classified language based programming 

methods within these-subdivisons. 

OBJECTIVE LEVEL 

e g. insert IC chip on PCB board 

TASK/OBJECT 

e. g. approach IC chip 
onto IC chip 
grip the IC chip 

etc. 

ROBOT 

e. g. move to world coordinates 

JOINT VEL 

e. g. drive joint 2 by 8 

Figure 2-2 Relationships between levels of programming 

(i) Joint level programming 

The robot movement is programmed in terms of the individual joint 

movement to achieve the required positions [Lozano-Perez, , 1983]. This 

method is typically used for the restricted programming tasks found with 

first generation robots. This would be the natural level of programming 

only in the case of cartesian robots, where the joint description (in 

this case, prismatic joints) of the end-effector position (location and 
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orientation) is'naturally in Cartesian coordinates. 

(ii) Robot level programming 

Robot level programming systems incorporate computer programming 

languages with commands to obtain information from sensors and to specify 

robot motions, [Milovanovic, 19871. Robot actionsare specified in-terms 

of the robot's end-effector locations and orientations, usually in 

cartesian co-ordinate space. Robot level languages enable the data from 

external sources, such as vision and force sensors, to be used in 

modifying robot motions. Robots can cope with a'greater degree of 

uncertainty in the position'of objects through the use of sensors, 

thereby increasing their range of application, especially where high 

precision is required. However, robdt level language'systems require the 

robot programmer to be an expert in computer programming and in the 

design of sensor-based motion strategies where complex robot tasks are to 

be defined. 

(iii) Task/Object level. programming 

The aim of task/object level programming is to provide the power of robot 

level languages without-requiring-robot programming expertise [Yong et 

al, 1985]. The focus of attention is on the object being manipulated and 

the programmer specifies the robot motion in terms of target objects. 

The objects' coordinate frames are. used for, computing the robot movement. 

This requires a complete geometric model of the robot system from which 

information can be extracted to determineýthe necessary manipulator 

locations. 
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(iv) Objective level programming 

Objective level (application) programming is that in which tasks are 

specified in the most general form. This requires a comprehensive 

database containing complete geometric models of the robot and of the 

environment (similar to object'level). In addition to this, a knowledge 

base containing application techniques must be available to support an 

intelligent planning facility for generating collision free robot paths. 

objective level programming is a future goal which at present is a 

research goal for many university, government agencies and industrial 

research institutes [Adler, 1986; Rodighiero and Canciani, 1987; ý Halme 

et al, 1987; ' Sata et al, 1987; Howe and Fothergill, 1988 and Hoermann, 

1988]. At the present time, objective level programming systems are not, 

commercially available [Van Aken and Van Brussel, 1988]. , 

As an alternative to'the above, Bonner and Shin (1982), have suggested 

that robot languages can be subdivided into five loosely formulated 

levels'according to language emphasis. The five levels-are machine cod, e 

programming of microcomputer, point to pointp primitive motion, 

structured programming, and task-oriented levels. Hocken and Morris 

(1986), use very similar classifications but the classification emphasi.; 

is according to motion and language (mixed) specifications. 

Definitive classification of robot programming methods is a difficult 

task since some robot language characteristics overlap at different 

levels. Different ways of classification (according-to motion 

specification'or'language emphasis) have been presented here, but these 

only represent other authors, points of view. 
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This author suggests that robot programming languages 'can also be' 

classified according to their chronological development, 'from which 

future development trends can be predicted. ' Language based methods of 

robot programming are a development of teach methods so as t6provide 

more flexibility. The language based'methods can be subdivided into 

explicit and'implicit robot programming'. 11 !I- 

(i) explicit robot programming languages 

When using explicit robot programming tools, the programmer must specify 

the robot motion in a complete and detailed way [Storr and Schumacher, 

1987]. The programming statements must be sufficient to fully define the 

required operation sequences together with the required positional and 

orientational data. 
_, 

Based on this definition, most on-line and some 

off-line robot programming languages can in appropriate circumstances be 

considered explicit' [Ranky, 1984]. Typical examples of explicit robot 

languages are AL [Gini and Gini, 1985], VAL [Shimano et al, 1984], AML 

[Grossman, 19851, MCL [Wood and Fugelso, 1983), RAIL [Gruver et al, 1983] 

and KAREL [GMF Robotics, 1986]. 

(ii) implicit robot programming languages 

Implicit languages acquire a significant pr'oportion of information from a 

source other than the human robot programmer. Model and graphical based 

languages are available. Model based languages involve the use of model 

databases which capture geometric and spatial information relating to 

workplace entities [Sata et al, 1987]. Graphics-based languages use 

similar model based concepts but are extended to include simulation and 
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animation [Chawla and Gruver, 1984; Leu and Mahajan, 1984]. These 

graphics-based languages are also known as robot simulators, and can 

further be. subdivided into kinematic and dynamic robot simulators ' 

[Kretch, 1982; Thomson, 1984]., The author's view of the spectrum of 

current robot programming methods is depicted in figure, 2-3. Detailed 

descriptions of each classification, with a representative selection of 

robot simulators are presented in section 2.6. 

I ROBOT PROGRAMMING SYSTEMS I 

GUIDING METHODS II LANGUAGE BASED METHODS 

SENSOR ASSI;;; D; 
ý 

r 
EXPUCrr LANG-UA-G-E-S IMPLJVT LANGUAGES 

CAD SYSTEMS MODEL BASED LANGUAGESI I ROBOT SIMULATORS 

KINEMATIC DYNAMIC 

ON-LINE ROBOT PROGRAMMING07 OFF-UNE ROBOT PROGRAMMING 
Figure 2-3 Author's classification of robot programming methods 
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2.3 Definition of On-line and Off-line Robot Programmin 

"On-line" programming of a robot requires the use of the actual robot 

(and its controller) which is physically put through, a sequence of 

motions in the real environment [Schreiber, 1984a]. This is sometimes 

alternatively referred to as guiding'. ., - 

"Off-line" programming means-off-line with respect to the robot rather 

than the robot controller [Gini, - 19871. Off-line programming can be 

considered as the process of generating robot programs and control logi. z, 

where the need to involve the robot is minimised,, and only a final tuni. ig 

(calibration) might be done with the real robot. 
I-Possible 

methods 

include structured robot languages, model based languages, and 

graphics-based languages (involving the use of model data describing 31) 

objects and spatial relationships between objects). For more detail se'! 

section 2.6.3. ' 

2.4 Comparison of On-line and Off-line Programmin 

The widespread use of multi-axis robots can still result in excessive 

programming time and so*on-line programming is not satisfactory in many 

application areas [Weck et'al, 19841. In addition, frequent 

reprogramming of robots in small and medium batch production increases 

the production down time of the whole robotic system. The batch size Mly 

be so small that it takes more time to programme the robot than to run 

it. This problem is even more pronounced where the robotic system is 

part of a wider, highly automated production system such as a flexible 

manufacturing system or flexible assembly system [Lambourne, 19861. Fo,: 
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example, in an automotive plant where hundreds of robots areused in an 

assembly line, it'is very"inefficient to tra . in robots on-line during the 

change over-period as once a robot is interrupted for'training, the'whole 

assembly-line is stopped [Schreiber, 1984a]. Although-thes'e robots are 

infrequently reprogrammed, ' it could take up to'several months't6' 

reprogramme the robots. If the robot programming I method is`modi'fiýd so'- 

that new task can be programmed before parts are manufactured and without 

disrupting-the existing system, 'then'car manufa'cturers can reap the 

advantages of productivity, 'flexibility and'safety. The ability to 

shorten lead time'for the introduction of new models is most highly 

valued by industry [George and Mital, 1987]. -A typical example i found 

at Renault, where"off-line robot programming is applied to car panel 

assembly, [Renaultt- 19871. 

An alternative solution is to purchase and set up a complete second or 

training work environment in order to-minimize production downtime [Howie 

and Williams, 1984]. However, this is rarely economically justifiable 

due to the'increased capital investment. 

Off-line'programming will facilitate the change over from manufacturing 

one product to another to be carried'out in the shorte'st possible time 

[Yong et al, 1985]. '-Off-line programming'will allow'robots to remain in 

the workplace performing manufacturing operations while being programmed 

for another task. 

Computer Aided Design (CAD) systems are widely used worldwide, and 

off-line programming is the best way of using the-design data captured in 

CAD systems [Stobart, 1987]. The use of robot simulators will make it 
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easier to specify and develop the optimum sequence of robot motions 

[Rembold et al, 1988]. Integration with CAD systems could take various 

formsv for example in printed circuit board (pcb) assembly, although the 

same size pcbs and same electronic components are used, the assembly 

position of each component may vary. If on-line teach methods are used, 

the production downtime becomes significant and the location data may not 

be as accurate as those obtained from the CAD database. Since on-line 

programs are taught for a specific robot they can only be used on, that 

robot. Teaching hundreds of separate points in a complex welding or- 

riveting tasks by the guiding method leads to increased chance of error 

[Schreiber, 1984a]. Furthermore, the integration of a CAD system with an 

off-line robot programming system allows better communication and enables 

faster modelling where the duplication of model description is no longer 

required. 

Off-line programming systems can generate task location data in a 

robot-independent format, and hence the replacement of one robot by 

another should not prove too difficult [Okino and Shono, 1987]. In this 

way, a variety of robots can be programmed with the use of an appropriate 

post-procesor-for each specific robot controller. In such an, off-line 

programming system, the programmer need not be an expert in many robot 

programming languages, but ought to be familiar with the programming 

language of the robot simulator [Chan et al, 1988]. This obviously 

improves flexibility. 

tI 

Some tasks, such as programming spherical or circular motion [Gettelman, 

1985 ] cannot be taught satisfactorily by an operator using on-line 

guiding methods. Another typical example might be the cutting of a 45 
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degree bevel, measured normal'to'a curved surface. However,, these 

difficult tasks can be performed successfully through off-line, ', -? 

programming systems which utilise information from the product design 

database. -This method improves the programming efficiency and the 

quality of work. I- - -1- 

Since robot simulators are commonly used for workshop layout design and 

task evaluationy- robot tasks can be programmed, before equipment arrives 

or parts are manufactured [Pickett,, 1984]. A good example is the welding 

of space shuttle engines [Fernandez, 19881, where each engine has a 

variety of weld geometry and parameters. With the availability of both 

computing power and workplace model database, ýtask cycle time can be 

estimated and used for process planning and scheduling [Chan et al, 

19881. 

Robots can be dangerous to operators and surrounding auxillary equipment. 

However, using graphical programming methods to debug programs and to 

train operators, the human operator is removed from dangerous 

environments [Ambler, 1984]. As more-tasks are programmed away from the 

robot, the time during which the programmer is at risk from aberrant 

robot behaviour-is reduced [Yong et al, *1985]. 

As off-line programming of robots will provide many potential advantages 

over the traditional on-line programming methods, off-line robot 

programming methods are expected to have potentially wider industrial 

application. Currently the major hurdles to more widespread usage is 

user confidence, cost and learning. 
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Since robot performance is affected by repeatability (the ability of the 

robot to return to a taught position), the on-line robot programming 

method is most frequently used. It is therefore natural of robot 

manufacturers to focus on the problem of repeatability rather than 

accuracy. Off-line robot programming methods require good robot accuracy 

as target positions are generated from sources other than human 

operators. Improvements in robot accuracy will lead to the use of 

off-line robot programming in an ever increasing number of applications 

and will accelerate the trend towards fully utilized robot-based flexible 

manufacturing or assembly systems. 

2.5 Current Applications of Off-line Robot Programmin 

Off-line robot programming has been increasingly applied in various 

industrial sectors. Many manufacturing companies that are using CAD/CAM 

facilities, and particularly those involved in using robot simulation for 

factory design, have great potential for applying off-line robot 

programming. Although off-line robot programming can offer many 

potential advantages, some applications involving simple tasks would find 

off-line robot programming methods too complicated; this may mean that 

more time is required to programme the task programs than to run them (in 

some cases, it is more time consuming to programme the task off-line than 

on-line). However, other advantages can be gained through the use of 

off-line robot programming methods as discussed in section 2.4. Some 

representative current applications of off-line robot programming are 

described below. 
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(a) Aerospace. - Welding 

The Rockwell Science Centre, California, USA., (under contract to the 

National Aeronautics & Space Administration NASA), uses the McDonnell 

Douglas off-line robot programming system to design and program robot 

welding cells [Kuvin, 1985]. NASA engineers programmed the operation 

before the equipment arrived [Fernandez, 1988] (based. on the welding 

parameter database specified by welding engineers and on CAD databases 

that describe the parts to be welded). The simulation relates to a 

production cell that welds Space Shuttle main engines [Ruokangas et al, 

19871. The welding cell uses at least nine Cybotech H8 electric robots 

which are controlled by RC-6 robot controllers. Each engine has 14,000 

inches of weld and a variety of weld geometries., Obviously, on-line 

teaching would require extensive debugging and lengthy downtime. The 

off-line robot programming system holds a weld parameter database, which 

is processed to facilitate programming of robotic tungsten arc welding., 

(b) Automobile Industry -. Spray Painting 

Robot programming for spray painting applications is currently almost 

exclusively done by manual guiding methods. This has serious drawbacks 

since the. worker cannot produce the best quality of coating, (being 

hindered by the weight and stiffness of the robot arm and skill of the 

programmer) especially in the case of large surfaces [Klein, 1986], such 

as bus bodies [Grunewald, 1984; Frederikson 1984]. 

Advances in CADCAM methods and a growing interest in off-line robot 

programming led to this technique being applied for painting robots at 
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the Computer and Automation Institute, Hungarian Academy of Sciences, 

Budapest, Hungary [Klein, 1987]. Their work led to a better quality of 

coa'ting and a decrease of paint loss'. The approach involves modelling 

the spatial distribution of the paint'particles..,,. The paint particles 

sprayed should form a cone (which is the usual case [Hauke, 1982]) andby 

considering its intersection with the surface the amount of paint 

delivered to any point can be evaluated and visualized in different 

colours on a CAD system. Theoretically, when the workpiece has large 

surfaces, which are planar or close to planar and the surface normal 

changes regularly, automatic path generation is possible. Based on this 

a workpiece of arbitrary shape can also be painted by segmenting the 

workpiece into planar patches; that is curved surfaces-are approximated 

by polyhedra. From their experimentation, the efficiency of the painting 

process increases with the size of the surface to be painted. 

Efficiencies of 70-80 % have been achieved through off-line programming 

which are better than with current practice where'a 55-60 X efficiency*is 

typical (Efficiency is defined as being the ratio of paint usefully 

applied to the total consumed). 

(c) Automobile, Industry - Spot Welding 

The General Motors Corporation plant in'Doraville, ýUSA, applies off-line 

robot programming for automotive spot welding [Yoffa, 1988]. This 

involves the use of the IGRIP simulation system to model the body framing 

station (a station that holds the car body-in place ready for welding tO 

proceed). The framing station includes six GMF S-48OR robots, with two 

arranged on either side of the car body, and one at the front and rear* 

During the framing and spot welding process, the car body is driven intO 
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the station by an automatic guided vehicle (AGV), and is locked in place 

by fixtures. The robot then performs the required welding operations, 

and after the fixture release the AGV moves out of the-station. This is 

an efficient means for programming robots, as approximately 60'hours"'were 

required to generate the robot programs through simulation and off-line 

robot programming whereas 300 hours were required when using on-line 

methods. 

(d) Glass Cutting (Nottingham) --I 

Nottingham University has investigated the automation of the cutting of 

patterns on glassware [Knight et al, 1986], by generating off-line robot 

programs from a CAD system. The initial implementation was interfaced to 

a Cincinnati Milacron T3-726 robot. Once the patterns are designed, the 

surface profile of each glass is measured using sensors so as to 

determine a bi-cubic surface patch model of the glass surface. The 

pattern definition from the CAD system is then mapped onto this surface 

patch-in order to calibrate the robot program. This robot program is 

tailored to an individual glass and hence the whole process must be 

repeated for each blank glass. 

The research work is continuing [Edwards and Howarth, 19881 with a 

replacement ASEA IRB1000 robot, and the authors conclude that a 

traditional highly skilled glass cutting operation can be automated and 

the control processes can be applied'to a wide range of other industries. 
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2.6 Review of Robot Languages and Robot Simulators 

The limitations of teach-mode programming havelbeen-recognized by users 

from industry and research-institutions [Hocken and-Morris,, 198610 ý This, 

together with the rapid growth and functionality developments in the 

electronics industry which has made computers more powerful, -has resulted 

in the development of numerous robot languages [Van Aken and Van Brussel, 

1988]. '- Developmentszin on-line robot programming languages have improved 

the programming environment,, but suffer from a set of limitations 

inherited from teach-mode programming [Ambler, 1982] which are: 

(i) Programming in explicit robot languages does not allow the programmer 

to resolve critical'-design and operational issues. 

(ii) Updating a highly 'complex application with a huge database may be 

difficult. ' 

In order to overcome the disadvantages of on-line programming, numerous 

off-line programming-languages and systems of variousAegrees of 

sophistication have been developed [Hocken and Morris, 1986]. The 

majority of these languages and systems were developed by robot 

manufacturers, major industrial users, CAD suppliers and research 

institutions [Dooner, 1984; ' Boren, 19851. 

Current commercial CAD systems and off-line robot simulators are 

generally very expensive so that companies using such tools are likely to 

be major users of industrial robot systems and/or robot system 

manufacturers [Dooner, 1984]. Seemingly and notably, the majority of 
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available off-line robot programming simulators, are limited to a 

particularýmanufacturerls product range. Since the majority of off-line 

robot programming simulators are produced by the robot system 

manufacturers and robot users, there are obvious reasons for the limited 

range of applications.. Firstly, they do not have sufficient, knowledge of 

robot-systems manufactured, by, their competitors. Secondly, they prefer 

to promote their own products. Thirdly, they are likely to have 

excellent access to and can accomplish calibration of their own robot 

system in developing off-line programming facilities.. _- 

A number of robot simulators have become available in the world 

marketplace including GRASP [Bonney, 1987], McDonnell Douglas Robotics 

Software [Carter, 1987], ComputerVision's Robographix [Mattis and Gill, 

1988], Intergraph system [Intergraph, 1985]p AutoSimulations [Stauffer, 

1984] and ROBCAD [Robotics World, 1986a]. These CAD/CAM packages, provide 

a set of modelling and simulation tools which can be used to represent a 

robot manipulator, and it's attendant equipment, in graphical form and 

hence simulate a manufacturing task. The use of such packages can allow 

the manufacturing engineer to try several solutions for robotic cells 

before purchasing any equipment. Hence these workplace design tools can 

be used to improve the choice and layout of robot, systems, reduce set-up 

costs, reduce installation times and improve system performance. Certain 

manufacturers claim-that "engineers can design and lay out robot cells up 

to 70 per cent faster through the use of a robot simulator" [Industrial 

Robot, 1982; Robotics World, 1986a]. 

An. additional feature-of many robot simulators is the availability of 

post-processing software for the off-line programming of robots. Such a 
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post-processor reformats the geometric and sequential information 

generated by the modeller and simulator, to produce a robot task program 

in the native language of the robot. -, Obviously this p6st-processing 

function is robot dependant (currently there is no internationally 

accepted neutral language for robots) and hence this facility will only 

be readily available for commonly used industrial robots. 

The McDonnell Douglas robotic system [Carter, 19871 is generally 

recognised as the most sophisticated kinematic robot simulator 

commercially available today. However, these kinematic robot simulators 

do not take dynamic effects (damping and following errors etc) into 

consideration. This has provided the motive for researchers to generate 

robot simulators that can simulate dynamic effects. As a result, a 

limited number of dynamic robot simulators are being applied to the 

off-line robot programming problem. Among these are ROBOT-SIM [Novak, 

19841, ROSI [Industrial Robot, 1987], and STAR [Hornick and Ravani, 

19861. 

There are many different robot simulators and off-line robot programming 

systems which have been developed for in house use or academic research. 

It would be impossible to gather all the information for every software! 

package available today. It should be noted that the comparison of these 

simulators is a rather difficult task as the information provided by the 

suppliers of simulators is not presented in a uniform manner and is oftýn 

only superficial in nature. Furthermore, without practical hands on 

experience on individual software package, a thorough evaluation is not 

possible. The following paragraphs describe a representative selection 

of robot simulators. The following classification is according to the 
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chronological order as mentioned in section 2.2. ' 

2.6.1 Explicit'--; Structured High Level Robot Programminý Languages 

ROPS (Robot Off-line Programming System) is a. simulation package 

offered by Cincinnati Milacron. It contains several modules specially 

developed for T3 700, T3 800 series, and version 3 and, 4 robot 

controllers. ROPS. is available on IBM PC-AT and DEC VAX computers, 

and is capable of communicating with CAD/, CAM systems [Cincinnati 

Milacron, 1985]. This menu driven programming system provides the 

programmer with assistance in developing an off-line robot program. 

The ASEA off-line programming system [ASEA, 1986] has similar functions 

to ROPS. The survey papers by-[Bonner and Shin, 1982], [Gruver et al, 

1983], [Soroka, 19831 and [Schreiber, 1984b] reviewed some of these 

languages including AL, AML, HELP, JARS, MCL, RAIL and VAL. 

, 2.6.2 Implicit - Model Based Off-line Robot Programming Systems 

AUTOPASS is the automatic parts assembly system developed by IBM 

[Wesley et al, 19801. It is a high level, object oriented, compiled 

language for assembly, based on a world model of the workplace., This 

language describes assembly operations rather than robot movements 

[Ranky and Ho, 19851 thereby allowing a programmer to specify assembly 

procedures implicitly. The compiler then transforms the assembly- 

procedure into motion commands through the use of data from a 

geometric database or world model where the geometric. information 
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(spatial, relationships between objects) is stored. The programmer il 

allowed to use commands such as "PLACEI't "OPERATE", and "RIVET" for 

assembly, tool functions and fastening respectively. There are other 

similar systems such as RAPT (Robot APT), developed within the 

Department of Artificial Intelligence, at the, University of Edinburgh 

[Ambler, 1982; Ambler et al, 1982; Durham, 1985;. Howe and 

Fothergill, 19881., ROBEX (ROBoter EXapt) developed in Germany 

[Eversheim et al, 1981; Neck et al, 1981,1984 and 1987;. Weck and 

Niehaus, 1984]. Both-RAPT and ROBEX can link up with graphics display 

via a pre-processor to the graphics system. _ 

2.6.3 Implicit - Graphics Based Off-line Programming Systems 

Graphics based off-line programming systems include CAD systems and 

robot simulators. As previously stated, robot simulators can be 

classified into kinematic and dynamic robot simulators (this being 

considered in greater detail in chapter 4 section 4.3.1). The 

Dýnavit-Hartenberg algorithm [Denavit and Hartenberg, 19551, is the 

most commonly used [Gupta, 1986] in kinematic robot simulators. These 

kinematic robot simulators do not take dynamic-effects into 

consideration. Dynamic robot simulators-can only produce a dynamic 

model which closely approximates to certain dynamic characteristics of 

a given robot. A kinematic model also forms part of the essential 

framework of a dynamic robot simulator. The frequently referenced 

algorithms in the context of dynamic simulation include the Lagrangian 

method [Murray and Neuman, 1984; Wang and Kohli, 1985] and the 

Newton-Euler method [Khosla and Neuman, 1985; Featherstone, 1987]. 
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(a) CAD Systems 

This involves the use of common CAD systems. These systems do not 

have the capability of modelling robot kinematics nor dynamics, and 

can only produce 2D or 3D designs of products. Typical examples 

are to be found in the Department of Production Engineering and 

Production Management, at Nottingham University, where a CAD system 

is used'to design glass patterns. The output of these patterns is 

used to programme a robot in carrying out glass cutting [Knight et 

al, 19861. Similarly, another CAD system has been applied for 

off-line programming of painting robots at the Computer and 

Automation Institute, Hungarian Academy of Sciences [Klein, 1987]. 

(b) Kin matic Robot Simulators 

(1) AutoSimulation system 

The AutoSimulation suite includes AutoBots, AutoMod, AutoGram and 

InterFaSE modules [Robotics World, 1986b]. The AutoBots module 

allows robot'simulation and off-line programming. The InterFaSE 

module is a simulation-base factory scheduler which allows the user 

to test and change operating and decision making rules to optimise 

the performance of facilities. 

AutoMod is a numerical simulation package based on the GPSS ' 

simulation language, whereas AutoGram works In conjunction with 

AutoMod to produce graphic representations [Stauffer, 19841. The 

AutoMod simulation package uses English language inputs thereby 
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allowing programmers to describe robotic devices and associated 

manufacturing system elements. From this a simulation model is 

constructed. Subsequently the model data is utilised by-AutoGram, 

in providing a graphic display. 

(2) CATIA 

The Computer Aided Three dimensional Interactive Applications 

(CATIA) package [Crosnier and Fournier, 1987; Forestier, 1985] was 

developed in France by Dassault Systems. It consists of five 

modules: 

(i) a wireframe module providing 3D geometric definitions. 

(ii) surface descriptions used to define complex 3D surfaces and 

volumes, together with NC machining capabilities. iý 

(iii) polyhedral solids used to define simple volumes or solids. 

(iv) kinematics to define 2D joint mechanisms. 

(v) a robotics off-line programming system. 

CATIA runs on IBM workstations and can be used to communicate with 

the MCL (Manufacturing Control Language) language developed by 

McDonnell Douglas [Gettelman, 1985 ]. 
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(3) GMF syste 

The GMFýoff-line programming system has'several analogies with NC 

part programming languages in that a set of S and G codes may be 

used to construct robot programs. Alternatively English-like -, 

mnemonics may be used to indirectly specify the S and G codes. It 

is difficult for the programmer to input point. data since input is 

required in joint axis form [Jacobs, 1984]. 

(4) GRASP 

GRASP is the acronyn chosen for the General Robot Arm Simulation 

Program developed at-the RensselaerýPolytechnic Institute in the 

United States (and should not be confused with the identically 

named software used. in connection with this research study). It 

can model robot arms with up to six joints, describe robot tasks 

and evaluate proposed robotic systems by providing animation in 

wireframe representation. The capabilities of the simulation 

program include cycle time estimation, joint violation detection, 

along with torque and member bending simulation. The data 

generated by GRASP [Derby 1984a, 1984b] has been translated into 

VAL programs for the PUMA and into a language specially designed 

for the Cincinnati T3. 

(5) HERON 

HERON is described as a stan&-alone CAD/CAM workstation [Miller, 

19851, which allows the programmer to perform workcell design and 

- 32 - 



optimizationt off-line programming of robots, animation and 

collision detection. The system provides 3D wireframe models and 

3D solid models. 'It consists of six modules: 

(i) ROBOLIB provides libraries of available robots and accessories. 

(ii) ROBOGEO allows geometric modelling and mechanism design. 

(iii)-ROBOSIM facilitates vorkcell, design, task description and 

animation. 

(iv) ROBOLOAD translates a task description into a robot program 

and downloads, it to the specific robot controller. 

(v) ROBODOC produces drafts and documents. 

(vi) ROBOPERT provides*project management analysis. ' 

IGRIP 

IGRIP (Interactive Graphic Robot InstructionýProgram) was developed 

by DENEB Robotics. IGRIP claims to be computer system independent, 

being designed in modular form to provide flexibility and enabling 

the software'package to be ported from one machine to another 

through changes to two of the modules [Schreiberp 1984b; Harrison 

and Mahajan, 19861. There are four graphics modes and thus 

graphics models of different devices can be displayed [Yoffa, 1988] 

in any of the following forms. 
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(i) wire frame (which is the fastest mode). 

(ii) wire frame with hidden lines removed (which can avoid 

ambiguity). 

(iii) a simple shading mode (which provides a more realistic 

representation). 

(iv) sophisticated shading ( this being the best but slowest). 

IGRIP also provides display modes at three levels: world, device 

and link. Simulation control is specified via GSL (Graphical 

Simulation Language) which is device independent [Robotics World, 

1986c]. Interestingly, IGRIP allows the user to enter or load 

programs written in an actual robot language or code such as VAL II 

and KAREL. This is then converted to GSL for use in the graphical 

simulation. Hence it possible for example to verify whether an 

existing program is correct in different workplace arrangements, or 

for calibration purposes. IGRIP displays the maximum and minimum 

reachable workspace of a robot as a transparent shell around the 

robot. It also offers automatic collision detection which runs 

concurrently with the animation. ' 

(7) INTERGRAPH 

INTERGRAPH robotic software was originally developed in conjunction 

with GMF Robotics. It supports robot programming via two types of 

workstations which include on-board processors with significant 
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memory storage'area, thereby-providing display generation 

capabilities. This capability can be used to significantly enhance 

modelling responses and improve real time animation. The off-line 

programming of a-robot is divided into 5 phases [Intergraph, 1985; 

Kacala, 1985]. 

(i) operations planning and definition: this is a group of 

libraries of definitions including robots and accessories; 

(ii) workplace composition which enables programmers to design 

workplace layouts; 

(iii) process simulation, editing and verification: the robot task 

program can be simulated and-if-, any error is detected during 

simulation (including joint, violation, collision and program 

sequence) it can be modified. 

(iv) output program: verified robot task program output can be 

translated into a robot program or an engineering drawing; and 

(v) process feedback and workplace calibration: the operating 

conditions measured during the actual real world performance-are 

Ied into the system, and a simulation is performed which calibrates 

the workplace to produce a more precise factory environment model. 

4, t 
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(8) McDonnell Douglas Robotics Suite 

McDonnell Douglas's graphic simulation package, was designed for 

off-line robot programming-and comprises four modules called PLACE, 

BUILD, COMMANDp and ADJUSTý[Howie, 1984; Haffenden, 1984; 

McDonnell Douglas, 1986]. 

(i) BUILD as its name implies, allows users to build their own 

robot models which may be configured in some specialised way. This 

module allows the analysis of user defined robot, devices of up to 

six degrees of freedom. 

(ii) PLACE (Positioner Layout And Cell Evaluation system) is a 

simulation tool for designing and evaluating robotic cells in 3D 

with smooth motion animation. 

(iii) COMMAND is a module-for the creation of robot off-line 

programs based on PLACE sequences. Off-line robot programs can be 

generated in a format suitable for Unimation, Cincinnati T3 and GMF 

robots. - 

(iv) ADJUST is robot independent calibration software which allows 

errors between the CAD model and actual robot system to be 

adjusted. 

PLACE accepts data directly. from, UNIGRAPHICS or via an IGES 

interface from other CAD modellers. 
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(9) ROBCAD 

ROBCAD implements 2D and, 3D wireframe models'or colour shaded 

solids, and the IGES standard is implemented to interface with 

general purpose engineering CAD/CAM systems. ROBCAD includes 

powerful "canned" cycles and subroutines for specific applications 

like welding and palletising, which can be selected from a menu of 

operations [Adler, 1986]. In 1986, the developers claimed that 

ROBCAD was the only system in the world [Robotics World, 1986a] 

which could produce concurrent parallel shaded simulation. 

.1. 

(10) ROBOCAM 

The ROBOCAM simulation package [Craig, 1985] was developed by 

SILMA, Inc. and offers two programming methods, one of which uses 

a high-level robot language'called RISE, whereas 'the other uses a 

graphical approach via menu control., Models can be saved in files 

and transferred between ROBOCAM and other CAD systems through the 

use of IGES interfacing. After a RISE program has been generated 

and debugged by simulation, the program can then be translated into 

a specific robot language by the use of an intermediate language 

called RCODE. 

A special feature of, ROBOCAM called "AUTOPLACE" can assist the 

programmer in assessing the performance of different robots in 

achieving the same task. By inputting all the important points 

which are necessary to be reached, AUTOPLACE will suggest a 

location in the workplace for the chosen robot. 
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(11) ROBOGRAPHIX 

The ROBOGRAPHIX package is a product of'Computervision, -a major 

supplier of-CAD/CAM systems, and has four major functions [G6ndert, 

1984; Mattis and Gill, '1988]: 

(i) design and build the workplace models. 

(ii) create robot programs. 

(iii) verification-of robot programs. 

(iv) post-processing and output of robot programs to actual robots. 

The package includes a library of three dimensional models of 

standard robots and accessories. Users can expand the library by 

building their own robots and equipment. Since'the CAD/CAM system 

database and the ROBOGRAPHIX library are integrated, ' users can 

easily manipulate information between the two. A robot language 

processor within ROBOGRAPHIX translates robot programs into' 

specific robot programming languages such as VAL for Unimation, 

robots, RAIL for Automatix and code'for Cincinnati robots. A 

distinguishing feature of ROBOGRAPHIX is the use of an electronic 

pen and digitising tablet to specify point to point motion for the 

robot on the graphical terminal. 
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(12) RoPL " 

RoPL (Robot Programming Language) was developed by E. S-I 

Incorporated in New York. It provides wireframe display on 16 or 

32 bit microcomputer systems with sophisticated capabilities such 

as hidden line removal, zooming and angular viewing, collision 

avoidance, and joint violation detection [Price, 1984]. 

Furthermore, this system provides looping constructs, macro 

capability and user defined input/output devices. It is written as 

a menu driven graphic system, comprising of several sub-menus which 

guide the programmer. Animation, where needed, can be shown with 

two different views concurrentlY. 

(13) 'WRAPS 

WRAPS (Welding Robot Adeptive off-line Programming) was developed 

in the Department of Manufacturing Engineering at Loughborough 

University of Technology. The system is implemented on 

microcomputers (IBM compatibles) as'a relatively low I cost 

simulation system [Goh and Middle, 1985] and is specifically aimed 

at the off-line programming of robotic arc welding tasks. This 

system is also integrated with an expert system [Middle and Goh, 

1987] which is responsible for welding procedure selection and 

optimisation. 
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(14) VSO Syste 

The VSO system [Marklund, 1986] is a 3D CAD/CAM system designed for 

robotic layout. design and off-line robot programming. There are 

two types of WSO system available: 

(i) general purpose CAD/CAM systems with WSO modules which have a 

common database available for. both product development and 

production engineering. 

(ii) dedicated WSO systems which are more likely to be able to 

support the, real time graphics. that are needed for simulation. 

The system consists of libraries of robots, accessories and 

peripheral equipment. It can communicate with other systems for 

receiving CAD geometric data, and drafting and dimensioning for 

documentation. It has a language post-processor which translates 

output to the ASEA ARLA language. A calibration function can be 

used for adjustment of the robot program for any discrepancies 

between the idealised model and the real installation. If absolute 

accuracy is required, a TEACH function can be used to upload 

reference positions to be included in the off-line programs. 

(15) GRASP 

GRASP [Bonney et al, 1984; Bonney, 1987] stands for Graphical 

Robot Applications Simulation Package and was derived from SAMMIE 

(System for Aiding Man-Machine Interface Evaluation) [Case et al, 
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1986 and Porter et al, 1986]. SAMMIE and GRASP were developed in 

the Department of Production Engineering and ProductionýManagement 

at the University'-of, -Nottingham. The Nottingham group [Dooner, 

1984] developed GRASP with funding from the Science and Engineering 

Research Council and subsequently formed a company called BYG" 

Systems. - 
-, 

GRASP allows kinematic, modelling of serial link manipulators and 

complex joint mechanisms-forming'specific manipulator structures. 

Since there is no general solution in forming kinematic models of 

complex joint mechanisms, the modelling of non-standard 

configurations requires the assistance of BYG Systems in writing 

specific Fortran subroutines. 

Once the'world model has been built using typical solid modelling 

techniques, there are two ways of achieving robot/workplace 

simulation viz 

(i) high level robot textual programming to describe geometric and 

sequence information. 

(ii) by graphical interactive programming. 

After an event sequence (or track) has been created, the programmer 

can generate a time dependent continuous motion simulation known as 

a Process. ' 
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Animated motion can be displayed in a variety of views. 

Furthermore, the display can be shown in projection mode with 

either first or third angle projection being selected. 

GRASP was originally designed as a powerful CAD simulation tool for 

workplace design rather than as an off-line robot programming tool. 

GRASP is continuing to be developed"and is now being extended to 

cope with off-line robot programming. This has been achieved by 

writing post-processors for the GRASP output, converting this robot 

independent output into a specific robot language or codes 

(including VALp VAL II and ASEA AR-Language). 

(c) Dynamic Robot Simulators I 

(1) ROBOT-SIH 

Calma has introduced the ROBOT-SIM simulation software package for 

robot workplace design and evaluation. The software permits robot 

and workplace design, robot motion programming, cycle time 

estimation and dynamic properties simulation of the robot. Dynamic 

data, including velocities, accelerations, link inertias and motor 

torque characteristics are input to the simulation process thereby 

offering facilities to determine robot performance. However, this 

is restricted to robots, with a, maximum of six, degrees of freedom. 

With a specific robot pre-programmed desired path, the simulation 

package may be used to predict the actual path of the robot arm 

(i. e. path tracing error, overshoot error etc are predicted). 
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Principal capabilities [Imam et al, 1984; Novak, 1984] of the 

simulation include: 

(i) kinematics and dynamics of a multiple link robot arm 

(comprising revolute and prismatic joints), 

(ii) models of the robot drive systems, including inertia and 

torsion and bending effects in motor transmission elements, 

(iii) digital controls for individual joint servo loops, including 

finite sampling rate and amplitude quantization effects, 

(iv) algorithms used for coordinate transformation, path 

interpolation, and to provide special programming features such as 

rough positioning, dwellsp and smooth decelerations. 

(2) ROSI 

RObot dynamic SImulator (ROSI) was developed in the Department of 

Artificial Intelligence at the University of Edinburgh and is 

marketed through Cambridge Controls Limited. Cambridge Controls 

claim that ROSI uses highly efficient Walker-Orin recursive 

Newton-Euler algorithms [Hemami et al, 1975]. This system has no 

limitation on the number of degrees of freedom that can be 

modelled, and comprises two major parts: 

(i) a comprehensive dynamics engine 

This is a library of functions for constructing robot models and 
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performing dynamic computations [Industrial Robot, 1987]. It is 

designed specifically for use as a component in a larger software 

package. This is system independent module and canibe used for 

custom built software. 

(ii) a user interface for communication between the dynamic engine 

and the programmer in graphical form. 

Libraries are available storing information relating' to joint 

types, electric and'hydraulic parameterised actuator modelst and 

control systems parameters. 

(3) STAR 

STAR (Simulation Tool for Automation and Robotics), was developed 

for off-line robot motion planning and programming. As STAR is not 

a CAD program [Hornick and Ravani,. 19861, the graphic shape of the 

robot can not be. developed. However, it is'equippeýd with a CAD 

interface, which allows animation of solid geometric models of 

objects generated. on the GMOS solid geometric modeller system. 

This simulation software package consists of four basic modules: 

(i) an input module for model building; 

communication between the programmer and the software takes place 

at a conversational level through the use of a high level input 

language. 
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(ii) a-mathematical module for kinematic and dynamic calculations; 

this module automatically formulates kinematic and dynamic 

equations and uses an iterative procedure to solve the inverse 

kinematic equations. Iý-1.11 1 

(iii) a trajectory planner; 

this module is claimed to calculate optimal trajectories so that 

cycle times can be minimised. 

(iv) an interactive motion planning, programming and editing 

environment. 

The programming of robot motion, is assisted by the use of 3D 

interactive computer graphics and a high level programming 

language. At the operational level, robot motions are implicitly 

defined by specifying motion operations that are to occur, between 

the objects being manipulated. Thus for example, it is possible to 
I issue commands such as "MOVE PEG TO HOLE", in a way which is very 

similar to AUTOPASS and RAPT. 

STAR can display multiple views of the robot and its environment, 

and can visually detect any potential interferences between the 

robot and objects in its environment. 
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2.7 Limitations of the Present Generation of Robot Simulators 

Here we consider three key functional areas in which the present 

generation of robot simulators, demonstrate limitations, these limitations 

reducing their effectiveness and widespread usage. These functional 

areas are "calibration"i "integration" and "ease of use". 

4- 

(a) Calibration 

With off-line robot programming, the use of the robot as a digitiser is 

lost, and the robot end-effector may not be positioned at the location as 

commanded (i. e. in operation, performance is dependant on accuracy 

rather than repeatability). This results in a need for standardised 

calibration procedures. Generic robot calibration procedures have yet to 

evolve in an internationally accepted sense, resulting from the 

complexity involved in accurately measuring the position and orientation 

of workplace elements. Workplace calibration is undertaken to ensure 

that errors between the robot simulator and the real robot system are 

accounted for. The need for, error correction procedures and tools is 

vital before language programming can be, use in isolation,, i. e. without 

the need for a teach pendant., A major theme in this research study, has 

been to investigate various error correction methods, the-detail of which 

is discussed in chapter 7. 

(b) Integration 

Robot simulators are still largely isolated systems. They should be 

integrated into CAD/CAM facilities so that existing CAD databases can be 
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used to speed up the programming process. The robot simulator should 

also be capable of providing integration with expert systems for the 

planning of robot tasks. The activities of a robot simulator has been 

integrated with a PCB CAD design package so that previously created PCB 

layout information can be used in creating product models in the 

subsequent simulation of robot insertion of various electronic 

components. The integration methods studies have also addressed the 

inclusion of process planning activities. The integrated pcb design, 

planning, simulation and programming system for pcb assembly demonstrates 

novel features. The principles involved and actual implementation is 

described in chapter 8. The principles so described can be widely 

extended in defining various product realisation activities. The 

principles can also be applied in various industrial domains with the 

overall goal of reducing the design to manufacture time involved in 

creating new products. 

(c) e2se of use 

Robot simulators may be difficult to use and are becoming so complex that 

sometimes very simple tasks are difficult to program. A friendly user 

interface is required together with facilities for computer assisted 

solid modelling and robot task generation. This is similar to parametric 

programming which is used to ease the task of generating models of 

families of parts in mechanical design. Chapter 6 illustrates the 

principles involved and describes the implementation attempted. 
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CHAPTER THREE 

GENERALISED FEATURES OF FUTURE ROBOT 

PROGRAMMING SYSTEMS 



3.0 Introduction 

Many of the simulators described in the foregoing chapter were constructed 

in modular form and offer the common operational features that are essential 

for robot simulation. However, other features included are different fron 

system to system. Generalised features of a future robot programming system 

are discussed to provide a backcloth to subsequent observations and 

recommendations. A knowledge of generalised features is important so that 

standards can be developed and applied to robot simulators such that 

post-processing effort can be reduced and the versatility of new robot 

simulators can be improved. Furthermore, the simulation model can be 

transferred from one simulator to another, and this is particularly useful. 

for a CAD/CAM service house to provide a conversion facility for different, 

robot simulators used at customers' design offices. 

3.1 Conceptual Robot Simulation Systems 

When considering features of the next generation of robot simulators we 

should not be bound by conventional approaches nor necessarily consider 

the constraints imposed by available processing power. For example, 

future physical implementations of robot simulators may be distributed 

and thus cross the conventional off-line/on-line boundaries. Thus we 

will consider logical robot simulators to describe the logical 

functionality required from future systems. The logical system will be 

distinct from the physical system which will reference the physical 

implementation techniques and enabling technologies involved. Figure 3-1 

illustrates the possible features of a logical or'conceptual robot 

simulator deduced by the author through referencing existing systems and 
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research initiatives reviewed in chapter two. Subsequent paragraphs 

describe the major functional elements of this logical robot simulator. 

For example, the purpose of computer assisted robot. model building, 

computer assisted solid modelling of tooling, and computer assisted 

product modelling through integration with product databases are 

considered. Furthermore, the potential role of expert sub-systems and 

computer assisted task program generation in such a schema will also be 

described. 

3.1.1 Computer Assisted Robot Model Buildin 

There are hundreds of different robot models available from a variety 

of manufacturers. The designer or robot user faces a difficult 

problem in choosing the optimum robot for-a particular task from am6ng 

the large number of available alternatives. For this reason some 

degree of-automation or computer assistance in robot selection is 

essential to minimise manual analysis and assist the. human decision 

making process. -Currently there are several computer assisted robot 

selection systems available such as ROSE [Mauceri, 1985] and CARSP 

[Offodile et al, 19871. These computer assisted robot selection 

packages comprise a database containing information on a range of 

robot models. Through questions and answers, the. computer will select 

a suitable robot model based on given information. 

In addition to the difficulty experienced in making the selection, the 

designer will also have to develop a robot model before any proposed 

robot and workplace arrangement can be verified and simulated thereby 

enabling performance measures to be evaluated. An obvious solution is 
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through making a library of robot models available which, although ý 

possibly restricted to the most common and widely used robot'models, 

could be extended as needs dictate. Computer assisted'robot'modelling 

software is desirable, to provide a proven and, consistent method of 

adding information to the library. -I 

The purpose of computer assisted robot model building is to partially 

automate an important aspect of robotic simulation. The concept is"' 

based on the existing computer assisted robot selection packages, 

which allow the user to choose an appropriate robot for the job. A' 

CAD robot model can be generated based on the selection of robot model 

giving access to the appropriate part of the database. ) 

Computer assisted robot selection can be based on available expert 

system technology. Expert systems applied in this field have three 

basic elements: ' the'control system (questions and decision rules), an 

inference engine and a knowledge base. The way in which such 

knowledge is accessed may vary depending upon the requirements'of the 

user. At the present time, the inference engine' and the content of 

the knowledge base are different from system to system. The contents 

of almost all of the existing robot databases are insufficient and 

inappropriate for use in computer assisted robot modelling' 

[Loucopoulos and Champion, 1988]. Therefore some additions and 

modifications to the information stored is necessary. 

Present systems have neither standard decision rules nor standard 

database structures [Van Assche et al, 1988]. The wide acceptance of 

this concept is only possible if standard database structures are 
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evolved-[Hayes-Roth et al, 1983; Offodile et al, 1987; and Cronk et 

al, 1988]. The additional data required as part of the database 

should include parameters of robots such as the type of joints 

(revolute or, prismatic),. geometric relationships between links (common 

normal, -offset, twist angle and rotation angle) together with the 

limits to motion. Some of the requirements are the same as the input 

requirements for CAD robot modelling and are discussed in chapter 

four. - Due to the wide variety of possible geometric shapes for links, 

it, is impossible for, any system to automatically generate CAD models 

[Szeto and Lichten, 19851. However, it is possible to synthesise the 

robot body by features (i. e. a method that allows user to choose from 

an existing library of geometric shape of, robots)., [Dudko et al, 1984]. 

The shape of the robot is not, as important as. its kinematic structure 

and equations. 

3.1.2 Computer Assisted Solid Modelling of Toolin 

As new robot models are continually introduced, along with models of 

ancillary equipment (e. g. grippers and, tooling),, the designer will, 

also experience difficulties of building modelslas earlier discussed. 

Additional complexity will also be involved if data structures are to 

be entered into databases so that computer assisted procedures can be 

utilised. 
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3.1.3 Computer Assisted Product Modelling Through Integration with 

Product Databases 

In a simulation, the inclusion of product descriptions can also play a 

very important role. Information concerning the product specification 

may be obtained through access to product databases, and ideally it 

should not be necessary to duplicate existIng information. The 

modelling of the product could in fact be achi eved, through use of 

expert sub-systems which could for example synthesise products by 

features. The efficiency with which computer assisted solid modelling 

can be achieved will be dependant of the existence and use of 

standards which can enable the timely and reliable sharing of 

information between various manufacturing entities. 

3.1.4 Potential Role of Expert Sub-systems 

Future expert sub-systems will perform various functions such as-robot 

selection, the definition of optimum layout solutions, assembly 

planning, calibration of models and generation of exception handling 

conditions. In achieving this functionality the 'experts' must 

reference data structures stored in databases which model the robotic 

devices, their workplace elements, product descriptions, process and 

production planning information and state history representations of 

the robot and its workplace sensors and tools. Again it is important 

to stress that such facilities can be viewed from both a 'logical' and 

'physical, viewpoint. However, whatever the physical implementation 

this will imply the use of standardised data structures and 

information transfer mechanisms. The reader should again refer to 
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figure 3-1 which illustrates the logical interaction between 

sub-systems when accomplishing robot selection and designing workplace 

layouts. Similar logical interactions could be constructed for 

assembly planning and exception-handling. 

3.1.5 Computer Assisted Task Program Generation 

The discussion so far has centred upon computer assisted (CAD) 

modelling and robot simulation. Robot task simulation will have an 

increasing role in predicting system performance and identifying 

potential, problem. areas thereby, creating more directly useable 

programs. Let us consider the potential role of expert systems in 

automating or semi_-automating the simulated execution of task 

programs. 

Using today's commercially available simulation tools the task 

programs will be stored and executed using the syntax of proprietary 

simulation systems. Obviously standard data structures for simulation 

systems are desirable, but, currently there are no standards which can 

be applied appropriately. 

Having created the robot workplace and product models according to an 

optimised layout design, the simulated robot task should be verified. 

Discrepancies between theoretic and measured models should be 

accounted for. Any problems should be identified and modified before 

the, simulated task program is post-processed into a robot language 

which can be executed. Again, ideally a standardised or neutral 

language should be adopted here so a given simulation system can be 
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widely applied without the need to generate bespoke post-processors 

for each robot model. 

3.2 Conceptual System Mapýed onto Reality and the Role'of Existing and 

Emerging Standards 

Here we will consider various standardisation initiatives which should be 

referenced when mapping logical robot simulators onto physical computer 

hardware and software. 

3.2.1 Product-Design Data Format 

There are several related standards which currently address problems 

in product data transfer [Owen and Bloor, 1987]. 

(i) IGES (Initial Graphics Exchange Specification) developed under US 

Air Force ICAM programme. 

(ii) PDDI (Product Definition Data Interface) is another research 

project initiated'by the US Air Force ICAM Project. 

(iii) XBF (Experimental Boundary File) developed by CAM-I (Computer 

Aided-Manufacturing-International). 

v 

(iv) PDES/STEP (Product Data Exchange Specification) developed by the 

CAM-I as a follow up standard to IGES. 

(v) EDIF (Electronic Design Interchange Format) was developed under 
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the user initiatives to- form standard for the exchange of electronic 

CAD design data. 

(vi) SET (Standard dlEchange et de Transfert)'developed by 

AerosPatiale in France. 

(vii) VDA-FS (Verband des Automobilindustrie Flach , en-Schnittstelle) 

developed-under the initiatives of the Association of German Car 

Manufactureri. 

The Initial Graphic's Exchange Specification (IGES) [Wilkinson and 

Hallam, 1987] is a neutral datzi format1or describing drawings -and 

more recently solid models. SET is a French national standard which 

provides more compact data structures than IGES, and SET has provision 

for transferring information relating to curved surfaces. Future 

versions will enable finite element modelling data, solid models, 

polyhedral models, schematics and NC paths to be'-transferred. 

A standardisation initiative known as the Product Data Exchange 

Specification (PDES) [Smith, 1987] seeks to build on'IGES and 

the Product Definition Data Interchange (PDDI) model [Owen and Blool: ' 

1987]. - Furthermore the recent amalgamation of PDES and STEP should 

lead to an ISO standard for the part description in the not too 

distant future. ' This standard also seeks to'identify methods of 

utilising product design data in various manufacturing activity areas. 
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3.2.2 Robot Program Data Format 

In West Germany considerable effort has been directed towards defining 

interface standards for robots, and has been referred to as the,., 

Industrial Robot Data (IRDATA) [Weck et al, 1984]. The IRDATA 

concepts are based on the existing CLDATA (Cutter Location DATA) 

standard for numerically controlled machines. IRDATA includes 

descriptions of robots, tools, sensors, working space, -frame lists, 

motion specifications and execution criteria, arithmetic and boolean 

operations, program flow control and input/output, operations. Various 

data types areincluded, such as, integer, reall boolean, character, 

string, pointer, vectort orientation and joint angle. IRDATA text,, 

comprises a sequence of records of unlimited length, each record 

consisting of at least 2 and at-most 125 words ot6 characters. 

The user does. not, programme in IRDATA but in some other high levelý, 

programming language. Subsequently IRDATA is used as the interface 

message format between, the off-line programming system and the, robot 

controller. There has been considerable support for IRDATA [Rembold 

et al 1985,1987] although standardisation in this area. has been 

superceded to some extent by MMS (see sub-section 3.3) and its robot 

companion standard [Rembold, 1988]. It may, be that IRDATA will not 

stand the test of time with changes in enabling tools and the 

emergence of other more generally applicable and widely supported 

standards [Rembold, 1988] such as MMS and its robot companion standard 

representing an advancement towards more comprehensive and widely 

adopted data structures. 
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Since 1981 in Japan, standardisation of robot programming has been 

encouraged [Arai et al, 1985] by a committee of the Japanese 

Industrial Robot Association. The committee was originally formed 

from working groups, " initiating surveys into existing robot languages. 

Each working group has beeii responsible for a specific activity, such 

as robot language functiong protocol, and language syntax. As the 

result of these activities, in 1984 the committee proposed a generic 

set of functions for'robot controllers-along with associated function 

codes which introduce notation in-a robot language called STROLIC 

(STandard RObot Language'in Intermediate Gode)'[Arai and Matsumoto, 

1983]. STROLIC can be considered to be a generic-robot instruction 

set, represented by binary codes. The main reason for adopting binary 

code was to improve the machine-machine interface. Since it is not 

convenient to'programme in binary, codes, a programming language called 

STROL (STandard RObo't Langauge) Was proposed as a programming language 

as'sociated with STROLIC. The main programming capability is similar 

to that of AML (A Manufacturing Language) [Gini and Gini, -19851, but 

stack operations'and program flow control are inherited from FORTH 

[Toppenp 1985]. Each function has an associated update routine whicil 

makes debugging, tracing and teaching easier. Motion and sensor 

commands are defined with pointers to appropriate registers relating 

to position, velocity or sensor information. Various data structure 

types are available including arrays, strings, records, etc. 

Although both IRDATA and STROUSTROLIC are being used within their 

respective host countries there is no evidence that they are being 

adopted internationally. 
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3.3 Integration Architectures 

Systems integration methods are evolving on worldwide basis to create 

more responsible manufacturing systems [Albus, 1984; -, O'Grady, 1986; 

Jones and McLean, 1986; and Veston et al, 1988]. 

A major problem in this area isýtýe need to account for the differences 

between proprietary machines. Integration of a stand-alone machine with 

other manufacturing entities can be achieved through making the machine 

conform with the Virtual Manufacturing Entity (VME) concept [MMS draft 6 

document, 1987]. Essentially this concept involves making a. proprietary 

machine (such as a robot) act like a standard machine when viewed by 

external manufacturing entities. Thus for a robot, integration is 

implemented through establishing a physical connection and appropriate 

protocols which enable the transmission, of a standard set of robot 

"words" or "messages" (including programs and information) from one 

machine to another. The approach can enable. remote operation of the, 

machine and the transmission of information, as shown in figure 3-2. 

physical connections 

& standard 'words' 

Figure 3-2 Integration through physical connections and protocol 
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In manufacturing industry, there have been a number of, different 

solutions to integration problems; both'proposed and implemented. Some 

representative physical cOnnections-include the use of an RS232 data link 

[Putman, 1987] running proprietary (non-standard) protocol. Such an 

approach yields bespoke solutions and high integration costs [Weston et 

al, 1988]. The use of MAP/TOP [Hollingham, 1986; Weston et al, 1986 and 

1987a; and McGuffin et al, 1988] interfaces, which represents an 

internationally accepted standard mechanism (embodying the VME concept), 

is becoming commonplace and overcomes certain of these integration 

problems. However both approaches provide a physical connection which 

merely provides the capability of transmitting data from one machine to 

another, and there is a fundamental difference between data and 

information transfer. Although, data storage and manipulation on 

machines may be identical, the information represented by these data are 

not necessarily'the same. This means that data may be successfully - 

transferred from one machine to another but the recipient machine may not 

understand its meaning. Thus standardised techniques can be devised for 

the automatic storage and dissemination of information [Rui et al, 1988]. 

Here we describe, two di, fferentItypes of integration hard integration 

and flexible integration. Almost invariably today's factory integration 

schemes incorporate 'hard, integration with its software being written in 

accordance with some previously defined specification even if the 

physical connection is based-on OSI protocols such as MAP/TOP. This 

approach is specific-to the manufacturing entities involved. Conversely, 

manufacturing entities in flexible integration will interact in a 

reconfigurable manner whereby changes in product, production processes 

and resources and manufacturing organisation can be accommodated. To 
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facilitate flexible integration a generic framework'is necessary. This 

requires three inter-dependant architectures (see figure 3-3): - namely 

the Application, Information and Network architectures [Weston et al, 

19881., 1 

f 

Information 

Application Network 

Figure 3-3ýA generic framework for flexible integration 

The application architecture contains action (manufacturing) causing 

statements which define the interactions between different machines on a 

shopfloor and with their organisational planning and control systems. 

Certain problems of flexibly creating this architecture have been 
LI 

addressed in AUTOMAIL [Weston et al, 1987b], and the Manufacturing 

Message Ser vices (MMS) provided within the application layer services 

defined by the MAP/TOP specification. 

The information architecture is concerned with the control of access and 

sharability of information, i. e. a library of manufacturing information. 

Access to this library must be controlled ideally by a distributed 
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database management system which can provide controlled access,,, to the- 

data distributed across the whole CIM system. An example of this kind of 

work is the information administration system evolved as part of the US 

Air Force ICAM programme. This system is known as the Integrated 

Information Support System (IISS) [ICAMf 19831. Another example is the 

initiative'of the US National Bureau of Standards (NBS) -an Automated 

Manufacturing Research Facility (AMRF). The aim of this initiative was 

to study the hierarchical modelling of the future factory, the standard 

interfaces between, component systems and the integration of distributed 

databases [Su et alt 1986]. This workýhas resulted in the specification 

of an Integrated Manufacturing Data Administration System (IMDAS). ý 

Recently work at Loughborough University by Rui [Rui et al, 1988] has 

enhanced these concepts in creating a specification of an information 

adminstration system for distributed heterogeneous databases. 

The network architecture is responsible for the transmission of 

information and is primarily based on physical connections, and protocols 

(e. g a set of "words" relating to classes of manufacturing, entities such 

as robots, PLCs. and NC machines). Various implementations of the ISO/USI 

reference model such as the broadband MAP, TOP, and MAP-EPA will provide 

a limited range of widely accepted network architectures. The'top-most 

layer of the seven layer ISO/OSI reference model is the-applicationýlayer 

which provides support functions for the users application software so 

that virtual, connection between distributed computers can be achieved. 

Part of this philosophy is the evolving MMS specification which has 

companion standards which will define the "words" for manufacturing 

entities. With respect to robots, it is not clear as to the eventual 

extent of the robot companion, but draft 6 of the MMS specification 
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includes standard high level access protocol for starting, stopping, arid 

downloading robot task programs along with a protocol for reading and 

writing variables associated with robot control and monitoring functions. 

There is some overlap of functionality between MMS and IRDATA but 

generally MMS can be considered to provide an integration protocol 

whereas IRDATA is mainly concerned with robot task program formats. 

In the context of off-line robot programming, the robot programs should 

be generated in a,, standard format and transferred to the target robot via 

a standard robot words and connection mechanisms (the network 

architecture). The manufacturing "sentences" (formed from an association 

of "words") will define the way in which manufacturing entities interact 

to create products and will be created by the application architecture. 

The robot information will form part of library of manufacturing 

information which will be administered by the information architecture. 

In this thesis, the, author has aimed to generate generic solutions to 

robot simulation problems while-referencing standards development which 

can yield flexible implementations of the logical systems derived. 

However, it has been necessary to utilise available software and hardware 

sub-systems (e. g. GRASP, RACAL REDBOARD, ADEPT ONE robots) which were 

not designed with integration in mind. Thus the solutions implemented 

represent a mapping of the logical system onto specific hardware which 

provides knowledge which can enable more generic and flexible solutions 

to be derived in the future. 
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3.4 Conclusions 

Computers are becoming more powerful with faster processing capability 

which allows robot simulation to be animated at much faster speeds 

approaching real time animation. Simulation has been successfully 

applied in the workplace layout design and the evolution of many complex 

robot and robotic systems. 

As robots are becoming more sophisticated with more degrees of freedom 

(and hence dexterity), more complex sensory and tooling systems and 

improved kinematic control, more complicated robot tasks are applied. As 

robot tasks become more complex and hence also the programming, the 

effectiveness of robot simulation and off-line robot programming are 

becoming apparent. The evolution of CAD/CAM integrated with robotics and 

incorporating computer assisted modelling and programming facilities, 

makes further automation in the design and programming phases possible. 

Together with this the distributed management databases, simulation 

neutral data format, robot program data format and communication 

standards, considerable enhancement of CIM systems can be achieved. 
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CHAPTER'FOUR 

ROBOT SIMULATION SYSTEM ARCHITECTURES 



4.0 Introduction 

Methods of simulating robots as an integral part of CADCAM systems will 

represent a major step towards the planning and designing of manufacturing 

'systems. Simulation techniques offer a very powerful tool which can be used 

-for designing manufacturing cells from initial conceptual design, right 

--through to detailed design and actual implementation in the factory. * 

The word "simulation" has been used widely in manufacturing industry, and it 

is necessary to make'a definitive statement as'to'the use' of the term 

"simulation" in this thesis. 

Computer simulation can-be categorised into two levels [BYG, 1987]. The 

highest level, usually referred to as the strategic planning level, is used 

to evaluate alternative factory strate-gies, 'deter'mine the required number 6f 

manipulators or'machining stations to carry outa particular task 'and so oli. 

ECSL [ECSL, 19861, HOCUS [P-E publication, 1986], "and SIMAN [Pegden and Ham, 

1982] are commonly used examples of such systems of which there are many 

[Miller, 19851. The simulation output normally consists of performance 

measures such as reliability*, machine utilisation, throughput times, work in 

progress, buffer queue performance and product arrival pattern 

contingencies. It is not possible to use these systems to assist in the 

design of individual robot/machine workplaces or to evaluate how robotic 

systems will behave. 

This is where a second and more detailed level of simulation is required. 

This type of simulation makes use of powerful 3D computer graphics to help 

engineers to design installations and in"the case of robotic systems to 
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evaluate the interaction of robotic devices and other devices within the 

workcell. Detailed graphical simulation can be used for robot workcell 

design and thereby enable feasibility studies to evaluate certain robot 

attributes and to predict how a system will perform. This is useful for 

example where there is a need, to check robot-reach capability, detect 

collisions, 'and-estimate cycle times, and finally generate'robot programs 

which are verified off-line. It will be possible to predict problems which 

can only normally be experienced after purchasing and installing the 

complete production system. This type of simulation will be referred to as 

"simulation" or "robot simulation" throughout this thesis. 

Although a clear distinction between strategic planning and detailed 

graphics simulation'has been made, it is useful and often desirable for'a 

hybrid simulation system to function in both areas. The performance- 

evaluation, of the total system obtained from a strategic planning simulation 

can be broken down and'utilised in detailed graphics simulation of a 

particular work station., -AutoSimulation and Heron are systems which use 

this approach as described in the previous chapter. 

4.1 Objectives Of Simulation 

The broad objectives of simulation applied to manufacturing systems, are 

to: 

train personnel in basic principles governing the design and use of - 

manufacturing systems; 

(ii) illustrate the elements of manufacturing systems so as to provide 

- 66 - 



experience in seeking alternatives and thereby improve decision making; 

(iii) demonstrate feasibility of a design; 

(iv) and in, the case of robotic systems to: provide a programming 

facility whereby the robot task can be programmed without disrupting 

production; 

I 

(v) reduce the on-line programming hazard. 

In recent years improvements have, been made in robotics both in terms of 

hardware and software. This has made robots valuable work tools in the- 

industrial environment-and many new-robotic installations continue to be 

developed. Unfortunatelyp the potential benefits which may be gained by 

using these advanced mechanisms are not automatically achieved simply by 

the purchase of a robot. A proper evaluation plan [Dooner, 1984] must be 

followed to correctly assess the many details and options concerned with 

the installation of robotic equipment. This robotic evaluation plan must 

seek to balance the many complicated system interfaces and wisely select 

from alternatives to create an efficient and cost effective system. 

Simulation has proven effec. tive for evaluating manufacturing systems to 

determine the relative merits, efficiency, and cost effectiveness of 

alternative system designs. A close approximation simulation model of a 

proposed robotic system-can be developed and exercised to predict how the 

proposed system will perform and to illustrate the sensitivity of the 

design to-various machine performance, and product arrival pattern 

contingencies [Welch, 1983]. This model may provide valuable insights 
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into system performance before the purchase and installation of the 

robotic system. Robot programs, can also be developed'off-line without 

disrupting the production system. 

4.2 Requirements'Of Simulation Models 

There are a number of problems, that must be overcome before robot 

simulators can be a very cost effective tool in real world situations. 

In the robot simulators developed thus far kinematic models are used for 

the manipulator. However the large majority of these robot simulators do 

not account for"the dynamic effects that are inherent in the actual robot 

[Sjolund and-Donatho 1983] i. e. 'the robot simulators represent an- 

idealisation; 

(i) with no backlash-in the joints, as feedback control dynamics is 

considered to be instantaneous. , 

(ii)'with, no gravitational or inertial effects, so the effects of any 

loads are not considered. 

(iii) with no overshoot errors, as the links have infinite acceleration 

and deceleration-capabilities. 

A dynamic model would be required to truly simulate a manipulator in 

terms of kinematics and dynamics. This model would vary for each robot 

type. Most effort today involving the development of dynamic models is 

motivated by a wish to improve the control or structural performance of 
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the actual robot., Although the motivation is apparent, simulation of 

dynamic effects for animated graphics has not been implemented to any 

great extent. It is evident from the literature overview that only a 

limited number of dynamic simulation systems exist. Solutions for the 

dynamic models are relatively difficult to develop and often involve 

large computations. However even if the solutions are slow, it will 

still be useful to simulate a dynamic model of the task in non-real time, 

store the results for verification before downloading the program to the 

real system. This opens up new application areas where high precision is 

required. 

Another modelling requirement is the creation of workplace entities., 

There is a need to consider how accurately the model should reflect the 

entire workplace environment (i. e. how detailed the model should be). 

This leads to further consideration of the conflicting aspects of very 

detailed simulation models which can provide better accuracy and 

visualization but are slow in animation. 

4.3 Architecture of Simulators 

Simulation involves the description of the robot's working environment 

and simulation of motion. The robot's working environment will consist 

of a variety of items of varying complexity. 

This can be furt4er considered as "Robot Modelling", "Object Modelling", 

"Geometric and Spatial Description", "Motion Specification" and. 

"Animation". 
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4.3.1 Robot, Modellin 

Robot behaviour modelling, was initiated as an application'of 

time-and-motion methodologies to predict cycle times. In the model, 

robot displacements are calculated baýed on the assumption that all 

links'are rigid, and the graphics are updated as the robot'moves about 

the workplace. 

(a) Robot Joint Definitions - 

Robot joints 'can be prismatic'or revolute and will be constrained 

between minimum and maximum extensions. Figure 4-1 shows a revolute 

joint with three degrees'of rotational freedom. For control 

simplicity, the orientation' represented by is governed 

by the following mýaximum constraints: 

Y, Z) 

x 
Figure 4-1 A sin týle revolute robot joint with 

ree degrees of freedom 

n<ý<n 
0 ý- 0 

-< n 
n<*<n 
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With this set of constraints, there will only be one possible 

configuration which allows the end point (x, y, z) to be reached. 

However, relaxation'of the joint constraints may result in 

degeneracies (i. e. more than one set of joint variables that result 

in the same position and orientation). In some instances this 

degeneracy is used to provide additional flexibility in positioning 

(e. g. as in the Adept robot). For this reason, robot simulation arid 

robot control systems require robot configuration rules to avoid 

ambiguity. 

(b) Homogeneous Transformations for a Single Joint 

Before the simulation-of robotAinematics and dynamics are discussed, 

it is necessary to consider some basic mathematics of robot modelling. 

Homogeneous transformations are'used to represent the translations and 

rotations of prismatic and revolute joints. The homogeneous 

transformation matrix for rotation about the X axis through 0 

degrees (denoted by ROT[X, 01) is given by 

0 

ROT[x, ei 0 
L0 

0 0 

cosO -sinO 

sinE) cosE) 

0 0 

Similarly, the homogeneous transformation matrices for rotation about 

the'Y and Z axes through 0 degrees (denoted by ROT[Y, 01 and 

ROT[Z, O] respectively) are given by 
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cose 0 sinG 0 

0100 

ROT[Y, 01 
-sinE) 0 cose 0 

L0 -0- 011 

cosO -sinE) 00 

sinO cose 00 
ROT[Z, G] 0010 

0001- 

The-displacement of a coordinate frame along the X, Y, and Z axes is 

known as a translation transformation, and is given by 

100 dx 

010 dy 

TRANS[XoYPZI 001 ýdz 

0001 

These transformations are used in the formulation of joint models. 

Thus for example a roll-pitch-yaw angle set is defined as sequential 

rotation about the Z, Y, and X axes [Ranky and Ho, 1985]. This method 

is ambiguous and rarely used in robot simulation or robot control as 

the interdependence of these rotations results in multiple angle 

values when performing the inverse transformation. 

An Eulerian (independent), angle set4s described in terms of a 

rotation about Z axis followed by a rotation about the transformed Y 
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axis and a final rotation about the twice rotated Z axis. Eulerian 

angle sets are normally used for simulation or actual robot control 

because the inverse transformation may be performed without ambiguity. 

Denoting the Z-Y-Z rotations as 0, P respectively, and 

writing Cosý, Siný etc as Cý, Sý etc, the total transformation 

matrix for a three degree of freedom revolute joint is given by: - 

ROT[Z, fl ROT[Y, 01 ROT[Z, *] 

or, 

Cý -Sý 00 ce 0 so 0 cq, -sq, 00 

Sý Cý 00 0, - 1-0ý0 sq, cl, 00 
0010 

-SE) 0 Co 0 0010 

000 1- 000 1- 
. -000 

1- 

The general form of the transformation matrix is given as 

C4C0c, p-Ses, p -cýcosg, -sýCP ceseý 0 
secec, P+Cýsq, -sýCosecýCp sese 0 

-SE)C%P sestp Co 0 

0- ,0- 1- 

(c) Homogeneous Transformations for a Sequence of Joints 

The above approach can be extended to represent two or more joints 

which are sequentially linked. As the first example, consider a robot 

- 73 - 



arm which has a prismatic joint followed by one thatAs revolute about 

Z (see-figure 4-2). By multiplying these matrices 

P(X, Y, Z) 

I 

., I 
P(X I Sy 0 

PZI) 
dx 0 

Figure. 4-2 Example of translation before rotation 

translation matrix rotation matrix link vector 

X100 dx cý -sý 00x 

YI 010 dy sý cý 00y 

zp 001 dz 0010 

-1- ý- 
0001--0001--1- 

The Cartesian transformation in the general form are given by: - 

X? XCý-YSý+dx 

yr XSý+YCý+dy 

Zi Z+dz 

11 
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Secondly, consider a robot'arm-which undergoes a rotation ý degrees 

about the Z axis before translation along the X, Y, and Z axes (see 

figure 4-3). Similarly, by multiplying these matrices 

dx 

P(X, Y, Z) 

P(X', Y , Z') 

P(X, Y, Z) _0 

X X 

Figure 4-3 Example of rotation before translation 

rotation matrix translation matrix link vector 

Xf Cý -Sý 00 10 0 dx X 

yf SO CO 00 01 0 dy y 

0 0. 10 00 1 dz 

-1- -00 
01- 

-00 
01- 

-1- 

The Cartesian transformation in the general form are given by: - 

xf (X+dx)Cý-(Y+dy)Sý 

yl (X+dx)Sý+(Y+dy)Cý 

I zo z 
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(d) Inverting Homogeneous Transformations 

In robot simulation and control, the system must be capable of 

performing forward transformation (to convert joint angles to 

Cartesian coordinates) and inverse transformation (to convert 

Cartesian coordinates into individual joint-angles). 
_ 

The inverting of 

a homogeneous transformation is one of the basic elements for inverse 

transformation and-for calculating the relationships between objects. 

For a given homogeneous transformation T 

, 
Nx Ox Ax Px- 

Ny Oy Ay Py 
T 

Nz Oz Az Pz 

0 0 0 1 

then the inverse of the transformation T is 

Nx Ny Nz -P. N 

T'1 Ox Oy Oz -P. 0 

Ax Ay Az -P. A 
Lo001- 

The first 3x3 elements (rotational elements) of the matrix can simply 

be inverted by transposition, while the elements of the last column of 

the matrix are the dot products of the vectors concerned. The element 

P. N is the dot product of vectors P and N, thus 

P. N = Px*Nx + Py*Ny + PZ*Nz 
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4, 

Similarly, 

P. 0 = Px*Ox + Py*Oy + Pz*Oz and 

P. A - Px*Ax + Py*Ay + Pz*Az 

(e) Forward Kinematics of a Robot with two Revolute Joints 

Consider a manipulator which consists of only two degrees of freedom, 

with motion restricted to the X and Y plane (see figure 4-4). The 

forward kinematic transformation is performed to determine the 

end-effector or tool centre point (TCP) in Cartesian space. For 

simplification, Cosýl and Sinýl are written as C1 and S1 etc. 

x1l cl -Si 0 0 1 -0 0 Ll C2 'ý-S2 0 0 L2 

yo, si cl 0 0 0 1 0 0 S2 C2 0 0 0 

z1f 0 0 1 0 0 0 1 0 0 0 1 0 0 

1- 
-0 

0 0 1 0 0 0 1 0 0 0 1 1- 

The robot's end-effector or TCP in Cartesian coordinates are 

XU = Ll*Cl+L2*Cl*C2rL2*Sl*S2 (2) 

Yll = Ll*Sl+L2*Sl*C2+L2*Cl*S2 ý (3)ý, ý 
Zf# =Z 
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A 

Y 

tion 

II I, Y"Z, ) 

Y 

Ll 

Figure 4-4 A robot with two revolute joints 

A 

Second joint rotation 

Pit (Xil'y 11'e) 

L2 02 
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(f) Inverse Kinematic Transformation of a Robot vith tvo Revolute 

Joints 

If the position (XII, Y11, Z11) of the robot's end-effector and the arm 

lengths L1, L2 are known then inverse kinematics can be used to 

determine the arm joint angles. In the inverse situation, ý1 and 

ý2 can be calculated through solving equations (2) and (3). 

XII - U*Cý1+U*Cý1*Cý2-U*Sý1*Sý2 (2) 

Y" - L1*SO1+L2*Sý1*CO2+L2*CO1*SO2 , (3) 

Half angle rules are used to simplify the complex angle 
multiplications. 

S(01+02) = Cý1S02 + Sý1Cý2 

C(01+02) = C01C02 - S01S02 

Rearrange (2) and (3), XII and Y" becomes 

X" = U*Cý1+U*C(ý1+ý2) 

Y" = LI*Sý1+U*S(ý1+ý2) 

Substitute 01 = (01+02), we obtain 

XII = U*Cý1+U*Cý, , (4) 

Y" = U*Sý1+U*Sý, (5) 

Square both sides of equations (4) and (5) 

X, 12= Ll 2*C2 01+L2 2*C2 V+2*U*L2*CýMý1 (6) 

y,, 2 
= Ll 2*S2 ý1+U 2*S2 01+2*U*U*Sý1*Sýf (7) 

Adding equations (6) and (7) 

X, 12+y, 12. Ll 2 
+L2 

2 
+2*U*U*(CýI*CýJ+Sý, *SýJ) 

X,, 2+y, 12 = L12 +L2 
2 
+2*L1*L2*C(OF-ý1) 

X,, 2+y,, 2 
= Ll 2 

+L2 
2 

+2*U*U*Cý2 

which results in 
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02= Cos- 1 X, 12+y, 12 -LI 
2 

-L2 
2 I 

2*Ll*L2 

Since 02 is known, therefore Sin02 and Cos02 are also known. If 

we let constants a and b be defined by 

a= Ll+L2*Coso2, and b= L2*SinO2 

Substitute a and b into (2) and (3), we have 

X" = a*CosO - b*Sinýl , (8) 

Y" = b*CoOl + a*Sinýl 1 (9) 

multiplying (8) and (9) by a and b respectively, we obtain 

aX" =a2 *Cosýl - a*b*Sinýl (10) 

bY" -b 
2*CosOl 

+ a*b*Sin0l (11) 

Adding (10) and (11) lead to 

aX11+ bY"= (a 2 
+b 

2 )*Cosol 

01 = Cos-1 - 
aý + 

+b 
2) 

This inverse transformation solution is specific to this example only, 

as there is no general inverse solution which is appropriate for 

robots with different configurations. If a robot has a more complex 

configuration, then the inverse kinematics is more difficult. This 

may involve the inverting of homogeneous transformations to perform 

the require manipulation. For example, the location of the robot's 

end-effector can be described as 
RT 

H= Tl*T2*T3*T4*T5*T6 

where T1, T2 etc are the transformations for single degrees of 

freedom. 
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In solving for individual joint angles, matrix inversion is frequently 

a useful mathematical technique. For example once one joint is solved 

then: 

Tl- 1 *RT H- T2*T3*T4*T5*T6 

etc 

These specific inverse solutions may be applied to a range of robots 

with a similar configuration, and several may be found in Snyder 

(1985), Craig (1985), and Ranky and Ho (1985). 

(g) Common Algorithms Used in Robot Simulators 

Robot simulators can be classified as being kinematic or dynamic. In 

the context of robotics, kinematic analysis is a study of robot 

postures adopted at different times. The properties of the robot 

motion depend on the geometry of its configuration and hence rigid 

links are simulated to maintain fixed configurations between joints. 

Most of today's industrial robots are kinematically simple, (although 

some multiple axis robots are configured with complex joint 

interconnection mechanisms to connect several links, which may be 

simplified to serial joint mechanisms). The present generation of 

kinematic robot simulators are capable of modelling robots with serial 

links but complex joint interconnections would require special 

treatment to deal with this ad hoc situation. Thus usually a robot is 

represented by a series of links and each link is jointed with 

reference to a coordinate frame. The robot link representation is 

modelled in the same way as object modelling using the same object 

modeller. 
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The Denavit-Hartenberg algorithm [Denavit and Hartenberg, 1955; Paul, 

1981; Goldenberg and Lawrence, 1985; Cook and Vu-Dinh, 1985; 

McCarthy, 1986] is the most commonly used [Gupta, 19861 in kinematic 

robot simulators. The Denavit-Hartenberg analysis uses closed form 

equations (the most efficient means of expressing their kinematics 

[Paul and Zhang, 19861) where the transformation of the robot 

end-effector to the robot base is directly equivalent to the 

concatenation of the sequential transformations between each robot 

link from the robot end-effector to its base. The general expression 

of the forward kinematics of an n-jointed robot is: 

robot base base joint 1 joint n-1 
TTTT 

end-effector joint 1 joint 2 joint n 

Z4 

ze as 
L 

X6 

do 
ZI 

zi 

94 

ez 

as 

JrO-xI 

Figure 4-5 Assignment of coordinate frame to each robot joint for the 
formulation of homogeneous transformation matrices 
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Figure 4-5 shows a six degrees of freedom Puma robot with a coordinate 

frame assigned to each joint. The formulation of an homogeneous 

transformation matrix for each joint is discussed later. 

The Denavit-Hartenberg method is based on 4x4 homogeneous 

transformation matrices with special conventions for applying 

coordinate frames to the structure of a robot. These conventions 

include: 

(i) The analysis starts with joint 1 (the moveable Joint 
attached to a fixed reference) and finishes at link n. 

(ii) A right handed coordinate frame must be applied to 
a joint with its Z axis always arranged to be in line 
with the axis of joint rotation/translation. 

(iii) The X-axes of all of the joint frames are aligned in 
the same direction as the robot base frame. 

(iv) All revolute joints must rotate about their respective Z axes. 

(V) All prismatic joints must translate along their respective Z axes. 

The following rotation and translation parameters (see figure 4-6) are 

required to form the 4x4 homogeneous transformation matrix at joint i. 

JOINT I 

JOINT 1- 1 JOINT(4-1 

LINKj-1 LINK 

zi-I 
Xi-I 

NKj+j 

N 
Figure 4-6 Rotation and translation parameters required for the formulation 

__ 
of homogeneous transformation matrix at joint i 
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al 
distance between Z(i+l)and Z(i) axis translated along 
the X(i) axis 

cc rotation about the X axis of joint i+1 with respect 
to joint i 

d distance between X(i) and X(i-1) axis translated along 
the Z(i) axis 

0i rotation about the Z axis of joint i 

The relationship between the joint coordinate frame i-I and i can be 

expressed by a homogeneous transformation (Denavit-Hartenberg) matrix 

Ti, and 

cei -Cctisei SociSOi aicei 
Ti S E)i CotiCE)i -Saic01 aiSE)i 

0 S oc ca d i i 
0 0 0 1 

The kinematic model requires kinematic data for the robot involved. A 

typical example of input data required for the GRASP robot simulation 

package includes: 

(i) Spatial relationships between joints and the type of degree of 

freedom (either revolute or prismatic); 

(ii) Spatial relationship between the tool attachment point (i. e. 

mounting flange) and the last joint of the robot; 
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configuration rules that the robot has to obey (for reaching 

positions which can be attained with different configurations); 

(iv) the initial position of the robot expressed as a set of joint 

extensions; 

(v) minimum and maximum joint constraints; 

robot park position; 

(vii) joint velocities; 

(viii) joint accelerations. 

An example of such inputs for an industrial robot with six degrees of 

freedom is to be found in the STAR syntax as shown in figure 4-7. The 

syntax of STAR is chosen because this is a dynamic robot simulation 

system which can be used to illustrate that the kinematic input data 

is the skeleton of dynamic robot simulation. 

Kinematic robot simulators face problems when there is a need to model 

high precision tasks in which the dynamic characteristics of the robot 

affect its performance. This provides the motive for taking dynamic 

effects into consideration, and as a result a few dynamic robot 

simulators have been developed. 
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1: ! - 
2. STAR MODEL OF A SIX DEGREE OF FREEDOM INDUSTRIAL ROBOT. 

3:! CONNECTIVITY DEFINITION STATEMENTS. 
6: REVOLUTE(BASE, WALST)- PIVOT 
7: REVOI. UTE(WALST. LOWERAR. M)- SHOULDER 
8: REVOLUTE(LOWERARM. UPPERARM)- ELBOW 
9: REVOLUTC(UPPERAR. M. WALM- BEND 
10: REVOLErrt(WAIST. HAND)- TWIST 
11. REVOLUTE(HAND. TOOLHOLDER)- SPIN 
12.! JOINT LOCATION DEFINITION STATEMENTS. 
13: COORDINATES(PfVOT)- 0 10 0.0 50 0.50 10 0.50 10 0 
14: COORDDIATr-S(SIIOULDER)- 0 70 0.0 70 50.50 70 0.50 70 0 
11. COORDINATES(ELBOW)- 0 139 0.0 139 50-T 139 0.50 139 0 
16: COORDINATES(BEND)- 67 139 0.67 139 50.150 139 0,150 139 0 
17. COORDINATES(TWIST)- 75 139 0.100 139 0.75 139 -100.75 139 -100 
IS: COORDINATES(SP! N)- 95 130 0.95 0 0.200 130 0. =O 130 0 
19: ! TOOL CENTER POINT (TCP) LOCATION STATEMENTS. 
20: COORDINATES(TCP)- 93 130 0.83 0 0.200 130 0 
21: 1 OR AVFTATIONAL CONSTANT AND FIELD VECTOR STATEMENTS. 
r- CONSTANT GRAVITY- 1.0 
23; DATA GRAVITY- 0 -980 0 
24: ! LIN K INERTIAS DEFINITION STRAEMENTS. 
25. WEIGHT(WAIST. PIVOT)- 25.35 00 
26: WEIGHT(LOWERARM, SHOULDER)- 15,0 35 0 
21.7. WEIGHT(UPPERAR. M. ELDOW)- 15.35 00 
23-. WEIGHT(WRIST. BEND)- 5,5 00 
29: WEIGHT(HAND. TWIST)- 5.5 00 
30: WEIGHT(TOOLHOLDER, SPIN)- ZO 01 
31- 1 JOINT ACTUATOR TORQUE LIMITS. 
32. LIM IT FORCE(PIVOT) - 3E7.. 3E7 
33: LIMIT FORCE(SHOULDER). -. 35E7.35E7 
34: LIMIT FORCE(ELBOW)- -. 25E7, ME7 
35: LDAIT FORCE(BLND)- 25E6.. 25E6 
36: LIMIT FORCI! (TWIST)- -. 4113. AES 
37: LIMIT FORCE(SPV4)- -. 2E5. = 
38; 1 STATEMENTS FOR RETRrVAL OF ROBOT 
39: 1 LINKS'GRAPHICS DATABASE FROM DATA FILES. 
40: SHAPE BASH @ PIVOT- G: BASE 
41-. SHAPE WAIST @ SHOULDER- G. WAIST 
42. SHAPE LOWERARM 0 ELBOW- GIOWER 
43: SHAPE UPPERARM @ ELBOW. G: UPPER 
": SHAPE WAIST BEND- G. WAIST 
45: SHAPE HAND TWIST- G. HAND 
46: !-- 
47: 1 DEFINITION OF OBJECTS IN THE ROBOT ENVIRONMENT. 
48:! -- 
49: 1 
50: 1 DEPINR AN OBJECT CALLED TOOL FOR GRIPPING. 
51. OBJECT- TOOL 
52.! PUT IT AT THE END OF THE ROBOT ARM. 
53: COORDINATES(TOOL)- 85 130 0.83 0 V, 00 130 0 
54: WEIGHT(TOOL)- 1.2 .10- 
55: 1 AFFIX AN AUXILIARY COORDINATE NAMED GRIPPER TO THE 
56: MOOL AT THE CENTER OF THE TOOL'S GRIPPER FINGERS. 
37: AFFIX GRIPPER - 3, TOOL 
58: COORDDIATES(CRIPPr-R)- 00 10.0 10 10,10 0 10 
59: 1 DEFINE AN OBJECT NAMED TABLE III FRONT OF THE ROBOT ARM. 
60: OBJECT- TABLE 
61: COORDINATES(TABLE). 100 0 0.100 0 10.200 00 
62.1 DEFINE AN OBJECT NAMED STOCK 0*4 THE TABLE. 
63: OBJECT- STOCK 
64: COORDINATES(STOCK)- 90 60 40.90 60 100,100 60 40 
65: WEIGHT(STOCX)- 4,2 25 0 
66:! AFFIX AUXILIARY COORDINATES TO STOCK. 
67: AFFIX STOCKTOP - 3- STOCK 
68: AFFIX Alk)VESTOCK-)- STOCK 
69: COORDINATES(STOCKTOP)- 0 33 0.0 35 35.35 35 0 
70-. COORDINATES(ABOVESTOCK)- 0 45 0.0 45 45.45 45 0 
71: 1 DEFINE AN OBJECT NAMED FIXTURE ON THE TABLE. 
72. OBJECT- FIXTURE 
73: COORDINATES(FIXTURB). 110 60 -40,110 60 0.200 60 -40 
74-. WEIGHT(FIXTURS)- 3.13 0 
75: 1 AFFIX AN AUXILIARY COORDINATE TO FIXTURE. 
76: AFFIX HOLE - 3- FIXTURE 
77: COORDINATES(HOLE)- 050.0 3 5.3 30 
79.1 AUXILIARY COORDINATE SYSYTEM FIXED IN SPACE. 
79: AFFIX HOME - 3, BASE 
SO: COORDINATES(HOME)- 85 120 0.93 120 100.200 120 0 
11.1 STATEMENTS TO RETRIEVE THE GRAPHICS DATABASE FOR THE OBJECTS. 
Ill SHAPE TOOL- G. TOOL 
93: SHAPE STOCK- O: STOCK 
84: SHAPE FIXTURE- O. FIXTURB 
15: SHAPE TABLE- G. TABLE 
m RETURN 

Figure 4-7 Excimple robot simulctor inputs for a robot with six degrees of 
freedom (adopted from Hornick and Ravani, 1986) 
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These simulators represent a step change which indicates the direction 

of future robot simulators, and open up the opportunity for more 

precise operations where the accuracy requirement is critical. A 

kinematic model also forms an essential part of a dynamic robot 

simulator. The frequently referenced algorithms in the context of 

dynamic simulation include the Lagrangian method [Murray and Neuman, 

1984; Wang and Kohli, 1985] and Newton-Euler method [Khosla and 

Neuman, 1985]. The Lagrangian method is based on energy law in which 

the forces or torques are described in terms of the differences in 

kinetic and potential energy, whilst the Newton-Euler method is 

deduced from Newton's laws of motion. The Lagrangian method presents 

a systematic way of forming dynamic equations in closed form whereas 

the Newton-Euler method is based on a recursive algorithm. The 

computation required for dynamic robot simulation is significant when 

compared with kinematic robot simulation due to the complexity 

involved in the equations. The computation involved in these two 

methods has been quoted [Ramaswamy et al, 1985] in terms of the number 

of links involved. With the Newton-Euler method, the amount of 

computation increases linearly with the number of links, whereas the 

Lagrangian method increases with the fourth power of the number of 

links. 

The Lagrangian algorithm for a robot with n joints can be 

described as 

E-K-P 

where K is the kinetic energy 
P is the potential energy 
E is the difference between the kinetic and 

potential energy 
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The Newton-Euler equation of motion for a robot with n joints 

can be described as 

T- I(q) q'I + C(q, ql) + G(q) 

where 

T is the torque/ force applied 
I is anxn inertia matrix 
C is anx1 vector defining the coriolis and centrifugal 

terms 
G is anx1 vector defining the gravitational term 
q is coordinates 
q, is velocities 
q'I is acceleration 

In addition to input data required for the kinematic model, the 

dynamic robot model takes the weight of a robot arm into 

consideration# and formulates the relationships between forces acting 

at each joint and its associated displacements, velocities and 

accelerations, to predict the dynamic properties of a robot. As is to 

be expected, dynamic robot simulators can only represent the dynamic 

behaviour of a single robot since no two robots are identical in every 

aspect even though they were of the same model supplied from the sanlýa 

manufacturer. The robot model is constructed based on dynamic 

information obtained from experiments. To complicate the problem 

further, individual robots would suffer different dynamic 

characteristics over time. Thus a dynamic robot simulator is a 

representation of a close approximation of real robots' dynamic 

behaviour provided that parameters of the model can be established. 

Although different algorithms are used in different robot simulators, 

their eventual aim is the same (i. e. modelling and off-line robot 

programming). Both kinematic and dynamic simulations are integral 

parts of a robot simulator. 
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4.3.2 Object Modellin 

Let us consider some of the necessary features of the geometric part 

of the modeller of the robot simulator. Geometric representation can 

be broadly divided into wireframe and solid representation. Although 

wireframe representation can be ambiguous, the data structure is 

relatively simple (containing edges and vertices). The visual 

ambiguity of wireframe representation can be reduced [Woodwark, 1986] 

by using perspective projection and by depth-cueing techniques in 

which the intensity of the lines in the wireframe is reduced with 

distance away from the viewer. A wireframe picture can be obtained 

quickly by applying a projection to each vertex. Picture segments are 

normally held in a display list, and special hardware performs 

transformations on every element in the list so quickly that fast 

manipulation of objects in graphics space can be achieved (i. e. 

wireframe can be made to move or spin on the screen). The McAuto 

simulator is an example of this when it uses an Evans and Sutherland 

refresh graphics terminal with hardware transformation. The modelling 

transformations just described can also be handled dynamically in the 

same way. The wireframe technique is useful for motion animation and 

constraint checking, but collision detection among objects is not 

possible. 

Commonly either "Constructive Solid Geometry" [Requicha, 1980] or 

"Boundary Representation" [Braid, 1975] solid modelling techniques are 

used to allow a three dimensional model of the robot and workplace to 

be constructed from simple primitive shapes such as cuboids, regular 

prisms and cylinders or generally by closed polyhedra. Figure 4-8 
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WIREFRAME PRESENTATION 

BOUNDARY REPRESENTATION 

bounded primitives 

mait spaces 

six planar half spaces 
CONSTRUCTIVE SOLID GEOMETRY 

Figure 4-8 Differences between Wireframe. Boundary 
Representation and Constructive Solid Geometry 

(adopted from Requicha, 1980) 
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shows the differences between wireframe, Boundary Representation and 

CSG. 

In Boundary Representation (Brep), a solid is represented by a number 

of segments or faces, bounded by edges and vertices. This face 

information (possibly including simply curved surfaces) gives a method 

of determining solidity. The Constructive Solid Geometry (CSG) (also 

known as Set-theoretic) defines solids based on primitives or sets of 

half spaces linked together by boolean operators. It contains no 

explicit data about edges or vertices. 

Since the data structure of solid modelling is relatively complex, the 

retrieval of a model would take a long time. Although many simulation 

systems use solid modelling representations, wireframe models can be 

produced using converting algorithms for faster screen display. Since 

Set-theoretic solid models contain no explicit data about edges and 

vertices, producing wireframe models from Set-theoretic models is more 

difficult than from Boundary models. 

Typical robot simulators will facilitate model creation, using "ease 

of use" data input methods, and allow the created models to be stored 

in, and recalled from, a library. When created the robot and 

workplace model may be viewed and manipulated in standard ways e. g. 

displayed graphically in plan, front and side elevations, and in 

perspective and plane parallel projections from any viewpoint. The 

spatial relationship between entities in the model (the robot and its 

equipment for example) can be controlled using the normal CAD input 

and display practices. 
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4.3.3 Geometric and Spatial Descriptio 

All model based programming languages (including robot simulators) use 

a structured geometric database (figure 4-9). The geometric database 

has complete knowledge on the geometry of the environment to the. needs 

of the modelling objective. The simulation model is normally 

constructed based on coordinate frame concepts [Van Aken and Van 

Brussel, 1987] to represent the physical environment layout (figure 

4-10), and each frame is described with reference to the owner frame 

in the hierarchy above. An important element of such coordinate 

frames is known as the "Centre Frame". If an object is gripped in a 

robot gripper, it is no longer evident to reason on the gripper motion 

in order to obtain the desired robot motion for the object. Any frame 

which belongs to an object gripped by the robot can be declared as the 

new centre frame. Any subsequent motion specification then refers to 

that frame (figure 4-11). 

WORLD COORDINATE FRAME 

-T 

ROBOT 

JOINT IL TUR 

LV 

Figure 4-9 Structure of a geometric database 
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ROBOT 
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Figure 4-10 Coordinate frame concept 
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Before gripping object 
Centre frame = Gripper frame 

After object is gripped 
Centre frame = Object frame 

Figure 4-11 Centre frame concept 

4.3.4 Motion Specification 

Typically input data methods are also provided to allow robot 

movements to be controlled in conventional ways such as in "world", 

"tool" and "joint" coordinate systems. For example, the user may 

specify the desired position of the tool centre point in world 

coordinates with the robot simulator performing the inverse 
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transformations required to determine all the Joint extensions of the 

manipulator. A number of such positions can be stored as a series of 

sequential events in a manner analogous to the teach method of robot 

programming. Subsequently, a time based simulation can be executed to 

represent the movement of the robot (relative to it's peripheral 

equipment, such as machines, feeders, conveyors and components), 

between these various workplace coordinate positions. During this 

simulation process, interference detection software can be executed so 

that collisions in the workplace can be flagged. This is inherently 

possible through the use of Set-theoretic or Boundary Representation 

modelling techniques, although it can be extremely time-consuming. 

As stated earlier, the present generation of robot simulators, can be 

considered essentially to be kinematic in nature, although commonly an 

estimate of the cycle times related to various workplace movements can 

be obtained by the assignment of velocity information to the 

manipulator model. Thus the dynamic characteristics of the robot and 

it's workplace elements are not usually accurately modelled. For 

example, in a high speed contouring application the real manipulator 

will be subject to backlash, deflection of manipulator links, 

following error, etc. However, facilities for obtaining cycle time 

estimations can be particularly useful as this information can be used 

in investment appraisal and resource planning exercises. 
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4.3.5 Animation 

Normally, robot simulation systems can offer capability analysis 

including joint violation checking,. reach verification, cycle time 

estimation and collision detection. Vhen robot motions are specified, 

animation is essential for performing the robot capability analysis. 

The incremental method and the swept-volume method are the two known 

methods for collision detection. 

The swept-volume method exists in current solid modellers, but its 

application to interference checking is still a research topic [Leu, 

1985]. The principle involves the computation of the volume swept by 

the robot and checks if any object lies within this swept-volume. The 

advantage of this method is that checking has to be done only once. 

However, there are major shortcomings with this method. The 

computation of the appropriate representation of the swept volume 

creates major difficulties. In addition, we are often concerned with 

several moving objects with a degree of unpredictability in their 

movement (at least as to when it might happen). The swept volume 

technique could not be used in such instances. It should therefore be 

consider only as an initial check. If any collision is likely to 

happen then the incremental method should be followed as an accurate 

check. 

Checking of interference with the incremental method is performed at 

every small increment of robot movement. Interference checking based 

on this method is readily available if a solid modeller is used. The 

checking is done incrementally for collision between any number of 
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specified objects, and although this method is relatively simple, it 

is very time consuming when there are many objects involved. 

If any potential problems or difficulties are identified, the 

programmer can modify the planned robot motion before the robot 

program is post-processed and downloaded to the target robot. Some 

robot systems are extended from robot workplace layout design tools to 

off-line robot programming tools, and include a robot language 

post-processor. Methodologies involving post-processing will be 

discussed in the following chapter. 

This chapter has attempted to briefly outline the way in which current 

robot simulators work and to identify shortcomings and potential for 

future development. This forms the basis for future chapters where an 

architecture of the type described is used as the basis for creating 

an enhanced off-line programming environment featuring ease of use 

interface facilities, novel calibration tools and novel facilities for 

product design integration. 
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CHAPTER FIVE 

METHODOLOGIES OF POST-PROCESSING FOR OFF-LINE 

ROBOT PROGRAM GENERATION 



5.0 Introduction 

The post-processor is an important element of an off-line robot programming 

system, as it allows the commercially available robot simulators (design 

tools) to be used as off-line robot programming tools. The post-processor 

translates output statements from a robot simulator to a target robot 

language. Typically the sequence of motion and data required to drive the 

robot can be transmitted through the use of a serial or parallel data link 

between an off-line computer (where the proposed system is usually designel 

and simulated) and a robot controller. When using contemporary systems th., 

post-processor translates from the model output into a vendor specific robot 

language, and extracts location information from the simulation model. The 

design of a general post-processor which is capable of translating the 

output of multiple robot simulators to multiple robot programming languages 

is an extremely complex problem and requires further consideration 

(discussed later in this chapter). Figure 5-1 describes a general off-line 

robot programming system. 

There are two basic ways of describing robot movements in robot control 

systems; one describes the manipulator movements in terms of the 

manipulator end effector location (in compound transformation or absolute) 

whilst the other describes the movements in terms of manipulator joint 

angles. The former approach is suitable for future and present generation 

robots with a language processor installed in their controllers, whilst the 

latter is only specifically linked to earlier generation robot languages. 

In the U. K. p there have been several efforts to establish a post-processor 

for robot simulators including GRASP. There are a number of acadamic 

institutions working on this topic involving different robots and 
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Figure 5-1 General off-line robot programming system 
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applications. These efforts include the work being carried out in the 

Department of Engineering at Bristol Polytechnic [Andrews and Cliffe, 1986], 

where a post-processor is coded to translate the output of GRASP into the 

high level robot language AR-BASIC for the programming of a Reflex 

industrial robot. At Queen's University in Belfast [Wright, 1987], work is 

based on the post-processing of the output of GRASP into joint angles via an 

APPLE microcomputer to the ASEA IRB6 robot. BYG systems, has also 

contributed its effort in making its robot simulator more versatile by the 

development of post-processors for different robot languages. So far there 

are essentially two different post-processors developed by that company to 

service, VAL I, VAL II and ASEA AR Language which are suitable for the 

Unimation family robots, Adept and ASEA series robots. 

As a starting point for this research, the author carried out a study 

regarding available post-processors as these provide an essential link for 

an off-line programming system. The feasiblilty of generalising the 

post-processor was also studied. In the early phases, the author devised a 

specific post-processor which required sufficient knowledge of the chosen 

robot simulator (GRASP), available target robots (two Adept Ones) and 

methods for dealing with peripheral devices such as sensors, vision systerta 

and tooling, and the functionality available from the corresponding robot 

language (VAL II). The findings of this work have been used in formulating 

the following observations. 
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5.1 Discrepancies Between Robot Simulators and Real Robot Systems 

There are a number of facilities available in robot simulators which are 

not available in real robot languages and vice versa (e. g. the real 

operation of sensors and vision systems cannot be easily simulated and 

instead the robot simulators use control conditions to emulate sensors 

and vision systems). 

As previously described, the coordinate frame concept is used in most 

simulators. In fact the majority of robot simulators use an eulerian 

angle set (chapter 4) for any kinematic (direct forward and inverse) 

calculation. However, in the case of the Adept One robot, although the 

eulerian angle set is used, the coordinate frame uses a right-handed axis 

set but it's tool reference frame is rotated through 180 degrees about 

the Y axis and 90 degrees about the rotated Z axis (see figure 5-2). 

Y 

Y 
x Adept One robot tool frame 

GRASP world frame 
z 

Figure 5-2 Difference in frame concepts between GRASP and 
Adept One robot systems 

In order to overcome this discrepancy, the tool attachment poirkt of the 

robot has to be rotated about the Y axis by 180 degrees in the robot 
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simulation model, this leads to the programming of the robot TRACK (a 

specific name used in the GRASP system which comprises event-dependant 

motion sequences) to include the rotation of 180 degrees about the Y axis 

(except all locate statements). 

In simulation, the robot end-effector's coordinate frame is the 

coordinate frame of any tool or object currently attached to the robot 

flange. However, in real robot systems, the robot end-effector is always 

referred to as the robot flange. The difference between these two frames 

should be corrected by using the TOOL statement in VAL II. Nevertheless, 

the translation between outputs from a robot simulator and a robot 

language can be made into a one to one conversion. 

5.2 Theories Used in Post-processing for Different Generations of 

Robots 

Early generation robots such as the ASEA IRB6, do not include a robot 

programming language, but use very simple command statements and 

condition looping. Such a robot can only take Joint angles corresponding 

to individual robot joints and so the post-processor must be capable of 

converting simulation output from cartesian coordinates into individual 

robot joint angles. The robot controller is not sophisticated enough to 

deal with high level languages and the data communication capabilities 

for supervisory' systems are too simple for data transmission, although 

a microcomputer can be used as an external supervisor which can cope with 

high level to lower level robot language conversion. This approach has 

been adopted by Queen's University, Belfast [Wright, 19871. 

- 102 - 



Modern robot controllers are likely to incorporate a language processor 

such that the robot movement can be driven by language command statements 

and location data. This makes the development of a post-processor 

easier. This type of post-processing involves a conversion of the 

simulated sequences of motion into corresponding robot language 

statements. This approach was used for the development of the 

post-processor which is described later in this chapter. 

5.3 Basic Approaches of Post-proCessing for Off-line Programs 

Post-processing facilities can be system dependentt application dependent 

or generic. System dependent post-processors are the most commonly used, 

and function by interpreting and translating program statements of a 

robot simulator into a specific robot language. In other words, system 

dependent post-processors are specific to one robot simulator and one 

robot language. System dependent post-processing facilities are the 

building blocks for application dependent post-processors which are 

tailored specifically for a particular application with custom "macro" 

sequences. Generic post-processors are theoretically capable of 

translating the output of multiple robot simulators into robot languages 

for different robot controllers. Since robot languages differ from one 

another, the creation of a generic post-processor as described is not 

considered to be an achievable task. The most probable solutions for 

future implementation are thus expected to rely on standard data formats 

or enabling technology (see chapter three). 

Assuming access to the source code of a robot simulator, post-processing 

software modules can be written to modify certain data structures used by 
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the robot simulator to provide new data structures as required by a 

particular robot. We will see from the following discussion that the 

person writing the post-processor may only have limited access to the 

various data structures used internally by the simulator. This utimately 

can limit the available functionality of the post-processor. For 

example, in certain cases the vendor of the robot simulator provides 

limited access data structures via a so called standard, interface. In 

such circumstances after a simulation exercise, internally created data 

structures can be post-processed into a robot-independent data format, 

which in the case of GRASP, is known as GRDATA. Here the post-processing 

function within the GRASP system outputs those entities that have been 

referenced in the robot TRACK, the program logic and sequence and the 

gripper or tooling to be used. This is effectively fast post-processing 

since it does not need to post-process every entity in the simulation 

model. However, the GRDATA format cannot be used for any other purpose 

except for off-line robot program translation and to convert a VAL II 

program into a TRACK. This robot-independent data format (e. g. GRDATA) 

is then translated into a specific robot language (VAL II in this study) 

using a specific robot language translator. The concepts involved are 

depicted by figure 5-3. This approach of post-processing has the 

advantage of more efficient use of data, reduced processing time, and, 

more importantly, a reduced chance of error (computation error) during 

the processing. 

For the study purposes and without the supplier's source code, the author 

derived a system dependant Post-processor (see figure 5-4) which was 

coded in PASCAL and created in a modular fashion. Access to the 

simulator's data structures was through GRASP model output. The first 
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Figure 5-4 Post-processing methodology derived by the author 
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module extracts spatial relationships between entities in the workplace 

of a simulation model. This information is stored in a data file ready 

to be used as a reference data file. The second module of the 

post-processor translates motion sequences (TRACK statements) into a 

specific robot language (VAL II). During the study, the post-processing 

facility has been enhanced through several stages. 

(a) Vorld State Post-processin 

During the GRASP simulation, if the programmer stores the robot move 

positions relative to the robot base, the problem of post-processing the 

GRASP output source file can be simplified. It would actually be very 

easy within GRASP to ensure that this always happened on output of data 

intended for post-processing. However, there are drawbacks with this 

approach. For example, if any entity being referenced in the TRACK has 

been re-arranged in the simulation model then the TRACK will be invalid. 

Furthermore, calibration of robot programs generated off-line and 

conversion of robot programs into a TRACK are not possible with this 

approach. Assuming the robot base and global workplace coordinate 

systems coincide then complex transformations for processing the output 

source file are not necessary. At this stage, the post-processor 

consists of three modules (see figure 5-5a, b and c). Appendix A. 1 shows 

an example of the original TRACK and the off-line robot program generated 

by this approach. 

The first module, referred to as SELECTION, operates so that the 

programmer will be asked whether a TRACK is to be processed and is 

prompted to provide a name for it. Dependant on the operator responsest 
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the post-processor will automatically select the appropriate TRACK from 

the GRASP output source format. 

Example output from SELECTION 
TRACK EXAMPLE 
STEP1 : POSITION WORKPLACE (SHIFT X 200 Y 200 Z 800 ROTATE Y 180), 
STEP2 : POSITION WORKPLACE (SHIFT X 200 Y 200 Z 780 ROTATE Y 180), 
STEP3 : GRIP OBJECT, 
STEP4 : POSITION WORKPLACE (SHIFT X 200 Y 200 Z 800 ROTATE Y 180), 
STEP5 : RELEASE OBJECT TO BENCH, 
STOP; 

The second module, referred to as EXTRACTIONp operates to enable the 

selected TRACK to be processed further to obtain move coordinates and 

orientations of the robot end effector and present the data in an 

appropriate format, as follows: 

Example output from EXTRACTION 
POSITION 200 200 800 0 180 0 
POSITION 200 200 780 0 180 0 
GRIP 
POSITION 200 200 800 0 180 0 
RELEASE 

The third module, referrred to as VALFORMATTING, generates a VAL II robot 

program based on the accumulated data. This gives the flexibility of 

processing data and then using a different formatting program to convert 

into specific robot programs or codes. 

Example output from VALFORMATTING 

. PROGRAM EXAMPLE_A 
Job number 888 

SPEED 50 ALWAYS 
SET POINT1 TRANS(200,200,800,0,180,0) 
SET POINT2 TRANS(200,200,780,0,180,0) 
SET POINT3 = TRANS(200,200,800,01 180t 0) 
MOVES POINTly 
MOVES POINT2, 
CLOSEI, 
MOVES POINT3, 
OPENI, 

. END 
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The World-state post-processing modules are simple but do not facilitate 

the conversion of VAL II robot programs into TRACKs. Calibration and CAD 

model updating are also not possible as there is inadequate information 

about the model. These shortcomings lead to the evolution of a 

Hierarchical-State Post-processing approach. 

(b) Hierarchical State Post-processing - 'Top-Downt Approach 

The second approach to post-processing investigated by the author is 

similar to the first except that it can deal with more complex 

situations. For instance CAD programmers are allowed to record move 

positions in either absolute form (i. e. relative to the global workplace 

coordinate frame) or relative form (i. e. relative to the coordinate 

frame of an entity within the model). This has the advantage of 

permitting the modification of the relative positions of entities in the 

model without the need to reprogramme the task locations. This 

post-processor version comprises three modules coded in PASCAL (see 

figures 5-6a, b and c). 

The first of these modules, called PROCESSOR1, is used to extract the 

spatial relationships between entities and objects in the model. This 

information is stored in a data file, ready for use in the second module. 

PROCESSOR1 extracts information using a top down approach (figure 5-7). 

The data file comprises random access data records, and each record 

stores the name of the object and the name of its owner object, with 

their spatial relationships defined within a simulation model presented 

in a4x4 matrix. These data can be used for calibration and updating 

of the CAD model. They can also be used as a neutral data format for 
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N. B. In 70P DOWN' approach, the spatial relationships of entities 

are extracted from the top hierarchy to the lowest level. 

For example, Turn Table related to World Coordinate Frame, Pallet B related to 

Turn Table, then Object 1 and Object 2 related to Pallet B respectively. 

Figure 5-7a "TOP DOWN" post-processing approach 

2 OBJECT 11 OBJECT 2 
JOINT 1 

A JOINT 2 r P-AL-LET 8 PAL 3 

TURN TA13LE I ... I BENCH 

I ROBOT I 

WORLD COORDINATE FRAME 

N. B. In 'APPEARANCE' approach, the spatial relationships of entities are 

extracted according to their order of appearance in the simulation model. It is 

normally started with smaller items to build up larger entities in the model. 
For example, the spatial relationships of Object 1. Object 2 related to Pallet 
A is first extracted as they appear earlier in the model. The order of 
extraction followed is Pallet A related to Turn Table, Turn Table related to 
World Coordinate Frame respectively. 

Figure 5-7b "APPEARANCE" post-processing approach 
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data exchange between different robot simulators with similar data 

structures. 

Example of random access data file 

owner object name object name spatial relationship 
4x4 matrices 

WORKPLACE PLATFORM 
PLATFORM PLATFORM TOP 
PLATFORM STAND 
PLATFORM ROTOR1 
ROTOR1 CYLINDER1 
ROTOR1 CYLINDER2 

The second module, called PROCESSOR2, is used to extract from the robot 

TRACK the motion sequences, locations and orientations of the move 

positions relative to a particular entity in the simulation model. Since 

we are interested in the location and orientation of a position in space 

to which the robot should be driven, the locations and orientations of 

such positions are defined with reference to the robot base, e. g. 

robot workplace -1 workplace platform 
TTTT 

position robot platform position 

This module searches through the data file produced in PROCESSOR1 for the 

name of the object and retrieves the 4x4 spatial matrix. This is 

multiplied by the transformation used in the TRACK movement. The data 

file is repeatedly searched and the matrices concatenated until the 

highest level is reached. The final location information is written in 

absolute coordinates relative to the robot base. The information 

representing the robot movement is then converted into a robot specific 

language called VAL II via VALII module which is similar to VALFORMATTING 

module as described earlier. The VAL II robot program and the location 

data are produced in one text file (see appendix A. 2 for example output). 
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Since the robot program uses numbers to identify positions instead of the 

actual entity name used in the CAD model, the conversion of VAL II robot 

programs into GRASP TRACKs is not possible. 

Example of output from PROCESSOR2 

absolute position for robot movement is used to drive the actual 
robot (calculated vith respect to the Robot base coordinate frame, 
for example, 

. PROGRAM EXAMPLE-B 
SET POINT1=TRANS(200,200,800,0,180,0) 
SET POINT2=TRANS(200,200,750,0,180,0) 
SET POINT3=TRANS(500t 500,800,0,180,0) 
SET POINT4=TRANS(500,500,750,0,180,0) 
SET POINT3=TRANS(500,500,800,0,180,0) 
SPEED 50 ALWAYS 
MOVE POINT1 
MOVE POINT2 
CLOSEI 
MOVE POINT2 
MOVE POINT3 
MOVE POINT4 
OPENI 
MOVE POINT4 
MOVE POINT5 
. END 

(c) Hierarchical State Post-processing -'Appearance' Approach 

The version 3 post-processor produced in this study comprises two 

modules. The first module, called PROCESSOR11, is quite similar to the 

stage two PROCESSOR1 module (previous subsection), except that it is 

modified to increase the speed of processing such that the processing 

time is reduced to approximately 10 percent of that in stage two 

approach. This module extracts spatial relationships concerning each 

object and its owner in the order of their appearance. Figure 5-7 

illustrates the difference between the "Top Down" and "Appearance" 

approaches. 
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The second module of the post-processor is called PROCESSOR22, which 

translates the robot TRACK into a VAL II robot program with all the move 

positions stored in a separate text file (see figure 5-8a and b). This 

allows compound transformations to be used in the robot program whereas 

in the previous stage only absolute positions were allowed. Appendix A. 3 

shows an example of the original TRACK and the off-line robot program 

with location data generated by this approach. 

for example, Compound transformations 

MOVE REFERENCE: TRANSFORM 

where REFERENCE is the location of the referenced object with 
respect to the robot base, i. e. 

robot workplace -1 workplace platform 
TTTT 

reference robot platform reference 

TRANSFORM is the object's location with respect to the 
referenced object 

This method allows the off-line generated programs to be calibrated, the 

simulation model to be updated, data exchange between robot simulators 

with similar data structures may be implemented, and the actual robot 

programs can be reconverted into GRASP TRACKs. The format of actual 

robot programs can be reconverted into GRASP TRACKs by using the 

VALTOTRACK module created by the author. The VALTOTRACK module reads the 

robot program and its corresponding location data file which allows 

locate, path control, movements, and gripper control statements to be 

converted into GRASP syntax (see appendix A. 4 for example output). This 

VALTOTRACK module allows robot simulation systems to be used in a 

relatively comprehensive manner. For example, the verification of a 

robot program, for different workshop layout configurations and for 
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different robots to perform the same task, or the same robot for 

different applications to be simulated and edited. The flow chart of 

VALTOTRACK is shown in figure 5-9. 

5.4 Methods of Downloading Off-line Programs to the Robot 

Controller 

When post-processing is complete, the program may be transmitted to the 

robot controller in one of three possible ways: - 

(a) The Robot program can be downloaded via a robot specific medium (such 

as magnetic tapes, paper tapes, floppy diskettes etc. ) which can be 

transferred manually from the design office to the shopfloor. In the 

context of highly automated CIM systems, this may require unwanted human 

intervention and may lead to increased machine set up times. 

(b) If it is desired to load programs electronically through an available 

robot specific medium interface, then a communication protocol must be 

implemented in software in order to interface to the robot controller. 

The use of an RS-232 link to facilitate the communication between the CAD 

system and the robot controllers is quite commonly used in industry. 

However, this approach is too rigidly fixed to the specific machines and 

will result in a low level of portability (or configuration flexibility) 

as CIM systems become more commonplace and/or complex. 

(c) A more flexible approach could be based upon the use of the 

Manufacturing Automation Protocol (MAP). This new enabling technology 

provides control data, monitoring status transmission etc, and 
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Figure 5-9 Flow chart of VALTOTRACK module (continued) 
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potentially there is a much reduced need to write specific protocol 

conversion for each robot. Furthermore, developments with respect to 

layer 7, the application layer, including the manufacturing message 

services (MMS) [MMS Draft 6 document, 1987] which is being evolved in the 

wake of the MAP/TOP initiative should be monitored and could form the 

basis of a third generation command language. 

Although a MAP broadband network was available in the Department of 

Manufacturing Engineering during the period of this study, for various 

reasons (the major one being the Prime 550 computer, used by the author 

for prototyping was not connected to the MAP network) the approach (b) 

was used in this work. 

5.5 Generalised Approach 

Post-processors can be system or application dependent. Some of these 

post-processors have been designed for use with an application dependent 

robot simulator. These post-processors normally have "macro sequences" 

built in for the particular application. However, most of the 

post. -processors are system dependent, which means they can only be used 

for one robot simulator and one robot language. If an internationally 

accepted standard data format existed, it would be wise to develop the 

post-processor in two modules (see figure 5-10), the first one being 

responsible for converting information from the output of a robot 

simulator to a neutral or standard data format, whilst the second module 

translates the standard data format into a robot language. This reduces 

the effort in developing a post-processor for each set of robot 

simulators and robot languages. This idea has been incorporated in the 

- 124 - 



Robot Robot Robot 
Simulator Simulator Simulator 

AB... N 

Model MModdel ... 
Model I 

Data DD oo tt cc Data 

Pre-processor re-processor Pre-proces r 
AEN 

Standard 
Data 
Format 

Post-processor Post-processor 
... 

Post-processor 
A NN 

Robot Robot Robot 
Language Language ... Language 

AN 

Figure 5-10 Generalised post-processing methodology with 
standard data format 

- 125 - 



processors created in this study and described in this chapter. However, 

standard data formats are not yet available. Thus a random access data 

file with consistent data structures has been used through providing a 

prototype neutral data format. Suppose, there are 10 robot simulators 

and 10 robot languages, then there is a need to write 10 pre-processors 

and 10 post-processors. However, with no internationally accepted 

standard data format (or neutral data format) there would be a need for 

100 processors. This standard or neutral data format approach can be 

regarded as a generalised approach. There is a further possibility of 

generalising the post-processors so that common command statements are 

used in robot languages and post-processors. 

The success experienced with this study indicates that similar effort can 

be applied to different systems. Of course, the total effort will be 

significantly reduced if standards exist. However, at the moment, there 

is no standardisation that has been successfully achieved in the field of 

off-line robot programming. Apparently, there is a lack of user 

enthusiasm for standardisation, and perhaps this is primarily due to the 

fact that industrial users apply robots to perform simple, repetitive, or 

mass-production tasks which do not require frequent reprogramming. 

Secondly, major users may well have developed their own 

interfaces/communication between their CAD system and their robotic 

devices. However, with the advent of CIM methods this situation is 

likely to change significantly over the next few decades. 

When considering the 'level' at which standardisation is likely in the 

near future, it is concluded that the robot interface data format is the 

most likely initial target for standardisation with IRDATA and the MMS 
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robot companion standard both offering an important step in the right 

direction. When internationally agreed robot interface data formats are 

available, it will be the robot manufacturer who will be responsible for 

adopting appropriate controller protocols. For commercial reasons, 

manufacturers have appeared to resist standardisation initiatives and 

this has resulted in user driven initatives in the area, such as MAP. As 

technology advances, new enabling technologies such as MAP and TOP could 

provide tremendous capability for information transfer, linking different 

devices from different vendors, which would truly enhance Computer 

Integrated Manufacturing and the off-line programming of robots. 
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CHAPTER SIX 

IMPROVEMENTS IN MAN-MACHINE INTERFACE 



6.0 Introduction 

The premise on which off-line programming systems have evolved and are 

marketed is that they are easy to use. Certain suppliers of robot 

simulators claim that their system is user friendly so that most operators, 

with no previous programming experience, can design workcells after one 

day's training. These suppliers have also claimed that an operator can 

become an expert in two to four weeks compared to six to nine months for a 

general purpose CAD system [Robotics World, 1986a]. This may in fact be the 

case in simple application areas but to date very little literature is 

available comparing off-line and conventional robot language programming 

procedures so that reliable conclusions cannot be drawn. 

In the absence of information one can only suggest that the user interface 

to the robot simulator should be as simple as possible with an extensive use 

made of model libraries, containing not only the robots but also commonly 

used workplace elements constructed from standard parameterised primitive 

building blocks. Furthermore, where a product design interface cannot be 

establishedv facilities could be included for the user friendly description 

of products encompassing geometric and manufacturing/assembly sequential 

information. 

As a generalisation one could conclude that off-line programming will be 

more easily justified in circumstances where complex robot tasks are 

required and/or where the batch manufacture of large product families are 

involved. However at the present time inadequacies in the simulators, 

capabilities in dealing with sensory feedback, exception handling and the 

debugging of task programs implies the continued use of on-line programming 
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for these aspects where a language such as VAL II combined with a teach 

pendant has the necessary flexibility. 

The man-machine interface to proprietary robot simulators can be considered 

within two major groups of input facilities; one being related to the solid 

modeller, with the other related to the robot task description. 

As discussed earlier, the solid modelling facility within GRASP is based on 

the boundary representation method using a combination of primitive solids 

and generalised polyhedra. A robotic device or workplace entity is modelled 

by defining geometric, spatial, and functional relationships. Definition of 

geometry using primitive shapes is straight-forward, but generalised 

polyhedra present a much more substantial problem which requires the 

assistance of screen interaction techniques. Spatial relationships between 

objects in three-dimensional space inevitably cause difficulties which can 

be addressed by an improved user interface or by improved, but potentially 

expensive, computer graphics techniques. Functional arrangement refers to 

the need to encapsulate kinematic relationships between model items within 

the data specification. For inexperienced users or complex situations this 

can be an extremely daunting prospect. 

Once the model has been created there still remains the often complex task 

of building the kinematic simulation itself. Thus methods of enhancing the 

user interface to GRASP have been studied and software modules produced to 

assist both experienced and non expert programmers in dealing with solid 

modelling and task programming. 
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6.1 COMDUter Assisted Model Buildin 

Building a three-dimensional model is a requirement which robot 

simulators have in common with CAD systems which are aimed at the more 

traditional aspects of engineering design. Simulators which are an 

extension of such systems are therefore likely to be able to call upon 

highly developed man-machine interfaces for the specification of 

geometry. A typical approach would be a parametric design programming 

language often used to ease the generation of models of families of 

parts. GRASP, a stand-alone simulator with its own modelling system, 

does not have such facilities and thus provides both the need and 

opportunity to study parametric design from the particular viewpoint of 

robotic equipment. The distinguishing feature here is the need to easily 

define the functional relationships between the components of the 

equipment. An example would be in specifying geometry of a gripper such 

that it will have the correct relationship to the robot on which it is to 

be mounted. (In the case of GRASP, this involves careful modelling about 

a set of axes which will be made coincident with those of the tool 

attachment point). Careful modelling is again required when the object 

being modelled is a mechanism which will be required to assume different 

configurations under various kinematic conditions. Modelling the 

kinematic structure of the robots themselves is of course a central 

aspect of the simulators and hence is well catered for. However, the 

kinematic modelling of grippers, assembly jigs, etc. can be extremely 

difficult, and a parametric approach could provide a solution. 

In this study, solid modelling software modules have been coded in Pascal 

which can assist both experienced and inexperienced programmers when 
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creating models of entities which are commonly encountered in a robot 

workplace, e. g. pallets (or racks), worktables (or benches), conveyors, 

turntables, tool magazines, etc. Here the programmer is required to 

input a limited set of parameters so that a text source file can be 

generated automatically and be coded appropriately for input to the GRASP 

solid modeller. The software modules produced have a common design 

structure. 

To illustrate the principles involved, consider a specific software 

module which was produced to assist the user in creating objects in the 

pallet or rack category. The parameter values, such as the pallet 

dimensions and name, are supplied in response to prompts, and are used to 

generate a textual GRASP source file. Documentation of the software 

module is shown in Appendix B. 1. The GRASP pictorial representation of 

typical pallets is illustrated by figure 6-1. 

The same approach, of generating workplace entities based on user 

responses to simple input prompts, was used in creating other commonplace 

workplace entities. 

Software modules were also produced for tool magazines and worksurfaces 

as well as the kinematically functional turntable and conveyor based oll 

the same principles. Figure 6-2 illustrates workplace models created in 

this way where appropriate geometric, spatial and functional 

relationships have been defined. Clearly, the time taken by a user in 

creating a model depends upon the complexity involved and his/her level 

of expertise. For the examples treated here, worksurface modelling is 

the simplest, -this also being reflected in the level of complexity in the 
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rigure 6-1 GRASP pictorial representation of typical pallets 
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associated software module, whereas conveyor modelling is the most 

complex. When using the modelling facilities of a typical robot 

simulator a rough estimate of the time needed to create these solid 

models is between 10 and 30 minutes, the actual time taken being 

dependant on the experience of the user (although a significant part of 

the time required is usually spent on calculating the correct geometric 

location of the primitives). However, if the enhanced MMI software 

modules are used in generating an entity model, then the time required 

will be between 1 and 2 minutes. Thus significant time saving can be 

achieved. Perhaps of greater significance, however, is the confidence 

that can be placed in a parametrically defined model object. The 

parameterisation will have been subjected to rigorous testing of its 

suitability for the application and thus it is unlikely that model 

shortcomings will be discovered inconveniently late in the simulation 

process. 

Using the system components created in this study, a limited range of 

items can be produced through the use of specific software modules, and 

this illustrates the general principles. However, it is recognised that 

eventual full-scale implementation is likely to be via a general purpose 

parametric language taking into account the special needs of this 

technique in robot modelling. 

6.2 Computer Assisted Task Program Generation of Simulated Tasks 

GRASP does have a language for the definition of a sequence of events 

vithin the simulation. This is very flexible, being accessed through 

screen menus or by a textual command languagep and can be used to 
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explicitly define a wide range of tasks. It is however, still a complex 

task to create new sequences in a generalised way, and therefore software 

modules have also been produced which can simplify this activity. In 

particular, common material handling tasks have been studied and software 

modules produced for generating palletising, de-palletising and machine 

tending tasks which are representative of tasks for which robots are 

frequently used. Here the command inputs invoke commonly occuring 

sequences of motion when performing simulations. For example, it is not 

usual to pick up an object directly as collision between the 

manipulator's end-effector and other workplace entities may occur. 

Instead, the manipulator is normally commanded to move to a position 

above the object (if this is clear of obstacles), from which the gripper 

is moved in a controlled fashion onto the object, so as to be able to 

grip it and lift it up before the remainder of the task continues. 

Clearly there are many other "micro sequences" of this type, which when 

defined and parameterised, would make extremely useful building blocks 

for "macro sequences" or complete robot tasks. 

a) Palletisin 

To demonstrate this principle a software module was produced to simplify 

the definition of a variety of palletising operations. This module 

comprising a number of functional elements as shown schematically in 

figure 6-3. 

It is logical to create a GRASP model of a robotic device and its 

workplace before a task is defined. However, all workplace entities must 

have explicit names which are known to the user in order that the task 
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programming software can be used to create a GRASP track (i. e. a task 

program or motion sequences with reference to the various entities of the 

model). 

GRASP users are provided with different programming levels (e. g. for 

simulation and off-line programming, for simulation only etc. ) which in 

turn provide diffefent options for generating palletising or 

depalletising patterns. The programmer is required to respond to 

terminal prompts with the user's responses, leading to the computer 

assisted generation of task programs. 

A software module (PROG_PALLET) was produced to simplify the definition 

of a variety of palletising operations. An introduction for first time 

users, can be invoked. This section describes the assumptions made and 

the rules which must be followed (as listed below). Several assumptions 

have been made in automatically generating the patterns. 

(i) Workpieces are assumed to be identical. 

Workpieces are assumed to be palletised at the centre 

of each rack. 

(iii) Sensory information is not incorporated within the 

task definition. 

(iv) Reference points are assumed to be at the height of workpieces. 

(v) Number of reference pick (and or place) points and the 

number of workpieces are to be equal. 

A GRASP model which is built for programs generated by the software 

module is shown in figure 6-4. In simulating a task, it is necessary to 

define any reference points and these may take the form of an array. To 
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simplify reference point definition, optional software based procedures 

were written which accept the names of reference points. The resulting 

simulation task is presented in GRASP syntax, ready to be used in the 

simulation. To simplify/automate reference point definitions, a number 

of optional procedures can be invoked by the user specifically for 

palletising and de-palletising and these will find wider application in 

general assembly task programming. The available options are described 

below : 

Option A is used where workpieces are to be picked up at fixed reference 

points assigned to a pallet and placed at fixed reference points assigned 

to another pallet. The sequence of these reference points describes the 

order of picking and placing, and thus a variety of robot movements are 

available. This option is suitable for both GRASP simulation and off- 

line program generation. 

Option B is similar to option A except all the workpieces are to be 

placed at positions calculated from a fixed reference point on the 

destination pallet (the frame of the destination pallet) and a variety of 

palletising patterns are available (see later) at the destination pallet. 

This option produces a GRASP track in terms of real variables and it is 

to be used for GRASP simulation only, and is not suitable for off-line 

robot programming due to the restriction imposed by the proprietary 

post-processors (no real variables can be post-processed). 

option C is similar to option B, but, it is suitable for both simulation 

and off-line programming. No real variables are used for defi . ning the 

location, but the program is effectively long winded in comparison with 

option B. 
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Option D is a de-palletising option in which all workpieces are to be 

picked up at fixed reference points on a pallet and are to be placed at a 

fixed reference point, for example on a conveyor or a bin that collects 

completed components. This option is also suitable for both simulation 

and off-line programming. 

Option E is designed to be used for picking up workpieces at a fixed 

reference point (e. g. from a conveyor or from a feeding device) and to 

unload workpieces at fixed reference points on a pallet. Again this 

option is also suitable for both simulation and off-line programming. 

In option F, workpieces are to be picked up at a fixed reference point 

(e. g. a conveyor or feeding device) and placed at fixed reference points 

on a pallet. This option is also suitable for both simulation and 

off-line programming. 

We are basically considering four different palletising or de-palletising 

patterns from a variety of choices. These patterns are to be used at the 

destination pallet and are the extension of the option B, C, and F. We 

consider the available patterns in terms of motions along the X and Y 

axes with reference to the pallet's own origin. The movement is 

incremental in both axes. The robot is commanded to move to the first 

row (Y axis) and then move along each column (X axis) until the final 

column of that row is reached. The robot then proceeds to the next row. 

This movement is repeated until the final position is reached. 
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For pattern choice G, the robot first visits Xmin, Ymin (with respect to 

the pallet origin) then moves to each point along the X axis. 

Subsequently the Y axis is incremented and the procedure repeated until 

pallet positions have been visited (see figure 6-5). This is similarlý 

applied to choice H, I and J with one of the four corners as its starting 

point. Appendix B. 2 shows an example output of result generated by th-. 3 

software module. 

Some of the software modules were written so that they can be used in J: je 

high level GRASP programming mode where real variables are used to 

represent locations. Such an approach will yield a track that is simpl? 

but is only suitable for GRASP simulation and not off-line 

post-processing. In order to facilitate both simulation and 

post-processing, special modules were written. 

(b) Machine Tendin 

To investigate further opportunities for simplifying task definition, 

facilities for specifying machine tending tasks were included as such 

tasks are very frequently required. There are three basic types 

[Wilhelm and Sarin, 1985] of machine tending depending on the shopfloo)- 

configuration viz : 

Each part must be processed sequentially on all machines. 

(ii) Each part requires one operation and could be assigned 

to any machine. 

(iii) Each part requires one operation and must be assigned 

to a specific machine. 

- 141 



Palletising patterns are based on the four corner positions. 
Four different palletising patterns are implemented for 
illustration. 

(i) Start from Xmin, Ymin to Xmax, Ymin and then repeat along Y 

axis towards Xmax, Ymax. 

(ii) Start from Xmax, Ymin to Xmin, Ymin and then repeat along Y 

axis towards Xmin, Ymax. 

(iii) Start from Xmin, Ymax to Xmax, Ymax and then repeat along Y 

axis towards Xmax, Ymin. 

(iv) Start from Xmax, Ymax to Xmin, Ymax and then repeat along Y 

axis towards Xmin, Ymin. 

Figure 6-5 Demonstration of palletising locations 
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Among these shopfloor configurations, programming type (i) is the 

simplest whilst type (iii) is the most complicated. Configuration type 

(i) and (ii) may look simple, but it is laborious to programme. To 

programme the shopfloor configuration type (iii), a vision system (or by 

other means such as bar-code reading) is required to identify the part 

and then assign the part to the appropriate machine. The loading, 

unloading and production cycle times for each machine have to be 

evaluated and used in the production scheduling. Since this research 

study is not concerned with production scheduling, scheduling problems 

for flexible manufacturing systems are not considered. Software modules 

were coded for illustrating the principles involved in enhancing the 

man-machine interface. 

Machine tending software was developed to implement these three basic 

configurations. The software is generic, such that variations in the 

number of machines and parts, and the sequence in which these machines 

require tending, can be varied according to the priority specified in the 

input. In each case, programs for robot tending are generated together 

with shell programs for each attendant peripheral machines. These 

programs include simple sensory signal input/output for synchronising the 

robot tending workplace. 

PROG_TEND is a software module written to assist programmers in defining 

such machine tending tasks. Appendix B. 3 shows an example robot tending 

simulation program for configuration type (ii). When using this facility 

the user will require a GRASP model and must have knowledge of the model 

i. e. the number of machines that will need to be tended, the names of 

these machinesp the order in which the machines require tending, the 
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number of workpieces to be manipulated, the names of workpieces, the 

required sequence of manipulations for each workpiece, the pick up 

reference point(s) and place reference point(s). The machines will share 

a common pick up reference point (e. g. a bin which contains raw material 

or a conveyor belt that drives material into the workcell) and a common 

place reference point (e. g. a bin which collects finished workpieces or 

a conveyor belt that drives workpieces out of the workcell). This 

arrangement is shown in figure 6-6. The machine tending software assumes 

that all workpieces are to be inserted in a clamping device or a jig with 

reference to an assigned target (named with the machine name suffixed by 

I-TARGI). The approaching movement is described in terms of the Z axis 

of each target. For instance, if any machine requires a horizontal 

feeding movement, for example, a lathe, the target will need to be 

rotated about its Y axis by 90 degrees (such that the Z axis of the 

target is horizontal) for the purpose of inserting workpieces 

horizontally. The design structure of this software is depicted in the 

flow chart of figure 6-7. 

Subsequently during simulation, any joint violation and object collisions 

can be detected. The computer assisted model building and task operation 

facilities have been used in programming a number of tasks for two Adept 

One robots, the off-line program generation being accomplished through 

the use of a VAL II post-processor. These off-line programming exercises 

have proven the validity of the approach and suggested many possible 

enhancements. 
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6.3 General Considerations 

At the present time, most general robot simulation systems are too 

complex to learn and when programming a simple robot task it may be more 

efficient to use manual guiding methods. On the other hand, 

application-dependent systems, although inflexible, are very efficient 

for task programming of the specific application. In order to gain 

advantages from these systems, a parameterised task language should be 

made available such that different types of robot motion can be 

programmed without losing too much flexibility. 

Most robot applications in manufacturing industry can be grouped into 

pick and place, palletising, machine tending, assembly (including 

mechanical and electronics assembly)j and welding (such as arc and spot 

welding) operations. The robot motion required to carry out these 

operations can be broken into subgroups (see table 6-1) and each subgroýp 

can be dealt with using a parameterised task language. In order to 

generalise this idea, an analysis of the robot task movements has been 

conducted to arrive at a common ground on which the parameterised 

language is to be based. 

As a general recommendation, the implementation of this type of 

parameterised task language should be done according to the type of 

standard motion. The proposed language should comprise several 

application modules, each module being responsible for each category of 

task commonly encountered in manufacturing industry. Each category, in 

turn, is divided into individual functions for carrying a specific part 

of the task. The proposed generic task language is illustrated through 

the examples in sections (a) to (f). 
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COMMON APPLICATIONS BASIC ROBOT MOVEMENTS 

APPRO pick up position 
ONTO pick up position 
GRIP object 

Pick and Place DEPART from pick up position 
APPRO target position 
ONTO target position 
RELEASE object 
DEPART from target position 

APPRO binl APPRO machine 
ONTO objectl ONTO objectl 
GRIP objectl GRIP objectl 
DEPART from bin 1 DEPART from machine 

Machine tending APPRO target machine APPRO bin2 
ONTO target machine ONTO place position 
RELEASE objectl RELEASE objectl 
DEPART from machine DEPART from bin2 

APPRO pick up position 
ONTO pick up position 
GRIP objectl 

Polletising 
DEPART from pick up position 
APPRO target position 
ONTO target position 
RELEASE objectl 
DEPART from target position 
APPRO objectl 
ONTO objectl 
GRIP objectl 

Mechanical DEPART from pick up point 
APPRO object2 (assembly in fixture) 
ONTO object2 
RELEASE objectl 
DEPART from object2 

Assembly APPRO feeding devicel 
ONTO chipl 
GRIP chip'l 

Electronic 
DEPART from feeding devicel 
APPRO target position on pcb 
ONTO target position with a transformation 
RELEASE chipl 
DEPART from pcb 

START applying current/voltage 
APPRO initial position 
ONTO initial position 
MOVE along to 2nd position 

Arc welding DEPART 
: 
from workplece 

STOP applying current/voltage 

Welding START applying current/voltage 
APPRO initial position 
ONTO initial position 
CLOSE jaws 

Spot welding 
RELEASE jaws 

DEPART from workpiece STOP applying current/voltage 

Table 6-1 Common robot applications and basic robot task movements 
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(a) ARC VELDING COMMANDS 

APPLY voLTAGE/amEff <nunber/number> 

WW SMAICHr LINE [ NAME <roreD M <=O> 
( COORD <pointl> M <point2> 

nami, name2 ( name given to global x, y, z coordinates and orientations 
pointl, point2 ( global x, y, z coordinates and orientations ) 

WELD CIRCULAR 
( FAME <naý <naý ) RADILIS <numberl> ( A= <hunberD [ COORD <pointl> <point2> 

SMP VOLTAGE/CURRENr 

namel, name2 ( name given to global x, y, z coordinates and orientations 
pointl, point2 { global x, y, z coordinates and orientations 
radius of arc or circle 

nunberl +ve real nuTher indicate clockwise 
-ve real nunber indicate counter-clockwise 

angle is angle of welding path 
number2 +ve real nuTber indicate clockwise 

-ve real nunber indicate counter-clockwise 

(b) SPOT 'WELDING COMMANDS 

SPOTWELD 
( WE <namel> <name2> ... ) 
C COORD <pointl> <point2> ... 

SPUMLDS 
NAME <namel> M ehameD )( P= I <nunberl> cooRD <pointl> M <point2> INMVAL 

NAME <namel> M <nameD ) PTIM ) 
SPONUM CDORD <pointl> M <point2> D=AL fmnberl> RADIUS <hunberD AM <number3> 

namel, name2 ( name given to global x, y, z coordinates and orientations 
pointi, point2 ( global x, y, z coordinates and orientations 
straight line pitch nunberl always +ve towards 2nd point 
circular pitch numberl ( +ve indicate clockwise towards 2nd point 

( -ve indicate counter-clockwise towards 2nd point 
interval is the number of points between the start and finish spot wdds: 
radius of arc or circle 

nunber2 +ve real number indicate clockwise 
-ve real number indicate counter-ýclockwise 

angle is angle of welding path 
nunber3 +ve real number indicate clockwise 

-ve real mm±er indicate counter-clockwise 
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TRANSPORT COMMANDS 

SEPARATE <objectl> <objectD ... SIREAM <pathl> <path2> ... 

MMGE <objectD <objectD ... SIREAM <main pathD <pathD ... 

TLIV <object> BY <angle> 

CRIENL= <objectD BY <angle> ( RELATIVE TO <object2> ) 

AULCATDU <nunber> <object> AT <pathD 

objectI, object2 are names given to objects 
pathl, path2 are the path of movement 
mmiber is the nuTher of objects to be allocated to a path 

(d) ASSEMBLY COMMANDS 

( <point> 
MOVES I To )( <object> 

Ix) 
MOVEC BY Y <number> 

z 

( NAME <object> )(x) 
APFROS ( WORD <pointl> ) BY Y <numberl> 

z 

( WE <object> )(x) 
APPROC ( COORD <pointl> I BY Y <jurberl> PmIus <rý2> ( ANm <rý3> 

z 

( NAME <object> )(x) 
MARTS ( COORD <pointl> I BY Y <nunberl> 

z 

( NAME <object> )(x) 
VUAMC ( COORD <pointl> ) BY (YI <runberl> RADIUS <nunberD ( RUE <nunber3> ) 

(zI 

(x) 
a4llF, <Object> BY Y <appro, dist> <depart dist> PICK AT COORD <point> x 

- 150 - 



( NAME <object> }(x) 
PLACE AT ( WORD <point> } BY Y <appro dist> <depart dist> 

x 

AUGN <objectl> M <object2> 

( BY <depth> )Ix) 
IN= <objectl> in <objectD (m DD UM <objectl> ABOUr Y BY <angle> 

z 

SCRLV <objectD aqM <objectD BY <angle> 

R= mm <, =ýI> <, ý . .. ) 
COORD <pointl> <point2> 

RIVErS 
( NAME <namel> M <rkiw-2> )( PITCH ) <nunberl> f COW <pointl> TO <point2> C INIERVAL } 

Rrv= ( NAME <namel> To <nwe2> )( PITCH ) 
( COORD <pointl> TO <point2> )( =VAL fiunberl> RADIUS <nunberD <nunber3> 

EXMACr <objectl> FROM <object2> 

ASSEMBLE <objectl> CNIO <object2> 

DisAssamLE <objectl> Rw <object2> 

PALLETISING COMMANDS 

( FTX <start frame> <option> ) 
TO FIX <finish frame> <option> 

PALLEI? TP ( FLEX <nameD <nameD ---) FLEX <nameD <nameD ... ) 

pALL= is a command used to generate lower level caTuends for 
the specific use of palletising objects from one pallet to another 

<start frame> is the name given to the coordinate frame of the 
starting pallet 

<finish frame> is the name given to the coordinate frame of the 
finishing Pallet 

[ PATIMN ) is an optional command, once chosen the appropriate 
option should be entered 

PALIE= <start frame> TO FTX <finish frame> <option> 
= qmmeD qzmeD ... I 
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PALLE= is a coarond used to generate lower level camands for 
the specific use of palletising objects from one single position 
to a pallet. 

<start frame> is the name given to the coordinate frame of the 
starting position 

<finish frame> is the name given to the coordinate frame of the 
finsihing pallet 

PALLErFrSP FIX <start frame> <optial> TO <finisli frame> FLEX <namel> <romeD ... ) 

PALL=SP is a cormznd used to generate lower level cammids for 
the specific use of palletising objects fran a pallet to a single 
position. 

<start frame> is the name given to the coordinate frame of the 
starting pallet 

<finish fraw-> is the name given to the coordinate frame of the 
finishing position (e. g. conveyor, bin etc). 

(f) TENDING COMMANDS 

LOADIN3 <obj ect> OM 

UNLO, ADIM <object> OM> 

OPEN FIXIM <fixture> AND WAlT <time in se& 

CLM FJXnM <fixture> AND WAIT <time in se& 

TENDC <MCD <MC: 2> ... 

TEME is a command used to generate lower level 
commands for the machine tending operation where 
machines are identical. 
<MM <MC2> ... represent machines' rkmes 

=ýcs <MCD <object ryw> OM <object VA)e> 

TRUM is a command used to generate lower level 
commands for the machine tending operation where 
machines are not identical and object of certain 
rype can be assigned to a specific machine. 
*M> <MC2> ... represent machines' names 
<object type> an integer represent object type 
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TMFS OED <MC2> <MC3> 

MMFS is a camand used to generate lower level 
commands for the machine tending operationwhere 
machines are constructed to perform flow production 
with the machines specified in order of tending. 
OM> <MC2> ... represent mad-dnes' names 

6.4 Limitations of Computer Assisted Solid Modelling and Task Program 

Generation 

When defining objects, GRASP users must assign a unique name to that 

object. If two or more of these objects or entities (created by using 

software modules) are to be used in a GRASP simulation, there may be name 

clashes in the dictionary which causes the simulation to fail. The 

problem that has been identified here is that models and tasks cannot 

really be defined in isolation from the larger model and set of tasks 

that they become part of. One of the consequences is this problem with 

names. The proposed solution must be further pre-processing on input to 

GRASP or alternatively the use of contextual (or tree) names. Such 

operational procedures are also necessary with other simulation packages 

and robot simulators. 

The major limitation of using the software modules to generate object 

models is that the flexibility of the solid modelling function of a robot 

simulation package is reduced. However, it is only to a limited extent 

since a certain part of an entity is often of particular importance with 

respect to off-line robot programming. Another generic problem with 

parameterisation is the infinite number of possibilities. Arguably, it 
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is not practical to provide an enhanced MMI facility for all possible 

object classes, however, the user can resort to using the usual GRASP 

syntax to define an entity which does not fall into the MMI classes 

implemented. 

Without manipulator joint violation checks and collision detection, the 

task programs generated by computer assisted task generation software 

module may include errors of this type. Thus users are advised to check 

their generated programs through GRASP simulation, this being a normal 

procedure for checking joint violations and collisions. Pre-processors 

should not attempt to duplicate facilities which are more properly part 

of the main system. 

Once this type of task language is fully developed, programmers do not 

need a graphical simulation, i. e. it would be good enough for 

post-processing as an off-line program. But realistically the simulation 

is there precisely for the kind of reasons identified in the above 

paragraph. Therefore, these parameterised task language should be 

included in the general purpose robot simulation system as built-in macro 

sequences. 

Although off-line task programs are generated together with all the 

location information, the accuracy of these locations represent an 

idealised situation and generally not good enough for the real robotic 

arrangement. Furthermore, robot repeatability and accuracy may not be 

adequate for precise operations. The accuracy problems are dependent 

upon many factors and therefore off-line generated robot programs require 

calibration -a topic discussed in the next chapter. 
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CHAPTER SEVEN 

OFF-LINE ROBOT PROGRAM CALIBRATION 



7.0 Introduction 

In common with any simulation process, the usefulness of a robot simulatioi 

is substantially governed by the available "accuracy" of modelling. 

The present generation of computer systems provide sufficient processing 

power to achieve very high precision modelling of any manipulator system, 

albeit that "realtimell simulation may not be possible. However, in creating 

such a model, specific input data concerning the manipulator's kinematic and 

dynamic behaviour must be available from some source. When simulating 

robots two obvious sources of this input data are: 

(a) from the robot manufacturer, and 

(b) through using manipulator and workplace measurement devices. 

If the robot simulator is used only in choosing a robot and designing a 

suitable workplace layout then the first of these sources can be 

appropriate. This approach is the one favoured by current suppliers of 

robot simulators. However, robot manufacturers usually supply only limited 

statistically averaged kinematic data concerning their manipulator with 

often little or no data relating to its dynamic behaviour. Thus whell 

compared with simulated results, a specific industrial robot will 

demonstrate both dimensional variations (resulting from manufacturing 

tolerances, backlash, deflection in manipulator links, control system 

resolution and deadband, etc) and unpredicted dynamic behaviour (viz: 

damping, following error, etc) as it is moved through its working envelope. 
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Example data sheets of robot kinematic characteristics are shown in appendix 

C. l. Clearly, any significant inaccuracies or omissions in specifying the 

robot and workplace model can lead to lack of confidence in the simulation 

results. 

This situation is further exacerbated when attempting to use the simulator 

to achieve the off-line generation of robot task programs. Here it is not 

sufficient for workplace elements to assume nominal positions, shapes and, 

where appropriate, dynamic behaviour. Nor can significantly large 

dimensional and dynamic behavioural errors in the manipulator simulation be 

tolerated. 

To date very little detailed technical information is published in the 

literature which documents the use of robot simulators in off-line 

programming applications. However, two approaches have been used in 

attempting to overcome modelling errors, (a) through two stage programming, 

the second involving the use of a teach pendant [BYG, 1988], and (b) throligh 

the use of workplace sensor(s) to calibrate the robot and it's workplace 

[El-Zorkany, 1984; Paul, 1983; Tarvin, 1980]. 

The use of a teach pendant to overcome modelling errors must be viewed as a 

retrograde step, unless the pendant is used only to establish a limited 

number of reference or datum points, whereas the use of workplace sensors 

vill incur a significant increase in complexity and additional cost. In 

fact generic robot calibration procedures have yet to evolve in an 

internationally accepted sense, resulting from the complexity involved in 

accurately measuring the position and orientation of workplace elements, let 
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alone their dynamic characteristics [ISO/DP8373,1986; ISO/DP9283,19861. 

However, the McDonnell Douglas Robotics Software suite includes an "ADJUST" 

module as an example of a specific solution to this problem through the use 

of a calibration probe, mounted on the face plate of the robot's gripper 

(the probe supplying feedback/input data to the robot/workplace model). 

Another common approach is the use of a trained vision system for 

identifying objects. The vision system will compare the objects in its view 

with the object models stored. When the vision system recognise an object, 

it calculates its orientation and the location of its centroid. This 

approach will be discussed in more detail later in this chapter. 

7.1 Sources of Error in Off-line Robot Programming Systems 

In practice, the robot does not go to the commanded location as predicted 

by the model or conversely the entities comprising the workplace are not 

precisely at the locations as defined in the CAD model. These 

discrepancies can be attributed to the following [Jeyachandra et al 1986, 

Yong et al 1985, Lau and Hocken 1984]. 

(a) Geometric/Static Errors 

(i) Numeric Accuracy of an Off-line Programming System 

The predicted location can be seriously affected by the numeric accuracy 

of the off-line programming system which is influenced by the algorithms 

used. In this way, for example, a small discrepancy in angle can lead to 
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a significant change in linear distance at a distance from the reference 

rame. 

(ii) Accuracy of an Off-line Robot Program 

The accuracy of an off-line program can at best be as good as the 

simulation model. 

(iii) Robot Parameters 

Insufficiently tight tolerances used in the manufacture of robot linkages 

can give rise to variations in joint offsets. Small errors in the 

structure can compound to produce quite significant errors at the robot 

end effector. 

(iv) Part Defects 

The same off-line generated robot program can function perfectly in most 

cases, but may occasionally fail resulting from the use of defective 

parts. 

Part and Tool Misalignment 

Part misalignments can cause problems requiring static calibration. 

However, tool misalignment is a serious problem which can not simply be 

calibrated. For example in an off-line programming system, the tooling 

or gripper is perfectly aligned with the robot end effector centre line. 
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The main problem is the actual tooling or gripper mounted on the robot 

end-effector. This can be very different each time a new tool is 

mounted. 

(vi) Difficulty in Determining Object Locations 

The difficulty in determining precise locations of objects with referelize 

to a datum within the workplace. The robot usually encompasses a large 

working envelope (i. e. variation in robot accuracy) but small tolerances 

on components require very good resolution. 

(b) Kinematic Errors 

(i) Nominal Robot Parameters 

The nominal geometry of a robot model (data obtained from design 

drawings) is normally used to derive the nominal robot kinematic 

functions (forward and inverse kinematic transformations). These nominal 

kinematic functions are often used in the robot controller for robots of 

the same model without taking into account variations in the assembled 

robots [Azadivar, 1987]. 

(ii) Insufficient Feedback Information 

Insufficient feedback information (e. g. position, velocity, acceleration 

and torque) processed by the robot controller. This is seriously 

affected by resolution which is defined as the smallest measurement 
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increment achievable by the feedback sensor(s), e. g. encoder, resolver, 

tachogenerator, force sensor [Birk, 1976; Ho, 1982; Benhabib et al, 

19871. 

(iii) Joint Encoders Misalignment 

Misalignment of joint encoders can cause serious problems, as eccentric 

movement of joints can produce unpredictable results. 

(iv) Numeric accuracy of the controller 

This is affected by the effects of quantisation, roundoff, sampling rate 

and other characteristics of the realtime control algorithms used i. e. 

not overcoming effects such as limit cycling, deadband, changing robot 

characteristics. 

(c) Dynamic Errors 

(i) Incompatibility between robots 

No two robots of identical configuration and model will behave exactly 

the same, and hence an off-line program for a robot with reasonably good 

accuracy may perform differently with another robot. 

(ii) Lack of rigidity of robot structure 

Lack of rigidity of robot structure (caused by the clearance in bearings, 
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bent and twisted shaft under different loading conditions may change the 

robot arm parameters). This can cause serious errors under heavy loading 

conditions and/or at high speeds. 

(iii) Numeric accuracy of the robot controller 

This is the same as described in (b)(iv). 

(iv) Steady State Error of Servomotors 

Steady state errors of servomotors caused by factors such as hysteresis. 
I 

backlash in transmissions, and drift. 

Transient errors 

(i) Stabilization 

Robots with hydraulic drives do not stablize until after a certain amount 

of warm-up time [Warnecke et al, 1982]. 

(ii) Environmental Effects 

Environmental effects such as temperature can adversely affect the 

performance of the robot e. g. heat generated locally in an arc welding 

operation. The effects of severe temperature changes may require the 

programmed path to be reprogrammed. In the example given by Nissley 

(1983), just the thermal expansion of the floor between the robot and 
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workpiece positioner amounts to about 0.18mm over a distance of 1.5 m due 

to a 10 degree C temperature change. 

The compounding effects of these errors across the whole off-line 

programming system can lead to a significant magnitude of errors 

particularly where dynamic characteristics are to be modelled. For 

off-line programming to become a practical tool it must at least be 

possible to accomplish final positioning adjustments automatically for a 

limited set of application scenarios. To achieve this a combination of 

approaches will be required: 

(i) the positional accuracy of the robot or a knowledge of inaccuracies 

has to be improved. 

(ii) more reliable methods for determining locations of objects within 

workplace need to be applied. 

(iii) relaxations of the tolerances of the components on which the robot 

has to work to improve the overall performance of the system. 

(iv) the incorporation of sensory technology should cater for the 

remaining discrepancies within a system but their inclusion will 

inevitably contribute penalties of cost and processing time. 
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7.2 Hethods Of Calibration 

Errors in off-line robot programming can be overcome by many methods, 

each of which has its own value dependent upon the application. In 

general, calibration can be categorised into three main groups viz: 

Simulation Model Calibration, Robot Calibration, and On-line Calibration. 

7.2.1 Simulation Hodel Calibration 

Calibration is required to cope with static discrepancies (i. e. 

geometric discrepancies) between the idealised CAD model and the real 

working environment. The simulation model calibration can be - 

subdivided into two sections, firstly, to measure correct location 

data, and secondly to update the CAD workplace model. 

(a) Measurement or Data Collection 

(i) On-line Editin 

This can be regarded as the simplest approach. The off-line 

programming system is used to generate the robot's sequence of motioa 

and location data. The off-line robot prdgram is verified by runninz 

it to check each programmed location. If any alterations are 

required, the robot is driven to the correct position by use of the 

teach pendant and the corrected locations are stored. This method J; 

applicable where a robot is being transferred from one workplace to 

another. The main purpose of off-line programming in this context i.; 

to generate the correct sequence of motions and logic with the correct 
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locations data taught by an on-line method. This method still 

satisfies the requirement to improve robot downtime. Clearly 

however, the 'percentage improvement' will be related to 

characteristics of the application and may not alone justify the 

increased sophistication introduced through utilising off-line 

programming. 

(ii) Datum Point Calibration 

In this approach, the robot is moved to a number of important 

reference points which are required to be as accurate as possible. Is 

for on-line editing, the robot can be used in defining these locations 

with the locations recorded and used to refine the original CAD model. 

off-line programs generated by this approach should not require any 

further on-line programming. 

This method is particularly useful for flexible manufacturing and 

assembly systems with a limited number of reference points. 

Palletising is a good example (figure 7-1) as the palletising 

positions are referenced to a single reference point. The teaching )f 

this datum and a limited number of points, to define the orientation 

of the reference frame should be sufficient to ensure that the whole 

program will perform correctly as predicted. 

(iii) Sensor Assisted Static Calibration 

This involves a simple calibration to obtain the locations (relative 

to the robot base) of the entities in the workplace by the use of 
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Figure 7-1 Datum point calibration used in palletising 

sensors without manual intervention. The location data is then 

uploaded to the CAD system and the original model updated using a 

calibration program. This has the advantage of producing a model 

which more closely represents the real workplace. This calibration 

method is accurate enough for other classes of application which are 

not properly dealt with using previous two approaches. Most of the 

tasks programmed off-line (using this updated model) will be accurate 

enough and there will be no need for inaccuracy correction (except in 

the case of dynamic effects). 

Spatial relationships between objects can be obtained through 

different methods ranging from the simplest to the most sophisticated. 

In one method, the robot is used as a digitiser to obtain the location 

and orientation of objects. However, with this method special tooling 

is required in order to obtain good accuracy. There are various ways 
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of achieving this calibration, and only two common groups of tooling 

are considered here: 

- probing/force sensing 

- vision systems 

First, we consider the simple form of probing. A pin with a square 

top is made which fits in the gripper to provide adequate squareness 

and alignment with the centre of the robot mounting flange. A force 

sensor installed at the robot wrist ensures that when the pin touches 

the object in calibration, the charge amplifier provides indications 

such that the x, y and z dimension can be monitored. This method 

remains simple whilst giving reasonably accurate readings. An even 

better approach is to use a probe that can provide indications as it 

attains the location required. However, these approaches can provida 

calibration in 2D only. 

A more sophisticated method might involve the use of a vision system 

whereby the location information of certain objects can be obtained. 

Robotic vision can broadly be classified into 2D and 3D. 

2D robotic vision is generally based on visible band lumination data 

and mainly deals with analysis, recognition and interpretation. In 

some cases, the shape of the object is not important, and only the 

features of the marks placed on these objects are desired for their 

unique identification. These marks can be handwritten, printed 

letters or geometric marks (i. e. fiducial marks). Also in some 
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applications, the locations of these marks are not desired, but the 

interpretation of the content of the mark may yield part identity. 

For example, a camera can be mounted on the robot arm at a fixed 

spatial relationship to the robot arm. The spatial relationship of 

the entities with respect to the robot base would be calculated 

through the compound transformation. This method is far more accurate 

than the previous method. However, the vision system has to be 

trained to recognise objects or entities in the workplace before it 

can pick up the location information of the entity concerned. This 

can be very time consuming unless the vision system can be programmed 

through integration with product design (i. e. access to product 

information contained in manufacturing or design databases). 

3D robotic vision is of growing importance in many applications. A 

major requirement of any robotic vision system is "robustness" which 

when properly enhanced will enable wider application of the techniqii, ý. 

An important operational requirement for robotic vision is that it 

should be capable of dealing with incomplete image or data due to 

glare or shadow, partial occlusion by other objects or even the robot 

arm itself. A desired attribute of a general robotic vision system 

would be the ability to develop at least some partial information 

about the situation such as a "hypothesis verification" so as to 

identify the part type, location and orientation. This hypothesis 

verification should be offered along with a measure of the system's 

confidence regarding the verification. Positioning accuracy is 

typically on order of 1 to 2 mm [Rueb and Wong, 1988]. 
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Error in vision tasks can translate into errors in physical 

manipulations. Manipulators, parts, and fixtures could be damaged or 

destroyed. High "value added" assemblies might need to be scrapped, a 

costly result of a sensory error. 

(b) Static Error Correction Through Updating CAD Model 

Currently, most of the available off-line robot programming systems 

are open loop systems. Thus no feed back information is available to 

the off-line robot programming system to refine the simulation model. 

If any discrepancy is found between the real system and on idealised 

simulation model, correction can only be made on-line without updati: ig 

the simulation model. If the off-line robot programming system is 

used for simulating manufacturing or assembly operations of families 

of parts or products, the inability of the system to update its 

simulation model may cause high inefficiency, especially in a CIM 

context. Due to this obvious reason, calibration and updating 

software modules were under consideration as one the necessary means. 

Software modules were coded in PASCAL to deal with calibrating and 

updating the simulation models, and thus a closed loop off-line 

programming system is attained. Two separate approaches have been 

used in this enhancement: single level approach and hierarchical 

approach. 

(i) Hierarchical Approac 

The hierarchical approach is designed for calibrating and updating a 

specific robot workcell with a four axis Adept One robot. The 
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hierarchical approach involves two separate software modules, namely 

CALIB and UPDATE. The former reads in the location data file. The 

location file contains the names of the locations and their positions 

and orientations. Each location can be identified by one touch point 

if the object is so small (normally used for small workpieces), 

particularly in the case of an entity that is symmetrical i. e. the 

orientations of the entity does not create any orientation problem. 

The orientation of the robot gripper is used as the orientation of the 

workpiece. The robot controller does not accept two locations of the 

same name, and hence to keep more than one touch point for the same 

entity at the same time, the name given to the locations must be the 

same as used in CAD model but each with a suffix I'. aIIv ". b", 11.0 etc. 

The calculation of the orientation of the entity frame is illustrated 

in figure 7-2. Alternatively, the orientation of an entity can be 

obtained through the FRAME function which is specific to VAL II or 

could be done with equivalent functions that are available in other 

robot languages. This function requires three positions to identify 

the orientations of the entity relative to the robot. 

The CALIB module reads in the location data file, and subsequently 

identifies each unique object name with its corresponding location 

data. The location information stored in this file represents spatial 

relationships between entities and the robot base. Since the CAD 

model stores information in a hierarchical order, the CALIB module 

searches through the original CAD model database to obtain the name -)f 

the owner object and its relationship with respect to the robot base. 

It calculates the new spatial relationships between entities and their 

owners at a level above in the hierarchical structure. The results 
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are stored in a new location file ready for updating the original 

simulation model. The software design is described in figure 7-3. 

The UPDATE module reads in the updated location and orientation 

information and searches through the original GRASP model in order to 

update the entity's location and orientation. A new GRASP model with 

new entities is produced. Figure 7-4 illustrates the functionality 

involved. 

ii) Single Level Approac 

The single level approach involves a PASCAL module called VALTOGRASP. 

This module reads in the locations and orientations of entities that 

have been calibrated, and the appropriate syntax for GRASP is produ(,, Bd 

(with transformations between the entities concerned and the robot). 

GRASP is automatically invoked, and the original GRASP simulation 

model loaded. Finally the generated GRASP syntax inputs are fed int. ) 

the simulator. The simulator accepts the GRASP transformations which 

are used to recalculate the spatial relationships between the robot 

and the entities within the workplace model. Figure 7-5 is a 

functional diagram representation of the logic design of the software 

module. Appendix C. 2 shows an example output from this module. The ljýwly 

created model should closely represent the real environment and thus 

the inaccuracies are reduced. 

There is another possible approach which is potentially a more 

interactive method of updating a CAD model, but it is possible only if 

the robot simulation software has the ability to read in calibrated 

data directly from the robot controller via an interfacing unit. 
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Theoretically, once the calibration is accomplished at any one point, 

the calibrated position and orientation would be transferred directly 

and automatically into the robot simulation. 

Calibrating and updating a CAD simulation model with the use of the 

CALIB and UPDATE approaches can provide a new simulation model in a 

source file (text) without any changes in the hierarchy of the data 

structure in which the entities' geometric relationships are stored. 

This provides the advantage of always keeping existing simulated robot 

task programs in a valid condition. However, this method requires the 

use of an existing reference database which has been generated when 

the simulated robot task program has been pre-processed for off-line 

robot program generation as described in chapter five. This method 

restricts the calibration to be accomplished from top down i. e. thý. 

entity at a higher hierarchy should be calibrated first and then 

entities belonging to this entity. In the CALIB module, it is assumed 

that there would be no change in the owner objects location and 

orientation for any owner objects that have not been physically 

calibrated. The geometric relationship of the owner object stored il 

the database is used for transformation matrices concatenation. Thi3 

may introduce error due to incomplete information obtained during thý 

calibration. 

The VALTOGRASP approach is flexible, and it utilises existing 

facilities residing inside the robot controller and the GRASP robot 

simulation package. For example, there is a frame function in VAL I*E 

which can return the location and orientations of a datum position. 

This approach is more efficient than the hierarchical approach. 
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The calibration procedures and software modules can also be used with 

the on-line editing and the datum point method described above. 

7.2.2 Robot Calibration 

Industrial robots are generally applied to routine work and on-line 

teaching methods are normally used to programme these robots. Since the 

robots or manipulators are required to perform their programmed tasks 

repeatedly, they are heavily reliant on their repeatability. Due to the 

nature of the work and the programming methods, robot designers have 

placed great emphasis on robot repeatability. Most of the currently 

available robots show satisfactory repeatability but poor accuracy 

[Driels and Pathre, 1987] (this being the de-facto situation unless 

Cartesian robot coordinate systems are utilised). 

Many robots can also be programmed by language commands. Moreover, wit, 11 

the advent of Computer Integrated Manufacturing, robots must be 

programmed off-line; hence robot accuracy is becoming important to 

utilize off-line programming techniques based on CAD databases. This 

means the robot end-effector is commanded to attain numerically specif-1--d 

positions and orientations with respect to a reference frame or datum. 

In other words, with this type of programming, positioning based on 

commanded locations requires a high degree of robot accuracy. However, 

the actual attained position may be quite different from that which the 

programmer desires, for example, as Baird and Lurie (1983) observed with 

the PUMA 600 manipulator, inaccuracies of up to 10 mm exist over a 200 mm 

straightline path. 
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In the past, there was a lack of an explicit mathematical model to 

analyze the errors. This means that the kinematic design of a robot 

manipulator could not be optimized. There has been growing interest and 

awareness in the importance of robot accuracy, and considerable 

improvements have been made. Still, there are accuracy problems which 

need to be drawn to the designers, and users, attention. These accuracy 

problems are attributed to the kinematic functions (not perfect) and the 

inaccurate knowledge of the workpiece reference frame in relation to the 

robot reference frame. The nominal robot kinematic functions are derived 

from the nominal geometry of a robot (with information obtained from the 

design drawings). These kinematic functions are often used in the robot 

controller for robots of the same model without taking into account the 

variations (manufacturing tolerances of robot components) in the 

assembled robots. 

For off-line robot programming, the success or otherwise of the 

programmed task relies on the accuracy of the robot used. Because of Oe 

accuracy problem, programming a robot with off-line programming methods 

(i. e. without teaching the desired locations) will not permit the robot 

to perform satisfactorily. For this reason, it is important that the 

nominal functions can closely fit in all of the robots of the same model. 

This means that the tolerances specified in the design drawings have to 

be tightened. The manufacture of accurate robot components would make it 

a potentially expensive approach to improving positioning accuracy and 

may be considered as commercially not possible. An alternative approac. -I 

(and likely to be a more economically viable approach) is robot 

calibration. Robot calibration is used to analyze the exact geometry o! 

each individual robot to establish its unique kinematic functions [Cheri 
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and Chaop 1987]. once these robot kinematic functions are established, 

its inverse kinematic functions can also be obtained. These forward and 

inverse kinematic functions can replace the nominal ones used in robot 

controllers. In its simplest form, robot calibration can be described is 

a process whereby robot accuracy can be improved by modifying the robot 

positioning software (i. e. forward and inverse kinematic functions). 

The improved robot accuracy makes off-line robot programming methods more 

readily applicable and suitable. This means that a robot task can be 

programmed based upon (entirely) numerically specified locations or onl!, 

a few reference frames (data) have to be taught and all other positions 

can be specified as relative coordinates with respect to these taught 

positions. This also makes robot task programs more readily 

transportable from one robot to another (either a robot of the same or 

different model). 

(a) Robot Calibration Levels 

Although the procedures involved in robot calibration vary widely it, 

their complexity (some deal with joint transducer information, Some 

consider the entire kinematic model, and some even consider the 

dynamic model), most of the current robot calibration approaches call 

be categorised into three levels [Whitney et al, 1984; Roth et al, 

19871 viz: joint, entire robot kinematic model, and dynamic model. 

(i) Joint Level Calibration 

The purpose of calibration is to determine the correct relationship 

between the signal produced by the joint displacement transducer and 
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the actual joint displacement. This usually involves calibration ot 

the kinematics of the drive and the joint sensor mechanisms [Azavidar, 

19871. The actual calibration procedure could be carried out using 

laser interferometry or similar techniques [Driels and Pathre, 1987]. 

The error motions can be tabulated and stored as a function of the 

joint variable. These error motions are likely to change very 

gradually with change in the value of the joint variable and so will 

be constant over a small range of motion of the Joint. 

(ii) Entire Robot Kinematic Model Calibration 

The goal is to determine the basic kinematic geometry of the robot a... 

well as the correct joint angle relationships. With knowledge of the 

manufacturing tolerances, the Cartesian error envelopes for the 

designed kinematic parameters can be predicted [Stone et al, 1986; 

Veitschegger and Wu, 1986]. Though a calibration method at this level 

can correct the kinematic errors of a robot, it complicates the 

controller's task in solving joint transformations. 

(iii) Robot Dynamic Model Calibration 

This applies to robots under dynamic control. If any changes in 

dynamic conditions of a robot are identified, then a correction for 

the changes will be made in the dynamic model. The dynamic errors 

considered here, are also referred to as "non-geometric" or 

"non-kinematic" errors in the literature. These non-kinematic errors 

in positioning of a robot end effector are due to effects such as 

those discussed earlier in section 7.1(c). At the present, not many 

- 180 - 



attempts have been made at this type of calibration. 

(b) Robot Calibration Procedures 

In general, the robot calibration process can be considered [Roth et 

al, 1987; Okada and Mohri, 19851 to include four major steps viz: 

(i) Modelling Ste 

The first step in the calibration process is to choose a suitable 

functional relationship (i. e. nominal kinematic functions). 

(-ii) Measurement Step 

This involves the collection of data (position and orientations) froia 

the actual robot that relate the input of the model to the output. 

There are three common methods available for measuring robot accuracy 

and repeatability. The cost of the measuring equipment varies 

according to the accuracy required which in turn depends on the 

application. Some of the more commonly used methods can be found in 

Lau and Hocken (1984). 

(iii) Identification Step 

The collected data from the measurement step are mathematically 

processed to identify the coefficients in the model. This means the 

process is to determine the expected error in the identified 

coefficients due to measuring error. 
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(iv) Correction Step 

After the coefficients of the model are identified, a new model of 

position control software of the robot can be implemented. 

(c) Possible Extensions of Robot Calibration 

(i) Kinematic Error Happin 

Robot kinematics can be considered as consisting of an infinite number 

of static positions. If this assumption holds, kinematic errors can 

be considered as a series of static errors i. e. kinematic errors 

frozen at points in time. In this situation kinematic error mapping 

can become a valid tool for error correction as an alternative to tll-! 

kinematic equation formulation and calibration. 

The mapping involves the accuracy testing of a certain area of the 

workplace where the robot is to perform its tasks. Typically this 

could be the assembly bench. The accuracy test is carried out at 

different speeds within the allowable operating range. The results 

are stored as a database which subsequently can be used in correcting 

inaccuracy of the off-line generated locations and orientations. This 

method also involves the writing of a software module for the search 

through the database to obtain the required offset correction. 

Suppose, the robot is commanded to move to location x at a certain 

speed specified in a robot simulator, the correction software should 

search through the database and use it as a look up table for the 

offset at the right speed range and the approximate position. The 
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offset is then added to the off-line generated locations. 

(ii) Adaptive Control - Dynamic Error Compensation At Robot 

Controller 

The method proposed by Lee et al (1989) was implemented by modifying 

the resolver feedback signal by the predicted error. A new trajectory 

control of a robot is proposed based on the off-line trajectory erroc 

analysis of the system (see figure 7-6). An Adaptive Linear Modelli. ig 

algorithm [Astrom and Eykhoff, 1971; Eykhoff, 1974] based on the 

Recursive Least-Squares method [Strejc, 1980] is used to determine the 

approximation model. The principle of the implementation is that 

resolver signals are converted into joint angles (0i). The 

world coordinates (Px, Py, Pz) corresponding to the measured joint 

angles (01, ()21 e3 ) are calculated using the direct 

kinematic transformations. These world coordinates are then modified 

by the predicted error (Ex, Ey, Ez). The modified coordinates are 

finally converted back to resolver signals and returned to the robot 

controller. This method has been shown to achieve a 70 % reduction Ln 

errors. 

This method tackles the problems of control, and requires experiment-11 

data to determine the approximate behaviour of the robot model. In 

this respect, it is specific to the off-line programming system 

concernedp and hence not general enough for different robot models. 

Although the claims of improvement in error seems quite promising, 

there are still problems of resolution and deadband. 
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(iii) Dynamic Robot Simulators 

This type of robot simulator considers dynamic effects as well as the 

kinematic inaccuracy of a robot. At the present time only a very 

small number of dynamic robot simulators are commercially available 

(more detail was described in chapter two) including STAR, ROSI and 

ROBOT-SIM. Using this type of robot simulator, the dynamic effects of 

a robot can be predicted and therefore dynamic errors or inaccuracie3 

can be corrected. Unfortunately, dynamic robot simulators can only )e 

used to predict the performance of a limited number of robot types d., Ie 

to the many difficulties involved in the formulation of correct 

algorithms. Howeverl the algorithms themselves are subjected to 

errors due to measurement errors and error sources that are 

probablistic in nature. Thus, dynamic robot simulators provide a 

solution to the specific problem and the generic solution has yet to 

be developed. The development of a generic algorithm for predicting 

dynamic behaviour of robots of different configurations can be 

considered as an impossible task. 

It is not simple to assess the relative significance among all dynan[c 

error sources. The significance varies from model to model. 

Experiments can be attempted to yield some measured values, but it 11? Ly 

still be difficult to distinguish among the contributing sources JCII, ýn 

and Chao, 1987). Furthermore, it will be very time consuming to 

perform measurements for the individual robots to obtain error valu(!, - 

which will be accurate enough to achieve the desired accuracy in 

position computation. 
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The simulation model calibration relies on robot repeatability and 

hence the data collected is not perfect. In addition, the robot 

calibration itself is also subject to inaccuracy due to error in the 

measuring devices and some unpredictable errors. On-line calibratioa 

may therefore be necessary to deal with the remaining inaccuracy. 

Normally, the simulation model, robot calibrations, and the refined 

kinematic/dynamic functions should be good enough for most 

applications. 

7.2.3 On-line Calibration Methods Mapped Onto Operation Classes 

As described earlier in chapter six, robot applications can be broadly 

grouped into pick and place, palletising, machine tending, assembly and 

welding. The existing calibration methods have been discussed in 

previous section and these methods are to be mapped onto existing 

application areas. 

(a) Pick and Place Operation 

Pick and place is the fundamental robot movement that other application:; 

are based upon. Pick and place operation can be regarded as the simplest 

and therefore a simple calibration method is suitable (in terms of cost 

and accuracy). In most circumstances, the on-line editing approach is 

suitable for this type of application where the number of operation 

positions are limited. 
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(b) Palletising Operation 

In palletising operations, the robot operation positions are normally 

referred to a datum point such as the coordinate frame of a pallet, and 

thus the datum point approach is more appropriate. This is simple and 

yet accurate enough to provide good calibration. This calibration metlt)d 

can only be applied to palletising operations where the objects which El.. -e 

to be manipulated need not be distinguished from one another. If the 

palletising operation is dependent upon the object type, then some mea113 

of identification such as bar coding is required. The bar code reader is 

then used before the palletising operation is to begin. An alternative 

approach is to use a vision system to distinguish the object type as w(! Ll 

as for calibration purposes. This will however generally result in 

higher cost. 

(c) Assembly Operation - Electronics 

In electronics assembly, two-dimensional vision systems can be used for 

calibrating the workcell arrangement. Here the datum point approach with 

the assistance of a two-dimensional vision system is the most appropriate 

method of calibration. 

In printed circuit board (pcb) assembly, there are two major types of 

entity that require calibration. With the off-line program, calibratioli 

is required to locate the delivered location of the electronic components 

and the location of the pcb where these components are to be assembled. 

Force sensing on the pcb coordinate frame is not possible due to the fact 

that a small external force disturbance can cause misalignment of the 

pcb. The alternative is to apply vision techniques to locate the pcb 
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coordinate frame. However, in the absence of a multiple camera vision 

system and for economic reasons, it would be better if the calibration if 

the coordinate frame of the electronic components (delivered by the 

feeding device) was carried out by teach without force sensing. The 

calibrated locations and orientations can be stored at the robot 

controller for use in assembly. Alternatively, in the case of assembliag 

families of products then the locations and orientations of the 

electronic components delivered should be fed back to the simulation 

system for updating the simulation model. 

(d) AssemblY Operation - Mechanical 

The use of sensory information can provide a method for correcting both 

static and dynamic errors. Let us consider the three possibilities of 

this approach where the batch size is the determinant factor. The thre.! 

possibilities are: one off, batch and large product families solutions. The 

starting point in task calibration is that one is given a robot program 

for a given task along with all location data. All locations where 

accurate positioning is necessary are identified and assigned unique 

names in the location data file (unique names are the same as used in a 

CAD model). It is assumed that the robot will be stationary for some 

duration during normal task execution. For accurate assembly tasks, su. -, h 

as peg in hole insertion, assembly might require the assistance of a 

force sensor at such stationary points during program execution (i. e. at 

the points of insertion). The forces and torques exerted on the robot 

gripper can be sensed assuming that the correct component is being 

correctly fed and gripped. If this force is greater than the pre-set 

threshold value then the robot control software will conclude that 

insertion is not being attempted at the right location and therefore the 
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normal assembly routine is interrupted and a VAL II program with search 

pattern is called up to find a location where the force exerted on the 

gripper is less than the accepted value. From then the location is 

either used for insertion or the location is updated and the normal 

assembly routine is resumed. The choice is dependent upon the batch size 

involved (i. e. dependent upon the period of repetition). Three 

possibilities are open for consideration: one off, batch and large 

product families solutions. 

(i) One Off Solution 

In this method, an off-line program is linked up to the on-line sensory 

search program through the use of a compilation program. This involves 

writing different VAL II (or other programs) to do a variety of search 

patterns in which the precise locations can be found. Another VAL II 

program is used to combine the off-line program with the search program. 

These location search programs when completed should be stored to buila 

up a library. As more programs are written, the library will be expanded 

so that it will be easier for the programmer to retrieve the appropriat. a 

program for the type of job required. Since the robot is to be used 

once, the correcting of locations and orientations may not be necessary 

(as the sensor search program may be used each time a task is performed). 

This may take a long time and is inefficient for batch operations. 

(ii) Batch Solution 

This is similar to solution (i) above, except that the locations and 

orientations are updated and stored in the robot controller. In this way 
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the search routine is not invoked for the second and subsequent 

operations of the task, except possibly through exception handling 

invocation. This significantly reduces the cycle time. 

(iii) Large Product Families Solution 

This is very much the same as solution (ii) above, but the updated 

locations and orientations are fed back to the robot simulator to modify 

the original simulation model. This solution has the advantage of beirg 

capable of accommodating large families of products where frequent 

reprogramming of the robot task is required. This raises interesting 

issues as to whether the modelling/simulation tools could be used with 

advantages in the robot controller where high speed information 

access/processing can be utilised. 

For any simple mechanical assembly with parts locations and orientatioll; 

pre-determined, force sensing would be just good enough. However, for 

complex assembly where parts and subassemblies are not always delivered 

in a fixed sequence nor located at fixed locations and orientations, 

compliance force sensing is not capable of identifying parts. 

Three-dimensional vision can be advantageous in this application, which 

can be used at a distance to identify and locate the parts in the field 

of view. The assembly process is monitored by compliance force sensing 

while the parts and subassemblies are in contact. This is particularly 

relevant when the parts and or the subassemblies are seriously misalignad 

and the compliance force sensing cannot accomplish the task alone 

[Russell et al, 1989]. 
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(e) Welding Operation 

A welding operation also requires calibration before the welding process 

is executed. Tactile sensors can be utilised to calibrate weld start EtAd 

finish locations and orientations and to guide the robots in performing 

the welding task. In this application vision systems are rarely used for 

two major reasons viz: the severe lighting generated by the arc weldin,; 

can seriously affect the performance of the vision system and the field 

of view of the vision system can only cover a part of the object or 

objects and hence it is not possible to train the vision system for 

recognition. 

7.3 General Conclusions 

In general robot accuracy depends upon the rigidity of the robot 

structure, link parameters and other factors earlier discussed. 

prismatic Joint will generally be more rigid than a revolute joint and 

hence the error or inaccuracy introduced by a revolute joint is 

considered to be more significant. 

It is evident that many of the error sources identified here are not 

easily quantified. Sometimes the best that can be done is to make a 

carefully judged estimate of error magnitude. It is probable that many 

users of robotic systems do not have a complete understanding of the 

positioning error sources involved. Even when error sources are well 

understood, it is often difficult to get the required accuracy at an 

acceptable cost. These factors lead many systems to operate on the ourm 

fringes of acceptable accuracy. Such systems require constant monitori. ig 
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by the programmer and frequent "touch-up" is necessary to maintain the 

path programmed. 

In general, simulation model calibration is a sensible approach to modify 

discrepancies between the idealised CAD model and the real world 

environment. Although the robot calibration methods of formulating an 

accurate kinematic function or static error mapping can be useful in 

correcting kinematic error (assuming the robot is stationary at a certain 

point in time), the variables involved which may affect the robot 

performance makes the calibration too time consuming. In precise 

operations where accurate robot movement is required, static error 

mapping does not provide the necessary information on how a robot will 

behave dynamically. For this reason, methods of dynamic error 

compensation are required, in the form of dynamic robot simulators or 

dynamic effects prediction. However, each robot model can only represent 

a particular robot since no two robots are identical in every aspect eArBn 

if they were of the same model and supplied from the same manufacturer. 

Their dynamic behaviour will also suffer variation from time to time dil! 

to maintenance, temperature changes, etc. This makes the dynamic 

equations difficult to develop and the advantage of this approach will 

not be realised until these barriers can be overcome. Perhaps, the 

residence of a robot simulator in a robot controller would provide the 

necessary functionality. 

Although, geometric, kinematic and dynamic accuracies can be improved, It 

is expected that there will always be residual inaccuracy inherited in 

the whole off-line robot programming system. On-line sensory feedback 

can be used for the remaining inaccuracy. Force sensing can assist the 
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robot in carrying out assembly tasks, but the searching time (for 

ensuring the assembly is attempted at the right position and 

orientations) involved are usually quite significant (depending on the 

precision of the operation) even in a simple assembly operation. An 

alternative solution is to use vision systems to locate the centroid of 

each of the assembly points concerned. Although the search time can be 

improved, recognition time can become significant and should require 

further consideration. Furthermore, uncertainties arises in the centrold 

positions (normally it is small and may be regarded as second order). 

If one-off assembly with many assembly operations (i. e. assembly point3) 

is to be carried out, force sensing and vision systems are inadequate 'L3 

the searching/recognition becomes a large portion of the total cycle 

time. This problem is particularly prevalent where families of product.; 

are to be assembled. A typical example is in electronics components 

insertion, where hundreds of items are to be inserted in a printed 

circuit board. In addition to the long search time required, force 

sensing could disturb the pcb location. An alternative is the 

integration with CAD product design data so that there is no need for 

searching, insteadv one teach point (i. e. the frame of pcb) can be used 

as a reference point, to which other electronics components are referred. 

This integration approach is discussed in chapter eight. 
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CHAPTER EIGHT 

INTEGRATION OF PRODUCT DESIGN DATA WITH 

AN OFF-LINE ROBOT PROGRAMMING SYSTEM 



8.0 Introduction 

At the present time most CAD systems operate as isolated islands of computer 

technology. However, as previously discussed, the goals of CIM cannot be 

fully realised without utilising electronically the information created at 

product design for administering, organising and programming the 

manufacturing machines. Thus the output from a CAD database will have 

limited practical value unless it can be used to support decision making 

processes and ultimately facilitate the generation of machine programs 

(including NC programs, robot programs etc). Thus future CAD/CAM systems 

will be more fully integrated with other factory computer systems with 

design information forming part of an integrated database which is likely to 

be distributed [Rui et al, 1988]. Thus for each product, design engineers 

will develop a product model and enable manufacturing engineers to reference 

it using a CAD/CAM system to perform operations such as manufacturing 

planning, assembly and inspection. Each of these functions will access the 

same product model and add its own information to the database. 

As indicated earlier, future generations of robot simulator are expected to 

have an increasingly important role in the evolution of CIM systems. To 

provide an insight into one fragment of this problem, the possible form o.: 

an interface to product design will be considered. 

Consider the specific case of an electronic manufacturing environment where 

a robot is to be used to insert "odd form" components into a family of 

printed circuit boards (pcbls). Suppose also that the pcbls are to be 

manufactured in small batches and have been designed using a proprietary CAD 

facility. In such an instance, various information concerning the artwork 
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on the pcbls, the components types and their geometry and the required 

location of the components on the pcbIs will be stored within libraries in 

the pcb design system. Although this information is likely to be stored 

using proprietary data formats, it will exist in a machine readable form and 

can be utilised in generating the product model for robot simulation. 

Clearly, however, a data link of some form (which may be automated or 

involve manual intervention) must be established and processing facilities 

provided to reformat the information into data structures which can be 

integrated with the workplace model. Such an arrangement could yield 

significant advantages where the importance of better integration into CIM 

is evidenced as a measure of productivity [Groover, 1980 and 1987]. As 

reported in Computing Equipment (1985), a productivity ratio of 4 to 1 

exists in favour of using CAD in comparison with manual methods. 

Furthermore, according to this study when CAD is fully integrated into CAM, 

the productivity increase is of the order of 40 to 1. Although the 

productivity increase attainable will be industry' and 'application' 

specific in nature, the opportunities for lead time savings is a major 

driving impetus for this study, and indeed other studies worldwide, where 

robot/workplace simulation and off-line programming are involved. 

The specific study presented in this chapter serves to illustrate that for 

robot simulators the modelling process can be considered to comprise three 

constituent elements, namely a model of (i) the robot manipulator, (ii) the 

robot workplace and its tools, and (iii) the product. Having chosen a robot 

and determined its attendant workplace equipment, the arrangement so formed 

will remain fixed in most situations and so too will their associated model 

elements in any simulation. However, when batch manufacturing is involved, 

changes in the product occur which may or may not have implications with 

- 195 - 



regard to tools, feeders and fixtures. Thus where a large family of 

products are involved, or where complex geometric descriptions of products 

are concerned, a link to product design can be of significant benefit. 

Furthermore, significant benefit can be gained by establishing data links to 

other computer based manufacturing activity areas. For example an interface 

to an automated process planning system could access valuable information 

concerning the sequence of manufacturing operations to be performed. In our 

pcb assembly example process planning information might already exist, in 

machine readable form, describing the sequence in which sub-tasks should be 

performed in the simulation process and subsequently in the robot task 

program. 

The success of any integrated solutions as described will utimately rely 

heavily on the success of standards initiatives such as MAP/TOP, EDIF, IGES, 

PDES, IMDAS and AUTOMAIL as described in chapter three. Such specifications 

will allow manufacturers to supply their automation products with standard 

interfacesy thereby allowing standard product descriptions to be stored and 

transmitted across these interfaces. 

Integration of a printed circuit board design system (REDBOARD) with an 

off-line robot programming system (GRASP) has been implemented as part of 

this study to illustrate possible problem areas in establishing integration 

and thereby to evolve methodologies inherent in such integration exercises. 

A printed circuit board design system will provide the designer with 

facilities for pcb layout design, but it should also reduce the need to 

manually produce a mask for pcb artworks, define electronic components 

insertion locations etc. This linking of design and manufacture/assembly 
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information is of course not restricted to the electronics industry, but 

also applies to the whole engineering spectrum. In many ways, however, pcb 

application areas provide a sensible starting point for study as such 

products are simple in the sense that their functionality is not usually 

related to their 3D shape as is often found in many conventional 

electro-mechanical and mechanical products. 

The particular printed circuit board design system used in this study was 

the REDBOARD software which was produced and supplied to run on an IBM PC/AT 

by RACAL-REDAC Limited. When designing the layout of a printed circuit 

board with REDBOARD, the module called PCB is invoked. A library of 

electronic components is available within the system, and includes a 2D 

description of most common integrated circuit chips (IC's) available today. 

From this libraryt specific electronic components can be selected and 

located with respect to a 2D graphical representation of the printed circuit 

board. After all the electronic components have been placed at their 

desired locations, connections can be routed either manually or 

automatically using the AUTOROUTE function. 

The completed design is stored in a binary format which is only meaningful 

for this particular system, i. e. the information is stored using 

proprietary data structures and formats. At the present time, the 

RACAL-REDAC company supply various postprocessors to enable the design 

output to be used for plotting the pcb artwork for photographic processing, 

generating NC programs for drilling and cutting out the outline of the pcb, 

and generating assembly programs e. g for Automatic Component Insertion (ACI) 

machines. Although REDBOARD provides output information which can be used 

in the programming of a variety of processes associated with pcb manufactitre 
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and assembly, there are many other CIM activities which require reformatted 

fragments of this information. Examples of such entities are robots, vision 

systems, cell controllers (i. e. computer systems used to support decision 

making and control functions for a group of manufacturing machines or 

assembly workers) and shop controllers (i. e. providing decision support and 

control functions for a shop, such as an assembly or drilling shop). Here 

we are primarily concerned with the use of the information for the 

programming of robots (which can of course be classified as a general 

purpose programmable machine). 

The binary output from the REDBOARD design system is not directly suitable 

for further post-processing for the creation of robot programs. The 

information can however be converted into a text (ASCII) file, using a 

REDBOARD system software module (called PASCH). The text file generated 

contains information which can be processed via the author's processing 

modules to produce three dimensional solid models (based on Boundary 

representation) of electronic components, and the pcb for use in the GRASP 

robot simulator. Significant potential, in terms of time savings in the 

design to product cycle, is promised if robot-independent programs can be 

generated for electronic component insertion, based on the use of existing 

design data. 

8.1 Discrepancies Between the Design and Off-line Robot Programming 

Systems 

Necessarily, this study has centered on the use of specific design and 

off-line robot programming systems through the use of REDBOARD and the 

GRASP simulator extended by the author. The study has highlighted six 
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major discrepancies between the specific pcb design system and that of 

the chosen off-line robot programming system. Although those 

discrepancies listed below are thus related to specific properties of the 

combination of GRASP and REDBOARD, they illustrate features of the 

general integration problem. 

(a) Purpos 

Generally, the current generation of pcb design software tools are 

clearly intended for design purposes. Hence, apart from producing masks 

for the artwork and NC tapes for drilling through holes, they have not 

been conceived to serve other purposes. In particular there is no 

information concerning assembly sequences or pick up points. A process 

of iteration is considered by the author to be inevitable here, with the 

needs of CIM specifying the characteristics of future design tools. 

(b) Model Representation 

The REDBOARD system produces a two dimensional pcb layout design whilst 

GRASP uses a three dimensional solid model representation. There is a 

lack of information in REDBOARD concerning the third axis (component 

height) and generic conversion from a two dimensional to a three 

dimensional model or representation is not possible. In the pcb assembly 

application examples studied, this problem can largely be solved by 

assigning individual parameters to the third dimension of components with 

the thickness of the pcb usually being constant for a given product (this 

being the method used in this study), --although pcb1s of different 

thicknesses and types (e. g. multi-layered boards) must be catered for in 
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general case. 

(c) Spatial Relationships 

Major discrepancies relating to spatial relationships may occur. For 

example with REDBOARD, the locations and orientations of electronic 

components on the pcb are referred to the current pins at the bottom left 

hand corners of the electronic components after any rotation. However, 

with GRASP the objects' locations and orientations are defined by 

relating the objects' frames to the frame of the pcb. The principles 

embodied here are illustrated by figure 8-1. 

Resolution 

The increment in dimension (i. e. the resolution with which modelling 

occurs) must be consistent. For example, the parameters given in 

REDBOARD are normally (but can be modified as required) in units of 

0.635mm (4 units being equivalent to 0.001 inch, i. e. the pitch between 

pins on many IC's) compared to the 1mm unit of GRASP. 

e) Dimensionin 

A further problem identified relates to pcb design systems where 

generally the outline dimensions of components are the nominal sizes 

rather than the actual dimensions. The difference in dimensioning is 

shown in figure 8-2, and clearly can have significant implications when 

accomplishing the actual assembly functions. 
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(f) Data Format 

The way in which information is represented and stored will generally be 

different between the design and programming systems. For example, the 

syntax or data format used in the REDBOARD design software is 

significantly different to that of the GRASP robot simulator and reflects 

many of the observations made in (a) to (e) above. Appendix D. 1 provides 

examples of the formats of the two systems. 

8.2 Design Approach Used for Integrating a CAD System with an 

off-line Robot Programming Syste 

The purpose of the integration software evolved in this project is to 

bridge the discrepancies between CAD and off-line robot programming 

systems and to provide a platform for generalisation. Again the actual 

software implementation which achieves this is specifically designed to 

integrate REDBOARD and enhanced GRASP entities, but the underlying 

rationalle was to create a mechanism for generalisation. This section 

describes the software produced. 

Since the REDBOARD design system can only provide two dimensional 

information concerning electronic components, this information must be 

converted into three dimensional form for subsequent GRASP solid 

modelling and for robot task simulation. The required locations and 

orientations of the components on the pcb are used as the destinations 

at which the components should be assembled. However, no information 

is available within REDBOARD to define the pick up positions 

(i. e. the position of feeders for the electronic components) which 
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itself can present complex problems. The integration software evolved 

generates text files which contain GRASP syntax describing (i) solid 

models of pcbý and the associated components, (ii) pick up location 

assignments and (iii) task simulation programs. 

A program describing the robot assembly task is generated which is 

suitable for the specific robot simulator. 

In the case of creating a new model, spatial information may not be 

available concerning the workcell arrangement. That is, the location of 

pick up points and the working frame of the pcb board may not be known 

initially, and the practice of teaching reference points of the model was 

conceived, based on "on-line" teaching methods. When using this practice 

human intervention takes place to calibrate the workplace such that 

positional and orientational information of key elements (obtained using 

the on-line teach methods described in the previous chapter) are fed back 

to the simulation system. In this example the required feeder positions 

and the pcb coordinate frame are updated, ready for simulating the 

assembly performance and eventually producing an off-line robot program 

for the assembly task (figure 8-3 conceptually illustrates the principles 

involved). 

The methodology derived does not exclude the approach of allowing the 

simulation to proceed with key elements located at arbitrary 

predetermined positions and orientations, thus permitting an initial 

evaluation of the model. Subsequently, however, the exact locations and 

hence the "on-line" teaching of locations and frames will be required. 

In certain circumstances teaching can be viewed as a "fine tuning" 
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exercise. For example the arbitrary positions can be calculated 

approximately or may have been established in the generation of other 

similar models. Since a gripping mechanism (which may involve vacuum 

pick up) is required to hold each IC chip (normally at its centroid), 

each component in the GRASP model is affixed with a pick up reference 

frame midway from the object's frame as shown in figure 8-4. Clearly, 

however, other offsets could be included as required. In order to 

improve the human machine interface to the 3D simulation facility, a 

drawing of each component is shown on the pcb such that any error can Iv! 

visualised. In addition, a target frame is assigned to each 

corresponding assembly position, to which the insertion locations are 

referred (see figure 8-5). 

Many of the integration problems that have been overcome are specific to 

the facility created by the author. Using contemporary pcb design 

systems like REDBOARD, the order in which components are assembled is r. ot 

specified as part of the design process. Several ways of dealing with 

this situation have been considered whereby sequential information can be 

created. The first approach implemented is simple but is not 

particularly practical as it involves a sequence assignment equivalent to 

the order in which components appear in the CAD database. Subsequently 

more realistic approaches were developed using a pseudo process plan 

which specifies assembly sequences. In using these approaches, a motion 

sequencing facility is incorporated in the post-processor which is based 

on an illustrative set of rules (as explained in section 8.2.3). 

The whole approach is depicted by figure 8-6a and b which illustrates the 

role of the required pre- and post-processors. 
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8.2.1 SFC Pre-processor 

Since there was no neutral data format in existence, the integration 

of the pcb design system with the robot simulator can be achieved 

through using pre- and post-processors. The implementation of this 

method is specific to the design system and robot simulator involved. 

The purpose of a neutral data format is to provide a level of 

standardisation, defining common data structures for pre- and 

post-processing. Further discussion of pre- and post-processing 

methods has been presented in chapter five. 

The SFC pre-processor reads in the ASCII output file of pcb layout 

design generated by the REDBOARD system, and transforms this 

information into a description of the 2D board outline, component 

definitions, and locations relative to the coordinate frame of the 

pcb. The transformed information is stored in three direct access 

data files. In addition a position adjustment database is 

automatically generated for adjusting the discrepancies between the 

reference frames as shown in figure 8-1. The offsets are calculated 

based on the type (number of pins, etc) and orientation of the 

components. The database functions as a look up table where the 

offsets are used to achieve correction in frame locations. The 

algorithms used for correcting these offsets are characterised by 

table 8-1. The abbreviations of dXmin., Umax., dYmin., and dYmax. 

are explained in figure 8-7. 
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ROTATION NEW X COORDINATE NEW Y COORDINATE 

0 X - dXmin. Y - dYmin. 
90 X + dYmax. Y - dXmin. 

180 X + dXmax. Y + dYmax. 
270 X - dYmin. Y + dXmax. 

Table 8-1 Offsets Correction Algorithms 

The formats adopted for these direct access data files were conceived 

by the author and will be referred to as the Pre-Processor Neutral 

Data Format or PPNDF- This information is thus readily available 

for further processing by a variety of post-processors each of which 

could transform the neutral data format into the customised syntax used 

by a proprietary robot simulator. The PPNDF adopted is illustrated 

by figure 8-8. 

The SFC pre-processor is specifically design for processing data 

stored in REDBOARD format into the neutral data format. If a 

different pcb design system is used, a different pre-processor is 

required to create the same PPNDF neutral data format, thus 

maintaining the purpose of neutral data format. 

8.2.2 SFC Post-processor for GRASP 

The GRASP SFC post-processor reads PPNDF information from the 

appropriate direct access files, and converts the 2D model data into a 

corresponding 3D model in the GRASP syntax. This post-processor als) 

generates a file which describes the relationships between the 
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NEUTRAL DATA FORMAT FOR PCB DIMENSIONS 

RECORD BOARDNAME CORNERS POINTS 

BOARDNAME - name given to a pcb 
CORNERS - number of comers on pcb 

POINTS = an array which stores coordinates of corners 
relative to the reference frame 

NEUTRAL DATA FORMAT FOR COMPONENT DETAILS 

RECORD IDNUM NUMPIN XDIM YDIM PINLOC PADTYPE 

IDNUM - component reference number 
NUMPIN - number of pins available on component 
XDIM =X dimension of component body 
YDIM -Y dimension of component body 

PINLOC an array which stores locations of pins on component 
PADTYPE type of pad used on IC 

NEUTRAL DATA FORMAT FOR COMPONENT LOCATIONS 

RECORD NAME IDNUM NUMPIN ORIENTATION XSHIFT 
YSHIFT DIST REPORTED 

NAME - name given to a component 
IDNUM - component reference number 
NUMPIN - number of pins available on component 
ORIENTATION - orientation of component on pcb 
XSHIFr -X location of component on pcb 
YSHIFT -Y location of component on pcb 
DIST - absolute distance of component from pcb frame 

REPORTED - status of data usage 

NEUTRAL DATA FORMAT FOR LOCATION ADJUSTMENTS 

RECORD IDNUM ORIENTATION XADJUST YADJUST 

IDNUM component reference number 
ORIENTATION orientation of component on pcb 

XADJUST adjustment for offset in X location from pcb frame 
YADJUST adjustment for offset In y location from pcb frame 

Figure 8-8 Pre-processor neutral data format for pcb design data 
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required pick up positions of the electronic components and their 

corresponding reference teach points. Vith the SFC insertion 

sequencer (see section 8.2.3) and user pre-defined insertion height 

for each component type, the sequence of electronic component 

insertions is determined by the decision rule selected, thereby 

illustrating the use of pseudo-process planning operations. The 

simulation task program is generated in two files with one describing 

the location of key entities in relation to their owner entities and 

the other describing the sequence of operations to be performed in the 

assembly task. 

8.2.3 SFC Insertion Sequencer 

At the present time there are no generally accepted rules or 

methodologies relating to the order in which electronic components 

should be inserted into or onserted onto pcb1s. Investigation has 

revealed (through discussions with leading pcb manufacturing 

companies) that commonly each company has derived its own set of rul-2s 

which depend on the type of insertion or onsertion machines used (e. j. 

axial, radial, IC, SMD, robot) and the auxilliary devices being used, 

such as the gripper, and feeding device. 

In the absence of a generic methodology the following rules have been 

implemented and they should be treated as examples which demonstrate 

the principles involved rather than exhaustive or particularly 

realistic. Five simple rules which have been used fairly widely 

[Marconi, 1987; ICLI 1988] are described below. 
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(i) In the electronic industry, components are normally assembled in a 

pre-defined order at different assembly heights, e. g. the component 

with the most pins would be assembled first at the lowest level. 

Components with the largest number of pins and which appear first on 

the database should have top priority. This rule is based on the 

reasoning that in some circumstances, the assembly of smaller 

components before larger ones can be impractical and result in 

collision. This problem is usually referred to as the 'foot print' 

problem. 

(ii) Components with the largest number of pins should be inserted 

first. If more than one component has that number of pins then the 

one with its insertion/onsertion position at the closest distance to 

the frame of the pcb should have top priority. This rule is based on 

the same reason as (i) above but with a different sequence of 

assembly. 

(iii) For certain types of assembly machine, foot print, problems can 

occur where the gripper may collide with the components already 

assembled. The foot print problem occurs with certain types of 

gripping and feeding mechanism but not for all. For example, the use 

of a vacuum pick up mechanism to hold the electronic components will 

not have attendant foot print difficulties. The gripping mechanisms 

available for this research study exhibited foot print problems and 

hence there was a need for a more realistic rule to produce successful 

assemblies and avoid collisions. Assuming the gripper has two 

locating faces arranged to pick up components along the Y axis of 

componentp the following rule can be used to define the order in which 

- 214 - 



the components should be assembled such that components requiring the 

least displacement of the robot's end effector along the Y axis are 

assembled first. If more than one component satisfies this 

requirement then preference is given to the component which require-, 

the least displacement along the X axis from the taught frame 

(normally the pcb frame). Subsequent assembly is then continued along 

the X axis. Although this rule does not minimise the total distance 

travelled by the robot's end effector (insertion head), it provides 

the optimal solution (avoiding interference with previously inserted 

components during the opening of the gripper) for the demonstrator 

system constructed by the author. 

(iv) Assuming there is no need to change the gripper or insertion head 

during insertion (onsertion) of IC's, a rule based on minimum distance 

of travel from the current position of the insertion head can be 

implemented. 

(v) Rules based on a minimum distance of travel from one assembly 

position to the next (optimal cycle time) may be best if the 

components are automatically fed into the gripper (insertion head). 

There is no need for the gripper to pick up components from peripheral 

feeding devices. Based on this reasoning, components are sequenced 

according to component type (same definition in component library i. e. 

number of pins) and minimum distance of travel. A component of each 

type (with maximum number of pins first) which is to be inserted at 

the minimum distance from the frame of the pcb is chosen to be 

inserted first, and subsequently, any component of that type which is 

to be inserted at the nearest position to the current position of the 
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insertion head should be inserted next and so on. This method reduces 

the total movement of the insertion head (or end effector) and hence 

the cycle time. Clearly, however, Iminimisation' of cycle time may 

require complex rules particularly where multiple choices are 

involved. If a different gripper or insertion head is required for 

each component type, this rule also minimise the frequency at which 

gripper changing is required. Most important of all, this rule can 

provide a solution to foot print problems discussed earlier. Among 

the specimen rules implemented this rule probably represents the most 

commonly used in pcb assembly. However, this rule is not the most 

appropriate for the demonstration system where components are fed by 

peripheral feeders (see figure 8-9). 

8.2.4 Integrating the Simulation Model with a Task Program to 

Generate an Off-line Robot Program 

The 3D product (pcb and components) model and the task sequence 

together with the workplace equipment and robot model (selected from 

the robotic device library) form the input information to the GRASP 

robot simulator. Subsequent simulation of assembly operations can be 

used to investigate the operational behaviour of the proposed system. 

If no errors (including joint violation and object collision) are 

detected, then the task can be post-processed to generate a VAL II 

robot program for that assembly task along with information regarding 

important locations and orientations. The robot program is then 

downloaded to the Adept One robot controller via an RS 232 serial 

link. This program is then used to drive the Adept One robot for the 

intended sequence of motion. 
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Figure 8-9 Demonstration system for pcb assembly 

- 217 - 



8.3 Difficencies of the Approach Implemented 

Since the REDBOARD design system like many other contemporary PCB CAD 

systems can only produce meaningful information concerning the locations 

and orientations of components, it is impossible for any integration 

software to extract other types of information relating to assembly 

actions. The REDBOARD design system regards every item as a 'standard' 

electronic component (including edge connectors and switches etc), hence 

the need for complex integration software which recognises special 

features of the components in regard to their assembly needs. The need 

to provide more meaningful and comprehensive information could be 

addressed by adopting a new philosophy when implementing pcb design 

systems. For example the CAD system could assign a fixed prefix to 

components. In this way components requiring different assembly actions 

such as edge connectors (EQ and switches (SW) can be distinguished 

thereby providing the information with a contextual or semantic meaning. 

Alternatively, incorrect assembly motion would need to be deleted 

interactively, thus involving time consuming manual editing of the 

generated task sequences. 

8.4 Experiment and Analysis 

8.4.1 Experimental Set Up 

The integration approach was verified through the construction of a 

demonstrator application and a series of experiments (see figure 8-9). 

A currently manufactured pcb was obtained from ICL and is considered 

to be representative of contemporary pcbIs. The use of such a board 
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thus represents a realistic situation so that the practical problems 

encountered are likely to occur in conventional manufacture. The oIILy 

reservation is that the only insertion hardware available for testirij 

comprised a state of the art robot tooled-up for pcb assembly rather 

than conventional equipment. 

The workcell is comprised of a worksurface, on which two sets of 
feeders are mounted, together with a clincher for the cutting and 
bending of pins of the electronic components to ensure correct lead 

lengths and fixing prior to soldering. Peripheral to the worksurface, 

a small conveyor system is linked with a main conveyor system for 

board transportation. A fixture holds the pcb while the assembly 

robot carries out the assembly. An Adept One SCARA is used as the 

assembly robot, and is located appropriately relative to the centre . )f 

the worksurface with the robot manipulator mounted on a stand to 

ensure that its height is suitable with respect to its working 

environment. A special pcb assembly gripper supplied by Meta Machines 

Ltd, was slightly modified for use in the assembly of a range of 

electronic components. The assembly robot and its working environment 

was modelled using the GRASP robot simulator. A camera was located on 

the fourth axis of the Adept One (see figure 8-10), so as to identify 

the board and find the location and orientation of the frame of the 

board with respect to the robot base. 
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Figure 8-10 Arrangement of a vision camera on Adept One robot 
--.. i 

8.4.2 Error Analysis for the Demonstrator Syste 

The general sources of spatial inaccuracies which occur during 

off-line robot programming are described in chapter seven. Here a 

more detailed analysis of those errors is presented based on a 

specific study of the demonstrator system. This analysis is limited 

in its horizons but is used to partially verify the previous generic 

categorisation. 

Experiments were conceived to measure the accuracy of the robot over a 

range of commanded translations with respect to a reference location 

(position and orientation) and to measure the variation in diameter of 

(drilled and plated) holes and pins (documentation of the results 
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obtained during these experiments are shown in appendix D. 2). The 

emphasis of this experimentation is: 

to provide an indication of how the robot accuracy may vary, 

(ii) to determine the approximate critical point beyond which the 

robot accuracy is worse than the part tolerance i. e. assembly becomes 

unreliable or impossible without implementing other enhancements. 

The problem of hysteresis becomes apparent when the robot is commanded 

to move a long distance from its current position. In the electronic 

insertion example previously discussed, a pseudo process plan 

(insertion sequence) is chosen dependant upon features of the tooling 

and feeding equipment used. Consider the case where the robot is 

commanded to pick up an electronic component from a feeding device and 

insert it at the required location on the pcb. After each insertion, 

the robot is commanded to the pick up reference point, ready for the 

next insertion. Generally the distance between the pick up reference 

positions and the insertion locations will be large (up to 1 metre) so 

that phenomena which result in hysteresis which can have a significant 

effect on the robot accuracy. In theory, the robot accuracy is 

dependant upon the position of the robot end effector within its 

working envelope. The robot accuracy is also dependant upon the the 

direction of approach [Morgan, 1980] and its actual approach speed. 

The robot accuracy is expected to become worse during high speed and 

acceleration conditions [Tanguy, 1982]. The type of robot motion 

employed (such as straight line or circular path) can seriously affect 

robot positioning accuracy. These path following errors are dependýnt 
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upon the controller resolution and control laws. Another factor is 

the complexity of robot configuration, particularly when it is 

commanded to attain awkward positions, that is, arm positions too 

close to the joint restrictions. However, the Adept One robot of the 

SCARA type does not exhibit such complexity, and the effect of problem 

can be considered as negligible. The positioning inaccuracy due to 

accelerations and decelerations is affected by the moment of inertia 

due to the weight of the robot arm and the load carried. The dynami': 

performance is complicated by unknown and changing mass of the payload 

being manipulated [Mon and Broome, 19871. However, in the electronic 

insertion application the payload can be considered to be negligible. 

The results obtained from the experiments and the analysis presented 

in Appendix D. 2 show that in general a small commanded distance from a 

taught reference point will result in smaller static position errors 

than those for large displacements. In fact the experimental resulta 

also indicated that this improved accuracy is maintained for small 

moves even when the robot approaches the required position at 

different approach speeds. Although the results do not formally 

quantify the approach for all robot types it is evident that the 

effects of unknown hysteresis, transmission characteristics, bending 

and controller characteristics should be smaller for small deviations 

[Jeyachandra et al, 1986; Benhabib et al, 1987]. The technique can 

thus be equated to a compromise between teach and off-line 

programming. The results also show a dependance on the approach speed 

and the commanded distance from the reference point. It is found tl . iat 

the position errors accumulate (i. e. the accuracy becomes worse) with 

in this case an increase of approximately 0.05mm for every 25mm 
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distance translated from a reference point. Hence assuming a 

knowledge of the way in which inaccuracies accumulate, the robot 

programmer must restrict the off-line programmed assembly positions so 

that they lie within the maximum allowable translation (200 mm in the 

case of the demonstration system: the derivation of this range will 

be described later) from a taught reference position. 

the general equation of position error is given as 
position error = 0.2% of the distance travelled (translated) 

Clearly the accuracy of the system is not the same as the accuracy of 

the robot. Position errors also occur where component, fixture, and 

tooling tolerances lead to errors in the robot/workplace model. 

However, the use only of small movements from known taught reference 

points should also minimise these errors. However, this conclusion 

will only be true where errors can be predicted-in probablistic terms, 

and unpredictable variations will not taken into consideration. Let 

us cons ider the nature of some of these probablistic occurences, 

(a) the manufacturing tolerances in the drilling and plating process 

can be accommodated within one experiment which determines the 

variation in hole sizes resulting from the manufacturing process, 

provided that the process produces repeatable errors. If drift occurs 

in the drilling and plating process, then additional methodologies 

should be considered dependant on the nature of that drift. 

(b) the manufacturing tolerance of the components can also be 

determined, provided that they can be predicted. If not, it may be 

necessary to restrict the type or suppliers of such components. 

commonly the variation in pin size and hole size may be assumed 
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normally distributed with mean JJ and standard deviation a. However, 

the robot positioning accuracy should not be assumed to be normally 

distributed. 

Since the standard deviation a of the whole population is unknown, 

the programmer of the assembly machine will have to estimate it from a 

small sample. It can be shown that if a sample of size n has a mean 

of X and standard deviation S then 

(i) the best estimate of P is X 

(ii) the best estimate of a is n Jý(nn 
1) S [White et al, 1985] 

where 
n represents 
X represents 
S represents 
P represents 
a represents 

the size of the sample 
the sample mean 
the sample standard deviation 
the mean value of the population 
the standard deviation of the population 

It can also be shown that the statistic t (X-P) follows 

(alJn-) 

the t-distribution with (n-1) degrees of freedom rather than a normal 

distribution. As the sample size n is large the t-distribution curve 

is close to the normal distribution curve. A sample size of 20 is 

large enough to give a close approximation of the normal distribution 

curve and therefore this sampling size is used in this error analysis. 

From the readings of pin and hole diameters, a confidence interval 

analysis of where the average size value of holes and pins should lie 

can be carried out as shown in appendix D-2. The tolerance at a 

certain confidence level can then be determined e. g. at 99 percent 

confidence interval, the tolerance between the pin and hole is found 
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to be 

0.36mm (lower tolerance) < tolerance < 0.40mm (upper tolerance). 

In general, the robot accuracy tests show a mean accuracy of 

approximately 0.05mm over a translated distance of 25mm from a taught 

reference position (repeatability of 0.05mm was found as quoted by the 

robot manufacturer). With specific reference to the commanded 

translation from the reference location and the tolerances between 

pins and holes determined, the estimated robot accuracy can be used to 

determine the critical assembly range for achieving a successful 

insertion of the electronic components. For example, by experiment 

the critical range has been found to be bounded by-a 200mm translation 

from the reference location. In these experiments involving the use, 

of a specific type of component and the specific demonstration pcb, 

the robot accuracy is found to be about 0-40mm at approximately 200mm 

translation and about 0.36mm at approximately 175. Omm translation (see 

appendix D-2). 

At 99% confidence interval, if the robot accuracy at a commanded 

translation from a taught reference frame is greater than 0.36mm (the 

lower assembly tolerance limit) then the robot accuracy is at its 

critical condition beyond which unsuccessful insertions are likely 

with the probability of unsuccessful insertions increasing as the 

translational distance from the taught location is increased. This 

means that any commanded translations within 175mm range (i. e. robO: t 

accuracy is smaller than the lower assembly tolerance limit) very high 

success rate for insertion would be expected. Any translation between 

175mm and 200mm will correspond as grey area and beyond 200mm (upper 
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assembly tolerance limit) failure is likely. Clearly, real problems 

can be more complex than those analysed, but the results indicate a 

methodology for a quick assessment of possible success when robot 

assembly operations are programmed using off-line methods. From the 

experimental experience gained, with the particular programming and 

assembly arrangement created, Table 8-2 has been constructed to 

quantify the relative importance of system components in regard to 

their error contribution. 

The accuracy of the robot, and gripper misalignment are considered to 

be the major sources of error which warrent improvement in the 

demonstrator system produced. The mounting of gripper on the robot 

flange could contribute between 0.1 to I degree orientational 

misalignment, the actual value being dependant on the skill of the 

programmer. This orientational misalignment can be magnified as the 

robot translates a long distance. Whereas the simulation system and 

the feeder contribute errors of medium magnitude. Other items listed 

in table 8-2 are considered to introduce relatively minor errors. 

However it may be that, the accumulation of these error sources would 

cause failure in off-line programmed operations. Any accuracy 

improvements should be considered in relation to the cost involved, so 

that economic assessments can be made for a given application area. 

8.4.3 Practical Problems and Considerations 

It is important to highlight some of the limitations of the approach 

adopted by the author so that the above methodology can be placed in 

context. 
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CATEGORIES SYSTEM ELEMENTS ESTIMATED ERROR RANGE 

REDBOARD pcb design system 
(depends on resolution chosen) minor o. ool <E<0.01mm 

NC drilling machine minor positioning accuracy 0.01mm 
accuracy minor drilling accuracy 0.05mm 

Robot simulator (GRASP) 
(resolution) minor 0.001 <E<0.0 1 mm (T) 

medium - 0.02 <E<0.06 degrees (R) 

FORWARD 
PATH Language post-processors minor -E<0.000 1 mm (T) 
ERROR (resolution) minor -E<0.0001 degree (R) 

Robot controller and 
arm accuracy major - 0.2% of distance moved (T) 

Gripper misalignment depends on skill and method (R) 

Feeder position error medium - 0.05 <E<0.1mm (T) 

FEEDBACK 

PATH Vision system medium - 0.05 <E<0.1 mm (T) 
ERROR 

Component size variat1ion 
from nominol dimension medium - 0.05 <E<0.1mm (T) 

PROCESS 

ERROR Leads location variations major - 0.05 <E<0.2mm (T) 

where 
E= Error range 

(T) = Translation 
(R) = Rotation 

Table 8-2 Relative significance of error sources 
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(a) Restrictions Imposed by Available Feeding Mechanisms and 

Gripping Devices 

Although the pcb used in the demonstrator system was supplied by a 

manufacturer, and thus represents a realistic assembly task, suitable 

gripping devices and feeding mechanisms for a wide range of electronic 

assembly tasks were not available. Therefore the experimentation was 

directed towards the assembly of electronic components for which 

feeding mechanisms were available and which do not present gripping 

problems with the available gripper and its attachments. Although 

experiments were directed towards the assembly of ICý of various types 

and sizes with the objective of illustrating the principles involved, 

other component types, or indeed similar components from alternative 

suppliers could present problems not encountered in this study. 

(b) Inconsistency Of Component Body Dimension and Leads Locations 

on COm2onent 

one of the significant problem areas which must be faced when applying 

robots to pcb assembly is concerned with the inconsistencies in the 

component itself. Variation in component body dimension and locations 

of leads on component, can be quite substantial especially in odd form 

components [Cowan and Davies, 1986]. Ideally, components supplied by 

any manufacturer should be standardised regarding their size and 

shape, locations of leads and packaging. Suppliers are taking steps 

towards satifying this user standardisation requirement [Kochan, 

1986]. 
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(c) An 'Inverted' Manufacture to Design Approach 

In a typical electronic manufacturing environment the CAD model of the 

pcb design would be created before manufacturing. However, the 

experimental procedure followed in this project utilised an existing 

industrial pcb and therefore the pcb CAD model was created through 

measurement of parameters of that board. A conventional pcb NC 

drilling machine was used for this work and this will have resulted in 

small measurement errors (see ap pendix D. 3). However, it is likely 

that tolerances caused by manufacturing process variations could be 

significantly more troublesome in accomplishing successful assembly. 

(d) Difficulty Introduced by the pcb Design System 

The IC package sizes store, 

not the exact sizes of the 

This contributes modelling 

the assembly, and leads to 

in a factory situation, if 

employed. 

J in the database of the REDBOARD system are 

IC chips (details as shown in figure 8-2). 

errors and subsequent gripping errors in 

more difficulties than would be experienced 

methods of avoiding such errors were 

(e) Numerical Accuracy of the Design and Simulation Systems 

In general, if an item is required to perform several rotations in the 

simulation process, the algorithms used (for forward and inverse 

transformations) in the robot simulator will introduce numerical 

inaccuracy. The magnitude of this inaccuracy will vary from system to 

system. However, in this specific example, GRASP will introduce 
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cumulative orientation inaccuracy of between 0.02 and 0.06 degrees. 

The inaccuracy becomes worse if the number of rotations increases or 

if it involves more than one axis. This numerical inaccuracy is due 

to the inaccuracy accumulated over the forward and inverse kinematic 

transformation. Thus it would be advantageous to keep the number of 

rotations to a minimum (sufficient to perform the required simulation) 

so as to keep the error to a minimum. 

(f) Gripping Consideration 

Another practical problem involved was to ensure that the IC chips 

were gripped at the midpoint (pick up points) along their Y axis. The 

solution adopted was to place the IC's at the lowest position on the 

feeder (i-e gravity fed for the particular feeders used) and then to 

teach the manipulator this position by moving the gripper to the 

position. The pick up positions are obtainable through a translation 

(half of the Y dimension of the IC chips concerned) along the Y axis 

of the IC's. A similar procedure could be followed for other feeder 

types. This location and orientation information associated with 

feeder positions must be feed back to the robot simulator so that IC's 

can be placed at their pick up points (in the model). The robot 

simulator uses information concerning these pick up points so that the 

gripper tool centre point can coincide with them. This will only be 

done once if the feeder position is fixed relative to the worksurface, 

and hence maintains a constant spatial relationship with the 

manipulator. 

In a practical situation, there is uncertainty with regard to the 
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position and orientations of parts delivered by the feeding device and 

this can result in problems when the robot picks up the parts at the 

location specified. With the demonstrator workcell, occasional 

problems of this type have proved to be unavoidable. If parts are to 

be delivered at more precise positions and orientations, then 

alternative specially designed feeding devices would be required. 

This raises issues of cost against precision, and flexibility against 

precision. 

(g) pcb location consideration 

Additional position errors can occur with regard to the feeding of 

bare or partially populated pcbs into the assembly system. In the 

demonstrator system, the pcb is located on a pallet which is stationed 

at some point on the conveyor. In such situations position errors can 

occur between the pallet and the conveyor. This implies that a 

positioning mechanism is required to ensure that the coordinate 

reference frame of any pallet or pcb will be located, within 

predictable location errors, at some conveyor position and orientation 

each time an assembly is required i. e. it is necessary to overcome 

unpredictable errors. Again issues such as cost and flexibility are 

raised when specifying dedicated' positioning mechanisms. 

Alternatively, this could be achieved by utilising a vision system to 

determine the position and orientation of the pcb1s coordinate 

reference frame so that appropriate compensation for errors can be 

made. Although the capital cost would be increased, the vision system 

will provide a more flexible approach than that of using specialised 

fixtures and in certain situations economic benefit could accrue. 
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(h) calibration consideration when using visio 

In situations where a vision system can be used economically, vision 

prototype training errors can occur where the centroid of the 

prototype object does not correspond to that determined by the vision 

system. When the vision system is used to identify the location of a 

part in the working environment, factors such as variations in the 

ambient lighting conditions can lead io measurement errors. The 

accuracy of vision systems (including illumination equipment) will 

vary from system to system (cost being a key factor). 

Assuming the use of a vision system (a situation investigated through 

use of the demonstrator system) the location and orientation of each 

pcb board frame will usually be measured, prior to component assembly, 

to overcome both predictable and unpredictable position errors. The 

practice of using fiducial marks on pcbIs is a common one, being used 

in pcb manufacture at various automatic machines including insertion, 

onsertion and testing equipment. Fiducial marks are created on the 

pcb (see figure 8-11 for detail) which are used by the vision system 

to determine the coordinate reference frame of the board. The 

required position of components on the pcb relative to the coordinate 

reference frame maintain fixed spatial relationships. However, due to 

the robot accuracy alone, these'component positions may not be 

attainable if they are beyond the critical position. 
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Figure 8-11 Fiducial marks used on pc board 

These locations and orientations can be used to update the GRASP model 

if the set up is not going to be changed in the short term and the 

product belongs to a family series. Otherwise they may be simply 

stored at the robot controller. This implies that only positions and 

orientations of those entities which are common to the series of 

family products are required to be updated (in the simulation model). 

other entities whose positions are subject to variations need not be 

updated. In the demonstrator system, only the pcb frame is variable 

and so it need not be updated in the simulation model. 

The GRASP model update can be accomplished through the calibration 

software modules described in chapter seven. As the position and 

orientation of the pcb varies, it is reasonable to store the frame at 

the robot controller and it is not necessary to update the CAD model. 
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8.5 General Conclusions 

The experimental observations, and 

to error sources, have illustrated 

constructed the major error source 

remaining error sources identified 

relatively insignificant although 

unsuccessful assembly operations. 

specific conclusions made with regard 

that for the demonstrator system 

is the robot manipulator itself. The 

can individually be considered to be 

they can cumulate to result in 

In the experiments carried out, the robot positioning error was found to 

cumulate with an increase of approximately 0.05mm for every 25mm (i. e. 

0.2%) distance travelled from a reference position. It should be stated 

that the experiments performed, in establishing the robot accuracy, 

cannot be considered to be precise or comprehensive but serve to 

illustrate the scale of the errors involved. Clearly more comprehensive 

testing could have been carried out (e. g. through using laser tracking) 

but the difficulties involved in carrying out such testing did not permit 

such a study. 

One way of improving the robot accuracy and hence facilitating the use of 

off-line programming in a wider range of application areas is to 

manufacture and assemble the robot arm in such a way that very tight 

tolerances are met. However, in general this will be too expensive and 

even then certain error sources will remain. Clearly also the use of 

high fistiffness" cartesian manipulator systems will result in improved 

robot accuracy but may lead to to lack of dexterity and poor cycle times. 

Arguably therefore the most effective and possibly least costly method is 

to employ software based calibration procedures to assign a "signature" 
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to each robot. 

Despite errors, the use of off-line robot programming in pcb assembly is 

theoretically possible and has been practically demonstrated for a SCARA 

arm provided that "a limited range of translated movement from the pcb 

reference frame" is applied as an operating constraint. It is apparent 

that further fiducial marks should be placed on the pcb so that the 

effective maximum translated distance range for pcb assembly can be 

increased. This would imply that a different set of fiducial marks 

should be used to avoid confusion in any visual recognition process used 

to establish different reference frame. This implies additional 

complication in the simulation and modelling procedure and could involve 

automatic updating of a stored model or could require a second stage, 

more complex, manual teaching phase. Furthermore, the gripper used was 

not ideal as it does not incorporate sensory feed back so that any 

variation in the off-line programmed pick up positions (due to robot 

position errors and discrepancy in the position of the electronic 

components delivered) may cause difficulty or failure in certain assembly 

tasks. This situation could have been improved by using sensory feed 

back (such as force sensing) and hence achieving self adjustment to 

reduce the magnitude of the errors involved. 

The successful application of any off-line robot programming system will 

be dependant upon the relative spatial arrangements of workplace devices. 

Hence rigidly fixed arrangements should be employed where possible and 

any variations should at least be predictable. In such a situation any 

errors in the nominal positions of the workplace entities can be 

accounted for by updating the 'model, through following calibration 
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procedures. After this initialisation process, if the physical 

arrangement is rigidly fixed, then accurate spatial relationships can be 

maintained. If entities are moved to alternative locations which are 

outside acceptable tolerance limits, the robot programs generated 

off-line will not result in successful assembly processes and calibration 

procedures must be re-initiated. 

Through providing integration software, shared electronic access of 

information can be achieved, such as access to information stored in CAD 

product design and robot simulator databases. This study has shown that 

product design data, created using a conventional pcb CAD system can be 

used to assist in model building. This can significantly simplify the 

off-line programming of robots so that lead time benefits can accrue, a 

fact of potentially great importance in certain industrial sectors where 

reduced "time to market" is vital. The information stored in a 

centralised or common database could utimately be distributed through the 

use of appropriate database management tools including data modelling and 

query language facilities. Information characterising the geometry of 

the pcbt geometry of components and their locations and orientations with 

respect to the frame of the board, plus the generated sequential and 

spatial relationships defining robot motions can be downloaded to the 

robot controller. In such a situation, the only unknown variable is the 

location and orientation of the frame of the pcb relative to the robot, 

for which teach methods can be employed. The teaching of the required 

pcb location and orientation unknowns would be a relatively simple task. 

In certain situations it may be possible to bypass the need for using a 

robot simulatort but the robot simulator can provide program verification 

before downloading to the robot controller. This is a rational, 
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practical, and implementable approach with current technology. Clearly 

as the need for such integrated systems is realised, future approaches 

may involve the redesign of the CAD, simulator and robot controller 

tools. 

To enable the widespread use and acceptance of off-line programming 

methodologies, it is important that a neutral, format be agreed to 

enable information transfer between the components of the generic 

off-line programming system. Using contemporary practice this may 

comprise a number of sub-system elements (e. g. CAD, simulator/modeller, 

robot) which will be implemented by different vendors, using different 

computer hardware, operating systems and development languages. In such 

a situation the need for agreed neutral formats between CAD and 

simulator/modeller subsystems is apparent whereby the subsystem suppliers 

can write to an agreed information exchange specification. Similarly, an 

agreed information exchange specification is required between the 

modeller simulator and the robot controller. 
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CHAPTER NINE 

CONCLUSIONS AND RECOMMENDATIONS 



9.0 Introduction 

In this chapter, the contribution to knowledge is first discussed, 

followed by the general implications and recommendations for future work. 

9.1 Contribution to Knowledge 

This thesis has illustrated how a robot can be programmed off-line bast! ) 

on a robot simulator. This research study has investigated the 

possibility of enhancing a robot simulator through user friendliness', 

calibration and integration. These form a package which should be 

considered for enhancement so as to achieve advantages of overall system 

improvement rather than detailed improvement in a single aspect. 

Therefore the theme of this research study has been the investigation of 

the advancement of this package. 

Aspects of integration have been implemented in two phases. The first 

phase integrated a CAD pcb layout design system with a robot simulator 

through the capture of product assembly data. The integration of the 

robot simulator with the actual robot system has been implemented throlleh 

a post-processing facility. In each phase of integration, neutral data 

formats were conceived by the author. Furthermore, an insertion 

sequencer was conceived to implement five commonly used rules when 

generating pseudo process plans. Pseudo process plan generation, based 

on the component type and minimum distance of travel from the current 

position, is the most commonly used in pcb assembly. 
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CAD/CAM facilities should be integrated with robot modelling and 

programming systems so that existing product design data captured in the 

CAD database can be used to speed up the modelling and programming 

process, improve productivity, reduce the chance of error etc. The 

practical experiment described in chapter eight illustrates that product 

design data can be used efficiently for modelling and robot task 

programming with the task sequence being determined by the sequence 

planner. Although the study findings could necessarily not be 

exhaustive, they represent an important contribution to the literature, 

pointing to areas of future study which ultimately could significantly 

reduce the "time to market" of new products. 

Thus integration of a CAD pcb layout design system with a robot simulator 

has been demonstrated based on knowledge of parameterised model building, 

parameterised task programming and post-processing. In the integration 

investigation, the demonstrator system included a robot without on-line 

sensing capability (sensing only being used during initialisation 

procedures which could have been implemented using other methods). Such 

a flexible pcb assembly system, programmed off-line through the 

integration of a CAD pcb design system with a robot simulator, could bc 

cost effectively employed in certain manufacturing situations. 

Integration problems were identified and classified. It is essential 

understand that contemporary CAD pcb design tools do not provide 

information in an appropriate form for robot simulators, particularly as 

they lack 3D information for modelling and insertion sequence planning. 

This is understandable as design systems were intended for pcb NC 

drilling, ATE and ACI but not for integration with other systems. The 
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lack of a standard data format presents further problems such as 

post-processing efforts for different systems (as discussed in chapter 

five), and the author has derived a neutral data format approach as a 

solution. 

In addition to integration problems, there are sources of errors which 

effect positional accuracy of off-line generated programs. These sources 

of error have been analysed through the demonstrator system. 

Understanding of the problems encountered enabled solutions to be 

generated. There are two major sources of error which require attention: 

the robot system accuracy (including robot controller and arm) 

and 

(ii) process error including accuracy of components delivered at the 

reference pick up positions and component size variations from nominal 

sizes (including body size variations of components and variations of pin 

positions on the component body) leading to additional variations in 

delivered positions. 

Error compensation is therefore required in off-line programming systerri. 

Consideration of the robot arm inaccuracy shows that there are two 

possible ways of improving the demonstrator system. One solution is to 

design and manufacture a robot to tight tolerances whilst another is to 

use software calibration for each individual robot arm. This raises 

issues of cost against precision and flexibility and the former approach 
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is considered too costly whilst the latter can provide the flexibility 

required. The variations of component size from nominal size should be 

tightened up so that the process error can be minimised to reduce 

uncertainty. 

In addition to process error, different electronic component 

manufacturers supply functionally identical components in different 

sizes, shapes and packaging. User driven initatives may be beneficial in 

forcing suppliers to standardise on component size, shape and packaging. 

The electronic assembly industry has initated steps towards the 

standardisation in these aspects. The alternative approach of using 

sensory feedback elements such as vision and force sensing for correcting 

parameters from the nominal values is costly and inconvenient. 

The post-processing module for integrating the robot simulator and the 

actual robot system illustrates the practical problems together with th! 

author derived neutral data format. Through this post-processing study, 

it is concluded that whenever possible post-processing facilities for 

off-line programming should be accomplished in two stages, one 

responsible for generating neutral or standard data format with a second 

for post-processing this format into specific target robot languages. 

Furthermore, post-processing facilities should preferably be included In 

the robot simulation system as an "off-the-shelf" optional function. 

Since suppliers of robot simulation systems have the appropriate access 

to the system data structures, the incorporation of a post-processor in a 

simulator represents a more efficient use of data. 
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The lack of user friendliness of robot simulators has led to the 

investigation of enhancement through parameterised model building and 

parameterised simulation task generation (off-line robot programs). Jr, 

demonstrating possible solutions, software modules have been implemented 

for certain classes of robotic entities and robot task applications. 

This study has concluded that parameterised model building and task 

generation would be more appropriately implemented as "macros" within the 

robot simulator. This is mainly because limitations on access to the 

data structures of the CAD model restricts the scope for further 

enhancement. 

It is also concluded that modelling of common robotic workplace entities 

can be accomplished through parameterised solid modelling facilities. 

Similarly, it is also indicated that robot operations can be programmed 

through parameterised task languages. A parameterised task language ha3 

been proposed and discussed in chapter six. A full scale parameterised 

task language could be used to program the robot without reference to vie 

robot simulator, but verification and modification would still require 

the simulator. This implies that it is more appropriate for 

parameterised task languages to be implemented as application macros 

within the robot simulation system. This study also demonstartes further 

possibilities for integration of these parameterised facilities with 

expert systems which have access to comprehensive knowledge bases. 

It has been shown that off-line programming is not a viable propositioil 

without the use of calibration techniques. Calibration can be carried 

out in three phases. Firstly, calibration of the robot arm is carried 
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out to eliminate or reduce discrepancies between the actual robot arm 

kinematics and the model derived kinematic equations based on nominal 

robot parameters. This robot arm calibration can be further classified 

into robot joint and entire arm calibration. Secondly, it is necessary 

to calibrate the simulation model against the real robotic workplace. 

Solutions have been derived and illustrated for calibrating and updating 

the simulation model which encompass the discrepancies between an 

idealised simulation workplace model and the actual robot workplace. To 

deal with calibration of a simulation model it is necessary to consider 

the appropriate options implied by the batch size. It is reasonable to 

conclude that if a product batch belongs to a product family then 

updating the simulation model is essential so that other off-line 

programs can be generated based upon the updated model. In other 

situations there is no need for long term retention of the calibrated 

information and it should therefore be kept locally at the robot 

controller. 

With large batchesv conditions might change during manufacture or 

assembly and in this case calibration is used to update all teach 

reference points and store them at the robot controller until further 

changes in the workshop arrangement. The need to update the original 

simulation model becomes less important, especially where the batch size 

is very small. However, any changes in the workplace spatial 

relationships should be updated in the simulation model so as to maintain 

a representative model. 
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The final phase of calibration concerns on-line dynamic calibration which 

has not formed part of this research study. 

If off-line rather than on-line methods are used for programming a robot, 

a simulation model of the robotic workplace is required before robot 

tasks can be simulated, verified and evaluated. This means that for a 

simple task the time taken to programme a robot through off-line method; 

could be longer than that needed for on-line programming methods. In 

addition, off-line robot programming methods are associated with accuracy 

problems and therefore fine tuning of the robot program is required. 

However, in the batch manufacturing of large product families, off-line 

programming methods are becoming more efficient as the size of the 

product family increases. This is because the simulation model of the 

robotic workplace is virtually the same for most members of the family 

and therefore only a rearrangement of workplace elements and the new 

product design are required. Even when batch manufacturing a product 

which does not belong to a family, off-line programming methods still 

reap the advantage of not disrupting actual production systems and 

therefore higher utilisation of expensive equipments can be achieved. 

Furthermore, integration with product design data improves lead times. 

In some circumstances, robot applications which include synchronisation 

of robotic devices are difficult to programme using on-line methods. Due 

to the difficulties and cost implications of using robot simulation 

tools, off-line robot programming will be more easily justified in 

circumstances where complex robot tasks are required and/or where batch 

manufacturing of large product families are -involved. Confidence in th-3 

use of off-line robot programming techniques can be much improved when 
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satisfactory solutions are provided to overcome accuracy problems. 

9.2 General Implications and Recommendations 

It is essential that facilities for processing sensory information and 

dealing with synchronisation and error conditions should be sufficiently 

sophisticated to perform the required task in an efficient manner. The 

allowable sophistication of any off-line programs generated will be 

limited by the capabilities of the robot simulator, and thus simulation 

of sensor conditions and capabilities for synchronisation and exception 

handling should be provided. Currently available simulators can only 

model very simple sensory conditions. It can be seen that off-line 

programming by graphical computer methods has considerable potential 

advantage, which must be tempered by a consideration of some fundamentitL 

limitations of existing systems. In certain circumstances, the use of 

off-line programming can be difficult due to the lack of good sensory 

input and output. A compromise hybrid approach should be adopted where 

off-line programming is used in conjunction with on-line programming such 

that robot task programs can be prepared with higher efficiency and/or 

functionality level. 

A low cost flexible robot assembly system without sensing has major 

disadvantages in coping with problems of inaccuracy. Furthermore, the 

assembly process concerns not only the robot movement, but also the 

identification and verification of components and sub-assemblies. 

However, if the robot system involves the use of a gripper with sensing, 

capability then any variations in component delivered by the feeding 
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mechanisms can be catered for. Furthermore, the use of sensing device!; 

(such as bar codes and vision systems for identification) can ensure thit 

the correct components are assembled satisfactorily (exception handling 

and problem tracing in the workshop). Laser stripers and vision systems 

for checking variations in component size and variations of locations of 

pins on components can be used so that corrective action can be invoked 

to ensure an improved success rate in assembly. The use of extra sensing 

and correction means improved flexibility and accuracy can be achieved at 

the expense of longer cycle time and high capital cost. 

There are suggestions for further considerations and these are separated 

into functional areas. 

(a) Standards 

There is a need for a standard robot data format, with each simulator 

system having its own pair of processors to transfer data to and from 

this neutral format. In such a way any one robot simulator can be used 

to program multiple robots. 

The development of product design data exchange based on the principle of 

a standard neutral data format (such as IGES, PDES/STEP etc. ) can be 

applied in the field of 3D robot simulators. Data originally restricted 

to 2D drawing data information has more recently been enhanced to deal 

with more comprehensive product descriptions including 3D solid 

modelling. Within the foreseeable future, it is possible to envisage .1 

standard neutral data format for 3D robot simulators. This would include 
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robot kinematic/dynamic modelling descriptions and the program format for 

robot task descriptions. 

(b) Robot Simulation Systems 

A robot simulation software designer should not be bound to one single 

geometric modelling technique. A solid modelling system should be 

capable of utilising more than one modelling technique and thus 

facilitate wider scope for modelling and off-line programming 

applications. For example, surface modelling techniques allow spherical 

or continuous curved paths to be programmed by reference to the surface 

normal. Applications include arc welding and cutting, surface grinding, 

glass cutting, mould making, and drilling and riveting for aircraft 

panels. Robot simulation involving improved geometric modelling 

techniques could enable better accuracy in the simulation model and hen: e 

improved off-line robot programming. 

Parametric design and task programming languages should be a feature of 

robot simulation systems so that generic robot simulators can be used 

conveniently for specific applications. Further advantages can be gained 

from the use of expert systems to access robot databases, tooling and 

other robotic peripheries databases. This would be useful for selecting 

the appropriate robot, tooling and attendant robotic equipment for the 

right application and at the right price etc. In the computer assisted 

task generation, it is preferred that the expert system be used for 

selection, computer assisted model building and task program generation. 

With the use of artificial intelligence or geometric reasoning, collision 
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free robot paths could be planned. The popularity of the parametric 

design and programming language is based upon the success of 

standardisation achieved in design data exchange between different robot 

simulators. 

(c) Calibration and Integration 

Generic robot calibration procedures have yet to evolve in an 

internationally accepted sense, resulting from the complexity involved In 

defining a comprehensive scheme meaningful to the divergent areas of 

application of robot systems. 

Although various attempts (including dynamic robot simulation and dynallic 

error correction at the robot controller) have been made to overcome or 

at least to reduce dynamic errors, the result of the dynamic simulation 

cannot closely predict the real dynamic error and hence correction. 

Unfortunately, the collection of dynamic data is a difficult task. 

However, integration of the robot controller with the simulation 

sub-system (part of a robot simulator), provides a channel towards 

incorporating robot modelling and error correction at the robot 

controller. The installation of a robot simulation package into a robot 

controller can potentially offer a more sophisticated method of 

predicting and correcting dynamic errors with flexibility. 

Theoretically, the robot dynamic behaviour can be monitored and models 

updated during each robot task performance. Based upon this updated 

dynamic robot model, new dynamic errors can be predicted and corrected 

algorithmically. The discrepancies between the simulation model and the 
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real world can easily be assessed within the same robot controller and 

the updating procedure may be simplified. This implies that further 

research is required before this facility can become a reality. In the 

foreseeable future this type of robot s imulat ion/ controller is likely t-ý 

be commercially available. 

The integration of robot simulators (off-line robot programming systems) 

with expert systems will facilitate better manufacturing procedure and 

parameter selection for various operations (e. g. welding voltage, 

current and time will be provided for welding; power required, cutting 

speed, feed rate and depth of cut for a certain material for turning and 

milling etc). In addition, process scheduling can be achieved so that 

the monitoring of the manufacturing or assembly process can be 

accomplished for each work cell. With the advancement and application of 

artificial intelligence in robotics, further improvements in CIM is 

desirable and achievable. 
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APPENDIX A. 1 EXAMPLE OUTPUT OF WORLD-STATE 
POST-PROCESSING METHODOLOGY 

To illustrate the results obtained through the use of world-state 
post-processing methodology, an original robot simulation program, 
equivalent robot move positions (in absolute form) and VAL II robot 
program are shown respectively. The immediately followed example is 
the original track used for a pick and place operation. The robot 
move locations were described in absolute form relative to the robot 
base frame. 

TRACK JOB10 

LOC 
- 

OBJ1 : LOCATE OBJECT1 OWNER PLATFORM AT PLATFORM (SHIFT X 12.500 Y 
12.500 Z 50.000), 

LOC 
- 

OBJ2 : LOCATE OBJECT2 OWNER PLATFORM AT PLATFORM (SHIFT X 112.500 Y 
112.500 Z 50.000), 

PARKSTEP10 : PARK , 

APP 
- 

OBJ1 (MEDSPEED ): POSITION ADEPTONE (SHIFT X 46.860 Y 403.130 Z 
739.750 ROTATE Y 180.000 Z -90.000), 

ONTO OBJ1 : POSITION ADEPTONE (SHIFT X 46.860 Y 403.130 Z 689.750 ROTAT';, 
Y 180.000 Z -90-000), 

GRIP_OBJ1 : GRIP OBJECT1 

LIFT 
- 

OBJ1 (LOWSPEED ): POSITION ADEPTONE (SHIFT X 46-860 Y 403.130 Z 
739.750 ROTATE Y 180.000 Z -90.000)p 

APP 
- 

OBJ2 : POSITION ADEPTONE (SHIFT X -53.140 Y 503.130 Z 749.750 ROTATE 
y 180.000 Z -90-000), 

PILL10 : POSITION ADEPTONE (SHIFT X -53.140 Y 503.130 Z 739.730 ROTATE 
y 180.000 Z -90-000), 

RELEASE10 RELEASE OBJECT1 TO OBJECT2 

COMPLETE10 POSITION ADEPTONE (SHIFT X -53.140 Y 503.130 Z 752.250 ROTITE, 
y 180.000 Z -90-000), 

PARKSTEP20 PARK 
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The following shows the 3D location information extracted from the above 
track using the world state post-processing methodology. The extracted 
location information is presented as cartesian coordinates and eulerian 
angle set. 

POSITION 
POSITION 
GRIP 
POSITION 
POSITION 
POSITION 
RELEASE 
POSITION 

46.860 
46.860 

46.860 
-53-140 
-53.140 

-53.140 

403.130 739.750 
403.130 689.750 

403.130 739.750 
503.130 749.750 
503.130 739.730 

503.130 752.250 

0.000 180.000 -90.000 0.000 180.000 -90.000 

0.000 180.000 -90.000 0.000 180.000 -90.000 0.000 180.000 -90.000 

0.000 180.000 -90.000 

The equivalent VAL II robot program is obtained through the valformatting 
module. At the top of this robot program, operating speed and 3D location 
information are defined. For safety reason, the robot gripper is opened 
before any robot movement. 

. PROGRAM JOB10 
; PERFORM PICK AND PLACE 
; FOR JOB 10 
SPEED 50 ALWAYS 
SET POINT1= TRANS(46.860 403.130 739.750 0.000 180.000 -90.000) 
SET POINT2= TRANS(46.860 403.130 689.750 0.000 180.000 -90.000) 
SET POINT3= TRANS(46.860 403.130 739-750 0.000 180.000 -90.000) 
SET POINT4= TRANS(-53-140 503.130 749-750 0.000 180.000 -90.000) 
SET POINT5= TRANS(-53.140 503.130 739-730 0.000 180.000 -90.000) 
SET POINT6= TRANS(-53-140 503.130 752.250 0.000 180.000 -90.000) 
OPENI 
MOVE POINT1 
MOVE POINT2 
CLOSEI 
MOVE POINT3 
MOVE POINT4 
MOVE POINT5 
OPENI 
MOVE POINT6 
STOP 

. END 
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APPENDIX A. 2 EXAMPLE OUTPUT OF HIERARCHICAL 
TOP DOWN POST-PROCESSING METHODOLOGY 

The following example shows the original track JOB1 which is equivalent 
to track JOB10 as shown in appendix A. 1. All move positions are stored 
relative to any reference object in the workplace (but not necessarily 
referencing the robot base or world frame). This method of programming 
is flexible when there are changes in the locations of reference objects. 

TRACK JOB1 

LOC OBJECT1 : LOCATE OBJECT1 OWNER PLATFORM AT PLATFORM (SHIFT X 12.500 Y 
12.500 Z 50-000), 

LOC OBJECT2 : LOCATE OBJECT2 OWNER PLATFORM AT PLATFORM (SHIFT X 112.500 Y 
111.500 Z 50.000), 

PARKSTEP1 : PARK , 

APP OBJECT1 (MEDSPEED ): POSITION OBJECT1 (SHIFT Z 50.000 ROTATE Y 180.000), 

ONTO_OBJECT1 : POSITION OBJECT1 ( ROTATE Y 180.000), 

GRIP_OBJECT1 : GRIP OBJECT1 , 

LIFT 
- 

OBJECT1 (LOWSPEED ): POSITION PLATFORM (SHIFT X 12.500 Y 12.500 Z 
100.000 ROTATE Y 180.000), 

APP_OBJECT2 : POSITION OBJECT2 (SHIFT Z 60.000 ROTATE Y 180.00O)t 

PILL : POSITION OBJECT2 (SHIFT Z 50.000 ROTATE Y 180.000), 

RELEASING : RELEASE OBJECT1 TO OBJECT2 , 

COMPLETE : POSITION OBJECT1 (SHIFT Z 12.500 ROTATE Y 180.000), 

PARKSTEP2 : PARK , 
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The second part of this appendix shows the results of 3D location 
information extracted from the simulation model and concatenated with 
move positions and orientations specified in the track using the 
hierarchical - top down approach. Although these robot move locations 
were stored relative to objects in the workplace (rather than the robot 
base or world frame), the intermediate format for location information 
is similar to that of appendix A. 1. However, the location information are 
described as matrix elements. 

TCP G 1.000 0.000 0.000 0.000 1.000 0.000 
_ 0.000 0.000 1.000 0.000 0.000 114.500 

POSITION 0.174 0.985 0.000 0.985 -0.174 0.000 
0.000 0.000 -1.000 208.067-694.872 755.500 

POSITION 0.000 -1.000 0.000 -1.000 0.000 0.000 
0.000 0.000 -1.000 46.860 403.130 739.750 

POSITION 0.000 -1.000 0.000 -1-000 0.000 0.000 
0.000 0.000 -1.000 46.860 403.130 689.750 

GRIP 
POSITION 0.000 -1.000 0.000 -1.000 0.000 0.000 

0.000 0.000 -1.000 46-860 403.130 739.750 
POSITION 0.000 -1.000 0.000 1.000 0.000 0.000 

0.000 0.000 1.000 46.860 403.130 679.750 
POSITION 0.000 -1.000 0.000 1.000 0.000 0.000 

0.000 0.000 1.000 46.860 403.130 689.750 
RELEASE 
POSITION 0.000 -1.000 0.000 1.000 0.000 0.000 

0.000 0.000 1.000 46.860 403.130 677.250 
POSITION 0.174 0.985 0.000 0.985 -0.174 0.000 

0.000 0.000 -1.000 208.067-694.872 755.500 
POSITION 0.174 0.985 0.000 0.985 -0.174 0.000 

0.000 0.000 -1.000 208.067-694.872 755.500 
POSITION 0.000 -1.000 0.000 -1-000 0.000 0.000 

0.000 0.000 -1.000 46.860 403.130 739.750 
POSITION 0.000 -1.000 0.000 -1-000 0.000 0.000 

0.000 0.000 -1.000 46.860 403.130 689.750 
GRIP 
POSITION 0.000 -1.000 0.000 -1-000 0.000 0.000 

0.000 0.000 -1.000 46.860 403.130 739.750 
POSITION 0.000 -1.000 0.000 -1-000 0.000 0.000 

0.000 0.000 -1.000 -53-140 503.130 749.750 
POSITION 0.000 -1.000 0.000 -1.000 0.000 0.000 

0.000 0.000 -1.000 -53.140 503.130 739.730 
RELEASE 
POSITION 0.000 -1.000 0.000 -1-000 0.000 0.000 

0.000 0.000 -1.000 -53.140 503.130 752.250 
POSITION 0.174 0.985 0.000 0.985 -0.174 0.000 

0.000 0.000 -1.000 208.067-694.872 755.500 
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The final part of this appendix shows the equivalent VAL II robot program. At the top of this robot program, a TOOL command statement is used to 
correct the tool frame (from centre frame to robot mounting flange frame). 
Robot operating speed and robot command statements are defined with the 
robot move location information described in matrix form in one single file. 

. PROGRAM JOB1 
PROGRAM POST-PROCESSED BY TOP-DOWN APPROACH 
FOR JOB 1 

SPEED 50 ALWAYS 
OPENI 
TOOL G_TCP 
MOVES PT1 
MOVES PT2 
MOVES PT3 
CLOSEI 
MOVES PT4 
MOVES PT5 
MOVES PT6 
OPENI 
MOVES PT7 
MOVES PT8 
MOVES PT9 
MOVES PT10 
MOVES PT11 
CLOSEI 
MOVES PT12 
MOVES PT13 
MOVES PT14 
OPENI 
MOVES PT15 
MOVES PT16 
STOP 

. END 
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. LOCATIONS 
G_TCP 1.000 0.000 0.000 0.000 1.000 0.000 

0.000 0.000 1.000 0.000 0.000 114.500 
PT1 0.174 0.985 0.000 0.985 -0.174 0.000 

0.000 0.000 -1.000 208.067 -694.872 755.500 
PT2 0.000 -1.000 0.000 -1.000 0.000 0.000 

0.000 0.000 -1.000 46.860 403.130 739.750 
PT3 0.000 -1.000 0.000 -1.000 0.000 0.000 

0.000 0.000 -1-000 46.860 403.130 689.750 
PT4 0.000 -1.000 0.000 -1.000 0.000 0.000 

0.000 0.000 -1.000 46.860 403.130 739.750 
PT5 0.000 -1.000 0.000 1.000 0.000 0.000 

0.000 0.000 1.000 46-860 403.130 679.750 
PT6 0.000 -1.000 0.000 1.000 0.000 0.000 

0.000 0.000 1.000 46-860 403-130 689.750 
PT7 0.000 -1.000 0.000 1.000 0.000 0.000 

0.000 0.000 1.000 46.860 403.130 677.250 
PT8 0.174 0.985 0.000 0.985 -0.174 0.000 

0.000 0.000 -1.000 208.067 -694.872 755.500 
PT9 0.174 0.985 0.000 0.985 -0.174 0.000 

0.000 0.000 -1.000 208.067 -694.872 755.500 
PT10 0.000 -1.000 0.000 -1.000 0.000 0.000 

0.000 0.000 -1.000 46-860 403-130 739.750 
PT11 0.000 -1.000 0.000 -1.000 0.000 0.000 

0.000 0.000 -1.000 46.860 403.130 689.750 
PT12 0.000 -1.000 0.000 -1.000 0.000 0.000 

0.000 0.000 -1.000 46.860 403.130 739.750 
PT13 0.000 -1.000 0.000 -1-000 0.000 0.000 

0.000 0.000 -1.000 -53.140 503.130 749.750 
PT14 0.000 -1.000 0.000 -1.000 0.000 0.000 

0.000 0.000 -1.000 -53.140 503.130 739.730 
PT15 0.000 -1.000 0.000 -1.000 0.000 0.000 

0.000 0.000 -1.000 -53.140 503.130 752.250 
PT16 0.174 0.985 0.000 0.985 -0.174 0.000 

0.000 0.000 -1.000 208.067 -694.872 755.500 

. END 
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APPENDIX A. 3 EXAMPLE OUTPUT OF HIERARCHICAL 
APPEARANCE POST-PROCESSING METHODOLOGY 

To illustrate the differences between the "TOP DOWN" and "APPEARANCE" 
post-processing methodologies, the same GRASP track (as shown in appendix 
A. 2) is used. This part of the appendix shows the equivalent VAL II robot 
program with location information presented in relation to reference objects. The location information is stored in a separate file. 

At the top of this robot program, a TOOL statement is used to correct the 
tool frame (from centre frame to robot mounting flange frame). SET statements 
are used to define the absolute positions of all move positions. Robot 
operating speeds are defined in a similar way as used in the track. Robot 
move location information is presented as matrix elements in a separate file. 
This VAL II robot program can be re-converted into a track through the 
VALTOTRACK module which is explained in appendix A. 4. 

. PROGRAM JOB1 
TOOL G TCP 
SET OBjECT1=PLATFORM: TF1 
SET OBJECT2=PLATFORM: TF2 
OPENI 
MOVES PARK 
SPEED 100.000 MMPS ALWAYS 
MOVES OBJECT1: TF3 
MOVES OBJECT1: TF4 
CLOSEI 
SPEED 50.000 MMPS ALWAYS 
MOVES PLATFORM: TF5 
MOVES OBJECT2: TF6 
MOVES OBJECT2: TF7 
OPENI 
MOVES OBJECTI: TF8 
MOVES PARK 

. END 
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. LOCATIONS 
G_TCP 1.000 0.000 0.000 0.000 1.000 0.000 

0.000 0.000 1.000 0.000 0.000 114.500 
PLATFORM 0.000 1.000 0.000 -1-000 0.000 0.000 

0.000 0.000 1.000 59.360 390.630 639.750 
TF1 1.000 0.000 0.000 0.000 1.000 0.000 

0.000 0.000 1.000 12.500 12.500 50.000 
TF2 1.000 0.000 0.000 0.000 1.000 0.000 

0.000 0.000 1.000 112.500 112.500 50.000 
PARK 0.174 0.985 0.000 0.985 -0.174 0.000 

0.000 0.000 -1.000 208.067 -694.872 755.500 
TF3 -1-000 0.000 0.000 0.000 1.000 0.000 

0.000 0.000 -1-000 0.000 0.000 50.000 
TF4 -1-000 0.000 0.000 0.000 1.000 0.000 

0.000 0.000 -1.000 0.000 0.000 0.000 
TF5 -1-000 0.000 0.000 0.000 1.000 0.000 

0.000 0.000 -1.000 12.500 12.500 100.000 
TF6 -1-000 0.000 0.000 0.000 1.000 0.000 

0.000 0.000 -1-000 0.000 0.000 60.000 
TF7 -1-000 0.000 0.000 0.000 1.000 0.000 

0.000 0.000 -1.000 0.000 0.000 50.000 
TF8 -1-000 0.000 0.000 0.000 1.000 0.000 

0.000 0.000 -1.000 0.000 0.000 12.500 

. END 
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APPENDIX A. 4 : EXAMPLE OUTPUT OF VALTOTRACK MODULE 

Through the use of VALTOTRACK module, a VAL II robot program can be 
re-converted into a GRASP track. Thus the robot simulator can be used 
in a different way. The original input VAL II robot program and location 
information were presented in appendix A. 3. Since the robot program is 
not associated with any path and step names, the module automatically use 
PATH1, PATH2t STEP1, STEP2 etc for re-converting robot program into a 
GRASP track. 

PATH PATH1 STRAIGHT SPEED 100.000 
PATH PATH2 STRAIGHT SPEED 50.000 
TRACK JOBI 
STEP1 : LOCATE OBJECT1 OWNER PLATFORM AT PLATFORM 

50.000), 
STEP2 : LOCATE OBJECT2 OWNER PLATFORM AT PLATFORM 

50.000), 
STEP3 : PARK 

(SHIFT X 12.500 Y 12.50-) Z 

(SHIFT X 112.500 Y 112.500 Z 

STEP4 (PATH1 ): POSITION OBJECT1 (SHIFT Z 50.000 ROTATE Y 180.000), 
STEP5 POSITION OBJECT1 ( ROTATE Y 180.000), 
STEP6 GRIP OBJECT1 , 
STEP7 (PATH2 POSITION PLATFORM (SHIFT X 12.500 Y 12.500 Z 100-000 ROTAXE Y 

180.000), 
STEP8 : POSITION OBJECT2 (SHIFT Z 60.000 ROTATE Y 180.000), 
STEP9 : POSITION OBJECT2 (SHIFT Z 50.000 ROTATE Y 180.000), 
STEP10 : RELEASE OBJECT1 TO OBJECT2 , 
STEP11 : POSITION OBJECT1 (SHIFT Z 12.500 ROTATE Y 180.000), 
STEP12 : PARK 
STOP ; 
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APPENDIX B. 1 GRASP SYNTAX GENERATED FOR SOLID MODELLING THROUGH 
COMPUTER ASSISTED SOLID MODELLING MODULE 

This appendix shows GRASP syntax of a pallet generated through one 
of the software modules derived for parameterised solid modelling. 

CUBOID PALLET_BASE 300.000 250.000 20.000; 
CUBOID PALLET DBARI 20.000 250.000 100.000; 
COPY PALLET DRAR1 PALLET DBAR2 ; 
CUBOID PALLET DBAR3 20.000 210.000 100.000; 
CUBOID PALLET DBAR4 20.000 210.000 100.000; 
CUBOID PALLET 

- 
DBAR5 20.000 210.000 100.000; 

CUBOID PALLET CBAR1 260.000 20.000 100.000; 
COPY PALLET CBAR1 PALLET CBAR2; 
CUBOID PALLET CBAR3 507.000 20.000 100.000; 
CUBOID PALLET CBAR4 50.000 20.000 100.000; 
CUBOID PALLET CBAR5 50.000 20.000 100.000; 
CUBOID PALLET CBAR6 50.000 20.000 100.000; 
CUBOID PALLET CBAR7 50.000 20.000 100.000; 
CUBOID PALLET CBAR8 50.000 20.000 100.000; 
CUBOID PALLET CBAR9 50.000 20.000 100.000; 
CUBOID PALLET CBAR10 50.000 20.000 100.000; 
CUBOID PALLET CBAR11 50.000 20.000 100.000; 
CUBOID PALLET CBAR12 50.000 20.000 100.000; 
CUBOID PALLET 

- 
CBAR13 50.000 20.000 100.000; 

CUBOID PALLET_CBAR14 50.000 20.000 100.000; 
SET PALLET = PALLET_BASE 

PALLET DBAR1 (SHIFT Z 20.000) 
PALLET DBAR2 (SHIFT X 280.000 Z 20.000) 
PALLET 

- 
DBAR3 (SHIFT X 70.000 Y 20.000 Z 20.000) 

PALLET 
- 

DBAR4 (SHIFT X 140.000 Y 20.000 Z 20.000) 
PALLET DBAR5 (SHIFT X 210.000 Y 20.000 Z 20.000) 
PALLET CBAR1 (SHIFT X 20.000 Z 20.000) 
PALLET CBAR2 (SHIFT X 20.000 Y 230.000 Z 20.000) 
PALLET CBAR3 (SHIFT X 20.000 Y 57.500 Z 20.000) 
PALLET CBAR4 (SHIFT X 90.000 Y 57.500 Z 20.000) 
PALLET CBAR5 (SHIFT X 160.000 Y 57.500 Z 20.000) 
PALLET CBAR6 (SHIFT X 230.000 Y 57.500 Z 20.000) 
PALLET CBAR7 (SHIFT X 20.000 Y 115.000 Z 20.000) 
PALLET-CBAR8 (SHIFT X 90-000 Y 115.000 Z 20.000) 
PALLET CBAR9 (SHIFT X 160.000 Y 115.000 Z 20.000) 
PALLET 

- 
CBAR10 (SHIFT X 230.000 Y 115.000 Z 20.000) 

PALLET 
- 

CBAR11 (SHIFT X 20.000 Y 172.500 Z 20.000) 
PALLET CBAR12 (SHIFT X 90.000 Y 172.500 Z 20.000) 
PALLET 

- 
CBAR13 (SHIFT X 160.000 Y 172-500 Z 20.000) 

PALLET_CBAR14 (SHIFT X 230-000 Y 172.500 Z 20.000) 

STOP 
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APPENDIX B. 2 GRASP SYNTAX GENERATED FOR TASK SIMULATION THROUGH 
COMPUTER ASSISTED TASK PROGRAM GENERATION MODULE 

(i) PALLETISING TASKS 

In this appendix an example output of a robot palletising program 
generated by the PROG 

- 
PALLET software module. Local variables are 

declared at the top of this program. The program generated by the 
software module is created in the high level GRASP language where 
reference objects and workpieces can be defined as arrays. These 
arrays can be advanced as the programmer desires. After the local 
variable declarations, it is important to fill these arrays with 
the names of reference objects and workpeices. Locate statements 
are used to give an initial position for each objects that are to 
be manipulated during the palletising, such that every time the 
program is replayed the initial condition is maintained. The following 
program was created for option C with palletising pattern G to illustrate 
how parameterised tasks can be applied. 

TRACK PCG 
VARIABLES 
REFOBJECT PICK. REF(1: 12) 
VORKPIECE WPE (1: 12) 
END 
STEM : SET PICK. REF TO LIST (Tl, T2, T3, T4, T5, T6, T7, T8, T9, TlO, Tll, Tl2), 
STEP2 : SET WPE TO LIST (BOX1, BOX2, BOX3, BOX4, BOX5, BOX6, BOX7, BOX8, 

BOX9, BOX10, BOX11, BOX12), 
STEP3 : ADVANCE PICK. REF TO 1 
STEP4 : ADVANCE WPE TO 1 
STEP5 : REPEAT 12 TIMES 
STEP6 : LOCATE WPE OWNER PALLETI AT PICK. REF, 
STEP7 : ADVANCE PICK. REF BY 1 
STEP8 : ADVANCE WPE BY 1, 
STEP9 : ENDREPEAT FROM STEP5 
STEP10 : ADVANCE PICK. REF TO 1 
STEP11 : ADVANCE WPE To 1, 
STEP12 : POSITION PICK. REF (SHIFT Z 20.00 ROTATE Y 180.00), 
STEP13 : POSITION PICK. REF (ROTATE Y 180.00), 
STEP14 : GRIP WPE , 
STEP15 : POSITION PICK. REF (SHIFT Z 70.00 ROTATE Y 180.00), 
STEP16 : POSITION PALLET2 (SHIFT X 30.00 Y 30.00 Z 70.00 ROTATE Y 180.00) 
STEP17 POSITION PALLET2 (SHIFT X 30.00 Y 30.00 Z 50.00 ROTATE Y ý 180.00). 
STEP18 RELEASE WPE TO PALLET2 , 
STEP19 POSITION PALLET2 (SHIFT X 30.00 Y 30.00 Z 70.00 ROTATE Y 180.00)ý 
STEP20 ADVANCE WPE BY 1, 
STEP21 ADVANCE PICK. REF BY 1 
STEP22 : POSITION PICK-REF (SHIFT Z 20.00 ROTATE Y 180.00), 
STEP23 : POSITION PICK. REF (ROTATE Y 180.00)9 
STEP24 : GRIP WPE , 
STEP25 : POSITION PICK. REF (SHIFT Z 70.00 ROTATE Y 180.00), 
STEP26 POSITION PALLET2 (SHIFT X 90-00 Y 30.00 Z 70-00 ROTATE Y 180.00).. 
STEP27 POSITION PALLET2 (SHIFT X 90-00 Y 30.00 Z 50.00 ROTATE Y 180. OO)f 
STEP28 RELEASE WPE TO PALLET2 , 
STEP29 POSITION PALLET2 (SHIFT X 90-00 Y 30.00 Z 70.00 ROTATE Y 180.00)t 
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STEP30 : ADVANCE WPE BY 1, 
STEP31 : ADVANCE PICK. REF BY 1 
STEP32 : POSITION PICK. REF (SHIFT Z 20.00 ROTATE Y 180.00), 
STEP33 : POSITION PICK. REF (ROTATE Y 180.00)p 
STEP34 : GRIP WPE , 
STEP35 : POSITION PICK. REF (SHIFT Z 70.00 ROTATE Y 180.00), 
STEP36 : POSITION PALLET2 (SHIFT X 150.00 Y 30.00 Z 70.00 ROTATE Y 180.00), 
STEP37 : POSITION PALLET2 (SHIFT X 150.00 Y 30.00 Z 50.00 ROTATE Y 180.00), 
STEP38 : RELEASE WPE TO PALLET2 , 
STEP39 : POSITION PALLET2 (SHIFT X 150.00 Y 30.00 Z 70.00 ROTATE Y 180.00), 
STEP40 : ADVANCE WPE BY 1p 
STEP41 : ADVANCE PICK. REF BY 1 
STEP42 : POSITION PICK-REF (SHIFT Z 20.00 ROTATE Y 180.00), 
STEP43 : POSITION PICK. REF (ROTATE Y 180.00), 
STEP44 : GRIP WPE , 
STEP45 : POSITION PICK. REF (SHIFT Z 70.00 ROTATE Y 180.00), 
STEP46 : POSITION PALLET2 (SHIFT X 210.00 Y 30.00 Z 70.00 ROTATE Y 180.00), 
STEP47 : POSITION PALLET2 (SHIFT X 210.00 Y 30.00 Z 50.00 ROTATE Y 180.00) 
STEP48 : RELEASE WPE TO PALLET2 , 
STEP49 : POSITION PALLET2 (SHIFT X 210.00 Y 30.00 Z 70.00 ROTATE Y 180.00), 
STEP50 : ADVANCE WPE BY 1, 
STEP51 : ADVANCE PICK-REF BY 1 
STEP52 : POSITION PICK. REF (SHIFT Z 20-00 ROTATE Y 180.00), 
STEP53 : POSITION PICK. REF (ROTATE Y 180.00), 
STEP54 : GRIP WPE , 
STEP55 : POSITION PICK. REF (SHIFT Z 70.00 ROTATE Y 180.00), 
STEP56 : POSITION PALLET2 (SHIFT X 30.00 Y 90.00 Z 70.00 ROTATE Y 180.00), 
STEP57 : POSITION PALLET2 (SHIFT X 30.00 Y 90.00 Z 50.00 ROTATE Y 180.00), 
STEP58 : RELEASE WPE TO PALLET2 , 
STEP59 : POSITION PALLET2 (SHIFT X 30.00 Y 90.00 Z 70.00 ROTATE Y 180.00), 
STEP60 : ADVANCE WPE BY 1, 
STEP61 : ADVANCE PICK. REF BY 1 
STEP62 : POSITION PICK. REF (SHIFT Z 20.00 ROTATE Y 180.00), 
STEP63 : POSITION PICK. REF (ROTATE Y 180.00), 
STEP64 : GRIP WPE , 
STEP65 : POSITION PICK. REF (SHIFT Z 70.00 ROTATE Y 180.00)t 
STEP66 : POSITION PALLET2 (SHIFT X 90.00 Y 90.00 Z 70.00 ROTATE Y 180.00), 
STEP67 : POSITION PALLET2 (SHIFT X 90.00 Y 90.00 Z 50.00 ROTATE Y 180.00) 
STEP68 : RELEASE WPE TO PALLET2 , 

: 

STEP69 : POSITION PALLET2 (SHIFT X 90-00 Y 90-00 Z 70.00 ROTATE Y 180.00): 
STEP70 : ADVANCE WPE BY 1, 
STEP71 : ADVANCE PICK. REF BY 1 
STEP72 : POSITION PICK. REF (SHIFT Z 20.00 ROTATE Y 180.00), 
STEP73 : POSITION PICK. REF (ROTATE Y 180.00), 
STEP74 : GRIP WPE t 
STEP75 : POSITION PICK. REF (SHIFT Z 70.00 ROTATE Y 180.00), 
STEP76 : POSITION PALLET2 (SHIFT X 150.00 Y 90.00 Z 70-00 ROTATE Y 180.00), 
STEP77 : POSITION PALLET2 (SHIFT X 150.00 Y 90.00 Z 50.00 ROTATE Y 180.00), 
STEP78 : RELEASE WPE TO PALLET2 , 
STEP79 : POSITION PALLET2 (SHIFT X 150.00 Y 90.00 Z 70.00 ROTATE Y 180.00), 
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STEP80 : ADVANCE WPE BY 1, 
STEP81 : ADVANCE PICK. REF BY 1 
STEP82 : POSITION PICK-REF (SHIFT Z 20.00 ROTATE Y 180.00), 
STEP83 : POSITION PICK-REF (ROTATE Y 180.00)p 
STEP84 : GRIP WPE , 
STEP85 : POSITION PICK-REF (SHIFT Z 70.00 ROTATE Y 180.00), 
STEP86 : POSITION PALLET2 (SHIFT X 210.00 Y 90-00 Z 70.00 ROTATE Y 180.00), 
STEP87 : POSITION PALLET2 (SHIFT X 210.00 Y 90.00 Z 50.00 ROTATE Y 180.00), 
STEP88 : RELEASE WPE TO PALLET2 , 
STEP89 : POSITION PALLET2 (SHIFT X 210.00 Y 90.00 Z 70.00 ROTATE Y 180.00). 
STEP90 : ADVANCE WPE BY 1, 
STEP91 : ADVANCE PICK. REF BY 1 
STEP92 : POSITION PICK-REF (SHIFT Z 20-00 ROTATE Y 180.00), 
STEP93 : POSITION PICK-REF (ROTATE Y 180.00), 
STEP94 : GRIP WPE , 
STEP95 : POSITION PICK. REF (SHIFT Z 70.00 ROTATE Y 180.00), 
STEP96 : POSITION PALLET2 (SHIFT X 30.00 Y 150.00 Z 70.00 ROTATE Y 180.00), 
STEP97 : POSITION PALLET2 (SHIFT X 30.00 Y 150.00 Z 50-00 ROTATE Y 180.00), 
STEP98 : RELEASE WPE TO PALLET2 , 
STEP99 : POSITION PALLET2 (SHIFT X 30.00 Y 150.00 Z 70.00 ROTATE Y 180.00: #I 
STEP100 : ADVANCE WPE BY 1, 
STEP101 : ADVANCE PICK. REF BY 1 
STEP102 : POSITION PICK. REF (SHIFT Z 20.00 ROTATE Y 180.00), 
STEP103 : POSITION PICK. REF (ROTATE Y 180.00), 
STEP104 : GRIP WPE , 
STEP105 : POSITION PICK. REF (SHIFT Z 70.00 ROTATE Y 180.00), 
STEP106 : POSITION PALLET2 (SHIFT X 90-00 Y 150.00 Z 70.00 ROTATE Y 180 00) 
STEP107 : POSITION PALLET2 (SHIFT X 90.00 Y 150.00 Z 50.00 ROTATE Y 180: 00): 
STEP108 : RELEASE WPE TO PALLET2 , 
STEP109 POSITION PALLET2 (SHIFT X 90-00 Y 150.00 Z 70.00 ROTATE Y 180.00) 
STEP110 ADVANCE WPE BY 1, f 
STEP111 ADVANCE PICK. REF BY 1 
STEP112 POSITION PICK. REF (SHIFT Z 20.00 ROTATE Y 180.00), 
STEP113 POSITION PICK. REF (ROTATE Y 180.00), 
STEP114 GRIP WPE , 
STEP115 POSITION PICK. REF (SHIFT Z 70.00 ROTATE Y 180.00)p 
STEP116 : POSITION PALLET2 (SHIFT X 150.00 Y 150-00 Z 70.00 ROTATE Y 180.0)), 
STEP117 : POSITION PALLET2 (SHIFT X 150.00 Y 150.00 Z 50.00 ROTATE Y 180.0)), 
STEP118 : RELEASE WPE TO PALLET2 , 
STEP119 : POSITION PALLET2 (SHIFT X 150.00 Y 150-00 Z 70.00 ROTATE Y 180.0)), 
STEP120 : ADVANCE WPE BY 1, 
STEP121 : ADVANCE PICK. REF BY 1 
STEP122 : POSITION PICK. REF (SHIFT Z 20-00 ROTATE Y 180.00), 
STEP123 : POSITION PICK. REF (ROTATE Y 180.00), 
STEP124 : GRIP WPE , 
STEP125 : POSITION PICK. REF (SHIFT Z 70.00 ROTATE Y 180.00), 
STEP126 : POSITION PALLET2 (SHIFT X 210.00 Y 150.00 Z 70.00 ROTATE Y 180.0)), 
STEP127 : POSITION PALLET2 (SHIFT X 210.00 Y 150.00 Z 50.00 ROTATE Y 180.00), 
STEP128 : RELEASE WPE To PALLET2 , 
STEP129 : POSITION PALLET2 (SHIFT X 210.00 Y 150.00 Z 70.00 ROTATE Y 180.00)v 
STEP130 : ADVANCE WPE BY 11 
STEP131 : ADVANCE PICK. REF BY 1 

STOP 
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(ii) MACHINE TENDING TASKS 

This appendix shows an example output of a machine tending program 
generated by the FROG 

- 
TEND software module. The robot tending program 

is created for one of the shopfloor configurations as described, where 
any object can be assigned to any machine. A robot program is generated 
together with shell programs for the attendant peripheral robotic devices. 
The synchronisation of these robotic devices is through simple sensory 
input and output. 

Global variables are declared before any robot or peripheral programs. 
In general three types of variable can be used, including signal, 
workpiece and reference objects variables. It is important that signal 
variables must be declared at the global level. Vithin one program a 
signal variable can only be used for input or output purpose. If any 
path control is to be used in controlling robot motion, the path must 
be defined before it is used in any program for robot or other peripheral 
peripheral devices. The author also illustrate how a path can be controlled 
through this example. 

GLOBAL 
VARIABLES 
SIGNAL PART 

- 
READY, PART 

- 
CLEAR INg 

MILL1_START, MILL1 STOP, MILLI CLEAR, 
DRILL1 

- 
START, DRIL-Ll_STOPt DRIl: Ll CLEAR, 

LATHE1 START, LATHE1 STOP, LATHEl-CLEAR 
WORKPIECE PART (1: 107 
END ; 
PATH ST_CONV STRAIGHT SPEED 80 
PATH ST_MC PTPT ; 

The following track describes the conveyor belt movement which 
drives raw material or partially completed parts into the robot 
workplace. Assuming a sensing device is installed at the Pick up 
position on the conveyor system, and when a part is arrived at 
such a position, a signal output is generated from the sensor 
which stops the conveyor belt. The conveyor will not be re-started 
until after the part is picked up by the robot. 

TRACK CONV_IN_IN 
VARIABLES 
REAL DIST(1: 10) 
END 
CONV IN IN1 : SET PART TO LIST (OBJ1, OBJ10, OBJ2tOBJ3tOBJ9pOBJ4t 

OBJ'5pOD6, OBJ7, OBJ8) I 
CONV IN IN2 : SET DIST TO LIST(350.0,600.0,850.0,1100.0,1350.0, 

160U. O-, 1850.0,2100.0,235O. Ot2600.0) 
CoNV IN IN3 : ADVANCE PART TO 1 
CoNV"-IN-IN4 : ADVANCE DIST TO 1 
COW-Iff-IN5 : REPEAT 10 TIMES , 
coNV 

- 
INý'-IN6 : LOCATE PART OWNER CONV IN BELT AT CONV_IN_BELT(NULL), 

CONV IN 
"- 

IN7 : LOCATE PART BY (SHIFT 2 DIST) 
CONV_IN IN8 : ADVANCE PART BY 1, 
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COW IN IN9 
COW INý-IMO 
CONýYINll 
COW IFIN12 
COW IFIN13 

(SHYFT-X 475 
COW IN IN14 
COW IN IN15 
COW IN IN16 
COW IN IN17 
con IN IN18 
CONV_IN_IN19 

ADVANCE DIST BY 1, 
: ENDREPEAT FROM CONV_IN_IN5 
: ADVANCE DIST TO 1, 
: SET PART READY TO FALSE 
: LOCATE CUNV-IN_BELT OWNER CONV-IN AT CONV-IN 
Y 11910 Z 750), 

(ST CONV) : POSITION CONV IN TARG 
: SET PART READY TO TRUE -- 
: WAIT UNTYL PART CLEAR IN 
: SET PART READY TO FACSE 
: ADVANCE DIST BY 1, 
: GOTO CONV-IN_IN14 

(SHIFT X -DIST) p 

This track describes a second conveyor belt movement which drives 
completed parts out of the robot workplace to other workshop in 
the manufacturing system. This conveyor belt is not controlled by 
any signal and moves continuously and stops when the robot task is 
completed. This also illustrates different ways of programming. 

TRACK CONV-OUT_OUT 
CONV OUT OUT1 : LOCATE CONV OUT 

- 
BELT OVNER CONV-OUT AT CONV-OUT 

(SHIFT R 475 Y 11910 Z 7507t 
CONV OUT OUT2 : POSITION CONV OUT TARG 
CONV_OUT_OUT3 (ST_CONV) : POSfTIOR CONV_OUT_TARG (SHIFT X -20000) 

The following track describes the robot task and this robot track calls 
different macros (sub-routines) for different attendant machines. When 
the raw material is arrived at the pick up position, a signal is received 
by the robot controller that the part is ready to be pick up. Initially, 
every attendant machine is ready for processing raw material, the robot 
will load each machine according to the priority order specified by the 
programmer. Once the workpiece is loaded into the machine. A signal output 
from the attendant machine to the robot controller preventing re-loading 
before unloading process takes place and so avoid unnecessary collision 
and breakage. Once the manufacturing process is completed, the attendant 
machine outputs another signal to the robot controller signifies the 
process is completed and the finished part is ready to be unloaded. When 
the robot finishes unloading such machine, the machine is ready for the nect 
workpiece and so on. 

TRACK C 
CSTEP1 
CSTEP2 
CSTEP3 
CSTEP4 
CSTEP5 
CSTEP6 
CSTEP7 
CSTEP8 

ADVANCE PART TO 1 
CALL MILL1-LOAD , 
ADVANCE PART BY 1 
CALL DRILL1 LOAD 
ADVANCE PART BY 1 
CALL LATHEl-LOAD 
ADVANCE PART BY 1 
ADVANCE PART TO 1 
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CSTEP_REP : REPEAT 2 TIMES 
CSTEP9 CALL MILLI UNLOAD 
CSTEP10 ADVANCE PXRT BY 3, 
CSTEP11 CALL MILL1_LOAD , CSTEP12 ADVANCE PART BY 8, 
CSTEP13 CALL DRILLI-UNLOAD 
CSTEP14 ADVANCE PART BY 3, 
CSTEP15 CALL DRILL1_LOAD , CSTEP16 ADVANCE PART BY 8, 
CSTEP17 CALL LATHE1 UNLOAD 
CSTEP18 ADVANCE PART BY 3, 
CSTEP19 CALL LATHEI LOAD , CSTEP20 ADVANCE PART BY 8, 
CSTEP-END : ENDREPEAT FROM CSTEP-REP 
CSTEP21 : CALL MILLI-UNLOAD 
CSTEP22 : ADVANCE PART BY 1 
CSTEP23 : CALL DRILL1 UNLOAD 
CSTEP24 : ADVANCE PART BY I 
CSTEP25 : CALL LATHEl-UNLOAD 
CSTEP26 : ADVANCE PART BY I 

TRACK MILLI LOAD 
MILLI LOAD1 : WAIT UNTIL PART READY, 
MILLI LOAD2 : POSITION CONV 

- 
IN 

- 
TARG (SHIFT Y -400 Z 200.000) 

MILLI LOAD3 : POSITION CONV 
- 

IN 
- 

TARG (SHIFT Z 200.000) 
MILLI LOAD4 : POSITION CONV IN TARG (NULL) 
MILLI LOAD5 : GRIP PART ,- MILLI LOAD6 : POSITION CONV IN TARG (SHIFT z 200.000) 
MILLI LOAD7 : SET PART CLEAR IN TO TRUE 
MILLI LOAD8 : SET MILCl CLEAR TO FALSE, 
MILL1_LOAD9 : POSITION ZýONV_IN_TARG (SHIFT Y -400 Z 200.000) 
MILL1_LOAD10 : SET PART_CLEAR_IN TO FALSE, 
MILL1_LOAD11 : POSITION MILL1-TARG (SHIFT Y -400 Z 200.000) 
MILLI LOAD12 : POSITION MILLI 

- 
TARG (SHIFT Z 200.000) 

MILLI LOAD13 : POSITION MILLI TARG , MILL1_LOAD14 : RELEASE PART T'd MILLI TARG 
MILLI LOAD15 : POSITION MILLI TARG (ýýHIFT Z 200.000) 
MILLI LOAD16 : SET MILLI START TO TRUE , MILLI LOAD17 : POSITION RILL1 TARG (SHIFT Y -400 Z 200.000) 
MILL1_LOAD18 : SET MILL1-START TO FALSE 
MILL1-LOAD19 : RETURN , 

TRACK MILL1 
MILL1 PROM 
MILL1 PROG2 
MILL1-PROG3 
MILLI-PROG4 
MILL1-PROG5 
MILL1-PROG6 

PROG 
: WAIT UNTIL MILL1-START 
: PAUSE 2.500 , 
: SET MILLI STOP TO TRUE 
: WAIT UNTIE MILLI CLEAR 
: SET MILLI STOP T'd FALSE 
: GOTO MILCl-PROG1 , 
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TRACK MILLI UNLOAD 
MILLI UNLOAD1 : WAIT UNTIL MILLI STOP, 
MILLI UNLOAD2 : POSITION MILLI TTRG (SHIFT Y -400 Z 200.000) 
MILLI UNLOAD3 : POSITION MILLI TARG (SHIFT Z 200.000) 
MILLI UNLOAD4 : POSITION MILLI TARG 
MILLI UNLOAD5 : GRIP PART , 
MILLI UNLOAD6 : POSITION MILLI TARG (SHIFT Z 200.000) 
MILLI UNLOAD7: POSITION MILLI TARG (SHIFT Y -400 Z 200.000) 
MILLI UNLOAD8 : POSITION CONV 

- 
OUT 

- 
TARG (SHIFT Y -400 Z 200.000) 

MILLI UNLOAD9 : POSITION CONV OUT TARG (SHIFT Z 200.000) 
MILL1 UNLOAD10 : POSITION CONV OUT TARG (NULL) 
MILLI UNLOAD11 : RELEASE PART TO CUNV OUT BELT, 
MILLI UNLOAD12 : SET MILLI CLEAR TO TRUE , 
MILLI UNLOAD13 : POSITION ýýONV OUT TARG (SHIFT Z 200.000) 
MILLI UNLOAD14 : POSITION CONV-OUT_TARG (SHIFT Y -400 Z 200.000) 
MILLl-UNLOAD15 : RETURN , 

TRACK DRILLI-LOAD 
DRILL1 LOAD1 : WAIT UNTIL PART_READY, 
DRILL1 LOAD2 : POSITION CONV IN 

- 
TARG (SHIFT Y -400 Z 200.000) 

DRILL1 LOAM : POSITION CONV IN 
- 

TARG (SHIFT Z 200.000) 
DRILL1 LOAM : POSITION CONV IN TARG (NULL) 
DRILL1 LOAD5 : GRIP PART , 
DRILL1 LOAD6 : POSITION CONV IN TARG (SHIFT Z 200.000) 
DRILL1 LOAD7 : SET PART CLEAR IN TO TRUE 
DRILL1 LOAD8 : SET DRICLI CLEXR TO FALSE, 
DRILL1-LOAD9 : POSITION C'dNV IN TARG (SHIFT Y -400 Z 200.000) 
DRILL1 LOAD10 : SET PART CLEKR lN TO FALSE, 
DRILL1 

- 
LOAD11 : POSITION DRILL11 

- 
TARG (SHIFT Y -400 Z 200.000) 

DRILL1 
- 

LOAD12 : POSITION DRILLI 
- 

TARG (SHIFT Z 200.000) , 
DRILL1 LOAD13 : POSITION DRILL1 TARG , 
DRILL1 LOAD14 : RELEASE PART TO DRILL1 TARG 
DRILLI LOAD15 : POSITION DRILL1 TARG (9HIFT Z 200.000) , 
DRILLI LOAD16 : SET DRILL1 START TO TRUE , 
DRILL1 

- 
LOAD17 : POSITION DRILL1-TARG (SHIFT Y -400 Z 200.000) 

DRILLI LOAD18 : SET DRILLI START TO FALSE 
DRILL1_LOAD19 : RETURN , 

TRACK DRILL1 
DRILL1-PROG1 
DRILL1-PROG2 
DRILL1-PROG3 
DRILL1-PROG4 
DRILL1-PROG5 
DRILL1-PROG6 

PROG 
: WAIT UNTIL DRIM-START 
: PAUSE 2.500 , 
: SET DRILL1 STOP TO TRUE 
: WAIT UNTIL-DRILLl-CLEAR 
: SET DRIM-STOP TO FALSE 
: GOTO DRILL1_PROG1 , 
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TRACK DRILL1 UNLOAD 
DRILL1 UNLOA7Dl : WAIT UNTIL DRILL1_STOP, 
DRILL1-UNLOAD2 : POSITION DRILL1 TARG (SHIFT Y -400 Z 200.000) 
DRILL1 UNLOAD3 : POSITION DRILL1_TARG (SHIFT Z 200.000) 
DRILL1-UNLOAD4 : POSITION DRILL1-TARG 
DRILL1 UNLOAD5 : GRIP PART , DRILL1-UNLOAD6 : POSITION DRILL1 TARG (SHIFT Z 200.000) 
DRILL1 UNLOAD7: POSITION DRILL1 TARG (SHIFT Y -400 Z 200.000) 
DRILL1-UNLOAD8 : POSITION CONV '6UT TARG (SHIFT Y -400 Z 200.000) 
DRILL1-UNLOAD9 : POSITION CONV_OUT_TARG (SHIFT Z 200.000) 
DRILL1 UNLOAD10 : POSITION coNV OUT TARG (NULL) 
DRILL1_UNLOAD11 : RELEASE PART TO C'6NV OUT BELT, 
DRILL1_UNLOAD12 : SET DRILL1 CLEAR TO TRUE-, 
DRILL1 UNLOAD13 : POSITION CUNV 

- 
OUT TARG (SHIFT Z 200.000) 

DRILL1 UNLOAD14 : POSITION CONV-OUT_TARG (SHIFT Y -400 Z 200.000) 
DRILL1_UNLOAD15 : RETURN , 

TRACK LATHEl-LOAD 
LATHEl-LOADI : WAIT UNTIL PART_READY, 
LATHE1 

- 
LOAD2 : POSITION CONV 

- 
IN TARG (SHIFT Y -400 Z 200.000) 

LATHE1 LOAM : POSITION CONV INýTARG (SHIFT Z 200.000) 
LATHEl-LOAD4 : POSITION CONV-IN-TARG (NULL) 
LATHE1 LOAD5 : GRIP PART , 
LATHE1 

- 
LOAD6 : POSITION CONV IN TARG (SHIFT Z 200.000) 

LATHE1 LOAD7 : SET PART CLEAR IN TO TRUE 
LATHEl-LOAD8 : SET LATH*fl CLEKR TO FALSE, 
LATHE1 

- 
LOAD9 : POSITION CUNV IN TARG (SHIFT Y -400 Z 200.000) 

LATHE1 LOAD10 : SET PART CLETR IN TO FALSE, 
LATHEl-LOAD11 : POSITION-LATHEY 

- 
TARG (SHIFT Y -400 Z 200.000) 

LATHE1 
- 

LOAD12 : POSITION LATHE1 
- 

TARG (SHIFT Z 200.000) 
LATHE1 LOAD13 : POSITION LATHE1 TARG , LATHE1 LOAD14 : RELEASE PART TO LATHE1 TARG 
LATHE1 LOAD15 : POSITION LATHE1 TARG (-9HIFT Z 200.000) 
LATHE1 LOAD16 : SET LATHE1 START TO TRUE , 
LATHE1 

- 
LOAD17 : POSITION IaTHE1 TARG (SHIFT Y -400 Z 200.000) 

LATHE1 LOAD18 : SET LATHE1 START TO FALSE , LATHEl-LOAD19 : RETURN , 

TRACK LATHE1 
LATHE1 PROG1 
LATHE1 PROG2 
LATHE1_PROG3 
LATHEI-PROG4 
LATHE1 PROG5 
LATHE1_PROG6 

PROG 
WAIT UNTIL LATHEl-START 
PAUSE 2.500 , SET LATHE1 STOP TO TRUE 
WAIT UNTICLATHE1 CLEAR 
SET LATHE1 STOP T'd FALSE 
GOTO LATHE! 

-PROG1 , 
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TRACK LATHE1 UNLOAD 
LATHE1-UNLOAD1 : WAIT UNTIL LATHEl-STOP, 
LATHEl-UNLOAD2 : POSITION LATHEl-TARG (SHIFT Y -400 Z 200.000) 
LATHEl-UNLOAD3 : POSITION LATHEI-TARG (SHIFT Z 200.000) , LATHEl-UNLOAD4 : POSITION LATHEl-TARG 
LATHE1_UNLOAD5 : GRIP PART , LATHEl-UNLOAD6 : POSITION LATHE1 

- 
TARG (SHIFT Z 200.000) , LATHE1 

- 
UNLOAD7: POSITION LATHE1_TARG (SHIFT Y -400 Z 200.000) 

LATHE1 UNLOAD8 : POSITION CONV OUT TARG (SHIFT Y -400 Z 200-000) 
LATHE1-UNLOAD9 : POSITION CONVýOUT-TARG (SHIFT Z 200.000) 
LATHE1 UNLOAD10 : POSITION CONV OUT TARG (NULL) 
LATHE1 UNLOAD11 : RELEASE PART TO C'6NV OUT BELT, 
LATHE1 UNLOAD12 : SET LATHE1 CLEAR TO TRUE-, 
LATHE1 UNLOAD13 : POSITION CONV OUT TARG (SHIFT Z 200.000) 
LATHE1 UNLOAD14 : POSITION CONV_OUT_TARG (SHIFT Y -400 Z 200.000) 
LATHEl-UNLOAD15 : RETURN 

SýOp 
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APPENDIX C. 1 EXAMPLE DATA SHEET OF ROBOT KINEMATIC CHARARTERISTICS 
SUPPLIED BY A ROBOT MANUFACTURER 

Acceleration Performance of Adept One Robot 

Joint 1 and 2 

Terminal velocity: 1.5 rps (rev. per second) (=10 rad/s) 
Acceleration: 0-0.5 rps: 80 ms (6.2 r/s2) (39 rad/s2) 

0.5 - 1.0 rps: 120 ms (4.1 r/s2) (25 rad/s2) 
1.0 - 1.5 rps: 200 ms (2.5 r/s2) (15 rad/s2) 

Joint 3 

Terminal velocity: 20 
Acceleration: 0-5 

5- 10 
10 - 15 
15 - 20 

Joint 4 

ips 
ips: 
ips: 
ips: 
ips: 

(Inche 
26 ms 
30 ms 
48 ms 

100 ms 

s per second) (=0.5 m/s) 
(192 i/s2) (4.8 m/s2) 
(165 i/s2) (4.2 m/s2) 
(104 i/s2) (2.7 m/s2) 
( 50 i/s2) (1.3 m/s2) 

Terminal velocity: 10 rps (rev. per second) (=60 rad/s) 
Acceleration: 0-5 rps: 10 ms (500 r/s2) (3100 rad/s2) 

5-7.5 rps: 5 ms (500 r/s2) (3100 rad/s2) 

Graphs which depict the acceleration curves for joint 1,3 and 4 are 
shown on the next page. Joint 1 and 2 perform in a similar manner. 
The joint 4 measurements were performed at half torque. 

source of information: (Adept Technology Inc, June 1986) 

Meta Machines Limited, 
9 Blacklands Way, 
Abingdon Business Park, 
Abingdon, Oxford, England 
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APPENDIX C. 2 ILLUSTRATIVE EXAMPLE OF VALTOGRASP CALIBRATION MODULE 

The VALTOGRASP is a program used to convert any frame or teach positions 
(all positions are stored as a robot TOOL frame) into equivalent frame used 
in GRASP. Unaltered pcb frame is obtained from vision system and robot 
program (VAL II). These unaltered frames are stored in a location file 

called "filenameU. LCII. This location file is transferred to PRIME via 
RS232 serial link. The TOOL frame is converted into GRASP frame through 
rotation of 180 degrees about the y axis and then 90 degrees about the 
rotated z axis. The final transformation matrix converted into eulerian 
angles and Xt Y, Z translations. 

The following shows the original calibrated location file called BOARDU. LC 
which contains the location information of the board frame obtained through 
the use of vision system and VAL II. 

. LOCATIONS 
BOARD -9.302992E-3 -0.9999567 1.46098E-5 -0.9999567 9.302992E-3 -2.161314E 
2.147629E-5 -1.481025E-5 -1 623.2843 -87.916473 629.99499 

. END 

To run the VALTOGRASP calibration module type: SEG VALTOGRASP 
the computer then prompts for the name of robot involved: ADEPTONE 
the computer then prompts for the name of location file: BOARDU. LC 

After locations are read from the file, the location information 
is then presented in a4x4 homogeneous transformation matrix as 
below : 

-0.009 -1.000 
-1.000 0.009 

0.000 -0.000 0.000 0.000 

0.000 623.284 
-0.000 -87.916 
-1.000 629.995 
0.000 1.000 

The rotation of 180 degrees about the y axis is transformed into 
a4x4 homogeneous transformation matrix as: 

-1.000 0.000 0.000 0.000 
0.000 1.000 0.000 0.000 
0.000 0.000 -1.000 0.000 
0.000 0.000 0.000 1.000 

The robot tool frame is then multiplied by a rotation of 180 degrees 
about the y axis, the rotated frame becomes: 

0.009 -1.000 -0.000 623.284 
1.000 0.009 0.000 -87.916 

-0.000 -0.000 1.000 629.995 
0.000 0.000 0.000 1.000 

The rotation of 90 degrees about the z axis is transformed into 
a4x4 homogeneous transformation matrix as: 

0.000 -1.000 1.000 0.000 
0.000 0.000 
0.000 0.000 

0.000 0.000 
0.000 0.000 
1.000 0.000 
0.000 1.000 
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After rotation of 90 degrees about the rotated z axis, 
the calibrated location for robot simulator becomes: 

-1.000 -0.009 
0.009 -1.000 

-0.000 0.000 
0.000 0.000 

-0.000 623.284 
0.000 -87.916 1.000 629.995 
0.000 1.000 

The calibrated and updated location file called BOARDU. UP vhich contains 
the location of calibrated and updated board frame through the 
VALTOGRASP module as shovn belov: 

TO ADEPTONE ADD BOARD ( SHIFT X 623.284 Y -87.916 Z 629.995 
EULER 0.000 0.000 179.467); 

The listing of the Prime Operating System commands generated for GRASP 
invokation and automatically loads in the updated locations or frames 

so that updating simulation model can be performed. To run this operating 
system command program type RUN BOARDU <name of original simulation model, 0, 
these operating command invokes GRASP and load in the original simulation 
model. The content of the operating system command file is explained below: 

&args source (enter name of simulation model 
GRASP (invoke GRASP 

(two carriage returns are required 
(by the GRASP system 

4 (select type of graphics terminal or workstation 
N (not loading simulation model in binary form 

(select input/output menu 
(select input data option 

%source% (enter name of original simulation model to GRASP 
(a carriage return is required at the end of data file 

I (select input data option again 
boardu. UP [enter name of calibrated and updated data file 

(a carriage return is required at the end of data file 
WORKPLACE [select workplace menu 
ATTACH (select attach command to change ownership of objects 
BOARD [object to be attached to a new owner 
WORKPLACE (new owner 

(a carriage return exit the workplace menu 
OUT (select output option 
WORKPLACE (output model from the top hierarchy 
%source%. NEW (enter name of new simulation model, use original name 

(with a suffix NEW 
Y (output tracks and paths 
STOP (finish GRASP session 
N (select no binary storage 
N [do not want another session 
LD [list the directory so that the programmer can check 

(the newly created GRASP simulation model 
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APPENDIX D. 1 : DIFFERENCES IN DATA FORMATS BETWEEN REDBOARD 
AND GRASP SYSTEMS 

(i) DATA FORMAT OF REDBOARD SYSTEM 

This part of the appendix describes the data formats that are used in 
the Redboard system. The overall data formats are given, but only the 
relevant portions of the data formats are explained in full detail. Further 
information can be found in the Redboard menu, 1986. 

. REM REDBOARD STANDARD DEFAULTS 

. IFL 
BOARD. IND 
/. CPI 
/Icl SN7402 
/IC2 SN7417 
/IC3 SN7417 
/IC4 SN7400 

. EOD 

. PCB 

( To start the part name data } 

( To end the part name data 

[ To start pcb data 

ASS 
Design Assignment - including pad code definitions, 
track code definitions, text code definitions and 
space limitation for checking. 

MAR 14 1 
CMD 0 

MAX 2 

UNI 40 

These two lines are use by the REDAC systems other 
than ASCII input/output 

Defines the maximum number of layers on a board, 
number between 1 and 16 

Defines the structure data unit i. e. resolution, 
number in range of 32 to 127 structure data 
units (D. S. U. ) per inch 

( Definitions of pad code 
( pad code, layer, pad size, pad shape, drill diameter, orientation, 
( finger, plated 
PAD 0- 55 1 28 0 
PAD 1-0100 
PAD 2- 60 2 32 0 
PAD 3- 60 1 32 0 
PAD 4- 60 3 32 0 
PAD 5- 75 1 40 0 
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PAD 6- 75 2 40 0 
PAD 7- 75 3 40 0 
PAD 8- 100 1 44 0 
PAD 9- 100 2 44 0 
PAD 10 - 100 3 44 0 
PAD 11 - 125 1 44 0 
PAD 12 - 60 3 110 0 
PAD 13 - 75 1 0 0 
PAD 14 - 60 3 120 0 
PAD 15 - 215 1 1 0 
PAD 16 - 220 1 1 0 
PAD 17 - 210 1 1 0 
PAD 18 - 50 1 28 0 
PAD 19 - 50 2 28 0 
PAD 20 - 50 3 28 0 
PAD 21 - 50 0 0 0 175 0 
PAD 22 - 60 0 0 0 170 0 
PAD 23 - 75 0 0 0 163 0 
PAD 24 - 100 0 0 0 150 0 
PAD 25 - 50 0 0 1 175 0 
PAD 26 - 60 0 0 1 170 0 
PAD 27 - 75 0 0 1 163 0 
PAD 28 - 100 0 0 1 150 0 
PAD 29 - 60 0 32 0 7 0 
PAD 30 - 60 0 32 1 7 0 
PAD 31 - 20 0 0 0 285 0 

Definitions of track code 
track width code number, layer, 

1 0-7 1-16, 
TRA 0- 50 
TRA 1- 12 
TRA 2- 15 
TRA 3- 20 
TRA 4- 25 
TRA 5- 50 
TRA 6- 50 
TRA 7- 50 

Definitions of 
text size code, 

1 0-3 
TEX 0 2 12 
TEX 1 3 15 
TEX 2 5 20 
TEX 3 8 25 
TTS - 12 
TPS - 12 
PPS - 12 

track width 
0-255 (0.00111) 

text 
height of text characters, width of line 

0-127 D. S. U. 1 0-255 (0.00111) 

( Defines track to track spacing 
( Defines track to pad spacing 
( Defines pad to pad spacing 
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BOA 
Definitions of board outline 
Defines number of corners on the board outline with minimum 
of 2 to maximum of 62, followed by x and y coordinates which 
defines the outline of pcb. Coordinates must be positive integers 
in the range of 0 to 1023 inclusive. 

L5 

00 
352 0 
352 500 

0 500 
00 

LIB 
The component library definition defines the physical characteristics, 
i. e. overall dimensions and pad positions and size codes, of every 
component type to be used on the circuit board. 

L0882 
243 
643 

L1 24 42 
223 

22 23 
L2 32 16 14 

423 
823 

12 23 
16 23 
20 23 
24 23 
28 23 
28 14 3 
24 14 3 
20 14 3 
16 14 3 
12 14 3 
8 14 3 
4 14 3 

L3 36 16 16 
423 
823 

12 23 
16 23 
20 23 
24 23 
28 23 
32 23 
32 14 3 
28 14 3 
24 14 3 
20 14 3 
16 14 3 
12 14 3 
8 14 3 
4 14 3 
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L4 84 28 40 
423 
823 

12 23 
16 23 
20 23 
24 23 
28 23 
32 23 
36 23 
40 23 
44 23 
48 23 
52 23 
56 23 
60 23 
64 23 
68 23 
72 23 
76 23 
so 23 
80 26 3 
76 26 3 
72 26 3 
68 26 3 
64 26 3 
60 26 3 
56 26 3 
52 26 3 
48 26 3 
44 26 3 
40 26 3 
36 26 3 
32 26 3 
28 26 3 
24 26 3 
20 26 3 
16 26 3 
12 26 3 

8 26 3 
4 26 3 

L5 32 16 
12 45 
20 45 
28 45 
28 12 5 
20 12 5 
12 12 5 

L6 12 4 

10 23 
L7 130 16 

28 26 
88 26 

14 8 26 
20 8 26 
26 8 26 

6 

2 

22 
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32 8 26 
38 8 26 
44 8 26 
50 8 26 
56 8 26 
62 8 26 
68 8 26 
74 8 26 
80 8 26 
86 8 26 
92 8 26 
98 8 26 

104 8 26 
110 8 26 
116 8 26 
122 8 26 
128 8 26 

Index of library reference 
library numbers in the disc 
reqiured for assembly. 

relates local library numbers to the 
based library. This definition is not 

. IDX 
L0 7102 
L1 5250 
L2 1022 
L3 1023 
L4 1136 
L5 13100 
L6 7200 
L7 12205 

The components list preceded by -COM defines components with 
reference markers. This list defines the name of component, 

[ orientation of component name, x and Y coordinates of the position 
[ of the component name relative to the centre of the component, 
( library reference number for the component type, type of pad, 

orientatiion of the component layout as compared with the attitude 
of the outline in the library definition (defined as 0, lt, 2 and 3 
quadrants of 90 degrees), and coordinates of the lower left hand pad 
after rotation (in D. S. U. measured relative to layout). Components 
are grouped together according to its own heading and then the pin 

number. 
This component list is requ ired for pcb assembly example. 

. COM 
IC29 0 0 0 L 4 0 0 32 232 
IC32 0 0 0 L 4 0 0 32 328 
IC33 0 0 0 L 4 0 0 32 360 
IC57 0 0 0 L 4 0 0 176 440 
IC8 0 0 0 L 3 0 0 8 160 
IC9 0 0 0 L 3 0 0 8 180 
IC10 0 0 0 L 3 0 0 32 212 
icl5 0 0 0 L 3 0 0 12 436 
IC28 0 0 0 L 3 0 0 80 212 
IC49 0 0 0 L 3 0 0 180 20 
IC56 0 0 0 L 3 0 0 224 20 
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CON 
A connection is defined as a link between two pads. A connection definition is not used in this assembly example 

REM UNROUTED : COD 2 
. REM TREE 1 

IC5 25 IC3 14 
. REM TREE 2 

IC5 18 IC3 6 
. REM TREE 3 

IC2 6 IC5 6 
. REM TREE 4 

IC3 12 IC5 23 
. REM TREE 5 

IC3 10 IC5 21 
. REM TREE 6 

IC5 5 IC4 3 
IC4 3 IC4 4 

. REM TREE 7 
IC4 2 IC4 6 

. REM TREE 8 
IC5 2 IC2 2 

. REM TREE 9 
IC2 12 IC5 36 

. REM TREE 10 
IC5 11 R5 1 
R5 1 Cl I 
Cl 1 Dl 2 

. REM TREE 11 
IC4 1 Rl 2 
Rl 2 swl 3 

. REM TREE 12 
R3 2 IC5 1 
IC5 1 ici 2 
ici 2 Icl 3 
ici 3 PU 11 

. REM TREE 13 
IC5 4 Icl 1 
ici 1 Dl 1 

. REM TREE 14 
IC3 13 PU 7 

. REM TREE 15 
IC5 38 IC2 14 

. REM TREE 16 
Slil 1 IC4 5 
IC4 5 R2 2 

. REM TREE 17 
PU 12 R5 2 

. REM TREE 18 
PU 4 IC3 7 

. REM TREE 19 
IC2 3 PU 18 

. REM TREE 20 
PU 6 IC3 11 

. REM TREE 21 
IC3 9 PU 5 
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. REM TREE 22 
PL1 16 IC2 11 

. REM TREE 23 
IC5 9 PL1 8 

. REM TREE 24 
PL1 15 IC2 7 

. REM TREE 25 
IC2 13 PL1 17 

. REM TREE 26 
PL1 14 IC5 17 

. REM TREE 27 
IC5 19 PL1 13 

. REM TREE 28 
PL1 9 IC5 8 

. REM TREE 29 
IC5 7 PL1 10 

. REM TREE 30 
IC5 26 R4 2 

. COD 6 

. REM TREE 31 
IC5 40 R2 1 
R2 1 R4 1 
R4 1 C2 1 
C2 1 PL1 22 
PL1 22 C3 1 
C3 1 R3 1 
R3 1 Rl 1 
Rl I Icl 14 
Icl 14 IC4 14 
IC4 14 IC2 16 

. REM 10 
IC2 16 IC3 16 

. COD 7 

. REM TREE 32 
IC5 20 IC2 1 
IC2 1 IC3 15 
IC3 15 PL1 1 
PU 1 C3 2 
C3 2 C2 2 
C2 2 Cl 2 
Cl 2 IC5 39 
IC5 39 IC5 10 
IC5 10 swi 2 
swi 2 Icl 7 

. REM 10 
ici 7 IC4 7 
IC4 7 IC2 8 
IC2 8 IC3 8 

. REM NO DATA FOR ROU 
A route defines the path which must be taken by a connection 
to avoid other items on the pcb. 
Route definitions are not used in this assembly example 
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. REM NO DATA FOR COP 
( The copper list defines copper area on a layer. 
{ The copper definitions are not used in this assembly example 

. REM NO DATA FOR TEX 
[ Text definiitions are used to define text, layer on 
[ which it appears, orientation,, and position. 
( Text definitions are not used in this assembly example 

. COD 7 

. EOD To end pcb data 
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(ii) DATA FORMAT OF GRASP SYSTEM 

This appendix shows the GRASP syntax that describes the pcb and 
electronic components, assignment of pick up positions and robot program. 

SYNTAX OF SOLID MODELLING 

The following GRASP syntax is created for generating solid models 
of a pcb and electronic components. 

POLYPRIS 
0.000 
0.000 

317.500 
317.500 

0.000 

M %BOA HEIGHT 2 AXIS Z 
0.000 

223.520 
223.520 

0.000 
0.000 

CUBOID %4 53.340 17.780 5; 
SET L4 = %4 ; 
SET XIC29 L4 
SET IC29 %IC29 ( ROTATE Z -90 SHIFT Y 26.670) 
CUBOID PTIC29 53.340 17.780 2; 
SET TARG_IC29 =; 
SET TIC29 = PTIC29 
TARG IC29(SHIFT X 26.670 Z2 ROTATE Z 90) 

COPY L4 %IC32 ; 
SET IC32 = %IC32( ROTATE Z -90 SHIFT Y 26.670) 
CUBOID PTIC32 53.340 17.780 2; 
SET TARG_IC32 =; 
SET TIC32 = PTIC32 
TARG IC32(SHIFT X 26.670 Z2 ROTATE Z 90) 

- COPY L4 %IC33 ; 
SET IC33 = %IC33( ROTATE Z -90 SHIFT Y 26.670) 
CUBOID PTIC33 53.340 17.780 2; 
SET TARG_IC33 =; 
SET TIC33 = PTIC33 

IC33(SHIFT X 26.670 Z2 ROTATE TARG Z 90) 
- COPY L4 %IC57 ; 

SET IC57 = %IC57( ROTATE Z -90 SHIFT Y 26.670) 
CUBOID PTIC57 53.340 17.780 2; 
SET TARG IC57 =; 
SET TIC57 = PTIC57 
TARG IC57(SHIFT X 26.670 Z2 ROTATE Z 90) 

CUBOIU %3 22.860 10-160 5; 
SET L3 = %3 ; 
SET Y. IC8 L3 
SET IC8 %IC8 ROTATE Z -90 SHIFT Y 11.430) 
CUBOID PTIC8 22-860 10.160 2; 
SET TARG-IC8 =; 
SET TIC8 = PTIC8 
TARG IC8(SHIFT X 11.430 Z2 ROTATE Z 90) 

_ 
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COPY L3 %IC9 ; 
SET IC9 = %IC9( ROTATE Z -90 SHIFT Y 11.430) 
CUBOID PTIC9 22.860 10.160 2; 
SET TARG-IC9 =; 
SET TIC9 = PTIC9 
TARG 

- 
IC9(SHIFT X 11.430 Z2 ROTATE Z 90) 

COPY L3 %IC10 ; 
SET IC10 = %IC10( ROTATE Z -90 SHIFT Y 11.430) 
CUBOID PTIC10 22.860 10.160 2; 
SET TARG IC10 =; 
SET TIClU = PTIC10 
TARG 

- 
IC10(SHIFT X 11.430 Z2 ROTATE Z 90) 

COPY L3 %IC15 ; 
SET IC15 = %IC15( ROTATE Z -90 SHIFT Y 11.430) 
CUBOID PTIC15 22.860 10.160 2; 
SET TARG IC15 =; 
SET TIC1'5 = PTIC15 
TARG IC15(SHIFT X 11.430 Z2 ROTATE Z 90) 

COPY L3 %IC28 ; 
SET IC28 = %IC28( ROTATE Z -90 SHIFT Y 11.430) 
CUBOID PTIC28 22.860 10.160 2; 
SET TARG IC28 =; 
SET TIC219 = PTIC28 
TARG IC28(SHIFT X 11.430 Z2 ROTATE Z 90) 

COPY L3 %IC49 ; 
SET IC49 = XIC49( ROTATE Z -90 SHIFT Y 11.430) 
CUBOID PTIC49 22.860 10.160 2; 
SET TARG_IC49 =; 
SET TIC49 = PTIC49 
TARG 

- 
IC49(SHIFT X 11.430 Z2 ROTATE Z 90) 

COPY L3 XIC56 ; 
SET IC56 = %IC56( ROTATE Z -90 SHIFT Y 11.430) 
CUBOID PTIC56 22.860 10.160 2; 
SET TARG_IC56 -; 
SET TIC56 = PTIC56 
TARG_IC56(SHIFT X 11.430 Z2 ROTATE Z 90) 

SET BOARD = %BOA 
TIC29 (ROTATE Z 0.000 SHIFT X 17.780 Y 146.050) 
TIC32 (ROTATE Z 0.000 SHIFT X 17.780 Y 207.010) 
TIC33 (ROTATE Z 0.000 SHIFT X 17.780 Y 227.330) 
TIC57 (ROTATE Z 0.000 SHIFT X 109.220 Y 278.130) 
TIC8 (ROTATE Z 0.000 SHIFT X 2.540 Y 100.330) 
TIC9 (ROTATE Z 0.000 SHIFT X 2.540 Y 113.030) 
TIC10 (ROTATE Z 0.000 SHIFT X 17.780 Y 133.350) 
TIC28 (ROTATE Z 0.000 SHIFT X 48.260 Y 133.350) 
TIC49 (ROTATE Z 0.000 SHIFT X 111.760 Y 11.430) 
TIC56 (ROTATE Z 0.000 SHIFT X 139.700 Y 11.430) 
TIC15 (ROTATE Z 0.000 SHIFT X 5.080 Y 275.590) 

STOP 
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SYNTAX OF COMPONENT PICK UP REFERENCE ASSIGNMENT 

The following GRASP syntax is used for assignment of electronic component 
to peripheral feeders (or teach positions) with component of the same type 
being allocated to the same feeder. 

SET TPOINT4 =; 
TO TPOINT4 ADD IC29 
TO TPOINT4 ADD IC32 
TO TPOINT4 ADD IC33 
TO TPOINT4 ADD IC57 
SET TPOINT3 =; 
TO TPOINT3 ADD IC8 
To TPOINT3 ADD IC9 
TO TPOINT3 ADD Iclo 
TO TPOINT3 ADD IC15 
To TPOINT3 ADD IC28 
TO TPOINT3 ADD IC49 
To TPOINT3 ADD IC56 
STOP ; 

SYNTAX OF ROBOT SIMULATION PROGRAM 

This is a robot track generated for pcb assembly. The order of insertit)n 
sequence is based on the component type and minimum distance of travel froR 
the current position. The initial insertion of any component type is chos(!;, 
to start with a component that is to be assembled at a position nearest to 
the pcb frame, any subsequent insertion is based on the minimum distance of 
travel from the current position. This rule represents the most commonly 
used method. This is based on the reasoning that different componenttype 
can be assembled at different height and sequence, resolve foot print 
problems, minimises distance travelled and hence cycle time. If tooling 
or gripper is required to be changed for each type of component, this rule 
reduce the frequency at which tooling/gripper changing is necessary. This 
appendix shows an example result generated from the integration software 
modules. 

PATH SLOW STRAIGHT SPEED 25.00 ACCELERATION 0.00; 
PATH MEDIUM STRAIGHT SPEED 50.00 ACCELERATION 0.00; 
PATH FAST STRAIGHT SPEED 100.00 ACCELERATION 0.00; 
TRACK JOBD 
LOC1 : LOCATE IC29 OWNER TPOINT4 AT TPOINT4 (SHIFT Y 18.67) 
LOCSTI : LOCATE TIC29 OWNER BOARD AT BOARD ( ROTATE Z 0.00 SHIFT X 

17.78 Y 146.05) , 
LOCSTEP1 : LOCATE TARG_IC29 OWNER TIC29 AT TIC29 (SHIFT X 26.67 Z 2.00 

ROTATE Z 90.00) , 
LOC13 : LOCATE IC32 OWNER TPOINT4 AT TPOINT4 (SHIFT Y 18-67) 
LOCST13 : LOCATE TIC32 OWNER BOARD AT BOARD ( ROTATE Z 0.00 SHIFT X 

17.78 Y 207.01) , 
LOCSTEP13 : LOCATE TARG_IC32 OWNER TIC32 AT TIC32 (SHIFT X 26.67 z 2.00 

ROTATE Z 90.00) , 
LOC25 : LOCATE-IC33 OWNER TPOINT4 AT TPOINT4 (SHIFT Y 18.67) 
LOCST25 : LOCATE TIC33 OWNER BOARD AT BOARD ( ROTATE Z 0.00 SHIFT X 

17.78 Y 227.33) , 
LOCSTEP25 : LOCATE TARG_IC33 OWNER TIC33 AT TIC33 (SHIFT X 26.67 Z 2.00 

ROTATE Z 90.00) , 
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LOC37 : LOCATE IC57 OWNER TPOINT4 AT TPOINT4 (SHIFT Y 18.67) , LOCST37 : LOCATE TIC57 OWNER BOARD AT BOARD ( ROTATE Z 0.00 SHIFT X 
109.22 Y 278-13) , LOCSTEP37 : LOCATE TARG_IC57 OWNER TIC57 AT TIC57 (SHIFT X 26.67 Z 2.00 
ROTATE Z 90.00) p 

LOC49 : LOCATE IC8 OWNER TPOINT3 AT TPOINT3 (SHIFT Y 3.43) 
LOCST49 : LOCATE TIC8 OWNER BOARD AT BOARD ( ROTATE Z 0.00 SHIFT X 

2.54 Y 100.33) , 
LOCSTEP49 : LOCATE TARG_IC8 OWNER TIC8 AT TIC8 (SHIFT X 11.43 Z 2.00 
ROTATE Z 90.00) , 

LOC61 : LOCATE IC9 OWNER TPOINT3 AT TPOINT3 (SHIFT Y 3.43) 
LOCST61 : LOCATE TIC9 OWNER BOARD AT BOARD ( ROTATE Z 0.00 SHIFT X 

2.54 Y 113.03) , 
LOCSTEP61 : LOCATE TARG_IC9 OWNER TIC9 AT TIC9 (SHIFT X 11.43 Z 2.00 

ROTATE Z 90-00) 1 
LOC73 : LOCATE IC10 OWNER TPOINT3 AT TPOINT3 (SHIFT Y 3.43) 
LOCST73 : LOCATE TIC10 OWNER BOARD AT BOARD ( ROTATE Z 0.00 ; HIFT X 

17.78 Y 133.35) , 
LOCSTEP73 : LOCATE TARG_IC10 OWNER TIC10 AT TIC10 (SHIFT X 11.43 Z 2.00 
ROTATE Z 90-00) , 

LOC85 : LOCATE IC28 OWNER TPOINT3 AT TPOINT3 (SHIFT Y 3.43) 
LOCST85 : LOCATE TIC28 OWNER BOARD AT BOARD ( ROTATE Z 0.00 SHIFT X 

48.26 Y 133.35) , 
LOCSTEP85 : LOCATE TARG_IC28 OWNER TIC28 AT TIC28 (SHIFT X 11.43 Z 2.00 
ROTATE Z 90-00) , 

LOC97 : LOCATE IC49 OWNER TPOINT3 AT TPOINT3 (SHIFT Y 3.43) 
LOCST97 : LOCATE TIC49 OWNER BOARD AT BOARD ( ROTATE Z 0.00 SHIFT X 

111.76 Y 11.43) , 
LOCSTEP97 : LOCATE TARG_IC49 OWNER TIC49 AT TIC49 (SHIFT X 11.43 Z 2.00 

ROTATE Z 90-00) , 
LOC109 : LOCATE IC56 OWNER TPOINT3 AT TPOINT3 (SHIFT Y 3.43) 
LOCST109 : LOCATE TIC56 OWNER BOARD AT BOARD ( ROTATE Z 0.00 SHIFT X 

139.70 Y 11.43) , 
LOCSTEP109 : LOCATE TARG_IC56 OWNER TIC56 AT TIC56 (SHIFT X 11.43 Z 2.00 
ROTATE Z 90-00) , 

LOC121 : LOCATE IC15 OWNER TPOINT3 AT TPOINT3 (SHIFT Y 3.43) 
LOCST121 : LOCATE TIC15 OWNER BOARD AT BOARD ( ROTATE Z 0.00 SHIFT X 

5.08 Y 275.59) , 
LOCSTEP121 : LOCATE TARG_IC15 OWNER TIC15 AT TIC15 (SHIFT X 11.43 Z 2.00 

ROTATE Z 90-00) , 
STEP1 (FAST): POSITION PKPOS1 (ROTATE Y 180) 
STEP2 (SLOW): POSITION IC29 (SHIFT Z 25 ROTATE Y 180) 
STEP3 (SLOW): POSITION IC29 (ROTATE Y 180) 
STEP4 : GRIP IC29 , 
STEP5 (SLOW): POSITION TPOINT4 (SHIFT Z 25 ROTATE Y 180) 
STEP6 (MEDIUM): POSITION PKPOS1 (ROTATE Y 180) 
STEP7 (FAST): POSITION PKPOS2 (ROTATE Y 180) , STEP8 (SLOW): POSITION TARG 

- 
IC29 (SHIFT Z 25 ROTATE Y 180) 

STEP9 (SLOW): POSITION TARG_IC29 (SHIFT Z2 ROTATE Y 180) 
STEP10 : RELEASE IC29 TO BOARD , STEP11 (SLOW): POSITION TARG IC29 (SHIFT Z 50 ROTATE Y 180) 
STEP12 (FAST): POSITION PKPOý2 (ROTATE Y 180) , STEP13 (FAST): POSITION PKPOS1 (ROTATE Y 180) , STEP14 (SLOW): POSITION IC32 (SHIFT Z 25 ROTATE Y 180) 
STEP15 (SLOW): POSITION IC32 (ROTATE Y 180) 
STEP16 : GRIP IC32 , 
STEP17 (SLOW): POSITION TPOINT4 (SHIFT Z 25 ROTATE Y 180) 
STEP18 (MEDIUM): POSITION PKPOS1 (ROTATE Y 180) , 
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STEP19 (FAST): POSITION PKPOS2 (ROTATE Y 180) , 
STEP20 (SLOW): POSITION TARG_IC32 (SHIFT Z 25 ROTATE Y 180) 
STEP21 (SLOW): POSITION TARG_IC32 (SHIFT Z2 ROTATE Y 180) 
STEP22 : RELEASE IC32 TO BOARD , 
STEP23 (SLOW): POSITION TARG_IC32 (SHIFT Z 50 ROTATE Y 180) 
STEP24 (FAST): POSITION PKPOS2 (ROTATE Y 180) , 
STEP25 (FAST): POSITION PKPOSI (ROTATE Y 180) , 
STEP26 (SLOW): POSITION IC33 (SHIFT Z 25 ROTATE Y 180) 
STEP27 (SLOW): POSITION IC33 (ROTATE Y 180) 
STEP28 : GRIP IC33 , 
STEP29 (SLOW): POSITION TPOINT4 (SHIFT Z 25 ROTATE Y 180) 
STEP30 (MEDIUM): POSITION PKPOS1 (ROTATE Y 180) 
STEP31 (FAST): POSITION PKPOS2 (ROTATE Y 180) , 
STEP32 (SLOW): POSITION TARG IC33 (SHIFT Z 25 ROTATE Y 180) 
STEP33 (SLOW): POSITION TARG_IC33 (SHIFT Z2 ROTATE Y 180) 
STEP34 : RELEASE IC33 TO BOARD , 
STEP35 (SLOW): POSITION TARG 

- 
IC33 (SHIFT Z 50 ROTATE Y 180) 

STEP36 (FAST): POSITION PKPO92 (ROTATE Y 180) , 
STEP37 (FAST): POSITION PKPOS1 (ROTATE Y 180) , 
STEP38 (SLOW): POSITION IC57 (SHIFT Z 25 ROTATE Y 180) 
STEP39 (SLOW): POSITION IC57 (ROTATE Y 180) 
STEP40 : GRIP IC57 , 
STEP41 (SLOW): POSITION TPOINT4 (SHIFT Z 25 ROTATE Y 180) 
STEP42 (MEDIUM): POSITION PKPOS1 (ROTATE Y 180) 
STEP43 (FAST): POSITION PKPOS2 (ROTATE Y 180) t 
STEP44 (SLOW): POSITION TARG 

- 
IC57 (SHIFT Z 25 ROTATE Y 180) 

STEP45 (SLOW): POSITION TARG_IC57 (SHIFT Z2 ROTATE Y 180) 
STEP46 : RELEASE IC57 TO BOARD , 
STEP47 (SLOW): POSITION TARG_IC57 (SHIFT Z 50 ROTATE Y 180) 
STEP48 (FAST): POSITION PKPOS2 (ROTATE Y 180) , 
STEP49 (FAST): POSITION PKPOS1 (ROTATE Y 180) , 
STEP50 (SLOW): POSITION IC8 (SHIFT Z 25 ROTATE Y 180) 
STEP51 (SLOW): POSITION IC8 (ROTATE Y 180) 
STEP52 : GRIP IC8 , 
STEP53 (SLOW): POSITION TPOINT3 (SHIFT Z 25 ROTATE Y 180) 
STEP54 (MEDIUM): POSITION PKPOS1 (ROTATE Y 180) 
STEP55 (FAST): POSITION PKPOS2 (ROTATE Y 180) , 
STEP56 (SLOW): POSITION TARG_IC8 (SHIFT Z 25 ROTATE Y 180) 
STEP57 (SLOW): POSITION TARG_IC8 (SHIFT Z2 ROTATE Y 180) 
STEP58 : RELEASE IC8 TO BOARD , 
STEP59 (SLOW): POSITION TARG_IC8 (SHIFT Z 50 ROTATE Y 180) 
STEP60 (FAST): POSITION PKPOS2 (ROTATE Y 180) t 
STEP61 (FAST): POSITION PKPOS1 (ROTATE Y 180) , 
STEP62 (SLOW): POSITION IC9 (SHIFT Z 25 ROTATE Y 180) 
STEP63 (SLOW): POSITION IC9 (ROTATE Y 180) 
STEP64 : GRIP IC9 , 
STEP65 (SLOW): POSITION TPOINT3 (SHIFT Z 25 ROTATE Y 180) 
STEP66 (MEDIUM): POSITION PKPOSI (ROTATE Y 180) 
STEP67 (FAST): POSITION PKPOS2 (ROTATE Y 180) , 
STEP68 (SLOW): POSITION TARG_IC9 (SHIFT Z 25 ROTATE Y 180) 
STEP69 (SLOW): POSITION TARG_IC9 (SHIFT Z2 ROTATE Y 180) 
STEP70 : RELEASE IC9 TO BOARD , 
STEP71 (SLOW): POSITION TARG_IC9 (SHIFT Z 50 ROTATE Y 180) 
STEP72 (FAST): POSITION PKPOS2 (ROTATE Y 180) 
STEP73 (FAST): POSITION PKPOS1 (ROTATE Y 180) 
STEP74 (SLOW): POSITION IC10 (SHIFT Z 25 ROTATE Y 180) 
STEP75 (SLOW): POSITION IC10 (ROTATE Y 180) t 
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STEP76 : GRIP IC10 , 
STEP77 (SLOW): POSITION TPOINT3 (SHIFT Z 25 ROTATE Y 180) 
STEP78 (MEDIUM): POSITION PKPOS1 (ROTATE Y 180) 
STEP79 (FAST): POSITION PKPOS2 (ROTATE Y 180) , 
STEP80 (SLOW): POSITION TARG 

- 
IC10 (SHIFT Z 25 ROTATE Y 180) 

STEP81 (SLOW): POSITION TARG IC10 (SHIFT Z2 ROTATE Y 180) 
STEP82 : RELEASE IC10 TO BOARD , 
STEP83 (SLOW): POSITION TARG IC10 (SHIFT Z 50 ROTATE Y 180) 
STEP84 (FAST): POSITION PKPO'92 (ROTATE Y 180) , 
STEP85 (FAST): POSITION PKPOS1 (ROTATE Y 180) , 
STEP86 (SLOW): POSITION IC28 (SHIFT Z 25 ROTATE Y 180) 
STEP87 (SLOW): POSITION IC28 (ROTATE Y 180) 
STEP88 : GRIP IC28 , 
STEP89 (SLOW): POSITION TPOINT3 (SHIFT Z 25 ROTATE Y 180) 
STEP90 (MEDIUM): POSITION PKPOS1 (ROTATE Y 180) 
STEP91 (FAST): POSITION PKPOS2 (ROTATE Y 180) , 
STEP92 (SLOW): POSITION TARG_IC28 (SHIFT Z 25 ROTATE Y 180) 
STEP93 (SLOW): POSITION TARG_IC28 (SHIFT Z2 ROTATE Y 180) 
STEP94 : RELEASE IC28 TO BOARD , 
STEP95 (SLOW): POSITION TARG_IC28 (SHIFT Z 50 ROTATE Y 180) 
STEP96 (FAST): POSITION PKPOS2 (ROTATE Y 180) 
STEP97 (FAST): POSITION PKPOS1 (ROTATE Y 180) 
STEP98 (SLOW): POSITION IC49 (SHIFT Z 25 ROTATE Y 180) 
STEP99 (SLOW): POSITION IC49 (ROTATE Y 180) 
STEP100 : GRIP IC49 , 
STEP101 (SLOW): POSITION TPOINT3 (SHIFT Z 25 ROTATE Y 180) 
STEP102 (MEDIUM): POSITION PKPOS1 (ROTATE Y 180) 
STEP103 (FAST): POSITION PKPOS2 (ROTATE Y 180) , 
STEP104 (SLOW): POSITION TARG IC49 (SHIFT Z 25 ROTATE Y 180) 
STEP105 (SLOW): POSITION TARO-IC49 (SHIFT Z2 ROTATE Y 180) 
STEP106 : RELEASE IC49 TO BOARD p 
STEP107 (SLOW): POSITION TARG_IC49 (SHIFT Z 50 ROTATE Y 180) 
STEP108 (FAST): POSITION PKPOS2 (ROTATE Y 180) 
STEP109 (FAST): POSITION PKPOS1 (ROTATE Y 180) 
STEP110 (SLOW): POSITION IC56 (SHIFT Z 25 ROTATE Y 180) 
STEP111 (SLOW): POSITION IC56 (ROTATE Y 180) 
STEP112 : GRIP IC56 , 
STEP113 (SLOW): POSITION TPOINT3 (SHIFT Z 25 ROTATE Y 180) 
STEP114 (MEDIUM): POSITION PKPOS1 (ROTATE Y 180) 
STEP115 (FAST): POSITION PKPOS2 (ROTATE Y 180) , 
STEP116 (SLOW): POSITION TARG_IC56 (SHIFT Z 25 ROTATE Y 180) 
STEP117 (SLOW): POSITION TARG IC56 (SHIFT Z2 ROTATE Y 180) 
STEP118 : RELEASE IC56 TO BOARD , 
STEP119 (SLOW): POSITION TARG_IC56 (SHIFT Z 50 ROTATE Y 180) 
STEP120 (FAST): POSITION PKPOS2 (ROTATE Y 180) p 
STEP121 (FAST): POSITION PKPOS1 (ROTATE Y 180) , 
STEP122 (SLOW): POSITION IC15 (SHIFT Z 25 ROTATE Y 180) 
STEP123 (SLOW): POSITION IC15 (ROTATE Y 180) 
STEP124 : GRIP IC15 , 
STEP125 (SLOW): POSITION TPOINT3 (SHIFT Z 25 ROTATE Y 180) 
STEP126 (MEDIUM): POSITION PKPOS1 (ROTATE Y 180) 
STEP127 (FAST): POSITION PKPOS2 (ROTATE Y 180) , STEP128 (SLOW): POSITION TARG IC15 (SHIFT Z 25 ROTATE Y 180) 
STEP129 (SLOW): POSITION TARG-IC15 (SHIFT Z2 ROTATE Y 180) 
STEP130 : RELEASE IC15 TO BOARD , STEP131 (SLOW): POSITION TARG IC15 (SHIFT Z 50 ROTATE Y 180) 
STEP132 (FAST): POSITION PKPOý2 (ROTATE Y 180) 

STOP 
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APPENDIX D. 2 : Analysis of Assembly Tolerance and Robot Accuracy 

(i) Analysis of Assembly Tolerance: Pin Size Variations 

Reading no. 
Measured size 

xi (mm) 
Variations 

Xi-F (mm) 
-X X-) 2 

1 0.56 -0.013 0.0002 
2 0.56 -0.013 0.0002 
3 0.56 -0.013 0.0002 
4 0.54 -0.033 0.0011 
5 0.54 -0.033 0.0011 
6 0.56 -0.013 0.0002 
7 0.56 -0.013 0.0002 
8 0.56 -0.013 0.0002 
9 0.56 -0.013 0.0002 
10 0.54 -0.033 0.0011 
11 0.61 0.037 0.0014 
12 0.57 -0.003 0.000009 
13 0.60 0.027 0.0007 
14 0.60 0.027 0.007 
15 0.62 0.047 0.0022 
16 0.59 0.017 0.0002 
17 0.60 0.027 0.0007 
18 0.58 0.007 0.00005 
19 0.57 -0.003 0.000009 
20 0.58 0.007 0.00005 

i-20 

xi= 11.46 

- 
11.46 

mean X=--ý-o 0.573 

i-20 
Z (X, -X-)2 =0.0108lg 
i-1 

0.010818= 0.02326 
20 

20 *0.02326=0.02386mm 
19 
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From the equation x-t 72--0 R t* 4 i-O 

we can deduce the range at which the mean of the population lies at 95 % confidence interval, 

t= 2.093 

2.093*0.02386 0.573- 4 -: 5 g: 5 0.573+ 2.093*0.02836 
i-o 4 Mo 

0.5618: 9 g: 5 0.5842 

we can also deduce the range at which the mean of the population lies at 99 % confidence 
interval, 

2.861 

0.573" 2.861*0.02386 
:5g: 5 0.573+ 2.861*0.02836 

4 Mo 4 Mo 

0.55775 p: 5 0.5883 

(ii) Analysis of Assembly Tolerance: Hole Size Variations 

Reading no. 
Measured size 

Xi 

Variations 

xi-Y 
(X, X-) 2 

-X 

1 0.9375 -0.01375 0.00019 
2 0.9375 -0.01375 0.00019 
3 0.9375 -0.01375 0.00019 
4 0.9375 -0.01375 0.00019 
5 0.9375 -0.01375 0.00019 
6 0.9375 -0.01375 0.00019 
7 0.9375 -0.01375 0.00019 
8 0.9625 0.01125 0.0001265 
9 0.9625 0.01125 0.0001265 
10 0.9625 0.01125 0.0001265 
11 0.9375 -0.01375 0.00019 
12 0.9625 0.01125 0.0001265 
13 0.9625 0.01125 0.0001265 
14 0.9625 0.01125 0.0001265 
15 0.9625 0.01125 0.0001265 
16 0.9625 0.01125 0.0001265 
17 0.9625 0.01125 0.0001265 
18 0.9625 0.01125 0.0001265 
19 0.9625 0.01125 0.0001265 
20 0.9375 -0.01375 0.00019 

- 303 - 



i=20 
Y, xj= 19.025 
i=l 

mean T-- 
19.025 

= 0.95125 
20 

i=20 
(X, _X-)2 =0.0029 

0.0029 
20 = 0.01204 

er =q 
20 *0.01204=0.0124 mm 19 

From the equation x--1* -. 5 Z+ t* 
6 

4 ý-O 4 YO 

we can deduce the range at which the mean of the population lies at 95 % confidence interval, 

2.093 

0.95125- 2.093*0.0124 
:5 g-: 5 0.95125+ 2.093*0.0124 

4 i-O 4 i-O 

0.9455--g g: 5 0.9571 

we can also deduce the range at which the mean of the population lies at 99 % confidcnce 

interval, 

2.861 

0.95125- 
2.861*0.0124 

:5g: 5.0.95125+ 
2.861*0.0124 

4 MO 4 MO 

0.9431-5 g: 5 P. 9592 

From the mean value of pin and hole size, we can determine the upper and lower assembly 
tolerance limits at 95% and 99% confidence intervals respectively. At 95% confidence interval, 
the mean value of pin size is found to lie between 0.5577mm and 0.5883mm, whilst the mean 
value of plated hole size is found to lie between 0.9433mm and 0.9592mm. Therefore the 
upper assembly tolerance limit is found to be 0.4015mm and the lower assembly tolerance is 
found to be 0.3550mm. 

Similarly, at 99% confidence interval, the mean value of pin size is found to lie between 
0.5618mm and 0.5842mm, whilst the mean value of plated hole size is lie between 0.9455mm 
and 0.9571mm. The upper and lower assembly tolerance limit are found to be 0.3953mm and 
0.3613mm respectively. 
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(iii) Analysis of Robot Accuracy 

Since the robot accuracy of each target position is known as normally distributed, but the 
robot accuracy varies over the working envelope. Robot accuracy tests were carried out at three 
different actual approach speeds and at different commanded translations. The experiment was 
aiming to provide an indication of how the robot accuracy varies at different commanded trans- 
lations along one robot axis. Measured accuracy readings were obtained at corresponding com- 
manded translations and presented in the following tables. The experimental set-up is as shown 
in the diagram attached. 

ng 

Equipment set up for robot accurccy testing 
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Readings taken at actual speed of 6.25 mm per second 

Commanded Variation in distance Average 

Translation 
(dial gauge reading) in 0.001" Yj (0.001 mm) x! (m M) 

25 2.5 2.0 2.5 2.25 2.25 58.42 
50 5.5 5.4 5.3 5.5 5.5 138.18 
75 8.0 8.0 8.25 8.2 8.0 205.49 
100 8.7 8.7 8.7 8.6 8.0 216.92 
125 13.0 12.5 12.25 12.25 12.25 316.23 
150 13.7 13.0 13.0 12.75 13.0 332.49 
175 13.25 13.1 12.9 13.0 13.5 334.01 
200 13.75 13.5 13.25 13.5 13.25 341.63 

Readings taken at actual speed of 25 mm per second 

Commanded Variation in distance Average 

Translation 
(dial gauge reading) in 0.001" Yj (0.001 mm) Xi (m M) 

25 3.5 3.6 3.4 3.2 3.4 86.87 
50 5.5 5.5 5.8 5.0 5.5 138.68 
75 9.0 8.25 8.5 8.5 8.75 218.44 
100 8.5 8.0 7.5 7.5 7.5 198.12 
125 13.0 13.25 13.0 13.0 13.0 331.47 
150 13.2 13.2 13.0 13.1 13.0 332.74 
175 13.5 13.0 13.25 13.0 12.5 331.47 
200 14.0 14.0 13.50 13.75 13.75 350.52 

Readings taken at actual speed of 50 mm per second 

Commanded Variation in distance Average 

Translation 

Xi (m M) 
(dial gauge reading) in 0.001" Yj (0.001 mm) 

25 2.0 0.5 1.5 1.3 2.0 37.08 
so 5.0 4.9 5.3 4.8 4.8 125.98 
75 6.65 6.35 5.55 6.85 6.25 160.78 
100 10.7 10.4 10.5 10.5 10.7 268.22 
125 10.1 10.5 10.2 9.8 10.2 258.06 
150 12.95 13.0 13.0 12.65 13.15 328.93 
175 14.25 14.0 13.8 14.2 14.2 357.89 
200 14.7 14.5 14.5 14.8 14.5 370.84 
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Since the actual speed for electronic component insertion is chosen to be 50mm per second, 
the processing of measured data is illustrated below. Due to the non-linear and time varying 
characteristics of robotic system, accurate equations or models are difficult to obtain. We con- 
sider the best fit straight line that passes through these data presented in the graph. Based on 
linear regression method, a straight line is represented by an equation in the form of 

Yi=A O+A I*Xi 

Using the least squares method, the best fit straight line can be found by solving the following 
two equations with two unknowns A0 and A 1. 

i-A i=M 
n*AO+A, *I; Xi=EYi --------------- (1) 

i-I i-I 

i-fi i= Ot i-n 
A o*ZXi+A I*FXi= ZXI*Yi ---------- (2) 

i=1 i=1 i=1 

where n is the total number of reading sets 
A0 is the unknown initial accuracy value for the graph 
A1 is the unkown gradient of the graph 
Xi is the commanded translations and 
Yj is the corresponding measured accuracy value 

Illustration of Working Procedure 

n= 8 

I=A 

y, xj= 900 
i=l 

i-M 

Yj= 1.9078 

ZXj= 127500 
i- I 
i=n F, Xj*Yj=264.5022 
i-I 

substitute these data into equations (1) and (2). 

8*AO+900*Al= 1.9078-7 ------------------------- (3) 

900*A 0+ 127500*A I= 264.5022 ------------------ (4) 

multipy (3) by 112.5, it becomes 

900*AO+101250*Al= 214.6275 ------------------- (5) 
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subtract (5) from (4) and rearranging, 

AI=0.0019 

We then substitute AI=0.0019 into (3) and rearranging, 

A0=0.0247 

The best fit straight line through the graph is described by an equation 

Yi=0.0247+0.0019*Xi (mm) 

It is found that the gradicnt of the best fit line is 0.002 (3msd). This gradient can also be 
interpreted as the relationship between the robot accuracy and the commanded translation. 
Thus the robot accuracy is about 0.2% of the distance translated. 

Since the upper and lower assembly tolerance limits were known and shown earlier, we can 
determine the critical assembly range beyond which assembly is considered unsuccessful based 
on the robot accuracy along. The critical assembly range at 95% and 99% confidence intervals 
can be determined. 

At 95% confidence interval, 

if assembly tolerance is at its upper limit, 

0.4015=0.0247+0.0019*Xi (mm) 

Xj= 198.32mm 

if assembly tolerance is at its lower limit, 

0.3550--0.0247+0.0019*Xi (mm) 

Xj= 173.84mm 

At 99% confidence interval, 

if assembly tolerance is at its upper limit, 

0.3953=0.0247+0.0019*Xi (mm) 

Xi= 195.05MM 

if assembly tolerance is at its lower limit, 

, 0.3613=0.0247+0.0019*Xi (mm) 

Xj= 177.16mm 

- 309 - 



Applying the same procedure to other approach speeds, we obtain equations 

Yi=0.0629+0.0016*Xi (mm) 

and 

Yi=0.0685+0.0016*Xi (mm) 

which represent the robot accuracy in terms of commanded translation for the actual speed 
approach of 6.25mm/s and 25mm/s. From these equations critical assembly ranges can be 
assessed. 
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APPENDIX D. 3 : SPECIFICATION DATA SHEET OF THE NC DRILLING MACHINE USED 

Technical Specifications 

Model Type MM470 MM470L MM600 MM600L MM470DH* MM470DHL* 

Spindle KAVO 4025 KAVO 4031 KAVO 4025 KAVO 4031 KAVO 4025 x2 KAVO 4031 x2 
Speed rpm 20,000 - 60,000 10.000 - 60,000 20,000 - 60,000 10,000 - 60,000 20,000 - 60.000 10,000 - 60,000 
Power 125 IN 450 W 125 W 450 W 125 W 450 W 
Drill sizes .3-3.5mm .3-6.5mm .3-3.5mm .3-6.5mm .3-3.5mm .3-6.5mm 

(. 012' - A30') (. 012' -. 25') (. 012' - 130') (. 012' -. 25*) (. 012' -. 130') 
- 

(. 012' -. 25") 
-Co--ilet size 1 3.175mm (. 125*) 13.175mm (. 125*) 1 3.175mm (A25 *) 3.175mm (. 125') 3.175mm (. 125') 3175mm (. 125') 

Brushed pressure foot with integral swarf extraction. 

Table 
Work table dimensions 485x325mm 485x325mm 66Ox485mm 66Ox485mm 660x485mm 660x485mm 

(19'x12.75') (19*x12.75*) (25'09') (25'09') (26'09') (26*xl9*) 
-Maximum panel size 560x650mm 560x650mm 735x950mm 735x950mm 2x33Ox485mm 2x33Ox485mm 

(22.6'x25.6') (22.6'x25.6') (29' x37 (13*09') 
_ 

(13*09') 
Programmable area 470x3lOmm 470x3i0mm 620x470mm 620x470mm 2x3IOx470mm 2x31Ox470mrn 

(18.5 *x 12.2') (18.5*02.2') (24.4'xI8.5') (24.4'xI8.5*) (12.2'xl8.5*) (12.2'08.5') 
Tooling Pin and slot Pin and slot Pin and slot Pin and slot Pin and slot Pin and slot 

3.175mm (A25') 3.175mm (. 125') 3.175mm (A 25*) 3.175mm (. 125*) 3.175mm (. 125') 3: 175mm (125') 
Positioning speed > 2000mm/min > 2000mm/min > 2000mmImm > 2000mm/min > 2000mm/min > 2000mm/min 

(80 ins/min) (80 ins/min) (80 ins/min) (80 ins/min) (80 instmin) (80 ins/min) 
Posit ionaFaccu racy : t. Olmm (. 0004*) ±. 01mm (. 0004') ±. 01mm (. 0004*) ±. 01mm (. 0004') ±. 01mm (. 0004') --t. Olmm (. 0004') 

-Re- -pe at ab iIity ±. 01mm (. 0004') ±. 01mm (. 0004') ±. 01mm (. 0004') ±. 01mm (. 0004*) ±. 01mm (. 0004') t. olmrn (. 000p 
ETFID-ing accuracy 

(typical) ±. 05mm (. 002') ±. 05mm (. 002') ±. 05mm (. 002') ±. 05mm (002') ±. 05mm (. 0021) ±. 05mm (. 002*) 

Z Axis movement 
Variable stroke 1 to 12mm I to 12mm 1 to 12mm 1 to 12mm 1 to 12mm I to 12mm 

(. 04' to. 5') (. 04' to. 5*) (. 04' to. 5') (. 04' to. 5*) (. 04' to. 5') (. 04' to. 5') 
Feed rate 500 - 3050mm/min 500 - 3050mm/min 500 - 3800mmimin 500 - 3800mm/min 500 - 3800mmimin 500 - 3800mm/min 

(20 - 120 ins/min) (20 - 120 ins/min) (20 - 150 ins/min) (20 - 150 ins/min) (20 - 150 ins/min) (20 - 150 ins/min) 
-Hit rate 150 typical for 15U typical for 180typicalfor __ 180 typical for 180 typical for T80 typical for 

7mm (. 25') stroke 7mm (. 25 ') stroke 7mm (. 25') stroke 7mm (. 25') stroke 7mm (. 25') stroke 7mm (. 2 5 *) stroke 
over a 2.54mm over a 2.54mm over a 2.54mm over a 2.54mm over a 2.54mm over a 2.54mm 
(. 1 ') matrix. I 

(A') matrix. 
1 
(. 1') matrix. (. I') matrix. I 

(I*) matrix. 1 
(. 1 1) matrix. 

Physical Specifications 

Drill table 
(including base) 
Height 1220mm (48*) 1220mm (48') 1250mm (49.25') 1250mm (49.25*) 1250mm (49.25') 1250mm (49.25') 
Width 795mm (31.25 795mm (31.25*) 996mm (38*) 996mm (38') 996mm (38') 996mm (38*) 
Depth 990mm (39*) 990mm (39') 1260mm (49.5*) 1260mm (49.5*) 1260mm (49.5*) 1260mm (49.5') 
Weight 320kg (704 Ibs) 330kg (726 fbs) 390kg (858 Ibs) 400kg (880 Ibs) 410kg (902 Ibs) 430kg (946 Ibs) 

Monitor and computer 
Height 450mm (17.75*) 450mm (17.75*) 450mm (17.75') 450mm (17.75') 450mm (17.75') 450MM (17.75') 
Width 490mm (19.25') 490mm (19.25') 490MM (19.25') 490mm (19.25') 490mm(19.25*) 490mm (19.25*) 
Depth 480mm(19*) 480mm(19') 480mm(Ig') 480mm (19') 480mm (19') 480mm (I V) 
Weight 20kg (44 Ibs) 20kg (44 Ibs) 20kg (44 lbs) 20kg (44 Ibs) 20kg (44 Ibs) 20kg (44 Ibs) 

Source of information: Dorniver Limited, 
Sanders Lodge Industrial Estate, 
Welingborough Road, Rushden, 
Northants, England. 
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