298 research outputs found

    A Distributed Routing Algorithm for Internet-wide Geocast

    Get PDF
    Geocast is the concept of sending data packets to nodes in a specified geographical area instead of nodes with a specific address. To route geocast messages to their destination we need a geographic routing algorithm that can route packets efficiently to the devices inside the destination area. Our goal is to design an algorithm that can deliver shortest path tree like forwarding while relying purely on distributed data without central knowledge. In this paper, we present two algorithms for geographic routing. One based purely on distance vector data, and one more complicated algorithm based on path data. In our evaluation, we show that our purely distance vector based algorithm can come close to shortest path tree performance when a small number of routers are present in the destination area. We also show that our path based algorithm can come close to the performance of a shortest path tree in almost all geocast situations

    A framework for IP and non-IP multicast services for vehicular networks

    Get PDF
    International audienceEnabling drivers to be connected to the Internet and/or Vehicular Ad-hoc networks, is one of the main challenges of the future networking. This enables drivers to benefit from the existing Internet services as well as emerging ITS applications based on IP or non-IP communications (e.g geonetworking). Many of ITS applications such as fleet management require multicast data delivery. Existing works on this subject tackle mainly the problems of IP multicasting inside the Internet or geocasting in VANETs. This paper presents a new framework that enables Internet-based multicast services on top of VANETs. We introduce a self-configuring multicast addressing scheme based on the geographic locations of the vehicles coupled with a simplified approach that locally manages the group membership to allow packet delivery from the Internet. Moreover, we propose an approach that selects the appropriate network-layer protocol for either geocasting or IP multicasting depending on the vehicles' context and the application requirements. Finally, we present the integration of the designed framework to the ITS reference architecture

    I-Min: An Intelligent Fermat Point Based Energy Efficient Geographic Packet Forwarding Technique for Wireless Sensor and Ad Hoc Networks

    Full text link
    Energy consumption and delay incurred in packet delivery are the two important metrics for measuring the performance of geographic routing protocols for Wireless Adhoc and Sensor Networks (WASN). A protocol capable of ensuring both lesser energy consumption and experiencing lesser delay in packet delivery is thus suitable for networks which are delay sensitive and energy hungry at the same time. Thus a smart packet forwarding technique addressing both the issues is thus the one looked for by any geographic routing protocol. In the present paper we have proposed a Fermat point based forwarding technique which reduces the delay experienced during packet delivery as well as the energy consumed for transmission and reception of data packets.Comment: 11 Page

    Extended Mobility Management and Geocast Routing for Internet-to-VANET Multicasting

    Get PDF
    International audienceEmerging ITS applications, such as point of interest distribution, require information delivery from the Internet to a group of vehicles. Such an Internet-to-VANET multicast service raises several challenges including efficient multicast mobility management and multicast message delivery in a geographic area (geocast). In this paper we propose to extend the PMIP (Proxy Mobile IP) mobility management scheme such that it allows vehicles in a geographic area to subscribe to the multicast group with low control overhead by exploiting vehicular ad hoc networking. We then propose Melody, a geocast routing protocol, which extends the multicast service coverage in the VANET based on overlay routing. Our simulation results show that Melody provides an improved communication performance in urban areas in comparison to geographic flooding

    Design and evaluation of two geocast protocols for vehicular ad-hoc networks

    Get PDF
    Vehicular ad-hoc networks (VANETs) offer a large number of new potential applications. One of the envisioned applications is of course Internet access, which can be provided with the help of some roadside basestations. Many of the applications benefit from multi-hop relaying of information, thus requiring a routing protocol. Characteristics unique to VANETs (such as high mobility and the need for geographical addressing) make many conventional ad hoc routing protocols unsuitable. In this paper we design and evaluate two different, so called, geocast protocols for VANETs. One protocol is designed for fast communication across a large area. The purpose of the other protocol is to provide a routing service for a future reliable transport protocol (enabling Internet applications). We evaluate the performance of the protocols using realistic network and traffic models

    Performance improvement in geographic routing for vehicular Ad Hoc networks

    Get PDF
    Geographic routing is one of the most investigated themes by researchers for reliable and efficient dissemination of information in Vehicular Ad Hoc Networks (VANETs). Recently, different Geographic Distance Routing (GEDIR) protocols have been suggested in the literature. These protocols focus on reducing the forwarding region towards destination to select the Next Hop Vehicles (NHV). Most of these protocols suffer from the problem of elevated one-hop link disconnection, high end-to-end delay and low throughput even at normal vehicle speed in high vehicle density environment. This paper proposes a Geographic Distance Routing protocol based on Segment vehicle, Link quality and Degree of connectivity (SLD-GEDIR). The protocol selects a reliable NHV using the criteria segment vehicles, one-hop link quality and degree of connectivity. The proposed protocol has been simulated in NS-2 and its performance has been compared with the state-of-the-art protocols: P-GEDIR, J-GEDIR and V-GEDIR. The empirical results clearly reveal that SLD-GEDIR has lower link disconnection and end-to-end delay, and higher throughput as compared to the state-of-the-art protocols. It should be noted that the performance of the proposed protocol is preserved irrespective of vehicle density and spee
    corecore