arXiv:1805.01690v1 [cs.NI] 4 May 2018

A Distributed Routing Algorithm for Internet-wide Geocast

Bernd Meijerink!, Mitra Baratchi’, and Geert Heijenk!
1University of Twente, Enschede, The Netherlands
2Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, The Netherlands

Geocast is the concept of sending data packets to nodes in a specified geographical area instead of nodes with a specific address.
To route geocast messages to their destination we need a geographic routing algorithm that can route packets efficiently to the
devices inside the destination area. Our goal is to design an algorithm that can deliver shortest path tree like forwarding while
relying purely on distributed data without central knowledge. In this paper, we present two algorithms for geographic routing. One
based purely on distance vector data, and one more complicated algorithm based on path data. In our evaluation, we show that
our purely distance vector based algorithm can come close to shortest path tree performance when a small number of routers are
present in the destination area. We also show that our path based algorithm can come close to the performance of a shortest path

tree in almost all geocast situations.

I. INTRODUCTION

Due to the increasing use of connected, possibly autonomous
vehicles and ‘smart’ devices there is an increasing need for
Internet-wide geographically scoped communications [1]. This
would allow devices in a specific area to be addressed without
the need of keeping track of all IP addresses or administration
concerning multicast groups. This can be achieved through
geocasting.

The main idea behind geocast is to route packets based on
a geographic destination area instead of a fixed address or
multicast group [2]. This could allow the transmission of data
towards devices in a region without complex bookkeeping of
device locations.

We mostly focus on the possible applications of geocast in
the vehicular network domain. Possible applications would
be location dependent weather updates, traffic alerts and
information to assist autonomous driving. In the vehicular
networking scenario a functioning geocast solution would at
least require location aware-base stations, or Road Side Units
(RSUs) that are aware of the area they serve. Location aware-
systems are important for many safety applications related to
vehicular networks [3]. One example of a vehicular networking
geocast scenario would be notifying cars on a specific highway
of an accident or traffic jam, using geocast to only send the
message to that street. An example of such a situation is
depicted in Figure 1 were a RSU forwards a notification of a
traffic accident to multiple vehicles on the road of the accident.

Currently available implementations of geocast are mostly
application layer based, an example being extended DNS[4].
There are two main downsides to such an approach. They have
high overhead due to lookup operations and are less resilient
to change. We propose an alternative approach to the problem:
Implementing geocast on the network layer. A network layer
implementation would allow us to use information already
available due to unicast routing. The system would also be more
resilient due to not relying on availability of certain servers and
embedding geocast in the network itself will allow it to route
around problems in the network. It would also enable such a
system to possibly scale to the entire Internet. Enabling Internet-
wide geocast could potentially allow fine grained geographically

scoped message transmission for everyone. The main benefit
would be that sending hosts on the network do not require
any sort of geographical information, they can just send a
geocast packet to the router serving them. Possible use cases
of network layer geocast range from localized weather reports
without clients reporting their location to safety information
transmitted to vehicles.

To provide an efficient geocasting solution, the underlying
routing protocol will need to take geographic information
into account. Traditional routing methods such as unicast or
multicast routing have drawbacks in the geocast scenario.

Unicast routing has the obvious drawback of sending one
packet per destination. This would lead to communications
overhead with a large number of devices in the destination
area. On the other hand, the per-packet processing overhead is
minimal as unicast routing is well understood and optimized.

Multicast routing seems like a better fit as it already
supports one-to-many communications. The main drawback for
geographically scoped communication is that most multicast
routing solutions depend on subscription messages. In a
geocast solution routers will need to report their coverage
area and evaluate which routers cover the destination area of
a packet. another mayor drawback would the be requirement
of predefined destination areas, as it would have to be known
which multicast group covers which area.

We set out to design a distributed algorithm as the commu-
nication overhead needed for a centralized approach would
lead to scalability problems for the system. Routers should
not depend on some central authority or need full network
knowledge. This last requirement prevents us from constructing

Geocast aware
network Collision!—_,

Collision!

Destination
area

RSU
coverage

~

ollision!
Collision!

RSU
coverage

-

Figure 1: Geocast traffic accident example

a least cost (Steiner) tree, as this would require full network
knowledge. We will cover this last point in greater detail in
Section II-C.

For efficient geographic routing we need a routing algorithm
in which geographical areas are central to packet routing. A
geographic routing algorithm will need to efficiently route
packets that have a geographic destination to all routers that
(partially) cover that area. We specifically refer to coverage
instead ‘being in the area’, as the important thing is that devices
connected to the router are in the destination area. The most
important aspect is the ability to route a packet to multiple
destinations using the lowest number of hops possible, without
sending duplicate packets over the same link.

We use two area definitions in our geocast system: Coverage
area and destination area. Coverage Area defines the geographic
area that is covered by a router, devices in this area can
be reached through this router. Coverage areas of routers
may overlap or even be identical, for example multiple
providers servicing the same area. Destination area refers
to the geographic area to which a packet is sent. This area
does not need to be identical to the coverage area of a router,
instead routers should calculate if the destination overlaps with
their coverage area.

The main research question we answer in this paper is: How
can we efficiently route geocast packets within a network. The
main contribution of our work is threefold:

o We design an efficient geographical routing algorithm

based on path information,

o We design a geographical routing algorithm using purely

distance vector based information,

o We validate and evaluate the proposed algorithms on a

large set of real world network topologies.
Our second, less efficient algorithm is also less computationally
intensive and can be used in cases where network capacity is
less important than router resources.

The remainder of this paper is structured as follows: In
the next section we will describe previous work in the area,
including our own work on geographic addressing. Section III
will describe the algorithms we have designed to perform the

geographic routing. We evaluate our algorithms in Section IV.

Finally we draw our conclusions in Section V.

II. PREVIOUS WORK

In this section, we will describe previous work done on
geocast and geographic routing. We start with describing
related work in the wireless domain, moving towards work
on geocast in a wired setting. We will conclude the section
with an overview of our own work on geographic addressing
and forwarding tree evaluation, in which we will explain our
choice for a shortest path tree.

A. Related work

Geocast was initially introduced by Navas and Imielinski for
wired networks [2]. Their approach relied on special routers
that know their location and forward packets based on the
destination point, circle or polygon. Routers are connected
hierarchically: A router that covers a certain area connects to

‘lower’ routers that cover smaller areas within that coverage
area. Routers can calculate the intersect of destination and
their coverage using the GPS coordinates. Downsides of this
approach are the hierarchical router requirement, the need
for routers to perform area intersection calculations and the
variable length of the addressing (points, circles, or polygons).

In later work from the same authors they studied improved
routing cost [5] by approximating the destination / coverage
area intersection. They have also studied alternate approaches
based on addressing predefined locations [6].

Most work on the topic of geocast has been done in the
wireless ad-hoc network context, and especially the VANET
case. Overviews of such routing protocols and underlying
mechanism can be found in [7],[8] and [9]. In most of these
protocols the location of forwarding nodes is tightly coupled
with the destination of a packet, a next hop node will generally
be in the direction of the target geocast area. The correlation
between the position of the next hop node and the location of
the destination area does not necessarily exist in a fixed wired
network situation. Especially in situations were a network
serves several access networks, there might be very little
correlation between the forwarding routers and the actual
destination area. On the other hand, the fixed wired environment
is usually mostly static, this enables route distribution to be
effective over long distances.

A well-known example of a geographic routing protocol
for ad-hoc networks is GeoTORA [10]. When a node in the
network needs to geocast a message it broadcasts a query with
the request for the destination nodes. The destination nodes
send a message back, allowing the original requesting node to
know the forwarding hop towards the geocast area. The mobile
nature of these ad-hoc networks makes this kind of signaling
a necessity to reach any sort of efficiency. We do not have
this problem in wired networks, allowing for the possibility of
route distribution beforehand.

Another example is Greedy Perimeter Stateless Routing [11].
In this algorithm, traffic is routed to nodes that are located
closer to the destination area than the transmitting node. This
approach is seen often in geographic routing solutions for ad
hoc networks. The downside for a wired environment is that
the location of routers is not necessarily correlated with the
direction a packet needs to travel to reach its destination.

There are off-course algorithms for multicast routing such
as Protocol Independent Multicast (PIM). These could be
used in some capacity for geocast routing but they do have
some drawbacks. PIM Dense Mode (PIM-DM) relies on an
initial flooding stage where routers that are not subscribers
send a prune message back to their forwarding neighbor
[12]. We would ideally like to not have this behaviour in
our geocast system as we believe the number of destination
areas that might be addressed in a short time could be very
large. Alternatively, PIM Sparse Mode (PIM-SM) relies on
an initial Rendezvous Router that routes packets before a
shortest path tree is established [13]. Due to the large number
of varying geocast destinations and the overhead caused by
the Rendezvous Router we believe this approach would not be
feasible.

Another approach to geocast is to use DNS to resolve

geographical areas to a IP addresses by extending the DNS
[4]. When the eDNS server is queried for a certain area, it
returns the IP addresses of all entries in that region. The eDNS
was designed for VANET scenarios, so it would only have to
return a list of RSUs in the target area. Scaling the system to
track the movements of all vehicles to also allow geocasting
from multiple networks at the same time was later found to be
somewhat feasible [14]. For a truly Internet-wide deployment
such a system would need to scale significantly. DNS like
delegation would also be complicated if updates are to be
distributed through the network in a relatively short time.

B. Geographic addressing

Our view is that a geographic addressing scheme is needed
to allow efficient geographic routing in the Internet and thus as
an extension geocast itself. In our previous work, we described
an addressing scheme for geocast in the Internet [15]. Our
addressing scheme transforms a location bounding box defined
by its maximum and minimum latitude and longitude into an
IPv6 address. This is achieved by dividing the area of the world
into 4 rectangles, and in turn subdividing these rectangles. We
number the rectangles in such a way that neighboring rectangles
with different ‘parents’ share the same number. An example of
this method mapped to a world map with a depth of 3 levels
can be seen in Figure 2. Using this hierarchical structure we
can address increasingly smaller blocks for more precision
down to areas with a size of 7 by 3.5 cm.

This addressing scheme effectively decouples the actual
geographic location and the address itself. Routers or other
forwarding systems do not need to have any knowledge of their

geographic location, only of the underlying addressing system.

Our addressing system allows the matching of a destination

area and a coverage area in a manner similar to prefix matching.
This is achieved by encoding each level in a block of 4 bits.

We can perform a bitwise AND operation on the destination
and coverage area to find if there is overlap. Overlap is found
if there is at least one bit shared in each 4 bit group, up until
the length of the shortest address (which corresponds to the
largest area).

As an example address we will take the area of the
city of Enschede, bounded by 52.24 degrees north, 6.94

degrees east, 52.19 degrees south and 6.84 degrees west.

This area is completely covered by the 12 level address

3.3.3
332 331,341 342
3.2.133.1.1
324 314
214

334 344 343 443
442 " 441 5431 432
412 4.1.144.2.1

413 7 4.2.3
113 123
112 7114 4121 7122
14.2 1

143"

444 434 433

3.2.2 3.1.2 4.2.2

323 3.1.3 424
223 2.1.3
222 2.2.122.1.1 " 212

232

414

224 114 124

2317241 242 1.4.1 1.3.1 1.3.2

244 144 134

233

234 243 1.3.3

Figure 2: Geographic addressing up to level 3

44232.1.1.2.4.[2,3].[1,2].4 (with [2,3] meaning we address
both rectangle 2 and 3), which has the binary representation
‘0001 0001 0100 0010 0100 1000 1000 0100 0001 0110 1100
0001’. In turn this gives us the following IPv6 hexadecimal
representation: ‘1142:4884:16cl::’. For an actual deployment
we would need to add a prefix to distinguish the geocast
addresses from unicast or multicast addresses.

The addressed area does have to be symmetrical, this might
cause the addressed area to be greater than the actual destination
area. We have, however, shown that our addressing scheme will
allow a packet to efficiently get close to its destination with
minimal processing overhead [15]. Once the packet reaches
the final router in its destination, a more accurate distribution
system might have to take over (for example, one specific for
vehicular networks).

C. Why shortest path instead of a Steiner tree

In an ideal world we would always transmit packets using
the least cost tree (Steiner tree) from source to destinations. By
definition this is the best routing tree that can be established
based on chosen metrics such as cost or delay. There are
however several drawbacks to such an approach that have
real world implications. Some of these drawbacks are: The
requirement of full network knowledge and high computational
overhead.

A least cost tree routing method might work in smaller
networks where the cost of maintaining full network knowledge
in each router is not too high. In larger networks or even
on an Internet-wide scale this approach is unfeasible due
to the communications and processing overhead involved
in maintaining a full network graph and establishing or
maintaining a Steiner tree for every (source, destination) area
combination.

Another problem is the before-mentioned computational
overhead of the Steiner tree. The Steiner tree problem is
NP-complete [16], and the cost grows exponentially with the
number of routers in a network.

The downsides of the Steiner tree make it unfeasible for
larger networks. A shortest path tree (a tree consisting of all
shortest paths from the source to all destinations) from the
source to the destination area does not have these limitations.
A single shortest path can be computed using a distance vector
algorithm that does not require full network knowledge and
has significantly less computational overhead compared to a
Steiner tree.

For multicast it has been shown that shortest path trees can be
preferable to Steiner trees in both fixed [17] and wireless ad-hoc
[18] networks. In our previous work, we have evaluated which
type of routing tree would be most efficient, specifically for
the geocast scenario [19]. We have shown that a shortest path
tree has minimal additional cost in overall link usage compared
to a perfect Steiner tree in a situation where destinations are
geographically close.

III. ALGORITHM DESIGN

In this section, we will describe the process we followed
to design our geographic routing algorithms. We will start by

describing the path notation we will use in the rest of the
paper. We will then discuss the simplest algorithm possible
that will achieve our stated goal: flooding. In the subsections
following that we will add conditions to build increasingly
complex forwarding rules, resulting in our distance vector
based algorithm. Following that, we will briefly analyze the
performance of this algorithm. We continue by describing our
path based forwarding algorithm, followed by short sections
on possible link state approaches and hierarchical routing.
We define the primary goal for our geographic routing
algorithm as follows: to deliver a message addressed to a
certain area to all devices that cover that area with minimal
cost. We will use the hop count (which for a tree we define
as the total amount of transmission used per packet to reach
all destinations) as our cost metric for simplicity, with a lower
number of hops being better. To achieve our goals we choose to
use a shortest path tree from the source to all routers that cover
(advertise) the destination area. We also have the secondary
design goals of limiting the processing overhead and using
a system where no per destination signaling is needed. Our
algorithms are designed around the assumptions that all links

in the network are symmetrical in both connectivity and cost.

A. Path Notation

We will use paths in the network to better explain and
eventually build our routing protocol on. We define a shortest
path p,, , through the network from a node n to another node
m.

DPpnym =N — ... =M

We define the length of a path [= |p,, ,,,| — 1 as the number
of nodes it contains minus one. A path has a minimum length
of 1 as |ppm| > 2 (assuming n # m), and can have an
arbitrary number of nodes (z,, Tp, ... where x, # xp, T # n
and = # m) between n and m. We define the k™ node in
such a path as p,, ,, (k). For example, p,, ,,(1) = n in the path
above. Note that we will use paths in the description of our
distance vector approaches, even though this approach only
uses cost information. The path information is always limited
to the next and previous hop, information that would also be
available to a purely distance vector based algorithm as it can
be inferred from the cost information.

B. Flooding

The most straightforward approach to geocast is to simply
flood the network with all traffic. This will lead to each packet
traversing each link in the network at least once.

Flooding would guarantee that packets are delivered to all
addressed destinations but there would be significant overhead,
especially in larger networks with few router in the addressed
destination. The total per packet transmission cost would be
constant, equal to the number of links in the network assuming
routers would ignore duplicate packets coming in on different
links.

The transmission overhead is of course very large for such an
approach, each link in the network would transmit the packet
at least once. The processing overhead is limited to checking if

a certain packet has already been processed before, or checking
if an incoming packet has been received on the shortest path
link to the source, provided that unicast routing info is present.

C. Distance Vector

Using every link in the network is not very efficient; we
would like to construct a perfect shortest path tree through
the network. We can improve on the flooding protocol by
introducing shortest path knowledge to the routers using a
distance vector approach. A simple distance vector algorithm
would give all routers knowledge of the shortest path next
hop to all other routers. Coupled with geographic coverage
information for these routers, this could enable geocasting in
a network.

For the following algorithms we assume the routers have
the following knowledge:

o Coverage area for every router in the network.

o The cost and next hop for reaching every other router in

the network.

Routers receive packets that have a geocast address in their
destination field, as described in Section II-B. They check this
address against the coverage area of the route advertisements
they have received. Packets are forwarded to the routers that
have overlapping coverage with the destination area. We will
now describe 4 distance vector algorithms in order of increasing
complexity that use only the cost to other routers to forward
packets to their destinations.

1) DV Algorithm 1

For our first attempt, we simply try to limit the flooding in
the network to the ‘direction’ of the destinations. We use the
term direction loosely here, as the actual geographical location
of links and routers does not necessarily correspond to the area
they cover. In this simple approach, each router will forward
packets it receives on its shortest path link to each of the
destinations, except for the link the packet was received on.

fn(n, D) =¥m € neighbors(n) : 3dst € D : m = py, 4st(2)

The path p,, 45 is the shortest path from the current router
n to a single destination dst. By definition this path passes
through a next hop m in the position p,, 45:(2), that may be
the same as the destination dst (in which case the path would
have a length of 1). With distance vector information each
router is aware of at least two routers on such a path, itself,
the destination and the next hop (which could be the same as
the destination). The next hop router is simply the router that
advertises the destination with the lowest cost (hops).

Each node on receiving a packet needs to evaluate if it
forwards a packet based on a forwarding function fn(n, D),
with the destination set D and the router itself n as input that
outputs the set of next hop nodes a packet with destination
set D should be forwarded to. For each router n that receives
the packet we choose neighbors m to forward to based on
if they are the second entry on the known shortest path to a
destination dst in the destination set D of the packet.

While this simple distance vector approach leads to a
shortest path in the case of a single destination, with multiple

@@%.QCD

(a) Algorithm 1 (b) Algorithm 2

Nl e

(c) Algorithm 3 (d) Algorithm 4

Figure 3: Example routing tree of different distance vector algorithms

destinations the performance is worse. As routers cannot know
how they fit on a shortest path tree from the source to each
destination, forwarding on the best next hop to all destinations
would act like a form of limited flooding. This is caused by
each router forwarding the packet on all its shortest path links
to the destinations. While the algorithm floods the packet in
the general direction of the destinations, there is still a large
overhead compared to a shortest path tree.

In Figure 3a we can see an example network consisting of
7 routers with a source router 1, and destination routers 3, 4
and 6. The links used by our simple algorithm are colored
green. We can clearly see the ‘limited flooding’ effect here,
especially in router 7. This router is also forwarding to router
3 as it is the shortest path from the point of view of router 7,
it is, however, not on the actual shortest path from the source
to that destination and router 3 has already received the packet
from another router.

2) DV Algorithm 2

It is obvious that the algorithm we described previously
is not very efficient, as it uses more links than necessary to
reach all destinations. We can improve the performance of the
algorithm by ignoring packets that do not arrive on the reverse
path interface to the source. Meaning that the shortest path
Dn,src from the current router n to the src has the previous
hop, ph, as the second entry. This reverse path check already
slightly reduces the average link usage due to not forwarding
packets for which it is not on the reverse path but the ‘limited
flooding’ problem remains. Routers that are on the reverse
path to the source and destination routers will still forward the
packet to the other destinations in most cases.

To solve this forwarding problem we add a check for the cost
towards the destination. We only forward if this cost reported
by the previous hop is greater than the current routers cost.
This checks that the current router n is actually closer to the
destination dst than the previous router ph.

We extend our forwarding function fn with these extra
checks. This gives us the function fn(n, D, src,ph), where
we add the source src and previous hop ph of the packet as
extra inputs. The output is the set of forwarding next hops as
before.

Vm € neighbors(n) :
ddst € D : m = py gst(2)A

|pn,dst| < |pph,dst|

if ph = pn,sre(2)
fn(e) =

0 if ph # P, sre(2)

In Figure 3b we can see the effect. Router 7 sees that the
cost for the previous hop (router 5) to reach router 3 is 1. The
cost for router 7 to reach router 3 is also 1, thus the packet
is not forwarded on that link. Note that in this case we might
actually prevent two transmission, as the packet might pass
each other on that link as router 3 might send a packet for
router 6 through 7. We still see router 4 sending a packet it
receives from 3 to 6 as the cost 3 reports is 2 while router 4’s
own cost to 6 is 1.

3) DV Algorithm 3

Adding a check if the cost to reach the packet source
through the current node is actually higher than the cost
reported by the candidate next hop router for the source further
improves the performance of the algorithm. Logically, if this
was not the case, the candidate next hop should have already
received this packet via another path. This prevents the packet
from propagating ‘backwards’ in certain situations. This check
improves performance due to the fact that a router receives a
packet because it is on the shortest path tree for at least one
destination, but evaluates its forwarding for all destinations. The
‘directed flooding’ effect is reduced, but unneeded transmissions
are not completely eliminated.

We once again extend out formula fn to also take the next
hop nh as input leading us to the following function,

Ym € neighbors(n) :

ddst € D : m = pp4st(2) :
|Pndst| < |Pph,dst |
|Pn,srcl > [Pm,srel

if ph = ppsre(2)

0 if ph # pn,sre(2)

with the check for the path length from candidate next hop
m to the source added. We can see the improvement of this
addition in Figure 3c, where the packets router 4 receives from
router 3 and 7 are not forwarded to router 6 as the cost for
router 4 to reach router 1 is identical to the cost of router 6 to

14

-
N

=
o

o
©

o
o

o
'S

Normalized average link usage

Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Shortest Path

| 1]

o
N

0.0

[0,10) [10,20) [20,30) [30,40) [40,50) [50,60) [60,70) [70,80) [80,90) [90,100)
Percentage of destinations (binned)

(a) Binned performance

1.0

0.8

« [Ed I I
o I

0.4 P

o

8

Normalized average link usage

0.2

0.0

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Shortest Path

(b) Overall performance

Figure 4: DV algorithm performance

reach router 1.

4) DV Algorithm 4

Our final improvement to this algorithm is to prevent
selecting the forwarding hop randomly when there are two
equal length forwarding paths for a destination router. The
path is now selected through a deterministic method. A router
will select the next hop router based on its router ID. We
chose (arbitrarily) to use the lowest next hop ID for this. This
choice forced packets down the same links when there is a
choice. This change will force packets with similar destinations
over the same link, leading to a more optimal tree due to less
overall link usage. Our path based algorithm will exploit this
deterministic behavior for its forwarding as we will explain in
Section III-E.

The results of this modification are visible in Figure 3d.
Note that had we chosen to use the highest next hop id, the
forwarding tree would be equal to that shown in Figure 3c, so
this modification does not always make the algorithm more
optimal. It does however force packets over somewhat similar
paths in cases where shortest paths to multiple destinations
share a similar low next hop id.

D. Intermezzo: DV Performance

After evaluating the performance of the different distance
vector algorithms we see that none come close to the perfor-
mance of the shortest path tree. In some cases there are even
two identical packets traversing the same link when routers
forward at the same time, resulting in packets ‘crossing’ each
other on the link. However, these distance vector approaches
do have the benefit of having very low computational overhead.
They rely on the transmission of coverage information per
router in addiction to the ‘normal’ distance vector information
associated with such a protocol.

In Figures 4a and 4b we compare the performance of the
algorithms described above and the performance a shortest
path tree (cyan line/box) would have. As our main metric we
use the average link cost of the algorithm; we define this as
the average number of transmission used to reach a certain

number of destinations. The error bars in Figure 4a show the
95% confidence interval for that bin.

We run our evaluation over a large set of real world network
graphs taken from the Topology Zoo [20]. Our exact evaluation
method will be explained in Section IV, for now we will present
the performance of an algorithm as a normalized link usage
metric. This is calculated by taking the average link usage for a
certain number of destinations in a network and dividing it by
the number of links in the network. A value of 1 represents all
links being used, a value above 1 shows that one or more links
are used multiple times. We then bin the number of destinations
per 10% and average these numbers over all networks with
more than 10 nodes. The results are shown in Figure 4a. Figure
4b shows box-plots for all algorithms averaged over all numbers
of destinations. Using this plot we can compare the overall
performance of the different algorithms. We can mainly see
that the largest improvement was made with relatively simple
additions to our forwarding rules, and that later additions only
marginally improve the link cost of the forwarding tree.

We can see that the improvement between our first and
second distance vector algorithms is relatively large, while
further improvements provide only minor benefits. Overall,
the link usage of our 4th distance vector algorithm is around
12% larger than the optimal shortest path tree link usage for a
small number of destination to around 32% when (almost) all
routers are addressed. On average the link usage is 24% larger
than our shortest path tree target. This result implies that for
situations where only a small amount of routers in the network
would be addressed, the simple solution might be viable, but
for large destination sets the overhead is large.

E. Path Based Distance Vector

While the performance of the distance vector algorithms
presented thus far is optimal in the case of the network
presented in Figure 3, this does not hold for larger networks
as we can see by looking at the link usage in Figures 4a
and 4b. The main problem with the distance vector approach
is that routers have no information of how they fit in the
complete forwarding tree in the network. Considering the

limited knowledge that is used to calculate forwarding decisions
in the DV algorithms we can certainly do better with more
information about other paths. As stated before, our aim is to
establish a forwarding tree which is as close as possible to the
shortest path tree. To prevent the limited flooding effect and
also keep the amount of information that needs to be distributed
in the network low, we have investigated an approach where
routers not only know the next hop to each destination, but
also know the complete path to other routers, somewhat like
the Border Gateway Protocol (BGP) [21]. This information
would allow routers to make decisions that can lead to a close
to optimal shortest path tree, at the cost of computational
overhead and larger route advertisements.

Our proposed path based algorithm evaluates forwarding
decisions on a per destination router basis. The destination
address of a packet arriving at a router is mapped to a set
of routers advertising (partial) coverage of this destination. A
router can now use its shortest path information for each of
these destinations to evaluate its forwarding options, similar to
the purely cost based algorithms presented earlier.

We develop our path based algorithm on the basis of the 4th
distance vector algorithm we presented earlier. The forwarding
rules from this previous algorithm are extended to no longer
use only the number of hops but the entire path to base the
evaluation on.

The main problem we try to fix with this path-based approach
is that routers have no knowledge of alternate paths through
the network while making their forwarding decisions. This can
lead to extra transmissions in some cases where for example
destination routers think they need to forward the packet to
other destinations, while in reality these have already been
reached. We attempt to solve this problem by keeping track of
two distinct paths towards each other node in the graph when
possible. We will describe our route distribution method later
in the paper. For now we will assume each router knows the
one or two (when such an alternate path exists) shortest paths
towards all other routers.

We will start with explaining our path distribution method.

The algorithm calculating the next hop(s) will be described
following this, followed by an explanation of the lowest
next hop ID rule. We conclude this subsection by describing
situations in which the algorithm fails to deliver an optimal
shortest path tree.

1) Route distribution

Each router or node in the network advertises its coverage
area(s) on each of its links. This advertisement contains the
path, initially only the advertising router. A router must append
its own id to the path it is propagating.

An advertisement packet contains the Area, Cost and
Path to reach it. The Path is a set of router IDs: Path =
1Dy, IDy,...,ID,, where 1D is the advertising router and
1D, the previous hop as seen from the receiving router.

The advertising router id combined with the coverage area
should be unique in the network. Using this method, different
routers with identical or overlapping coverage areas can be
uniquely identified. This allows a router to know which of its
links leads to routers that cover the geographic area in the
destination field.

[D:1] path:1 | [iD:1] Path:12 |

2

3

Path: 1

[ID: 1] | | [Ip:1] Path:1,2 | | [ID:1] Path:1,2,3

ID 1, next hop: 3,
Best Path: 1,2,3
Second Path: 1,2,5

Figure 5: Example of route distribution

A router will transmit the best paths it knows to all
neighboring routers known to it on each of its links except if
the router on the other end is contained in a path. In that case
the router will transmit an alternative, possibly longer, path that
does not contain the other router. If an alternate route is not
available, for example because the router has no other links, the
path containing the neighbor is returned. A neighbor can detect
such a loop due to the path information in the advertisement.
This system with two distinct paths ensures that routers have
knowledge about the existence or nonexistence of alternate
routes.

Figure 5 shows an example of the path for the router with
id 1 being distributed through a network with 6 nodes. The
paths marked in green are chosen by the receiving routers due
to the lowest next hop id rule. The paths marked in red are
kept as second best path by the receiving routers.

A router will need to keep track of the advertisements it
receives on all its links. Assuming each router has one area it
will cover (this could also be zero or multiple areas), there will
be an entry per destination per link resulting in D x deg(n)
entries for a router where D is the number of destinations and
deg(n) the node degree of the router itself (the number of links
this router has). The entire network will have)" _ . deg(n) x
D? entries.

The resulting routing table has a number of entries that is
at least equal to the number of distinct (router, coverage area)
pairs in the network. The worst-case scenario is that the number
of entries is twice the number of pairs due to the existence of
alternate routes. An example would be router 3 in Figure 5,
which will receive an alternate route from router 6 with the
path 1 — 2 — 5 — 6, as the best route known to router 6
passes through router 3 itself.

In the event a router detects a link as no longer available,
by no longer receiving advertisements on that link, it will stop
advertising paths that contain this link to its neighbors. As
routers do not propagate paths that contain themselves in the
path, eventually all nodes will have updated path information.

2) Choosing forwarding next hops

Once a router receives a packet it will evaluate the packet’s
source and destination. The destination geocast address is
translated to all known routers in the network that (partially)
cover that area using the method described in our previous
paper [15]. After the router generates this list of the covering
router ids it can move on to the forwarding step.

neN

@

?

(—@
—

Figure 6: Forward lookup from node 5 to 4

A router needs to evaluate each (source, destination) combi-
nation using a simplified fn function which takes the current
router n, destination set D, source src and previous hop ph
as input values.

fn(n, D, src,ph) =3m € neighbors(n) :
Vdst € D : dst # nA
m = pn,dst(2) Am 7& ph‘

A given destination dst from the set of destinations D and the
next hop m to that destination are evaluated for forwarding if
the current router n is not the destination, the next hop for the
destination is not the previous hop ph and we do not already
have the next hop in the forwarding hop list because of another
destination in the set. This initial simple step can be seen in
Algorithm 1. We now compare three possible paths to each
other. We check the shortest path from source to destination
through the current router, the shortest path as seen from the
previous hop and the shortest path as seen from the candidate
next hop for each candidate next hop that passes the initial
checks.

We will use Figure 6 to illustrate our rules. In this figure,
router 2 is the source for a packet that needs to be delivered
to routers 5 and 6. We will focus on router 5 that needs to
decide if it will forward the packet it received in the direction

Algorithm 1: Next hop lookup algorithm for a router

: Destination routers list D
Previous hop prev_hop
Source router src
Output : List result with next hops for the packet
1 List result; // Initialize list
// Check if we are entry router
if prev_hop == -1 then
foreach dst € D do

if self.nextHop(dst) ¢ result then
| result.add(self.nextHop(dst))

Input

else

foreach dst € D do

nextHop < sel f nextHop(dst);

if dst! = self and nextHop! = prev_hop and

nextHop ¢ result and

find_dif(dst, src, prev_hop,nextHop) then
result.add(nextHop)

2
3
4
5
6
7
8
9

10 \

of router 6. There are two shortest paths from 5 to 6, namely
5—4—6and 5 — 7 — 6). Both candidate next hops pass
the initial check described in Algorithm 1. We will evaluate
the path through router 4 for this example as it has a lower
id, the exact reasoning behind this choice will be explained in
Section III-E3.

We start by constructing the path from the source to the
destination as seen from the next hop router p™" that is

src,dst?
the shortest from the source to the destination that the next

Algorithm 2: Find path difference

Input : Candidate next hop next_hop
The previous hop prev_hop
Destination dst
Source scr

Output : Boolean result

nh_src = self.pathTo(next_hop, src);

nh_dst = self.pathTo(next_hop, dst);

ph_src = self.pathTo(prev_hop, src);
ph_dst = self.pathTo(prev_hop, dst);
ph_dst_removed = ph_dst;

foreach n € ph_src do

if n € ph_dst_removed then
‘ | ph_dst_removed.remove(n)

9 ph_src_removed = ph_src;

10 foreach n € ph_dst do

11 if n € ph_src_removed then
12 | ph_src_removed.remove(n)

13 ph_src_dst = ph_src_removed,
14 ph_src_dst += ph_dst_removed ;
15 nh_src_removed = nh_src;

16 foreach n € nh_dst do
17 if n € nh_src_removed then
18 | nh_src_removed.remove(n)

19 nh_dst_removed = nh_dst;

20 foreach n € nh_src do
21 if n € nh_dst_removed then
22 | nh_dst_removed.remove(n)

23 nh_src_dst = nh_src_removed,

24 nh_src_dst += nh_dst_removed ;

25 p_src_dst = phgrc;

26 p_src_dst += nh_dst ;
router

27 result = false;

28 if length(ph_src_dst > length(p_src_dst)) then

29 if self € nh_src then

30 | result = true; // on nh to src

31 else if length(nh_src_dst) > length(p_src_dst)
then

RN N R W N -

// Copy list

// Copy list
// Add lists
// Copy listp

// Copy list

// Copy list
// Add lists

// Path through this

32 | result =true; // Other path is worse
33 else if length(nh_src_dst) == length(p_src_dst)
then
34 temp = [self] + ph_src;
35 for : = 1;i < length(nh_src) + 1);i + + do
36 if nh_src[length(nh_src) — i)l =
temp(length(temp) — i] then
37 if nh_srcllength(nh_src) —i] >
temp(length(temp) — 1] then
38 | result = true;
39 break;

40 return result;

hop can know of given the path information it has.

h
p?rc,dst = DPsrc,nh Apnh,dst

Here pgrc np is the shortest path from the source to the next
hop node and py,p, qs¢ the shortest path from the next hop to the
destination. We define the A operation as the concatenation
of the two paths excluding duplicate routers except the one
that connects the paths. This is done in Algorithm 2 on lines
15 to 24.

In our example pgrenn =2 — 1 — 4 and ppp st =4 — 6
which gives us p’;ﬁc’ ast = 2 — 1 — 4 — 6. In some situations
both paths could share multiple routers at the start, leading
to the exclusion of all but the last of these shared routers in
the constructed path. In our example there is only one shared
router so it stays on the path as it is also the last.

We now construct a similar path as seen from the previous

h
hop router p,.. ;-

ngc,dst = psrc,phApph,dst

Where the path is constructed from the shortest path from the
previous hop to the source pgy. py, and the shortest path from
the previous hop to the destination pyp, 4s¢. This is done in
Algorithm 2 on lines 5 to 14.

In our example Py pn = 2 — 3 and ppp gt = 3 — 2 —
1 — 4 — 6 which gives us p?" =2 —1— 4 — 6. Note
that the previous node reports a fonger path towards node 6 to
node 4 as the shorter path passes through node 4 itself.

Finally we construct the path that the packet will flow if we
forward it pg,.. ;o;» Which is the path as seen from the current
router n.

n
psrc,dst = psrc,phAnApnh,dst

The path is constructed from the path from the previous hop
to the source, the next hop to the destination and the router n
itself.

Using the example in Figure 6, this results in ppp ore = 3 —
2 and ppp,qs¢ = 4 — 6 which gives us p7 . =2 = 3 —
5 — 4 — 6. Note that we include the current node in this
path! Now that we have all relevant paths we can compare
their lengths to each other.

pd(n, src, D,ph) =Vm € fn(n,src, D,ph): 3dst € D :
h
‘p?rc,dst| < |p€rc,dst|/\
‘p?rc,dst| S |p2}"c,dst|

Where pd takes the current router n, source src, destination
set D and the previous hop ph and returns a set of forwarding
next hops from the set of neighbors of n. The forwarding
candidates are taken from the previous function fn, that already
reduced the set of possible forwarding next hops.

Ifn e p?rhc 4s¢ We can skip these checks and always forward,
as there is no known shorter path visible to the next hop router.
A better path cannot exist in this case as the next hop router
would report a path that does not contain us that is shorter.

In our example 2 -3 -5 —-4—6/<|2—>1—4— 6
which gives us (5 < 4), which is false. The result is that router

2 3

s—

Figure 7: Forwarding from node 6 to nodes 1 and 4

Figure 8: Forwarding lookup from node 5 to 4

5 will not forward the packet to router 4. If the statement
would have been true the second evaluation would have also
been False (in this case it is even the same path).

Pseudo code for the entire forwarding operation are given
in Algorithms 1 and 2. In Algorithm 1 we show the initial
forwarding step. The router will always forward on the shortest
path to the destinations if it is the entry router for the packet
in the network (check against by ¢d == —1). If the packet is
received from another router in the same network the router
finds a candidate next hop (nextH op), checks if it is not the
destination, the packet is not returned on the previous hop and
that the next hop is not already included in the forwarding next
hops list. If all these checks pass the router will perform the
forwarding check described above. The pseudo code for these
steps is given in Algorithm 2. Using this approach we can
achieve close to optimal shortest path trees in most networks,
as we will show in Section IV.

3) Lowest next hop ID

When a router has the option of two or more paths of
identical length to forward on for a certain destination it has
a choice. We let routers base this choice on the lowest router
id of the next hop. This makes the choice between paths
deterministic and by extension allows routers further in the
forwarding tree to know for which destination they are part of
the forwarding tree.

Consider the network from Figure 7, here a tree is constructed
from node 6 to nodes 1 and 4 based on the rules described
previously. We choose router 3 as the forwarding hop to router
1 over router 5 because it has a lower id. In Algorithm 2 (which
will be explained fully later on) we can see the lowest id rule
implemented in lines 43 to 52.

A similar choice also needs to be made if a router needs to

choose between forwarding or not based on path knowledge
of its candidate next hop. The router can compare the two
paths and check which of the paths has the lowest ID next hop
from where they diverge from each other. Using this method a
router can determine where it sits in the forwarding tree and
for which destinations it should forward.

To illustrate this, we will use a modified version of the
network shown in Figure 6 with node 2 removed, shown in
Figure 8. The source is router 2 and the destination are routers
5 and 6 as before. Router 5 has to decide if it forwards the
packet is has received to router 6. There are two possible paths
available to the router 5 -4 — 6 and 5 — 7 — 6, where the
first path has the lower next hop ID. This path through router
5,2 =5 — 4 — 6, is now compared to the path as seen from
the candidate next hop router 4: 2 — 1 — 4 — 6. These paths
diverge from each other after router 2, where the best path as
seen from router 4 has the lowest next hop ID, so router 5 will
choose not to forward.

This method of choosing one forwarding path over the other
allows our system to only use one path to each destination.
In some cases such as the one shown in Figure 8 this leads
to a forwarding tree that has a slightly higher cost than a
Steiner tree, but never multiple paths are used to reach the
same destinations.

4) Close to optimal shortest path trees

The algorithm using limited path knowledge described above
constructs a close to optimal shortest path tree between a given
source and set of destinations.

However, the algorithm fails to construct an optimal shortest
path tree in some specific situations where the network contains
loops within loops. A minimal example of one such network
can be seen in Figure 9. In this figure node 1 represents the
source, nodes 6 and 9 are the destinations.

Routers in the small loop will receive advertisements for
the source and destination from both their neighbors as they
keep track of the two best paths (when multiple paths exists)
to the source. Both paths will use the small loop to reach those
destinations as the distance is shorter compared to the large
loop. The result is that the routers inside the small loop have
no knowledge of the alternate path through the larger loop
and mistakingly believe they should forward the message for
node 9. The router that connects the small loop to the larger
loop (router 8 in Figure 9) does have this knowledge and will
correctly not forward the packet.

The maximum cost of extra link usage is half the number
of links on the small loop. This occurs in the case where the
destination in the small loop is on the side of the higher next
hop id from the source (like node 6 in Figure 9).

In practice, as our evaluations will show in Section IV,
this problem almost never occurs and when it does the extra
overhead caused is minimal.

F. Link State

For completeness we have to mention the option of using a
link state algorithm for geographic routing. Using a link state
algorithm that can provide full network knowledge, each node
can determine if it is on the shortest path between a given

Figure 9: Shortest example of forwarding error loop

source and destination and base its forwarding decisions on
that.

The benefit of this approach would be the perfect shortest
path trees for any given (source, destinations) combination.
The main downside would be computational, storage and
communication overhead of the full network graph as compared
to the other alternatives presented.

Link state algorithms would also allow each router to
compute a Steiner tree for a given source and destination
set, allowing the network in theory to forward using the most
optimal tree possible.

The amount of data that would need to be transmitted and the
computational overhead for such an approach would be large
and scale with the network. The main problem computation
wise would be that the router has to calculate if it is on the
shortest path from source to destination for every unique source
destination combination. Considering these drawbacks we think
a link state approach is not feasible and will not consider it
further in the remainder of this paper. We will also show in
Section IV that the path based distance vector approach already
comes close to a shortest path tree.

G. Hierarchical Routing

Due to the ability of our addressing scheme to aggregate
the geographic addresses, as described in Section II-B, it is
possible to advertise an entire network as a single coverage
area. This enables geographic routing on a large scale, as each
network would not be represented by a single or even multiple
coverage areas per router, but by a single unified area.

As an example we take a network covering an entire city.
This network could aggregate the coverage area of the routers
in a single address. While this single address might not be
completely identical to the coverage area of the individual
routers (it will be slightly larger in reality), it allows the network
to advertise its area in a single advertisement. The same holds
for any autonomous system, we believe our system could
achieve Internet-wide scale geocast using this method.

IV. EVALUATION

In this section, we will describe the evaluation of our
proposed path based routing algorithm. We will start with
briefly mentioning the tools we used to perform the evaluation

followed by the method for destination selection. We then
describe how we measure the path based algorithm’s link usage
and describe the method we used to evaluate our algorithms.
We will evaluate how optimal the routing tree constructed by
the algorithm is. Our main metric will be the number of links
used to construct the tree.

A. Tools

All our evaluations are run over a set of real-world networks
taken from the Topologyzoo [20] unless otherwise noted.
Using these networks, we hope to more accurately evaluate
performance in real-world scenarios as compared to randomly
generated ones.

To analyze our algorithms on these networks we use the
network library NetworkX [22] for the python programming
language. We use this tool to load the network graphs. We use
our own code to handle the route distribution and the packet
forwarding analyses.

B. Destination distributions

For our evaluation we define two categories of destination
sets: Geographically scoped and randomly distributed desti-
nations. We believe these two sets cover most realistic use
cases.

1) Geographically scoped destinations

In most networks that we have evaluated we observe that
the geographical distance between two routers and the network
distance (number of hop between them) is closely linked. This
observation has led us to believe that within a network most
geocast traffic will be geographically scoped in its destination
router set.

For our geographically scoped destination set we use
each node in the network as a source for every possible
geographically scoped destination set. The destinations are
selected based on their location, for n destinations we select a
node in the network and add the n — 1 geographically closest
nodes to the set. Each node is selected once, duplicate sets are
filtered out as they would represent the same destination area.
The source is never included in the destination set. The result is
that each possible geographically scoped (source, destination)
combination in the network is evaluated exactly once.

2) Randomly distributed destination

Because in practice it seems unlikely all geocast destination
will be geographically clustered in a network we also evaluate
randomly selected destinations. We believe such a situation
can occur when a network (A) serves multiple other networks
(for example B, C, F). Let’s assume networks B,C' and F all
cover our destination area. It is unlikely that the connections
of these networks to A are geographically clustered, thus the
randomly distributed destination scenario is also important.

As with the geographically scoped destinations we select
each node once as the source. For the destinations we select
every possible combination of destinations that do not include
the source exactly once.

C. Evaluation metrics

To evaluate the routing performance we look at the resulting
link usage in our evaluation graphs. This metric will give us
an indication of how efficient the routing algorithm performs
its goal of establishing a shortest path forwarding tree. We
compare the average number of links used per number of
destinations.

We define link usage as the number of links that are used to
forward a message from the source to all destinations. If a link
was used twice (i.e. in both directions) this counts as two link
uses. For example the forwarding tree shown in Figure 3a uses
7 links while the more efficient algorithm in Figure 3d only
uses 5 links. The lower the overall link usage of an algorithm
is, the more optimal we consider the forwarding tree.

In Figure 10a, we show the routing cost in links used over
all geographically scoped destination locations in the example
network from Figure 9. The red line represents the average
link usage, with the color intensity for the blue dots showing
the relative occurrence of the link usage for a certain number
of destinations. The effect of the loop inside a loop (explained
before in Section III-E4) can be clearly seen here with the cost
of 3 and 4 destinations mainly around 4 and 7, but not 5 and
6.

Figure 10b plots the performance in link cost of the routing
algorithm (solid line) against the performance of a perfect
shortest path tree (dashed line) and a Steiner tree heuristics
algorithm (dotted line) for the same networks as that in Figure
10a. The solid line corresponds to the red line in Figure 10a.
We can see that the performance of the routing algorithm in
terms of links used is close to that of the shortest path tree.

As different networks have different numbers of routers and
links, the results for them are not directly comparable. We
normalize the link usage to allow us to make this comparison.
The normalization of link usage is done by dividing the link
usage with the number of links in the network, resulting in a
number between O and 1. Values above 1 are possible if there
are multiple transmission on the same link.

D. Evaluation Method

We evaluate our routing algorithm by running it on a
collection of real world networks taken from the Topology Zoo
project [20]. We initialize every network by performing the
route distribution step until the routing table of each router is
stable. This is done by letting the routers exchange information
in steps, in each step all routers transmit their path information
to all their neighbors.

We evaluate each possible (source, destination(s)) combina-
tion, generated in the way described earlier in this section, in
the network by inserting a packet with the given destination(s)
at the source router and forwarding it until no router has any
operations left to perform. Forwarding is performed by the
path based algorithm described in Section III-E2. Each packet
is forwarded on all the link(s) this algorithm returns based on
the source, destinations and information from the previous and
candidate next hop routers. Similar to the route distributions
the forwarding is also performed in steps, in which each step
allows all routers to forward a packet if they have any.

ES v o ~

Link usage

w

1 2 3 4 5 6 7 8
Number of destinations

(a) Full results

Average link usage

3 Shortest path tree Geocast
Steiner Heuristic Geocast
—— Routing Geographic

1 2 3 4 5 6 7 8
Number of destinations

(b) Averaged costs

Figure 10: Normalized link cost for the network from Figure 9

This simulation is run for a subset of destinations that are
geographically scoped and for randomly distributed destinations
as described before. We then compare the average amount of
links used for a given number of destinations to the amount
of links used by a shortest path tree for the same (source,
destination) combinations.

E. Evaluation Results

In Figure 11, we show the normalized link usage on
the y-axis. The x-axis represents the normalized number of
destinations. This normalization is done by binning the number
of destinations for every 10%. We show algorithm 4, the
path based algorithm, shortest path tree and Steiner heuristic
normalized over a subset of real world networks. This Figure
contains results for a subset of graphs containing the 86 graphs
over which we also have a complete set of shortest path and
Steiner heuristic results for multicast or randomly distributed
locations. This set is limited due to the time needed to evaluate
all random combinations in larger networks.

Figure 11a shows the geographically scoped results over the
86 graphs while Figure 11b shows the same values but for
randomly distributed destinations. We believe such a scenario
could occur in transit networks were the points networks
connect to each other do not necessarily correlate with their
geographic coverage, especially if these networks cover the
same area.

In both cases the line for our path based algorithm and the
shortest path tree almost completely overlap. As expected based
on our previous work, the average extra link usage compared
to the Steiner tree is relatively small. We also note that our best
purely DV based algorithm performs reasonably well when the
number of destination in a network is small.

Figure 12 contains geographically scoped results over the
complete set of 227 real-world network graphs we used for
the evaluation. Figure 12a shows results over this set using
the same method used for Figure 11a. We can see that over
this larger set of graphs that also contains larger networks the
average cost for our shortest path based algorithms is similar,
but the link usage of algorithm 4 is slightly larger implying

that its performance might degrade depending on the network
size.

In Figure 12b we show the normalized average link cost
of an entire graph (the average number of links used over
all geographic destination combinations divided by the total
number of links in a graph) plotted against the average node
degree of the network. The average node degree is the average
number of links a router has, this is an indication of how
well connected a network is. We can see that the average link
cost of the routing algorithm is close or equal to that of the
shortest path tree. In general, the cost for geographically scoped
destinations is close to that of the ideal Steiner tree. We also
observe that the more well connected a network is, the lower
the average cost to reach a certain destination area.

FE. Path knowledge vs. hop knowledge

Our distance vector based algorithm described in Section
III-C4 has worse forwarding performance than the algorithm
using path knowledge described later. It does however have
some benefits over the better performing algorithm:

o Lower communications overhead due to DV like cost

exchange

o Lower lookup complexity
The communication overhead depends on the size of the
network, the larger the network is, the longer that paths are
that our path based algorithm has to communicate through
the network. The lookup complexity also depends on the path
length, but even with short paths the extra steps required to
combine them in a next hop and previous hop view would mean
higher complexity than the distance vector based approach

Over the 227 real networks we have evaluated the algorithm
in, on average the distance vector based algorithm has 28%
worse performance compared to the more complex algorithm
with a standard deviation of 0.26. The best case was identical
performance with the worst case 112% extra transmission. We
can conclude that in some networks the extra transmission
overhead could be an acceptable trade-off for the lower
computational burden put on the routers themselves. There
is no single perfect choice here, the algorithm will have to be

12

g
=)

o
0

N
S

Normalized average link usage
o
o

—f— Algorithm 4
—f— Path based algorithm
-+ Shortest path tree
Steiner heuristic

o
¥

0.0 [0,10) [10,20) [20,30) [30,40) [40,50) [50,60) [60,70) [70,80) [80,90)[90,100)

Percentage of destinations (binned)

(a) Geographically scoped

1.2

g
=)

e
©

°©
'S

Normalized average link usage
o
o

—f— Algorithm 4

0.2 £ —f— Path based algorithm
-]~ Shortest path tree
Steiner heuristic
0.0

"~ [0,10) [10,20) [20,30) [30,40) [40,50) [50,60) [60,70) [70,80) [80,90)[90,100)
Percentage of destinations (binned)

(b) Randomly distributed

Figure 11: Normalized link cost for real world graphs comparing geocast and multicast

12

g
o

o
o

I
IS

Normalized average link usage
o
o

—f— Algorithm 4
—f— Path based algorithm
- Shortest path tree
Steiner heuristic

o
N

0.0 [0,10) [10,20) [20,30) [30,40) [40,50) [50,60) [60,70) [70,80) [80,90) [90,100)

Percentage of destinations (binned)

(a) Link usage set against percentage of destinations addressed

1.0
Shortest path tree
Steiner tree

. » Path based algorithm

0.8

0.6

0.4

Normalized average link usage

0.2

O'q.O 15 2.0 25 3.0 35 4.0 4.5 5.0
Average node degree

(b) Link usage set against the average node degree of the network

Figure 12: Geographically scoped normalized link usage for all real world graphs

selected based on the network. We do observe that the overhead
of the distance vector algorithm is lower in smaller networks,
and is almost always high in larger networks of more than 15
nodes.

V. CONCLUSION

In this paper, we have presented a purely distance vector
and a path based algorithm for geographic routing. We have
also evaluated the link usage of these algorithms on a set of
real world networks.

Our best distance vector based algorithm performs relatively
well, and in the worst case has only 32% more link cost
compared to the shortest path tree. In a situation where the
entire network is not addressed this overhead is even lower.

We have shown that our path based algorithm can construct
forwarding trees to multiple destinations that are close in link

cost to the shortest path tree from the source to the destinations.

Our proposed algorithm establishes forwarding trees that are
almost equal to the shortest path tree and close to the optimal
Steiner tree in link cost. The algorithm can improve on the
distance vector based algorithm, especially in situations where

a large number of routers in the network (> 25%) are part of
the addressed area.

We believe that the distance vector algorithm might actually
be preferable in certain situations where the extra computational
overhead in the router does not outweigh the extra transmission
overhead in the network. We expect that this routing approach
combined with a hierarchical approach in which autonomous
systems advertise one or more areas will eventually allow
Internet-wide geocast to become a reality.

A. Future work

To achieve Internet-wide geocast, further work will need
to be done. Areas of special interest are hierarchical routing,
security and last hop distribution methods.

Hierarchical routing is needed so different autonomous
systems can distribute coverage and reachability information.
Further work is needed to research methods to extend our
current routing proposal to this level.

The are several security issues mostly relating to the
possibility of denial of service attacks to the current proposal
that need to be addressed. Further work is needed on limiting
geocast capabilities to certain users, or limiting the area

addressed to prevent wide scale denial of service attacks using
geocast.

Work needs to be done for the final hop towards mobile
devices, including vehicles. The hop towards end-user devices
presents a challenge for geographically scoped communication.
There are several different situations in which the method
of distribution would need to be tailored to the specific
situation. While our addressing method can address small areas,
addressing a specific road for example, would still require some
form of translation to limit the message to just that road, and
not the surrounding area.

We are currently in the process of developing an implementa-
tion of our algorithm that can be tested in a virtual environment
such as mininet and on actual routing hardware. This will also
allow us to evaluate the routing performance in situations where
the network is unstable and routes are still converging.

REFERENCES
[11 G. Karagiannis, G. Heijenk, A. Festag, A. Petrescu,
and A. Chaiken, “Internet-wide geo-networking problem
statement,” 2013. [Online]. Available: https://tools.ietf.org/html/

draft-karagiannis-problem-statement- geonetworking-01

[2] J. C. Navas and T. Imielinski, “GeoCast - Geographic Addressing and

Routing.” in MOBICOM, L. Pap, K. Sohraby, D. B. Johnson, and C. Rose,

Eds. ACM, 1997, pp. 66-76.

F. Cunha, L. Villas, A. Boukerche, G. Maia, A. Viana, R. A. Mini, and

A. A. Loureiro, “Data communication in vanets: Protocols, applications

and challenges,” Ad Hoc Networks, vol. 44, pp. 90-103, 2016.

[4] T. Fioreze and G. J. Heijenk, “Extending the Domain Name System
(DNS) to provide geographical addressing towards vehicular ad-hoc
networks (VANETSs).” in VNC, O. Altintas, W. Chen, and G. J. Heijenk,
Eds. IEEE, 2011, pp. 70-77.

[5] J. C. Navas and T. Imielinski, “On reducing the computational cost
of Geographic Routing,” Rutgers University, Department of Computer
Science, Tech. Rep. DCS-TR-408, 2000.

[6] T. Imielinski and S. Goel, “DataSpace - Querying and Monitoring Deeply
Networked Collections in Physical Space.” in MobiDE. ACM, 1999,
pp. 44-51.

[71 M. Di Felice, L. Bedogni, and L. Bononi, “Group communication on
highways: An evaluation study of geocast protocols and applications,”
Ad Hoc Networks, vol. 11, no. 3, pp. 818-832, 2013.

[3

=

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

for the Future, IEEE.

B. T. Sharef, R. A. Alsaqour, and M. Ismail, “Vehicular communication
ad hoc routing protocols: A survey,” Journal of network and computer
applications, vol. 40, pp. 363-396, 2014.

J. Liu, J. Wan, Q. Wang, P. Deng, K. Zhou, and Y. Qiao, “A survey on
position-based routing for vehicular ad hoc networks,” Telecommunication
Systems, vol. 62, no. 1, pp. 15-30, 2016.

Y.-B. Ko and N. H. Vaidya, “Geotora: A protocol for geocasting in
mobile ad hoc networks,” in Network Protocols, 2000. Proceedings.
2000 International Conference on. 1EEE, 2000, pp. 240-250.

B. Karp and H.-T. Kung, “Gpsr: Greedy perimeter stateless routing
for wireless networks,” in Proceedings of the 6th annual international
conference on Mobile computing and networking. ~ACM, 2000, pp.
243-254.

D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina, “Protocol
independent multicast-dense mode (pim-dm): Protocol specification
(revised),” RFC 3973, 2005.

B. Fenner, M. Handley, I. Kouvelas, and H. Holbrook, ‘“Protocol
independent multicast-sparse mode (pim-sm): protocol specification
(revised),” 2006.

D. Moscoviter, M. Gholibeigi, B. Meijerink, R. Kooijman, P. Krijger, and
G. Heijenk, “Improving spatial indexing and searching for location-based
dns queries,” in International Conference on Wired/Wireless Internet
Communication. Springer, 2016, pp. 187-198.

B. Meijerink, M. Baratchi, and G. Heijenk, “An efficient geographical
addressing scheme for the internet,” in International Conference on
Wired/Wireless Internet Communication. Springer, 2016, pp. 78-90.
L. Kou, G. Markowsky, and L. Berman, “A fast algorithm for steiner
trees,” Acta informatica, vol. 15, no. 2, pp. 141-145, 1981.

M. Doar and I. Leslie, “How bad is naive multicast routing?” in
INFOCOM’93. Proceedings. Twelfth Annual Joint Conference of the
IEEE Computer and Communications Societies. Networking: Foundation
IEEE, 1993, pp. 82-89.

U. T. Nguyen and J. Xu, “Multicast routing in wireless mesh networks:
Minimum cost trees or shortest path trees?” IEEE Communications
Magazine, vol. 45, no. 11, pp. 72-77, 2007.

B. Meijerink, M. Baratchi, and G. Heijenk, “Evaluation of geocast routing
trees on random and actual networks,” in International Conference on
Wired/Wireless Internet Communication. Springer, 2017, pp. 127-142.
S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The
internet topology z00,” Selected Areas in Communications, IEEE Journal
on, vol. 29, no. 9, pp. 1765 —1775, october 2011.

Y. Rekhter, T. Li, and S. Hares, “A border gateway protocol 4 (bgp-4),”
Tech. Rep., 2005.

A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using NetworkX,” in Proceedings of
the 7th Python in Science Conference (SciPy2008), Pasadena, CA USA,
Aug. 2008, pp. 11-15.

https://tools.ietf.org/html/draft-karagiannis-problem-statement-geonetworking-01
https://tools.ietf.org/html/draft-karagiannis-problem-statement-geonetworking-01

	I Introduction
	II Previous Work
	II-A Related work
	II-B Geographic addressing
	II-C Why shortest path instead of a Steiner tree

	III Algorithm Design
	III-A Path Notation
	III-B Flooding
	III-C Distance Vector
	III-C1 DV Algorithm 1
	III-C2 DV Algorithm 2
	III-C3 DV Algorithm 3
	III-C4 DV Algorithm 4

	III-D Intermezzo: DV Performance
	III-E Path Based Distance Vector
	III-E1 Route distribution
	III-E2 Choosing forwarding next hops
	III-E3 Lowest next hop ID
	III-E4 Close to optimal shortest path trees

	III-F Link State
	III-G Hierarchical Routing

	IV Evaluation
	IV-A Tools
	IV-B Destination distributions
	IV-B1 Geographically scoped destinations
	IV-B2 Randomly distributed destination

	IV-C Evaluation metrics
	IV-D Evaluation Method
	IV-E Evaluation Results
	IV-F Path knowledge vs. hop knowledge

	V Conclusion
	V-A Future work

	References

