79 research outputs found

    Wykaz 32. Wykaz stanowisk Trichocorixa verticalis wykorzystanych podczas modelowania niszy ekologicznej

    Get PDF
    Zielińska, Anna. Ocena warunków siedliskowych dla inwazyjnych gatunków pluskwiaków różnoskrzydłych (Hemiptera: Heteroptera) na terenie Europy, ze szczególnym uwzględnieniem Polski (praca doktorska). Wykaz 32. Wykaz stanowisk Trichocorixa verticalis wykorzystanych podczas modelowania niszy ekologicznej (dane na dzień: 22.09.2022)

    Brown trout in the Falkland Islands: invasion ecology, population structure and genetic diversity

    Get PDF
    Biological invasions are important causes of biodiversity loss, particularly in remote islands. Non-native salmonids, such as brown trout (Salmo trutta), have been widely introduced throughout the Southern Hemisphere, impacting endangered native fauna, particularly galaxiid fishes, through predation and competition. However, due to their importance for sport fishing and aquaculture, they are often protected, and any attempts to curtail their impacts are generally met with limited support, which poses a conservation conundrum. The best prospect of protecting native galaxiids is to predict where and how salmonids might disperse. This thesis aims to answer three main questions about brown trout in the Falkland Islands in order to provide resource managers with information to facilitate conservation planning to minimize the impacts of brown trout on native galaxiids. (1) determine the distribution of invasive brown trout and native zebra trout, Aplochiton zebra and Aplochiton taeniatus. (2) estimate patterns of movement and (3) assess the population structuring and estimate levels of gene flow between different rivers and populations of brown trout in the Falklands. To meet these aims, I used state-of-the-art methods, including SNP genotyping, stable isotope analysis, acoustic tagging, and environmental DNA (eDNA) analysis. The results of this thesis suggest that establishment success (calculated as the proportion of historical introductions where brown trout became established) was ~88% and that brown trout are continuing to spread from their original sites of introduction. The native Aplochiton species have disappeared from most rivers invaded by brown trout. Four genetically distinct clusters of brown trout were identified, with high levels of gene flow indicating widespread dispersal of brown trout across the Falkland Islands. Without strong containment, brown trout are predicted to invaded nearly all suitable freshwater habitats in the Falklands within the next ~70 years, which might put native galaxiids at a high risk of extinction

    Invasive Species in Forests and Rangelands of the United States

    Get PDF
    This open access book describes the serious threat of invasive species to native ecosystems. Invasive species have caused and will continue to cause enormous ecological and economic damage with ever increasing world trade. This multi-disciplinary book, written by over 100 national experts, presents the latest research on a wide range of natural science and social science fields that explore the ecology, impacts, and practical tools for management of invasive species. It covers species of all taxonomic groups from insects and pathogens, to plants, vertebrates, and aquatic organisms that impact a diversity of habitats in forests, rangelands and grasslands of the United States. It is well-illustrated, provides summaries of the most important invasive species and issues impacting all regions of the country, and includes a comprehensive primary reference list for each topic. This scientific synthesis provides the cultural, economic, scientific and social context for addressing environmental challenges posed by invasive species and will be a valuable resource for scholars, policy makers, natural resource managers and practitioners

    Genetic patterns of dispersal and colonization during initial invasion and spread of an invasive grass, Brachypodium sylvaticum

    Get PDF
    Evolution of genotypes during range expansion is driven in part by colonization dynamics. I investigated genetic patterns of colonization and dispersal during initial expansion of an invasive bunchgrass, Brachypodium sylvaticum, into Oregon. Using microsatellite markers, I sampled plants at two different scales: at regular intervals along three parallel roads spanning about 30km, and in populations identified throughout Oregon. I also collected field-generated progeny from a subset of populations and used molecular identification of outcrossing events to estimate selfing rates in both central and peripheral populations. Dispersal patterns were similar at both scales, with non-contiguous dispersal responsible for colonization of new populations. High levels of differentiation were observed at all scales, though newly-colonized populations were more differentiated than older populations. Corvallis populations were responsible for colonization of a majority of populations throughout Oregon, while individuals from Eugene were only occasionally found in new populations. Admixture occurs between Corvallis and Eugene populations, decreasing differentiation, and potentially creating novel phenotypes and increasing evolutionary potential of populations. Selfing rates were high, but two populations in the areas of original introduction had lower rates of selfing, suggesting that selfing rates may decrease as population density and diversity increases with age. The influences of founder effects and bottlenecks on phenotypic evolution during range expansion require further investigation, as inbreeding, lag times, and selection may influence evolutionary trajectories of populations

    Ameaçada, rara e diversa : avaliação genômica revela linhagem críptica em espécie dos campos sulinos

    Get PDF
    A Serra do Sudeste é considerada um centro de diversidade do gênero Petunia, com a distribuição de duas espécies endêmicas e outras duas de ampla distribuição. Petunia secreta é uma espécie com distribuição restrita apenas à localidade denominada Pedra do Segredo. A espécie é classificada como rara, endêmica e em perigo de extinção. Em 2014, uma população numerosa, composta por indivíduos com morfologia similar à P. secreta, foi encontrada em um ambiente antropizado, na beira da rodovia BR-290. A caracterização genética desta população mostrou acentuada diferenciação em relação às populações da área original de descrição da espécie. Aqui realizamos uma investigação sobre a origem dessa população por meio de variações encontradas em nível genômico, comparando-a com populações naturais de outras espécies do gênero de ocorrência próxima à população de interesse. Os resultados sugerem inexistência de fluxo gênico com as espécies P. integrifolia e P. exserta; presença de um componente genético exclusivo à BR-290; compartilhamento parcial de polimorfismos com P. axillaris e P. secreta canônica. A análise da demografia histórica demonstrou que a linhagem BR-290 teria surgido a partir de um ancestral comum com P. secreta, com tempo de divergência estimado em 25 Kya, coincidindo com as mudanças climáticas do Pleistoceno. Desta forma, sugere-se que esta linhagem seja considerada uma forma independente e críptica a P. secreta, devendo ser tida como uma nova espécie no gênero e protegida como tal.Serra do Sudeste is considered a center of diversity of the genus Petunia, with the distribution of two endemic and two widely distributed species. Petunia secreta is narrowly distributed, restricted to the locality called Pedra do Segredo. The species is classified as rare, endemic, and endangered. In 2014, a large population, composed of individuals with a morphology similar to P. secreta, was found in an anthropized environment, on the side of the BR-290 highway. The genetic characterization of this population showed marked differentiation in relation to the populations of the original area of P. secreta description. Here, we carry out an investigation into the origin of this population based on variations at the genomic level, comparing natural populations of other Petunia species occurring close to the BR-290 population. The results suggested that there is no gene flow with P. integrifolia and P. exserta; BR-290 shows an exclusive genetic component; there is partial polymorphism sharing between BR-290 and P. axillaris and canonical P. secreta. The analysis of historical demography showed that the BR-290 lineage would have emerged from a common ancestor with P. secreta, with an estimated divergence time of 25 Kya, coinciding with the Pleistocene climate changes. Thus, it is suggested that this lineage should be considered as an independent and cryptic form of P. secreta, and should be considered as a new species in the genus and protected as such

    Do terrestrial ectoparasites disperse with penguins?

    Get PDF
    Dispersal plays a critical role in evolution. Rare long-distance movements can lead to allopatric speciation, whereas frequent movements can facilitate gene flow among disjunct populations and prevent divergence. Dispersal between populations of a species may be difficult to observe directly, and is often inferred from indirect measures such as species occurrence data. Increasingly, however, high resolution genomic data are being used to clarify dispersal and gene flow, in many cases contradicting past assumptions. Islands are excellent model regions for investigating dispersal as they offer replicated habitats with clear geographic boundaries. The sub-Antarctic comprises some of the most geographically isolated island ecosystems in the world, representing an ideal model system for assessing the evolutionary consequences of long-distance dispersal. Strong winds, circumpolar oceanic currents, and extreme climatic cycles are thought to have effectively isolated many sub-Antarctic ecosystems, but a growing body of molecular evidence is beginning to question this rhetoric, with numerous species showing connectivity across the region. Connectivity patterns are, however, complex and are not always predictable from an organism’s inferred dispersal capacity. With environmental change placing unprecedented pressure on isolated ecosystems, there is a pressing need for improved understanding of dispersal processes and population connectivity via genomic analyses of diverse taxa. A number of sub-Antarctic species exhibit gene flow across the region despite lacking active long-distance dispersal capabilities. Brooding, sedentary crustaceans have, for example, rafted on buoyant kelp across thousands of kilometres of open ocean in the sub-Antarctic. The close symbiotic or parasitic relationships that such species maintain with the kelp has resulted in whole communities dispersing together. Indeed, active dispersal is often limited in parasites, which can depend almost entirely on mobile hosts for long-distance movement. A parasite that is unable to travel far with its host would, therefore, be expected to show considerable phylogeographic structure. For example, penguins primarily travel underwater but are hosts to terrestrial ectoparasites (most commonly ticks - Ixodes spp.) when they come ashore to breed. Aquatic host movements may represent a challenge to the survival of penguin ticks, restricting gene flow across their range. This thesis first reviews connectivity patterns and challenges throughout the sub-Antarctic, and then uses a multidisciplinary approach (genomic and physiological data) to test whether some terrestrial parasites (ticks: Acari) are able to travel long distances at sea with their aquatically dispersing hosts (penguins). Results indicate that penguin ticks are physiologically resilient, and may be capable of surviving the conditions faced during aquatic penguin movements between colonies. However, these movements appear to be too sporadic to maintain gene flow across the ticks’ ranges, resulting in broad-scale geographic structure. In contrast, movement on fine scales (within colonies) is inferred – based on lack of genomic structure – to be common, possibly facilitated by social interactions of hosts. These results emphasise the important role of dispersal in isolated regions for range expansion and diversification, and highlight the adaptability of parasites to their hosts’ environments

    Comparative Phylogeographic, Population Genomic, and Selection Inference with Development of Hierarchical Co-Demographic Models

    Full text link
    Comparing demographic histories across assemblages of populations, species, and sister pairs has been a focus in phylogeography since its inception. Initial approaches utilized organelle genetic data and involved qualitative comparisons of genetic patterns for evaluating hypotheses of shared evolutionary responses to past environmental changes. This endeavor has progressed with coalescent model-based statistical techniques and advances in next-generation sequencing, yet there remains a need for methods that can analyze aggregated genomic-scale data from non-model organisms within a unified framework that considers individual taxon uncertainty and variance. To this end, the aggregate site frequency spectrum (aSFS), an expansion of the site frequency spectrum to exploit SNP data collected from multiple independent populations, and the aggregate joint site frequency spectrum (ajSFS), an extension of the aSFS for population-pairs, are introduced and explored here for the purpose of assemblage-level demographic inference. Furthermore, introduced and described here is the R package Multi-DICE, a wrapper program that exploits existing simulation software for straight-forward and flexible execution of hierarchical co-demographic model-based inference given either the aSFS or single-locus sequence data. These methodological developments were validated through a succession of in silico experiments that tested a range of sampling configurations, alternative inferential frameworks, and various prior specifications. Additionally, empirical demonstrations were conducted from published RAD-seq data of five threespine stickleback populations as well as eight local replicates of a lamprey species-pair. Synchronous demographic trajectories were detected for both of these analyses. Moreover, similar techniques were utilized to investigate LINE selection among population-level whole-genome vertebrate datasets. In brief, a null demographic background was inferred utilizing SNP data, which was then exploited to simulate a putative null distribution of summary statistics that was compared to LINE data for detecting selection. Subsequently, the null demographic model was leveraged to evaluate selection presence, directionality, and strength. There was a robust signal for purifying selection along with a pattern of LINE size affecting selection strength in two species. As large-scale SNP data become routine, the aSFS, Multi-DICE, ajSFS, and protocol employed here for detecting selection will collectively expand the potential for powerful comparative phylogeographic and population genomic inference

    USING GENOMICS TO UNDERSTAND POPULATION DEMOGRAPHICS IN THE CONTEXT OF AMPHIBIAN CONSERVATION

    Get PDF
    Understanding the demography of species over recent history (e.g., \u3c 100 years) is critical in studies of ecology and evolution, but records of population history are rarely available. Large single nucleotide polymorphism datasets generated with restriction-site associated DNA sequencing (RADseq), in combination with demographic inference methods, are improving our ability to gain insights into the population history of both model and non-model species. However, to assess the performance of genetic methods it is important to compare their estimates of population history to known demography, in both simulation and empirical settings. Here, I used a simulation approach to examine the potential for RADseq datasets to accurately estimate effective population size (Ne) in Wright-Fisher populations over the course of stable and declining population trends, and distinguish stable from steadily declining populations over a contemporary time scale (20 generations). Overall, my results reveal that demographic inference using genome-wide data can be successfully applied to estimate Ne, and the detection of population-size declines. Next, I assess these methods in an empirical study from a wetland with 37 years of amphibian mark-recapture data to study the utility of genetically-based demographic inference on salamander species with documented population declines (Ambystoma talpoideum) and expansions (A. opacum). For both species, demographic model inference supported population size changes that corroborated mark-recapture data. To further validate these findings, I used individual-based population models of the pond-breeding salamander, Ambystoma opacum, with life-history parameters estimated from a long-term dataset, over a 50 year projection. My results demonstrate that genetically estimated Ne is positively correlated with census size in isolated and subdivided A. opacum populations. Finally, I investigated metapopulation patterns of genomic diversity in A. opacum and A. talpoideum and how migration may impact Ne estimation. I found strong patterns of subpopulation structuring, signatures of migration between subpopulations, and differences in Ne at the subpopulation level in both species. Overall, my findings suggest the ability of genomic data to reconstruct recent demographic changes, which can have important applications to conservation biology, and ultimately can help us elucidate the effects of environmental disturbances in the demography of endangered or declining species

    Anolis Newsletter VII

    Get PDF
    Newsletter for the 7th Anolis Symposium, Fairchild Tropical Botanic Gardens, Miami, Florida, 17-18 March 2018. It had been nearly a decade since the previous Anolis symposium was held in Cambridge, MA, at the Museum for Comparative Zoology, Harvard. A reunion of anole biologists en masse was long past due and it was decided that this symposium would be slightly different – we were going to hold it somewhere with anoles! And so, on the weekend of 17-18th March, 2018, nearly 70 anole biologists traveled to sunny south Florida to attend the 7th Anolis Symposium held at the beautiful Fairchild Tropical Botanic Gardens in Miami. In the grounds of the botanical gardens, attendees were presented with a diverse community of six (!) species of anole, both native and non-native, representing four distinct ecomorphs
    corecore