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ABSTRACT OF DISSERTATION 

 

 

 

 

USING GENOMICS TO UNDERSTAND POPULATION DEMOGRAPHICS IN THE 

CONTEXT OF AMPHIBIAN CONSERVATION 

Understanding the demography of species over recent history (e.g., < 100 years) is 

critical in studies of ecology and evolution, but records of population history are rarely available. 

Large single nucleotide polymorphism datasets generated with restriction-site associated DNA 

sequencing (RADseq), in combination with demographic inference methods, are improving our 

ability to gain insights into the population history of both model and non-model species. 

However, to assess the performance of genetic methods it is important to compare their estimates 

of population history to known demography, in both simulation and empirical settings. Here, I 

used a simulation approach to examine the potential for RADseq datasets to accurately estimate 

effective population size (Ne) in Wright-Fisher populations over the course of stable and 

declining population trends, and distinguish stable from steadily declining populations over a 

contemporary time scale (20 generations). Overall, my results reveal that demographic inference 

using genome-wide data can be successfully applied to estimate Ne, and the detection of 

population-size declines. Next, I assess these methods in an empirical study from a wetland with 

37 years of amphibian mark-recapture data to study the utility of genetically-based demographic 

inference on salamander species with documented population declines (Ambystoma talpoideum) 

and expansions (A. opacum). For both species, demographic model inference supported 

population size changes that corroborated mark-recapture data. To further validate these 

findings, I used individual-based population models of the pond-breeding salamander, 

Ambystoma opacum, with life-history parameters estimated from a long-term dataset, over a 50 

year projection. My results demonstrate that genetically estimated Ne is positively correlated 

with census size in isolated and subdivided A. opacum populations. Finally, I investigated 

metapopulation patterns of genomic diversity in A. opacum and A. talpoideum and how 

migration may impact Ne estimation. I found strong patterns of subpopulation structuring, 

signatures of migration between subpopulations, and differences in Ne at the subpopulation level 

in both species. Overall, my findings suggest the ability of genomic data to reconstruct recent 

demographic changes, which can have important applications to conservation biology, and 



 
 

ultimately can help us elucidate the effects of environmental disturbances in the demography of 

endangered or declining species. 
 

KEYWORDS: demographic inference, temporal samples, genetic monitoring, coalescent, 

Ambystoma 
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CHAPTER ONE 
 

GENERAL INTRODUCTION: GENOMICS AND Ne ESTIMATION FOR ASSESSING 

RECENT POPULATION SIZE TRENDS 

 

Introduction 

Estimating the impacts of environmental change on natural populations is critical in 

ecology, evolution, and conservation biology. Genetic approaches of estimating the effective 

population size (Ne) can provide information on population abundance and demographic history, 

and also insight into the evolutionary history and genetic viability of populations (Frankham et 

al. 2014). However, before this information can be applied to assess the current and projected 

response of populations to environmental stressors, it is necessary to understand the evolutionary 

processes and mechanisms regulating genetic diversity of populations. Especially important is 

the understanding of how recent demographic changes influence estimates of Ne at an ecological 

timescale (i.e., tens of generations), because this is the scale at which conservation and 

management is focused.  

A range of evolutionary processes occur at an ecological time scale (Allendorf & Hard 

2009; Schoener 2011), including short-term changes in Ne (Allendorf et al. 2010; McCoy et al. 

2014). However previous attempts to estimate contemporary changes in Ne using microsatellite 

markers have frequently been associated with high uncertainty, as the signal of drift is often 

overwhelmed by noise in the dataset (Nunziata et al. 2015; Therkildsen et al. 2013). Genome-

scale datasets have the potential to overcome these limitations by reducing sampling error and 

yielding insight into eco-evolutionary processes, revealing not only short-term population size 

trends but also the evolutionary potential of populations. Both the response of species to 
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anthropogenic influences and their potential for future genetic adaptation is critical information 

in the conservation of populations (Franklin 1980; Mace et al. 2008; Soule & Wilcox 1980).  

Genome-scale SNP datasets are currently generated through a range of reduced genome 

representation sequencing methods ideal for non-model species of conservation concern, as 

many methods don’t require any prior genomic information (Andrews et al. 2016; Davey et al. 

2011). Some of the most popular methods of marker discovery and sequencing include: 

restriction-site associated DNA sequencing (RADseq) (Baird et al. 2008; Peterson et al. 2012), 

sequencing of RNA (RNAseq) (Wang et al. 2009), and targeting known regions of the genome 

for sequencing through sequence capture (Grover et al. 2012). The development of these 

methods and advances in speed and cost of next-generation sequencing are shifting eco-

evolutionary studies of non-model species to a genomic scale.  

Genomic tools have the potential to revolutionize the conservation and management of 

species of concern, and offer the ability to identify traits under selection and their associated 

genes, population responses to anthropogenic stressors, and assessments of species status and 

gene flow among populations (Allendorf et al. 2010; Stapley et al. 2010). Here, I focus on the 

potential of genomics to provide robust estimates of Ne and demographic inferences at a 

contemporary time scale. Although the concept of Ne is well accepted, its estimation becomes 

complicated at short time scales with fluctuations in demography. The potential of genomic 

datasets for accurately estimating contemporary Ne has been outlined in a number of reviews 

(Allendorf et al. 2010; Pujolar et al. 2013), but only now are we seeing an accumulation of these 

datasets in published studies (see Table 1.1 for a summary of recent studies).  
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Estimation of effective size 

Effective population size is defined as the size of an ideal population (discrete 

generations, random mating, equal sex ratio, and random variation in reproductive success) that 

experiences the same rate of drift as the observed population. I review two methods of estimating 

Ne using genome-scale data from single-season samples: inbreeding Ne using a linkage-

disequilibrium (LD) approach, and coalescent Ne. While variance Ne is a popular estimator of 

contemporary Ne, it requires samples from at least two time points (Wang 2005), and here I 

focus on single-sample estimators. Many studies of contemporary Ne focus solely on inbreeding 

and/or variance Ne and ignore coalescent Ne, as it is often thought to be reflective of Ne strictly at 

a historical time scale (i.e., hundreds to thousands of generations). However, in small populations 

where coalescent events are clustered in the recent past, coalescent Ne may provide insight to 

demographic processes at a contemporary timescale. In the following sections I discuss the 

history of these methods in population genetics, review studies that have applied Ne estimation to 

characterize recent demographic history, evaluate the potential of these methods with genomic 

datasets, and identify questions regarding the utility of these methods at a contemporary 

timescale. 

 

LD-based estimations of recent demographic history  

With finite population size and a limited number of parents, nonrandom associations of 

alleles at different genetic markers occur (i.e. linkage disequilibrium), even without any physical 

linkage on a chromosome (Hill 1981; Waples 1991). Because LD is a function of drift, it can be 

used to estimate Ne. Estimates of LD-based Ne are reflective of the past 1-2 generations, as 

linkage requires several generations to decay even as Ne fluctuates (Waples 2005). Estimates of 
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LD-based Ne have been found to be robust when applied to species with a complex life-history, 

including species with population structure and migration up to 5-10% of the total population 

(Waples & England 2011), and with overlapping generations (Waples & Do 2010).  

Estimation of LD-based Ne in population and conservation genetics has become an 

important and widely used tool, with multiple well-established and easy to use software packages 

available for estimation (Do et al. 2014; Waples & Do 2010). While widely used, the method is 

best applied to small populations, as the signal of drift that generates LD in small populations 

will be weak in large populations. Several empirical studies employing microsatellite loci have 

found positive correlations with LD-based Ne and census size, demonstrating the potential 

benefits of genetic monitoring (Charlier et al. 2012; Osborne et al. 2010). While several other 

studies have failed to detect any correlation with Ne and census size, even with observed 

population declines (Duong et al. 2013; Whiteley et al. 2015). One major limitation of these 

studies employing microsatellites is that sampling is often inadequate for robust estimation of Ne, 

especially in large populations where the signal of drift is small.  

Although large genomic datasets are predicted to increase the resolution of LD-based Ne 

estimates, few studies have used the method with these large datasets, and those that have, 

revealed varied results. In a recent study on a population of Iberian pigs Saura et al. (2015) 

evaluated the use of genomic datasets and LD-based Ne estimation to document observed recent 

population size trends. The intense 26 generation study of a closed population of Iberian pigs 

allowed for precise estimates of pedigree-based Ne for a comparison to LD-based estimates using 

genome-scale data (Saura et al. 2015). Estimates of LD-based Ne were correlated with pedigree 

estimates, accurately documenting the founding event and subsequent expansion, and validating 

the utility of this method for characterizing recent population size trends with genomic datasets.  
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The house finch is another species with well documented changes in demographic 

history, providing an opportunity to assess genomic estimates of demography(Shultz et al. 2016). 

House finch populations were introduced to the Eastern US and Hawaii from their native range 

in the Western US in the 1940’s and 1870’s, respectively. After which, introduced populations 

rapidly expanded until being introduced to a novel pathogen that caused severe declines across 

the Eastern US. Temporal genetic sampling prior to pathogen outbreak and during the 

subsequent decline provided the opportunity to evaluate the impacts of recent population decline 

on genetic diversity. LD-based Ne estimates reflected signatures of the population introductions, 

but did not show declines with recent population decline. This is likely the result of the still large 

size of contemporary populations, allowing for maintenance of large Ne despite population size 

declines. These results show that LD-based estimates of Ne will not always track contemporary 

census-size trajectories, even with the application of tens of thousands of SNP markers.  

  

Coalescent-based estimations of recent demographic history 

 While LD-based methods offer the appeal of quick and straight-forward calculations, 

they provide little other insight into demographic history, such as level of migration and timing 

and duration of demographic events. Demographic inference in a model testing framework has 

been a popular tool in population genetics for a number of years, with many of these approaches 

built on the backbone of coalescent theory (Kingman 1982). The principle of the coalescent is 

that when tracing the ancestry of a sample of n individuals, each pair of individuals that have the 

same parent are said to coalesce. As lineages progress back in time, the number of distinct 

lineages (or potential parents) decreases until reaching one, the most recent common ancestor of 
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the sample. Because the rate of coalescence depends on the size of the population, this model can 

be used approximate Ne and model demographic events backward in time.  

Up until the past several years, the use of coalescent based demographic inference has 

been limited by computationally demanding frameworks such as approximate Bayesian 

computation (ABC) (Beaumont et al. 2002). This had limited the size of the dataset and the 

complexity of the models tested to balance the computational demand. New, computationally 

efficient approaches of demographic inference are able to take advantage of large genomic 

datasets, and test increasingly complex models of demographic history (Excoffier et al. 2013; 

Gutenkunst et al. 2009). However, most studies incorporating these methods have estimated 

events at historical time scales (i.e., thousands of generations; see (Lanier et al. 2015; Moura et 

al. 2014; Papadopoulou & Knowles 2015), and not a contemporary time scale. Coalescence 

theory states that the probability of coalescence t generations ago is (1-(1/2N))
t-1

(1/2N), with the 

coalescent Ne estimated as the expected time of coalescence in generations, T, or T = 2Ne 

(Nordborg & Krone 2002; Wakeley & Sargsyan 2009). Given these equations, when Ne is small 

enough, as is often the case in species of conservation concern, large sample sizes (individuals 

and/or loci) may be effective in estimating coalescent Ne at a contemporary scale as coalescent 

events will be clustered in the recent past (Robinson et al. 2014). 

Two recent studies demonstrate the use of coalescent-based demographic inference 

methods to estimate timing of known population introductions in the past several decades. In a 

study of the checkerspot butterfly (Euphydryas gilletti), McCoy et al. (2014) accurately 

characterized a recent (~ 30 generations ago) introduction event and associated bottleneck with 

the coalescent modeling program δaδi (Gutenkunst et al. 2009). Similarly, the timing of 
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introduction of a series of guppy populations introduced in the past ~20-40 years was accurately 

estimated in the program δaδi (Fraser et al. 2015).  

 Although the above studies highlight the potential of these methods for small 

populations, no studies have successfully applied them to characterize a population decline. A 

comparative study of two species of bumblebees, one with temporal stability in census size and 

the other which is in decline, used the program δaδi in an attempt to infer these recent population 

histories (Lozier 2014). There was no detected difference in genetic diversity between the 

species, and both species displayed a historic signature of population expansion. Although the 

study highlights the importance of historical processes in shaping current genomic diversity, 

demographic inference results provided little insight into contemporary demographic processes.  

 

Major differences between LD and coalescent Ne 

Coalescent-based and LD-based estimates of Ne differ in important ways, especially in 

the time scale they are reflective of. Both methods are based on the principle of inbreeding Ne, 

the probability of two gene copies within a population being identical by descent. However, the 

coalescent Ne is a long-term estimate of Ne integrated backward in time to the MRCA, while LD-

based Ne is based on associations of genetic markers only 1-2 generations in the past, providing 

an estimate of contemporary Ne. Given the principles behind these two approaches, if the 

population remains stable over time both methods should give congruent estimates of Ne. With 

fluctuations in Ne, the methods may give different estimates as they are reflecting drift at 

different time scales (Charlesworth 2009). Studies rarely take a comparative approach of these 

two methods, and it is unclear under what circumstances they will be comparable or which may 

give the better insights into populations experiencing recent changes in census size.  
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Demographic inference in complex and dynamic systems 

 While the above review highlights the potential resolution offered by a genomic 

perspective, a number of questions still exist regarding the impacts of life-history and population 

dynamics on estimates of recent demography. The dynamic properties of real populations create 

complex challenges in the use of demographic inference methods to track contemporary 

processes and in the interpretation of Ne in empirical systems. In the review above I point out 

that some studies have found correlations between genomic estimates of population history and 

recent census size, while others find no correlation. These disparate results lead to a number of 

unanswered questions such as, how many generations of decline will need to occur before a 

genetic signature of the event becomes apparent with either LD-based or coalescent-based Ne 

estimation. As well as, under fluctuating population size what time scale is reflected in Ne 

estimates. Another long-standing question is the impact of population structure and migration on 

Ne estimates (Neel et al. 2013). Migration can contribute to changes in allele frequencies over 

time, which if left unaccounted for in models, will be attributed to drift and bias Ne estimates 

(Gilbert & Whitlock 2015). High levels of migration between subpopulations will also lead to Ne 

estimates reflective of the global or metapopulation Ne instead of the local population (Neel et al. 

2013). Therefore, accurate genetically based estimates of Ne within local populations should 

account for population structure.  

In other words, even with the increased precision of genomic estimates of demography 

and Ne, important questions still exist regarding the geographic and temporal scale reflected in 

these estimates. These are critical questions if these methods are going to be of any use in a 
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conservation and management, where the spatial and temporal scales of demographic changes 

are essential information.  

  

Case Studies with a focus on amphibians--Chapters 2 through 5 

Further empirical and simulation based studies are important for understanding the 

circumstances under which genomic data in combination with Ne estimation and demographic 

inference can be applied to understand recent population history. In this dissertation I attempt to 

fill in these gaps in knowledge using simulations of ideal populations, as well as assessing 

current and projected responses of pond-breeding amphibian populations to climate change in a 

series of case studies. I discuss the application of genome-wide SNP markers in various Ne 

estimation methods and evaluate sampling requirements in a simulation study, and then assess 

the application of Ne estimates to infer recent demography in two complex and dynamic 

salamander populations at a subpopulation and metapopulation level. Estimation of demographic 

history in amphibians is complicated not only by metapopulation structuring across landscapes, 

but also stochastic reproductive success that is tightly linked to environmental condition. Before 

genetic estimates of demography can be applied to amphibian conservation it is necessary to 

evaluate if detection of overall population growth trends is achievable with this complex 

demography. 

Rainbow Bay, an ephemeral wetland in eastern South Carolina, provides a unique 

opportunity for this work because amphibian species have been continuously sampled over the 

last 39 years, providing a valuable time series across which climatological and ecological 

conditions have changed significantly (Todd et al. 2010). The Rainbow Bay wetland was 

completely encircled by a drift fence in 1978, with amphibians and reptiles entering and leaving 
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the wetland censused daily since initiation. All captured animals have been cohort marked, 

sexed, and released on the opposite side of the drift fence. Importantly, genetic samples have 

been collected across years. Findings from monitoring the RB amphibian community found that 

increased droughts from 1978-2004 were negatively correlated with census size in amphibian 

species adapted to long hydroperiods, while other amphibian species exhibited significant 

population expansions with decreased hydroperiod (Daszak et al. 2005). This comprehensive 

dataset allows for direct calculations of census-size, and accurate estimates of life-history 

parameters for modeling Ne with stochastic reproduction. Accurate and validated estimates of Ne 

are vital in ecology, evolution, and conservation, as they measure the evolutionary potential and 

viability of populations.  

 In this dissertation, I assess the application of genomic datasets in coalescent and LD-

based estimation of contemporary Ne. Next, I use the Rainbow Bay study system in a number of 

simulation and empirical studies to investigate the ability of genome-scale data to estimate Ne 

and track population size changes. Overall, I aimed to address the following questions in this 

dissertation: 

1.) Can genome-scale datasets and Ne estimators be applied to infer population abundance 

and population size trends over a contemporary time scale? What are the impacts of the 

various aspects of population demography (initial population size and the number of 

generations since λ began) on estimation, as well as the impacts of alternative Ne 

estimators, sampling conditions, and data filtering? 

2.) Can recent population growth or decline of empirical salamander populations be detected 

using genome-wide SNP data and coalescent-based demographic inference? Do non-
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temporally sampled data have similar power as temporal samples to detect recent 

population trends? 

3.) How are Ne and genetic diversity impacted by complex life-history characteristics and 

stochastic reproduction common of amphibian populations? How does metapopulation 

structure mediate population viability in amphibian populations and impact Ne estimates 

at the subpopulation level?  

4.) What spatial scale is reflected in Ne estimates of amphibians breeding populations, the 

subpopulation (wetland) or metapopulation? Do subpopulation census size changes 

impact the connectivity of the metapopulation as a whole? 
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Table 1.1 Summary of recent studies using genomic datasets to estimate contemporary Ne and recent demographic history. 

Species Data 

Collection 

Approach Major Findings Comparison with 

Empirical Data 

Citation 

Bumble bees RADseq δaδi No difference in genetic diversity between stable 

and declining species. Both show signal of 

historic population growth, no signature of recent 

decline in declining species. 

Yes Lozier 

2014 

Checkerspot 

Butterfly 

 

RNAseq δaδi Accurate timing of population introduction  Yes McCoy et 

al. 2014 

Guppy  ddRADseq δaδi Accurate timing of population introduction  Yes Fraser et 

al. 2015 

Iberian pigs SNPchip LD using 

custom scripts 

Correlation between pedigree and LD Ne over 26 

generations 

Yes Saura et 

al. 2015 

Waterflea SNPchip Temporal 

genetic 

diversity 

Stability of genetic diversity despite cyclical 

population size 

Limited Orsini et 

al. 2016 

House finch ddRADseq LD using 

custom scripts 

Ne remained stable over ~8 generations with 

decline in Nc, although overall population size 

remained large. Human-induced founder events 

detected.  

Yes Shultz et 

al. 2016 

Brook Charr RADseq LD in 

NeEstimator 

No difference in Nb between founder and source 

populations  

Limited Narum et 

al. 2017 

Chinook 

Salmon 

RADseq LD in 

NeEstimator 

No difference in Nb between founder and source 

populations 

Limited Narum et 

al. 2017 
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CHAPTER TWO 

 

ESTIMATION OF CONTEMPORARY EFFECTIVE POPULATION SIZE AND 

POPULATION DECLINES USING RAD SEQUENCE DATA 

 

Abstract 

Large single nucleotide polymorphism (SNP) datasets generated with restriction-site 

associated DNA sequencing (RADseq), in combination with demographic inference methods, are 

improving our ability to gain insights into the population history of both model and non-model 

species. I used a simulation approach to examine the potential for RADseq datasets to accurately 

estimate effective population size (Ne) over the course of stable and declining population trends, 

and accurately distinguish stable from steadily declining populations over a contemporary time 

scale (20 generations). Using a linkage disequilibrium-based analysis, individual sampling had 

the greatest effect on Ne estimation and the detection of population-size declines (i.e., n ≥ 30), 

with declines reliably detected across scenarios approximately 10 generations after they began. 

Coalescent-based inference required fewer sampled individuals (i.e., n = 15), and instead was 

most influenced by the size of the SNP dataset, with tens of thousands of SNPs required for 

accurate detection of population trends and at least 20 generations after decline began. The 

number of samples available and targeted number of RADseq loci are important criteria when 

choosing between these methods. With an understanding of the limitations and biases of these 

approaches, researchers can make more informed decisions when designing their sampling and 

analyses protocol. Overall, my results reveal that demographic inference using RADseq data can 

be successfully applied to population parameters that are changing on a very recent time scale 

and may be important tools for population monitoring and conservation biology.  
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Introduction  

One of the most important parameters in wildlife management and conservation biology 

is effective population size (Ne), with estimates providing insight into the demographic history 

and extinction risk of populations. Although Ne is informative about population viability and 

broadly applicable in ecology, conservation, and evolution, it is notoriously difficult to estimate 

(Luikart et al. 2010). Rarely is enough demographic information available from natural 

populations to directly estimate Ne, making indirect genetic estimates of considerable use, 

especially given their ease of generation relative to direct demographic methods (Luikart et al. 

2010; Schwartz et al. 2007). It is now possible to generate population genomic data for almost 

any species for the investigation of population and evolutionary history (Andrews et al. 2016; 

Narum et al. 2013). The increase in power and precision offered by a genomic approach is 

poised to greatly improve estimates of demographic history, including Ne, the timing of 

demographic events, and migration estimates. However, as emphasized in a recent review, the 

application of genomic techniques in conservation studies has been rare (Shafer et al. 2015). One 

obvious, but unanswered, question is whether genomic data coupled with demographic inference 

methods have the ability to accurately characterize population history over a contemporary time 

scale (e.g., tens of generations). 

Genomic data and demographic inference methods have become increasingly popular for 

gaining insight into population history (Excoffier et al. 2013; Gutenkunst et al. 2009). However, 

it is unclear how well these inference methods perform when applied to demographic events 

occurring at a contemporary time scale. Simulation studies have suggested that microsatellite 

markers have the ability to detect bottlenecks and population size trends at a contemporary scale, 

but require sample sizes of 60 or more individuals and are not accurate with large (≥ 1000) 
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population sizes (Antao et al. 2011; Tallmon et al. 2010). These studies either did not use single 

nucleotide polymorphism (SNP) data that would be common in contemporary population 

genomic studies, or they simulated a small number (100 - 1000) of SNP markers (Antao et al. 

2011; Hollenbeck et al. 2016). It is possible that the increased power offered by large genomic 

datasets can result in accurate estimates of demography over short time scales while using 

smaller numbers of sampled individuals.  

Recent empirical studies have shown that coalescent based demographic inference can 

accurately date documented introductions of populations occurring in the past few decades 

(Fraser et al. 2015; McCoy et al. 2014). Coalescence theory states that the probability of 

coalescence t generations ago is (1-(1/2N))
t-1

(1/2N), with the coalescent Ne estimated as the 

expected time of coalescence in generations, T, or T = 2Ne  (Nordborg & Krone 2002; Wakeley 

& Sargsyan 2009). Given these equations, when Ne is small enough, as is often the case in 

species of conservation concern, large sample sizes (individuals and/or loci) may be effective in 

estimating coalescent Ne at a contemporary scale as coalescent events will be clustered in the 

recent past (Robinson et al. 2014). Before these methods can be applied to real-world 

conservation biology, vigorous exploration is needed to estimate their accuracy with realistic 

sampling conditions to gain an understanding of implicit limitations and biases (Shafer et al. 

2015).  

Restriction site-associated DNA sequencing (RADseq) is arguably the most popular 

method for generating genome-wide population genetic data from a reduced subset of the 

genome (Andrews et al. 2016; Davey et al. 2011). While RADseq can yield many thousands or 

tens of thousands of shared orthologous loci across individuals and populations, it also has 

inherent properties that lead to allele dropout, and consequently, missing data that may create 
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biases in population genetic results. Allele dropout via mutations in restriction cut sites and the 

shotgun nature of Illumina sequencing, which randomly under-sequences loci or alleles can lead 

to either missing genotypes for loci, or the misinterpretation of null alleles as homozygous at 

heterozygous loci. Both of these scenarios can result in skewed estimation of allele frequencies 

(Arnold et al. 2013). Simulation studies have highlighted the downstream effects of these biases 

in commonly estimated population genetic summary statistics (Arnold et al. 2013; Gautier et al. 

2013) and in phylogenetic inferences (Huang & Knowles 2014). However, the effect of allele 

dropout in RADseq-based studies of Ne and contemporary population size trends has not been 

investigated. 

Here, I use an approach similar to (Tallmon et al. 2010) and assess the ability of 

RADseq-generated SNP data and different Ne estimators to infer population abundance and 

population size trends (λ) over a contemporary time scale. I simulated ideal Wright-Fisher (W-F) 

populations over a range of known census sizes (NC) and with either stable population size, or a 

steadily declining population. In ideal W-F populations NC = Ne, so that estimates of Ne can be 

directly compared to the simulated NC. Using both a linkage disequilibrium-based analysis, and a 

coalescent-based analysis, I assess the estimation of Ne and population size trends. In doing so, I 

also evaluate the impacts of the various aspects of the population model (initial population size 

and the number of generations since λ began) on estimation, as well as the impacts of sampling 

and data filtering. 
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Methods 

Data simulation 

I conducted simulations of RADseq data for populations with both stable and declining 

population sizes using the Python program simuPOP v1.1.4 (Peng & Kimmel 2005), a forward-

time and individual-based population genetic modeling program. Initial haploid allele 

frequencies were generated with the coalescent simulator fastsimcoal2 v2.5.2.21 (fsc2) 

(Excoffier et al. 2013) for 20,000 150 base pair (bp) loci using a diploid Ne of 1000. A mutation 

rate (µ) was randomly assigned to each locus from a log-normal distribution with a mean µ of 

2.5E-8 and a log standard deviation of 1.3. This mutation rate has been robustly estimated in 

humans (Nachman & Crowell 2000) and similarly used in other RADseq simulation studies 

(Huang & Knowles 2014). Loci were generated as Arlequin-formatted files and were 

subsequently converted to Phylip format using the program PGDSpider v2.0.5.1 (Lischer & 

Excoffier 2012). Initial diploid genotypes for individuals in the simuPOP population were 

generated by pairing the fsc2-simulated alleles for each locus using random sampling with 

replacement, which approximated W-F populations. Diploid populations were constructed with 

initial population sizes of N = 250, 500, and 1000, with 100 replicates constructed for each initial 

population size. Throughout the subsequent simulations, populations maintained an average sex 

ratio of 1 with random mating. Under these conditions NC should be approximately equal to Ne. 

A µ = 2.5E-8 was fixed across all loci. All simulated populations went through an equilibrium 

phase of 10 generations to reach Hardy-Weinberg equilibrium (Antao et al. 2011; Tallmon et al. 

2010; Waples 2006), after which each replicate diploid population evolved for one generation (t-

1) according to two separate deterministic growth rates that approximated a stable population (λ 

= 1.0) and a declining population (λ = 0.9). Data collection began at generation t0 as the 
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population evolved at the same λ for 20 generations as in (Tallmon et al. 2010). In each 

simulation, genotypes from all loci were recorded after 0, 5, 10, 15, and 20 generations. Sample 

collection began one generation after the initiation of the deterministic growth rate because 

inbreeding Ne estimates are reflective of the number of parents in the parental generation 

(Waples 2005). To assess the effect of the sample size of individuals, we sampled 15, 30 and 60 

individuals from each of the specified generations.  

In silico RADseq mutations and Data Filtering 

 Using custom Python scripts, I filtered RADseq loci from sampled individuals to mimic 

empirical RADseq data recovery and filtering conditions typically used in population genomic 

studies. To simulate allelic dropout as a result of a mutation in the restriction enzyme cutting site, 

all individual sequences were deleted containing a mutation in the first 8 bp. To simulate missing 

data as a result of variation in sequencing coverage, I simulated the number of reads for each 

individual allele by drawing randomly from a Poisson distribution with a mean of 10 (Huang & 

Knowles 2014). I imposed a sequencing coverage cutoff of 10, which is considered an efficient 

sequencing coverage cutoff for diploids. Individuals must have a coverage ≥ 5 reads per allele 

for a given locus to be included in the data matrix. If one allele had a coverage ≥ 10 reads and the 

other had < 5, the locus was recorded as homozygous for the recovered allele due to allele 

dropout. Loci below these coverage cutoffs were recorded as missing data. All other sources of 

missing data and biases from sequencing errors, coverage cut-offs, and alignment errors were 

ignored here as they are not the focus of our study. These have been thoroughly reviewed in 

other studies, and are expected to cause general biases in all sequencing projects (Huang & 

Knowles 2014; Pool et al. 2010; Rokas & Abbot 2009). 
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  I next filtered the simulated RADseq data using criteria specific to the two analytical 

programs used in demographic estimation. 

 LD-based estimation –  Linkage disequilibrium methods for Ne estimation assume 

unlinked loci. To remove the inclusion of linked sites within a RADseq locus, I used only the 

first SNP in a locus in all LD-based data sets. To examine if the LD-based method produced 

unbiased Ne estimates with perfect detection of allele dropout, I analyzed datasets that removed 

all loci with missing data exclusively due to RADseq cut site mutations, hereafter referred to as 

the LD RAD mutation dataset. I further examined how LD-based Ne estimation would be affected 

by the combined impacts of missing data from allele dropout due to RADseq cut site mutation 

and low sequencing coverage. For these analyses, I generated two filtered datasets that removed 

loci with ≥ 10% and ≥ 50% missing data; hereafter referred to as the 10% missing and 50% 

missing datasets, respectively. 

 fsc2 – In fastsimcoal2, the use of linked SNPs should not bias parameter estimation, so all 

datasets analyzed in this study used all SNPs in a locus. However, the inclusion of loci with 

missing data is expected to lead to a biased site-frequency spectrum (SFS) and result in 

inaccurate parameter estimates (Excoffier et al. 2013). Therefore I included only loci with no 

missing data across all sampled individuals. To examine the potential effects of allele dropout on 

Ne estimation in the program fsc2, I analyzed the simulated RADseq data under a range of 

filtering strategies that accounted for allele dropout due to mutations in restriction cut sites and 

insufficient sequencing coverage. First, I analyzed an unfiltered data matrix with no allele 

dropout. Here, the SFS was constructed using the complete 20,000 locus (3,000,000 bp) 

simulated dataset, and is hereafter referred to as the fsc2 complete dataset. Next, I examined the 

performance of Ne estimation in fsc2 when accounting for the perfect detection of allele dropout 
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due to restriction cut site mutations. Here, the SFS was constructed after removal of all loci with 

a restriction cut site mutation, hereafter referred to as the fsc2 RAD mutation dataset. Finally, I 

examined the performance of Ne estimation in fsc2 when allowing for allele dropout due to both 

cut-site mutation and low sequencing coverage, hereafter referred to as the fsc2 RAD mutation 

and coverage dataset. 

  

Ne estimation and demographic inference 

 I used the program NeEstimator v2.01 (Do et al. 2014) to estimate Ne using the linkage 

disequilibrium method (Hill 1981). This method measures the deviation from the expected 

genotype frequency based on allele frequencies in the population (Waples & Do 2010). I 

estimated Ne from all sampled generations of our temporally simulated populations, employing 

all three LD-based data filtering scenarios described above. In addition, I assessed the effect of 

filtering data using minor allele frequency cutoffs (MAFcut). For all data sets, I separately applied 

a MAFcut of 0.01, 0.02, and 0.05. An allele frequency cutoff of 0.02 has been recommended to 

balance precision and bias (Waples & Do 2010), although 0.05 is a common value used in SNP-

based studies. 

 I used fsc2 to perform demographic inference using the joint SFS generated from serial 

samples taken at generations 0 (t0) and 20 (t20) in the temporally simulated populations. For all 

fsc2 analyses, I used a simple model of a single population with Ne at t0 fixed at the known 

starting value and Ne in subsequent generations allowed to vary according to the model. Fixing 

Ne at t0 allowed me to reduce the number of parameters estimated from the model, scale Ne 

estimation without a mutation rate, and ignore invariant sites in the SFS. Defined parameter 

ranges were uniformly distributed with Ne ranging from 1 to 10,000. A total of 100,000 
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simulations were performed to estimate the SFS, with a minimum and maximum of 10 and 100 

loops (ECM cycles). The stopping criterion was defined as the minimum relative difference in 

parameters between two iterations, and was set to 0.001. A total of 50 replicate fsc2 runs were 

performed for each replicate simulation of a demographic scenario, and for each of the three fsc2 

filtering options described above. The overall maximum likelihood run across all 50 fsc2 

replicates was retained as a point estimate for Ne
t20

. Due to computational limitations, for each 

combination of initial population size and population growth rate, only the first 40 temporally 

simulated replicates (out of 100) were analyzed with fsc2.  

 

Accuracy assessments 

The performance of each Ne estimation method was evaluated for the overall accuracy of 

Ne estimates. To characterize the accuracy of Ne estimates across simulation replicates, I 

measured the root mean squared error (RMSE) calculated after removing infinitely large 

estimates by  

𝑅𝑀𝑆𝐸 =  √
1

𝑚
∑ (

1

𝑁̂𝑒𝑖

−
1

𝑁𝑒
)

𝑚

𝑖=1

2

, 

where 𝑁̂𝑒𝑖 is the estimated Ne in the ith (i = 1-100) replicate, and Ne is the simulated Ne. The 

RMSE was not calculated if over 50% of the estimates of 𝑁̂𝑒𝑖 reached infinity. 

 

Detection of population size change 

To estimate population size trends, I calculated λ̂ as the slope of a linear regression of the 

log transformation of Ne estimates from current and historical samples within a simulated 

replicate and I compared these to known λ. I performed these calculations for results generated 
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from both NeEstimator and fsc2 using all simulated demographic scenarios, data filtering 

scenarios, and MAFcut levels. Following (Tallmon et al. 2010), I recorded the proportion of times 

λ̂  < 0.95 when true λ = 0.9. This is a practical conservation scenario to identify populations that 

are declining by at least 5% per generation. I also assessed how often a stable population was 

incorrectly identified as declining as the proportion of times λ̂  < 0.95 when true λ = 1.0 (false 

positive rate). 

 

Results 

 The number of SNPs generated in the simulation depended on the initial population size, 

imposed lambda, and the post-simulation filtering scenario used (LD-based data: Table 2.1; fsc2 

data: Table 2.2). Consistent with theoretical expectations, in the LD-based SNP datasets larger 

populations generally had more SNPs and lost genetic diversity less rapidly due to drift, and 

declining populations lost genetic diversity more rapidly than stable populations. The mean 

number of SNPs in the joint-SFS was highly dependent on data-filtering method, with the 

number of shared SNPs between t0 and t20 declining with allele dropout from both RADseq 

mutation and insufficient sequencing coverage. Although the number of SNPs will vary with 

study design, such as the number of individuals multiplexed in an Illumina sequencing lane, and 

coverage cutoffs, the number of SNPs we recovered in our simulations is comparable to 

empirical RADseq studies. 

  

Stable population size estimation 

 LD-based estimation – Here, I focus on results from estimation of 𝑁̂𝑒 at t20 under a λ = 

1.0, where the accuracy of 𝑁̂𝑒 estimation was most influenced by the number of individuals 
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sampled and the MAFcut employed (Fig. 2.1; Fig. A.1). Estimates of 𝑁̂𝑒 at time points t0 through 

t15 were nearly identical to 𝑁̂𝑒 at t20, and are not presented here. RMSE calculations yielding the 

lowest measures of error for all simulated demographic and filtering scenarios are presented in 

Table 2.3. The lowest individual sample size (n = 15) only produced meaningful results at a 

simulated population size of N = 250 and a MAFcut = 0.05, with the majority of replicates at 

higher simulated population sizes and/or different filtering methods yielding either infinite 𝑁̂𝑒 or 

very wide ranges of parameter estimates. A full summary of the proportion of replicate estimates 

that reached infinity can be found in Tables A.1 to A.3. In contrast, increased individual 

sampling (n = 30 and n = 60) produced more accurate and certain estimates of 𝑁̂𝑒 over most 

demographic and data-filtering scenarios. Analyses of the LD RAD mutation dataset generated 

𝑁̂𝑒 estimates with the greatest accuracy and least variance; however, datasets with 10% and 50% 

missing data due to both cut-site mutations and insufficient read coverage also generated 

similarly accurate 𝑁̂𝑒 estimates under many simulated population sizes and MAFcut levels. The 

MAFcut level yielding the most accurate results varied with the number of individuals sampled 

and simulated population size. Generally, including low frequency alleles with an MAFcut = 0.01 

appeared to have the largest effect by upwardly biasing 𝑁̂𝑒 and yielding the greatest variance 

(Figure A.1). 

 fsc2 – Estimation of 𝑁̂𝑒 at t20 under a λ = 1.0 population model was most influenced by 

the allele dropout filtering scenario used (Figure 2.2A-C). The fsc2 complete dataset, which also 

has the greatest number of SNPs (Table 2.2), generally yielded the most accurate and precise 

estimates of 𝑁̂𝑒, particularly in the N = 250 and N = 500 models. This data set yielded the most 

precise estimates in the N = 1000 model, but also had a negative bias in its estimates. Increased 

individual sampling had a slight improvement on accuracy and/or precision under all three 
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population size models when using the fsc2 complete dataset, and generally had a negligible 

effect under the other allele dropout filters. However, analysis of 60-individual data sets with the 

fsc2 RAD mutation and coverage dataset yielded a very wide range of estimates under all three 

population size models, with highly inaccurate and negatively biased estimates under a N = 250 

model. In general, accuracy and precision in all scenarios proportionally decreased with the 

number of SNPs in the data set (Table 2.2). 

 The fsc2 complete dataset yielded the lowest RMSE values for the N = 250 and N = 500 

population models, and when sampling 60 individuals in the N = 1000 model (Table 2.4). 

Overall, fsc2 RAD mutation and fsc2 RAD mutation and coverage datasets had similar RMSE 

values.  

 

Declining population size estimation  

 LD-based estimation –  The number of generations since the beginning of a population 

decline was the biggest factor affecting the accuracy and precision of 𝑁̂𝑒 estimation (Figure 2.3, 

Figures A.1 to A.3), with the variance in estimates decreasing over time as population size 

declined. Individual sampling also affected results, with an n = 15 yielding a greater estimation 

variance, particularly in earlier generations of the decline. Estimation using an n = 30 or 60 

produced highly certain estimates of 𝑁̂𝑒 in t10 through t20. In general, 𝑁̂𝑒estimation over time was 

only minimally affected by the initial population size, the missing data filter used, or the MAFcut 

used. However, with individual samples size of n = 15 a MAFcut of 0.05 lead to a greater 

proportion of finite 𝑁̂𝑒 (Table A.6 to A.8). 

 Similarly, estimation of λ̂ over different time intervals was most influenced by the 

number of generations passing between sampling events. The data filter used had minimal 
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impact on the accuracy of λ̂ estimation and we present results from analyses of the 10% missing 

data here (Table 2.5) with results from analysis of additional allele dropout datasets presented in 

Tables A.4 to A.5. When sampling 30 to 60 individuals, the MAFcut did not have a large impact 

on population trend detection, but with an individual samples size of 15, a MAFcut of 0.05 

improved population trend detection. For example, when sampling 15 individuals, population 

declines with an initial N ≤ 500 were detected 67% of the time when at least ten generations 

passed, and increased to 85% of the time when 20 generations passed. With n = 15 and an initial 

N = 1000, at least 20 generations must pass for population declines to be detected 64% of the 

time. However, with n = 15 using a MAFcut of 0.05 also increased the false positive rate, where 

stable populations were incorrectly identified as declining with λ̂ estimates of < 0.95 across 

many replicates (Table 2.6, Tables A.9 to A.10). Increased individual sampling greatly improved 

the correct identification of a declining population. For example, under an N = 1000 model, 

sampling 60 individuals resulted in the correct identification of a population decline > 95% of 

the time when 10 generations passed and correct identification > 71% of the time after just five 

generations.  

 fsc2 –The accuracy of 𝑁̂𝑒 at t20 was most influenced by the allele dropout filter used 

(Figures 2.2 D-F), which itself influenced the number of SNPs included in the joint SFS. 

Estimates of 𝑁̂𝑒
  
at t20 were positively biased across all datasets, with greater bias in datasets with 

fewer numbers of SNPs. Similarly, estimation of λ̂ was most influenced by the allele dropout 

filter used. Population declines of λ̂  < 0.95 were detected across all 40 analyzed replicates using 

the fsc2 complete dataset (Fig. 2.2 D-F). In contrast, none of the replicates for either fsc2 RAD 

mutation, or fsc2 RAD mutation and coverage datasets meet our criteria of λ̂  < 0.95, although 

most qualitatively indicated decline relative to Ne at t0. 
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Discussion 

My results demonstrate that RADseq data have the potential to improve the inference of 

population demography and the detection of population declines on a very recent time scale. The 

linkage disequilibrium and coalescent methods I applied to estimate Ne use largely different 

sources of information from genomic datasets. The relative performance of these methods was 

influenced by different factors related to the study design, such as the number of individuals 

sampled (very important for LD-based estimation) and the amount of variable data generated 

(very important for coalescent estimation). Given that the accuracy and precision of Ne 

estimators hinge on aspects of the study design and the underlying population history, I further 

discuss these influences and provide guidelines for inferring Ne and population size trends. 

While I compare and contrast the performance of both estimators, combining results from both 

methods in empirical studies may be the best approach to develop an encompassing view of 

overall population demographic history, as suggested by (Waples 2016).  

 

Performance of estimators 

In my analysis of RADseq data, LD-based demographic inference generally 

outperformed coalescent-based inference for Ne estimation and the detection of population 

declines. However, there were limitations with LD-based inference, most notably with the 

number of sampled individuals required to provide both accurate and precise results. Sampling of 

15 individuals led to large variance in estimates. This was most evident under a stable population 

size and in the early generations of a population decline, particularly when population size was 

large (e.g., N = 1000). In contrast, increasing sampling to 30 individuals greatly increased the 
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accuracy and precision of Ne estimates. This may be discouraging from the perspective of 

sampling, as many population genetic studies sample far fewer than 30 individuals per 

population. However, in light of microsatellite-based simulations showing that 30 individuals 

resulted in largely biased Ne estimation (Tallmon et al. 2010), LD-based analysis of RADseq 

appears to provide new opportunities for accurate demographic inference. This method also has 

potential for quick and accurate detection of population declines, generally after only 10 

generations from initiation of a decline. 

In contrast, the coalescent-based Ne estimation (using fsc2) was not greatly affected by 

the number of individuals sampled, with highly precise Ne estimates produced using as few as 15 

individuals. The most significant limitation for the coalescent approach was the data filter used, 

and therefore the number of SNPs in the joint-SFS. Use of the fsc2 complete data set consistently 

produced more accurate Ne estimates compared to data sets in which loci were removed due to 

cut-site mutations and insufficient sequencing coverage. All data sets yielded a consistent 

upward bias in Ne estimation in the declining populations (Figures 3.2D-F), and I am not sure 

what drives this estimation bias, but it was most pronounced in the data sets affected by allele 

dropout (and fewer SNPs). Despite this positive bias population declines were obvious using the 

complete data set at 20 generations from initiating declines. Due to the intense computational 

needs inherent to fsc2, Ne was not estimated at other time points. While complete data sets like 

the ones used here are not attainable in empirical research, the positive correlation between 

numbers of SNPs and accurate coalescent-based Ne estimation is encouraging. Technological 

improvements and sequencing costs continue to increase our ability to generate more complete 

genome-wide SNP data, even when factoring in allele dropout. In contrast, increasing sample 

size, especially temporally, will remain difficult for many species. The use of true Ne as a prior 
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for one of the sampled years is also unlikely to be available in most study systems, which would 

further model complexity and add analytical time to an already computationally challenging set 

of analyses. Ultimately, coalescent-based demographic inference using a joint SFS-based method 

may be a great option for a more limited set of studies with access to large SNP data sets, and 

prior population information, as has been illustrated in a number of empirical studies (Fraser et 

al. 2015; McCoy et al. 2014; Nunziata et al. 2015).  

 

Allele dropout and data filtering 

Missing data via allele dropout in RADseq studies has been shown to affect a number of 

population genetic summary statistics, including measures of genetic diversity and population 

structure (Arnold et al. 2013; Gautier et al. 2013). My results from parameter estimators for Ne 

are therefore encouraging, as increasing levels of missing data via allele dropout had little impact 

on LD-based Ne estimation and were generally comparable to the dataset with no null alleles. 

Interestingly, while LD-based estimation was robust to the effects of allele dropout and missing 

data, the MAFcut influenced 𝑁̂𝑒 accuracy and precision, particularly under a model of stable 

population size. These results are consistent with other studies (Waples & Do 2010), where the 

inclusion of low frequency alleles created a positive bias, while the exclusion of these alleles 

created a slightly negative bias, particularly at the lowest sample size (Waples & Do 2010). Also 

consistent with the guidelines outlined in Waples and Do (2010), when low individual samples 

sizes were used (n = 15) a MAFcut of 0.05 yielded the most finite and accurate estimates, as it is 

the only MAFcut that screened out singletons, which can bias 𝑁̂𝑒. 

In contrast to the LD-based analyses, the allele dropout filter used in the fsc2 analyses did 

affect the results. Because these analyses preclude the use of loci with missing data, the direct 
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impact of filtering loci by allele dropout was a major reduction of the number of SNPs included 

in the joint-SFS. Contemporary population declines purge rare alleles, creating a predictable 

signature in the SFS (Gattepaille et al. 2013; Nei et al. 1975), with the likelihood of detecting 

this signature increasing with the number of SNPs included in the dataset. I found that Ne 

estimation was most accurate, and declines were only detected, using my most inclusive dataset 

containing >150,000 SNPS. However, this was an empirically unrealistic dataset generated with 

perfect recovery of loci without any allele dropout. The generation of empirical datasets robust 

enough to detect population declines may, therefore, require increased sequencing efforts to 

offset the effects of allele dropout by increasing the number of loci sampled and their coverage.  

Maybe counter intuitively, increased individual sampling does not solve this problem as adding 

individuals increases the probability of allele dropout through a cut site mutation or insufficient 

sequencing coverage, creating a smaller SNP matrix and decreasing precision in 𝑁̂𝑒 (Fig. 2.2).  

Potentially, this result can be overcome by subsampling individuals for non-missing data 

(Papadopoulou & Knowles 2015).  

Allele dropout often goes undetected in many studies, and my preliminary exploration 

suggests that although biases were observed in SFS-based demographic inference, the underlying 

population history of either stable or declining populations were recovered and point estimates 

were almost always within an order of magnitude of real Ne. Previous simulation work has 

revealed that non-equilibrium demography, such as a population decline, can cause low Ne and 

result in fewer loci with missing data and more accurate allele frequency estimation (Arnold et 

al. 2013). Therefore, my findings should not be interpreted as applicable across systems, since I 

may have modeled scenarios (i.e., low Ne, steadily declining) that limit allele dropout and create 

evident signatures in the SFS at a contemporary time scale. 
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Practical considerations 

Many additional factors influence Ne that I have not modeled here, including selection, 

migration, and overlapping generations (Slatkin 2008). In real populations Ne rarely equals NC, 

and changes in Ne could track of any number of demographic changes, not exclusively NC 

(Palstra & Ruzzante 2008). Further simulations are needed under more realistic scenarios to 

determine the application of evaluated methods across systems. One factor that must be 

considered with RADseq datasets and the LD-based approach is that although pairwise r
2
 values 

(correlation of genes within individuals) increase with number of loci, SNPs on the same 

chromosome are not independent and will reduce precision of 𝑁̂𝑒 because LD will be the result 

of physical linkage and not drift (Waples et al. 2016). The use of linked SNPs could be corrected 

for by using known genomic architecture (Waples et al. 2016); however further research is 

needed to assess the importance of this issue in the application of LD-based Ne estimation to 

RADseq data.  

When inferring λ̂ from 𝑁̂𝑒 for conservation purposes, false positives can lead to a waste 

of management resources when stable populations are misidentified as declining (Schwartz et al. 

2007). The absence of any false positives in the fsc2-based λ estimation, and the lower number 

of individuals required, is promising for its application in conservation studies. However, the 

failure to detect a decline in all fsc2 analyses while accounting for allele dropout highlights the 

need for very large SNP datasets, as well as temporal sampling, especially if quick detection of 

population declines is a goal. False positives for LD-based λ estimates were also low, although 

this typically required larger sample sizes of at least 30 individuals. With large resources 

available to researchers, the application of both methods for demographic inference will be the 
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ideal approach to take, but given constraints on sampling or sequencing, the results here can be 

useful for guiding decisions about how to design a conservation genetic study aimed at detecting 

recent population declines. Finally, even when temporal sampling is unavailable, Ne is itself an 

important indicator of population viability and evolutionary potential and RADseq data can serve 

as a valuable source of information for this parameter.   
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Table 2.2. Number of SNPs used for LD-based analysis resulting from simulations in simuPop. SNPs were calculated as 

the average across the 100 replicates for each simulated scenario and are presented for the initial generation (t0) after the 

10-generation equilibrium phase and from the final generation (t20). SNP levels are broken down across the different 

initial population sizes (N), population growth rates (λ) and data-filtering methods (LD RAD mutation, 10% missing, and 

50% missing data sets). 

  Initial variation at t0 Final variation at t20 

  RAD mutation 10% 50% RAD mutation 10% 50% 

N λ # SNPs # SNPs # SNPs # SNPs # SNPs # SNPs 

250 1.0 3660 3938 4527 3521 3695 4223 

500 1.0 3718 4054 4657 3629 3876 4451 

1000 1.0 3756 4130 4742 3703 4013 4611 

250 0.9 3915 3941 4676 3099 2965 3457 

500 0.9 3719 4053 4661 3392 3493 3975 

1000 0.9 3756 4128 4739 3570 3773 4327 
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Table 2.2. Mean number of SNPs in the joint-SFS for generations t0 and t20 resulting from simulations in 

simuPop. SNPs were calculated as the average across 40 replicate simulations for each simulated scenario 

and are broken down across the different initial population sizes (N), population growth rates (λ = 0.9, 

1.0), and individual sample sizes (n). Results are further parsed by data-filtering method, including the 

fsc2 complete dataset, (2) fsc2 RAD mutation (RAD mut.), and (3) fsc2 RAD mutation and coverage 

(mut. & cov.). 

  Stable population λ = 1.0 Declining population λ = 0.9 

N n complete RAD mut. mut. & cov. complete RAD mut. mut. & cov. 

250 15 158,824 14,797 7,494 155,197 14,649 7,550 

250 30 165,545 15,192 3,121 - - - 

250 60 170,077 15,386 624 - - - 

500 15 165,308 15,197 7,110 161,361 15,171 8,193 

500 30 173,444 15,377 3,565 169,989 15,578 3,570 

500 60 179,068 15,765 548 - - - 

1000 15 168,248 15,353 7,832 165,730 14,817 7,985 

1000 30 177,853 15,812 3,600 175,501 15,170 3,305 

1000 60 185,150 16,226 772 182,895 15,667 592 

For some parameter combinations, there were insufficient numbers of individuals for target n (-).  
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Table 2.3. RMSE values for all filtering scenarios for LD-based analysis in NeEstimator under a stable population (λ = 1.0). Bold 

values identify the lowest RMSE for a particular combination of population size (N), individual sampling level (n), and minor allele 

frequency cutoff (MAFcut). Bold and italicized values identify the lowest RMSE for a particular population size. RMSE was not 

estimated if over 50% of the estimates of 𝑁̂𝑒𝑖 reached infinity for a particular parameter combination (Inf.). 

    
LD RAD mutation 

(& MAFcut level) 

10% missing data 

(& MAFcut level) 

50% missing data 

(& MAFcut level) 

  
 

0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 

N = 250 n = 15 2.73E-03 2.73E-03 2.95E-03 3.41E-03 3.41E-03 2.73E-03 3.68E-03 3.68E-03 2.70E-03 

  n = 30 1.41E-03 1.10E-03 1.25E-03 1.55E-03 1.11E-03 1.18E-03 1.532E-03 1.11E-03 1.23E-03 

  n = 60 6.88E-04 6.17E-04 6.10E-04 1.55E-03 1.11E-03 1.18E-03 1.53E-03 1.11E-03 1.23E-03 

N = 500 n = 15 Inf. Inf. 1.60E-03 Inf. Inf. 1.54E-03 Inf. Inf. 1.62E-03 

  n = 30 9.65E-04 7.98E-04 8.41E-04 1.16E-03 7.79E-04 8.06E-04 1.16E-03 7.79E-04 8.15E-04 

  n = 60 4.59E-04 4.63E-04 4.40E-04 4.99E-04 4.56E-04 4.54E-04 5.02E-04 4.47E-04 4.43E-04 

N = 1000 n = 15 Inf. Inf. 1.99E-03 Inf. Inf. 1.84E-03 Inf. Inf. 1.87E-03 

  n = 30 6.65E-04 7.76E-04 8.90E-04 8.03E-04 7.44E-04 7.87E-04 8.23E-04 7.32E-04 8.14E-04 

  n = 60 3.01E-04 3.14E-04 3.04E-04 8.03E-04 7.44E-04 7.87E-04 8.23E-04 7.32E-04 8.14E-04 
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Table 2.4. RMSE values for all allele dropout filtering scenarios using fastsimcoal2 

under a stable population (λ = 1.0). Bold values identify the lowest RMSE for a 

particular combination of population size (N) and individual sampling level (n). Bold 

and italicized values identify the lowest RMSE for a particular population size.   

    
fsc2 complete fsc2 RAD mutation 

fsc2 RAD mutation 

& coverage 

N = 250 n = 15 2.54E-04 8.74E-04 8.69E-04 

  n = 30 1.82E-04 9.96E-04 1.04E-03 

  n = 60 1.40E-04 7.80E-04 2.90E-03 

N = 500 n = 15 2.68E-04 3.53E-04 3.58E-04 

  n = 30 1.59E-04 4.90E-04 4.54E-04 

  n = 60 1.06E-04 4.87E-04 1.17E-03 

N = 1000 n = 15 4.42E-04 1.76E-04 1.21E-04 

  n = 30 2.11E-04 2.56E-04 1.94E-04 

  n = 60 1.01E-04 2.61E-04 3.16E-04 
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Table 2.5. Number of times that a declining population trend was correctly identified out of 100 replicate runs for LD-based 

analysis in NeEstimator under a declining population model (λ = 0.9). Results are presented for increasing intervals of time and 

by the combination of population size (N), individual sampling level (n), and minor allele frequency cutoff (MAFcut). Results 

are based on the analysis of datasets with 10% missing data. 

  t0  – t5 

(& MAFcut level) 

t0 – t10 

(& MAFcut level) 

t0 – t15 

(& MAFcut level) 

t0 – t20 

(& MAFcut level) 

  0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 

N = 250 n = 15 49 49 68 63 63 83 71 71 95 72 72 99 

  n = 30 86 79 79 99 94 93 100 100 100 - - - 

  n = 60 94 94 94 100 100 100 - - - - - - 

N = 500 n = 15 8 8 48 18 18 67 25 25 79 29 29 85 

  n = 30 79 73 72 94 84 86 100 99 98 100 99 99 

  n = 60 80 81 84 97 98 98 100 100 100 - - - 

N = 1000 n = 15 0 0 35 0 0 40 2 2 53 2 2 64 

  n = 30 57 65 66 70 80 79 76 91 91 78 97 97 

  n = 60 71 73 74 96 95 96 100 100 100 100 100 100 

For some parameter combinations, there were insufficient numbers of individuals for target n (-). 
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Table 2.6. Number of times that a population trend was incorrectly identified as declining out of 100 replicate runs for LD-

based analysis in NeEstimator under a stable population model (λ = 1.0).  Results are presented for increasing intervals of time 

and by combination of population size (N), individual sampling level (n), and minor allele frequency cutoff (MAFcut). Results 

are based on the analysis of datasets with 10% missing data. 

  t0  – t5 

(& MAFcut level) 

t0 – t10 

(& MAFcut level) 

t0 – t15 

(& MAFcut level) 

t0 – t20 

(& MAFcut level) 

  0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 

N = 250 n = 15 26 26 38 24 24 29 24 24 24 20 20 10 

  n = 30 29 27 25 20 13 12 15 9 8 3 1 1 

  n = 60 8 9 8 1 1 1 1 1 1 0 0 0 

N = 500 n = 15 1 1 38 0 0 32 2 2 29 3 3 23 

  n = 30 47 41 43 36 21 22 29 16 15 20 8 8 

  n = 60 26 24 27 6 6 6 1 1 1 0 0 0 

N = 1000 n = 15 1 1 20 0 0 12 0 0 10 0 0 9 

  n = 30 16 36 37 11 30 28 16 27 27 7 18 18 

  n = 60 21 18 25 14 13 12 4 4 4 1 1 0 
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Figure 2.1. Boxplots of the distribution of 𝑁̂𝑒 estimates from 100 replicate simulations for LD-

based estimation at generation 20 from temporal simulations under stable population sizes (λ = 

1.0) with a MAFcut = 0.05. Dashed lines represent true Ne for the three population size models 

(1000, 500, and 250). Different missing data filtering strategies are shown at the bottom of the 

figure. The number of individuals sampled is shown at the top. 
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Figure 2.2. Boxplots of the distribution of fastsimcoal2 estimates of 𝑁̂𝑒 at t20 from 40 replicate 

temporal simulations. (A-C) 𝑁̂𝑒 estimates under a stable population size (λ = 1.0). (D-F) 𝑁̂𝑒 

estimates under declining population size (λ = 0.9). Red dots represent the true Ne at t20. Results 

are broken down across the number of individuals sampled (identified at the top of each panel) 

and the different data filtering strategies (identified at the bottom of each panel). Data filtering 

abbreviations are as follows: fsc2 complete dataset (Complete), fsc2 RAD mutation (RAD mut.), 
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and fsc2 RAD mutation and coverage (RAD mut. & cov.)  For some parameter combinations, 

there were insufficient numbers of individuals for target n. 
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Figure 2.3. Boxplots of the distribution of point estimates from 100 replicate simulations for LD-

based Ne estimation from five temporal sampling points (t0 - t20) under declining population 

growth model (λ = 0.9) using the 10% missing dataset and a MAFcut = 0.05. Red dots represent 

true Ne over time, starting from an initial N of 1000 (top), 500 (middle) or 250 (bottom). Results 

are also broken down across different levels of individual sample size (n = 15, 30, or 60). For 

some parameter combinations, there were insufficient numbers of individuals for target n. 
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CHAPTER THREE 

 

GENOMIC DATA DETECT CORRESPONDING SIGNATURES OF POPULATION SIZE 

CHANGE ON AN ECOLOGICAL SCALE IN TWO SALAMANDER SPECIES 

 

Abstract 

Understanding the demography of species over recent history (e.g., < 100 years) is 

critical in studies of ecology and evolution, but records of population history are rarely available. 

Surveying genetic variation is a potential alternative to census-based estimates of population 

size, and can yield insight into the demography of a population. However, to assess the 

performance of genetic methods it is important to compare their estimates of population history 

to known demography. Here, I leveraged the exceptional resources from a wetland with 37 years 

of amphibian mark-recapture data to study the utility of genetically-based demographic inference 

on salamander species with documented population declines (Ambystoma talpoideum) and 

expansions (A. opacum); patterns that have been shown to be correlated with changes in wetland 

hydroperiod. I generated ddRAD data from two temporally sampled populations of A. opacum 

(1993, 2013) and A. talpoideum (1984, 2011) and used coalescent-based demographic inference 

to compare alternate evolutionary models. For both species, demographic model inference 

supported population size changes that corroborated mark-recapture data. Parameter estimation 

in A. talpoideum was robust to our variations in analytical approach, while estimates for A. 

opacum were highly inconsistent, tempering my confidence in detecting a demographic trend in 

this species. Overall, my robust results in A. talpoideum suggest that genome-based demographic 

inference has utility on an ecological scale, but researchers should also be cognizant that these 

methods may not work in all systems and evolutionary scenarios. Demographic inference may be 

an important tool for population monitoring and conservation management planning. 
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Introduction 

Detecting shifts in demography within populations over recent time scales (e.g., < 100 

years) is important for understanding evolutionary responses to intrinsic and extrinsic factors. 

This knowledge is essential to identify the biological, ecological, or environmental drivers of 

population-size change, and to devise informed conservation management plans when needed. 

Surveying genetic variation can potentially provide an effective alternative to field-intensive 

census-based estimates of population size, yielding insight into the demographic history of a 

population, including migration events, population structure, expansions, and bottlenecks 

(Gutenkunst et al. 2009; Schwartz et al. 2007; Steiner et al. 2013). However, most studies 

incorporating genetically based demographic inference have estimated events at historical time 

scales (i.e., thousands of generations) (Lanier et al. 2015; Moura et al. 2014; Papadopoulou & 

Knowles 2015), and not at an ecological time scale (tens of generations or fewer) (Lozier 2014; 

McCoy et al. 2014).  

 Understanding demographic changes at an ecological time scale is particularly important 

in the conservation of species impacted by recent climate and environmental change. Climate 

change is predicted to have devastating impacts on ecosystems and communities in the upcoming 

century, affecting population demography and community dynamics (Palut & Canziani 2007). 

An important step towards understanding future impacts of climate change on species is 

assessing current population responses to environmental variables (Blois et al. 2013; Lanier et al. 

2015). Demography and genetic diversity are essential parameters in population health and 

viability, and the surveying of genetic variation combined with new demographic inference 

techniques can potentially yield important insights in rapidly changing ecosystems (Shafer et al. 

2015).  
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 However, there is a lack of research validating genetically-based demographic parameter 

estimates with detailed census-based demographic information at an ecological time scale (but 

see (McCoy et al. 2014). Previous studies attempting to estimate recent demographic history 

with genetic data have been limited by the lack of temporally sampled individuals or small 

sample sizes, the sole use of mitochondrial DNA data or small numbers of microsatellite loci, or 

the indirect validation of demography using fossil evidence or simulations (Glenn et al. 1999; 

Weber et al. 2000). The combination of advances in sequencing technology producing large 

genomic datasets and the development of parameterized demographic inference models may now 

provide the opportunity to accurately estimate demographic parameters with smaller sample 

sizes and degraded museum samples (Bi et al. 2013; McCoy et al. 2014; Robinson et al. 2014). 

At the leading edge of these new opportunities is the need to directly validate the use of 

genomically-based demographic parameter estimation with known demography. However, 

comprehensive historic population census data are rarely available, especially in combination 

with documented ecological change. 

Rainbow Bay (RB), an ephemeral wetland in south central South Carolina (Figure 3.1), 

provides a unique opportunity to assess the accuracy of genetically-based demographic 

inferences in comparison to results based on long-term capture-mark-recapture data (CMR). 

Rainbow Bay was completely encircled by a drift fence in 1978, with amphibians and reptiles 

entering and leaving the wetland censused daily since initiation. This continuous sampling has 

provided a valuable time series over 37 years that has been used to document recent population 

expansion and decline events for multiple amphibian species. Furthermore, climatological and 

ecological conditions have changed significantly across this time period and have been shown to 

be correlated with the changing amphibian community dynamics at RB (Todd et al. 2010). This 
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extensive knowledge base and the resources available at RB provide an ideal opportunity to 

assess the ability of genetically-based demographic inference to provide informative estimates of 

population demographic shifts over a very recent time scale. 

Here, I focus on two salamander species exhibiting contrasting population growth trends 

based on CMR census data: the marbled salamander (Ambystoma opacum), which colonized the 

RB wetland in 1980 and expanded steadily since then, and the mole salamander (A. talpoideum), 

which had an established large population (>1000 females) at RB when monitoring began, and 

has steadily declined towards local extinction over the 37-year period (Daszak et al. 2005). 

These population trajectories at RB have been correlated with increased drought and shortened 

hydroperiod — the length of time a wetland holds water — and they illustrate the rapid response 

of populations to environmental change (Daszak et al. 2005). Genetic samples have also been 

collected over this time period, and offer a unique opportunity to examine temporal genetic 

diversity. Previous work at RB employing temporal genetic sampling and microsatellite 

genotyping to estimate effective population size (Ne) and potential demographic changes for 

these two species failed to detect any correlation between genetic summary statistics and CMR-

based census-size estimates (Nunziata et al. 2015). The increased power offered by large 

numbers of single nucleotide polymorphism (SNP) loci coupled with recently developed 

demographic inference methods may yield greater power and precision to detect these population 

trends at RB (Morin et al. 2009; Smouse 2010).  

The goal of this study was to compare observed climate-driven demographic trends to 

those inferred from analyses of genome-scale SNP data. I leveraged the multi-decade CMR data 

at RB and genetic samples from two temporally spaced sampling years for both A. opacum and 

A. talpoideum to address the following questions: (1) can recent population growth or decline be 
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detected using genome-wide SNP data and coalescent-based demographic inference, and (2) do 

non-temporally sampled data have similar power as temporal samples to detect recent population 

trends. My study complements a larger body of work at this long-term study site, which has 

provided unique insight into amphibian population dynamics and their response to a changing 

climate (Daszak et al. 2005; Pechmann et al. 1991; Todd et al. 2010). Results of this study are 

informative in elucidating experimental design and considerations when applying demographic 

inference to non-model species of conservation concern, which may show rapid population-level 

impacts from climate or environmental change. 

 

Methods 

Population sampling and molecular methods 

Rainbow Bay is a seasonal wetland on the US Department of Energy’s 780-km
2
 

Savannah River Site on the Upper Coastal Plain of South Carolina (Figure 3.1). It is completely 

encircled by a drift fence with pitfall traps, and has been censused daily for amphibians entering 

and leaving since the fall of 1978 (Gibbons & Semlitsch 1981; Pechmann et al. 1991). 

Ambystomatid salamanders exhibit geographic structuring associated with wetlands, with 

breeding site fidelity (Gamble et al. 2007). This, coupled with a lack of detected population 

structure for both species at RB using genetic data (see Appendix B), and detection of strong 

genetic structure between A. opacum at RB with a neighboring wetland (Nunziata et al. 2015), 

leads us to consider each species as a single breeding population.  

I sampled tissue from twelve A. opacum in both 1993 and 2013, and 24 A. talpoideum in 

both 1984 and 2011. Although sample size is lower for A. opacum, a large number of SNP 

markers can provide insight into population history with limited individuals (Brumfield et al. 
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2003; Lanier et al. 2015; Moura et al. 2014). All sampled individuals were metamorphic 

juveniles collected at the drift fence as they exited the wetland. For both species, tissues from the 

first sampling years were taken from individuals found dead in pitfall traps that were preserved 

as whole animals at -70
o
C. For both species, samples from the later sampling years were taken 

from live individuals collected in traps and tail-clipped prior to release. 

Whole genomic DNA was extracted using a Qiagen® DNEasy Blood and Tissue Kit, 

following protocols recommended by the manufacturers. We followed the ddRAD library 

preparation protocol outlined in (Peterson et al. 2012), a method that has not yet been performed 

in large-genome species. Ambystomatid salamanders have genomes ~10x larger than the human 

genome, with recent estimates at ~32 Gb (Keinath et al. 2015). To account for the large genome 

size, the ddRAD protocol was modified from the suggested initial amount of 200-500 ng of 

genomic DNA per individual to instead begin with 3 μg of genomic DNA per individual. Briefly, 

individual in-line and indexing Illumina sequencing oligonucleotides were ligated onto DNA 

fragments following restriction digest with EcoRI and SphI (Peterson et al. 2012). After 

individual library preparation, all A. opacum samples from both years were pooled, while two 

library pools were prepared for A. talpoideum, one for each sampling year. All three library pools 

were size-selected between 338 and 414 base pairs using a Pippin Prep (Sage Science) machine, 

and then amplified using High-Fidelity DNA Polymerase (Bio-Rad) with 12 cycles. The three 

pooled ddRAD libraries were sequenced separately on three lanes of an Illumina HiSeq 2500 at 

Florida State University’s College of Medicine using 150 base-pair paired-end reads. My first 

round of sequencing was performed on the A. opacum libraries and to increase sequence 

diversity in the initial portions of sequence reads we used an additional 30% spike in of PhiX 
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control library. Subsequent to the A. opacum sequencing, a 1% PhiX spike in was found to be 

sufficient, and this level was used for both lanes of A. talpoideum sequencing. 

 

Quality filtering and variant detection 

Sequences were subjected to standard Illumina chastity filtering and then assigned to 

individuals based on index sequences using STACKS v1.21(Catchen et al. 2013; Catchen et al. 

2011). Reads were trimmed to remove adaptors and restriction enzyme recognition sites. 

STACKS was used to identify RAD loci and call SNPs in forward reads only. I set the minimum 

depth of identical reads to 4 (m = 4), with additional aligned reads having a maximum number of 

4 mismatches (M = 4), and we allowed for a maximum of 15% missing data (across individuals) 

per locus. To account for potential paralogs, I filtered for highly repetitive stacks that exceeded 

the expected number of reads given the average depth of coverage (-t option in STACKS). To 

avoid inclusion of linked non-independent SNPs, only a single SNP was allowed per RAD locus. 

Exclusion of missing data can potentially bias demographic inference (Huang & Knowles 

2014); however, alleles present at very low frequencies could be the result of sequencing error. 

Therefore, I analyzed nuclear diversity under different filtering conditions to investigate the 

sensitivity of our results using an approach similar to (Lozier 2014). The following data filtering 

scenarios were performed: (1) all loci with a maximum of 15% missing data per locus (as 

discussed above), (2) all loci with a maximum of 5% missing data per locus, (3) all loci with a 

minor allele frequency cutoff of 0.05 and a maximum of 5% missing data per locus, and (4) 

exclusion of the two individuals from each year with the lowest mean coverage per RAD locus, a 

minor allele frequency cutoff of 0.05, and a maximum of 5% missing data per locus (Table 1). 
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For all filtering scenarios, I ensured that the two sample years were directly comparable by 

retaining only sites that passed all filter parameters for both sampled years.  

 

Genotype-based population genetic analyses 

For both species, nucleotide diversity estimates were calculated separately for each 

sampled year and were based on individual SNPs. I estimated observed heterozygosity (Hetobs) 

and Wright’s F-statistic (FIS), as calculated in the POPULATIONS program in STACKS. To 

examine differentiation among sampled years, I also used POPULATIONS to calculate pairwise 

FST between years. Nucleotide diversity (π) estimates were generated using the program vcftools 

v0.1.12b (Danecek et al. 2011), and confidence intervals (CIs) were generated by bootstrapping 

per-SNP π estimates 10,000 times in the R package boot v1.3 (Canty & Ripley 2012). To test for 

a genomic signal of population expansion or decline, I calculated Tajima’s D in the program ∂a∂i 

v1.6.3 (Gutenkunst et al. 2009). Estimates of Ne were generated for each year using the linkage 

disequilibrium method implemented in NeEstimator v2.01(Do et al. 2014). This method 

measures the deviation from the expected genotype frequency based on allele frequencies in the 

population, which increases in small populations due to drift (Hill 1981). 

 SNP markers were screened for temporal outliers between the two sampling years for 

each species using the method of (Beaumont & Balding 2004) implemented in BayeScan v2.1 

(Foll & Gaggiotti 2008). This method measures the discord between global and population-

specific, or in this case, year-specific, allele frequencies. Although this method was designed to 

identify outlier loci between populations, the method has proved useful for detecting outliers 

between temporal samples (Therkildsen et al. 2013) (See Methods and Results B.1 for detailed 

Methods and Results).  
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Genotype-free population genetic analyses 

 Sequencing error and low-coverage sequences can cause incorrect genotyping when 

heterozygotes are incorrectly inferred as homozygotes, and vice-versa (Johnson & Slatkin 2008). 

Genotyping error causes biased estimates of allele frequencies, and therefore a misrepresentation 

of the site frequency spectrum (SFS). To minimize these biases and serve as a complementary 

analysis to STACKS genotyping, I employed a likelihood-based variant detection method in 

ANGSD v0.700 (Korneliussen et al. 2014; Nielsen et al. 2012). The variant detection method 

estimates genotype likelihoods — which account for sequencing error, coverage, and alignment 

quality — and can be used directly in analyses instead of SNP calls. Briefly, I used the 

STACKS-based cstacks program to generate a consensus sequence from the highest coverage 

individual for both species (A. opacum: 1993_3 = 37.18x mean coverage; A. talpoideum: 2011_7 

= 49.27x mean coverage). These were used as ‘RAD reference’ genomes in BWA v0.7.10 (Li & 

Durbin 2009) to create alignments for other individuals. Year-specific maximum-likelihood 

SFSs were estimated for both species using genotype-likelihood estimation (-GL 1) in ANGSD, 

excluding loci missing from more than one individual and allowing a minimum base quality 

score of 20. The genotype-free SFS was optimized with an Expectation Maximization (EM) 

approach, and included only sites that were present in both sampled years so that the data sets 

were comparable. I calculated genotype-free genetic diversity statistics directly using the 

likelihood-estimated SFS, including Watterson’s theta (θ), π, and Tajima’s D.   
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Demographic modeling 

The influence of recent population size changes on SNP diversity was investigated with a 

simulation-based approach using the genotype-based SFS, implemented in fastsimcoal2 (fsc2) 

(Excoffier et al. 2013). For both species, I generated the observed folded joint-SFS using SNP 

data assembled with data filter 1 discussed above, and excluding monomorphic sites (see 

“removeZeroSFS” option in fsc2) and any outlier loci detected with BayeScan. In order to reduce 

bias with allele frequency estimates, I removed all missing data and included loci found in a 

minimum of 10 individuals per year for A. opacum and 18 individuals per year for A. talpoideum 

to maximize the number of SNPs and individuals included in SFS with complete data. I 

simulated SFS for six basic demographic models (Figure 3.2), including a model based on 

species-specific demographic history as estimated through CMR data (Model 1b for both 

species), and fit these simulated SFS to our observed SFS to generate the likelihood of the data 

under each demographic model. The models tested included three major models, each with two 

submodels: (1) RB was founded by a source population and subsequently underwent exponential 

population growth (positive or negative) between founding and the first sampling event (Ne
1984

 or 

Ne
1993

), and between both sampling events using the following equation, where N is current Ne , 

N0 is historical Ne, r is growth rate, and t is time in generations:  

𝑁 = 𝑁0𝑒𝑟𝑡 

with (1b) or without (1a) migration with the source population, (2) an ancestral population 

founded RB and another source population with no subsequent exponential growth with (2b) or 

without (2a) migration with the source population, and (3) RB is a long-standing population that 

underwent a bottleneck in the past and has subsequently experienced population growth as 

estimated by the equation above (3a) or did not experience exponential growth (3b). I include an 
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unsampled source population as a source of migrations with RB, which if unaccounted for can 

lead to spurious signatures of demographic events (Excoffier et al. 2013; Malaspinas et al. 

2016). Although these models do not encompass all possible evolutionary scenarios, they were 

chosen to represent the range of likely alternate evolutionary models that potentially underlie the 

history of these two species at RB.  

Parameters estimated from models included Ne of the sister population to RB (Ne 

Source), Ne at the time of sampling (A. opacum: Ne
1993

 and Ne
2013

; A. talpoideum: Ne
1984

 and 

Ne
2011

), immigration rates from the sister population (MIG), and the time of initiation of 

population size change (TDIV). I assumed a generation time of two years for both species when 

converting estimates to years, based on age at first reproduction (Scott 1994). Defined parameter 

ranges were uniformly distributed with Ne ranging from 10 to 10,000 and T from 10 to 10,000. A 

total of 100,000 simulations were performed to estimate the SFS, with a minimum and maximum 

of 10 and 100 loops (ECM cycles), respectively. The stopping criterion, defined as the minimum 

relative difference in parameters between two iterations, was set to 0.001. A total of 50 replicate 

runs were performed per model and the overall maximum likelihood (ML) was retained. The 

relative likelihood across compared models was generated using Akaike Information Criteria 

(AIC) as outlined in (Excoffier et al. 2013). Confidence intervals for parameters in the best-

supported model were obtained with a parametric bootstrap approach by simulating 100 SFS 

from the ML point estimates.  

For each model, because I did not include monomorphic sites in the SFS or mutation rate, 

I fixed the time of historical sampling with other parameters estimated directly from the SFS. To 

assess bias in scaling estimates from this parameter, I re-estimated parameters for the ML model 

by fixing the current Ne (A. opacum: Ne
2013

; A. talpoideum: Ne
2011

) using estimates from 
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extensive CMR data detailed in (Nunziata et al. 2015). Briefly, the effective number of breeders 

(Nb) was calculated for each year using the equation Nb = 4NmNf/(Nm+Nf), where Nm and Nf are 

the annual census estimates of adult males and females, respectively (Hedrick 2011). The 

contemporary Ne was estimated as the harmonic mean of the single-generation Ne estimates from 

each year since 1978 (estimated as 117 for A.opacum in 2013, 154 for A. talpoideum in 2011). 

To assess the impact of non-temporal sampling on model choice and parameter estimation, I also 

performed demographic inference for A. talpoideum using an SFS constructed exclusively from 

2011 SNP data with Ne
2011

 fixed from CMR data. I performed initial demographic inference with 

single-season 2013 data for A. opacum, but results were largely inconsistent between model runs, 

and I do not present these results.  

To test the impact of reduced sample size in A. opacum on parameter estimates from the 

SFS, I constructed the SFS for A. talpoideum using 12 randomly chosen individuals from each 

year using criteria outlined above for A. opacum. I then re-estimated parameters for the ML 

model using this reduced SFS. To estimate recent population size trends, I calculated lambda (λ) 

as the slope of a linear regression of the log transformation of the current and historical Ne 

estimates from the best-fitting demographic model. I compared these to empirical estimates of λ, 

calculated using estimates of Nb from census data for genetic sampling years, as calculated in 

Nunziata et al. (2015).    

 

Results 

ddRADseq data 

Total reads generated for each of the three library pools ranged from 180 to 270 million 

reads (Table B.1). Initial processing of all individuals resulted in 538,628 ddRAD loci with 
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230,986 SNPs for A. opacum, and 845,433 ddRAD loci with 585,025 SNPs for A. talpoideum. 

Using default filtering (filter 1), the mean depth of sequencing coverage was 20.11 (5.67 SD) for 

A. opacum, and 28.48 (8.27 SD) for A. talpoideum (Table B.1). No outlier SNPs were detected 

for either species consistently across runs using BayeScan (Methods and Results B.1).  

 

Genotype-based diversity statistics 

 Genetic diversity estimates were similar between years for both species (Table 3.1). 

Estimates of π in A. opacum had CIs that were largely overlapping between years and were 

similar for all filtering scenarios (Table 3.1). Estimates of π in A. talpoideum were slightly higher 

in 2011 than 1984 (Table 3.1). Between species, π was slightly higher in A. opacum for all 

filtering scenarios and in both sampled years, which was driven by a larger proportion of 

intermediate frequency SNPs in A. opacum (Figure B.1). When a minor allele frequency cutoff 

was applied (Filter 3), π estimates increased for both species due to the exclusion of rare alleles 

from calculations. Both species had minimal changes in genomic diversity over the studied time 

spans, as revealed by Tajima’s D estimates (Table B.3) and between-year FST (0.029 and 0.036 

for A. opacum and A. talpoideum, respectively). For both species, estimates of Ne using 

NeEstimator reached infinity for each year, indicating that the signal of drift cannot be 

distinguished from sampling error to accurately generate Ne estimates (Waples & Do 2010).   

 

Genotype-free diversity statistics 

 After quality filtering, A. opacum had a total of 236,048 ddRAD loci and A. talpoideum 

had a total of 224,757 ddRAD loci. Site frequency spectra were correlated between years, and 

were similar in appearance to the genotype-based SFS, although they included a lower number of 
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rare alleles (Figure B.2). For A. opacum, there was a broader distribution of per site θ estimates 

in 1993 than in 2013 (Figure 3.3a). Mean π was 2.51E-07 and 1.19E-05 in 1993 and 2013, and 

the distribution of per site π estimates were largely overlapping between years (Figure 3.3a). For 

A. talpoideum, mean π was 4.82E-14 and 7.46E-15 in 1984 and 2011, respectively, and 

distributions of per site θ and π were largely overlapping between years (Figure 3.3b). These 

results also indicated slightly higher nucleotide diversity in A. opacum than in A. talpoideum. 

These and Tajima’s D estimates (Table B.3) were similar to genotype-based analyses and 

collectively indicate minimal changes in genomic diversity over these time spans. Differences in 

Tajima’s D observed between genotype-based and genotype-free calculations were likely due to 

differences in filtering between datasets, with no individual calculation indicating a significant 

departure from neutral expectations (i.e., < -2 or > 2).  

 

Demographic modeling 

 For A. opacum, analyses of temporally-sampled data supported Model 1a (Figure 3.2) as 

the best fitting model with a relative likelihood of 0.961 (Table B.4), which is consistent with the 

interpretation that RB was founded by a source population, and has undergone expansion until 

the present (Tables 3.2 and B.5). However, confidence intervals for estimates of Ne
1993

 and Ne
2013

 

were broad (Table 3.2), and the range of parametric bootstraps were overlapping between years 

(Figure 3.4). When Ne
2013

 was fixed using a CMR-based estimate, ML estimates of Ne differed 

by an order of magnitude from unconstrained estimates and were not within the 95% CIs (Table 

3.2).  

For A. talpoideum, analyses of temporally-sampled data supported Model 1b (Figure 3.2) 

as the best fitting model with a relative likelihood of 1.0 (Table B.6), consistent with the 
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interpretation that RB was founded by a source population and has undergone population 

decline, with asymmetrical migration with the source population (Tables 3.2 and B.7). 

Confidence intervals for all Ne estimates encompassed point estimates, and alternate analyses 

using either a fixed Ne
2011

, or a reduced-sample SFS (n = 12 individuals per year) provided Ne 

estimates on the same order of magnitude as other estimates (Table 3.2). The range of Ne 

estimates from parametric bootstraps was non-overlapping between sample years (Figure 3.4). 

Confidence intervals for migration estimates were broad and varied among the alternate methods 

of parameter estimation (i.e., using a fixed Ne
2011

 and using a reduced-size SFS; Table 2.2). The 

best fitting model for A. talpoideum using the single-year SFS from 2011 supported RB being 

founded by a source population with subsequent population decline (Model 1a; Tables B.8 and 

B.9).  

 In both species, estimates of λ using SFS-based genetic estimates and CMR estimates 

showed similar population size trajectories (Figure 3.5). Ambystoma opacum had genetic and 

CMR λ estimates of 0.0417 and 0.0277, respectively. Ambystoma talpoideum had genetic and 

CMR λ estimates of -0.0637 and -0.0481, respectively. 

 

Discussion 

I leveraged temporal genomic data from a well-studied natural wetland community with 

37 years of CMR data to perform demographic inference on species with documented population 

declines (A. talpoideum) and expansions (A. opacum) in response to changes in wetland 

hydroperiod. My results provide one of the first demonstrations that coalescent-based 

demographic model inference based on genome-wide SNP data can potentially be informative in 

detecting trends in population size change on an ecological time scale (McCoy et al. 2014). For 
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both species, model selection strongly supported histories of recent exponential population size 

change, with Ne estimates in A. talpoideum producing tight confidence intervals in both sampling 

years that identified a clear decrease in population size, consistent with well-documented trends 

from CMR data. In A. opacum, while the SNP-based point estimates of Ne produced a pattern of 

population growth that matched the known population expansion at RB, confidence intervals for 

Ne estimates were broad and overlapping, tempering our confidence in detecting a demographic 

trend in this species. Overall, I believe the strength of my model selection results, coupled with 

robust parameter estimation in A. talpoideum, point to the potential utility of demographic 

inference for examining population responses on an ecological scale. I caution, however, that this 

may not serve as a panacea for the study of all populations, as particular evolutionary scenarios 

and unknown factors may challenge the recovery of robust results. I further elaborate on these 

issues and provide basic pragmatic advice in the following sections. 

 

Demographic modeling 

 For both species, SFS-based demographic inference strongly supported models of 

population size change, and produced similar population trajectories to census-based estimates 

(Figure 3.5). In general, a high degree of certainty was found in the Ne parameter estimates from 

A. talpoideum based on bootstrap CIs and these results were robust to the use of alternate 

inference procedures (models using fixed Ne vs. free Ne), all suggesting that the SNP data were 

informative in elucidating population trends on an ecological time scale. The robust results in A. 

talpoideum may reflect its lower genetic diversity and the progressively increasing bottleneck 

(based on field data), which may have led to more pronounced signals of recent allele frequency 

shifts, and more precise parameter estimates. In the only other study that we are aware of to 
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employ SNP data and coalescent-based demographic inference on an ecological time scale, 

McCoy et al. (2014) were able to detect a known bottleneck event in an introduced insect 

population, further suggesting that histories featuring a decrease in Ne may be particularly well 

recovered using these methods. 

 However, while my results point to the potential for genetically-based detection of 

general population trends on an ecological scale, I also note a number of challenges in the 

recovery of robust results. Most importantly, I highlight the difficulty here with parameter 

estimation. This was particularly true for estimates of migration in A. talpoideum, all of which 

produced high levels of uncertainty. It is also noteworthy that the best-fitting model for A. 

opacum did not reflect migration, which is apparent from CMR data and metapopulation 

structuring (Kinkead et al. 2007). This may be the result of sampling that was limited to a single 

population, without incorporating genetic data from potential source populations. Parameter 

estimation in A. opacum further demonstrates the difficulty in demographic inference under 

some evolutionary scenarios. Bootstrap CIs for A. opacum strongly suggested that all parameter 

estimates carry uncertainty from the SFS-based inference procedure. Across the six tested 

demographic models for A. opacum, Ne-based population trajectories alternated between 

expansion and decline. In currently large populations that have undergone a recent expansion, 

like A. opacum, large sample sizes are likely needed to observe the rare recent variants that will 

be needed for SFS-based signatures of population expansion (Fu 1997; Gravel et al. 2011; 

Robinson et al. 2014). This will be an issue with any demographic inference procedure 

employing coalescent modeling, where expansions cause an increase in deeper coalescent events 

in a genealogy (Kim et al. 2015). Ultimately, my detection of a population expansion in A. 

opacum may represent a chance correlation of genetic and census population size trajectory. It is 
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also possible the uncertainty in parameter estimates in A. opacum may be a result of poor model 

fit (Thomé & Carstens 2016), or that parameter estimates are reflecting patterns of an overall 

large and stable metapopulation.  

Because a nuclear mutation rate is not known for our species (or salamanders in general), 

I did not include the mutation rate in models, and instead scaled free parameters by fixing the 

time of historical sampling, which may create a bias as a result of the small time frame between 

sampling events. To address this possible bias, I re-estimated parameters using the ML model 

and fixed Ne of the most recent sample year using estimates from CMR data. Scaling parameters 

from demographically estimated Ne also carries bias, as I am uncertain of the true Ne 

incorporating population structure, reproductive success, and clutch survival; but, this has been 

used in a similar demographic inference study without apparent bias (McCoy et al. 2014). I 

found largely different parameter estimates between alternate scaling procedures for A. opacum, 

but similar Ne parameter estimates for A. talpoideum, further suggesting uncertainty in A. 

opacum parameter estimates and relatively robust estimates in A. talpoideum. This indicates that 

scaling parameter estimates with temporal sampling may be a feasible option for non-model 

species to approximate population trajectory, but should be tested against alternate scaling 

strategies for robustness.  

 In most cases, researchers will have no a priori knowledge of the demographic history of 

a population to guide sampling designs, scale parameters, or determine the overall applicability 

of coalescent-based demographic inference on an ecological time scale. However, this procedure 

may still be of broad use in conservation studies. First, I note that many population genetic 

studies are focused on species of conservation concern, where populations are typically small 

and recently bottlenecked, or are known to be decreasing in size. These situations are the most 
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likely to create apparent signatures in the SFS that can be elucidated at an ecological time scale 

(as shown here in A. talpoideum and in McCoy et al., 2014). Ultimately, the application of 

coalescent modeling to detect recent population declines will depend on the length and severity 

of the bottleneck, as the rate of coalescence will vary in turn, with smaller population having 

more coalescent events in the recent past (Hein et al. 2004; Johnson et al. 2007). Second, 

researchers should be aware of the difficulties associated with these procedures, particularly 

when underlying evolutionary scenarios are likely to challenge their implementation. 

Demographic inference analyses should incorporate thorough attempts at parameter estimation, 

including the assessment of confidence intervals, using the robustness of their results as a proxy 

for the informativeness of their data. Finally, as many researchers will not have access to 

temporally sampled populations, I evaluated model choice and parameter estimates using only 

contemporary samples for A. talpoideum. This analysis resulted in an alternate choice of the best 

model (model 1a) than when using the joint-SFS, but still supported a decline in Ne from 1984 to 

2011. However, relative likelihoods of tested models were much more evenly distributed across 

models using the single-SFS than when using the joint-SFS from both years, where likelihoods 

of poorer-fitting models were almost zero. These results demonstrate that the addition of 

temporal samples, even over a short number of generations, can greatly improve model choice, 

providing direct information on the magnitude of allele frequency shifts over the sampling time 

frame (Ramakrishnan et al. 2005). Museum tissue collections and personal collections may serve 

as unique resources for estimating current responses of species to climate change and 

reconstructing population history (Bi et al. 2013). 
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Genetic diversity 

 Ambystoma opacum generally had higher genetic diversity than A. talpoideum using both 

genotype-based and genotype-free estimates, with non-overlapping CIs for estimates of 

nucleotide diversity for all filtering scenarios. Similar results were seen in the previous study 

employing microsatellite markers, providing additional support that these differences are real 

(Nunziata et al. 2015). Diversity differences might be due to a long-term decline of the A. 

talpoideum population at RB, as detected from field data and demographic inference. However, 

even historical samples of A. talpoideum, when population size was large, had lower genetic 

diversity than A. opacum. Overall genetic diversity differences between these species may be the 

result of lineage history; Ambystoma opacum is more broadly distributed than A. talpoideum 

(Petranka 1998), and may exhibit higher genetic diversity due to this broader range or 

differences in life-history characteristics such as metapopulation structure (Leffler et al. 2012; 

Romiguier et al. 2014).  

I observed minimal changes in temporal genomic diversity for both species with no 

correlation with demographic size change, highlighting the utility of demographic inference 

procedures to reveal patterns in genomic diversity that may not be apparent from summary 

statistics. This result is not surprising given the time-frame of our sampling, which was likely too 

short to produce large fluctuations in nucleotide diversity (Bi et al. 2013; Lozier 2014). Diversity 

results were largely similar in genotype-free analyses and across filtering scenarios suggesting 

biases in data filtering were minor. Similar to my previous study involving microsatellites 

(Nunziata et al. 2015), Ne estimates from linkage disequilibrium estimates reached infinity. Both 

of my study species likely exist in metapopulations with migration, which is not accounted for in 

the linkage disequilibrium model of Ne and may confound results (Waples & Do 2010). 
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Sequence-based demographic inference estimates parameters under more realistic population 

models, incorporating migration and variable population size, and are more likely to capture 

important information about population history relative to summary statistics (Drummond et al. 

2005).  

   

Conservation concerns 

 The Ne estimates for A. talpoideum using both demographic inference and CMR data are 

at the lower bound of suggested Ne for maintenance of evolutionary potential of a population 

(Franklin & Frankham 1998). However, RB likely exists in a larger metapopulation 

characterized by local extinction of some breeding wetlands and continued occupancy and 

population stability of others (Marsh & Trenham 2001). Because this study focused at a single 

breeding wetland, I cannot infer if the Ne of the entire metapopulation is in decline or if the 

observed Ne decline at RB is part of a source-sink dynamic that is typical of amphibian 

populations. Increased droughts at RB from 1978-2004 were negatively correlated with census 

size in A. talpoideum, a species adapted to wetlands with long hydroperiods (Daszak et al. 2005). 

Drought is possibly impacting surrounding wetlands similarly, causing additional local 

extinctions of A. talpoideum populations, and negatively impacting metapopulation persistence. 

(Walls et al. 2013b) found an increase in local extinction rate of A. talpoideum at several 

wetlands within the southeastern Coastal Plain, likely due to increased intensity of drought. The 

demographic inference procedure employed in fsc2 allowed me to model an unsampled source 

population representing the metapopulation of wetlands RB exists within. The results indicate an 

overall large and stable source population; however, this has not been validated with census or 
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genetic data. Future work will focus on sampling wetlands at multiple spatial scales surrounding 

RB and performing similar demographic inference.  

 

ddRAD in large genome species 

 The generation of large-scale SNP datasets from ddRAD sequencing is relatively 

inexpensive, straight-forward, and has been validated in numerous studies on small-genome (<20 

Gb) taxa (Lanier et al. 2015; Lozier 2014; Papadopoulou & Knowles 2015). However, this 

method has yet to be validated in species with larger genomes. In this study, I demonstrate the 

use of this procedure in two salamander species with ~32 Gb genomes, and show the scalability 

of the method with little knowledge of the genomic architecture of the study taxa. For both A. 

opacum and A. talpoideum I was able to generate thousands of SNP loci that passed filtering 

parameters, even with a stringent missing-data threshold of 95% of individuals across loci. The 

development of RADseq methods and their applicability to species with large and complex 

genomes is an important step forward in marker development that carries the advantages of de 

novo marker discovery and the removal of ascertainment bias in large-genome species where 

marker development has been formidable in the past (Garner 2002; Poland et al. 2012). 



74 
 

Table 3.1. Filter properties and genetic diversity statistics calculated for A. opacum and A. talpoideum (A. talpoide) juveniles at 

Rainbow Bay. Included are the total number of SNPs (N), the average observed heterozygosity per locus (Hetobs), Wright’s inbreeding 

coefficient (FIS), and the average nucleotide diversity (π) with 95% confidence intervals obtained by bootstrapping 10,000 times. 

Species Filter 

Set 

Missing 

Data 

Allowed 

Minimum 

MAF 

Year # of 

individuals 

N Hetobs FIS π π lower 

95% CI 

π upper 

95% CI 

A. opacum 1 15% > 0 1993 12 40326 
0.2458 0.0111 0.2492 

0.2475 0.2509 

A. opacum    2013 12 40326 0.2429 0.0172 0.2479 0.2462 0.2496 

A. opacum 2 5% > 0 1993 12 15740 0.2121 0.002 0.2117 0.2090 0.2144 

A. opacum    2013 12 15740 0.2066 0.0083 0.2079 0.2052 0.2105 

A. opacum 3 5% > 0.05 1993 12 10555 0.2979 0.0045 0.2972 0.2943 0.3001 

A. opacum    2013 12 10555 0.2926 0.0142 0.2945 0.2916 0.2974 

A. opacum 4 5% > 0 1993 10 24793 0.2373 -0.007 0.2339 0.2317 0.2361 

A. opacum    2013 10 24793 0.2366 -0.004 0.2328 0.2306 0.2351 

A. talpoide 1 15% > 0 1984 24 45027 0.1718 0.0615 0.1905 0.1889 0.1921 

A. talpoide    2011 24 45027 0.1886 0.0181 0.1949 0.1934 0.1965 

A. talpoide 2 5% > 0 1984 24 28644 0.1649 0.0306 0.1737 0.1717 0.1756 

A. talpoide    2011 24 28644 0.1805 -0.002 0.1800 0.1781 0.1819 

A. talpoide 3 5% > 0.05 1984 24 23132 0.2497 0.0465 0.2633 0.2612 0.2654 

A. talpoide    2011 24 23132 0.2693 -0.005 0.2676 0.2656 0.2696 

A. talpoide 4 5% > 0 1984 22 31497 0.1713 0.0396 0.1835 0.1816 0.1854 

A. talpoide    2011 22 31497 0.1876 -0.003 0.1871 0.1853 0.1889 
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Table 3.2. Maximum-likelihood (ML) demographic parameter estimates and confidence intervals (CIs) for A. 

talpoideum and A. opacum under the best-fitting model (A. talpoideum: Model1b; A. opacum: Model1a) from 

fastsimcoal2. Parameter estimates from an alternate analysis that fixed Ne
2011

 and Ne
2013

 (in bold) and with A. 

talpoideum SFS constructed from 12 individuals for each year, are also presented, but CIs are based off of 

original ML estimates. CIs were obtained by parametric bootstrapping.  

Species 

Parameter 

ML 

Estimate 

95% CI- 

Lower 

95% CI- 

Upper 

ML 

Ne Fixed 

ML 

n = 12 

Unit 

A. opacum NeSource 5,613 2,363 28,491 22,937 - Individuals 

A. opacum Ne
2013

 17,740 11,419 41,135 117 - Individuals 

A. opacum Ne
1993

 2,596 451 44,786 46,882 - Individuals 

A. opacum Ne_Out 228 50 1,077 77 - Individuals 

A. opacum TDIV 416 262 610 412 - Years before 2013 

A. talpoideum NeSource 3,742 1,174 10,840 1,540 4,397 Individuals 

A. talpoideum Ne
2011

 26 17 35 154 25 Individuals 

A. talpoideum Ne
1984

 508 187 1,742 421 995 Individuals 

A. talpoideum Ne_Out 34,310 5,114 39,935 18,690 31,056 Individuals 

A. talpoideum TDIV 4,806 2,206 5,724 4,212 4,734 Years before 2011 

A. talpoideum MIG into RB2011 from Source 2.54 0.00 281.34 0.03 0.66 Individuals/Generation 

A. talpoideum MIG into RB1984 from Source 1.28 0.00 23.77 0.35 0.31 Individuals/Generation 

A. talpoideum MIG into Source from RB2011 5.91 1.19 8.32 1.35 9.02 Individuals/Generation 

A. talpoideum MIG into Source from RB1984 2.51 0.04 15.00 0.68 0.86 Individuals/Generation 
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Figure 3.1. Map of the Rainbow Bay study site on the Savannah River Site (SRS). 
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Figure 3.2. All tested demographic models for A. opacum (A. opa) and A. talpoideum (A. tal). 

(1a) Rainbow Bay (RB) was founded by a source population and subsequently underwent 

exponential population growth. (1b) RB was founded by a source population and subsequently 

underwent exponential population growth, with asymmetrical migration with its source. (2a) An 

ancestral population founded RB and a source population with population size remaining 
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constant. (2b) An ancestral population founded RB and a source population, with population size 

remaining constant, and asymmetrical migration with source. (3a) RB is a long-standing 

population that underwent a bottleneck in the past and has subsequently experienced population 

growth. (3b) RB is a long-standing population that underwent a bottleneck in the past and has 

subsequently maintained a stable population size. Parameters estimated from models included Ne 

of the sister population to RB (NeSource), Ne at the time of sampling (A. opacum: Ne
1993

 and 

Ne
2013

; A. talpoideum: Ne
1984

 and Ne
2011

), migration rates (M1-M4), and the time of initiation of 

population size change (TDIV). 
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Figure 3.3. Distribution of genome-wide per-site average pairwise nucleotide diversity (π) and 

Watterson's theta (θ) for populations of (a) A. opacum from 1993 and 2013, and (b) A. 

talpoideum from 1984 and 2011 at Rainbow Bay. Historic samples are represented in pink,  

contemporary samples in blue, and the overlap between historic and contemporary samples in 

purple. 
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Figure 3.4. Boxplots showing the median, interquartile ranges, and overall ranges of log Ne 

estimates for 100 parametric bootstraps for (a) A. opacum and (b) A. talpoideum. Maximum 

likelihood point estimates under the best-fitting model (A. talpoideum: Model1b; A. opacum: 

Model1a) from fastsimcoal2 are shown as red dots. 
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Figure 3.5. Comparisons of estimates of the log of effective number of breeder (Nb) as calculated 

from capture-mark-recapture (CMR) data (squares), and the log of Ne for the maximum 

likelihood model from fastsimcoal2 (circles) for (a) A. opacum and (b) A. talpoideum at Rainbow 

Bay. The slopes of these linear regressions were used as estimates of λ. 
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CHAPTER FOUR 

USING GENTIC MONITORING TO UNDERSTAND EXTINCTION RISK OF POND-

BREEDING AMPHIBIANS IN THE FACE OF CLIMATE CHANGE 

 

Abstract 

 Genetic approaches of estimating effective population size (Ne) and effective breeding 

number (Nb) are useful in conservation, ecology, and evolution, providing information on 

population abundance and demographic history, and insight into the evolutionary history and 

genetic viability of populations. Although widely used in amphibian population genetic studies, 

there is uncertainty regarding the relationship between Nb, Ne, and census size (NC) in 

iteroparous species (repeat breeding) with complex life-histories. In particular, little is known 

about how catastrophic reproductive failure (CRF, i.e., complete mortality of all larval 

individuals), a common life-history characteristic in many pond-breeding amphibians, impacts 

the stability and level of genetic diversity, and the relation of effective sizes to census size. I used 

individual-based population models of the pond-breeding salamander, Ambystoma opacum, with 

life-history parameters estimated from a long-term dataset, and multiple levels of CRF (a proxy 

for climate change) over a 50 year projection, to quantify annual 𝑁̂𝑏 estimated with both genetic 

and demographic data, 𝑁̂𝑒, and NC, and generate predictions about future genetic viability and 

extinction risk. My results demonstrate that genetically estimated 𝑁̂𝑏  is positively correlated 

with NC across multiple levels of CRF in isolated and subdivided A. opacum populations, and 

has the potential to be informative in detecting population declines in amphibians at a 

contemporary time-scale. I found few correlations between 𝑁̂𝑏 and 𝑁̂𝑒, or between 𝑁̂𝑏and NC, 

indicating that Ne while providing important information on genetic viability and evolutionary 

potential of populations, may not be the best tool if quick detection of population size change is 
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the study goal. My models suggest that CRF causes significant extinction risk and reduced 

genetic diversity at 70% probability of CRF and above, and that including gene flow in models 

prevented extinctions and maintained genetic variability of populations across all levels of CRF. 

These results highlight the importance of metapopulation scale conservation of amphibian 

populations, and the potential of monitoring Nb for inferring demography of populations of 

conservation concern.  
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Introduction 

Amphibian declines and extinctions have been a global concern over the past several 

decades, with many factors to blame, including disease, climate change, and habitat 

degradation/alteration (Blaustein et al. 1994; Collins & Storfer 2003). Declines continue to occur 

even in protected areas, indicating habitat protection is not sufficient to halt many of these 

declines (McCartney‐Melstad & Shaffer 2015). It is therefore critical to understand the processes 

regulating amphibian populations, and identify factors important in the design of conservation 

plans (Semlitsch 2002).  

Population models serve as excellent tools to investigate amphibian population dynamics and 

how they regulate population processes, including census size, population stability, genetic 

diversity, and extinction risk (Taylor et al. 2006; Weir et al. 2016). One factor that has received 

considerable attention in constructing amphibian population models is catastrophic reproductive 

failure (CRF), the complete mortality of larval individuals in a reproductive season. High 

variance in reproductive success between years is a common life-history characteristic across 

many pond-breeding amphibians, where juvenile recruitment alternates between years when tens 

of thousands of juveniles are produced and others when no juveniles are produced. Multiple 

factors can cause CRF, including predation by fish or other amphibians, and durations of 

hydroperiod, the length of time a wetland holds water (Alford & Richards 1999; Semlitsch et al. 

1996). For this study, I focus on CRF as single season reproductive failure due to shortened 

hydroperiod. Multiple studies have found climatic changes and increased droughts correlated 

with shortened hydroperiods, increased probability of CRF, and declines in amphibian 

populations (Daszak et al. 2005; McMenamin et al. 2008; Walls et al. 2013a). As climate change 
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projections predict altered precipitation patterns across the United States (US), it is important to 

understand potential impacts on amphibian populations and associated extinction risk.  

While simulation studies have examined the impact of CRF on amphibian extinction risk and 

population size, none have evaluated the impact on genetic diversity and effective population 

size (Ne). Effective population size is important in assessing genetic variability, and can possibly 

serve as an indicator of population size trends (Charlesworth 2009; Schwartz et al. 2007; 

Tallmon et al. 2010). It may also serve as an important indicator of population viability, 

reflecting the evolutionary potential and risk of inbreeding depression (Frankham 1995). A 

recent review article highlighted the utility of molecular ecology to gain insight into population 

size trends in amphibians (McCartney‐Melstad & Shaffer 2015). Natural high variance in 

population size and recruitment success combined with often cryptic life-history characteristics 

in amphibians may make population declines difficult to detect without intense field studies 

(Pechmann & Scott 1991). Genomic tools may therefore serve as an important tool in amphibian 

monitoring and conservation biology. 

It is unclear what impact temporally variable recruitment has on Ne and genetic diversity, but 

it has been hypothesized to lead to a naturally low Ne/N ratio (Funk et al. 1999; Rowe & Beebee 

2004; Schmeller & Merilä 2007). Genetic estimates of Ne for amphibians are typically low (< 

100), even in large, stable populations with Ne/N often below 0.1 (Phillipsen et al. 2011; 

Schmeller & Merilä 2007). This leads to a number of questions. What mechanisms are regulating 

genetic variation in amphibians? Perhaps more importantly, is genetic variation stable over time? 

Before genetic monitoring can be applied to estimate population size and time-course of decline 

in amphibians it is necessary to address these questions and evaluate if detection of overall 
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population growth trends is achievable with the complex demography of pond breeding 

amphibians. 

Effective population size is notoriously difficult to estimate in natural iteroparous 

populations (repeat breeding), leading to much interest in estimating the effective number of 

breeders per generation (Nb)(Waples & Antao 2014). While Ne is dependent on the lifetime 

variance in reproductive success among all adults in a population, Nb is focused only on breeding 

adults in a single season. Estimating and interpreting effective size for a single season rather than 

the entire adult lifetime is understandably much more straightforward. Estimates of Nb may be of 

use in pond-breeding amphibians where collection of single-cohort DNA samples from larvae or 

metamorphs can be collected with minimal effort at breeding sites (Polich et al. 2013). However, 

the relationship between Ne and Nb is unclear for amphibians, as is their correlation with census 

size (Nc) (Waples et al. 2013).  

In this study, I use simulated data for populations of a pond-breeding salamander, 

Ambystoma opacum, to examine the impacts of amphibian life-history characteristics on Ne and 

Nb, including increasing probability of CRF (a proxy for climate change). I use these models to 

understand null expectations of genetic diversity in isolated and subdivided populations and to 

provide insight into the usefulness of genetic monitoring to detect population size declines in 

amphibians. Specifically, I quantified correlations between effective sizes and census size, and 

estimated population viability under CRF over a 50 year projection.   

 



87 
 

Methods 

Study organism 

 The marbled salamander, Ambystoma opacum, served as my study species because of the 

amount of long-term field and experimental data available, as well as previous modeling studies 

done on the species (Taylor & Scott 1997; Taylor et al. 2006). Marbled salamanders are a 

common species throughout the eastern US and like most other Ambystoma species they are 

explosive breeders that migrate from terrestrial overwintering habitat to wetland breeding sites 

(Petranka 1998). Ambystoma opacum females migrate to breeding wetlands in late summer or 

autumn before wetlands fill and deposit eggs terrestrially in the dried beds of wetlands or along 

the edges of partially filled wetlands.  Females often remain with nests until wetlands are 

inundated with rain and eggs hatch (Petranka 1998). After a larval stage A. opacum 

metamorphose into terrestrial juveniles, with individuals mating annually after reproductive 

age/size is reached. 

 

Population models 

I conducted simulations of A. opacum populations using the Python program simuPOP 

v1.1.4 (Peng & Kimmel 2005), a forward-time and individual-based population genetic modeling 

program. Age-structured population models were constructed using age- and sex-specific birth 

and death rates estimated from published and unpublished demographic data from long-term 

study sites at the Savannah River Site in South Carolina, and from additional published studies 

on A. opacum (Table C.1). The model included 11 life-history stages: pre-adult (egg, larval, and 

juvenile stages), and ages 1 through 10 years. Survival to age 1 was based on a constant 

combined survival rate of egg and larval stages, and a function based on larval density (Larsurv) 
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outlined below, and as used in (Taylor et al. 2006). All individuals over age 1 were considered 

adults, however age at first reproduction was variable between individuals. Mating was random, 

with each female only having the opportunity to mate once per reproductive season, whereas 

males could mate multiple times and fertilize multiple clutches. Populations were constructed 

with an initial size of 60 adult individuals with an average sex ratio of 1. Initial diploid genotypes 

for each individual were simulated for 100 “microsatellite-like” markers, each with 10 possible 

alleles. Allele frequencies were generated from a Dirichelet distribution with a mean of eight 

alleles and were randomly assigned to individuals, with no mutation or selection. All simulated 

populations went through an equilibrium phase of 30 generations to establish the base population 

and reach Hardy-Weinberg equilibrium (Antao et al. 2011; Tallmon et al. 2010; Waples 2006), 

after which each replicate population evolved for an additional 50 years with a set probability of 

CRF. A total of 100 replicate populations were modeled for each demographic scenario.  

I modeled the A. opacum population as a single isolated deme, and also as a 

subpopulation with the possibility for migration. Many amphibians, including A. opacum, form 

metapopulations across the landscape, with low levels of migration between subpopulations 

(Marsh & Trenham 2001). My migration model consisted of one additional breeding population 

initialized with the same population size and vital rates as the focal population, no CRF, and with 

equal probability of immigration and emigration between it and the focal populations. In A. 

opacum juveniles are an important dispersal stage, so I set this as the dispersing age with 5% 

probability of dispersal (Gamble et al. 2007).  
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Larval density dependence 

 Density-dependent effects from the larval environment are common in pond-breeding 

amphibians, and contribute to population dynamics well into adulthood (Taylor & Scott 1997). 

In Ambystoma species larval density has been correlated with larval survival, body size at 

metamorphosis, survival to first reproduction, and age at first reproduction (Scott 1990, 1994; 

Taylor & Scott 1997). I used the following model of density-dependent larval survival based on 

(Getz 1996):  

𝐿𝑎𝑟𝑠𝑢𝑟𝑣 =
𝐿𝑎𝑟𝑚𝑎𝑥 𝛾

𝛿 

𝛾𝛿 + [
𝐿𝑎𝑟𝑖𝑛𝑖𝑡

𝑅 ]
𝛿

, 

 

where Larsurv is estimated larval survival, Larmax is maximum larval survival (Larmax =0.8), Larinit 

is the initial number of larvae, γ is the density where larval survival is half of maximum survival 

(γ =11), R is available resources (R=2), and δ is the shape parameter and defines the strength of 

density-dependent effects at increasing larval density (δ =1.8; Code supplied by Scott Weir). If 

larval density was high (γ > 11) minimum age at first reproduction was 2 years, at low larval 

density (γ <= 11) minimum age at first reproduction was 1 year, however age at first 

reproduction is variable between individuals (Table C.1). Because I am unsure of fecundity 

estimates for year one breeders from low larval densities, I also investigate how eliminating 

density-dependent age at first reproduction affected final census size and extinction risk.  

 

Catastrophic reproductive failure 

Environmental stochasticity was incorporated into models to mimic the relationship 

between spring rains and survival of larvae to metamorphosis. Wetland hydroperiod is important 
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for larval recruitment and can lead to CRF if wetlands do not fill or dry before metamorphosis 

occurs. The amount of time needed for metamorphosis is species-specific and will impact the 

probability of metamorphosis before pond drying (time needed for metamorphosis: A. opacum: 

54 days; (Daszak et al. 2005)). I ran simulations for a range of CRF probabilities from 0-100%, 

in increments of 10%. This range encompasses realistic probabilities of CRF for ephemeral 

ponds across the southeastern US, as well as projected CRF probabilities into the future under 

increased drought. 

 

Data analysis 

 I estimated genetic diversity each generation, using all loci and individuals to calculate 

expected heterozygosity (He) and allelic diversity (AD). To estimate extinction probability, 

defined as when the total adult population (NC) reached zero individuals, I recorded NC at the 

end of each breeding cycle. To estimate population size trends, I calculated lambda (λ), from the 

time when CRF was initiated to the end of the simulation (λ = NCGen80/NCGen30).  

 

Estimating Nb and Ne. I estimated Nb per generation using two methods: (1) estimation of linkage 

disequilibrium (LD; NbGen), and (2) direct estimates with demographic data (NbDem). For LD-

based estimation, I used the program NeEstimator v2.01 with random samples of 500 offspring 

every five generations without replacement; if 500 individuals were not available, the largest 

number of individuals available was collected (Do et al. 2014). Results are presented using Pcrit 

of 0.05, as it has been found to provide balance between bias and precision with large samples 

sizes (Waples & Do 2010). I also used demographic data to directly calculated Nb per generation 

using the inbreeding effective size formula for species with two sexes (Crow & Denniston 1988): 
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𝑁𝑏 =
𝑘̅𝑁 − 2

𝑘̅ − 1 +
𝑉𝑘

𝑘̅

 

 

where 𝑘̅ was the mean number of offspring per parent, N was the total number of adults, and 

𝑉𝑘was the variance in reproductive success among adults.  

 I estimated contemporary Ne using the LD-based method (NeGen) in the program 

NeEstimator v. 2.01 with a random sample of 500 adults every five generations without 

replacement; if 500 individuals were not available, the largest number of individuals available 

was collected. Linkage-based Ne estimation has been found to produce accurate estimates of Ne 

given large samples of loci and individuals, and given that samples represent a range of age 

classes equal to the generation span (Luikart et al. 2010; Robinson & Moyer 2013; Waples & Do 

2010). I looked for associations between genetic estimates of Nb and Ne using Spearman 

correlation (ρ) in python. Genetic estimates of Ne and Nb were also used to estimate population 

size trends, with λ estimated from the time when CRF was initiated to the end of the simulation 

(λ = NeGen80/NeGen30 and λ = NbGen80/NbGen30). 

 

Impacts of demography – Associations between different estimates of effective sizes with census 

size and demographic parameters were assessed using Spearman correlation in python. 

Demographic parameters explored included the number of breeding females per reproductive 

cycle, and annual standardized variance (SDV) in reproductive success (Vk/k
2
) for both males 

and females. I used estimates of effective size and census size to calculate Ne to NC, and Nb to NC 
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ratios. Ratios were calculated for each replicate in each generation, and then averaged over all 

replicates for each demographic scenario modeled.  

 

Impacts of sample size – To assess the influence of number of sampled individuals and loci on 

estimates I also estimated NbGen and NeGen, as outlined above, using a random sample of 30 

microsatellite markers, and 60 individuals without replacement; if 60 individuals were not 

available, the largest number of individuals available was collected. These numbers were chosen 

to represent realistic sampling conditions in population genetic studies, and have been suggested 

as target numbers of samples and markers for accuracy in Ne estimation when using 

microsatellites (Tallmon et al. 2010). Associations between NbGen and NeGen with census size 

were assessed using Spearman correlation in python. 

 

Sensitivity analysis 

 To explore which parameters have the greatest impact on extinction risk and census size 

at the final generation of simulations, I conducted a relative sensitivity analysis. I investigated 

the following parameters: adult survival, juvenile survival, and the proportion of females that 

breed per year. Specifically, I reduced each of these parameters by 10% while keeping all other 

values unchanged and evaluated proportional changes in extinction probability and adult census 

size from the base model. 

   

Results 
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Population genetic variability 

 The level of genetic diversity remaining in populations at the end of simulations was 

highly dependent on the probability of CRF imposed and the presence of migration in models. In 

models without migration, genetic variability was maintained at over 90% of initial estimates up 

to a CRF probability of 70% (Table 4.1). When CRF probability was over 70%, genetic diversity 

was rapidly lost from populations. In models with migration, genetic diversity was maintained at 

99% to 100% of initial estimates, over all probabilities of CRF.  

 

Annual population demographic data 

 Demographic parameters including NC, number of breeding females, and SDV for males 

and females were estimated each reproductive cycle to characterize relationships with Ne and Nb. 

The initial census size across simulations stabilized at a mean of 3,651 for models with and 

without migration, after 30 generations of burn-in. A full summary of initial and final census 

sizes with confidence intervals across replicates can be found in Tables C.2 and C.3. Final census 

size at generation 80 ranged from 0 – 3,651 without migration, and 185 – 3,652 with migration, 

over all probabilities of CRF. Genetic estimates of Ne were generally higher than Nb estimates, 

while demographic estimates of Nb were consistently higher than genetic estimates of Nb (Figure 

4.1). Few significant correlations were found between NC and 𝑁̂𝑒Gen (hat denotes parameter 

estimates; Table 4.2 and Tables C.4 and C.5). Census size showed significant correlations with 

𝑁̂𝑏 across many simulations, with the probability of CRF impacting which was correlated more 

often, 𝑁̂𝑏Demo or 𝑁̂𝑏Gen (Table 4.2 and Tables C.4 to C.5). When probability of CRF was low 

(≤ 20%) 𝑁̂𝑏Demo was significantly correlated with NC across almost all replicates, while at 

higher CRF probabilities (≥ 30%) 𝑁̂𝑏Gen was correlated with NC most often (Table 4.2). Genetic 
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estimates of NbGen showed few correlations with NeGen across simulations. Neither 𝑁̂𝑏 nor 𝑁̂𝑒 

was significantly correlated with number of breeding mothers, or SDV of males or females, 

across most replicate simulations.  

 

CRF 

 Models with and without migration both showed strong effects of CRF, with sharp 

declines in census size observed across all levels of CRF (Figure 4.1).  However, after ~10 

generations of initiating CRF all estimators oscillated around a stable size, except for at high 

CRF (≥ 70%) where populations declined towards extinction. For models without migration, 

extinction risk increased with increasing CRF probabilities over 40%, with extinction probability 

> 50% when CRF was above 70% (Table 4.3). There was no extinction when including 

migration in the model. Increasing probability of CRF led to decreased lambda estimates across 

all estimators (NC, NeGen, and NbGen; Table 3), except when CRF was ≥ 70% in models 

including migration where 𝑁̂𝑒Gen increased with increasing CRF.  

 The majority of effective size to census size ratios at the end of simulations (generation 

80) were similar across low to median probabilities of CRF (CRF ≤ 50%), and became variable 

at higher CRF probabilities (Figure 4.2). In particular, 𝑁̂𝑏Gen /Nc ratios were remarkably stable 

across most levels of CRF, up to ≥70% CRF in models without migration, and across all levels 

of CRF when including migration. Similar patterns were apparent when looking at ratios 

temporally across generations, 𝑁̂𝑏Gen /NC and 𝑁̂𝑒Gen / NC ratios were stable at low to median 

levels of CRF (CRF ≤50%), and became variable at higher CRF probabilities (Figure 4.3). 

Again, 𝑁̂𝑏Gen /NC ratios were more stable than 𝑁̂𝑒Gen / NC.  All ratios showed greater temporal 

stability when including migration in models.  
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Sample size and sensitivity analysis 

 The subsampled dataset of 30 microsatellite markers and 60 sampled individuals yielded 

slightly negatively biased estimates of effective sizes (Figure C.1), and fewer correlations of 

𝑁̂𝑏Gen with census size relative to the complete dataset (Table C.6). Sensitivity analysis revealed 

that changes in juvenile survival had the largest influence on adult abundance (Table 4.5, for full 

sensitivity analysis see Table C.7). The proportion of breeding adults impacted extinction risk 

with CRF ≥70% for models with no migration. Eliminating density-dependent age to first 

breeding had little impacts on results, except at 60-70% CRF where including it maintained 

slightly larger population sizes. 

 

Discussion 

 Understanding the relationship between Nb, Ne, and NC is critical when applying genetic 

monitoring for biological conservation, yet remains difficult in iteroparous species with complex 

life-histories. My simulation study incorporated life-history characteristics common in pond-

breeding amphibians allowing me to quantify annual 𝑁̂𝑏 estimated with both genetic and 

demographic data, 𝑁̂𝑒, and NC, and generate predictions about future genetic viability and 

extinction risk under multiple levels of CRF, a proxy for climate change. I highlight several 

important findings. First, my results demonstrate that genetically estimated 𝑁̂𝑏  is positively 

correlated with NC across multiple levels of CRF in isolated and subdivided amphibian 

populations, and can potentially be informative in inferring abundance and detecting population 

declines in amphibians at a contemporary scale. Second, I provide evidence of the consequences 
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of CRF on population viability of A. opacum populations. In the following sections, I discuss 

these findings in the context of genetic monitoring and conservation of amphibian populations.  

 

Effective size relation to census size  

Using genetic monitoring to infer changes in population abundance requires a clear and 

predictable relationship to infer NC from 𝑁̂𝑒 or 𝑁̂𝑏, and therefore stability of Ne/NC or Nb/NC 

ratios across time and demographic conditions (Luikart et al. 2010; Palstra & Ruzzante 2008). I 

found stability of effective size ratios temporally and across low to moderate levels of CRF, but 

saw ratios increase when CRF was high. This environmentally-driven variation in ratios implies 

interactive effects with life-history, and possible density-dependent processes at decreased 

population sizes, i.e. ‘genetic compensation’ (Palstra & Ruzzante 2008). I modeled increased 

survival and breeding probability with low larval densities, which could maintain population size 

and buffer genetic diversity loss when populations decline. I also observed short-term 

fluctuations in NC across all simulations, yet most models showed overall long-term stability of 

population size. This stability was observed in both Ne and Nb estimates, and suggests genetic 

monitoring is reflective of long-term trends, and not short-term fluctuations common to 

amphibians (Alford & Richards 1999; Pechmann & Wilbur 1994). Given these findings, genetic 

monitoring for inferring contemporary abundance trends has potential in amphibian populations, 

but is generally not advisable in populations where CRF is known to be high. 

 In long-lived species with overlapping generations, using large samples of mixed-age 

cohorts for Ne estimation approximates per-generation Ne (Robinson et al. 2014; Waples & Do 

2010). However, these models assume a constant population size, and when applied in declining 

or variable sized populations the relationship between NC and Ne is difficult to interpret, and the 
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exact time period to which 𝑁̂𝑒  applies is difficult to determine. Maybe not surprisingly then, I 

saw few correlations between Ne and NC because the estimate of Ne is reflecting the entire 

generation where NC was variable, and not the single year from which I calculated NC. This also 

complicates the relationship between Nb and Ne, with Nb tracking evolutionary factors at an 

ecological scale in a single season, with Ne relating to evolutionary processes acting across 

overlapping generations (Waples & Antao 2014). Given the complexity of properly linking per 

generation Ne with NC in variable sized populations, Ne may not be the best tool for short term 

detection of population declines, but is itself an important indicator of population viability and 

evolutionary potential. 

 

Sample size limitations  

Overall, I found census size to be positively correlated with 𝑁̂𝑏𝐺𝑒𝑛 across the majority of 

our modeled scenarios. Several empirical studies support this finding and have found positive 

correlations between 𝑁̂𝑏𝐺𝑒𝑛 and 𝑁̂𝐶 in other species (Charlier et al. 2012; Osborne et al. 2010). 

However, other studies have failed to detect any correlation, highlighting that genetic monitoring 

using Nb estimation may not be a panacea across systems (Duong et al. 2013; Whiteley et al. 

2015). My simulation based study did not have the constraint of limited numbers of sampled 

individuals or genetic markers, which may have large influences on accuracy and precision of 𝑁̂𝑒 

and 𝑁̂𝑏 in empirical studies that often go unnoticed (Tallmon et al. 2010). When analyzing the 

subsampled dataset with numbers of microsatellite markers and sampled individuals commonly 

used in population genetic studies, I found fewer correlations between 𝑁̂𝑏𝐺𝑒𝑛 and 𝑁̂𝐶. This was 

most evident when population size was large, resulting in large variance in effective size 

estimates, and a negative bias. This result demonstrates the potential benefit of genetic 
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monitoring using Nb measured from single-aged cohorts over time, but cautions that sufficient 

sampling is critical for accuracy. 

 

Catastrophic reproductive failure 

I tested a large range of CRF probabilities to evaluate their impact on genetic diversity, 

NC, and extinction risk. Over the course of the models, most replicate populations experienced 

declines in census size from increasing levels of CRF, but no losses of genetic diversity until 

CRF was 80% and above. Fluctuations in population size were also apparent when imposing any 

level of CRF, and although this is suggested to be one of the largest variables reducing Ne/NC, 

ratios remained stable across most models (Frankham 1995). Maintenance of Ne and genetic 

diversity with moderate levels of CRF is encouraging for population and evolutionary viability 

of A. opacum populations, and is likely the result of a long life span allowing for high lifetime 

fitness and cumulative fecundity despite missed breeding in some years due to environmental 

stochasticity.  

Significant extinction risk became apparent at 70% probability of CRF, yet probabilities 

this high are unlikely across most small ephemeral ponds in the southeastern US, with 

probabilities of 10-40% being more in-line with current conditions (Daszak et al. 2005; 

Semlitsch et al. 1996). However, extreme climatic conditions are predicted to increase into the 

future, with the potential to increase CRF probabilities and extinction risk to levels observed in 

my models. Increased drought conditions have already been observed throughout the 

southeastern US with correlated declines in many amphibian populations (Walls et al. 2013b). 

Sensitivity analysis revealed juvenile and adult survival had large influences on census size. This 

suggests that improving conditions at the terrestrial level to increase survival would increase 
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persistence probability of A. opacum populations. This result emphasizes the importance of 

terrestrial buffer zones adjacent to breeding wetlands, which should be much larger than 

previously thought to adequately protect A. opacum populations (Scott et al. 2013). 

The final Ne over my simulations ranged from 163 to 1485 (750-2099 with migration), 

falling slightly above the Ne estimates from a previous empirical study of A. opacum at an 

ephemeral wetland in South Carolina, USA (Ne = 152) (Nunziata et al. 2015). Estimates from 

my empirical study were likely affected by individual sample size and the amount of marker 

information (number of loci and alleles). Genetically estimated Ne from other amphibians are 

often much lower than observed in my models, often falling below 100 (Funk et al. 1999; Jehle 

& Arntzen 2002; Savage et al. 2010; Wang et al. 2011). My results suggest that CRF alone does 

not act to reduce Ne to such low levels, with reasons likely being population specific, such as 

historical demography and habitat quality.  

 

Gene flow 

 Amphibian populations often exhibit metapopulation structure across landscapes, with 

gene flow acting to maintain genetic variation and buffer extinction risk. I found that including a 

moderate level of migration in models had large impacts on maintenance of genetic diversity and 

overall extinction risk by allowing for the rescue of declining populations. This source-sink 

dynamic is well documented in amphibian populations, where sink populations can be 

maintained through migrants from stable populations. I observed high genetic diversity and 𝑁̂𝑒  

in migration models when probability of CRF was 80-100% (i.e. a sink population), as the 

majority of sampled individuals were migrants. This highlights the dangers of limiting genetic 

sampling to single ponds, where one could misidentify a declining sink population as stable 
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(Griffiths et al. 2010). Preserving metapopulations as a whole and maintaining connectivity of 

habitat patches may allow A. opacum and other amphibian species to cope with environmental 

stochasticity and drought conditions and retain genetic diversity and census size. Management at 

the pond level should be focused on source populations, with special attention to ensure that they 

have been properly identified and not in fact population sinks.  

 

Conclusions 

 This study highlights the utility of genetic monitoring to track contemporary population 

size trends in amphibians. My findings are relevant to other Ambystoma species of conservation 

concern that have similar but less well documented life-history characteristics, such as the 

endangered flatwoods salamander (A. cingulatum). Optimistically, my models illustrate that 

fluctuations in population size from CRF do not cause large decreases in genetic diversity or Ne, 

at least at low to moderate levels of CRF. I emphasize that population management and 

monitoring of pond-breeding amphibians should be focused at the landscape scale, keeping in 

mind that local populations acting as sinks could be misidentified as stable if metapopulation 

structure is not accounted for. One important aspect of species conservation is that multiple 

stressors are acting on populations at any one time, and can be interactive and/or additive (Weir 

et al. 2016). Here, I focus on CRF and provide guidelines for persistence in the face of this risk, 

but this does not mean pond-breeding amphibians do not face other important threats. 

Understanding the impacts of multiple concurrent stressors, as well as interactive effects of co-

occurring species will be critical for designing conservation management plans and will be the 

focus of future modeling efforts.  
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Table 4.1. Average proportion of allelic diversity (AD) and expected heterozygosity (He) 

remaining in Ambystoma opacum models at the end of simulations (generation 80 relative to 

generation 30) over 100 replicate simulations, or of those replicates not extinct at end of 

simulation.  

 Base Model-No Migration Base Model-With Migration 

Probability of CRF (%) AD He AD He 

0 0.98 1.00 1.00 0.99 

10 1.00 1.00 1.00 1.00 

20 0.99 1.00 0.99 1.00 

30 0.99 1.00 1.00 1.00 

40 0.97 0.99 1.00 1.00 

50 0.96 0.99 0.99 1.00 

60 0.95 0.98 1.00 1.00 

70 0.92 0.97 0.99 1.00 

80 0.37 0.62 1.00 1.00 

90 0.20 0.40 0.99 0.99 

100 - - 0.99 0.99 
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Table 4.2. Number of times Spearman rank correlations were significant (p < 0.05) for Ambystoma opacum models with and without 

migration (mig.) over 100 replicate simulations under different probabilities of catastrophic reproductive failure (CRF). Mean 

Spearman rank correlation coefficients across replicates are in parentheses. 

 No CRF 20% CRF 40% CRF 60% CRF 

  no mig. with mig. no mig with mig. no mig. with mig. no mig. with mig. 

Census v. NbDemo 100 (0.59) 99 (0.58) 100 (0.63) 100 (0.65) 81 (0.40) 72 (0.36) 28 (0.17) 28 (0.17) 

Census v. NbGen 5 (0.20) 11 (0.17) 83 (0.75) 86 (0.75) 99 (0.86) 99 (0.88) 96 (0.77) 100 (0.92) 

Census v. NeGen 4 (0.00) 2 (0.02) 11 (0.27) 9 (0.08) 8 (0.30) 4 (0.04) 8 (0.20) 2 (-0.01) 

Moms v. NbGen 7  (0.16) 11 (0.18) 43 (0.51) 35 (0.51) 18 (0.30) 18 (0.27) 7 (0.07) 5 (0.11) 

Moms v. NeGen 2 (0.01) 5 (0.04) 7 (0.15) 7 (0.02) 8 (0.11) 4 (-0.01) 7 (0.05) 2 (-0.05) 

NbGen v. NeGen 2 (-0.01) 3 (0.06) 32 (0.46) 13 (0.20) 37 (0.53) 11 (0.22) 14 (0.21) 6 (0.12) 

SDVmale v. NbGen 8 (-0.09) 8 (-0.13) 7 (0.05) 5 (0.04) 8 (0.11) 5 (0.14) 5 (0.05) 5 (-0.05) 

SDVmale v. NeGen 6 (0.00) 4 (-0.02) 10 (-0.04) 8 (-0.13) 3 (-0.04) 4 (-0.12) 11 (-0.10) 6 (-0.15) 

SDVfemale v. NbGen 11 (-0.06) 8 (-0.08) 8 (-0.01) 8 (0.00) 10 (0.10) 6 (0.14) 7 (0.04) 5 (-0.05) 

SDVfemale v. NeGen 7 (-0.01) 3 (0.01) 7 (-0.1) 8 (-0.16) 5 (-0.04) 5 (-0.11) 11 (-0.10) 7 (-0.14) 
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Table 4.3. The probability of extinction and average 𝝀̂ (λ = NGen80/NGen30) for Ambystoma 

opacum under different probabilities of catastrophic reproductive failure (CRF) at the end of 

simulations (Generation 80) over 100 replicate simulations, or of those replicates not extinct at 

end of simulation.  

 Base Model-No Migration Base Model-With Migration 

CRF (%) Extinction 𝜆̂ Nc 𝜆̂ NeGen 𝜆̂ NbGen Extinction 𝜆̂ Nc 𝜆̂ NeGen 𝜆̂ NbGen 

0 0 1.00 0.99 1.01 0 1.00 1.08 1.04 

10 0 0.93 0.90 0.93 0 0.91 0.98 0.93 

20 0 0.88 0.77 0.84 0 0.90 0.84 0.90 

30 0 0.76 0.66 0.74 0 0.78 0.76 0.76 

40 0 0.72 0.56 0.66 0 0.67 0.68 0.66 

50 4 0.57 0.42 0.51 0 0.58 0.55 0.54 

60 6 0.47 0.29 0.37 0 0.42 0.50 0.40 

70 40 0.21 0.18 0.27 0 0.34 0.55 0.32 

80 75 0.04 0.11 0.10 0 0.20 0.64 0.20 

90 99 0.00 0.00 0.00 0 0.09 0.92 0.11 

100 100 0.00 0.00 0.00 0 0.05 1.37 0.06 
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Table 4.4. Summary of sensitivity analysis under different probabilities of catastrophic reproductive failure (CRF) for Ambystoma 

opacum models with and without migration (mig.).  

 

No CRF 20% CRF 40% CRF 60% CRF 80% CRF 

Parameter, by endpoint 

no 

mig. 

with 

mig. 

no 

mig. 

with 

mig. 

no 

mig. 

with 

mig. 

no 

mig. 

with 

mig. 

no 

mig. 

with 

mig. 

Adult pop Size 

          Base Model 3651 3652 3221 3282 2628 2437 1718 1515 136 738 

Juvenile Survival 0.61 0.60 0.56 0.55 0.48 0.54 0.37 0.44 0.01 0.38 

Adult Survival 0.78 0.78 0.78 0.75 0.66 0.73 0.61 0.64 0.08 0.58 

Proportion Breeding 1.06 1.05 1.00 1.00 0.97 1.08 0.76 1.27 1.09 1.01 

No Density-Dependent 

Breeding* 1.00 1.00 0.97 0.99 1.00 0.96 0.82 0.99 1.05 0.99 

Extinction risk 

          Base Model 0 0 0 0 0 0 0.06 0 0.75 0 

Juvenile Survival 0 0 0 0 0 0 0.15 0 0.94 0 

Adult Survival 0 0 0 0 0 0 0.12 0 0.91 0 

Proportion Breeding 0 0 0 0 0.01 0 0.15 0 0.71 0 

No Density-Dependent 

Breeding* 0 0 0 0 0 0 0.12 0 0.70 0 

Notes: Each parameter was decreased by 10%. Adult population size is in proportion to the base model. *This model does not include 

density-dependent age at first reproduction, i.e. no individuals breed at age one. 
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Figure 4.1.  Ambystoma opacum mean census size (black line) and NbDemo (dashed line) each generation, with NbGen (filled circles), 

and NeGen(open squares) every 5 generations, over 80 years of projections. Catastrophic reproductive failure (CRF) was imposed 

after 30 year burn-in (vertical line). Top panels represent 20% probability of CRF (A&D), middle 40% (B&E), and bottom 60% 

(C&F). Left panels (A-C) represent models with no migration, and right panels (D-F) are models with migration. 
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Figure 4.2.  Ambystoma opacum mean effective size to census size ratios at generation 80 across multiple probabilities of catastrophic 

reproductive failure (CRF), represented are models without migration (A), and including migration (B).  
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Figure 4.3.  Ambystoma opacum mean effective size to census size ratios across generations at multiple levels of catastrophic 

reproductive failure (CRF), represented are models without migration (A), and including migration (B).  
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CHAPTER FIVE 
 

TEMPORAL CHANGES IN POPULATION CONNECTIVITY AND EFFECTIVE 

POPULATION SIZES ACROSS TWO SALAMANDER METAPOPULATIONS 

 

Abstract 

 Environmental shifts can impact population demography across a landscape, with 

influences on census size, Ne, and population connectivity. In a previous study focused at a 

single wetland (Rainbow Bay), I found genetic-based Ne estimates between two temporally 

sampled time points supported population size trends that corroborated mark-recapture data in 

two species of salamanders (Ambystoma opacum expansion, A. talpoideum decline). The goal of 

this study was to estimate the geographic scale reflected by these demographic inference results 

and to characterize how migration may have changed across the landscape. I generated ddRAD 

data from 7 additional wetlands surrounding the focal Rainbow Bay wetland, estimated Ne at 

each wetland, as well as population structure and migration paths between wetlands. For both 

species I found significant differences between Ne estimates at the subpopulation (wetland) level, 

despite the appearance of panmictic population structure within a neighboring cluster of 

wetlands. Population structure across the landscape differed between species, and showed 

temporal stability in A. opacum and temporal changes in A. talpoideum. These preliminary 

results suggest that demographic history can be detected at the subpopulation (wetland) level 

using genomic datasets, even over recent time and fine geographic scales with the presence of 

migration. This study is ongoing, and I am currently modeling alternative patterns of population 

structure, and evaluating temporal changes in connectivity.  

  



112 
 

Introduction 

Understanding the demographic response of species to environmental disturbance such as 

habitat loss, modification, and climate change is critical in conservation management. Estimates 

of effective population (Ne) provide information on population abundance and demographic 

history, offer insight into the evolutionary history and genetic viability of populations, and are 

useful for monitoring the status of populations of conservation concern (Schwartz et al. 2007). 

However, the continuous distribution of individuals across landscapes creates complications in 

the estimation and interpretation of Ne, with a major question being what geographic scale is 

reflected in contemporary Ne estimates (Neel et al. 2013). Most species do not occur as 

independent and isolated populations, but instead occur in networks that vary in their degree of 

connectivity spatially and temporally.  

In disturbed habitats, migration and dispersal are important for population viability, and 

allow for maintenance of population size, genetic diversity, and recolonization after local 

extinction events (Hanski 1998). Estimating and understanding Ne simultaneously with migration 

is critical when applying estimates within conservation and monitoring frameworks. If migration 

is left unaccounted for in Ne estimation models, its influences can be attributed to drift, creating 

biased Ne estimates (Gilbert & Whitlock 2015; Wang & Whitlock 2003; Waples & England 

2011). However, disentangling the contributions of population growth trajectory and migration 

to Ne is difficult when population size is variable and unlikely to be at drift-migration 

equilibrium (Leblois et al. 2006). Additionally, when continuously distributed populations face 

disturbance, Ne and migration may both be impacted simultaneously. Comparative studies of Ne 

and migration that incorporate temporal samples from populations undergoing population size 
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changes may provide important insights into population dynamics within structured populations, 

and the geographic scale of disturbance reflected in Ne estimates.  

In a previous study, I studied the utility of genetically-based demographic inference and 

Ne estimation on salamander species with documented population declines (Ambystoma 

talpoideum) and expansions (A. opacum) (Nunziata et al. 2016); patterns that have been shown 

to be correlated with changes in wetland hydroperiod (Daszak et al. 2005). For both species, I 

found genetic-based Ne estimates between two temporally sampled time points supported 

population size trends that corroborated mark-recapture data. However, sampling was limited to 

a single wetland (Rainbow Bay) in both species. Both species exist in metapopulations across the 

landscape with breeding wetlands acting as subpopulations connected by migration, as revealed 

through mark-recapture data and a previous landscape genetic study (Kinkead et al. 2007). It is 

unclear how the genetic interaction between individual subpopulations across the landscape 

influenced the observed population size trends at Rainbow Bay, if Ne estimates were actually 

reflective of a larger geographic scale beyond Rainbow Bay, or how migration itself may have 

responded as population size at the wetland level changed.  

The goal of this study was to characterize the metapopulation structure within which 

Rainbow Bay exists and estimate how migration may have changed across the landscape as 

populations of A. opacum and A. talpoideum at Rainbow Bay have changed in size. I sampled 

from 7 additional wetlands surrounding Rainbow Bay, one of which was sampled temporally, to 

address the following questions: (1) at what geographic scale does population structure exist, (2) 

are differences in Ne and demographic history apparent between wetlands, and (3) has the 

connectivity between wetlands changed over time. The results of this study will elucidate if 

Rainbow Bay exists as an isolated or structured population, and reveal if demographic history 
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and Ne estimates can be distinguished between neighboring wetlands that exist within a larger 

metapopulation. This also has broader implications for scale of sampling in investigating 

population demography using genetics in continuously distributed populations.  

 

Methods 

Population sampling  

The Savannah River Site (SRS) is a US Department of Energy facility on the Upper 

Coastal Plain of South Carolina (Figure 5.1). I sampled tissue from 8 wetlands for A. opacum, 

and 7 wetlands for A. talpoideum, including samples from Rainbow Bay which were generated 

for a previous study (Nunziata et al. 2016). Samples were analyzed temporally for both Rainbow 

Bay and Gingers Bay. From Ginger’s Bay, I pooled samples collected prior to 2000 (Pre-2000), 

and after 2000 (Post-2000) for temporal comparison. Rainbow Bay sampling is described in my 

previous study (Nunziata et al. 2016) and includes samples from twelve A. opacum in both 1993 

and 2013, and 24 A. talpoideum in both 1984 and 2011. All other wetlands were only sampled 

from contemporary time points with sample collection taking place between 2014 and 2016. A 

total of 120 A. opacum and 117 A. talpoideum individuals were sequenced, with a mean of 12 

and 13 individuals per population for each species, respectively. Most individuals sampled were 

larvae or metamorphs collected at breeding wetlands. Adults were collected from two wetlands 

in each species when larvae were not available temporally, or where larvae could not be 

collected (Table D.1). 
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ddRAD sequencing 

Whole genomic DNA was extracted using a Qiagen® DNEasy Blood and Tissue Kit, 

following protocols recommended by the manufacturers. I followed the ddRAD library 

preparation protocol used for Rainbow Bay samples as outlined in my previous study (Nunziata 

et al. 2016), modified slightly from Peterson et al. (2012). Four library pools were prepared for 

A. opacum, each containing 24 samples mixed between sampling sites. Three library pools were 

prepared for A. talpoideum, two containing 24 samples and one with 21 samples, all mixed 

between sampling sites. The pooled ddRAD libraries were sequenced separately on seven lanes 

of an Illumina HiSeq 2500 at Florida State University’s College of Medicine using 150 base-pair 

paired-end reads. To increase sequence diversity in the initial portions of sequence reads I used 

an additional 1% spike in of PhiX control library.  

 

Quality filtering and variant detection 

Sequences were subjected to standard Illumina chastity filtering and then demultiplexed, 

quality filtered, and SNPs called using STACKS v.1.37 (Catchen et al. 2013; Catchen et al. 

2011). To avoid the inclusion of linked sites only first reads were retained. Demultiplexing and 

quality-filtering were done with the process_radtags program in STACKS v1.37. The 

denovo_map.pl script in Stacks was used to identify unique RAD loci and call SNPS, with 

default settings except minimum coverage (m=3), number of mismatches allowed between RAD 

loci for an individual (M=3), and number of mismatches allowed when building the catalog 

(n=2). SNP genotypes were called using a multinominal-based likelihood model accounting for 

sequencing errors using a conservative upper bound error rate of 0.2. 
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The populations script in Stacks was used to generate population datasets with loci that 

occurred in at least 4 sampling sites (p = 4), in at least 50% of individuals at each site (r = 0.50) 

and with a minimum sequencing coverage of 10x (m = 10). To avoid the inclusion of linked, 

non-independent SNPs, only a single SNP was allowed per RAD locus (--write_single_snp). 

After an initial run of the stacks pipeline I excluded 18 A. opacum individuals, and 4 A. 

talpoideum individuals due to excessive missing data (Table D.1). This brought the total number 

of wetlands sampled down to 7 for A. opacum as all individuals from Linda’s had excessive 

missing data. This resulted in 104,623 SNPs in A. talpoideum and 75, 805 SNPs in A. opacum. 

Further filtering was done in vcftools to retain SNPs only genotyped across 50% of all 

individuals. This resulted in 38,126 SNPs for A. talpoideum and 42,879 SNPs for A. opacum.  

 

Population genomics 

Nucleotide diversity estimates were calculated separately for each sampled wetland and 

were based on individual SNPs. I estimated observed heterozygosity (Hetobs), nucleotide 

diversity (π), and Wright’s F-statistic (FIS), as calculated using the populations script in Stacks. 

To examine differentiation among wetlands, I also calculated pairwise FST between all wetland 

pairs using the populations script and separately in Arlequin v.3.5.2.2 (Excoffier & Lischer 

2010). To test for isolation by distance (IBD) I compared genetic distance to natural logarithm of 

geographic distance, and performed Mantel tests in R using the ADE4 package with 10,000 

permutations. Genetic distance was calculated as the ratio FST/(1-FST). Geographic distances 

(meters) between wetlands were calculated using ArcGIS v10.3 and a least cost path analysis. 

Least cost path analysis is a distance analysis tool that calculates the least accumulative cost 

route between a source and destination over a cost surface. A cost distance surface was created 
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by using a slope raster generated by a digital elevation model. Steeper slopes were assigned 

higher costs when reclassifying this dataset. Using the slope cost path dataset least cost routes 

were drawn and measured from a source wetland to a destination wetland. 

Estimates of Ne were generated for each wetland and temporal sample pool using the 

linkage disequilibrium method implemented in NeEstimator v2.01 (Do et al. 2014). This method 

measures the deviation from the expected genotype frequency based on allele frequencies in the 

population, which increases in small populations due to drift (Hill 1981). Using the complete 

SNP dataset exceeded memory requirements for NeEstimator. Therefore, I filtered the SNP 

dataset to retain SNPs only genotyped across 75% of all individuals resulting in a dataset of 

13,585 SNPs in A. opacum and 15,124 SNPs in A. talpoideum. 

 

Genetic structure and population differentiation 

 To infer genetic clusters of individuals and the degree of admixture in individuals I used 

two Bayesian clustering programs: ADMIXTURE v.1.3.0 (Alexander et al. 2009) and 

fastSTRUCTURE v.1.0 (Raj et al. 2014). Data was filtered to exclude SNPs with minor allele 

frequency (MAF) less than 0.05, which have been shown to create biases in quantifying genetic 

connectivity (Benestan et al. 2015; Roesti et al. 2012), resulting in 30,187 SNPs for A. opacum 

and 22,781 SNPs in A. talpoideum. ADMIXTURE was run using default parameters and models 

were fit with K ranging from 1 to 10, with the optimal K chosen as having the lowest cross-

validation error. fastSTRUCTURE uses a similar algorithm as the program STUCTURE 

(Pritchard et al. 2000) to estimate global ancestry, but runs faster on large genome wide SNP 

datasets by employing a variational inference scheme. I conducted analyses with K ranging from 

1 to 10 using a beta flat prior, or “simple prior”. The most likely value of K was identified by 
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calculating heuristic scores using the chooseK.py script in fastSTRUCTURE. After identifying 

the most likely values of K, I reran fastSTRUCTURE using those K values and a logistic prior, 

which is more computationally demanding but better at resolving subtle structure. For both 

ADMIXTURE and fastSTRUCTURE, I used the web server CLUMPAK (Cluster Markov 

Packager Across K) to visualize bar plots across multiple values of K (Kopelman et al. 2015).  

 

Landscape genomics 

I used a Bayesian assignment test in BAYESASS v.3.04 (Wilson & Rannala 2003) to 

estimate gene flow between wetlands, and to look for changes in migration rate over time. 

BAYESASS was run for 100,000,000 Markov chain Monte Carlo (MCMC) iterations, discarding 

the first 10,000,000 iteration as burnin and sampling every 1000 iterations. A migration rate 

mixing parameter (m) of 0.3 was used to optimize the acceptance rate. Convergence of runs was 

assessed in Tracer v 1.5 (Rambaut & Drummond 2012). To balance adequate sampling and 

computational effort, I used the dataset generated for NeEstimator, outlined above, with 13,585 

SNPs in A. opacum and 15,124 SNPs in A. talpoideum. 

 I estimated mutation-scaled migration (M) and Ne (θ), and looked for changes between 

historical and contemporary populations using MIGRATE-n v.3.6.11 (Beerli 2006). Since 

MIGRATE-n is better suited to DNA sequences than SNP data, I used the entire 146-bp 

sequences in these analyses. To balance sample size and computational effort, subsamples of 

250, 500, and 1000 loci were randomly chosen and used as input. Initial runs were used to find 

priors for M and θ, after which each analysis was run twice to ensure consistency with the 

following settings: a burnin of 20 million steps, and then 10 million generations with metropolis 

sampling every 1000 steps.  
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 I tested 3 models of population connectivity for each species, using two different datasets 

to investigate if Ne and connectivity have changed over time (Figure 5.2). My sampling scheme 

did not allow me to estimate gene flow historically between all sampled wetlands. Instead, my 

estimates of historical connectivity were based on a dataset that included historical samples from 

Rainbow and Gingers Bay and contemporary samples from other wetlands. I make the 

assumption that because all sampled wetlands except Rainbow Bay showed large and temporally 

stable census-size over this short time span, the genetic composition of individual wetlands 

should be comparable over the sampling time span. This allows me to investigate if connectivity 

of Rainbow Bay with other wetlands has changed in conjunction with observed population size 

trends. For comparison, I estimated contemporary connectivity using a dataset that included 

contemporary samples from Rainbow and Gingers Bay and contemporary samples from other 

wetlands. The following three models were evaluated independently for each dataset: (i) 

panmixia of all wetlands, (ii) full migration between all wetlands, and (iii) the Rainbow Bay 

metapopulation is one panmictic population with migration paths with other wetlands (see Figure 

5.2 for model schematics). Model choice was compared by ranking marginal likelihoods between 

different models and calculating their probabilities based on the Bayes factor (Beerli & 

Palczewski 2010).  

 

Results 

Population genomics 

 Genetic diversity estimates were similar between all wetlands for A.talpoideum, while 

Flamingo Bay showed lower genetic diversity compared to other wetlands for A. opacum (Table 

5.1). Between species, genetic diversity was slightly higher in A. opacum; this pattern was 
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apparent across all sampled wetlands. Estimates of Ne using NeEstimator reached infinity for 

most wetlands (Table 5.2), indicating that the signal of drift cannot be distinguished from 

sampling error to accurately generate Ne estimates (Waples & Do 2010). However, both sampled 

years for A. talpoideum generated finite estimates of Ne, and showed a clear and significant 

signal of decline. 

 

Genetic structure and population differentiation 

 Bayesian clustering tests revealed no population structuring for the wetlands immediately 

surrounding Rainbow Bay (NPR, Pickerel, Lindas, Bullfrog, and NPR) for A. opacum or A. 

talpoideum, hereafter referred to as the Rainbow Bay cluster. I reran fastSTRUCTURE and 

ADMIXTURE for the Rainbow Bay cluster, and found no further sub-structuring in either 

species. All other more distant wetlands grouped into separate clusters for A. opacum, with an 

optimal K of 4 using fastSTRUCTURE and ADMIXTURE (Figure 5.3). Population structure for 

A. talpoideum also distinguished these wetlands as largely differentiated, but recognized a large 

number of individuals with admixed ancestry, with an optimal K of 6 for both fastSRUCTURE 

and ADMIXTURE. Pairwise FST values were low to moderate (Tables 5.3 and 5.4) and were 

generally similar between species (Stacks estimates: A. opacum: 0.027-0.101; A. talpoideum: 

0.029-0.128). Isolation by distance was obvious for the contemporary population of A. opacum, 

with borderline significance (R
2
 = 0.932, p = 0.079) and showed a similar pattern when using 

historical samples from Rainbow and Gingers Bay (R
2
 = 0.870, p = 0.095); while IBD was 

absent for A. talpoideum in both contemporary and historical samples (contemporary: R
2
 = -

0.126, p = 0.850; historical: R
2
 = -0.150, p = 0.906). 
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Landscape genomics 

For A.opacum, the BAYESASS estimates of migration rates between wetlands were low 

(mean values of 0.0157-0.0186), with the exception of the proportion of Bullfrog Bay migrants 

to other wetlands within the Rainbow Bay cluster (mean values 0.1795-0.2064) (Table 5.5). 

These results suggest that Bullfrog Bay supplies a greater proportion of migrants to wetlands 

within the Rainbow Bay cluster, relative to other wetlands. There were no significant difference 

in migration rates between temporal samples and other sampled wetlands. Estimates of migration 

were similar for A. talpoideum (mean values 0.0100-0.1025); with the only significant migration 

routes being from NPR to Linda’s and Pickerel (Table 5.5). 

MIGRATE-n runs are computationally demanding and are still in progress. 

  

Discussion 

 Environmental shifts can impact population demography across a landscape, with 

influences on census size, Ne, and population connectivity. Life-history characteristics will 

dictate the response of individual species to disturbance, and even species with similar life-

history can have differing responses. In this study, I examined two co-occurring species of 

Ambystoma salamanders with observed population trends at a single wetland (A. opacum 

expansion, A. talpoideum decline) from a landscape perspective and observed clear differences in 

the genetic structure and migration patterns between species. For A. opacum I observed an 

isolation-by-distance pattern, limited gene flow between geographically distant sites, and the 

appearance of panmictic population structure within the Rainbow Bay wetland cluster. For A. 

talpoideum, there was no isolation by distance pattern, admixture of individuals was apparent in 

geographically distant wetlands, and the Rainbow Bay wetland cluster appeared to be composed 
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of individuals with largely admixed ancestry. In both species there were differences in Ne at the 

subpopulation (wetland) level, with preliminary evidence of asymmetric gene flow between 

wetlands in A. opacum, and changes in population structure over time in A. talpoideum. This 

study is currently ongoing, and it will be exciting to test further models of migration and Ne 

patterns from a temporal perspective and compare capture-mark-recapture estimates of census 

size and migration to Ne and gene flow. For now, I discuss the results to date below.  

    

Effective population size 

 Interestingly, I found significant differences in Ne at neighboring wetlands within the A. 

opacum Rainbow Bay cluster, despite the appearance of panmictic population structuring in 

Bayesian clustering assignments and non-significant pairwise FST between most wetlands. In the 

four wetlands sampled within the Rainbow Bay cluster, three had finite estimates of Ne with 95% 

CIs suggesting significant differences between wetlands. Bullfrog Bay was the only wetland 

where Ne could not be precisely estimated and was estimated as infinite; presumably the result of 

a large Ne. The Bullfrog Bay wetland also appeared to supply a disproportionate number of 

migrants to the other wetlands as revealed through BAYESASS analyses. This wetland is located 

centrally to the other wetlands and had a higher density of larvae than other wetlands at the 

sampling time. However, FST between the wetlands of the Rainbow Bay cluster was very low 

(FST < 0.01) and may be leading to biased estimates at this low level of differentiation (Faubet et 

al. 2007). Further exploration with migrate-n may help elucidate if these patterns are real, or the 

result of low genetic differentiation between wetlands.  

 For A. talpoideum, the only wetland yielding finite estimates of Ne was Rainbow Bay, 

which showed a decrease in Ne over time. I failed to detect this pattern in an earlier analysis of 
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this data using a different subset of SNPs (Nunziata et al. 2016). It is possible that the large 

number of SNPs (45,027 SNPs) used for Ne estimation in (Nunziata et al. 2016) produced a 

greater noise-to-signal ratio that dissipated when a more stringently filtered and smaller SNP 

dataset was used (15,124 SNPs used here). I am currently subsampling the dataset to assess the 

cause of this discrepancy. Overall, these results indicate that the entire metapopulation of A. 

talpoideum across the SRS is not undergoing the population decline I detected previously at the 

Rainbow Bay wetland, and that source-sink dynamics can be inferred with genomic data. This 

knowledge is useful from a conservation and management context where efforts should be 

focused on source populations. Demographic inference methods can serve as potential tools to 

distinguish source from sink populations, and to estimate the spatial extent of population declines 

where long-term field data is absent. 

 

Landscape genomics 

Species of Ambystoma salamanders have long been thought to have strong natal 

philopatry, breeding site fidelity, and be poor dispersers (Gamble et al. 2007). In several 

population genetic studies of A. opacum strong population structure was found at a localized 

scale, providing support for these hypotheses (Greenwald et al. 2009; Whiteley et al. 2015). I 

found evidence for IBD in A. opacum, which is commonly observed in amphibian populations 

and reflects that gene flow is geographically restricted (Funk et al. 2005; Spear et al. 2005; 

Wang & Summers 2010). Isolation-by-distance was not detected in A. talpoideum, suggesting 

individuals may travel and disperse further than A. opacum. This result is supported by a study of 

the terrestrial distribution of these salamanders surrounding Ginger’s Bay. Ambystoma 

talpoideum individuals were found at greater distances from the wetland than A. opacum (Scott 
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et al. 2013) and although there was no distinguishing between emigrating and dispersing 

individuals, it implies differences in the average movement distances between the two species. 

Both of these species may be predominantly philopatric, but even a small amount of dispersal 

may equate to functional gene flow that homogenizes genetic diversity in neighboring breeding 

wetlands, as evident in wetlands within the Rainbow Bay cluster. 

Estimates of migration from Bayesass indicate no changes in migration temporally as 

population size has changed in both species at Rainbow Bay. For A. opacum estimates of 

pairwise FST were similar over time for both Rainbow and Gingers Bay, and Bayesian clustering 

plots revealed similar genetic structure between sampling time points. However, for A. 

talpoideum distinct genetic changes are obvious at Rainbow Bay, while pairwise FST and genetic 

structure appear stable over time at Ginger Bay. The contemporary Rainbow Bay population 

appears to be derived from individual with mixed ancestry versus the historical sample which 

appears to be a homogeneous genetic cluster, additionally, pairwise FST between Rainbow Bay 

and other wetlands appeared to decline over time. One possible explanation is that as the 

population has declined at Rainbow Bay, a greater proportion of the breeders as Rainbow Bay 

originated from the surrounding wetlands. It will be interesting to compare capture-mark-

recapture data to these results to see if indeed there is a change in proportion of migrants 

breeding at Rainbow Bay over time.  

These results have clear conservation implications on the extent of population structure 

and potential gene flow, and highlight the utility of a genomic perspective on fine-scale 

landscape genetics. In a study published a decade ago assessing population genetic structure in 

these two species across the SRS with AFLP markers, there was no structure detected (Kinkead 

et al. 2007). It is likely that the level of resolution offered by AFLP markers does not provide 
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insight at such a localized scale. The contrasting results between Kinkead et al. (2007) and the 

results presented here highlight the increased resolution into fine-scale population processes a 

genomic perspective can offer.  

However, while genomic datasets may provide increased resolution into fine-scale 

processes they create additional computational problems in their analyses. As outlined in the 

introduction, accurate genetically based estimates of Ne within local populations should account 

for population structure. Here, I estimate local Ne and migration between subpopulations 

separately and speculate on their relationship, but have faced challenges while attempting to 

simultaneously estimate Ne and migration. In my previous study, I employ the program 

fastsimcoal2 to infer recent demography at Rainbow Bay; however the program assumes a tree-

like structure of populations, a framework that is likely violated when applied to a 

metapopulation. I am currently estimating Ne and migration in migrate-n, but when trying to take 

full advantage of the thousands of loci and landscape level sampling, the computational effort 

needed is staggering and impractical. This highlights the limitations that currently exist within 

the field, where data generation is quickly out pacing the ability to analyze these datasets.    

 

Genetic diversity 

Evolutionary processes operating at both contemporary and historical time scales have 

likely both acted to structure the genetic diversity of these breeding populations across the SRS. 

My results indicate genetic diversity was significantly higher in A. opacum than in A. 

talpoiduem, across all sampled wetlands. Genetic diversity in wetland-breeding salamanders has 

been correlated with population connectivity and the size or condition of the wetlands (Cosentino 

et al. 2012; Wang et al. 2011). Because I sampled wetlands where both species co-occur and 
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migration rates appear similar between both species, observed differences in genetic diversity 

between species are likely the result of long-term population processes and historical 

demography.  To answer the question of why genetic diversity differs between the two species, it 

will be necessary to take a comparative approach from a phylogeographic perspective.  
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Table 5.3. Genetic diversity statistics calculated for Ambystoma opacum and A. talpoideum at wetlands across the Savannah River 

Site. Included are average observed heterozygosity per locus (Hetobs), Wright’s inbreeding coefficient (FIS), and the average nucleotide 

diversity (π) with standard errors for each parameter estimate. 

Species Wetland 

Year # of 

individuals 

Lifestage 

Hetobs StdErr π StdErr FIS StdErr 

A talpoideum Rainbow 1984 24 M 0.1455 0.0012 0.1771 0.0013 0.098 0.0229 

A talpoideum Rainbow 2011 24 M 0.1538 0.0012 0.1824 0.0012 0.0964 0.0211 

A talpoideum Gingers Pre-2000 13 A/M 0.1569 0.0013 0.178 0.0013 0.0607 0.0125 

A talpoideum Gingers Post-2000 11 M 0.1573 0.0014 0.176 0.0014 0.0495 0.0105 

A talpoideum Bay 92 2014/2015 12 A/M 0.1578 0.0009 0.1912 0.0009 0.0943 0.0088 

A talpoideum Flamingo 2015 12 L 0.1502 0.0009 0.1847 0.0009 0.0983 0.0074 

A talpoideum NPR 2016 15 L 0.1555 0.0009 0.1872 0.001 0.0969 0.0102 

A talpoideum Pickerel 2016 2 L 0.1523 0.0015 0.1723 0.0015 0.0299 0.002 

A talpoideum Lindas 2016 4 L 0.1546 0.0012 0.1857 0.0012 0.0602 0.0037 

A opacum Rainbow 1993 12 M 0.2178 0.0012 0.235 0.0011 0.0459 0.0094 

A opacum Rainbow 2013 12 M 0.228 0.0013 0.2341 0.0011 0.0197 0.0085 

A opacum Gingers Pre-2000 13 A/M 0.2293 0.0015 0.2413 0.0013 0.0355 0.0121 

A opacum Gingers Post-2000 11 A/M 0.2431 0.0018 0.2359 0.0015 -0.0131 0.0101 

A opacum Bay_92 2015 12 L 0.2406 0.0011 0.2443 0.001 0.0136 0.0064 

A opacum Flamingo 2014 12 A 0.199 0.0013 0.1912 0.0011 -0.0155 0.0084 

A opacum Pickerel 2016 12 L 0.2286 0.0011 0.2398 0.001 0.0338 0.0069 

A opacum Bullfrog 2016 13 L 0.2292 0.0011 0.2403 0.001 0.0344 0.0059 

A opacum NPR 2016 11 L 0.231 0.0012 0.2382 0.001 0.0217 0.0066 
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Table 5.2. Effective population size estimates for Ambystoma opacum and A. talpoideum at wetlands across the Savannah River Site.  

Species Wetland Year Ne (95% CI) 

A talpoideum Rainbow 1984 2011.1 (1555.1-2843.4) 

A talpoideum Rainbow 2011 12.5 (12.4-12.5) 

A talpoideum Gingers Pre-2000 Infinite 

A talpoideum Gingers Post-2000 Infinite 

A talpoideum Bay 92 2014/2015 Infinite 

A talpoideum Flamingo 2015 Infinite 

A talpoideum NPR 2016 Infinite 

A talpoideum Pickerel 2016 Infinite 

A talpoideum Lindas 2016 Infinite 

A opacum Rainbow 1993 Infinite 

A opacum Rainbow 2013 1000.7 (814.0-1298.0) 

A opacum Gingers Pre-2000 Infinite 

A opacum Gingers Post-2000 Infinite 

A opacum Bay_92 2015 Infinite 

A opacum Flamingo 2014 Infinite 

A opacum Pickerel 2016 178.5 (172.6-184.9) 

A opacum Bullfrog 2016 Infinite 

A opacum NPR 2016 11.7 (11.6-11.7) 
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Table 5.3. Pairwise FST values as calculated by Stacks (above the diagonal) and Arlequin (below the diagonal) for Ambystoma 

talpoideum. Absolute values differ because of differences in how the programs treat missing data and nonpolymorphic sites. 

Significance was determined with 10,000 permutations in Arlequin, values in bold are significant at the 0.05 level. 

 

RB_1984 RB_2011 GB_Pre-2000 GB_Post-2000 Bay92 Flamingo NPR Pickerel Lindas 

RB_1984 - 0.042 0.055 0.069 0.045 0.046 0.046 0.059 0.057 

RB_2011 0.132 - 0.057 0.064 0.035 0.037 0.029 0.039 0.039 

GB_Pre-2000 -0.050 0.140 - 0.030 0.045 0.043 0.040 0.067 0.059 

GB_Post-2000 -0.010 0.210 -0.017 - 0.049 0.047 0.043 0.080 0.069 

Bay92 0.464 0.129 0.504 0.558 - 0.041 0.033 0.056 0.050 

Flamingo 0.024 0.003 0.036 0.116 0.267 - 0.036 0.059 0.053 

NPR 0.103 -0.026 0.138 0.218 0.181 -0.023 - 0.043 0.040 

Pickerel 0.752 0.423 0.869 0.921 0.111 0.597 0.524 - 0.128 

Lindas 0.130 -0.045 0.109 0.218 0.094 -0.019 -0.047 0.355 - 
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Table 5.4. Pairwise FST values as calculated by Stacks (above the diagonal) and Arlequin (below the diagonal) for Ambystoma 

opacum. Absolute values differ because of differences in how the programs treat missing data and nonpolymorphic sites. Significance 

was determined with 10,000 permutations in Arlequin, values in bold are significant at the 0.05 level. 

  RB_1993 RB_2013 GB_Pre-2000 GB_Post-2000 Bay_92 Flamingo Pickerel Bullfrog NPR 

RB_1993 - 0.029 0.055 0.062 0.070 0.074 0.036 0.031 0.039 

RB_2013 0.000 - 0.055 0.063 0.070 0.077 0.037 0.033 0.039 

GB_Pre2000 0.058 0.054 - 0.029 0.066 0.086 0.063 0.058 0.064 

GB_Post2000 0.070 0.068 -0.006 - 0.071 0.098 0.071 0.066 0.073 

Bay_92 0.091 0.091 0.075 0.076 - 0.101 0.067 0.066 0.069 

Flamingo 0.094 0.094 0.109 0.129 0.165 - 0.072 0.067 0.081 

Pickerel 0.004 0.005 0.061 0.072 0.092 0.097 - 0.027 0.033 

Bullfrog -0.003 -0.002 0.057 0.065 0.090 0.080 0.001 - 0.031 

NPR 0.009 0.007 0.057 0.073 0.083 0.114 0.005 -0.001 - 
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Table 5.5. BAYESASS estimates of the mean posterior distribution for contemporary migration 

rates from a source wetland to a destination wetland, with 95% HPD in parentheses. 

Nonsignificant dispersal rates are not shown. 

Species Source  Destination Dispersal Rate 

A. opacum BullfrogRB_1993 0.206(0.139-0.271) 

A. opacum Bullfrog Pickerel 0.206(0.138-0.271) 

A. opacum Bullfrog  RB_2013 0.200(0.128-0.265) 

A. opacum Bullfrog  NPR 0.180(0.113-0.254) 

A. talpoideum NPR  Linda’s 0.103(0.029-0.184) 

A. talpoideum NPR  Pickerel 0.091(0.016-0.174) 
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Figure 5.1. Sampling locations of Ambystoma opacum and A. talpoideum across the Savannah 

River Site (SRS).  
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Figure 5.2. Geneflow models compared in MIGRATE-n. Models were compared for both 

Ambystoma opacum and A. talpoideum, and using a historic and contemporary dataset. See text 

for detailed description of datasets and methods used. 
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Figure 5.3. Bayesian clustering of Ambystoma opacum and A. talpoideum individuals for the 

most likely number of clusters (A. opacum K =4; A. talpoideum K=6), identified by the Bayesian 

clustering programs fastSTRUCTURE and ADMIXTURE.   
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CHAPTER SIX 
 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

This dissertation provides a framework for assessing the application of genomic datasets 

to infer recent population demography. I focus on a well-studied salamander community, 

however my results are not limited to amphibians but have implications for a range of species of 

conservation concern. I demonstrate that both linkage-disequilibrium and coalescent approaches 

can be successfully applied to infer recent population demographic history at an ecological time 

scale (i.e., tens of generations), both in the simulation of ideal populations (Chapter 2) and in real 

populations (Chapters 3). These methods offer the potential to monitor the demographic response 

of populations facing potential threats from climate change, or other environmental disturbance, 

and appear to track contemporary demography even in long-lived species with complex life-

history, such as amphibians (Chapter 4). This work highlights the amazing resolution possible 

from genome-scale data, providing insight into short term demographic processes, even within a 

single subpopulation of a large and interconnected metapopulation (Chapter 5). This dissertation 

integrates long-term mark-recapture data, simulation studies, and population genomics from 

multiple spatial and temporal scales. Below I discuss how my work provides new information on 

monitoring contemporary demographic history of populations with genomic data, limitations, 

and future directions.  

 

Simulation studies 

 Characterizing the demographic history of populations, both on contemporary and 

historical time scales, is a long and active area of research in evolution and ecology. The 
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estimation of contemporary Ne is complicated by multiple eco-evolutionary processes acting 

simultaneously within populations, as well as the high numbers of individuals and genetic 

markers needed for fine-scale resolution. These complications may be overcome with the growth 

of affordable and scalable next-generation sequencing technologies and development of 

computationally efficient coalescent modeling software capable of evaluating complex models of 

population history. However, with any method, it is important to evaluate potential biases and 

limitations. In Chapter 2, I developed a simulation framework to evaluate the application of 

restriction-associated DNA sequencing (RADseq) in Ne estimation and the characterization of 

population declines. Two pieces of important knowledge were found in this chapter. First, I 

found that RADseq datasets, even with the inclusion of possible null alleles, have minimal biases 

when used for Ne estimation. Second, I found that LD-based methods generally outperformed 

coalescent methods in quick detection of population declines, and accuracy of Ne estimates. One 

major limitation of this study is the computational effort required for coalescent simulations 

precluded the inclusion of a limitation analysis to evaluate the number of SNPs needed to 

produce accurate Ne estimates. In my future research, I will subsample my simulated SNP 

dataset to try to find a minimum threshold of SNPs needed for accurate Ne estimation using 

coalescent methods.  

 The results in Chapter 2 point to the potential of genomics to yield insight into recent 

population demography; however few populations in nature will meet the criteria of an idealized 

population that was modeled (equal sex ratio, non-overlapping generations, random mating, no 

mutation or selection). The complex and dynamic nature of natural populations, such as 

population size fluctuations and the presence of migration, are complicating factors in the 

estimation and interpretation of Ne.  Pond-breeding amphibians have complex life-histories 
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where catastrophic reproductive failure (CRF) is a common property of populations, which may 

lead to difficulty distinguishing long-term population trends from short term fluctuations. In 

Chapter 4, I developed a simulation framework to model Ambystoma opacum populations under 

multiple levels of CRF, and examine if correlations exist between Ne and census size. Two 

pieces of important knowledge were found in this chapter. First, the effective number of breeders 

(Nb) was found to be correlated with census size more often than Ne, suggesting that targeted 

sampling of single-cohort newborns in long-lived species may be preferred over samples of 

adults for monitoring recent population size trends. Second, Nb tracked the overall long-term 

census size and not short term fluctuation across most levels of CRF, helping to validate the 

potential of these methods for genomic monitoring of populations. A limitation of this study is 

the memory requirements of the modeling software precluded the use of large SNP datasets. I 

have currently developed a new more computationally efficient model incorporating SNP 

markers, and in the future will use these new datasets to test alternate models of demographic 

history within a coalescent model-testing framework.  

 

Validation in empirical systems  

While the above simulation studies suggest the potential of genomic datasets to offer 

insight into recent population history, validation in empirical systems is critical. In Chapter 3, I 

apply the LD-based and coalescent-based Ne estimation methods tested in Chapters 2 and 4 in an 

empirical system with two species of salamanders with known population decline (A. 

talpoideum) and expansion (A. opacum).  In both species, the correct population size trend was 

detected using coalescent-based demographic inference, but results were only robust in A. 

talpoideum. I found estimates of LD-based Ne reached infinity for both sampled years in each 
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species, but further filtering of the dataset in Chapter 5 produced LD-based estimates correlated 

with census-size for A. talpoideum. This discrepancy in results highlights the need for stringent 

data filtering when using large genomic-datasets, and I am currently further investigating how 

filtering conditions impact LD-based estimates. Overall, the results in Chapter 4 help to confirm 

that even very recent population size changes create population genomic signatures that can be 

inferred with coalescent modeling techniques and LD-based Ne estimates. The biggest advantage 

of coalescent-based demographic inference is the ability to test complex models of population 

history, including migration, population size changes, and temporal sampling. However, in this 

chapter sampling was restricted to a single wetland, Rainbow Bay, and by only sampling from a 

single subpopulation it was impossible to determine whether the results were reflecting 

subpopulation processes, or processes of the overall metapopulation.  

The continuous distribution of species across landscapes not only complicates the 

interpretation of geographic scale reflected in Ne estimates, but also Ne estimation itself when 

migration is not accounted for and its influence is attributed to drift.  In Chapter 5, I extend 

sampling of A. opacum and A. talpoideum to 7 additional wetlands across the landscape and 

estimate population structuring and Ne at these individual wetlands. Estimates of Ne at wetlands 

surrounding Rainbow Bay suggest large and stable populations of both A. opacum and A. 

talpoideum, helping to confirm that the decline observed in A. talpoideum was a subpopulation 

process at the Rainbow Bay wetland and the entire metapopulation does not appear to be in 

decline. Preliminary results suggest that the population decline of A. talpoiduem at Rainbow Bay 

has increased the proportion of migrants to resident breeders at the wetland and created a shift in 

population structuring, while preliminary results for A. opacum suggest temporal stability of 

population structure. Ongoing work in this system includes testing alternate models of migration 
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in the program migrate-n and examining if migration patterns have changed over time. While 

this study is currently ongoing, preliminary results suggest that demographic history can be 

detected at the subpopulation (wetland) level using genomic datasets, even over recent time and 

fine geographic scales with the presence of migration. 

 

Conclusions  

 To conclude, in this dissertation I aimed to assess whether genomic methods could be 

applied to accurately estimate demographic processes taking place at an ecological scale, from a 

theoretical standpoint and in natural populations. I was able to take advantage of the amazing 

wealth of a long-term field dataset on an amphibian community and the explosion of next-

generation-sequencing to develop genomic markers, and integrate information from life-history, 

mark-recapture, and genomics. My findings suggest the ability of genomic data to reconstruct 

recent demographic changes in complex and dynamic populations, which can have important 

applications to conservation biology, and ultimately can help us elucidate the effects of 

environmental disturbances in the demography of endangered and invasive species. Although I 

am not advocating that molecular methods can replace long-term field studies, I feel that they are 

a great complement to gain insight into population processes. I believe that the studies in this 

dissertation are merely the forefront of an explosion of studies using a temporal samples and a 

genome-scale approach to infer recent population demography, which may be an important step 

forward in conservation biology. 
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APPENDIX A 

Table A.1. Number of times 𝑁̂𝑒 was estimated as “Infinite” out of 100 replicate runs in NeEstimator using the LD-based RAD 

mutation dataset simulated under a stable population size. Numbers are provided from the five different time sampling points (t0 

- t20), and are broken down across the different initial population sizes (N), individual sample size (n), and minimum allele 

frequency cutoff (MAFcut). 

  t0 

(& MAFcut) 

t5 

(& MAFcut) 

t10 

 (& MAFcut) 

t15 

 (& MAFcut) 

t20 

 (& MAFcut) 

  0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 

N = 250 n = 15 21 21 0 22 22 0 23 23 0 16 16 0 19 19 0 

 n = 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 n = 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

N = 500 n = 15 79 86 7 66 74 5 66 73 6 56 65 5 55 60 2 

 n = 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 n = 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

N = 1000 n = 15 89 90 29 94 96 28 90 92 20 92 98 13 86 88 19 

 n = 30 7 0 0 11 2 0 5 1 0 8 1 0 7 1 0 

 n = 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table A.2. Number of times 𝑁̂𝑒 was estimated as “Infinite” out of 100 replicate runs in NeEstimator using the 10% missing dataset 

simulated under a stable population size. Numbers are provided from the five different time sampling points (t0 - t20), and are broken 

down across the different initial population sizes (N), individual sample size (n), and minimum allele frequency cutoff (MAFcut). 

  t0 

(& MAFcut) 

t5 

(& MAFcut) 

t10 

 (& MAFcut) 

t15 

 (& MAFcut) 

t20 

 (& MAFcut) 

  0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 

N = 250 n = 15 24 24 0 21 21 1 21 21 0 17 17 1 19 19 0 

 n = 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 n = 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

N = 500 n = 15 87 87 10 77 77 5 78 78 13 68 68 7 63 63 6 

 n = 30 1 0 0 0 0 0 1 0 0 2 0 0 0 0 0 

 n = 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

N = 1000 n = 15 90 90 34 96 96 37 93 93 26 97 97 23 88 88 24 

 n = 30 30 0 0 20 1 2 19 1 1 13 1 1 24 0 0 

 n = 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table A.3. Number of times 𝑁̂𝑒 was estimated as “Infinite” out of 100 replicate runs in NeEstimator using the 50% missing dataset 

simulated under a stable population size. Numbers are provided from the five different time sampling points (t0 - t20), and are broken 

down across the different initial population sizes (N), individual sample size (n), and minimum allele frequency cutoff (MAFcut). 

  t0 

(& MAFcut) 

t5 

(& MAFcut) 

t10 

 (& MAFcut) 

t15 

 (& MAFcut) 

t20 

 (& MAFcut) 

  0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 

N = 250 n = 15 35 35 0 32 32 3 24 24 1 19 19 0 19 19 0 

 n = 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 n = 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

N = 500 n = 15 92 92 23 80 80 14 82 82 18 72 72 14 75 75 20 

 n = 30 2 0 0 0 0 0 1 0 0 2 0 0 0 0 0 

 n = 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

N = 1000 n = 15 93 93 49 97 97 49 94 94 49 98 98 43 89 89 49 

 n = 30 30 1 0 21 3 1 20 2 1 19 0 0 25 0 0 

 n = 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table A.4. Number of times that a declining population trend was correctly identified out of 100 replicate runs for LD-based 

analysis in NeEstimator under a declining population model (λ = 0.9). Results are presented for increasing intervals of time 

and by the combination of population size (N), individual sampling level (n), and minor allele frequency cutoff (MAFcut). 

Results are based on the analysis of the LD RAD mutation datasets. 

  t0  – t5 

(& MAFcut level) 

t0 – t10 

(& MAFcut level) 

t0 – t15 

(& MAFcut level) 

t0 – t20 

(& MAFcut level) 

  0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 

N = 250 n = 15 51 51 69 65 65 82 72 72 94 73 73 100 

 n = 30 86 81 80 99 95 95 100 100 100 - - - 

 n = 60 94 94 94 100 100 100 - - - - - - 

N = 500 n = 15 16 11 53 28 19 73 47 27 83 40 30 89 

 n = 30 79 72 69 91 85 84 100 98 98 100 99 99 

 n = 60 79 82 85 97 98 98 100 100 100 - - - 

N = 1000 n = 15 0 0 42 0 0 49 1 2 62 2 2 72 

 n = 30 66 66 67 82 80 82 89 93 96 91 97 100 

 n = 60 71 73 72 96 95 96 100 100 100 100 100 100 

For some parameter combinations, there were insufficient numbers of individuals for target n (-).
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Table A.5. Number of times that a declining population trend was correctly identified out of 100 replicate runs for LD-based 

analysis in NeEstimator under a declining population model (λ = 0.9). Results are presented for increasing intervals of time 

and by the combination of population size (N), individual sampling level (n), and minor allele frequency cutoff (MAFcut). 

Results are based on the analysis of datasets with 50% missing data. 

  t0  – t5 

(& MAFcut level) 

t0 – t10 

(& MAFcut level) 

t0 – t15 

(& MAFcut level) 

t0 – t20 

(& MAFcut level) 

  0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 

N = 250 n = 15 45 45 68 58 58 81 64 64 94 65 65 99 

 n = 30 86 83 79 99 94 93 100 100 100 - - - 

 n = 60 93 94 93 100 100 100 - - - - - - 

N = 500 n = 15 8 8 45 15 15 57 20 20 70 22 22 76 

 n = 30 78 75 72 93 86 86 100 99 98 100 99 99 

 n = 60 82 80 83 98 98 98 100 100 100 - - - 

N = 1000 n = 15 0 0 20 0 0 27 1 1 37 1 1 48 

 n = 30 55 65 67 71 80 79 74 92 92 76 97 98 

 n = 60 70 73 73 94 94 96 100 100 100 100 100 100 

For some parameter combinations, there were insufficient numbers of individuals for target n (-).
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Table A.6. Number of times 𝑁̂𝑒 was estimated as “Infinite” out of 100 replicate runs using LD-based analysis in NeEstimator under a 

declining population model (λ = 0.9). Results are presented for five different sampling points (t0 through t20) and by the combination of 

population size (N), individual sampling level (n), and minor allele frequency cutoff (MAFcut). Results are based on the analysis of LD 

RAD mutation datasets. 

  t0 

(& MAFcut level) 

t5 

(& MAFcut level) 

t10 

(& MAFcut level) 

t15 

(& MAFcut level) 

t20 

(& MAFcut level) 

  0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 

N = 250 n = 15 27 27 0 1 1 0 0 0 0 0 0 0 0 0 0 

 n = 30 0 0 0 0 0 0 0 0 0 0 0 0 - - - 

 n = 60 0 0 0 0 0 0 0 0 0 - - - - - - 

N = 500 n = 15 59 69 2 26 43 1 5 6 0 0 0 0 0 0 0 

 n = 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 n = 60 0 0 0 0 0 0 0 0 0 0 0 0 - - - 

N = 1000 n = 15 98 98 22 79 83 10 43 52 1 12 15 0 1 1 0 

 n = 30 9 3 0 1 0 0 0 0 0 0 0 0 0 0 0 

 n = 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

For some parameter combinations, there were insufficient numbers of individuals for target n (-).  
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Table A.7. Number of times 𝑁̂𝑒 was estimated as “Infinite” out of 100 replicate runs using LD-based analysis in NeEstimator under a 

declining population model (λ = 0.9). Results are presented for five different sampling points (t0 through t20) and by the combination of 

population size (N), individual sampling level (n), and minor allele frequency cutoff (MAFcut). Results are based on the analysis of 

datasets with 10% missing data. 

  t0 

(& MAFcut level) 

t5 

(& MAFcut level) 

t10 

(& MAFcut level) 

t15 

(& MAFcut level) 

t20 

(& MAFcut level) 

  0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 

N = 250 n = 15 28 28 0 1 1 0 0 0 0 0 0 0 0 0 0 

 n = 30 0 0 0 0 0 0 0 0 0 0 0 0 - - - 

 n = 60 0 0 0 0 0 0 0 0 0 - - - - - - 

N = 500 n = 15 71 71 6 43 43 2 8 8 0 0 0 0 0 0 0 

 n = 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 n = 60 0 0 0 0 0 0 0 0 0 0 0 0 - - - 

N = 1000 n = 15 98 98 30 87 87 12 52 52 1 18 18 0 1 1 1 

 n = 30 22 3 3 2 0 0 0 0 0 0 0 0 0 0 0 

 n = 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

For some parameter combinations, there were insufficient numbers of individuals for target n (-).  
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Table A.8. Number of times 𝑁̂𝑒 was estimated as “Infinite” out of 100 replicate runs using LD-based analysis in NeEstimator under a 

declining population model (λ = 0.9). Results are presented for five different sampling points (t0 through t20) and by the combination of 

population size (N), individual sampling level (n), and minor allele frequency cutoff (MAFcut). Results are based on the analysis of 

datasets with 50% missing data. 

  t0 

(& MAFcut level) 

t5 

(& MAFcut level) 

t10 

(& MAFcut level) 

t15 

(& MAFcut level) 

t20 

(& MAFcut level) 

 MAFcut 0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 

N = 250 n = 15 35 35 1 2 2 0 0 0 0 0 0 0 0 0 0 

 n = 30 0 0 0 0 0 0 0 0 0 0 0 0 - - - 

 n = 60 0 0 0 0 0 0 0 0 0 - - - - - - 

N = 500 n = 15 77 77 15 52 52 4 11 11 0 0 0 0 0 0 0 

 n = 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 n = 60 0 0 0 0 0 0 0 0 0 0 0 0 - - - 

N = 1000 n = 15 99 99 47 92 92 23 59 59 4 26 26 0 1 1 0 

 n = 30 24 3 2 3 0 0 0 0 0 0 0 0 0 0 0 

 n = 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

For some parameter combinations, there were insufficient numbers of individuals for target n (-).
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Table A.9. Number of times a stable population was incorrectly identified as declining out of 100 replicate runs for LD-based analysis 

in NeEstimator under a stable population model (λ = 1.0). Results are presented for increasing intervals of time and by the combination 

of population size (N), individual sampling level (n), and minor allele frequency cutoff (MAFcut). Results are based on the analysis of 

LD RAD mutation datasets. 

  t0  – t5 

(& MAFcut level) 

t0 – t10 

(& MAFcut level) 

t0 – t15 

(& MAFcut level) 

t0 – t20 

(& MAFcut level) 

  0.01 0.02 0.05 0.01 0.02 0.05 0.01  0.02 0.05 0.01 0.02 0.05 

N = 250 n = 15 27 27 38 25 25 27 24 24 23 19 19 8 

 n = 30 30 29 25 18 13 11 15 7 5 3 1 0 

 n = 60 8 10 7 1 1 1 1 1 1 0 0 0 

N = 500 n = 15 1 1 40 3 1 34 5 3 33 6 6 26 

 n = 30 46 42 43 31 22 22 24 17 12 18 9 8 

 n = 60 27 25 27 5 6 6 1 2 2 0 0 0 

N = 1000 n = 15 1 1 19 0 0 15 0 0 15 0 0 15 

 n = 30 32 38 38 28 31 26 28 26 21 20 18 13 

 n = 60 21 20 23 14 16 11 3 5 5 1 1 1 
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Table A.10. Number of times that a population trend was incorrectly identified as declining out of 100 replicate runs for LD-based 

analysis in NeEstimator under a stable population model (λ = 1.0).  Results are presented for increasing intervals of time and by 

combination of population size (N), individual sampling level (n), and minor allele frequency cutoff (MAFcut). Results are based on the 

analysis of datasets with 50% missing data. 

  t0  – t5 

(& MAFcut level) 

t0 – t10 

(& MAFcut level) 

t0 – t15 

(& MAFcut level) 

t0 – t20 

(& MAFcut level) 

  0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 

N = 250 n = 15 21 21 41 21 21 29 18 18 21 15 15 12 

  n = 30 30 28 28 19 14 12 16 9 7 5 2 2 

 n = 60 8 12 9 1 1 1 1 1 1 0 0 0 

N = 500 n = 15 0 0 28 0 0 25 2 2 22 3 3 18 

 n = 30 46 41 45 35 22 24 27 16 15 20 10 9 

 n = 60 26 25 31 6 6 5 1 2 1 0 0 0 

N = 1000 n = 15 1 1 12 0 0 6 0 0 9 0 0 4 

 n = 30 19 34 35 12 28 29 17 28 27 12 16 16 

 n = 60 22 19 23 14 13 12 4 3 4 1 1 0 
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Figure A.1. Boxplots of the distribution of 𝑁̂𝑒 estimates from 100 replicate simulations for LD-based estimation at generation 20 from 

temporal simulations under stable population sizes (λ = 1.0). Dashed lines represent true Ne (N = 250, 500, or 1000). The left column 

represents filtering with MAFcut of 0.01, center MAFcut of 0.02 and the right column with MAFcut of 0.05. Different missing data 

filtering strategies are shown at the bottom of each panel, with number of individuals sampled at top. 
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Figure A.2. Boxplots of the distribution of point estimates from 100 replicate simulations for LD-based Ne estimation from five 

temporal sampling points (t0 - t20) under a declining population growth model (λ = 0.9) using the LD RAD mutation dataset. Red dots 

represent true Ne over time, starting from an initial N of 1000 (top), 500 (middle) or 250 (bottom). Results are presented for analyses 

using different levels of individual sample size (n = 15, 30, or 60) and different MAFcut levels (0.01, 0.02, or 0.05). For some 

parameter combinations, there were insufficient numbers of individuals for target n. 
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Figure A.3. Boxplots of the distribution of point estimates from 100 replicate simulations for LD-based Ne estimation from five 

temporal sampling points (t0 - t20) under a declining population growth model (λ = 0.9) using the 10% missing dataset. Red dots 

represent true Ne over time, starting from an initial N of 1000 (top), 500 (middle) or 250 (bottom). Results are presented for analyses 

using different levels of individual sample size (n = 15, 30, or 60) and different MAFcut levels (0.01, 0.02, or 0.05). For some 

parameter combinations, there were insufficient numbers of individuals for target n. 
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Figure A.4. Boxplots of the distribution of point estimates from 100 replicate simulations for 

LD-based Ne estimation from five temporal sampling points (t0 - t20) under a declining 

population growth model (λ = 0.9) using the 50% missing dataset. Red dots represent true Ne 

over time, starting from an initial N of 1000 (top), 500 (middle) or 250 (bottom). Results are 

presented for analyses using different levels of individual sample size (n = 15, 30, or 60) and 

different MAFcut levels (0.01, 0.02, or 0.05). For some parameter combinations, there were 

insufficient numbers of individuals for target n. 
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APPENDIX B 

Methods and Results B.1. 

Outlier Detection 

BayeScan was run using default settings, as well as using prior probabilities of 100 and 

1000 in addition to the default 10, with an exploration of false discovery rates (FDR) of 0.05 and 

0.01. Any outliers detected were then subjected to a BLASTN search of all sequences in the 

NCBI database, as well as against the Ambystoma mexicanum transcriptome v3.0 

(www.ambystoma.org). BLASTN searches of both data sets used an e-value threshold of 1
−10

 

with at least 85% sequence identity. 

No outlier SNPs were detected for A. opacum with BayeScan. For A. talpoideum, no 

outliers were detected at an FDR of 0.01, but a total of nine outliers were detected at an FDR of 

0.05. The same nine outliers were detected in three independent runs of BayeScan with prior 

probability of 10, but no outliers were detected at prior probabilities of 100 or 1000. After 

aligning outliers to the A. mexicanum transcriptome, 5 of 9 had significant alignment to 

expressed contigs (Table S2). None of the outlier ddRAD loci aligned to contigs corresponding 

to mapped markers in the Ambystoma linkage map. An NCBI database blastn search of these 

outlier ddRAD loci produced no significant matches. 

Population Structure 

To investigate if either species displayed subpopulation structure or evidence of 

admixture, we used a Bayesian clustering approach in the program fastSTRUCTURE on each 

sampling time point with K ranging from 1 to 3 using a “simple prior” (Raj et al. 2014). The 

most likely value of K was identified by calculating heuristic scores using the chooseK.py script 

in fastSTRUCTURE, and identified K=1 for each species and time point. Therefore, we 

considered the RB wetland to be a single breeding population for both A. opacum and A. 

talpoideum. 

 

Literature Cited 

Raj A, Stephens M, Pritchard JK (2014) fastSTRUCTURE: variational inference of population 

structure in large SNP data sets. Genetics, 197, 573–589. 
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Table B.1. Summary of Illumina reads collected for each individual. Shown are the total number 

of reads obtained for each individual, retained reads after filtering out low quality scores, and the 

mean depth of coverage after default filtering with filter set 1 (See Table 2-1 for conditions).  

Species Year Individual ID Total Reads Retained Reads Mean Depth Coverage 

A. opacum 1993 Amop_RB_1993_1 8235678 5734074 17.93 

A. opacum 1993 Amop_RB_1993_2 10000486 6450689 20.83 

A. opacum 1993 Amop_RB_1993_3 14291878 11495878 37.18 

A. opacum 1993 Amop_RB_1993_4 7369872 5755929 17.99 

A. opacum 1993 Amop_RB_1993_5 8244798 6072107 18.14 

A. opacum 1993 Amop_RB_1993_6 11757322 8085035 23.80 

A. opacum 1993 Amop_RB_1993_7 6842698 4895880 13.80 

A. opacum 1993 Amop_RB_1993_8 7518160 5440096 17.26 

A. opacum 1993 Amop_RB_1993_9 6878838 5003113 15.07 

A. opacum 1993 Amop_RB_1993_10 11360396 8585956 26.02 

A. opacum 1993 Amop_RB_1993_11 11053706 8029195 24.16 

A. opacum 1993 Amop_RB_1993_12 7015048 5207476 16.73 

A. opacum 2013 Amop_RB_2013_1 9931710 7557595 24.41 

A. opacum 2013 Amop_RB_2013_2 10275598 7606087 22.44 

A. opacum 2013 Amop_RB_2013_3 12788398 9813339 28.27 

A. opacum 2013 Amop_RB_2013_4 8000074 5732904 17.78 

A. opacum 2013 Amop_RB_2013_5 8497784 5950536 18.05 

A. opacum 2013 Amop_RB_2013_6 10272342 7256834 23.32 

A. opacum 2013 Amop_RB_2013_7 8648848 6433796 21.61 

A. opacum 2013 Amop_RB_2013_8 7109458 5142614 16.86 

A. opacum 2013 Amop_RB_2013_9 4542706 3040763 8.34 

A. opacum 2013 Amop_RB_2013_10 7174202 5458347 16.18 

A. opacum 2013 Amop_RB_2013_11 8525550 6304070 18.84 

A. opacum 2013 Amop_RB_2013_12 7788168 5858888 17.53 

A. talpoideum 1984 Atalp_RB_1984_1 5201034 4970846 17.31 

A. talpoideum 1984 Atalp_RB_1984_2 5285492 5045218 17.92 

A. talpoideum 1984 Atalp_RB_1984_3 6423864 6170749 21.88 

A. talpoideum 1984 Atalp_RB_1984_4 8239206 8005560 28.42 

A. talpoideum 1984 Atalp_RB_1984_5 8897272 8616111 29.85 

A. talpoideum 1984 Atalp_RB_1984_6 7011954 6694535 22.40 

A. talpoideum 1984 Atalp_RB_1984_7 4163104 3972086 14.02 

A. talpoideum 1984 Atalp_RB_1984_8 8678484 8370783 28.97 

A. talpoideum 1984 Atalp_RB_1984_9 10774404 10456155 37.23 

A. talpoideum 1984 Atalp_RB_1984_10 8228498 7963498 27.24 

A. talpoideum 1984 Atalp_RB_1984_11 9801470 9438278 32.12 

A. talpoideum 1984 Atalp_RB_1984_12 8664668 8417362 29.30 

A. talpoideum 1984 Atalp_RB_1984_13 5891260 5610242 19.05 

A. talpoideum 1984 Atalp_RB_1984_14 4070148 3908276 13.34 
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A. talpoideum 1984 Atalp_RB_1984_15 8777026 8479250 29.63 

A. talpoideum 1984 Atalp_RB_1984_16 5345142 5107754 17.03 

A. talpoideum 1984 Atalp_RB_1984_17 8709914 8415420 28.75 

A. talpoideum 1984 Atalp_RB_1984_18 10018056 9711532 33.56 

A. talpoideum 1984 Atalp_RB_1984_19 7557396 7315848 25.52 

A. talpoideum 1984 Atalp_RB_1984_20 5441638 5264282 18.28 

A. talpoideum 1984 Atalp_RB_1984_21 5914320 5756938 20.10 

A. talpoideum 1984 Atalp_RB_1984_22 10578608 10290008 36.59 

A. talpoideum 1984 Atalp_RB_1984_23 7010640 6815875 24.26 

A. talpoideum 1984 Atalp_RB_1984_24 4159234 4024422 13.43 

A. talpoideum 2011 Atalp_RB_2011_1 7603190 7405953 28.49 

A. talpoideum 2011 Atalp_RB_2011_2 7549346 7327102 27.52 

A. talpoideum 2011 Atalp_RB_2011_3 11013480 10711160 39.74 

A. talpoideum 2011 Atalp_RB_2011_4 7296906 7158906 26.97 

A. talpoideum 2011 Atalp_RB_2011_5 9065096 8910760 33.47 

A. talpoideum 2011 Atalp_RB_2011_6 9332472 9020403 33.36 

A. talpoideum 2011 Atalp_RB_2011_7 13354566 13071473 49.26 

A. talpoideum 2011 Atalp_RB_2011_8 7826798 7619264 28.39 

A. talpoideum 2011 Atalp_RB_2011_9 9116490 8939736 33.14 

A. talpoideum 2011 Atalp_RB_2011_10 11543414 11335237 41.54 

A. talpoideum 2011 Atalp_RB_2011_11 10725524 10471919 39.28 

A. talpoideum 2011 Atalp_RB_2011_12 8292034 8145370 30.15 

A. talpoideum 2011 Atalp_RB_2011_13 10894828 10621351 38.99 

A. talpoideum 2011 Atalp_RB_2011_14 9683536 9507080 35.38 

A. talpoideum 2011 Atalp_RB_2011_15 12873498 12619220 46.42 

A. talpoideum 2011 Atalp_RB_2011_16 7876102 7677014 26.40 

A. talpoideum 2011 Atalp_RB_2011_17 7870228 7688714 29.06 

A. talpoideum 2011 Atalp_RB_2011_18 6872292 6719144 25.29 

A. talpoideum 2011 Atalp_RB_2011_19 4540526 4434182 15.84 

A. talpoideum 2011 Atalp_RB_2011_20 8036542 7878789 29.20 

A. talpoideum 2011 Atalp_RB_2011_21 9246970 9090926 32.75 

A. talpoideum 2011 Atalp_RB_2011_22 8026760 7879283 29.44 

A. talpoideum 2011 Atalp_RB_2011_23 9237782 9046118 33.77 

A. talpoideum 2011 Atalp_RB_2011_24 8037642 7903066 27.05 
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Table B.2. A. talpoideum outlier sequences producing significant alignments to the A. mexicanum 

transcriptome. 

ddRAD locus ID A. mexicanum V3.0 Contig Name 

5519 FUQAVB301DW33B 

19677 FSIRIH301BNI9U  

23479 FUQAVB302FI8BK 

27275 EPTY8IW01ES5SK 

37295 contig48253 
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Table B.3. Tajima’s D estimates from ∂a∂i (genotype-based) and ANGSD (genotype-free). 

Species Year Genotype-based 

Tajima’s D 

Genotype-Free  

Tajima’s D 

A. opacum 1993 0.4686 0.305 

A. opacum 2013 0.3859 0.328 

A. talpoideum 1984 0.2204 0.485 

A. talpoideum 2011 0.0841 0.434 
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Table B.4. Relative likelihood of the models described in Figure 1 for A. opacum. 

Model Maximum 

Likelihood 

Number of 

Parameters 

AIC delta Model normalized relative 

likelihood 

1a -50845.72 5 234163.20 0.00 9.61E-01 

1b -50847.25 9 234178.22 15.02 5.27E-04 

2a -50850.30 5 234184.29 21.09 2.53E-05 

2b -50848.90 9 234185.82 22.62 1.18E-05 

3a -50849.57 6 234182.91 19.71 5.04E-05 

3b -50846.68 6 234169.63 6.43 3.85E-02 



160 
 

Table B.5. Demographic parameters for A. opacum estimated in fastsimcoal2 using models described in Figure 1. 

Parameter estimates are in haploid units and were obtained from the run with the maximum likelihood.  

Model Ne
1993

  Ne
2013

 NeSource  TDIV NeOut NeAnc Mig13toS MigSto13 Mig93toS MigSto93 

1a* 5192  35479 11226  208 456 N/A N/A N/A N/A N/A 

1b 74363  55017 111924  1572 3182 N/A 1.13E-04 3.28E-02 1.03E-05 6.60E-06 

2a 29136  44019 58275  6135 N/A 64283 N/A N/A N/A N/A 

2b 59346  25728 161888  13688 N/A 86665 6.82E-06 4.21E-06 8.86E-07 1.06E-07 

3a 37657  46047 N/A  12469 97554 69059 N/A N/A N/A N/A 

3b 
50520  83539 N/A  291 11315 71592 N/A N/A N/A N/A 

*Best Model 
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Table B.6. Relative likelihood of the models described in Figure 1 for A. talpoideum. 

Model Max log10 

Likelihood 

Number of 

Parameters 

AIC delta Model normalized 

relative likelihood 

1a -51857.47 5 238822.49 875.73 6.87E-191 

1b -51665.57 9 237946.76 0.00 1.00E+00 

2a -52217.34 5 240479.75 2532.99 0.00E+00 

2b -51676.25 9 237995.91 49.15 2.13E-11 

3a -52150.15 6 240172.33 2225.57 0.00E+00 

3b -52853.79 6 243412.68 5465.92 0.00E+00 
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Table B.7. Demographic parameters for A. talpoideum estimated in fastsimcoal2 using models as described in Figure 

1. Parameter estimates are in haploid units and were obtained from the run with the maximum likelihood.  

Model Ne
1984

  Ne
2011

 NeSource  TDIV NeOut NeAnc Mig11toS MigSto11 Mig84toS MigSto84 

1a 7638  31 161  14 15 N/A N/A N/A N/A N/A 

1b* 1016  51 7484  2403 68619 N/A 9.97E-02 1.58E-03 2.52E-03 6.72E-04 

2a 202  127 44459  14511 N/A 27017 N/A N/A N/A N/A 

2b 60146  266 109902  10575 N/A 138166 0.14202 3.69E-05 4.86E-05 8.78E-06 

3a 174  107 N/A  4301 78210 37694 N/A N/A N/A N/A 

3b 
10052  176 N/A  879 22016 11230 N/A N/A N/A N/A 

*Best Model
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Table B.8. Demographic parameter estimates from fastsimcoal2 for A. talpoideum analysis using only frequency spectra from 2011 

and models as described in Figure 1. Parameter estimates are in haploid units and were obtained from the run with the maximum 

likelihood.  

Model Ne
1984

  Ne
2011

 NeSource  TDIV NeOut NeAnc Mig11toS MigSto11 Mig84toS MigSto84 

1a* 1477  308 1204  600 88382 N/A  N/A  N/A  N/A  N/A 

1b 27276  308 36547  169 47634 N/A 1.77E-07 1.50E-07 2.48E-04 2.58E-04 

2a 8240  308 68831  5611 N/A 21  N/A  N/A  N/A  N/A 

2b 3056  308 6029  2299 N/A 8907 0.01731 9.98E-05 4.00E-05 3.96E-05 

3a 53093  308 N/A  4560 39356 103002  N/A  N/A  N/A  N/A 

3b 
1870  308 N/A  142 1869 21642  N/A  N/A  N/A  N/A 

*Best Model  
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Table B.9. Relative likelihood of the models described in Figure 1 for A. talpoideum using 

frequency spectra from 2011.  

Model Max log10 

Likelihood 

Number of 

Parameters 

AIC delta Model normalized relative 

likelihood 

1a -20484.59 4 94343.04 0.00 0.37 

1b -20484.49 8 94350.54 7.50 0.01 

2a -20485.12 4 94345.44 2.40 0.11 

2b -20484.32 8 94349.79 6.75 0.01 

3a -20484.40 5 94344.16 1.12 0.21 

3b -20484.28 5 94343.60 0.55 0.28 
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Figure B.1. Density histograms of the minor allele frequencies for A. opacum (left) and A. 

talpoideum (right) using four filtering scenarios as described in Table 1. 
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Figure B.2. One-dimensional folded site frequency spectrum (1dSFS) generated in ANGSD illustrating the probability of sampling 1 

to 12 of the minor allele for A. opacum, and of sampling 1 to 24 of the minor allele for A. talpoideum
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APPENDIX C 

 

Table C.4. Summary of population parameters for Ambystoma opacum models. 

Parameter Value Source 

Initial population size  60  

Maximum clutch size (low larval density) age < 1 : 0 

1 <= age < 3 : 40 

3 <=age < 5: 80 

5 <=age < 7: 120  

7 <=age < 9: 160 

9 <=age >= 10: 200 

1 

 

Maximum clutch size (high larval density) 0 <= age < 2 : 0 

2 <= age < 3: 40 

3 <=age < 5: 80 

5 <=age < 7: 120  

7 <=age < 9: 160 

9 <=age >= 10: 200 

1 

 

Male fecundity (low larval density)  age < 1 : 0 

1 <= age >= 10: 0.96 

2 

 

Male fecundity (high larval density) 

 

age < 2 : 0 

2 <= age >= 10: 0.96 

2 

 

Female fecundity (low larval density) age < 1 : 0 

1 <= age >= 10: 0.67 

2 

 

Female fecundity (high larval density) age < 2 : 0 

1 <= age >= 10: 0.67 

2 

 

Annual Male Survival Rate age < 1 : 0.05 

1 <=age  <10: 0.6 

age >= 10: 0 

2 

3 

4 

Annual Female Survival Rate age < 1 : 0.05 

1 <=age  <10: 0.6 

age >= 10: 0 

2 

3 

4 

Sources: (1) Scott (1994), (2) Gamble (2009), (3) Scott (1990), (4) Taylor and Scott (1997) 
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Table C.2. Average adult census size (Nc), effective number of breeders (NbGen and NbDem), and effective population size (NeGen), 

for Ambystoma opacum models with no migration after 30 generation burn-in and at generation 80, over 100 replicate simulations, 

with 95% confidence intervals in parenthesis.  

Probability 

of CRF (%) Generation Nc NeGen NbDem NbGen 

0 30 3651(3512-3776) 1498(1304-1758) 1543(1457-1624) 1037(876-1210) 

0 80 3651(3522-3755) 1465(1249-1710) 1550(1461-1639) 1038(885-1203) 

10 30 3647(3519-3772) 1466(1256-1684) 1418(0-1632) 1030(881-1210) 

10 80 3381(1537-3858) 1308(897-1636) 1267(0-1666) 952(516-1174) 

20 30 3656(3536-3788) 1483(1239-1754) 1284(0-1621) 1035(902-1177) 

20 80 3221(1620-3875) 1132(475-1638) 1045(0-1711) 868(493-1110) 

30 30 3652(3515-3769) 1464(1258-1730) 1040(0-1630) 1034(881-1231) 

30 80 2790(1157-3886) 959(390-1470) 933(0-1663) 760(356-1119) 

40 30 3653(3548-3777) 1475(1263-1773) 968(0-1593) 1015(890-1180) 

40 80 2628(761-3882) 827(166-1412) 652(0-1656) 672(220-1052) 

50 30 3652(3542-3807) 1451(1235-1787) 753(0-1609) 1026(858-1171) 

50 80 2083(108-3887) 607(66-1114) 429(0-1612) 518(66-988) 

60 30 3645(3502-3765) 1464(1262-1692) 694(0-1601) 1030(887-1250) 

60 80 1718(0-3810) 419(67-930) 234(0-1614) 384(38-798) 

70 30 3642(3518-3790) 1487(1254-1752) 429(0-1597) 1036(883-1229) 

70 80 771(0-3321) 271(23-875) 85(0-1004) 281(18-869) 

80 30 3651(3525-3764) 1479(1265-1755) 248(0-1586) 1042(878-1215) 

80 80 136(0-1713) 163(10-722) 21(0-134) 107(6-474) 

90 30 3654(3533-3766) 1481(1269-1778) 186(0-1573) 1034(891-1198) 

90 80 0(0-0) 0(0-0) 0(0-0) 0(0-0) 

100 30 3659(3521-3781) 1474(0-0) 0(0-0) 1035(838-1267) 

100 80 0(0-0) 0(0-0) 0(0-0) 0(0-0) 
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Table C.3. Average adult census size (Nc), effective number of breeders (NbGen and NbDem), and effective population size (NeGen), 

for Ambystoma opacum models with migration after 30 generation burn-in and at generation 80, over 100 replicate simulations, with 

95% confidence intervals in parenthesis.  

Probability 

of CRF (%) Generation Nc NeGen NbDem NbGen 

0 30 3641(3504-3753) 1548(1299-1864) 1538(1443-1644) 1027(838-1235) 

0 80 3652(3554-3760) 1658(1356-2071) 1543(1499-1627) 1061(904-1221) 

10 30 3653(3550-3754) 1560(1295-1828) 1543(1473-1618) 1047(868-1255) 

10 80 3340(2164-3846) 1512(999-1968) 1411(962-1666) 963(649-1221) 

20 30 3640(3501-3764) 1554(1323-1805) 1533(1456-1610) 1026(866-1198) 

20 80 3282(1459-3888) 1298(690-1806) 1416(681-1704) 913(479-1203) 

30 30 3650(3524-3758) 1536(1303-1819) 1545(1464-1630) 1036(889-1214) 

30 80 2829(1096-3971) 1154(520-1647) 1219(477-1727) 780(380-1133) 

40 30 3664(3538-3806) 1532(1306-1803) 1541(1460-1627) 1035(883-1194) 

40 80 2437(673-3854) 1024(330-1751) 1047(293-1681) 680(247-1104) 

50 30 3642(3537-3742) 1557(1258-1859) 1539(1419-1619) 1043(903-1203) 

50 80 2109(394-3844) 848(311-1862) 901(235-1617) 557(186-1049) 

60 30 3642(3530-3773) 1515(1242-1829) 1545(1459-1650) 1039(901-1170) 

60 80 1515(231-3459) 750(197-2472) 756(144-1525) 416(106-861) 

70 30 3654(3536-3775) 1529(1282-1795) 1551(1483-1630) 1041(859-1243) 

70 80 1227(184-3389) 821(147-2904) 607(85-1621) 329(68-819) 

80 30 3657(3537-3772) 1540(1252-1867) 1538(1453-1606) 1031(889-1178) 

80 80 738(188-2718) 964(111-2951) 243(88-487) 203(57-577) 

90 30 3645(3508-3757) 1532(1297-1872) 1543(1468-1605) 1039(879-1260) 

90 80 333(164-1028) 1418(112-3458) 206(81-423) 112(50-309) 

100 30 3655(3544-3758) 1540(1342-1861) 0(0-0) 1054(901-1244) 

100 80 185(159-207) 2099(1260-3269) 0(0-0) 62(47-79) 
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Table C.4. Number of times Spearman rank correlations were significant (p < 0.05) for Ambystoma opacum models without migration 

over 100 replicate simulations under different probabilities of catastrophic reproductive failure (CRF). Mean Spearman rank 

correlation coefficients across replicates are in parentheses. 

 

No CRF 10% CRF 20% CRF 30% CRF 40% CRF 50% CRF 60% CRF 70% CRF 80% CRF 90% CRF 100% CRF 

Census v.  

NbDemo  100 (0.59)  100( 0.72)  100 (0.63)  92 (0.51)  81 (0.40)  59 (0.30)  28 (0.17)  19 (0.14)  28 (0.17)  23 (0.16) 0 (0.07) 

Census v.  

NbGen  5 (0.20)  44 (0.50)  83 (0.75)  95 (0.82)  99 (0.86)  98 (0.85)  96 (0.77)  82 (0.33)  76 (-0.18)  93 (-0.65) 100 (-0.66) 

Census v.  

NeGen  4 (0.00)   8 (0.04)  11 (0.27)  7 (0.22)  8 (0.30)  11 (0.25)  8 (0.20)  29 (-0.03)  63 (-0.36)  93 (-0.69) 100 (-0.67) 

Moms v.  

NbGen  7 (0.16)  30 (0.46)  43 (0.51)  28 (0.39)  18 (0.30)  15 (0.15)  7 (0.07)  2 (-0.08) 0 (-0.10)  0 (-0.09) 0 (0.00) 

Moms v.  

NeGen  2 (0.01)  4 (0.05)  7 (0.15)  6 (0.04)  8 (0.11)  4 (0.05)  7 (0.05) 3 (-0.12)  0 (-0.10)  0 (-0.10) 0 (0.00) 

NbGen v.  

NeGen  2 (-0.01)  10 (0.20)  32 (0.46)  33 (0.45)  37 (0.53)  31 (0.48)  14 (0.21) 75 (0.71)  85 (0.85)  99 (0.97) 100 (0.99) 

SDVmale v.  

NbGen  8 (-0.09)  5 (-0.01)  7 (0.05)  7 (0.12)  8 (0.11)  6 (0.14)  5 (0.05)  26 (0.24)  51 (0.48)  93 (0.87) 100 (0.99) 

SDVmale v.  

NeGen  6 (0.00)  4 (-0.06)  10 (-0.04)  6 (0.00)  3 (-0.04)  4 (-0.05)  11 (-0.10)  32 (0.19)  57 (0.48)  94 (0.88) 100 (1.00) 

SDVfemale v.  

NbGen  11 (-0.06)  7 (-0.05)  8 (-0.01)  8 (0.11)  10 (0.10)  4 (0.12) 7 (0.04)  26 (0.24)  51 (0.48)  93 (0.87) 100 (0.99) 

SDVfemale v.  

NeGen  7 (-0.01)  1 (-0.07)  7 (-0.10)  9 (-0.01)  5 (-0.04)  8 (-0.07)  11 (-0.10)  34 (0.19)  57 (0.48)  94 (0.88) 100 (1.00) 
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Table C.5. Number of times Spearman rank correlations were significant (p < 0.05) for Ambystoma opacum models with migration 

over 100 replicate simulations under different probabilities of catastrophic reproductive failure (CRF). Mean Spearman rank 

correlation coefficients across replicates are in parentheses. 

 

No CRF 10% CRF 20% CRF 30% CRF 40% CRF 50% CRF 60% CRF 70% CRF 80% CRF 90% CRF 100% CRF 

Census v.  

NbDemo  99 (0.58)  100 (0.69)  100 (0.65)  94 (0.50)  72 (0.36)  48 (0.26)  28 (0.17)  13 (0.10)  19 (0.05)  27( 0.01)  19 (0.05) 

Census v.  

NbGen  11 (0.17)  57 (0.58)  86 (0.75)  98 (0.83)  99 (0.88)  100 (0.91)  100 (0.92)  100 (0.92)  98 (0.88)  97 (0.85)  84 (0.73) 

Census v.  

NeGen  2 (0.02)  10 (0.14)  9 (0.08)  9 (0.08)  4 (0.04)  6 (0.07)  2 (-0.01)  2 (-0.10)  8 (-0.35)  39 (-0.54) 9 (-0.30) 

Moms v.  

NbGen  11 (0.18)  44 (0.49)  35 (0.51)  27 (0.35)  18 (0.27)  9 (0.26)  5 (0.11)  5 (0.09)  1 (0.04)  2 (0.00)  0 (0.00) 

Moms v.  

NeGen  5 (0.04)  5 (0.08)  7 (0.02)  6 (0.01)  4 (-0.01)  5 (0.01)  2 (-0.05)  6 (-0.01)  3 (-0.02)  0 (-0.01)  0 (0.00) 

NbGen v.  

NeGen  3 (0.06)  10 (0.24)  13 (0.20)  20 (0.26)  11 (0.22)  16 (0.25)  6 (0.12)  5 (0.06)  3 (-0.19)  17 (-0.42)  9 (-0.26) 

SDVmale v.  

NbGen  8 (-0.13)  3 (0.04)  5 (0.04)  12 (0.17)  5 (0.14)  6 (0.01)  5 (-0.05)  9 (-0.16)  9 (-0.23)  22 (-0.36)  24 (-0.44) 

SDVmale v.  

NeGen  4 (-0.02)  7 (-0.08)  8 (-0.13)  7 (-0.11)  4 (-0.12)  2 (-0.09)  6 (-0.15)  11 (-0.17)  7 (-0.18)  5 (-0.05)  6 (0.20) 

SDVfemale v.  

NbGen  8 (-0.08)  7 (-0.05)  8 (0.00)  8 (0.15)  6 (0.14)  9 (0.03)  5 (-0.05)  10 (-0.16)  9 (-0.23)  22 (-0.36)  24 (-0.44) 

SDVfemale v.  

NeGen  3 (0.01)  13 (-0.16)  8 (-0.16)  6 (-0.13)  5 (-0.11)  1 (-0.09)  7 (-0.14)  8 (-0.17)  7 (-0.17)  5 (-0.05)  6 (0.20) 
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Table C.6. Number of times Spearman rank correlations were significant (p < 0.05) for Ambystoma opacum models without migration 

using the subsampled dataset of 30 microsatellite markers and 60 individuals, over 100 replicate simulations under different 

probabilities of catastrophic reproductive failure (CRF). Mean Spearman rank correlation coefficients across replicates are in 

parentheses. 

 

Census v.  

NbGen 

Census v.  

NeGen 

No CRF 4(0) 6(-0.02) 

10% CRF 7(0.12) 3(-0.01) 

20% CRF 11(0.19) 3(0.04) 

30% CRF 21(0.35) 11(0.11) 

40% CRF 19(0.38) 11(0.19) 

50% CRF 46(0.48) 11(0.15) 

60% CRF 69(0.6) 18(0.2) 

70% CRF 68(0.25) 27(-0.02) 

80% CRF 75(-0.18) 59(-0.36) 

90% CRF 93(-0.65) 93(-0.68) 

100% CRF 100(-0.66) 100(-0.67) 
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Table C.7. Summary of sensitivity analysis under different probabilities of catastrophic reproductive failure (CRF) for Ambystoma 

opacum models with and without migration (mig).  

 

No CRF 10% CRF 20% CRF 30% CRF 40% CRF 50% CRF 60% CRF 70% CRF 80% CRF 90% CRF 100% CRF 

Parameter 

no 

mig 

with 

mig 

no 

mig 

with 

mig 

no 

mig 

with 

mig 

no 

mig 

with 

mig 

no 

mig 

with 

mig 

no 

mig 

with 

mig 

no 

mig 

with 

mig 

no 

mig 

with 

mig 

no 

mig 

with 

mig 

no 

mig 

with 

mig 

no 

mig 

with 

mig 

Adult pop Size 
                      

Base Model 3651 3652 3381 3340 3221 3282 2790 2829 2628 2437 2083 2109 1718 1515 771 1227 136 738 0 333 0 185 

Juvenile  
Survival 

0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.6 0.5 0.5 0.5 0.5 0.4 0.4 0.2 0.4 0.0 0.4 - 0.5 - 0.6 

Adult Survival 0.8 0.8 0.8 0.8 0.8 0.8 0.7 0.8 0.7 0.7 0.7 0.7 0.6 0.6 0.4 0.6 0.1 0.6 - 0.7 - 0.8 

Proportion 

 Breeding 
1.1 1.1 1.1 1.1 1 1 1 1.1 1 1.1 1 1 0.8 1.3 1 1 1.1 1 - 1.1 - 1.1 

No Density-

Dependent 
Breeding* 

1 1 1 1 1 1 1 1 1 1 0.9 1 0.8 1 0.7 0.9 1.1 1 - 1 - 1 

Extinction risk                                             

Base Model 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0.4 0 0.8 0 1 0 1 0 

Juvenile  

Survival 
0 0 0 0 0 0 0 0 0 0 0 0 0.2 0 0.6 0 0.9 0 1 0 1 0 

Adult Survival 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0.5 0 0.9 0 1 0 1 0 

Proportion 

 Breeding 
0 0 0 0 0 0 0 0 0 0 0 0 0.2 0 0.3 0 0.7 0 1 0 1 0 

No Density-
Dependent 

Breeding* 

0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0.4 0 0.7 0 1 0 1 0 

Notes: Each parameter was decreased by 10%. Adult population size is in proportion of the base model. *This model does not include density-

dependent age at first reproduction, i.e. no individuals breed at age one.  
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Figure C.2.  Ambystoma opacum mean NeGen (black line) and NbGen (dashed line) using 

subsampled dataset (30 microsatellites and 60 individuals), and mean NeGen(open squares) and 

NbGen (filled circles) using the complete dataset (100 microsatellites and 500 individuals) every 

5 generations, over 80 years of projections. Catastrophic reproductive failure (CRF) was imposed 

after 30 year burn-in (vertical line). Top panel represent 20% probability of CRF (A), middle 

40% (B), and bottom 60% (C), all with no migration. 
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APPENDIX D 

 

Table D.5. Individual sample information for Ambystoma opacum and A. talpoideum across the SRS.  

Species Wetland Year Season Stage Individual ID Total Reads Retained Reads 

A. opacum Rainbow 2013 N/A metamorph Amop_RB_2013_9 4542706 3041263 

A. opacum Rainbow 1993 N/A metamorph Amop_RB_1993_7 6842698 4896551 

A. opacum Rainbow 2013 N/A metamorph Amop_RB_2013_10 7174202 5459819 

A. opacum Rainbow 1993 N/A metamorph Amop_RB_1993_9 6878838 5004389 

A. opacum Rainbow 2013 N/A metamorph Amop_RB_2013_8 7109458 5143848 

A. opacum Rainbow 2013 N/A metamorph Amop_RB_2013_4 8000074 5733841 

A. opacum Rainbow 2013 N/A metamorph Amop_RB_2013_12 7788168 5860264 

A. opacum Rainbow 2013 N/A metamorph Amop_RB_2013_5 8497784 5952381 

A. opacum Rainbow 1993 N/A metamorph Amop_RB_1993_8 7518160 5440838 

A. opacum Rainbow 2013 N/A metamorph Amop_RB_2013_11 8525550 6305570 

A. opacum Rainbow 1993 N/A metamorph Amop_RB_1993_12 7015048 5208398 

A. opacum Rainbow 1993 N/A metamorph Amop_RB_1993_1 8235678 5735247 

A. opacum Rainbow 1993 N/A metamorph Amop_RB_1993_4 7369872 5757267 

A. opacum Rainbow 1993 N/A metamorph Amop_RB_1993_5 8244798 6073797 

A. opacum Rainbow 2013 N/A metamorph Amop_RB_2013_7 8648848 6435261 

A. opacum Rainbow 2013 N/A metamorph Amop_RB_2013_2 10275598 7608513 

A. opacum Rainbow 2013 N/A metamorph Amop_RB_2013_6 10272342 7258797 

A. opacum Rainbow 1993 N/A metamorph Amop_RB_1993_2 10000486 6452557 

A. opacum Rainbow 2013 N/A metamorph Amop_RB_2013_1 9931710 7559485 

A. opacum Rainbow 1993 N/A metamorph Amop_RB_1993_11 11053706 8031302 

A. opacum Rainbow 1993 N/A metamorph Amop_RB_1993_6 11757322 8087569 

A. opacum Rainbow 2013 N/A metamorph Amop_RB_2013_3 12788398 9815887 

A. opacum Rainbow 1993 N/A metamorph Amop_RB_1993_10 11360396 8588603 



176 
 

A. opacum Rainbow 1993 N/A metamorph Amop_RB_1993_3 14291878 11498891 

A. opacum Pickerel 2016 Spring Larvae Pick_12 10146856 9888793 

A. opacum Pickerel 2016 Spring Larvae Pick_1 11999476 11686973 

A. opacum Pickerel 2016 Spring Larvae Pick_4 12777616 12424949 

A. opacum Pickerel 2016 Spring Larvae Pick_14 14246732 13899688 

A. opacum Pickerel 2016 Spring Larvae Pick_7 13907220 13616733 

A. opacum Pickerel 2016 Spring Larvae Pick_15 13669678 13371081 

A. opacum Pickerel 2016 Spring Larvae Pick_11 15042514 14725041 

A. opacum Pickerel 2016 Spring Larvae Pick_9 14063816 13785235 

A. opacum Pickerel 2016 Spring Larvae Pick_2 15945830 15502016 

A. opacum Pickerel 2016 Spring Larvae Pick_10 17641280 17270482 

A. opacum Pickerel 2016 Spring Larvae Pick_8 18863050 18394261 

A. opacum Pickerel 2016 Spring Larvae Pick_6 18591472 18259999 

A. opacum NPR 2016 Spring Larvae NPR_11 2266558 2131803 

A. opacum NPR 2016 Spring Larvae NPR_2 2797184 2664963 

A. opacum NPR 2016 Spring Larvae NPR_10 4786440 4612368 

A. opacum NPR 2016 Spring Larvae NPR_5 6615602 6429776 

A. opacum NPR 2016 Spring Larvae NPR_9 6921788 6734074 

A. opacum NPR 2016 Spring Larvae NPR_1 8563430 8341924 

A. opacum NPR 2016 Spring Larvae NPR_4 10881400 10635508 

A. opacum NPR 2016 Spring Larvae NPR_8 10863850 10609312 

A. opacum NPR 2016 Spring Larvae NPR_6 12144204 11846519 

A. opacum NPR 2016 Spring Larvae NPR_3 12842564 12522246 

A. opacum NPR 2016 Spring Larvae NPR_7 13761456 13440479 

A. opacum Lindas 2016 Spring Larvae Lind_330 244280 132486 

A. opacum Lindas 2016 Spring Larvae Lind_331 731344 581495 

A. opacum Lindas 2016 Spring Larvae Lind_332 1346110 1236551 

A. opacum Lindas 2016 Spring Larvae Lind_355 6127328 5961033 

A. opacum Lindas 2016 Spring Larvae Lind_351 4455380 4242267 

A. opacum Lindas 2016 Spring Larvae Lind_329 6588888 6362862 
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A. opacum Lindas 2016 Spring Larvae Lind_369 7117446 6866311 

A. opacum Lindas 2016 Spring Larvae Lind_350 8175632 7808174 

A. opacum Lindas 2016 Spring Larvae Lind_356 6057520 5830345 

A. opacum Lindas 2016 Spring Larvae Lind_354 8108892 7854548 

A. opacum Lindas 2016 Spring Larvae Lind_357 8365316 8098889 

A. opacum Lindas 2016 Spring Larvae Lind_353 7346320 7121386 

A. opacum Gingers 2007 N/A Adult GB_77 116798 59833 

A. opacum Gingers 2010 N/A metamorph GB_221 1263648 1012012 

A. opacum Gingers 1996 N/A Adult GB_56 2392222 2234887 

A. opacum Gingers 2005 N/A metamorph GB_207 4580066 4287860 

A. opacum Gingers 2007 N/A Adult GB_43 5200034 4938330 

A. opacum Gingers 2005 N/A metamorph GB_204 5306622 5017471 

A. opacum Gingers 2005 N/A metamorph GB_205 5860300 5551885 

A. opacum Gingers 2010 N/A metamorph GB_220 6604018 6245418 

A. opacum Gingers 2007 N/A Adult GB_42 6339330 5957179 

A. opacum Gingers 2007 N/A Adult GB_75 6165042 5880159 

A. opacum Gingers 1996 N/A metamorph GB_261 5451970 5034133 

A. opacum Gingers 2005 N/A metamorph GB_208 7573718 7138228 

A. opacum Gingers 1990 N/A Adult GB_46 4775600 4619821 

A. opacum Gingers 1996 N/A metamorph GB_256 7698812 7231713 

A. opacum Gingers 1996 N/A Adult GB_30 8270544 7884628 

A. opacum Gingers 1996 N/A Adult GB_34 8585316 8105599 

A. opacum Gingers 1990 N/A Adult GB_48 8966340 8711190 

A. opacum Gingers 1996 N/A Adult GB_36 11632988 11214656 

A. opacum Gingers 1990 N/A Adult GB_44 12365740 11998394 

A. opacum Gingers 2007 N/A Adult GB_76 20948404 20066442 

A. opacum Gingers 1996 N/A Adult GB_35 14222508 13702065 

A. opacum Gingers 1990 N/A Adult GB_66 14538168 14102012 

A. opacum Gingers 1990 N/A Adult GB_47 16515292 16061686 

A. opacum Gingers 1990 N/A Adult GB_45 17506972 17057456 
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A. opacum Flamingo 2014 Fall Adult Flam_34 1829540 1772068 

A. opacum Flamingo 2014 Fall Adult Flam_30 2467098 2383206 

A. opacum Flamingo 2014 Fall Adult Flam_37 2613110 2521231 

A. opacum Flamingo 2014 Fall Adult Flam_27 3150326 3027810 

A. opacum Flamingo 2014 Fall Adult Flam_45 3226988 3119680 

A. opacum Flamingo 2014 Fall Adult Flam_29 3826756 3731008 

A. opacum Flamingo 2014 Fall Adult Flam_36 4121162 4026593 

A. opacum Flamingo 2014 Fall Adult Flam_17 4154388 4029694 

A. opacum Flamingo 2014 Fall Adult Flam_33 6627474 6503456 

A. opacum Flamingo 2014 Fall Adult Flam_35 9886348 9697063 

A. opacum Flamingo 2014 Fall Adult Flam_16 13247416 13002789 

A. opacum Flamingo 2014 Fall Adult Flam_18 16127744 15826428 

A. opacum Bullfrog 2016 Spring Larvae Bull_15 92250 37541 

A. opacum Bullfrog 2016 Spring Larvae Bull_11 6237608 6025818 

A. opacum Bullfrog 2016 Spring Larvae Bull_2 9783670 9468381 

A. opacum Bullfrog 2016 Spring Larvae Bull_8 10534678 10247831 

A. opacum Bullfrog 2016 Spring Larvae Bull_1 11696882 11403884 

A. opacum Bullfrog 2016 Spring Larvae Bull_12 12554862 12258737 

A. opacum Bullfrog 2016 Spring Larvae Bull_13 12042368 11737644 

A. opacum Bullfrog 2016 Spring Larvae Bull_7 12711628 12320330 

A. opacum Bullfrog 2016 Spring Larvae Bull_10 12603398 12306094 

A. opacum Bullfrog 2016 Spring Larvae Bull_4 12515576 12186467 

A. opacum Bullfrog 2016 Spring Larvae Bull_6 13544238 13240127 

A. opacum Bullfrog 2016 Spring Larvae Bull_9 13009686 12660884 

A. opacum Bullfrog 2016 Spring Larvae Bull_5 14134860 13698028 

A. opacum Bay 92 2015 Spring Larvae B92_67 5327288 5206438 

A. opacum Bay 92 2015 Spring Larvae or Paedomorph B92_90 7614066 7445288 

A. opacum Bay 92 2015 Spring Larvae B92_68 9850996 9594929 

A. opacum Bay 92 2015 Spring Larvae B92_75 11162350 10933274 

A. opacum Bay 92 2015 Spring Larvae B92_87 12672132 12400265 
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A. opacum Bay 92 2015 Spring Larvae B92_89 12798682 12554439 

A. opacum Bay 92 2015 Spring Larvae B92_69 12571880 12350189 

A. opacum Bay 92 2015 Spring Larvae B92_72 13908840 13567549 

A. opacum Bay 92 2015 Spring Larvae B92_76 14544360 14224693 

A. opacum Bay 92 2015 Spring Larvae B92_70 14958314 14557504 

A. opacum Bay 92 2015 Spring Larvae B92_71 14206726 13980090 

A. opacum Bay 92 2015 Spring Larvae B92_73 19431690 19066645 

A. talpoideum Rainbow 1984 N/A metamorph Atalp_RB_1984_24 4159234 4024422 

A. talpoideum Rainbow 1984 N/A metamorph Atalp_RB_1984_14 4070148 3908276 

A. talpoideum Rainbow 1984 N/A metamorph Atalp_RB_1984_7 4163104 3972086 

A. talpoideum Rainbow 1984 N/A metamorph Atalp_RB_1984_16 5345142 5107754 

A. talpoideum Rainbow 1984 N/A metamorph Atalp_RB_1984_1 5201034 4970846 

A. talpoideum Rainbow 1984 N/A metamorph Atalp_RB_1984_20 5441638 5264282 

A. talpoideum Rainbow 1984 N/A metamorph Atalp_RB_1984_2 5285492 5045218 

A. talpoideum Rainbow 1984 N/A metamorph Atalp_RB_1984_13 5891260 5610242 

A. talpoideum Rainbow 2011 N/A metamorph Atalp_RB_2011_19 4540526 4434552 

A. talpoideum Rainbow 1984 N/A metamorph Atalp_RB_1984_21 5914320 5756938 

A. talpoideum Rainbow 1984 N/A metamorph Atalp_RB_1984_3 6423864 6170749 

A. talpoideum Rainbow 1984 N/A metamorph Atalp_RB_1984_6 7011954 6694535 

A. talpoideum Rainbow 1984 N/A metamorph Atalp_RB_1984_23 7010640 6815875 

A. talpoideum Rainbow 1984 N/A metamorph Atalp_RB_1984_19 7557396 7315848 

A. talpoideum Rainbow 1984 N/A metamorph Atalp_RB_1984_10 8228498 7963498 

A. talpoideum Rainbow 1984 N/A metamorph Atalp_RB_1984_17 8709914 8415420 

A. talpoideum Rainbow 1984 N/A metamorph Atalp_RB_1984_8 8678484 8370783 

A. talpoideum Rainbow 1984 N/A metamorph Atalp_RB_1984_4 8239206 8005560 

A. talpoideum Rainbow 1984 N/A metamorph Atalp_RB_1984_12 8664668 8417362 

A. talpoideum Rainbow 1984 N/A metamorph Atalp_RB_1984_15 8777026 8479250 

A. talpoideum Rainbow 1984 N/A metamorph Atalp_RB_1984_5 8897272 8616111 

A. talpoideum Rainbow 1984 N/A metamorph Atalp_RB_1984_11 9801470 9438278 

A. talpoideum Rainbow 2011 N/A metamorph Atalp_RB_2011_16 7876102 7677552 
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A. talpoideum Rainbow 2011 N/A metamorph Atalp_RB_2011_18 6872292 6719639 

A. talpoideum Rainbow 2011 N/A metamorph Atalp_RB_2011_24 8037642 7903674 

A. talpoideum Rainbow 1984 N/A metamorph Atalp_RB_1984_18 10018056 9711532 

A. talpoideum Rainbow 2011 N/A metamorph Atalp_RB_2011_4 7296906 7159411 

A. talpoideum Rainbow 2011 N/A metamorph Atalp_RB_2011_8 7826798 7619862 

A. talpoideum Rainbow 2011 N/A metamorph Atalp_RB_2011_2 7549346 7327713 

A. talpoideum Rainbow 2011 N/A metamorph Atalp_RB_2011_1 7603190 7406548 

A. talpoideum Rainbow 1984 N/A metamorph Atalp_RB_1984_22 10578608 10290008 

A. talpoideum Rainbow 2011 N/A metamorph Atalp_RB_2011_17 7870228 7689319 

A. talpoideum Rainbow 2011 N/A metamorph Atalp_RB_2011_22 8026760 7879994 

A. talpoideum Rainbow 2011 N/A metamorph Atalp_RB_2011_20 8036542 7879535 

A. talpoideum Rainbow 1984 N/A metamorph Atalp_RB_1984_9 10774404 10456155 

A. talpoideum Rainbow 2011 N/A metamorph Atalp_RB_2011_12 8292034 8145999 

A. talpoideum Rainbow 2011 N/A metamorph Atalp_RB_2011_21 9246970 9091769 

A. talpoideum Rainbow 2011 N/A metamorph Atalp_RB_2011_23 9237782 9046954 

A. talpoideum Rainbow 2011 N/A metamorph Atalp_RB_2011_6 9332472 9021178 

A. talpoideum Rainbow 2011 N/A metamorph Atalp_RB_2011_9 9116490 8940450 

A. talpoideum Rainbow 2011 N/A metamorph Atalp_RB_2011_5 9065096 8911475 

A. talpoideum Rainbow 2011 N/A metamorph Atalp_RB_2011_14 9683536 9507894 

A. talpoideum Rainbow 2011 N/A metamorph Atalp_RB_2011_13 10894828 10622200 

A. talpoideum Rainbow 2011 N/A metamorph Atalp_RB_2011_3 11013480 10712127 

A. talpoideum Rainbow 2011 N/A metamorph Atalp_RB_2011_11 10725524 10472765 

A. talpoideum Rainbow 2011 N/A metamorph Atalp_RB_2011_10 11543414 11336249 

A. talpoideum Rainbow 2011 N/A metamorph Atalp_RB_2011_15 12873498 12620284 

A. talpoideum Rainbow 2011 N/A metamorph Atalp_RB_2011_7 13354566 13072499 

A. talpoideum Pickerel 2016 Spring Larvae Pick_1 15014970 14793260 

A. talpoideum Pickerel 2016 Spring Larvae Pick_2 11365460 11159401 

A. talpoideum NPR 2016 Spring Larvae NPR_1 13836438 13610294 

A. talpoideum NPR 2016 Spring Larvae NPR_10 15762060 15531976 

A. talpoideum NPR 2016 Spring Larvae NPR_11 7132162 6999295 
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A. talpoideum NPR 2016 Spring Larvae NPR_12 16716496 16446810 

A. talpoideum NPR 2016 Spring Larvae NPR_13 14417742 14186447 

A. talpoideum NPR 2016 Spring Larvae NPR_14 15000134 14756997 

A. talpoideum NPR 2016 Spring Larvae NPR_15 16948084 16690685 

A. talpoideum NPR 2016 Spring Larvae NPR_2 12228934 11997922 

A. talpoideum NPR 2016 Spring Larvae NPR_3 9923346 9682321 

A. talpoideum NPR 2016 Spring Larvae NPR_4 11621874 11443957 

A. talpoideum NPR 2016 Spring Larvae NPR_5 16497824 16224796 

A. talpoideum NPR 2016 Spring Larvae NPR_6 13911100 13653397 

A. talpoideum NPR 2016 Spring Larvae NPR_7 13878306 13662487 

A. talpoideum NPR 2016 Spring Larvae NPR_8 8710786 8568969 

A. talpoideum NPR 2016 Spring Larvae NPR_9 14976910 14754834 

A. talpoideum Lindas 2016 Spring Larvae Lindas_3824 13666664 13456339 

A. talpoideum Lindas 2016 Spring Larvae Lindas_3827 11473646 11270382 

A. talpoideum Lindas 2016 Spring Larvae Lindas_3828 14743622 14510584 

A. talpoideum Lindas 2016 Spring Larvae Lindas_4403 6483964 6380846 

A. talpoideum Gingers 2005 N/A metamorph GB_92 2043730 1909850 

A. talpoideum Gingers 1996 N/A Paedomorph GB_106 3810090 3554181 

A. talpoideum Gingers 1995 N/A metamorph GB_145 4112064 3844492 

A. talpoideum Gingers 1991 N/A Adult GB_102 4619530 4313896 

A. talpoideum Gingers 2005 N/A metamorph GB_93 4286712 4087270 

A. talpoideum Gingers 1991 N/A Adult GB_101 8286436 7866091 

A. talpoideum Gingers 2005 N/A metamorph GB_88 8432494 7981875 

A. talpoideum Gingers 1996 N/A Paedomorph GB_109 8781850 8515789 

A. talpoideum Gingers 2010 N/A metamorph GB_158 8185252 7919276 

A. talpoideum Gingers 1991 N/A Adult GB_115 10168720 9555829 

A. talpoideum Gingers 1995 N/A metamorph GB_146 10368144 9790601 

A. talpoideum Gingers 2005 N/A metamorph GB_85 8979882 8704549 

A. talpoideum Gingers 2005 N/A metamorph GB_90 9571296 9167578 

A. talpoideum Gingers 1996 N/A Paedomorph GB_134 12332634 11960088 
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A. talpoideum Gingers 2010 N/A metamorph GB_147 12791138 12404859 

A. talpoideum Gingers 2010 N/A metamorph GB_167 12288548 11937295 

A. talpoideum Gingers 2010 N/A metamorph GB_148 13051454 12721298 

A. talpoideum Gingers 1995 N/A metamorph GB_144 15632300 14883092 

A. talpoideum Gingers 1996 N/A Paedomorph GB_105 14529738 14100985 

A. talpoideum Gingers 1991 N/A Adult GB_116 15388400 14907570 

A. talpoideum Gingers 1995 N/A Paedomorph GB_138 16805364 16321405 

A. talpoideum Gingers 2010 N/A metamorph GB_163 15628882 15240835 

A. talpoideum Gingers 1996 N/A Paedomorph GB_104 18665640 18143056 

A. talpoideum Gingers 2010 N/A metamorph GB_166 18899056 18547806 

A. talpoideum Flamingo 2015 Spring Larvae or Paedomorph Flam_128 8203072 8018228 

A. talpoideum Flamingo 2015 Spring Larvae or Paedomorph Flam_132 8307224 8139126 

A. talpoideum Flamingo 2015 Spring Larvae or Paedomorph Flam_131 9962006 9717343 

A. talpoideum Flamingo 2015 Spring Larvae or Paedomorph Flam_186 9035296 8885002 

A. talpoideum Flamingo 2015 Spring Larvae or Paedomorph Flam_59 10842030 10601268 

A. talpoideum Flamingo 2015 Spring Larvae or Paedomorph Flam_188 11749056 11549733 

A. talpoideum Flamingo 2015 Spring Larvae or Paedomorph Flam_129 14498666 14192594 

A. talpoideum Flamingo 2015 Spring Larvae or Paedomorph Flam_62 13790640 13526238 

A. talpoideum Flamingo 2015 Spring Larvae or Paedomorph Flam_189 12935194 12758588 

A. talpoideum Flamingo 2015 Spring Larvae or Paedomorph Flam_63 14397856 14141961 

A. talpoideum Flamingo 2015 Spring Larvae or Paedomorph Flam_187 15869332 15664554 

A. talpoideum Flamingo 2015 Spring Larvae or Paedomorph Flam_190 15969440 15758013 

A. talpoideum Bay 92 2015 Spring Larvae or Paedomorph B92_597 5410416 5187954 

A. talpoideum Bay 92 2015 Spring Larvae or Paedomorph B92_596 6324632 6157327 

A. talpoideum Bay 92 2015 Spring Larvae or Paedomorph B92_600 6754656 6578531 

A. talpoideum Bay 92 2015 Spring Larvae or Paedomorph B92_601 6761934 6510032 

A. talpoideum Bay 92 2015 Spring Larvae or Paedomorph B92_602 6230980 6090257 

A. talpoideum Bay 92 2015 Spring Larvae or Paedomorph B92_598 7062726 6805635 

A. talpoideum Bay 92 2015 Spring Larvae or Paedomorph B92_599 7722130 7560243 

A. talpoideum Bay 92 2015 Spring Larvae or Paedomorph B92_603 11488226 11282316 
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A. talpoideum Bay 92 2015 Spring Larvae or Paedomorph B92_618 12213488 12017048 

A. talpoideum Bay 92 2015 Spring Larvae or Paedomorph B92_620 13220120 12993084 

A. talpoideum Bay 92 2015 Spring Larvae or Paedomorph B92_619 14107556 13884742 

A. talpoideum Bay 92 2014 Fall Adult B92_31 17295944 17029435 
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