7 research outputs found

    Genome-wide discovery of missing genes in biological pathways of prokaryotes

    Get PDF
    <p> Abstract</p> <p>Background</p> <p>Reconstruction of biological pathways is typically done through mapping well-characterized pathways of model organisms to a target genome, through orthologous gene mapping. A limitation of such pathway-mapping approaches is that the mapped pathway models are constrained by the composition of the template pathways, e.g., some genes in a target pathway may not have corresponding genes in the template pathways, the so-called “missing gene” problem.</p> <p>Methods</p> <p>We present a novel pathway-expansion method for identifying additional genes that are possibly involved in a target pathway after pathway mapping, to fill holes caused by missing genes as well as to expand the mapped pathway model. The basic idea of the algorithm is to identify genes in the target genome whose homologous genes share common operons with homologs of any mapped pathway genes in some reference genome, and to add such genes to the target pathway if their functions are consistent with the cellular function of the target pathway.</p> <p>Results</p> <p>We have implemented this idea using a graph-theoretic approach and demonstrated the effectiveness of the algorithm on known pathways of <it>E. coli</it> in the KEGG database. On all KEGG pathways containing at least 5 genes, our method achieves an average of 60% positive predictive value (PPV) and the performance is increased with more seed genes added. Analysis shows that our method is highly robust.</p> <p>Conclusions</p> <p>An effective method is presented to find missing genes in biological pathways of prokaryotes, which achieves high prediction reliability on <it>E. coli</it> at a genome level. Numerous missing genes are found to be related to knwon <it>E. coli</it> pathways, which can be further validated through biological experiments. Overall this method is robust and can be used for functional inference.</p

    Detecting biological network organization and functional gene orthologs

    Get PDF
    SUMMARY: We developed a package TripletSearch to compute relationships within triplets of genes based on Roundup, an orthologous gene database containing >1500 genomes. These relationships, derived from the coevolution of genes, provide valuable information in the detection of biological network organization from the local to the system level, in the inference of protein functions and in the identification of functional orthologs. To run the computation, users need to provide the GI IDs of the genes of interest

    Gene differential co-expression analysis of male infertility patients based on statistical and machine learning methods

    Get PDF
    Male infertility has always been one of the important factors affecting the infertility of couples of gestational age. The reasons that affect male infertility includes living habits, hereditary factors, etc. Identifying the genetic causes of male infertility can help us understand the biology of male infertility, as well as the diagnosis of genetic testing and the determination of clinical treatment options. While current research has made significant progress in the genes that cause sperm defects in men, genetic studies of sperm content defects are still lacking. This article is based on a dataset of gene expression data on the X chromosome in patients with azoospermia, mild and severe oligospermia. Due to the difference in the degree of disease between patients and the possible difference in genetic causes, common classical clustering methods such as k-means, hierarchical clustering, etc. cannot effectively identify samples (realize simultaneous clustering of samples and features). In this paper, we use machine learning and various statistical methods such as hypergeometric distribution, Gibbs sampling, Fisher test, etc. and genes the interaction network for cluster analysis of gene expression data of male infertility patients has certain advantages compared with existing methods. The cluster results were identified by differential co-expression analysis of gene expression data in male infertility patients, and the model recognition clusters were analyzed by multiple gene enrichment methods, showing different degrees of enrichment in various enzyme activities, cancer, virus-related, ATP and ADP production, and other pathways. At the same time, as this paper is an unsupervised analysis of genetic factors of male infertility patients, we constructed a simulated data set, in which the clustering results have been determined, which can be used to measure the effect of discriminant model recognition. Through comparison, it finds that the proposed model has a better identification effect

    The CanOE Strategy: Integrating Genomic and Metabolic Contexts across Multiple Prokaryote Genomes to Find Candidate Genes for Orphan Enzymes

    Get PDF
    Of all biochemically characterized metabolic reactions formalized by the IUBMB, over one out of four have yet to be associated with a nucleic or protein sequence, i.e. are sequence-orphan enzymatic activities. Few bioinformatics annotation tools are able to propose candidate genes for such activities by exploiting context-dependent rather than sequence-dependent data, and none are readily accessible and propose result integration across multiple genomes. Here, we present CanOE (Candidate genes for Orphan Enzymes), a four-step bioinformatics strategy that proposes ranked candidate genes for sequence-orphan enzymatic activities (or orphan enzymes for short). The first step locates “genomic metabolons”, i.e. groups of co-localized genes coding proteins catalyzing reactions linked by shared metabolites, in one genome at a time. These metabolons can be particularly helpful for aiding bioanalysts to visualize relevant metabolic data. In the second step, they are used to generate candidate associations between un-annotated genes and gene-less reactions. The third step integrates these gene-reaction associations over several genomes using gene families, and summarizes the strength of family-reaction associations by several scores. In the final step, these scores are used to rank members of gene families which are proposed for metabolic reactions. These associations are of particular interest when the metabolic reaction is a sequence-orphan enzymatic activity. Our strategy found over 60,000 genomic metabolons in more than 1,000 prokaryote organisms from the MicroScope platform, generating candidate genes for many metabolic reactions, of which more than 70 distinct orphan reactions. A computational validation of the approach is discussed. Finally, we present a case study on the anaerobic allantoin degradation pathway in Escherichia coli K-12

    Tracing evolutionary footprints to identify novel gene functional linkages.

    Get PDF
    Systematic determination of gene function is an essential step in fully understanding the precise contribution of each gene for the proper execution of molecular functions in the cell. Gene functional linkage is defined as to describe the relationship of a group of genes with similar functions. With thousands of genomes sequenced, there arises a great opportunity to utilize gene evolutionary information to identify gene functional linkages. To this end, we established a computational method (called TRACE) to trace gene footprints through a gene functional network constructed from 341 prokaryotic genomes. TRACE performance was validated and successfully tested to predict enzyme functions as well as components of pathway. A so far undescribed chromosome partitioning-like protein ro03654 of an oleaginous bacteria Rhodococcus sp. RHA1 (RHA1) was predicted and verified experimentally with its deletion mutant showing growth inhibition compared to RHA1 wild type. In addition, four proteins were predicted to act as prokaryotic SNARE-like proteins, and two of them were shown to be localized at the plasma membrane. Thus, we believe that TRACE is an effective new method to infer prokaryotic gene functional linkages by tracing evolutionary events

    Development of Biclustering Techniques for Gene Expression Data Modeling and Mining

    Get PDF
    The next-generation sequencing technologies can generate large-scale biological data with higher resolution, better accuracy, and lower technical variation than the arraybased counterparts. RNA sequencing (RNA-Seq) can generate genome-scale gene expression data in biological samples at a given moment, facilitating a better understanding of cell functions at genetic and cellular levels. The abundance of gene expression datasets provides an opportunity to identify genes with similar expression patterns across multiple conditions, i.e., co-expression gene modules (CEMs). Genomescale identification of CEMs can be modeled and solved by biclustering, a twodimensional data mining technique that allows clustering of rows and columns in a gene expression matrix, simultaneously. Compared with traditional clustering that targets global patterns, biclustering can predict local patterns. This unique feature makes biclustering very useful when applied to big gene expression data since genes that participate in a cellular process are only active in specific conditions, thus are usually coexpressed under a subset of all conditions. The combination of biclustering and large-scale gene expression data holds promising potential for condition-specific functional pathway/network analysis. However, existing biclustering tools do not have satisfied performance on high-resolution RNA-Seq data, majorly due to the lack of (i) a consideration of high sparsity of RNA-Seq data, especially for scRNA-Seq data, and (ii) an understanding of the underlying transcriptional regulation signals of the observed gene expression values. QUBIC2, a novel biclustering algorithm, is designed for large-scale bulk RNA-Seq and single-cell RNA-seq (scRNA-Seq) data analysis. Critical novelties of the algorithm include (i) used a truncated model to handle the unreliable quantification of genes with low or moderate expression; (ii) adopted the Gaussian mixture distribution and an information-divergency objective function to capture shared transcriptional regulation signals among a set of genes; (iii) utilized a Dual strategy to expand the core biclusters, aiming to save dropouts from the background; and (iv) developed a statistical framework to evaluate the significances of all the identified biclusters. Method validation on comprehensive data sets suggests that QUBIC2 had superior performance in functional modules detection and cell type classification. The applications of temporal and spatial data demonstrated that QUBIC2 could derive meaningful biological information from scRNA-Seq data. Also presented in this dissertation is QUBICR. This R package is characterized by an 82% average improved efficiency compared to the source C code of QUBIC. It provides a set of comprehensive functions to facilitate biclustering-based biological studies, including the discretization of expression data, query-based biclustering, bicluster expanding, biclusters comparison, heatmap visualization of any identified biclusters, and co-expression networks elucidation. In the end, a systematical summary is provided regarding the primary applications of biclustering for biological data and more advanced applications for biomedical data. It will assist researchers to effectively analyze their big data and generate valuable biological knowledge and novel insights with higher efficiency

    Automatically exploiting genomic and metabolic contexts to aid the functional annotation of prokaryote genomes

    Get PDF
    Cette thÚse porte sur le développement d'approches bioinformatiques exploitant de l'information de contextes génomiques et métaboliques afin de générer des annotations fonctionnelles de gÚnes prokaryotes, et comporte deux projets principaux. Le premier projet focalise sur les activités enzymatiques orphelines de séquence. Environ 27% des activités définies par le International Union of Biochemistry and Molecular Biology sont encore aujourd'hui orphelines. Pour celles-ci, les méthodes bioinformatiques traditionnelles ne peuvent proposer de gÚnes candidats; il est donc impératif d'utiliser des méthodes exploitant des informations contextuelles dans ces cas. La stratégie CanOE (fishingCandidate genes for Orphan Enzymes) a été développée et rajoutée à la plateforme MicroScope dans ce but, intégrant des informations génomiques et métaboliques sur des milliers d'organismes prokaryotes afin de localiser des gÚnes probants pour des activités orphelines. Le projet miroir au précédent est celui des protéines de fonction inconnue. Un projet collaboratif a été initié au Genoscope afin de formaliser les stratégies d'exploration des fonctions de familles protéiques prokaryotes. Une version pilote du projet a été mise en place sur la famille DUF849 dont une fonction enzymatique avait été récemment découverte. Des stratégies de proposition d'activités enzymatiques alternatives et d'établissement de sous familles isofonctionnelles ont été mises en place dans le cadre de cette thÚse, afin de guider les expérimentations de paillasse et d'analyser leurs résultats.The subject of this thesis concerns the development of bioinformatic strategies exploiting genomic and metabolic contextual information in order to generate functional annotations for prokaryote genes. Two main projects were involved during this work: the first focuses on sequence-orphan enzymatic activities. Today, roughly 27% of activities defined by International Union of Biochemistry and Molecular Biology are sequence-orphans. For these, traditional bioinformatic approaches cannot propose candidate genes. It is thus imperative to use alternative, context-based approaches in such cases. The CanOE strategy fishing Candidate genes for Orphan Enzymes) was developed and added to the MicroScope bioinformatics platform in this aim. It integrates genomic and metabolic information across thousands of prokaryote genomes in order to locate promising gene candidates for orphan activities. The mirror project focuses on protein families of unknown function. A collaborative project has been set up at the Genoscope in hope of formalising functional exploration strategies for prokaryote protein families. A pilot version was created on the DUF849 Pfam family, for which a single activity had recently been elucidated. Strategies for proposing novel functions and activities and creating isofunctional sub-families were researched, so as to guide biochemical experimentations and to analyse their results.EVRY-Bib. électronique (912289901) / SudocSudocFranceF
    corecore