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ABSTRACT 

DEVELOPMENT OF BICLUSTERING TECHNIQUES FOR GENE EXPRESSION 

DATA MODELING AND MINING 

JUAN XIE 

2018 

The next-generation sequencing technologies can generate large-scale biological 

data with higher resolution, better accuracy, and lower technical variation than the array-

based counterparts. RNA sequencing (RNA-Seq) can generate genome-scale gene 

expression data in biological samples at a given moment, facilitating a better 

understanding of cell functions at genetic and cellular levels. The abundance of gene 

expression datasets provides an opportunity to identify genes with similar expression 

patterns across multiple conditions, i.e., co-expression gene modules (CEMs). Genome-

scale identification of CEMs can be modeled and solved by biclustering, a two-

dimensional data mining technique that allows clustering of rows and columns in a gene 

expression matrix, simultaneously. Compared with traditional clustering that targets 

global patterns, biclustering can predict local patterns. This unique feature makes 

biclustering very useful when applied to big gene expression data since genes that 

participate in a cellular process are only active in specific conditions, thus are usually co-

expressed under a subset of all conditions. 

The combination of biclustering and large-scale gene expression data holds 

promising potential for condition-specific functional pathway/network analysis. 

However, existing biclustering tools do not have satisfied performance on high-resolution 
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RNA-Seq data, majorly due to the lack of (i) a consideration of high sparsity of RNA-Seq 

data, especially for scRNA-Seq data, and (ii) an understanding of the underlying 

transcriptional regulation signals of the observed gene expression values.  QUBIC2, a 

novel biclustering algorithm, is designed for large-scale bulk RNA-Seq and single-cell 

RNA-seq (scRNA-Seq) data analysis. Critical novelties of the algorithm include (i) used 

a truncated model to handle the unreliable quantification of genes with low or moderate 

expression; (ii) adopted the Gaussian mixture distribution and an information-divergency 

objective function to capture shared transcriptional regulation signals among a set of 

genes; (iii) utilized a Dual strategy to expand the core biclusters, aiming to save dropouts 

from the background; and (iv) developed a statistical framework to evaluate the 

significances of all the identified biclusters. Method validation on comprehensive data 

sets suggests that QUBIC2 had superior performance in functional modules detection and 

cell type classification.  The applications of temporal and spatial data demonstrated that 

QUBIC2 could derive meaningful biological information from scRNA-Seq data. 

Also presented in this dissertation is QUBICR.  This R package is characterized 

by an 82% average improved efficiency compared to the source C code of QUBIC. It 

provides a set of comprehensive functions to facilitate biclustering-based biological 

studies, including the discretization of expression data, query-based biclustering, bicluster 

expanding, biclusters comparison, heatmap visualization of any identified biclusters, and 

co-expression networks elucidation. 

In the end, a systematical summary is provided regarding the primary applications 

of biclustering for biological data and more advanced applications for biomedical data. It 
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will assist researchers to effectively analyze their big data and generate valuable 

biological knowledge and novel insights with higher efficiency.               
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CHAPTER 1: Introduction 

1.1 Gene Expression Data 

Gene expression is the process by which information from a gene is used in the 

synthesis of a functional product, that is, a molecule needed to perform a job in the cell 

(e.g., protein). The process mainly consists of two steps: transcription and translation. In 

transcription, the DNA sequence of a gene is copied to make an RNA molecule. In 

translation, the sequence of the mRNA is decoded to specify the amino acid sequence of 

a polypeptide. Since genes encode proteins and proteins dictate cell functions, the genes 

expressed in a cell determine what the cell can do. 

Many biotechnologies are available to profile gene expression. Microarrays 

emerged in the late 1990s, which is the first high-throughput technology that enables the 

researchers to monitor the expression level of tens of thousands of genes simultaneously  

[1]. Microarrays are typically microscope slides that are printed with thousands of tiny 

spots in ordered positions, with each spot containing a known DNA sequence or gene. 

After steps of mRNA extraction, cDNA synthesis, cDNA fragmentation, and fluorescent 

labeling, the relative abundance of genes is quantified by detecting fluorescent intensity, 

which is continuous and positive.  Due to its easy accessibility and low cost, microarrays 

have been the most widely used platforms in generating gene expression.  However, 

microarrays need a reference genome and transcriptome to be available; thus, their 

application is confined to organisms whose genome have already been sequenced. 

 With the advent of massively parallel sequencing, next-generation sequencing 

(NGS) technologies have become more affordable. Compared to the array-based 
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counterparts, NGS has higher resolution, better accuracy, lower technical variation and 

many other advantages [2, 3].  It allows for a much faster-paced accumulation of large-

scale biological data. The high-throughput RNA-sequencing (RNA-Seq) is a 

revolutionary technology for gene expression profiling and promises a comprehensive 

picture of the transcriptome for a biological process [4, 5]. Unlike microarrays, RNA-Seq 

can be used to new organisms whose genome has not been sequenced yet. It extracts 

usable information from the mature mRNA within a biological source and generates a 

massive number of short segments (reads, 100-250 bps), which enable the discrete 

quantification of all genes expressed in a cell [5, 6].  Currently, researchers can either 

analyze a large sample of cells from a single organism in the form of bulk RNA-Seq data 

or isolate individual cells from complex organisms and measure their transactional 

activity through single-cell RNA-sequencing (scRNA-Seq). Such gene expression data 

from individual cells promises to provide a better understanding of cell functions at 

genetic and cellular levels[7] . In short, these biotechnologies have generated large 

genome-scale gene expression data in the public domain, and their tremendous values 

have been confirmed in many research areas such as elucidation of cell-type-specific 

regulatory networks [8, 9] and cancer & complex diseases studies [10-12].  

1.2 Biclustering Techniques 

The abundance of gene expression datasets provides an opportunity to identify 

genes with similar expression patterns across multiple conditions, i.e., co-expression gene 

modules (CEMs). The genes in these modules tend to be functionally related or co-

regulated by the same transcriptional regulatory signals (TRSs). Thus, they enable the 

higher-level interpretation of gene expression data, improve functional annotation, 
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facilitate inference of gene regulatory mechanisms, and are useful for a better 

understanding of disease/cancer mechanisms. Genome-scale identification of CEMs can 

be modeled and solved by biclustering [13], which was introduced by Hartigan in 1972 

[14] and applied to gene expression data analysis by Cheng and Church in 2000 [15]. 

Biclustering is a two-dimensional data mining technique that allows clustering of rows 

(representing genes) and columns (representing samples/conditions) in a gene expression 

matrix, simultaneously. The biclustering method can capture biologically meaningful and 

computationally significant CEMs, by identifying (possibly overlapped) homogeneous 

submatrices, subsets of rows with a coherent pattern across subsets of columns that satisfy 

specific quality metrics (e.g., mean squared residue used in [15] and MSE used in [16]). 

This unique feature makes it very useful when applied to big gene expression data since 

genes that participate in a cellular process are only active in specific conditions, thus are 

usually co-expressed under a subset of all conditions.  

Besides the identification of CEMs, scRNA-Seq data enables studies of individual 

cells or cell types as well as their complex interactions under specific stimuli, e.g., cell 

types classification and clustering. In multicellular organisms, biological function emerges 

when various cell types form complex organs [17]. Investigations into organ development, 

cell function, and disease mechanisms highly depend upon accurate identification and 

categorization of cell types, sometimes along with their temporal and spatial features [18]. 

Traditionally, cell type was defined based on morphological properties or marker proteins, 

yet this method failed to characterize the full diversity of cells. scRNA-Seq data provides 

the possibility to group cells based on their genome-wide transcriptome profiles, and 

several studies have already been carried out using scRNA-Seq data to identify novel cell 
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types, proving its power to unravel the full diversity of cells in human and mouse [8]. 

Mathematically, the problem of cell types classification can be treated as biclustering 

problems, as the essence is to find sub-populations of cells sharing common expression 

patterns among subsets of genes. 

A substantial number of biclustering methods were developed during the past 18 

years [15, 16, 19-36]. SAMBA [28], ISA [29], Bimax [30], QUBIC [31], and FABIA [37] 

are some popular algorithms for general purpose. CCC-biclustering [38-40] is designed for 

temporal data analysis, and BicPAM [41], BicNET [35, 42] and MCbiclust [43] are three 

recent studies.  Besides, several tools (R packages, web servers, etc.) have been developed 

to facilitate users with a limited computational background [23, 44-50]. GEMS [47] is a 

web server for gene expression mining based on a Gibbs sampling paradigm; and biclust 

[48] and QUBICR [49] are two R packages integrating multiple existing algorithms, data 

preprocessing functions, and interpretation & visualization of the results. A list of some 

highly cited or recently published biclustering algorithms and tools is shown in Table1. 
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Table 1. Summary of biclustering algorithms and tools, sorted in the decreasing order of their numbers of citation since published. 

Application or usage was noted for some of the algorithms. Citations were collected via Google Scholar as of Sep 2018 

Algorithms/ 

Tools 

Citations* Published 

Year 

Review comments* Notes 

SAMBA [28] 939 2002 - - 

Bimax[30] 874 2006 E Choice for constant-upregulated biclusters - 

ISA [29] 414 2002 E Choice for constant-upregulated biclusters; 

NC Performs well on synthetic data 

- 

Plaid[16] 717 2002 E Choice for constant-upregulated biclusters; 

Has the highest enriched bicluster ratio in 

real datasets 

 

Spectral[51] 654 2003 NC Performs well on human and synthetic 

data 

 

cMonkey[52] / 

cMonkey2 [53] 

257/ 

21 

2006/ 

2015 

- Integrates various orthogonal pieces 

of information which support 

evidence of gene co-regulation, and 

optimizes biclusters to be supported 

simultaneously by one or more of 

these prior constraints 

FABIA [32] 198 2010 E Choice for constant-upregulated biclusters;  

NC Performs well on synthetic data 

- 

SSVD [54] 192 2010 - - 
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QUBIC [31] 167 2009 E Choice for constant-upregulated 

biclusters; Has the highest enriched 

bicluster ratio in real datasets 

NC Performs well on synthetic and human 

data 

 

BBC[55] 126 2008 E Best one for plaid biclusters - 

CPB[56] 40 2009 E Best one for constant, scale, shift and 

shift-scale datasets 

 

LAS [57] 113 2009 - Discovery of biologically relevant 

structures in high dimensional data; 

Significant results highlighted with 

a large negative average image for 

easy observation. 

BackSPIN [58] 830 2015 - First biclustering algorithm for 

scRNA-Seq data 

PPA [59] 93 2008 - - 

CCC-Biclustering [60] 95 2010 - Coherent biclusters with maximal 

contiguous columns in linear time; 

Combining time-series expression 

with the regulatory network. 

COALESCE [61] 80 2009 E Choice for constant-upregulated biclusters Efficient enough to discover 

expression biclusters and putative 

regulatory motifs in metazoan 

genomes and very large microarray 

compendia (>10,000 conditions) 

BioNMF [62] 79 2006 - - 

BiGGEsTs [39] 51 2009 - Suitable for temporal biclustering 
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 Note: In the Reviewer Comments column, algorithms/tools mentioned by [69] are denoted by ‘E’, mentioned by [70] are denoted by ‘NC’ 

NCIS [63] 44 2014 - Identification of cancer subtypes 

FD-MSCM [64] 35 2010 - - 

BicPAM [41] 28 2014 - Biclustering for biomedical data 

analysis; 

Suitable for non-constant biclusters 

IBBiG [65] 24 2012 - - 

BUBBLE [66] 14 2006 - Based on bottom-up search strategy; 

Using mean squared residue 

measurement. 

SparseBC [67] 21 2014 - - 

BicNET [35] 13 2016 - Discovery of non-trivial modules 

directly for biological network 

construction; 

Noisy and missing interaction fix; 

Analysis of protein interaction and 

gene interaction networks 

MCbiclust [68] 3 2017 - - 
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Several review studies of biclustering have been carried out in different 

perspectives [30, 71-75]. For example, Pontes et al. presented a taxonomy of 47 

biclustering algorithms according to their search strategies [76], and Busygin et al. 

emphasized the mathematical models and concepts in biclustering techniques [77]. Padilha 

et al. claimed that an algorithm only achieved satisfactory results in a specific context and 

the best choice depends on particular objectives [74]. Eren et al. compared 12 popular 

algorithms and concluded that QUBIC is one of the best as it achieves the highest 

performance in synthetic datasets and captures a high proportion of enriched biclusters on 

real datasets, and Plaid, FABIA, ISA and Bimax are the recommended tools for capturing 

upregulated biclusters [78]. Adetayo et al. presented an overview of data analysis using 

biclustering methods from a practical point of view, accompanied by R examples [79]. In 

2018, Saelens et al. ranked Spectral, ISA, FABIA and QUBIC as the top biclustering 

methods regarding predicting gene modules from human and/or synthetic data [70].    

1.3 QUBIC 

 QUBIC (Qualitative BIClustering algorithm) is a qualitative biclustering 

algorithm, which was first introduced in 2009.  It assumes that a gene has three 

expression states under all the conditions, i.e., highly-expressed, lowly-expressed, and 

normally-expressed. The values in the first two expression states are so-called affected 

values. QUBIC employs a framework to identify dynamic cutoffs and corresponding 

affected values for different genes (Figure 1). A discretized qualitative matrix (MR) can 

be generated after applying the above process to each gene, with non-zero integers 

representing affected values and 0s being background. Then a weighted graph is 

constructed based on this matrix, where each node corresponds to a gene, and each edge 
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has a weight indicating the similarity level between the two corresponding genes. The 

aim is to search biclusters corresponding to induced heavy subgraphs, which is an NP-

hard problem. QUBIC heuristically iterates a seed list (S), where a seed represents a pair 

of genes, and its weight is the number of conditions under which they have the same 

values in MR. In each iteration, it starts from a feasible seed with the highest weight, then 

expands vertically and horizontally to recruit more genes and conditions. Finally, QUBIC 

outputs a bicluster with max (min (I, J)), where I and J being the number of rows and 

columns of the bicluster (Figure 1). 

 

 

1 … 1 … -1 … -1 … 1

1 … 1 … -1 … -1 … 1

7.6 6.0 7.3 8.3 9.1 8.7 7.4 6.4 9.2 6.5 8.1 7.2 8.4 8.9 8.8 6.5

1 -1 0 1 1 1 0 0 1 -1 1 0 1 1 1 -1

1 … 1 … -1 … -1 … 1

1 … 1 … -1 … -1 … 1

1 … 1 … -1 … -1 … 0

1 … 1 … -1 … -1 … 1

1 … 1 … -1 … -1 … 1

1 … 1 … -1 … -1 … 0

1 … 1 … -1 … -1 … 0

min{I,J}=2

min{I,J}=3

min{I,J}=4

Reach max(min(I,J)),

Output

ML UU’

-1 0 1

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16

G1 1 -1 0 1 1 1 0 0 1 -1 1 0 1 1 1 -1

G2 1 -1 1 1 1 1 0 1 1 0 1 -1 1 0 1 0

… 1 0 1 0 -1 1 -1 1 0 1 1 -1 1 0 1 1

U’- M = M- L



10 

 

Figure 1. Workflow of QUBIC. QUBIC sorts the expression values of the gene i under all given 

conditions in an increasing order: 𝑣𝑖1⋯𝑣𝑖,𝑠−1𝑣𝑖𝑠 ⋯𝑣𝑖,𝑐−1𝑣𝑖𝑐𝑣𝑖,𝑐+1⋯𝑣𝑖,𝑚−𝑠+1𝑣𝑖,𝑚−𝑠+2⋯𝑣𝑖𝑚 , 

where c=m/2 and s-1= m×q (q=6% by default). Then it selects initial bounds L= 𝑣𝑖,𝑠−1 and U= 

𝑣𝑖,𝑚−𝑠+1. QUBIC adjusts the bounds based on their distance from the median (M= 𝑣𝑖𝑐), e.g., if 

(U-M) > (M-L), then use U’ = (M-L) + M = 2M –L as the new upper bound. The values less or 

equal to L are labeled as -1, those greater or equal to U’ are labeled as 1, and those fall between L 

and U’ are labeled as 0. Repeat this process for each gene in the dataset, a representing matrix MR 

can be generated. 

 

1.4 Qserver 

QUBIC has been proved to be able to solve more general biclustering problems 

than previous biclustering algorithms[31]. To fully utilize the analysis power of QUBIC, 

a web server named Qserver (Qualitative BIClustering server) was developed in 

2011[23]. Qserver integrates capabilities of biclustering with cis-regulatory motifs 

prediction and functional enrichment analyses. Specifically, Qserver provides the 

following functionalities: (i) biclustering analysis using QUBIC; (ii) prediction and 

assessment of conserved cis-regulatory motifs in promoter sequences of the predicted co-

expressed genes; (iii) functional enrichment analyses of the predicted co-expressed gene 

clusters using Gene Ontology (GO) terms, and (iv) visualization capabilities in support of 

interactive biclustering analyses.  

For biclustering analysis, QUBIC algorithm is implemented. Users can provide 

continuous or discretized gene expression matrix as input. If continuous data is provided, 

Qserver will automatically discretize it qualitatively. Qserver allows users to adjust the 

main parameters in QUBIC, and suggestion regarding how to change for different 

applications is provided in the Help page.  
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After obtaining sets of biclusters, QServer allows computationally validating of 

the biclusters by predicting conserved cis-regulatory motifs among the promoter 

sequences automatically extracted from the upstream sequences (the default value is 300 

bps long) of the co-expressed genes. Two motif prediction programs, BOBRO [80] and 

MEME[81] are provided,  both of which attempt to find conserved sequences among a 

set of given promoter sequences using different strategies, and both offer a statistical 

significance score for each predicted motif.   

For the predicted biclusters, Qserver can also conduct functional enrichment 

analysis based on GO classification. Specifically, given a bicluster, Qserver will check if 

it is enriched with a GO term, compared against the background gene distribution, i.e., 

the whole genome. A P-value and enrichment ratio of that GO term will be provided.  

It is common that different sets of gene expression data may use different naming 

conventions for genes. To deal with this issue, Qserver collected three gene/protein 

naming systems (i.e., GI, locus, and RefSeq) so that it can automatically detect the 

naming system used in an expression matrix. It also collected the genome sequences and 

the gene annotations from the NCBI Genome database in support of motif prediction and 

functional enrichment analysis, covering human, mouse, Arabidopsis, B subtilis, 

Synechocystis sp. PCC6803, Synechococcus sp. WH8102 and E. coli K12. For other 

organisms, Qserver will only do biclustering analysis and plot the heatmaps for 

biclusters.  

In summary, Qserver provides three functional modules for the expression data. 

First, the input matrix is subject to biclustering analysis using QUBIC.  For each 

bicluster, cis-regulatory motifs are then identified in the promoter regions of its 
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component genes, using either MEME or BOBRO. Qserver will also provide the detailed 

information of each identified motif, including its P-value and the logo plot. The third 

module is to identify enriched GO categories among genes in each bicluster. The 

workflow of Qserver is shown in Figure 2.  

 

Figure 2. An example workflow of using Qserver. 

 

 

  



13 

 

CHAPTER 2: QUBIC2—A Novel Biclustering Algorithm for Large-scale RNA-Seq 

Data Analysis 

Although numerous algorithms and tools have been developed for gene 

expression data analysis, most existing biclustering algorithms are designed and 

evaluated using microarray rather than RNA-Seq data. One of the unique features of gene 

expression data derived from RNA-Seq, especially the scRNA-Seq data, is the massive 

zeros (up to 60% of all the genes in a cell have read counts being zeros) [82, 83]. The 

normalized read counts roughly follow lognormal distributions; however, the raw zero 

counts of specific genes will lead to negative infinity after logarithmic transformation 

[84-87], resulting in unquantifiable errors. Therefore, the biclustering methods that are 

successful for microarray cannot be directly applicable to RNA-Seq data [88], and novel 

methods taking full consideration of characteristics of RNA-Seq data are urgently needed 

in the public domain. In this chapter, I will present QUBIC2, a novel biclustering 

algorithm developed for large-scale RNA-Seq data analysis. 

2.1 Overall Design of QUBIC2 

Inheriting the qualitative representation and graph-theory based model from 

QUBIC [31], QUBIC2 has four unique features: (i) developed a rigorous truncated model 

to handle the unquantifiable errors caused by zeros, and used a reliable qualitative 

representation of gene expression to reflect expression states corresponding to various 

TRSs; (ii) integrated an information-divergence objective function in the biclustering 

framework in support of functional gene modules identification; (iii) employed a Dual 

strategy to expand the cores, aiming to save dropouts from the background.; and (iv) 
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developed a robust P-value framework to support statistical evaluation of all the 

identified biclusters. Details of these four features are showcased as follows. 

A mixture of left-truncated Gaussian distributions (LTMG) model was designed to 

fit the RNA-Seq data, rather than discarding zeros or adding a small constant to original 

counts [85, 89]. The basic idea is to treat the large number of observed zeros and low 

expressions as left censored data in the mixture Gaussian model of each gene [90, 91], 

assuming that the observed frequency of expressions on the left of the censoring point 

should be equal to the area of the cumulative distribution function of the mixture Gaussian 

distribution left of the censoring point. Furthermore, we assumed that a gene should receive 

𝐾 possible TRSs under all the conditions, and its expression profile would follow a mixture 

of 𝐾  left truncated Gaussian distributions. The LTMG model was applied to fit the 

expression value of each gene, and the gene expression value under a specific condition 

was labeled to the most likely distribution. Accordingly, a row consisting of discrete values 

(1,2, ⋯, 𝐾) for each gene was generated (Figure 3A). Then this qualitative row was split 

into 𝐾 new rows, such that in the 𝑖th row those previously labeled as 𝑖 are labeled as 1, 

while the rest were labeled as 0.  Finally, a binary representing matrix MR was generated. 

A weighted graph 𝐺 = (𝑉, 𝐸)  was constructed based on MR, where nodes 𝑉 

correspond to genes, edges 𝐸 connecting every pair of genes (Figure 3B). The edge weight 

indicates the similarity between the two corresponding genes, which is defined as the 

number of conditions in which the two genes have 1s in MR. Intuitively, two genes from a 

bicluster should have a heavy edge in 𝐺 innately while two random genes may have a 

heavy edge only accidentally. Hence, a bicluster should correspond to a maximal subgraph 

of 𝐺, with edges typically heavier than the edges of an arbitrary subgraph. Identifying all 
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the biclusters equals to identifying all the heavy subgraphs in 𝐺, which is an NP-hard 

problem. Therefore, a heuristic strategy was designed as follows.  

Figure 3. QUBIC2 workflow. A. Discretization of gene expression data. Each gene’s expression 

profile is fitted by the LTMG model and discretized qualitatively. Finally, a binary representing 

matrix is generated; B. Graph construction and seed selection. A weighted group is constructed 

based on the representing matrix. Then a feasible seed is selected from the seed list; C. Build an 

initial core based on the seed. QUBIC2 will recruit genes with higher weight with the seed. If two 

genes have the same weight, the one with higher KL score will be selected; D. Expand core and 

determine pool. QUBIC2 will expand the core vertically and horizontally to recruit more genes 

and conditions, respectively. The intersected zone created by extended genes and conditions as a 

Dual searching pool; E. Dual search in the pool and output the bicluster with genes and 

conditions that come from Core and Dual as final bicluster (red box); F. Statistical evaluation of 

identified biclusters based on either biological annotations or the size of the bicluster. 
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The algorithm would iterate a seed list (𝑆), which is the sorted list of edges in 𝐺 in 

the decreasing order of their weights (i.e., 𝑤(𝑒1) ≥ 𝑤(𝑒2) ≥ ⋯ ,𝑤(𝑒 𝐸 ) ). An edge 𝑒𝑖 =

 𝑖   is selected as a seed if and only if at least one of  𝑖 and    is not in any previously 

identified biclusters, or   𝑖 and    are in two nonintersecting biclusters in terms of genes. 

QUBIC2 first built a core bicluster from a seed and then expanded to recruit more genes 

and conditions into a to-be-identified bicluster, until the Kullback-Leibler divergence score 

(KL score) was locally optimized. It was proposed based on the assumption that the 

difference between a bicluster and its background should be larger than the difference 

between an arbitrary same-size submatrix and its background. The KL score of a bicluster 

was designed to quantify this difference as the larger of the difference was, the larger of 

the score is (Figure 3C. See Section 2.2.2 for details). 

The previous steps predict an all-1 core. We believe that some 0s outside the cores 

are dropouts and therefore we need to expand the cores. Since it is difficult to determine 

the cutoffs for expansion, we first expand the core both horizontally and vertically, and 

then heuristically search another core in the expanded region. Specifically, during 

expansion, the algorithm will control the consistency level for a bicluster, which is defined 

as the minimum ratio of the number of 1s in a column/row and the number of rows/columns 

in the bicluster. Then QUBIC2 will adopt the same strategy as it used for predicting Cores 

to search another core in the expanded region (Figure 3D-E), giving rise to a submatrix (I, 

J) of MR (i.e., a bicluster) with optimized consistency level and maximal KL score can be 

identified. It is assumed that 0s induced in this way are more likely to be dropouts. 

Furthermore, for the first time, a statistical framework based on the size of the 

biclusters was implemented to calculate a P-value for each of the identified biclusters. The 



17 

 

problem of assessing the significance of identified biclusters was formulated as calculating 

the probability of finding at least one submatrix enriched by 1 from a binary matrix with 

given size, with a beta distribution employed during the process. This P-value framework 

enables users systematically evaluate the statistical significance of all the identified 

biclusters, especially for those from less-annotated organisms (Figure 3F). 

2.2 Detailed Methods in QUBIC2 

2.2.1 Left Truncated Mixed Gaussian (LTMG) Model and Qualitative Representation 

To accurately model the gene expression profile of RNA-Seq and scRNA-Seq 

data, we explicitly developed a mixed Gaussian model with left truncation assumption. 

Denotes the log-transformed FPKM, RPKM or CPM expression values of gene X over 𝑁 

conditions as X = {𝑥1,𝑥 }, we assumed that 𝑥  𝑋 follows a mixture of 𝑘 Gaussian 

distributions, corresponding to 𝑘 possible TRSs. The density function of 𝑥  is: 

𝑝 𝑥 ; Θ = ∑𝛼𝑖𝑝(𝑥 ; 𝜃𝑖)

 

𝑖=1

= ∑𝛼𝑖
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And the density function of X is: 

𝑝(X;Θ) = ∏𝑝(𝑥 ; Θ)
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𝑖=1

 

 =1

= 𝐿(Θ;𝑋) 

where 𝛼𝑖  is the mixing weight,  𝜇𝑖  and 𝜎𝑖  are the mean and standard deviation of ith 

Gaussian distribution, which can be estimated by the EM algorithm with given X: 

Θ∗ =        Θ
argmax 𝐿(Θ;𝑋)

 

To model the errors at zero and the low expression values, we introduce a 

parameter 𝑍𝑐𝑢𝑡  for each gene expression profile and consider the expression values 
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smaller than 𝑍𝑐𝑢𝑡 as left censored data. With the left truncation assumption, the gene 

expression profile is split into 𝑀 truly measured expression value (> 𝑍𝑐𝑢𝑡) and 𝑁 −𝑀 

left censored gene expressions (≤𝑍𝑐𝑢𝑡) for the 𝑁 conditions. Latent variables 𝑦  and 𝑍  

are introduced to estimate Θ by the following Q function: 

𝑄(Θ; Θ𝑡−1) = ∑𝑝 𝑦 |𝑥 ; 𝛩
𝑡−1 ∑ ∑log (𝛼𝑖𝑝(𝑥 ; 𝜇𝑖, 𝜎𝑖)

 

𝑖=1
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𝑚
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+∑𝑝 𝑦 |𝑧 ; 𝛩
𝑡−1 ∑  ∑log (𝛼𝑖𝑝(𝑧 ; 𝜇𝑖 , 𝜎𝑖)
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To estimate the parameters Θ that maximizes the likelihood function, we have 

Maximization step of the EM algorithm as [92]:  

𝑎𝑖
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where 𝑃 𝑖|𝑍 , 𝑍𝑐𝑢𝑡, Θ
𝑡−1 =

𝑃(−∞<𝑍𝑗<𝑍𝑐𝑢𝑡 𝑢𝑖
𝑡−1,𝜎𝑖

𝑡−1)

∑ 𝑃(−∞<𝑍𝑗<𝑍𝑐𝑢𝑡 𝑢𝑖
𝑡−1,𝜎𝑖

𝑡−1)𝐾
𝑖=1

, 𝐻(𝑥) =
𝜙(𝑥)

Φ(𝑥)
, 𝜙(𝑥) and Φ(𝑥) are 

the pdf and cdf of standard normal distribution. 

Parameters Θ   can be estimated by iteratively running the estimation (E) and 

maximization (M) steps. In this study,  𝑍𝑐𝑢𝑡 is set for each gene as the logarithm of the 

minimal non-zero RPKM/FPKM/TPM value in the gene’s expression profile. The EM 
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algorithm is conducted for 𝐾 = 1, …, 9 to fit the expression profile of each gene and the 𝐾 

that gives the best fit is selected according to the Bayesian Information Criterion (BIC):  

𝐵𝐼𝐶 = −2 ln(Θ∗) + 3𝐾ln(𝑁) 

where 𝐾 is the number of TRS, 𝐾 is the number of conditions. 𝐾 that minimizes the BIC 

will be selected. 

Then the original gene expression values will be labeled to the most likely 

distribution under each condition. In detail, the probability that 𝑥  belongs to distribution 𝑖 

is formulated by:  

 𝑝 𝑥 ∈ 𝑇𝑅𝑆 𝑖|𝐾, Θ∗ ∝
𝛼𝑖

√2𝜋𝜎 
2

𝑒

−(𝑥𝑗−𝜇𝑖)
2

2𝜎𝑖
2

 

And 𝑥   is labeled by TRS 𝑖  if 𝑝 𝑥 ∈ 𝑇𝑅𝑆 𝑖|𝐾, Θ∗ =

max
𝑖=1,⋯,𝐾

(𝑝 𝑥 ∈ 𝑇𝑅𝑆 𝑖|𝐾, 𝛩∗ ). In such a way, a row consisting of discrete values (1,2, 

, 𝐾) for each gene will be generated. 

2.2.2 KL Score 

A Kullback-Leibler divergence score (KL score) is introduced in QUBIC 2 to guide 

candidate-selection and biclustering optimization. The KL score of a bicluster is defined 

as: 

𝐾𝐿𝐵 =
1

𝑁
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𝑀
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where 𝑁 and 𝑀 are the numbers of rows and columns of a submatrix B in MR, respectively. 

𝑅(𝑖, 𝑗) represents the proportion of element 𝑖 in row 𝑗 of B, 𝑄(𝑖, 𝑗) is the proportion of 𝑖 in 

the entire corresponding row, 𝐶(𝑖, 𝑘) is the proportion of 𝑖 in column 𝑘 of B, and 𝑃(𝑖, 𝑘) is 

the proportion of 𝑖 in the entire corresponding column.   
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Meanwhile, the KL score for a gene quantify the similarity between a candidate 

gene 𝑗 and a bicluster, which is defined as follows: 

𝐾𝐿 = ∑ 𝑅(𝑖, 𝑗) × 𝑙𝑜 
𝑅(𝑖, 𝑗)

𝑄(𝑖, 𝑗)𝑖∈{ ,1}
 

where 𝑅(𝑖, 𝑗) represent the proportion of 𝑖 under corresponding columns of the current 

bicluster. 

2.2.3 QUBIC2 Algorithm 

The QUBIC2 algorithm concludes as follows:  

Step 1 (Data discretization and qualitative representation): Given an expression 

matrix with log-transformed FPKM, RPKM or CPM value for genes, use LTMG model to 

fit data. Label the values to the most likely distribution to get a representing row for each 

gene. Split these rows into multiple rows to get the representative matrix MR (Figure 3A). 

Step 2 (Graph construction and seed selection): Construct a weighted graph for 

MR. Select a feasible seed from the seed list; Stop if the seed list is empty (Figure 3B). 

Step 3 (Build core bicluster): Build an initial bicluster by finding all the conditions 

under which the two genes of the seed have 1s in MR. Set these columns of the two genes 

as the current bicluster B = (I, J). Expand B by adding a new gene that has the most 1s in 

J, giving rise to a new bicluster B’ = (I’, J’), where I’ is I after adding the new gene and J’ 

is J by deleting those columns with 0s. If two genes have the same number of 1s in J, 

choose the one with larger KL similarity with B (Figure 3C). If KLB’ > KLB, set B to B’ 

and repeat Step 2, otherwise stop and denote B as Core. Go to Step 4. 
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Step 4 (Core expansion): Expand the Core horizontally and vertically under preset 

consistency level as follows: for each gene(row) i not in B, if the ratio between the number 

of 1s in row i under J and |J| is ≥c, mark it as an extended gene; for each condition (column) 

j not in B, if the ratio between the number of 1s in the column j among I and |I| is ≥c, mark 

it as an extended condition. (Figure 3D). Mark the intersected zone created by extended 

genes and conditions as a Dual searching pool (brown box in Figure 3D). Go to Step 5. 

Step 5 (Search Dual): Search Dual in the intersected expanded zone, using the 

same process in Step 3, output the bicluster with genes and conditions that come from Core 

and Dual (red box in Figure 3E). Delete current seed, go to step 1. 

2.2.4 Size-based P-value 

For well-annotated organisms, the P-value of an identified bicluster enriching 

with a specific regulatory pathway can be calculated based on a hypergeometric 

distribution. However, the known experimental annotation is currently limited, even for 

most well-studied model organisms (about half of the protein-coding genes of E. coli 

have solid experimental evidence for their function in KEGG and GO) [93]. This status 

still limits the capability of a systematic evaluation of all the identified biclusters. To fill 

this gap, we calculate an alternative size-based P-value as follows. For a binary 

representing matrix MR, containing 𝑚  rows and 𝑛  columns, suppose we obtain an 𝑚1-

by-𝑛1bicluster M1 with all the elements be 1s. The probability of 𝑛1 ≥ 𝑊 can be assessed 

by the following formula [94], giving rise to a P-value of the bicluster M1: 

𝑃(𝑛1 ≥ 𝑊) = lim
 →∞

𝑛 
−(𝛽+1) 𝑊−𝑠( 1, 0,𝛽) (log𝑏 𝑛 )

𝛽+1 

where 𝛼 =
𝑚0

 0
 , 𝛽 =

𝑚1

 1
 , 𝑏 =

1

𝑝
, 𝑝 = 𝑃 𝑀𝑖, = 1 = 1 − 𝑃 𝑀𝑖, = 0  for ∀𝑖, 𝑗 
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𝑠(𝑛1, 𝑛 , 𝛽) =
𝛽 + 1

𝛽
log𝑏 𝑛 −

𝛽 + 1

𝛽
log𝑏  

𝛽 + 1

𝛽
log𝑏 𝑛  + log𝑏 𝛼

+
(1 + 𝛽) log𝑏 𝑒 − 𝛽 log𝑏 𝛽

𝛽
 

 

2.3 Functional Gene Modules Detection from RNA-Seq Data   

2.3.1 Data Acquisition 

A total of four expression datasets were used in this section, that is, one synthetic 

RNA-Seq data (22,846 rows × 100 columns), one bulk RNA-Seq dataset from 

Escherichia coli (E. coli, 4,497 rows × 155 columns), a bulk RNA-Seq dataset from 

TCGA (3,084 rows × 8,555 columns), and a scRNA-Seq dataset from human embryos 

(3,798 genes × 90 cells). The synthetic dataset was simulated using our in-house 

simulation method (see Section 2.3.2). It contains 22,846 genes and 100 samples. A total 

of 10 co-regulated modules was embedded in this dataset, covering 2,240 up-regulated 

genes. The E. coli RNA-Seq data consists of 4,497 genes and 155 samples, which was 

integrated and aggregated by our group. In short, 155 fastq files were downloaded from 

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ using the sratoolkit (v2.8.1, https://github.com/ncbi/sra-

tools/wiki/Downloads), and they are processed following quality check (FastQC), reads 

trimming (Btrim), reads mapping (HISAT2) and transcript counting (HTSeq). Then, raw 

read counts were RPKM normalized. The human RNA-Seq data contains 3,084 genes 

and 8,555 samples, which was obtained from [70]. The scRNA-Seq data was downloaded 

from [95] as an RPKM expression matrix with 20,214 gene and 90 cells, and then 3,798 

genes were kept for the analysis in this study by removing the genes without annotation.  

Multiple sets of known modules/biological pathways were provided or collected to 

support the enrichment analysis of the above four datasets. For synthetic data, the ten 

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/
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groups of pre-defined up-regulated genes were used as co-regulated modules. For E. coli 

data, we used five kinds of biological pathways, which are complex regulons and regulons 

extracted from the RegulonDB database (version 9.4, accessed on 05/08/2017), KEGG 

pathways collected from the KEGG database (accessed on 08/08/2017), SEED subsystems 

from the SEED genomic database (accessed on 08/08/2017) [96], and EcoCyc pathways 

from the EcoCyc database (version 21.1, as of 08/08/2017) [97]. Complex regulons 

(ComTF) were defined as a group of genes that are regulated by the same transcription 

factor (TF) or the same set of TFs. In total, 457 complex regulons, 204 regulons, 123 KEGG 

pathways, 316 SEED subsystems, and 424 EcoCyc pathways were retrieved, respectively. 

For the human TCGA and scRNA-Seq data, we used three sets of modules provided by 

[70]. 

2.3.2 Simulation of Co-regulated Gene Expression Data 

We utilized a single cell RNA-Seq dataset of human melanoma [98] (with 22,846 

genes and 4,645 cells) to simulate bulk tissue RNA-Seq data with known co-regulated 

modules. Specifically, a single cell RNA-Seq pool consists counts data of 4,466 cells of 

six annotated cell types namely B-, T-, endothelial, fibroblast, macrophage, and cancer 

cells were constructed. The top 1,000 cell type specifically expressed genes of each cell 

type were identified by using Z score of the mean of each gene’s expression level in each 

cell type.  

For each round of simulation, the number of to be simulated bulk tissue samples 

and co-regulation modules is first defined. Then the genes of each co-regulation module 

denoted as 𝑋  will be specified by randomly selecting 𝑀  genes from the top 1,000 cell 

type specifically expressed genes of one cell type. A co-regulation strength matrix 𝑃 is then 
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simulated from a bimodal distribution over (0,1), with 𝑃[𝑖, 𝑘] denotes the proportion of 

cells with the transcriptional regulatory signal of co-regulation module 𝑘 in bulk sample 𝑖. 

A bulk tissue data is simulated by randomly drawing cells from the cell pool by following 

a multinomial distribution, with predefined parameters and the total number of cells. For 

co-regulation module 𝑘 in bulk sample 𝑖, genes 𝑋  in a proportion 𝑃[𝑖, 𝑘] of the selected 

cells of the cell type corresponds to 𝑘 are perturbed by an X-fold increase of the gene 

expression. Then the bulk data 𝑖 with simulated co-regulations are formed by summing the 

perturbed gene expression profile the selected cells and normalized to RPKM expression 

scale. The Pseudo code of the simulation approach is provided as follows: 

𝐹𝑜𝑟 𝑘 𝑖𝑛 1 𝑡𝑜 # 𝑜 − 𝑟𝑒 𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑢𝑙𝑒𝑠 

𝑋 ≜ 𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑠𝑒𝑙𝑒 𝑡 𝑀   𝑒𝑛𝑒𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒  𝑒𝑙𝑙 𝑡𝑦𝑝𝑒 𝑠𝑝𝑒 𝑖𝑓𝑖 𝑎𝑙𝑙𝑦 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑  𝑒𝑛𝑒𝑠 𝑜𝑓 𝑜𝑛𝑒  𝑒𝑙𝑙 𝑡𝑦𝑝𝑒 

𝐹𝑜𝑟 𝑖 𝑖𝑛 1 𝑡𝑜 #𝐵𝑢𝑙𝑘 𝑡𝑖𝑠𝑠𝑢𝑒 𝑑𝑎𝑡𝑎 

 𝐹𝑜𝑟 𝑘 𝑖𝑛 1 𝑡𝑜 # 𝑜 − 𝑟𝑒 𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑢𝑙𝑒𝑠 

      𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒 𝑃[𝑖, 𝑘] ≜ 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓  𝑒𝑙𝑙𝑠 𝑤𝑖𝑡ℎ 𝑎 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛  

𝐹𝑜𝑟 𝑖 𝑖𝑛 1 𝑡𝑜 #𝐵𝑢𝑙𝑘 𝑡𝑖𝑠𝑠𝑢𝑒 𝑑𝑎𝑡𝑎 

 𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑠𝑒𝑙𝑒 𝑡 𝑁  𝑒𝑙𝑙𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒  𝑒𝑙𝑙 𝑝𝑜𝑜𝑙 𝑤𝑖𝑡ℎ 𝑎 𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑟𝑒𝑝𝑙𝑎 𝑒𝑚𝑒𝑛𝑡  

                  𝐹𝑜𝑟 𝑘 𝑖𝑛 1 𝑡𝑜 # 𝑜 − 𝑟𝑒 𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑢𝑙𝑒𝑠 

                              𝐶ℎ𝑜𝑜𝑠𝑒 𝑃[𝑖, 𝑘] 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓  𝑒𝑙𝑙𝑠 𝑜𝑓 𝑡ℎ𝑒  𝑒𝑙𝑙 𝑡𝑦𝑝𝑒  𝑜𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠 𝑡𝑜 𝑡ℎ𝑒  𝑜𝑟𝑒 𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑢𝑙𝑒 𝑘 

                                         𝑃𝑒𝑟𝑡𝑢𝑟𝑏 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑜𝑓 𝑋  𝑖𝑛 𝑡ℎ𝑒  ℎ𝑜𝑠𝑒𝑛  𝑒𝑙𝑙𝑠 𝑏𝑦 𝑎 𝑋 − 𝑓𝑜𝑙𝑑 𝑖𝑛 𝑟𝑒𝑎𝑠𝑒  

                𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑏𝑢𝑙𝑘 𝑡𝑖𝑠𝑠𝑢𝑒 𝑑𝑎𝑡𝑎 𝑏𝑦 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑  𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑙𝑒 𝑡𝑒𝑑 𝑁  𝑒𝑙𝑙𝑠  

 

The rationales of this simulation approach include (1) gene expression level and 

noise in the bulk data are purely simulated by sum of real single-cell data, without using 

artificially assigned expressions scale and noise; (2) co-regulation genes are modeled as a 

specific fold increase of a number of cell-type-specific genes in a particular subset of the 

cells, which characterizes the heterogeneity of transcriptional regulation among cells in a 

tissue; (3) multiple co-regulation modules in specific to different cell types can be 
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simultaneously simulated. Hence, we believe the gene expression data simulated by this 

way can satisfactorily reflect genes co-regulated by a perturbed transcriptional regulation 

signal in real bulk tissue data. 

2.3.3 Evaluation of Functional Modules 

The capability of algorithms to recapitulate known functional modules are assessed 

using precision and recall. First, for each identified bicluster, we use the P-value of its most 

enriched functional class (biological pathway) as the P-value of the bicluster. Specifically, 

the probability of having 𝑥 genes of the same functional class in a bicluster of size 𝑛 from 

a genome with a total of 𝑁 genes can be computed using the following hypergeometric 

function[99]: 

P (𝑋 = 𝑥 𝑁, 𝑝, 𝑛) =
 𝑝𝑁

𝑥
  (1−𝑝)𝑁

 −𝑥
 

 𝑁
 
 

 

where 𝑝 is the percentage of that pathway among all pathways in the whole genome. The 

P-value of getting such enriched or even more enriched bicluster is calculated as: 

𝑃 − value = P(X ≥ x) = 1 − P(X < x) = 1 −∑
 𝑝𝑁

𝑖
  (1−𝑝)𝑁

 −𝑖
 

 𝑁
 
 

𝑥−1

𝑖= 
 

The bicluster is deemed enriched with that function if its P-value is smaller than a 

specific cutoff (e.g., 0.05). 

Given a group of biclusters identified by a tool under a parameter combination, the 

precision is defined as the fraction of observed biclusters significantly enriched with the 

one biological pathway/known modules (Benjamini-Hochberg adjusted p<0.05), 

𝑃𝑟𝑒 𝑖𝑠𝑖𝑜𝑛 =
# 𝑜𝑓 𝑠𝑖 𝑛𝑖𝑓𝑖 𝑎𝑛𝑡 𝑏𝑖 𝑙𝑢𝑠𝑡𝑒𝑟𝑠

# 𝑜𝑓 𝑏𝑖 𝑙𝑢𝑠𝑡𝑒𝑟𝑠 
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 For recall, we compute the fraction of known modules that were rediscovered by 

the algorithms, 

𝑅𝑒 𝑎𝑙𝑙 =
# 𝑜𝑓 𝑠𝑖 𝑛𝑖𝑓𝑖 𝑎𝑛𝑡 𝑚𝑜𝑑𝑢𝑙𝑒𝑠

# 𝑜𝑓 𝑚𝑜𝑑𝑢𝑙𝑒𝑠 
 

Finally, the harmonic mean of precision and recall were calculated to represent the 

performance of an algorithm on a given dataset and parameter setting, denoted as F score: 

𝐹 =
2

1
𝑃𝑟𝑒 𝑖𝑠𝑖𝑜𝑛 +

1
𝑅𝑒 𝑎𝑙𝑙

 

Note that the number of biclusters used to calculate precision and recall may 

affect the results. To make sure the evaluation is as fair as possible, for each dataset, we 

select the first 30 biclusters. 

2.3.4 Biclustering Parameters 

To assess the robustness, each tool is run multiple times by varying parameters that 

affect the size and number of biclusters. In general, parameters are adjusted around their 

default or recommended (if available) value. The parameters varied as well as details about 

the range and increment are listed in Table2. 

Table 2. Main parameter adjusted for each algorithm 

Algorithm Implementation Parameters Note 

Bimax R package ‘biclust’ minr ranges from 10~60(increment 5) 

minc ranges from 10~45 (increment 5) 

number set to 100 

Need discretized data as 

input. For each dataset, 

take the discretized data 

from QUBIC as input. 

No recommendation 

provided by the author 

or biclust manual. 

Default: minr=2, 

minc=2 

ISA R package ‘isa2’ set.seed ranges from 10~600, increment 10 ISA is stochastic, by 

setting different seeds 
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 may obtain different 

biclusters 

FABIA R package fabia‘ alpha ranges from 0~0.05, 

increament:0.01; 

spl ranges from 0~2, increment 0.5; 

spz ranges from 0~2, increment 0.5; 

cyc=100, p=100 

default: alpha=0.1, spl 

=0, spz=0.5, cyc=500, 

p=5 

Plaid R package ‘biclust’ both row.release and col.release range 

from 0.5~0.7, increment be 0.05 

max.layer 10~100 

for row.release and 

col.release, 0.5~0.7 is 

the recommended range 

QUBIC R package 

‘QUBIC’ 

f 0.1~1.0, increment 0.05 

c 0.8~1.0, increment 0.05 

k 3~23, increment 5 

default: f=1.0, c=0.95, 

k=ncol/20 

QUBIC2 C++   f 0.25~1.0, increment 0.05 

k 5~23, increment 5 

 

 

2.3.5 Results 

Compared with five biclustering algorithms (Bimax [30], ISA [100], FABIA [37], 

Plaid [16], and QUBIC [31]), the performance of QUBIC2 in identifying FGMs was 

systematically evaluated using four gene expression datasets. For the identified biclusters 

from a specific tool, precision showcases the fraction of biclusters whose genes are 

significantly enriched with specific biological pathways (i.e., relevance), and recall 

reflects the fraction of captured known modules/pathways among all known modules in a 

functional annotation database, e.g., KEGG [101] and RegulonDB [102] (i.e., diversity). 

The harmonic mean value of precision and recall, referred to as the F score, was used as 

the integrated criteria in performance evaluation. 

Evaluation studies usually used default parameters of the to-be-analyzed tools, 

which were optimized for specific benchmark datasets. However, when applied to 

datasets coming from a different organism (e.g., E. coli vs. human), or be acquired by 
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other technologies (e.g., microarray vs. RNA-Seq), the default parameters often fail to 

achieve satisfying performance and need further optimization/adjustment. To minimize 

the biases in performance comparison among multiple tools, for each of the four datasets, 

we run the six tools under more than 50 parameter combinations by adjusting their 

critical parameters around default/recommended values. Then the F score of identified 

biclusters under each parameter combination was calculated. In this way, we can test a 

tool’s robustness and infer how sensitive of its performance is to parameter adjustment, 

besides the basic performance comparison among different tools. 
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Figure 4. Overall performance comparison between QUBIC2 and five popular biclustering methods based on the agreement between identified 

biclusters and known modules. A. Distribution of F scores on each of the four datasets under multiple runs (n>40). Black line in the box denote 

median value, whiskers denote 10% and 90% percentiles, while the box denotes 25% and 75% percentiles; B. relative performance of six 

algorithms in terms of F score under default parameters, variance of F scores under multiple sets of parameters, median value for the precision and 

median value for the recall, respectively (normalized over six algorithms). Note that the variance of F scores depends on the increment of 

parameters, and therefore only indicative. 
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As showcased in Figure 4, QUBIC2 achieved the highest median F scores and the 

highest F scores with the default parameter on all the four datasets, and its F scores were 

significantly higher than the second-best algorithms in all the comparison circumstances 

(Wilcoxon test P-value <0.01). QUBIC2 performed well in both precision and recall, 

indicating that the identified FGMs are relevant and diverse; and it had relatively small 

variance, while the performance of some algorithms on specific dataset was susceptible to 

parameter change (e.g., FABIA on E. coli). Regarding median F scores, QUBIC was the 

second-best algorithm on simulated data, E. coli RNA-Seq data, and human scRNA-Seq 

data, while FABIA was the second-best one for TCGA data. As regards the default settings, 

QUBIC ranked as the top ones on simulated data and E. coli data, and ISA and Plaid had 

relative higher rank on TCGA data. ISA was generally very stable, and its variances were 

the smallest on three datasets. As for Bimax, although its recall was relatively low, it was 

characterized with high precision on the four datasets. It is noteworthy that QUBIC2 is the 

only program, among all the six biclustering algorithms, which did not encounter a 

dramatic performance drop on scRNA-Seq data compared to RNA-Seq data, suggesting 

the unique applicative power of QUBIC2 on FGMs detection from scRNA-Seq data.  

Furthermore, the performance of all the biclustering algorithms on E. coli data was 

better than on human data, with the possible reason that E. coli data has more completed 

functional annotation and affects the evaluation of module significance. Therefore, for less 

annotated organisms, we need a statistical evaluation framework for all the identified 

biclusters. 



31 

 

2.4 A Statistical Evaluation Framework for Identified Biclusters 

The significances of gene modules from the identified biclusters were usually 

evaluated by pathway enrichment analysis. However, many organisms (including human) 

have limited functional annotations supported by experimentally verifications, which 

makes a systematic evaluation of all identified biclusters non-trivial. To fill this gap, a 

statistical method was proposed in QUBIC2, which can calculate a P-value for a bicluster 

purely based on their size. To evaluate the validity of the proposed method, a Spearman 

correlation test was conducted. 

2.4.1 Methods 

QUBIC2 was run on the E. coli RNA-Seq data under 63 parameter settings. For 

each setting, around 100 biclusters were identified. Five sets of regulatory or metabolic 

pathways were extracted from four databases of  E. coli (RegulonDB, KEGG, SEED [96] 

and EcoCyc [97]) to support this association study.  In specific, for each set of ~100 

biclusters obtained under the same settings, six groups of P-values for all these biclusters 

were calculated, with five groups of P-values derived via pathway enrichment analysis 

(named knowledge-based P-values) and one group of P-values computed using our size-

based method. Spearman correlation test was conducted to investigate the rank-order 

correlation among the six groups of P-values. Five correlation coefficients (ρ), which 

demonstrated the extent of correlation between size-based P-values and five biological 

knowledge-based P-values, as well as five corresponding p-values, were recorded from the 

test. Note that the p-value of correlation test denotes the probability of observing such a 

correlation or even stronger correlation, under the null hypothesis that no correlation exists. 

For simplicity, the correlation coefficient between the size-based P-value and biological 
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knowledge-based P-value was prefixed with the name of a pathway, e.g., TF_ρ  and 

KEGG_ ρ . In the end, a total of 5 × 63 ρ (63 parameter settings, each with five ρs) and 

the same number of p-values were obtained. 

 

Figure 5.A. The distribution of correlation coefficients(ρ) between P-value obtained from 

enrichment analysis and size-based P-value. We run QUBIC2 under 63 different parameter 

settings, and ρ was calculated under each run; B. Scatter plot of ρ and p-value. The y-axis denotes 

ρ, the correlation coefficient for the Spearman association test, the x-axis denotes the p-value of 

the association test. Note that to distinguish, italic lowercase p was used to denote the p-value of 

the Spearman correlation test, while italic uppercase P was used to denote the significance of 

biclusters. 

 

2.4.2 Results 

Interestingly, we found that there is a strong association between the knowledge-

based P-value and the corresponding size-based P-values. The average Spearman 

correlation coefficients (ρ) were higher than 0.40 (ComTF_ρ =0.48, TF_ρ=0.56, KEGG_ρ 

=0.42, SEED_ρ=0.43 and ECO_ρ =0.42), and the average p-values for the correlation test 

were smaller than 0.01. As showcased in Figure 5A, all the ρs in the five groups are 

positive. Besides, ρs related with regulatory pathways (i.e., TF_ ρ and ComTF_ ρ) were 
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generally larger than ρ s those related to metabolic pathways (i.e., KEGG_  ρ  and 

SEED_ ρ). This indicated that the size-based P-value seemed to be more suitable for the 

evaluation of biclusters’ regulatory significance. Furthermore, all the corresponding p-

values were less than 0.05 (Figure 5B), suggesting that the correlations between 

knowledge-based P-values and size-based P-values were statistically significant at the 0.05 

level. Also, the parameter f which controls the level of overlaps between biclusters had a 

negative association with ρ (Figure 6), suggesting that the size-based P-values would have 

a stronger association with knowledge-based P-values when the overlaps between 

biclusters are relatively low. 

Figure 6. The relationship between biclustering parameter f and correlation coefficient that 

indicates the association between biological knowledge-based P-value and size-based P-value. 

The blue line in each plot corresponds to the Loess smooth line. 
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2.5 Cell Type Classification Based on scRNA-Seq Data 

The above sections demonstrated the outstanding performance of QUBIC2 on 

FGMs identification and its unique feature of statistical evaluation for all the identified 

biclusters. In this section, we showed the predictive power of biclustering methods on cell 

types identification from scRNA-Seq data.  

2.5.1 Cell Type Classification Pipeline  

By using biclustering, we can group genes and cells simultaneously. However, 

since biclustering aims to find sets of genes that are co-expressed across a subset of 

conditions, it is possible that genes may co-expressed across multiple cell types. 

Therefore, one bicluster may consist of cells from different types, and cells from the same 

types may appear in different biclusters. In a word, it is not guaranteed that one bicluster 

corresponds to one cell type. However, it is assumed that two cells from a bicluster are 

more likely to be of the same subtypes than the two cells that are randomly selected. It is 

believed that biclusters can capture this feature to some extent. If there are multiple 

biclusters and when we condense them together, we can distinguish sets of cells 

belonging to the same type from sets of cells that are grouped by chance. 

Based on the above idea, we developed a pipeline to obtain cell type classification 

based on biclustering results (Figure 7A). First, a biclustering tool was applied to the 

expression data (rows represent genes and columns represent cells) to identify a set of 

biclusters. Then a weighted graph 𝐺 = (𝐶, 𝐸)  was constructed to model the relationship 

between cell pairs among biclusters. A node  𝑖 in 𝐺 represented a cell, and 𝑒𝑖,  represented 

the edge connecting  𝑖 and   , where 𝑖 ≠ 𝑗. We assigned weight 𝑤𝑖,  to 𝑒𝑖,  to represent the 

number of biclusters that contain both  𝑖 and   . Intuitively, a higher 𝑤𝑖,  value indicates 
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that  
𝑖  
and  

 
 are simultaneously involved in more biclusters, hence, are more likely to be 

the same cell type than cell pairs with lower weight. A symmetrical cell-cell matrix with 

diagonal as 0 was then constructed to record 𝑤𝑖,  and Markov Cluster Algorithm (MCL) 

was performed to cluster cells into cell types and produce cell labels. In specific, the MCL 

clustering was run 100 times by varying inflation factor from 1 to 100, resulting 100 cell 

labels. A binary similarity matrix was constructed for each cell label: if two cells belong to 

the same cluster, their similarity is 1; otherwise, the similarity is 0. Then a consensus matrix 

was built by averaging all similarity matrices. The resulting consensus matrix was clustered 

using hierarchical clustering with complete agglomeration, and the clusters were inferred 

at the k level of the hierarchy, where k is the chosen based on the average silhouette score 

of that 100 MCL clustering results. 

2.5.2 Data, Biclustering Parameters and Evaluation Criteria 

One golden-standard scRNA-Seq data [95] was used. It consists of 20,214 genes 

and 90 cells, where the cells were assigned into seven subgroups with the true cell 

subtypes information provided in [95]. 

For each of the six biclustering methods, we applied the classification pipeline to 

the above dataset. Each tool was run under multiple parameter settings. The details about 

the range of parameters are given in Table3. 

Table 3. Parameter ranges for each biclustering algorithm used in the cell type 

classification section 

Algorithm Parameters Note 

Bimax minr 10~200, increment 10 

minc 10~30, increment 10 

number=2000 
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ISA set.seed ranges from 10~600, increment 10  

FABIA alpha 0.01~0.5, increment 0.01 

spl 0~2, increment 0.05; 

spz 0~2, increment 0.05 

p=50 

tried to set p=100, 1000, 2000, but 

got error message ‘too many 

biclusters’ and aborted 

Plaid row.release 0.5~0.7 

col.release 0.5~0.7 

max.layer 10~100 

 

QUBIC f 0.5~1.0, increment 0.05; 

c 0.8~0.95, increment 0.05; 

k =13;  

o =2000 

default o=100 

QUBIC2 f 0.6~1.0, increment 0.05; 

c 0.8~0.95, increment 0.05; 

k = 4,13 

o = 2000 

 

 

The Adjusted Rand Index (ARI) was adopted as the evaluation criteria to access the 

agreement between predicted cell types and these ‘ground truth' [103]. Two more external 

validation criteria, namely Jaccard Index (JI) and Fowlkes Mallows Index (FMI), were also 

used here aiming to provide a comprehensive evaluation. 

Specifically, external validation measures the extent to which cluster labels match 

externally supplied class labels. Generally, they are based on counting the pairs of points 

on which two classifiers agree/disagree. Denote two partitions of the same data set as R 

and Q. The reference partition, R, encode the class labels, i.e., it partitions the data into k 

known classes.  Partition Q, in turn, partitions the data into v categories, which is the one 

to be evaluated. 

Adjusted Rand Index (ARI) is defined as 
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𝐴𝑅𝐼 =
𝑎 −

(𝑎 +  )(𝑎 + 𝑏)
𝑑

(𝑎 +  ) + (𝑎 + 𝑏)
2 −

(𝑎 +  )(𝑎 + 𝑏)
𝑑

 

a: Number of pairs of data objects belonging to the same class in R and the same 

cluster in Q. 

b: Number of pairs of data objects belonging to the same class in R and different 

clusters in Q. 

c: Number of pairs of data objects belonging to different classes in R and the same 

cluster in Q. 

d: Number of pairs of data objects belonging to different classes in R and different 

clusters in Q. 

Terms a and d are measures of consistent classifications (agreements), whereas 

terms b and c are measures of inconsistent classifications (disagreements). 

Jaccard Index is defined as: 

𝐽𝐼 =
𝑎

𝑎 + 𝑏 +  
 

The Jaccard Index can be seen as a proportion of good pairs with respect to the sum 

of non-neutral (good plus bad) pairs. 

Folkes-Mallow's index is defined as 

𝐹𝐼 =
𝑎

√(𝑎 + 𝑏)(𝑎 +  )
 

Fowlkes–Mallow's index can be seen as a non-linear modification of the Jaccard 

coefficient that also keeps normality. 
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2.5.3 Results  

The performance of QUBIC2 was compared with five biclustering methods 

(QUBIC, FABIA, ISA, Plaid and Bimax) and three cell type prediction methods 

(SC3[95], SINCERA[104], and SNN-Cliq[105]). It is found that the average ARI score, 

as a representative, of QUBIC2 was 37%, 220%, 632%, 151%, and 185% higher than the 

other five biclustering methods, respectively; and was 30%, 67% and 62% higher than 

the three cell type prediction methods, respectively. QUBIC2 and QUBIC were the top 

two biclustering tools, respectively, in terms of median values on the three criteria. Both 

surpassed the performance of SC3 (median value from 100 runs, denoted by the red dash 

line in each panel of Figure 7B). Besides, ISA always demonstrated the smallest variance 

across the three validation criteria. The FMI values of each tool were more stable than the 

other two values. Figure 7C showcased one cell type classification result obtained by 

QUBIC2. The result was in good agreement with the reference cell labels and QUBIC2 

correctly grouped the three major cell types (8_cell_embryo, Morulae, and 

late_blastoCyst). 
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Figure 7. A. Computational pipeline for cell type classification. This pipeline consists of three 

steps: biclustering, generation of weighted cell-cell matrix and clustering using MCL; B. 

Benchmark of QUBIC2 against five popular biclustering algorithms. Each panel shows the 

similarity between the inferred labels and the reference labels quantified by ARI, FW and JI, 

respectively. Each algorithm was applied >40 times to the same dataset. The three indices were 

calculated for each run of the respective methods (black dots). Bars represent the median of the 

distribution of black dots. The red dash lines correspond to the benchmark performance of SC3 

(ARI: 0.6549, FMI: 0.7243, JI: 0.5671); C. Sankey diagram comparing the 7 clusters obtained 

with SC3 (right layer) and 6 clusters obtained with QUBIC2 (left layer). The middle layer 

corresponds to the seven reference clusters. The widths of the lines linking nodes from two layers 

correspond to the number of cells they have in common. 

 

2.6 Application of QUBIC2 on Temporal and Spatial scRNA-Seq Data 

When spatial and temporal information is available, scRNA-Seq can reveal more 

biological insights beyond cell types. In this section, QUBIC2 was applied on two 

temporal (and) and two spatial scRNA-Seq datasets, respectively, to explore the temporal 

and spatial organization of cells. 

2.6.1 Data 

The time series lung scRNA-Seq dataset (GSE52583) with 152 cells and 15,174 

genes from was downloaded from http://www.cs.cmu.edu/~jund/scdiff/download/data/. 

The cells were collected at three time points: E14, E16, and E18. Another time series 

scRNA-Seq data with 527 cells and 13991 genes (GSE48968) was downloaded from the 

GEO database, in which the RPKM values are available.  

The Mouse olfactory bulb spatial transcriptomic data was downloaded from 

[106], which contains 280 cells and 15,981 genes. Ståhl et al. [106] classified the cells 

into five clusters that correspond to well-defined morphological layers. The cells use 
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coordinates as IDs, and the cell layers information was manually extracted using the ST 

viewer (https://github.com/SpatialTranscriptomicsResearch/st_viewer), based on the 

coordinate information. The raw reads of mouse spatial scRNA-Seq data GSE60402 were 

retrieved from the SRA database [107], and the RPKM values for it were calculated using 

software packages TopHat [108] and Cufflink [109]. GSE60402 was split into three 

subsets according to sample information. The detailed information of the selected and 

divided datasets is listed in Table 4. 

Table 4. Summary of GSE60402 

GEO Accession ID Data ID Description #Cells #Genes 

GSE60402 GSE60402-Mutant From Gfra1 mutant sample 94 11094 

GSE60402 GSE60402-Wildtype1 From wild type mouse 1 124 10037 

GSE60402 GSE60402-Wildtype2 From wild type mouse 2 94 10714 

 

2.6.2 Results 

QUBIC2 identified five biclusters from GSE52583. Three of the five biclusters 

contain time-specific cells. In particular, bicluster BC002 consists of cells exclusively 

from E14; bicluster BC003 includes cells that only from E16; and bicluster BC004 has 

cells coming from E18 (Figure 8A). Functional enrichment analyses of the component 

genes from these three biclusters were carried out based on DAVID [110], and the results 

showed that genes in BC002 mainly related to cell cycle, cell division, and mitosis; 

BC003 genes were enriched with ribosome, translation, and structural constituent of 

ribosome; and spliceosome-related genes were grouped in BC004. 

In addition to identifying biclusters corresponding to specific time point, QUBIC2 

can also be used to find biclusters with time-dependent patterns. Here QUBIC2 was used 

https://github.com/SpatialTranscriptomicsResearch/st_viewer
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to analyze a scRNA-Seq data with mouse dendritic cells (DCs) collected at 1h, 2h, 4h and 

6h after treatment with pathogenic agent lipopolysaccharide (LPS) and untreated controls 

(GSE48968) [111]. In total, 51 biclusters were identified in the datasets treated with LPS. 

For each bicluster, the Fisher exact test was conducted on its constituting samples to assess 

if significant over-representation by any time points could be found within the bicluster. 

For those biclusters showing significant association with the time-course, a pathway 

enrichment analysis was conducted to infer the biological characteristics of the bicluster. 

In detail, pathway enrichment analysis is undertaken and the statistical significance of each 

enriched pathway is assessed by using a hypergeometric test (statistical significance cutoff 

= 0.005) against 4,725 curated gene sets in the MsigDB database, which includes 1,330 

canonical KEGG, Biocarta and Reactome pathways, and 3,395 gene sets representing 

expression signatures derived from experiments with genetic and chemical perturbations, 

together with 6,215 Mouse GO terms each containing at least 5 genes [112, 113]. In the 

end, 30 biclusters that are significantly over-represented by one or several consecutive time 

points were identified in the LPS dataset (α=0.005, P<1e-22), and six of them showed clear 

time dependence (Figure 8B). Specifically, bicluster BC013 consists of untreated samples 

and samples collected at 1h, which represents the earliest response to LPS and enriches 

multiple immune response pathways. Bicluster BC005 consists mainly of untreated 

samples and samples collected at 1h and 2h, which also is enriched with immune response 

pathways but with more responses to a virus, T cell chemotaxis and so on. BC009 and 

BC001 are enriched by samples collected at 1h and 2h, covering a wider range of stress-

response pathways, suggesting that the activation of stress response pathways and altered 

metabolisms as secondary responses after the early immune response. BC025 and BC002 
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consist of samples collected at 4h and 6h, and their genes enrich pathways associated with 

alterations in cell morphogenesis, migration, cell-cell junction and so on. Overall these 

observations suggest that our analysis can identify all the major responses to the LPS 

treatment in a time-dependent manner.  

Figure 8. A. Visualization of three biclusters (BC002, BC003, and BC004) selected based on the 

specificity to time point; B. Time-dependent distribution of cells in six selected biclusters 

identified in the LPS data. In each histogram, the five bars from left to right show the proportion 

of the untreated samples and samples collected at 1h, 2h, 4h and 6h after the LPS treatment. 

 

Then QUBIC2 was applied to a mouse spatial scRNA-Seq dataset with 280 cells. 

The cells were classified into five clusters that correspond to five distinct morphological 

layers in [106] (Figure 9A). Five biclusters were predicted. Among them, the bicluster 

BC000 consists of cells mainly from the granular layer; the bicluster BC001 contains cells 

from the mitral layer and glomerular layer; the bicluster BC002 includes cells mostly from 

the olfactory nerve layer (Figure 9B). Functional annotation showed that BC000 mainly 
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enriches plasma membrane, cell membrane, and cell projection; BC001 enriches synapse, 

neuron projection, and cell projection; and BC002 enriches cell projection.  

Figure 9. A. The coordinates of cells correspond to five morphological layers (1. Granular cell 

layer; 2. Mitral cell layer; 3. Outer plexiform layer; 4. Glomerular layer; 5. Olfactory nerve 

layer); B. The coordinates of cells from three selected biclusters; C. The spatial coordinates of 

samples in the four biclusters identified in wild-type 1 mouse; Colors red, green, cyan and dark 

blue represent samples in four different biclusters; D. In addition to the coordinates of bicluster 

samples, the yellow cubes represent significant outlier samples; E. The same information as in C 

except the samples are from wild-type 2 mouse; F. The same information as in D except the 

samples are from wild-type 2 mouse. 

 

Finally, another spatial scRNA-Seq dataset (GSE60402) with samples dissected 

from three mouse medial ganglionic eminence tissues and known spatial coordinates was 

analyzed. QUBIC2 was applied, and 37, 40, and 120 biclusters were identified in the 

mutant, wild-type 1, and wild-type 2 datasets, respectively. Further investigation on the 

spatial distribution of cells in each bicluster showed that all the four spatial biclusters 

with distinct expression patterns by cell cycle, cell morphogenesis, and neuron 

1
0

1
5

2
0

2
5

3
0

1
0

1
5

2
0

x

y

a
s
.fa

c
to

r(c
lu

s
te

r)

B
C

0
0

0

B
C

0
0

1

B
C

0
0

2

1
0

1
5

2
0

2
5

3
0

1
0

1
5

2
0

x

y

a
s
.fa

c
to

r(c
lu

s
te

r)

12345

10

15

20

25

30

10 15 20
x

y

as.factor(cluster)

1

2

3

4

5

10

15

20

25

30

10 15 20
x

y

as.factor(cluster)

BC000

BC001

BC002

A

B

C E

D

A
EF



44 

 

development genes, as reported in the original study [114], were identified by QUBIC2. 

It is noteworthy that the outliers with highly expressed stem cell markers tend to be 

located at the intermediate region between two adjacent (or overlapping) biclusters in the 

three datasets as shown in Figure 9D and 9F. Our interpretation is that these location-

dependent expression patterns may be caused by parallel and independent differentiations 

from common stem cells. 

2.7 Summary 

The combination of biclustering and large-scale gene expression data holds a 

promising potential in elucidating the functional pathways/networks encoded in a 

genome. However existing biclustering tools fail to generate satisfactory results from 

high-resolution RNA-Sequencing (RNA-Seq) data due to the lack of full consideration of 

(i) intrinsic characteristics of RNA-Seq data, e.g., the massive zeros in both bulk and 

scRNA-Seq data, and (ii) the underlying transcriptional regulation signals of gene 

expression. Here we presented a novel biclustering algorithm, QUBIC2, for the analysis 

of large-scale bulk RNA-Seq and scRNA-Seq data. QUBIC2 (i) used a truncated model 

to handle the unquantifiable errors caused by zeros, (ii) adopted an information-

divergency objective function to optimize to-be-identified biclusters, (iii) utilized a Core-

Dual strategy to recruit novel genes and optimize parameters in identifying a bicluster, 

and (iv) developed a size-based P-value calculation method to evaluate the statistical 

significances of all the identified biclusters. 

Our method validation on comprehensive data sets showed that QUBIC2 had 

significant advantages in the functional module detection area, outperforming five 

widely-used biclustering methods. The proposed P-value calculation method based on 
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bicluster size did make sense, which may facilitate the evaluation of all the identified 

biclusters, especially from less-annotated organisms. The cell type classification pipeline, 

based on QUBIC2, worked well and outperformed the state-of-the-art performance of 

SC3. By utilizing time-dependent data, QUBIC2 discovered biclusters specific to time 

point and identified a cascade of immune responses to the external pathogenic treatment. 

From the spatial transcriptomic data, QUBIC2 discovered that spatially adjacent single 

cells might have high co-expression patterns, and particularly, two distinct spatially 

clustered cells may be derived initially from the same stem cell. We believe that QUBIC2 

can serve biologists as a useful tool to extract novel biological insights from large-scale 

RNA-Seq data. 

Although the advantages mentioned above, to fully excavate the potential of 

scRNA-Seq data, there are several shortcomings needed to be overcome. First, as 

sequencing costs decrease, larger scRNA­Seq datasets will become increasingly common; 

thus, the scalability to large dataset and efficiency of tools will become more and more 

critical. Currently, the discretization and Dual searching functions of QUBIC2 are time-

consuming on large-scale datasets. Based on our test, it takes 17 minutes to discretize a 

dataset with 4,297 rows and 466 columns (a desktop with 48.0GB memory, Intel Core i7-

6700, and 3.40GHz). Given a dataset with 22,846 genes and 100 conditions, the running 

time while using Dual strategy are generally 2 minutes longer than that without Dual. The 

OpenMP method will be implemented in the EM steps for discretization, and more efficient 

heuristics algorithm will be designed to optimize the dual searching of biclustering. 

Another challenge involves the interpretation of time-series and spatial data. For 

example, in the GSE52583 data, QUBIC2 could only separate cells collected at different 
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time points, yet the further differentiation stage information was not captured. For the 

mouse olfactory bulb data, QUBIC2 did not separate cells from adjacent layers. To deal 

with this drawback, we need to combine biclustering with other statistical methods 

specifically designed for time series and spatial gene expression data. 

It is noteworthy that many other kinds of methods can be used for gene expression 

data analysis. Forty-two module detection tools covering five main approaches were 

reviewed in [70], and the authors concluded that decomposition methods outperformed 

all other strategies, including biclustering methods. Meanwhile, they also observed that 

QUBIC and FABIA had higher performance on human and synthetic data. We compared 

two top-rated decomposition methods and two top clustering methods with QUBIC2 and 

QUBIC on a human scRNA-Seq data; the results showed that QUBIC2 surpassed both 

decomposition and clustering methods (Figure 10). In the future, we will carry out a 

more comprehensive comparison between QUBIC2 and other decomposition and 

network-based methods, aiming to give a systematical evaluation of the power of 

computational techniques on scRNA-Seq data. 

Figure 10. Performance of QUBIC2, QUBIC, two decomposition methods and two clustering 

methods in term of F score on a human scRNA-Seq data. 
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CHAPTER 3: QUBICR- A Biconductor Package for Qualitative Biclustering Analysis of 

Gene Co-expression Data 

Biclustering is a widely accepted approach for gene expression data mining. 

Several biclustering algorithms have been published in the past two decades, and QUBIC 

has been reviewed as one of the best programs by several review studies. To enable the 

biclustering users lacking comprehensive computational background, a web server of 

QUBIC was developed in 2012 [23]. Since gene expression datasets keep increasing in 

scale, we developed this user requested R package of QUBIC (QUBIC-R for short), to 

provide an efficient optimized implementation and to eliminate large-scale data submission 

to a webserver.  

The unique features of QUBIC-R include: (i) biclustering is integrated with 

analyses functions, i.e., data discretization, query-based biclustering, bicluster expanding, 

biclusters comparison, heatmap visualization and co-expression network elucidation 

(Figure 11A); (ii) the QUBIC source code is optimized and converted from GNU C to 

C++, thus has better memory control and is more efficient than the original QUBIC (an 

average 82.4% saving of running time); (iii) on five large-scale datasets, QUBIC-R 

consistently performs the best among four popular tools according to the running time 

(Figure 11B). In the following part, I will present the main features of QUBICR. 
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Figure 11. A. Comparison of QUBIC-R and 6 R packages in biclust. Yellow color indicates that a 

package provides the function or is recommended in a specific biclustering application and gray 

color represents the opposite; B. Comparison of running time among four recommended 

programs, annotated with asterisks in Figure 11A; C. Heatmap visualization of two biclusters 

identified in E. coli data; D. Co-expression networks of Figure 11C biclusters. Green nodes 

represent bicluster #3 and red nodes represent bicluster #7. The larger the size of a node, the 

higher its degree of presence; and the thicker an edge the heavier its co-expression value is. 
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3.1 Implementation 

QUBIC-R package [115] is developed for the R statistical computing environment, 

and is freely available at http://bioconductor.org/packages/release/bioc/html/QUBIC.html. 

It depends on the biclust package developed by Kaiser et al. [48] to be compatible with the 

biclust output. Its output format can also be used by network analysis software, such as 

Cytoscape [116]. 

    The original QUBIC program, written in GNU C with POSIX library, is limited 

in its portability. A memory leak may occur if the primary functions are called more than 

once. This problem was addressed by refactoring the C source code and transforming it 

into C++. Specifically, to avoid memory leak, we changed the majority of data structures 

and replaced C pointers by STL containers. We also optimized core function structures to 

facilitate future package updates and developments. The program efficiency has been 

significantly increased with the same predicting results (Figure 11A).  An input data as 

large as 30,000×30,000 can be finished within half an hour (detailed limits test is in Figure 

12). All the computational experiments were conducted on a computer with Windows 7 

x64, Memory 48G, Intel Core i7-6700 3.4G. 

 

 

 

 

http://bioconductor.org/packages/release/bioc/html/QUBIC.html
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Figure 12. Data limit test of QUBICR on simulated datasets. In this test, n-by-n matrixes were 

generated with increasing number of n (1,000, 2,000, 3,000, 4,000, 5,000, 6,000, 7,000, 8,000, 

9,000, 10,000, 15,000, 20,000, 25,000, 30,000). Each matrix was planted with several non-

overlapped 10-by-10, 10-by-20, or 20-by-10 biclusters (corresponding to the 1:1,1:2 or 2:1 row-

column-ratio, respectively). Default parameters of QUBICR were applied (c=0.95, r=1, f=1, 

q=0.06, o=100, k=max(ncol(x)%/%20,2)), and the running time in y-axis is in its log2 scale.  

 

3.2 Functions 

(i) qudiscretize is useful to obtain discrete gene expression matrix.  This matrix 

can be used in other biclustering program, where -1 represents lowly express, 0 

represents normally express, and 1 represents highly express. For example: 

library(QUBIC) 
matrix1 <- ecoli[1:3, 1:4] 
matrix1 
##       dinI_U_N0025 dinP_U_N0025 lexA_U_N0025 lon_U_N0025 
## b4634     9.077693     9.225537     9.138900    9.114353 
## b3241     7.122300     7.195453     7.051193    7.124200 
## b3240     7.184417     7.336610     7.283377    7.188263 
 
matrix2 <- qudiscretize(matrix1) 
matrix2 
##       dinI_U_N0025 dinP_U_N0025 lexA_U_N0025 lon_U_N0025 
## b4634           -1            1            0           0 
## b3241            0            1           -1           0 



51 

 

## b3240           -1            1            0           0 
 

(ii) BCQU and (iii) BCQUD are used to perform biclustering for continuous and 

discretized gene expression data, respectively: 

# QUBic-R on continuous data 
res <- biclust(ecoli, method = BCQU(), f = 0.25,verbose=F) 
res 
##  
## Number of Clusters found:  19  
##  
## Cluster sizes: 
##                   BC 1 BC 2 BC 3 BC 4 BC 5  
## Number of Rows:    437  121   51  108  103     
## Number of Columns:  29   45   94   44   38   
 
# QUBIC-R on discrete data 
res1 <- biclust(x = qudiscretize(ecoli), method = BCQUD(), f = 0.25, ve
rbose=F) 
res1 
# QUBIC algorithm can be called independently via qubiclust and qubiclu
st_d for both continuous and discrete data, respectively: 
 
res2 <- qubiclust(x = ecoli, f = 0.25, verbose=F) 
res2 
res3 <- qubiclust_d(x = qudiscretize(ecoli), f = 0.25) 
res3 
# note that res, res1, res2 and res3 are the same 

 

(iv) Using the parameter weight, a user can conduct a query-based biclustering, 

with additional biological information.  

Specifically, a user can input additional biological information and utilize that 

information to guide the biclustering progress in QUBICR, using the newly-added 

parameter weight. This kind of function is so-called query-based biclustering and has been 

widely applied in bioinformatics [24, 117] . The format of this input file should be 

supported by igraph, e.g., a file with three columns with column #1 and #2 representing 

the gene names and column #3 being the score of the two genes. QUBICR will (step 1) 

rank all the gene pairs in this additional input file, according to the corresponding biological 
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information (e.g., protein-protein interaction information or co-regulation relationship), in 

an increasing order; (step 2) rank all the gene pair in original gene expression data, 

according to their co-expression similarity trained from the QUBIC algorithm, in an 

increasing order; and (step 3) add the two ranks together for each gene pair. Then the 

summed ranks will be used as a new weight for each gene pair for all the following 

biclustering procedures. It is noteworthy that if a gene pair appears in this additional input 

file but not in original gene expression file (or in the opposite situation), its rank in step 1 

will be assigned as 0. 

In this example, the instance file “511145.protein.links.v10.txt” was downloaded 

from string 

(http://stringdb.org/download/protein.links.v10/511145.protein.links.v10.txt.gz). Note 

that after using the weight parameter, the output biclusters changed. 

# Conduct a query-based biclustering by adding the weight parameter 

library(QUBIC) 
library(QUBICdata) 
data("ecoli") 
library(igraph) 
file = "511145.protein.links.v10.txt "; 
graph = read.graph(file, format = "ncol") 
get.edgelist(graph, names = TRUE) 
E(graph)$weight 
weight <- get.adjacency(graph, attr = "weight") 
res0 <- biclust(ecoli, method = BCQU(),verbose = F) 
res0 
 
res4<- biclust(ecoli, method = BCQU(), weight = weight, verbose = F) 
res4 

(v) Using the seedbicluster parameter, a user can expand existing biclusters by 

recruiting more genes according to specified consistency level. The existing biclusters can 

be any biclustering results obtained from QUBICR or from any other algorithms in the 
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biclust package. This function has been successfully applied in [118] and a flowchart of 

this function can be found in Figure 1 of [118].  

In the following example, we expand previously obtained biclusters by QUBICR 

(res). Note that number of genes in some biclusters increase after expanding (e.g., 437 

genes in BC1 from res vs 593 genes in BC1 from res5). 

res5 <- biclust(x = ecoli, method = BCQU(), seedbicluster = res, f = 0.
25,verbose = F) 
res5 
##  
## Number of Clusters found:  19  
##  
## Cluster sizes: 
##                  BC 1 BC 2 BC 3 BC 4 BC 5  
## Number of Rows:    593  151   51  110  117  
## Number of Columns:  29   45   94   44   38   
 

 

(vi) Using the parameter showinfo, the biclustering results from different 

algorithms or from a same algorithm with different combinations of parameter can be 

compared. Specifically, we can compare the number of detected biclusters, the row number 

and column number of the first bicluster, the area of the first bicluser, the overlap of first 

two biclusters , and so on. 

test <-ecoli [1:50,] 
res6 <-biclust(test, method = BCQU(), verbose = F) 
res7 <- biclust (test, method = BCCC()) 
res8 <- biclust(test, method = BCBimax()) 
showinfo (test, c(res6, res7, res8)   

  (vii) The function quheatmap can visualize the identified biclusters using heatmap 

in support of overall expression pattern analysis, either for a single bicluster or for two 

biclusters. 

# heatmap for single bicluster 
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par(mar = c(5, 4, 3, 5) , cex.lab = 1.1, cex.axis = 0.5, cex.main = 1.1
) 
quheatmap(ecoli, res, number = 4)  

Figure 13. Heatmap for the 4th bicluster identified in the E. coli data.  

# heatmap for two biclusters 
par(mar = c(5, 4, 3, 5) , cex.lab = 1.1, cex.axis = 0.5, cex.main = 1.1
) 
quheatmap(ecoli, res, number = c(3,7))  

 

 (viii) We can construct and visualize network for the identified biclusters, using 

the function qunetwork, either for a single bicluster or for two biclusters. 

In the gene co-expression network, each node represents a gene, and a pair of nodes 

is connected with an edge if they have a significant correlation (with the cutoff as 0.6 in 

default). Specifically, for a single bicluster with m genes and n conditions, we used the m-

by-n expression matrix to calculate the correlation between each pair of genes in the 

network. For two given biclusters, whose gene sets are {m1} and {m2} and condition sets 

are {n1} and {n2}, we used the expression matrix, with genes |{m1∪m2}| and conditions 

|{n1∪n2}|, to generate the correlation coefficient scores among genes. QUBICR provides 

three methods to calculate the correlation, i.e., Pearson, Kendall and Spearman, to facilitate 

different preference in practical application. 
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# Construct the network for the 4th identified bicluster in the E.coli 
data 
library(qgraph) 
net1 <- qunetwork(ecoli, res, number = 4, group = 4, method = "spearman
") 
qgraph(net1[[1]], groups = net1[[2]], layout = "spring", minimum = 0.6,
  
color = cbind(rainbow(length(net1[[2]]) -  1), "gray"), edge.label = F) 

 

Figure 14. Network for the 4th bicluster identified in the E. coli data. 

# Construct the network for the 3th and 7th bicluster in the E.coli dat
a 
net2 <- qunetwork(ecoli, res, number = c(3, 7), group = c(3, 7), method
 = "spearman") 
qgraph(net2[[1]], groups = net2[[2]], layout = "spring", minimum = 0.6,
 legend.cex = 0.5, color = c("red", "blue", "gold", "gray"), edge.label
 = FALSE) 

 

 (ix) The function qunet2xml can convert the constructed networks into XGMML 

format, facilitating further functional enrichment analysis (e.g. DAVID) and advanced 

network visualization (e.g. Cytoscape, Biomax and JNets) 

# Output overlapping heatmap XML, could be used in other software such 
# as Cytoscape, Biomax or JNets 
sink("tempnetworkresult.gr") 
qunet2xml(net2, minimum = 0.6, color = c("red", "blue", "gold", "gray")
) 
sink() 
# We can use Cytoscape, Biomax or JNets open file named 
# tempnetworkresult.gr 
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3.3 Summary 

Biclustering algorithms facilitate researchers in the identification of co-expressed 

gene subsets in their gene expression dataset and have become a useful approach for the 

interpretation of gene expression profile data. Our R package implements a well-cited 

biclustering algorithm, QUBIC. It provides more efficient source code and fully integrated 

functions to identify and analyze biclusters and visualize identified biclusters and 

corresponding co-expression networks. This package is a powerful tool for gene expression 

data mining and co-expression network modeling.  
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CHAPTER 4: Application of Biclustering on Biological and Biomedical Data 

The advent of much-improved biotechnology and the decreased associated costs 

have generated a massive amount of biological and biomedical data. NGS allows for 

rapid generation of larger volumes of biological information than ever before. Also, large 

amounts patient clinical data are generated through NGS and Electronic Health Record 

(EHR), which presents significant opportunities for knowledge discoveries in biomedical 

research [119]. These complex and large volumes of data, collected from different 

sources, have changed the way biological and biomedical research is conducted [120, 

121]. Effective utilization and interpretation of such data require advances in 

interdisciplinary sciences. The concept of big-data-to-knowledge relies extensively on 

biological, mathematical, statistical, and computer sciences to extract usable information 

and generate new knowledge. 

Furthermore, with the advancement of informatics technology, EHR contains 

sufficient information that can be transformed into disease phenotypes [122]. In this 

phenotyping process, a heuristic and the iterative searching algorithm is applied to search 

the large-scale EHR database with queries created by clinical experts and knowledgeable 

computational engineers [122], during which thousands of phenotypes generated for all 

the included individuals. These phenotype data can be organized into a matrix, with 

phenotype features as rows and individuals as columns, providing essential materials to 

identify a family of phenotype biclusters. The biclusters define a subgroup of patients 

from a subset of phenotypes, which are subject to detailed validation analysis to establish 

their relations with (i) prognostic or therapeutic characteristics of diseases [123-126], and 

(ii) genotype biclusters [122]. 
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As far as we know, application of biclustering has not progressed in parallel with 

algorithm design. Considering all the biclustering-related publications, the portion of 

application studies has been much lower than that of algorithm development studies from 

the year 2000 to 2017 (Figure 15). This situation is affected by multiple factors. First, there 

is a gap between tool development and the understanding of new biotechnologies and 

corresponding data properties. For example, microarray data is reflecting absolute gene 

expression with continuous fluorescence intensity values [127], while RNA-Seq data 

measures the relative expression level using discrete, positive, and highly skewed read 

counts [88, 128-130]. Furthermore, there are abundant zeros in RNA-Seq-based gene 

expression data as not all the genes are expressed under a specific experimental condition, 

which is particularly true in scRNA-Seq data [82, 131]. Hence, algorithms designed and 

evaluated using microarray data may not be suitable to be directly applied to RNA-Seq 

data. RNA-Seq and scRNA-Seq data need unique design in algorithm and tool 

development. However, contrary to the fact that RNA-Seq is becoming more and more 

popular, few biclustering algorithms are explicitly designed for RNA-Seq data [38, 39, 41, 

42]. Second, there is a knowledge gap for applying biclustering tools and choosing the 

appropriate accompanying analytical tools for specific data analyses. Usually, biclustering 

is not a solo data analysis tool. Instead, it connects with other results annotation processes 

(e.g., DAVID and KOBAS), visualization programs (e.g., Cytoscape), and statistical 

methods (e.g., Principal Component Analysis and Regression Analysis), to derive a more 

comprehensive interpretation. It is worth noting that organically integrating a biclustering 

algorithm and appropriate accompanying tools into a pipeline is not trivial. Construction 
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of a unified pipeline requires a deeper understanding of underlying algorithm designs, data 

inputs, and expected outputs. 

The yearly proportion of biclustering references related to algorithm development 

and improvement and application studies are presented in Figure 15. The numbers of 

biclustering studies on algorithm design and application were similar at the earliest stage 

when few tools were available. The proportion of application related studies decreased 

relative to algorithm design until 2010. In the 1,650 articles published in 2011, the number 

of studies related to algorithm design was almost nine times that of the application studies. 

Recently, more researchers have realized the biclustering application shortage and made 

significant efforts in this area.  Between 2012 and 2016, the application publication 

proportion increased to 40%. There is still a considerable potential for more application 

related studies; therefore, this review systematically summarizes the basic applications of 

biclustering in biological data and the advanced applications of biclustering in biomedical 

data. This information will enable biological researchers to select appropriate algorithms 

and computational tools for their various studies, effectively bridging the gap between big 

data and valuable biological knowledge and efficiently providing novel data-driven 
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insights. In the following, we will review how biclustering aids biological and biomedical 

data interpretation at the gene, module, and network level, respectively. 

Figure 15. Yearly comparison of biclustering algorithm development and algorithm application 

related studies. The references in 2017 were collected as of 03/26/2017. The overall annual 

reference numbers that shown on the top of each bar were collected by searching the keyword 

"biclustering" on google scholar, and proportion of algorithm development shown in blue was 

captured by adding the keyword "algorithm," and the rest are considered as application related, 

which were shown in orange.  

 

4.1 Basic Application of Biclustering on Biological Data 

It is well known that biological function can rarely be attributed to an individual 

molecule. Instead, most functions arise from complex interactions (as a whole system or 

module) among the cell’s numerous components, such as protein, DNA, RNA, and small 

molecules [132, 133]. Biotechnology has developed very fast in the last two decades, from 

traditional arrays (e.g., microarray and tilling array) to NGS (e.g., DNA-Seq, RNA-Seq, 

and Chip-Seq) to the third-generation long read sequencing (e.g., PACBIO and Oxford 

Nanopore). The generated data provide unprecedented opportunity to understand the 
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complex biological system at different levels, from basic mutation, gene and protein 

structure level, to pathway/module level, and even global networks. Biclustering analyses 

play a significant role in making sense out of various omics data towards the goal of 

generating a system-level understanding.  

4.1.1 Functional Annotation of Unclassified Genes 

Functional annotation categorizes genes into one or multiple functional classes, 

which is an essential step for understanding the physiological purpose of target/interesting 

genes. However, a reliable functional assessment of a given gene can be carried out only if 

all its interacting genes are known in advance, as a gene can be involved in different 

pathways/networks to achieve specific biological functions [134]. These are typically not 

known for all genes or conditions. Biologists often deal with this challenge, in part, by 

taking advantage of the “guilt-by-association” (GBA) principle. GBA assumes that 

functions can be transferred from one gene to another through biological association. Two 

kinds of information are required for a GBA-based functional annotation: known functional 

annotation in public domain and the associations between annotated and unannotated 

genes. NCBI, Gene Ontology [135], and KEGG [101] are three dominant representatives 

of such comprehensive databases; RegulonDB is one of the most widely-used resources 

for E. coli K-12 gene regulation [102]; The Cancer Genome Atlas (TCGA, 

https://portal.gdc.cancer.gov/) offers genomics, epigenomic and proteomic data for 

thousands of tumor samples across more than 20 types of cancer; and PlantTFDB provides 

comprehensive genomic transcriptional factor (TF) repertoires of green plants [136]. For 

unannotated genes, co-expression is one of the most widely used association indices, as 

gene expression profile collection is accessible and can be used to derive other associations, 

https://portal.gdc.cancer.gov/
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e.g., co-regulation [137, 138] and co-evolution [139, 140]. Biclustering can be used to 

identify co-expressed genes based on the similarity of their expression profiles across a 

wide range of conditions (e.g., treatments, tissues, and samples), giving rise to a set of 

significant CEMs, i.e., biclusters [141]. Based on existing annotation databases and these 

CEMs, functional enrichment analysis is carried out to identify significantly 

overrepresented functions, using the hypergeometric distribution as a statistical test [99]. 

Highly enriched functions are assumed to be shared by all members in the obtained 

biclusters, and unannotated genes in those biclusters will be assigned to the most abundant 

functional class [142, 143]. It is noteworthy that biclustering is usually combined with the 

comparative genomics strategy in the case of gene annotation for new-sequenced 

organisms, which builds links between well-annotated model organisms and the new 

organisms [144]. 

Despite the high potential of this approach, it is essential to keep in mind that 

correlation does not guarantee causal relationships, i.e., genes with similar expression 

profiles may not have the same function. The results should be interpreted as preliminary 

computational predictions which provide useful hypothesis/candidates for future testing 

[145]. Thus, experimental validation of the predictions is needed. However, the percentage 

of unannotated genes is very high even in well-studied model organisms [93] (e.g., the 

proportion of unannotated genes is around 40-50% in E. coli), and it is unrealistic to go 

through all the to-be-validated candidates exhaustively using experimental methods. 

Therefore, researchers usually just verify functions of a few genes of considerable interest 

[142], and in most cases, they rely on computational validation (e.g., cross-validation [146] 

and random forest [143]) and published literature support.  
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The basic idea of computational validation is to mask the functions of some 

annotated genes in a CEM and check to see if the functions can be correctly assigned back 

to the masked genes. The validation could be conducted by assessing whether the genes 

share conserved sequence motifs, as it is believed that co-expressed genes tend to, although 

not necessarily, be transcriptionally co-regulated [147]. Recently, researchers proposed 

using genome-scale ChIP-Seq data for the validation of the prediction of CEMs [144]. 

Table 5 summarizes five representative studies which inferred the functions of unannotated 

genes from the well-annotated genes that they are co-expressed with. For each of five 

studies, we introduce the input data for the study (Data), biclustering algorithm and 

accompanying analysis methods (Methods), specific tool and software (Tools/Databases) 

used to accomplish the research, the output and results (Outcomes), and related references 

(Refs). All other tables in this study follow the same structure. 

Table 5. Case studies of Functional annotation of unclassified genes 

Data Methods Tools/Databases Outcomes Refs 

Functional annotation of Yeast 

Microarray  

(6,200 ORFs 

under 515 

conditions) 

• Biclustering for gene classification SAMBA 2,406 

biclusters;  

196 annotations 

of unknown 

genes;  

[146] 
• Functionally assign the unannotated genes in 

biclusters to the most abundant class; 
SGD [148] 

• Cross-validation for annotation assessment. - 

Functional annotation of plant genomes 

Microarray  

(21,031 genes 

of Arabidopsis 

under 351 

conditions) 

• Biclustering on known PCW genes;  QUBIC 

417 seed 

biclusters;  

2,438 candidate 

PCW genes co-

expressed with 

349 PCW 

genes. 

[147] 

• Expand biclusters to include additional 

genes; 
QUBIC 

• Construct co-expression network; Cytoscape 

• Predict and annotate motifs in promoter 

regions of co-expressed genes in each 

module. 

WeederTFBS;  

MotifSampler 

CompariMotif 

PLACE 
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AGRIS 

Microarray 

(122,973 

probes of 

Switchgrass, 

94 conditions) 

 

• Homologous mapping of identified CW 

genes; 
Tblastn 

991 homologs 

CW genes;  

104 clusters of 

co-expressed 

genes; 

823 new PCW 

genes;  

112 new genes. 

[144] 

• Assign mapped genes to CW-associated 

functions; 
DAVID 

• Biclustering of mapped genes and expand 

for new candidates; 
QUBIC 

• Identify motifs for each bicluster; - 

• Validate prediction by annotated 

Arabidopsis CW genes 
PCWGD * 

Functional annotation of Human and Mouse 

A correlation 

matrix with 

associations 

among mouse 

lincRNA, 

protein-coding 

genes, and 

lincRNAs 

• Identify lincRNA;  ChIP-Seq Sets of 

lincRNAs 

associated with 

a diverse range 

of functions 

including cell 

proliferation, 

immune 

surveillance, 

muscle 

development, 

etc.. 

[142] 

• Create association matrix of lincRNA and 

protein-coding genes; 
GSEA 

• Biclustering to identify functional modules 

consisting of lincRNAs and protein-coding 

genes; 

SAMBA 

• Assign putative functions to each lincRNA; - 

• Validate inferred biological functions for 

lincRNAs. 
- 

65 human 

microarray 

datasets and 

GO function 

categories 

• Discover network patterns based on frequent 

item sets and biclustering; 
- 

1,126 functions 

assigned to 895 

genes (779 

knowns and 116 

unknowns). 

[143] 
• Design network topology statistic based on 

graph random walk; 
- 

• Assess functional annotation by a random 

forest method. 
- 

Note: - denotes for no specific existed tools and this also applies to all the following tables.  

* Purdue Cell-Wall-Genomics Database (https://cellwall.genomics. purdue.edu) 

 

4.1.2 Modularity Analysis 

Compared to individual cellular components, modularity analysis puts more 

emphasis on the component’s relationship and the topology of a module, i.e., a group of 

physically or functionally linked molecules that work together to achieve distinct functions 

[133]. Increasing evidence indicates that biological systems are inherently modular [149-



65 

 

151], therefore, modularity analysis has been widely applied to investigate the organization 

and dynamics of biological systems at different levels, i.e., module identification, module 

dynamic analysis, and module network reconstruction. Up to now, substantial efforts are 

devoted to the first level of modularity analysis, module identification.  

Biclustering has been applied to identify different types of modules, which could 

be groups of interacting molecules (e.g., miRNA sponge modules in [152] and miRNA-

mRNA modules in [153]), functionally related genes/proteins or any other manually 

defined clusters [154]. Depending on the target modules, different inputs and strategies are 

needed. For example, scRNA-Seq gene expression data was utilized to identify molecularly 

distinct subtypes of cells that contribute different brain functions [155]; and an integrated 

correlation matrix was derived from expression data with target site information to predict 

miRNA-mRNA functional modules [153]; time series expression data provides valuable 

information regarding the cellular dynamic activity, thus it is often utilized to identify 

temporal transcriptional modules that consist of activated genes at consecutive time points 

[38]. As various modules are investigated, additional supporting data are often involved. 

For example, promoter sequences and integrated de novo motif detection are integrated 

with co-expression biclustering to identify regulatory modules [61]. Similar strategies have 

been implemented with the integration of other supporting data types (e.g., operon 

prediction, ChIP-Seq data, and network connections) [53].  

With modules identified, further research concentrates on investigating the 

characteristics of modules. Applying functional annotation or enrichment analysis to these 

modules can illustrate/deduce their roles in biological processes [152, 153, 156]. Where 

expression profiles are available in multiple evolutionarily correlated species, researchers 
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can conduct inter-specific comparisons and investigate the underlying evolutionary story. 

For example, Waltman et al. performed biclustering of multiple-species data and then used 

a conservation score to identify conserved modules among these species [157]. Based on 

co-regulation modules, Yang et al. derived an expression-based quantity to characterize 

the functional constraint acting on a gene, and then tested the correlation of those quantities 

with gene Sequence divergence rate to estimate the evolutionary potential of genes [158]. 

With temporal modules, the dynamic regulatory interaction can be explored. Gonçalves et 

al. [159] ranked TFs targeting the modules at each time point and graphically depicted the 

regulatory activity in a module at consecutive time points. Other researchers examined the 

external relationship among modules, e.g., grouped modules of host proteins based on a 

distance measure to form higher-level subsystems [160]. Table 6 summarized four kinds 

of modularity analysis applications, including functional module identification, regulatory 

modules, evolution characteristic, and module subsystem. Module-based network 

inference, as a higher level of modularity analysis, will be introduced in next section.  

Table 6. Case studies of Modularity analysis. 

Data Methods Tools/Databases Outcomes Refs 

Functional Module 

miRNA-mRNA 

regulatory score matrix 

derived from gene 

expression data 

• Create miRNA-mRNA regulatory 

score matrix based on expression 

matrix and miRNA-target binding 

information; 

- 

Four miRNA 

sponge 

modules 

[152] 

• Biclustering on the score matrix to 

infer miRNA-mRNA biclusters; 
BCPlaid 

• Filter biclusters using statistical 

methods and interaction 

information; 

- 

• Functional annotation; GeneCodis 
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• Validation of predicted modules - 

mRNA-miRNA 

association matrix derived 

from gene expression data 

• Construct mRNA-miRNA 

association matrix based on 

expression data and miRNA target 

information;  

- 

100 putative 

miRNA 

functional 

module 

[153] • Biclustering to identify functional 

modules; 
BUBBLE 

• Visualize and evaluate modules. miRMAP 

SC-RNA-Seq (3,005 

mouse cortical cells) 
• Biclustering BackSPIN 

47 distinct 

cell 

subclasses 

[155] 

Regulatory modules 

Microarray data (S. 

cerevisiae under 2,200 

conditions); upstream and 

downstream Sequences. 

• Biclustering COALESCE 

450 

regulatory 

modules 

[61] 

Microarray (M. 

tuberculosis under 2,325 

measurements); and 154 

TFs ChIP-Seq data 

• Biclustering cMonkey2 600 modules [53] 

Time series expression 

for 2,884 genes of 

Saccharomyces cerevisiae 

in response to heat stress 

under five time-points 

• Biclustering CCC-Biclustering 167 

biclusters; 

Regulatory 

snapshots of 

documented 

regulators at 

each time 

point 

[38, 

159] 

• Ranking the prioritize prominent 

regulators targeting each the 

modules at each time point  

Regulatory 

Snapshots 

• Graphically depict the regulatory 

activity in a module  

Baiacu; 

BiGGEsTs 

Evolutionary study 

Three normalized 

expression matrixes (B. 

subtilis, B. anthracis, and 

L. monocytogenes);  

upstream Sequences;  

metabolic and signaling 

pathways, co-membership 

in an operon and 

phylogenetic profile 

networks 

• Biclustering on expression data;  FD-MSCM 

150 biclusters [157] 

• Evaluate the conservation between 

biclusters 
- 

Microarray (4117 

orthologs in 15, 14, and 

• Biclustering to predict co-

regulated modules;  
ISA 

1,181 

modules 
[158] 
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17 tissue groups in rice, 

maize, and Arabidopsis, 

respectively) 

• Quantify the functional constraint 

acting on a gene based on the 

modules (eFC) 

- 

• Correlate eFC with gene Sequence 

divergence rate 
- 

Subsystem 

HIV-1, Human Protein 

Interaction Database 

(HHPID) 

• Biclustering on the binary 

interaction matrix; 
Bimax 279 

significant 

sets of host 

proteins show 

the same 

interaction to 

HIV-1 

[160] 
• Construct bicluster distance 

matrix; 
- 

• Construct neighbor-joining tree 

and designate host subsystem 
- 

4.1.3 Biological Networks Elucidation 

Biological interactions can be conceptualized as networks, with nodes representing 

biological entries and edges denoting relationships between nodes. For example, in protein-

protein interaction (PPI) networks, nodes are proteins and edges represent physical 

interactions; in transcriptional regulatory networks (TRNs), nodes stand for regulators 

(TFs, microRNAs, and lncRNAs) and targets, and edges are regulatory interaction 

directing from regulators to targets. Analyzing these networks provides systematic views 

and novel insights in understanding underlying mechanisms controlling cellular processes. 

Table 7 shows some examples in network analysis, mainly focus on network inference and 

network decomposition. 

Compared with random networks, one distinct characteristic of the biological 

networks is modularity, forming dense subgraphs [161, 162]. Several computational 

approaches have utilized the module-based method to infer networks. For example, in 

TRNs, one widely used approach is to group genes/regulators based on the similarity of 

their expression profile using biclustering, along with the modeling of the regulatory 
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interactions between those modules to get a higher-level understanding of regulatory 

mechanisms[132]. This approach has been successfully applied in several other studies 

[163-165]. On the other hand, Tanay et al. [150] used the hierarchical topology of the 

biological networks. They first used biclustering to identify modules based on integrated 

heterogeneous experimental data, and then built a module graph, with nodes being modules 

and edge connected two modules whenever their genes intersect sufficiently. These small 

modules were clustered into supermodules based on their functional association. In this 

way, a hierarchical transcriptional network was built. It is noteworthy that researchers often 

integrate multiple sources of data, in the hope of getting a more comprehensive and 

accurate view of biological networks. For example, TRNs were constructed using 

expression data as well as Sequence information and interaction data[163-165]; and Tanay 

et al. combined expression data, various interactions, and phenotypes [150]. 

Network decomposition breaks a network down into simpler units or components, 

e.g. network motifs and modules, and is another hotspot in network analysis. Compared 

with the previous modularity analysis section where biclustering method is mainly applied 

to expression data, biclustering takes networks as input in decomposition. Decomposition 

reduces network complexity and facilitates the exploration of the underlying molecular 

mechanisms[166-168]. Henriques and Madeira [35] developed and applied a pattern-based 

biclustering algorithm to discover coherent modules from PPI and showed that most 

modules were significantly enriched with particular biological functions. Lakizadeh et 

al. integrated time series expression data and static PPI networks to extract dynamic PPI 

subnetwork and then detected protein complex based on these subnetworks. They 

concluded that this method could model the dynamicity inherent in static PPI networks. 
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Table 7. Case studies of Biological networks elucidation. 

Inputs Methods Tools/Databases Outputs Refs 

Yeast transcriptional network 

Nearly 1,000 

Saccharomyces cerevisiae 

expression profiles; 110 TF 

binding location profiles; 30 

growth profiles; 1,031 

protein interaction; 4,177 

complex interactions and 

1,175 known interactions 

from MIPS 

• Modeling genomic 

information as weighted graph 
- 

665 

significant 

modules; 

Global Yeast 

molecular 

network 

[150] 

• Biclustering  SAMBA 

• Generate module graph and 

explore associations between 

modules 

 

Methanogenesis regulatory network 

Microarray (1,661 

Methanogen genes under 58 

conditions); 

Upstream regions of all 

genes;  

Operon prediction from 

MicrobesOnline; 

Protein interactions from 

String 

• Biclustering to Identify co-

regulated gene subsets;  
cMonkey 166 

biclusters; 

GRN model 

including a set 

of 1,227 EF 

and TF 

regulatory 

influences that 

inter-link the 

regulation of 

1,661 genes 

[163] 

• Construct GRN to infer 

transcriptional influences of 

each bicluster; 

Inferelator 

• Visualize GRN; 
Cytoscape 

Gaggle 

• Use TF knockout experiment 

and extra data and to validate 

the GRN model  

- 

Mycobacterium tuberculosis regulatory network 

Microarray data 

(Mycobacterium 

tuberculosis genes under 

2,325 conditions);  

Upstream regions of all 

genes;  

~5000 Operon prediction 

from MicrobesOnline;  

~250,000 protein 

interactions from String 

• Biclustering to identify co-

regulated gene subsets;  
cMonkey 

598 

biclusters; 

A global 

regulatory 

network 

covering 98% 

of MTB genes 

[164] 

• Construct GRN model to infer 

transcriptional influences of 

each bicluster; 

Inferelator 

• Validate the GRN model using 

new datasets; Visualize 

Network. 

BioTapestry 

Phaeodactylum tricornutum regulatory network 

RNA-Seq (1,214 

Phaeodactylum tricornutum 

genes from 179 samples); 

Genome annotation, 

Chloroplastic and 

mitochondrial genomic 

information, functional 

annotation, Protein-protein 

interactions 

• Biclustering to identify 

putatively co-regulated genes; 
cMonkey2 

121 biclusters 

covering 

1,214 

metabolic 

genes and TFs 

[165] 

• Construct regulatory network 

to infer regulatory influences; 
Inferelator 

• GO enrichment analysis to 

identify potential biological 

processes carried out by the 

co-regulated genes 

- 
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Biological network decomposition 

Two Gene interaction 

networks for yeast; Two 

PPIs from E. coli and 

human 

• Biclustering BicNET modules with 

heightened 

biological 

significance  

[35] 
• Assess biological significance 

of retrieved modules 
GOrilla 

 

4.2 Advanced Application of Biclustering in Biomedical Science 

A genetic variation that contributes to a specific disease is usually detected 

through single-nucleotide polymorphisms (SNPs), insertion/deletions, variable number 

tandem repeats and copy number variants [169]. Besides, understanding the association 

between above genomic information and specific diseases has led to the discovery of new 

drugs [170].However, the association studies are considered as complicated processes 

because disease risks are attributed to the combined effect of both multiple genetic 

variants and environmental factors. With the increasing application and decreasing cost 

of big data generation techniques in biomedical and health-care informatics, large 

volumes of biological and clinical data sets have become available in the public domain. 

On one hand, this advance provides materials to identify new therapeutic targets, drug 

indications and drug-response biomarkers; on the other hand, it also introduces more 

challenges to the data mining approaches [170]. As the applications of biclustering in 

basic biological science lead to many discoveries and novel methodologies, there is a 

rapidly growing interest in extrapolating it into the big biomedical data. Biclustering is 

deemed as a powerful tool that could identify novel target genes, indicated drugs or 

biomarkers of drug responses, in which the principles of biclustering being used in 

functional annotation and modularity analysis of biological data are also applicable. In 

this section, we provide comprehensive guidance and discuss the applications of 
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biclustering, particularly the integration with other methods, for detecting disease 

subtype, identifying biomarker and gene signatures of disease and gene–drug association. 

4.2.1 Disease Subtype Identification 

Disease subtype could provide a framework for the development of more accurate 

biomarkers by stratification of patient populations [171]. It can be defined by related 

molecular characteristics or clinical features [172]. Gene expression data, depicted as a 

matrix with genes as columns, and subjects as rows (with known or unknown disease 

types), were widely used in molecular subtyping studies. This formulation is reasonable 

because pathways responding to specific disease subtypes may be activated across most 

the patients of the subtype, and the gene expression can be considered candidate 

signatures for subtypes [49]. With benchmark gene expression data sets and well-

annotated disease subtype information, biclustering can discriminate biclusters from the 

gene expression matrix, containing genes that share similar expression patterns only in 

one or some specific subtypes [31, 173]. Hence, denovo identification of biclusters can be 

used to group subjects (patients) into disease subtypes, and these identified patient groups 

can be further evaluated by linking known clinical characteristics [63]. The evaluation 

process assumes that patients from different subtypes tend to have distinctive clinical 

features. In cancer subtyping study, survival time, neoplasm disease stage, tumor size, 

tumor grade, tumor nuclei percentage and patient age have been commonly used to assess 

the subtyping results [33, 117, 118]. Table 8 summed up those application studies in 

certain diseases, including leukemia, gastric cancer, breast cancer, lung cancer, etc. 

For each characteristic, a dependence test, e.g., Chi-square test, is used to examine 

the difference among all subtypes [174, 175]. To be specific, given a clinical characteristic 
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(e.g., the presence of an adverse drug reaction), the null hypothesis of the test is that 

subtypes of a disease and the characteristic are independent, i.e., there are no differences 

among the subtypes regarding that characteristic. After summarizing the frequencies or 

counts of cases under different subtypes into a 𝑟 ×   contingency table ( 𝑟 =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑤𝑠,  = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑜𝑙𝑢𝑚𝑛𝑠), the Chi-square test statistic is calculated by 

using the formula: 

𝜒2 = ∑
(𝑂 − 𝐸)2

𝐸
 

where 𝑂 represents the observed frequency, 𝐸 represents the expected frequency 

under the null hypothesis, which is computed by: 

𝐸 =
𝑟𝑜𝑤 𝑡𝑜𝑡𝑎𝑙 ×  𝑜𝑙𝑢𝑚𝑛 𝑡𝑜𝑡𝑎𝑙

 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 
 

The test statistics will be compared to the critical value of 𝜒𝛼
2 (𝑑𝑓 = (𝑟 −

1) × ( − 1)). If 𝜒2 > 𝜒𝛼
2 , the null hypothesis will be rejected, meaning that there are 

differences among subtypes regarding that characteristic (see details in Example S1). 

Meanwhile, interpretation of the identified biclusters in gene dimension can be carried out, 

more details of biomarker and gene signatures detection can be found in the next section.  

Table 8. Case studies of disease subtype identification. 

Data  Methods  Tools/Databases Outcomes  Refs 

Leukemia 

Microarray data with 

12,533 probes from 72 

patients of different 

subtypes of leukemia 

• Biclustering by qualitative 

biclustering algorithm 
QUBIC 

Biclusters with 

cancer subtyping 

information 

[31] 

Gastric cancer 
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Microarray data for 80 

paired gastric cancer and 

reference tissues from 

non-treated patients 

• Biclustering on gene 

expression data for bicluster 

identification; 

QUBIC [31]; 
Pathways 

associated with 

cancer 

development; 

identified gastric 

cancer subtypes 

[176] 

• Pathway enrichment analysis. 

DAVID [177] 

KOBAS [178] 

HPID [179] 

Breast cancer 

Microarray data with 

7756 genes and matched 

clinical data for 437 

primary breast tumor 

patients 

• Adjust for cohort-correlated 

batch effect across the non-

adjuvant treated tumor data 

set; 

ComBat [180] 

Similar clinical 

features 

associated with 

tumor within the 

same cluster 

[181] • Biclustering to identify 

molecular-based tumor 

subgroup; 

cMonkey [52] 

• Determine molecular 

classifiers for each bicluster; 
PAM [182] 

Microarray data with 

17,814 genes across 547 

samples 

and gene network 

consisted of 11,648 

genes and 211,794 

interactions 

• Assign weights to genes 

based on impact in the 

network and expression 

variation;  

PageRank [183] 

Cancer subtypes [63] 
• Weighted biclustering 

algorithm based on a semi-

nonnegative matrix tri-

factorization. 

NCIS [63] 

Colon and lung cancers 

290 colon cancer 

samples, each has 384 

methylation probes 

covering 151 cancer-

specific differentially 

methylated region 

(cDMRs);  

Expression levels of 

12,625 genes in 56 

patients having lung 

cancer 

• Heterogeneous sparse singular 

value decomposition 

(HSSVD) based Biclustering 

- 

Variance 

biclusters of 

methylation data 

in cancer versus 

normal patients 

using colon 

cancer data; 

cancer subtype 

patterns using 

lung cancer data 

[173] 

 

4.2.2 Biomarker and Gene Signatures Detection 

Biclustering proved to be influential for mining information from elaborate 

biomedical data sets, especially in cancer research. Cancer is complicated because of the 
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heterogeneity of tumor cells and is recognized as a system-level disease [184, 185]. 

Biclustering has been used with human gene expression data to identify cancer subtype 

patterns [31, 63, 173, 181, 186], metabolic pathways highly related to cancer 

progression[176], marker genes of a specific cancer type/subtype [8, 155], and clinical 

risk factors of cancer [187]. Also, studies of common or rare diseases have used 

biclustering of human gene expression data to identify phenotype-genotype associations 

[188, 189], dysregulated transcription modules [190], and genetic risk variants [191]. 

Depending on the available information, various levels of analyses can be conducted as 

summarized below. 

Basically, given gene expression matrix with rows representing genes and 

columns representing patients, biclustering can identify co-expressed gene clusters that 

are specific to characteristics of patients, e.g. certain subtypes or disease stages. If genes 

included in the identified biclusters have differential expression patterns between 

different subtypes, then they can serve as candidate gene signatures or biomarkers for 

cancer staging and subtyping [176]. If predefined gene sets are given, and clinical 

characteristics/phenotype labels are also available, researchers can carry out gene set 

enrichment analysis (GSEA) first to investigate the correlation between gene sets and 

clinical characteristics/covariates (e.g. tumor grade, stage, age or hormone status). Based 

on these correlations results, a binary association matrix can be derived, with rows 

representing gene sets and columns representing pairwise tests for phenotypes, the 

element ‘1’ denoting significant association between gene set and pairwise test, and ‘0’ 

denoting no significant association. Biclusters identified from this association matrix can 

represent modules that associated with known clinical covariates [187]. 
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A matrix of SNPs or phenotypes and the extended matrices from them, including 

a matrix of regression coefficients of SNPs associated with traits and matrix of P-values 

of SNPs in traits, were subjected to biclustering to recognize the phenotype–genotype 

connections [188, 189, 191]. With the developments of RNA-Seq, whole transcriptomic 

data are becoming available to characterize and quantify gene expression [192]. The 

recent advent of scRNA-Seq technology has enabled researchers to study heterogeneity 

between individual cells and define cell type a based solely on its transcriptome [8]. 

Using biclustering, researchers can not only group cells into subpopulations but also 

identify biologically important gene signatures for each class simultaneously [193]. For 

example, Zeisel et al. [155] recently classified single cells from the brain through 

biclustering, which identified numerous marker genes and highly restricted expression 

patterns of transcription factors for cell types. Kiselev et al. [8] developed a stable and 

accurate consensus tool, based on such scRNA-Seq data, which can quantify the inherent 

heterogeneity of single cells, define the subclonal composition and identify marker genes. 

Meanwhile, new biclustering applications are emerging, such as detecting disease marker 

genera from gut biome [194]. The gut microbiome is typically tricky to profile and use of 

biclustering enhances identification of specific taxonomic signatures that can support the 

elucidation of disease risk [194]. 

These identified biclusters were subjected to downstream analysis of functional 

gene annotation [186, 188], gene network inference  [188] or phenomic analysis [188, 

189, 191]. Most of the gene functional annotations were done through the UCSC Genome 

Browser [195]. Gene networks among clustered genes were commonly constructed by the 

Ingenuity Pathways Analysis software developed by QIAGEN. Phenomic analysis 
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performs pairwise genetic correlation of traits/phenotype against gene sets identified by 

biclustering, which is usually done using hypergeometric statistics or paired t-

test. Table 9 gives an overview of biomarker/gene signature identification studies, with 

the detailed procedures regarding biclustering and accompanied analyses specified in the 

column ‘Methods’. It is noteworthy that the application of biclustering in these 

biomedical studies is much more complicated compared with those in basic biological 

applications, regarding the data sources, data preprocessing methods and downstream 

statistical analyses. 

Table 9. Case studies of Biomarker and gene signatures detection. 

Data Methods Tools/Databases Outcomes Refs 

Breast cancer 

Association matrix of 

1,008 gene expression 

microarray profiles of 

primary breast tumors  

• Biclustering binary data matrix. iBBiG 

Modules 

associated 

with clinical 

covariates in 

breast cancer 

[187] 

Matrix of normalized 

miRNA Sequencing 

expression profiles 

• Biclustering to evaluate miRNA 

deregulation; 
ISA[100] 

12 different 

miRNA 

clusters 

[186] 

• Validate each bicluster by an external 

repository of different groups of 

miRNAs in human species; 

MetaMirClust 

[196] 

UCSC [195] 

• Compare results with a different 

biclustering algorithm. 
SAMBA [146] 

Osteoporosis 

Regression coefficients 

matrix of 1,109 unique 

SNPs associated with 

23 studied traits from 

the GWAS data of 

the Framingham 

Osteoporosis Study 

• GWAS database mining; Tagger [197] SNP-

phenotype 

connections; 

Highly 

genetically 

correlated 

traits; 

Candidate 

genes 

identified for 

[188] 

• Biclustering on matrix of SNPs against 

phenotypes; 

Bayesian 

biclustering 

[198] 

• Gene annotation and identification of 

enriched canonical pathway and gene 

network inference. 

UCSC [199] 

IPA 
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multiple bone 

traits 

Williams-Beuren syndrome 

Normalized skin 

fibroblast microarray 

dataset including 9,329 

probe sets and 96 

samples 

• Identify transcriptional modules; ISA[100] 
72 

dysregulated 

modules were 

found 

[190] • Test modules containing at least ten 

genes for dysregulation using 

hypergeometric distribution. 

- 

Schizophrenia 

8,023 subjects, 4,196 

patients, and 3,827 

controls, with 2,891 

SNPs in each subject 

• Perform biclustering for both 

phenotype and genotype data; 
bioNMF [62] 

Causally 

cohesive 

genotype-

phenotype 

relations 

[189] 

• Cross-correlate phenotype and 

genotype biclusters; 
- 

• Organize and encode relations into 

topologically organized networks; 
PGMRA [189] 

• Estimate genotype associated disease 

risk. 
SKAT[200] 

Complex diseases 

p-value matrix of 

466423 SNPs in 32 

independent 

diseases/traits 

• Identify biclusters of diseases/traits 

and SNPs 

SparseBC [201] 

Genetic risk 

variants for 

complex 

diseases 

[191] 

LAS [57] 

SSVD [202] 

• Map detected SNPs to genes - 

4.2.3 Gene-drug Association 

In drug development, it is vital to understand the complicated responses in the 

human body to various drug treatments [203, 204]. However, rigorous testing of safety 

and efficacy of novel drug makes drug development time-consuming, expensive and 

often unsuccessful. Alternatively, computational drug repositioning is termed as an 

efficient way to identify new applications for current medicines [205]. By the 

advancement of biotechnologies, a significant amount of gene expression data becomes a 

paramount component in characterizing the human responses to drugs. Here, we review 

the applications of biclustering in the context that is considered appropriate in revealing 

the co-expression patterns encompassed in the drug-perturbed responses [206]. The 
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genome-scale drug-treated gene expression data were served as raw materials for 

identification of co-expression modules using biclustering methods, where different drug 

treatments were conditions. Table 10 gave an overview of four typical studies that were 

examining the drug-induced co-expression modules. In these studies, information for 

both gene and drug members was mined to characterize the detected drug-induced 

modules. Conservation of identified biclusters was first evaluated across data sets through 

overlapping genes and drugs [206]. Then, genes and drugs in the bicluster were 

examined, respectively. Functional enrichment of these genes was tested using the 

DAVID knowledge base to determine the biological relevance of these biclusters [206, 

207]. Enrichment of drug annotation terms can be assessed by various databases, such as 

STRING [208] and DAVID [177], for identification of transcriptional factors linked to 

these biclusters [206, 209, 210]. 

Table 10. Case studies of gene-drug association. 

Data Methods Tools/Databases Outcomes Refs 

Drug-gene associations 

NCI-60 cancer cell 

line in drug 

response; 

Gene expression 

data 

• Identify co-modules of drugs and genes; PPA [207] 859 co-

modules were 

identified, and 

drug-gene 

associations 

were 

predicted 

more 

accurately 

than other 

algorithms 

[207] 
• Test drug-gene association. 

DrugBank [211] 

Connectivity Map 

[212] 

Drug-Induced Transcriptional Modules 

6,100 gene 

expression profiles 

of human cancer 

cell treated with 

1,309 small 

• Biclustering drug‐induced gene 

expression profiles [100]; 
ISA [50] 

Drug-induced 

transcriptional 

modules 

[206] • Hypergeometric test for significance 

assessment of overlaps among gene 

members; 

- 
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molecules from 

CMap [212]; 

1,743 expression 

profiles from liver 

tissues of drug-

treated rats [213]. 

• Predict novel gene functions by 

comparing modules of human cancer and 

rat liver cell lines; 

STRING [208] 

• Test enriched gene functions and 

identified biological themes among 

transcriptional modules. 

DAVID [177] 

Transcriptional factors (TFs) for drug-associated gene modules 

7,056 genome-wide 

expression profiles 

of five different 

human cell lines 

treated with 1,309 

chemical agents at 

different dosages 

from CMap [212] 

• Identify drug-gene modules by 

biclustering method; 
FABIA [32] 

Links 

between 28 

modules with 

12 TFs were 

detected 

[209] 

• Indicate Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes 

(KEGG) information associated with 

genes in modules;  

DAVID [110] 

• Use cumulative hypergeometric test to 

evaluate drug target enrichment. 
- 

Transcriptomics and decision in early-stage of pharmaceutical drug discovery 

Transcriptomic 

profiles in eight 

drug discovery 

projects of 

oncology, virology, 

neuroscience and 

metabolic diseases. 

• Normalize and filtrate mRNA expression 

data; 
- 

Transcription

al effects of 

compounds 

[210] 
• Identify transcriptional modules; FABIA [32] 

• Identify transcriptional modules related 

to the desired effect using target-related 

bioassay measurements. 

PSVM [214] 

 

4.3 Summary 

GBA is the basis of expression profile-based biclustering; however, co-expression 

does not guarantee co-regulation. One popular strategy to further elucidate co-regulation 

is to integrate supporting data that provide evidence of co-regulation with expression 

data, e.g. motif prediction and network connection. In support of a more comprehensive 

clarification of complex biological systems in a cell, existing biological network 

inference tools should embed multiple regulatory signals, e.g. TF, lncRNAs and 

miRNAs, and organically integrate biclustering within their network construction 

framework. Use of these methods and integration of well-annotated phenotypic data can 

enhance the identification of CEM and improve systems-level insights. Combination of 
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biclustering of gene expression and clinical phenotype data with successive enrichment 

analyses has revealed disease subtype patterns and diseases biomarkers. Biclustering has 

contributed to drug development by exposing the co-expression patterns from the drug-

treated gene expression data. Most uses of biclustering in biomedicine to date rely on a 

handful of conventional biclustering algorithms, as it remains unclear which are 

sufficiently accurate for any given data type. 

A workflow of biclustering application is proposed here to integrate the methods 

and tools used in both biological and biomedical fields discussed above. As shown 

in Figure 16, there are three layers (Data, Methods and Results) in this workflow. The 

data sources in the first layer provide the information directly collected and derived from 

genotyping and phenotyping results. Different method combinations in layer two can be 

used for various analytical requirements. Biclustering can be used to analyze phenotype 

matrix, genotype matrix, as well as the derived association matrix of these two matrices. 

A few example tools were shown in the figure for biclustering methods. These 

biclustering methods are often accompanied by downstream analysis, such as functional 

annotation, module analysis or network construction, to interpret the identified biclusters, 

together with statistical evaluation tools applied to demonstrate bicluster associations. 

Examples of results from a combination of the methods identified in layer two provide 

specific illustrations of corresponding outputs results [31, 181, 215-217]. The 

connections between data and methods offer model analysis paths for researchers to use 

depending on the characteristics of their data. 
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Figure 16. The overall workflow of biclustering application mechanism related to upstream and 

downstream process. Three layers are shown to provide the path from raw data, appropriate 

analytical methods/tools to various cases of the result. The power of biclustering is illustrated by 

the ability to generate co-expressed gene modules, subtype or biomarker, regulatory networks, 

clinical entities and estimated disease-free survival (DFS) distribution. 

The identified workflow guides many current studies; however, new 

biotechnologies are developing and emerging rapidly, while the corresponding 

biclustering tools are not evolving at a parallel pace. This situation is an important factor 

limiting the application of biclustering analysis to more complex data sets, e.g. 

multidimensional biological image data, requiring integration of multiple variables. 

Meanwhile, considering the variety and complexity of data from various platforms, the 

data integration and analyses are not trivial, and it is more challenge to combine multiple 

required computational techniques with biclustering analysis. Furthermore, different data 
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types may need specifically designed biclustering algorithms. For example, scRNA-Seq 

data exhibit higher heterogeneity than RNA-Seq data and are increasing in popularity; 

however, few biclustering algorithms are explicitly designed for these new data. Hence, 

additional biclustering methods, which include specific design attributes taking the 

characteristics of biological and biomedical data into account, are still needed to facilitate 

larger-scale applications of biclustering. 
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APPENDIX 1: QUBIC2 tutorial 
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APPENDIX 2: Data Links 

The link for all the datasets used in the thesis is provided in Table11. 

Table 11. Data links 

Data Link Note 

E. coli RNA-Seq http://bmbl.sdstate.edu/downloadFiles/E.coli%20RNA-seq/ Include expression 

matrix and five sets 

of pathways 

Simulation data http://bmbl.sdstate.edu/downloadFiles/simulation/ Include expression 

matrix and ten 

groups of modules 

TCGA data https://zenodo.org/record/1157938#.W489C_ZFwiQ  

scRNA-Seq data https://scrnaSeq-public-datasets.s3.amazonaws.com/manual-

data/yan/nsmb.2660-S2.csv 

Used in 2.3 and 2.5.  

GSE52583 http://www.cs.cmu.edu/~jund/scdiff/download/data/treutlein2014  

mouse olfactory bulb 

scRNA-Seq data 

http://www.spatialtranscriptomicsresearch.org/wp-

content/uploads/2016/07/Rep2_MOB_count_matrix-1.tsv 

MOB Replicate2 

GSE 48968 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48968  

GSE60402 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60402  
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APPENDIX 3: Citation Map for QUBIC 

The citation map for QUBIC (including QUBIC algorithm, Qserver and QUBICR) is provided in Figure 17. 

 

Figure 17. Citation map for QUBIC 
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APPENDIX 4: Plan of Study 
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