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 I.B.  Notes
Terms written in bold font are those which are of particular relevance to their host paragraph, and 

are designed as eye-catchers for quick reading. Terms written in italic and that were not required to 

be indicate emphasis. 

All articles inserted into this manuscript will not count towards page numbering; furthermore, their 

bibliographies will be separate.

All numbers concerning data were established during August, 2011, unless otherwise indicated.

 I.C.  Summary
The  projects  I  have  participated  in  during  my  thesis  all  concern  the  functional  annotation  of 

prokaryote genomes with the help of bioinformatics tools. Indeed, the masses of data produced by 

high-throughput sequencing cannot be processed manually as was done in the past. Instead, the 

computational use of mathematical and statistical  models has become an absolute necessity for 

storing and handling the data, for extracting useful knowledge from it or for copying it to newly-

sequenced genomes. 

The  general  objective  of  my  thesis  work  was  to  develop  new bioinformatics  methods  for  the 

(semi-)automated functional annotation of prokaryote genomes. In this manuscript, I first present 

the current scientific context around this objective, from genome sequencing to metabolism. I then 

present  the  two  main  projects  I  have  worked  on,  that  were  both  dedicated  to  the  functional 

annotation of prokaryote organisms.

The first  of these involved the development of the  CanOE strategy,  which focuses on finding 

candidate genes for sequence-orphan enzymes, integrating results across all available prokaryote 

genomes,  and  making  these  propositions  available  to  the  scientific  community.  I  developed  a 

generic method for building metabolic networks using publicly available metabolic databases, as 

well  as  a  programmatic  wrapper  for  the  CCCPart  algorithm,  which  I  use  to  locate  genomic 

metabolons in prokaryote genomes. These metabolons serve as a basis for finding candidate genes 

for the sequence-orphan enzymes, and results are considered across over 1,000 genomes from the 

MicroScope  bioinformatics  platform  in  order  to  evaluate  confidence  scores.  Benchmarking 

experiments and manual bioanalysis of several results revealed that the strategy was indeed useful 

in  several  ways.  I  finally  worked  on  integrating  this  bioinformatics  tool  into  the  MicroScope 

platform in order to make it available to the scientific community.
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In a second project called the “BKACE project”, I computationally helped explore the functional 

space of a recently and partially characterised enzyme family (DUF849), which led to the creation 

of novel functional annotations for its member genes. By combining sequence- and context-based 

information,  I  divided the  family into  à priori iso-functional  sub-families,  and  using  chemical 

substructure  searches  proposed  some  potential  substrates  for  the  enzymes  from  them.  Our 

collaborators carried out a high-throughput biochemical assay of over 20 substrates across almost 

200 DUF849 proteins; I then worked on analysing the data and graphically representing it. All in 

all,  many novel  enzymatic  activities  were  demonstrated  to  be  catalysed  by the  sub-families  of 

DUF849, and we hope to be able to adapt our analysis strategy to other gene families.

I also participated in other projects, using my knowledge of  multivariate statistical methods on 

metabolic data sets that my co-workers were analysing. These analyses were intended to be useful 

in generating high-level views of the metabolic capacities of the genomes under study, which were 

instrumental in perfecting their functional annotations. Several of these projects led to publications, 

of which two are included here as annexes.

Finally,  I  tie  all  these  works  together  under  the  banner  of  my thesis  subject,  discussing  what 

contributions  to  the  field  they  may  bring,  in  which  ways  they  can  be  combined,  and  some 

perspectives of improvements that could be made to them.

 I.D.  Résumé
Nota  bene :  Ce  résumé  correspond  approximativement  à  une  traduction  du  chapitre 

d'introduction (Chapitre  II)  plutôt que du résumé anglais, puisque ce premier se devait 

d'être plus conséquent, à la demande de l'école doctorale.

Tandis que les technologies de séquençage deviennent plus puissantes, rapides et moins 

onéreuses,  la  validation  expérimentale  de  l'ensemble  des  fonctions  des  gènes 

nouvellement  séquencés  est  passée  d'extrêmement  coûteuse  à  tout  simplement 

inimaginable. Depuis plus de vingt ans, le domaine de la bioinformatique s'est développée, 

en proposant des outils capables de guider les expérimentations ou de les remplacer. La 

technique de base la plus largement utilisée repose sur l'identification de liens évolutifs  

entre gènes en analysant la similarité entre leurs séquences (au niveau des nucléotides 

ou des acides aminés),  qui  peuvent alors être utilisés pour transférer des annotations 
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fonctionnelles des uns vers les autres. Cette technique a été incroyablement utile pour 

propager les connaissances établies sur un petit nombre d'organismes modèles (c'est-à-

dire fortement étudiés) vers des organismes nouvellement séquencés. Cependant, il a été 

montré que ce genre de transfert était source d'erreurs [1].

D'autres techniques ont été développées pour contourner ces inconvénients. L'utilisation 

d'informations  contextuelles,  plutôt  que  les  séquences  brutes,  pour  la  prédiction  de 

fonctions de gènes est l'un des axes principaux de recherche en ce sens. Le sujet de ma 

thèse s'inscrit directement dans cette problématique. Plus précisément, elle était dédiée 

au développement d'outils ou de stratégies bioinformatiques exploitant de l'information de 

contextes génomiques et/ou métaboliques afin de générer des annotations fonctionnelles 

potentielles. Le projet principal de ma thèse avait un objectif plus ciblé encore.

En effet, environ 27% des activités enzymatiques définies par le « International Union of 

Biochemistry  and  Molecular  Biology »  (IUBMB)  sont  encore  aujourd'hui  des  activités 

orphelines de séquence, c'est-à-dire que malgré une connaissance biochimique de leur  

existence, aucun gène codant ni protéine n'a été identifié comme acteur de leur catalyse. 

Ceci empêche nécessairement l'utilisation des méthodes à base de similarité de séquence 

pour leur trouver des gènes candidats. De plus, le prix de la réalisation de l'ensemble des 

tests biochimiques nécessaires à l'identification d'un gène codant parmi tous les gènes de 

fonction inconnue dans un seul organisme serait rédhibitoire. Il est donc impératif d'utiliser  

des méthodes bioinformatiques afin de réduire le champ des possibles en trouvant un 

nombre limité de gènes candidats pour ces activités enzymatiques orphelines.

Certains  travaux  ont  déjà  été  entrepris  afin  de  résoudre  -au  moins  partiellement-  le  

problème des activités orphelines  [2,3]. Cependant, bien peu de méthodes capables de 

proposer des gènes candidats pour les activités orphelines ont été conçues. Le projet 

principal de ma thèse consistait  à développer une stratégie capable de répondre à ce 

besoin. Le premier travail que j'ai réalisé est la stratégie CanOE (fishing Candidate genes 

for Orphan Enzymes) qui a été mis en place au sein de la plate-forme de bioinformatique 

MicroScope  [4]. J'ai développé une méthodologie de construction générique de réseaux 

métaboliques à partir de bases de données publiques, et adapté l'algorithme CCCPart [5] 

afin  de  localiser  des  métabolons  génomiques  dans  les  génomes  prokaryotes  de 

MicroScope.  Ces métabolons servent  de base pour la proposition de gènes candidats 

pour les activités enzymatiques orphelines de séquence. Ces résultats sont alors intégrés 
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sur  plus  de 1000 génomes afin  d'établir  des  scores  de confiance.  Une procédure  de 

validation informatique, ainsi que la bioanalyse manuelle des résultats, ont montré que 

CanOE était utile à plus d'un égard. Finalement, j'ai travaillé à l'intégration de cet outil 

parmi  ceux de la  plateforme MicroScope afin  de rendre les résultats  accessibles à la  

communauté scientifique.

Il  existe  un  problème miroir  à  celui  des  activités  orphelines  de  séquence  :  celui  des 

protéines  de  fonction  inconnue.  De  nombreux  travaux  ont  été  entrepris  pour  tenter  

d'associer des annotations fonctionnelles plus ou moins précises à ces protéines et à leurs 

gènes  codants  (c.à.d. des  méthodes  réalisant  du  transfert  d'annotation  sur  base  de 

similarité de séquence et des approches plus complexes comme l'utilisation experte de 

plate-formes  d'annotation  telles  que  MicroScope  [6,4]). Un  projet  collaboratif  appelé 

« projet  BKACE »  (pour  « beta-keto  acid  cleavage  activity »)  a  été  initié  suite  à  la 

découverte, au Genoscope, d'une nouvelle activité enzymatique pour quelques membres 

d'une famille de gènes (dite « DUF849 ») de fonction jusqu'alors inconnue. L'objectif de ce 

projet était l'exploration de l'espace fonctionnel de cette famille. Mon rôle dans ce projet a 

été  de  développer  une  méthodologie  exploitant  des  informations  contextuelles  et  de 

séquence  afin  de  1)  découvrir  des  fonctions  enzymatiques  potentielles  au  sein  de  la 

famille et de 2) réduire le nombre de protéines à tester en séparant la famille en sous-

familles à priori iso-fonctionnelles. Ces deux points ont servi à guider les expérimentations 

biochimiques menées par nos collaborateurs, qui ont testé au final plus de 20 substrats 

contre presque 200 protéines. J'ai réalisé l'analyse statistique de ces résultats et les ai  

préparés  pour  représentation  graphique.  Au  final,  plusieurs  nouvelles  activités 

enzymatiques ont pu être associées à des sous-familles de DUF849, et nous espérons 

pouvoir adapter la stratégie développée ici à d'autres familles enzymatiques.

J'ai  également  participé  à  d'autres  projets,  où  j'ai  appliqué  mes  connaissances  en 

méthodes  d'analyse  statistique  multivariée  à  l'étude  de  données  métaboliques  sur 

lesquelles  travaillaient  mes  collègues.  Ces  analyses  ont  servi  à  générer  des  visions 

abstraites de haut niveau des capacités métaboliques des génomes étudiés, utiles à leur 

annotation fonctionnelle manuelle. Plusieurs de ces projets ont mené à des publications, 

et deux de celles-ci sont données en annexe.
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Le premier projet visait particulièrement à trouver des gènes candidats pour des activités 

enzymatiques  orphelines  de  séquence ;  le  second  à  aider  à  l'exploration  de  l'espace 

fonctionnel d'une famille de gènes à la fonction inconnue ; les secondaires à établir des 

connaissances utiles à l'annotation manuelle. En somme, les travaux effectués pendant 

cette  thèse  avaient  pour  objectif  l'utilisation  et  la  création  de  méthodologies 

bioinformatiques exploitant des informations contextuelles afin de générer des annotations 

fonctionnelles potentielles entre des gènes issus de génomes prokaryotes et des activités 

enzymatiques. 

Dans  ce  manuscrit,  je  présente  en  premier  lieu  la  source  principale  des  données 

exploitées par la bioinformatique : le séquençage de génomes et leur analyse, ainsi que 

quelques projets  d'intérêt  de  séquençage  en cours.  Je  présente  alors  le  domaine  de 

l'annotation fonctionnelle de genomes prokaryotes, les plate-formes qui existent pour ce 

faire,  et  les  stratégies  couramment  utilisées  (Chapitre  III).  Je  détaille  ce  qu'est 

effectivement l'annotation fonctionnelle, ses méthodes, et en propose une classification 

(Chapitre  IV).  Je  présente  alors  le  métabolisme  des  prokaryotes,  puisque  dans  ces 

travaux, il s'agit surtout de trouver des fonctions métaboliques aux gènes (Chapitre V). Je 

conclus mon état  de l'art  par  le détail  du concept  d'activité  enzymatique orpheline de  

séquence, et les solutions existantes pour y remédier (Chapitre  VI). Je détaille ensuite 

mes travaux (le projet CanOE dans le Chapitre  VII, le projet BKACE dans le Chapitre VIII, 

et des projets secondaires dans le Chapitre IX). Je développe des perspectives globales 

dans le Chapitre X. Les annexes et la bibliographie figureront dans les Chapitres XI et XII.
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 I.E.  List of abbreviations
Abbreviation Meaning

ASMC Active Site Modelling and Clustering, a clustering method based on identifying key amino acids in enzyme active 
sites.

ATP Adenosine Tri-Phosphate, a common energetic substrate heavily used in cell metabolism

BAC Bacterial artificial chromosome

BKACE Beta-keto acid cleaving enzyme/enzymatic activity

BLAST Basic Local Alignment Search Tool, a bioinformatics tool for locating similar regions between protein or nucleic 
sequences

bp base pair(s)

CA Correspondence Analysis, a type of factorial analysis

CanOE Fishing Candidate Genes for Orphan Enzymes

CDS/fCDS Coding Sequence / fragment of a CDS

CoA Coenzyme A, a common cofactor in enzymatic reactions

COG Cluster of Orthologous Genes

ChEBI Chemical entities of biological interest database, hosted by the EBI (see below)

DNA Deoxyribonucleic  acid,  generic name for the helicoidal,  double-strand assembly of deoxyribonucelotides that  
form a cell's genome.

DDBJ DNA Data Bank of Japan

EBI European Bioinformatics Institute

EC number Enzyme Commission number, describing an enzymatic activity

ENA European Nucleotide Archive

EU European Union

FA Factorial Analysis

GO Genomic Object, an object modelling an annotation of a stretch of DNA in the MicroScope platform.

GOA Genomic Object Annotation, an object I propose in my alternative MicroScope data model

GO term gene ontology term

HGT horizontal gene transfer

HMFA Hierarchical Multiple Factorial Analysis

ID Generic abbreviation for “identifier”. SQL tables may have “ID” (uppercase) in their name. SQL table columns 
may have “id” (lowercase) in their names.

IUBMB International Union of Biochemistry and Molecular Biology

IUPAC International Union of Pure and Applied Chemistry

KEGG Kyoto Encyclopedia of Genes and Genomes, actually a more metabolism-centred bioinformatics resource

LABGeM Laboratoire d'Analyses Bioinformatiques de Génomique et du Métabolisme Genoscope team

LABIS Laboratoire d’Analyses Bioinformatiques des Séquences Genoscope team (now merged with LABGeM)

LCAB Laboratoire de Clonage et de criblage des Activités de Bioconversion Genoscope team

LCOB Laboratoire de Chimie Organique et Biocatalyse Genoscope team

LGBM Laboratoire de Génomique et de Biochimie du Métabolisme Genoscope team

LDA Linear Discriminant Analysis
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Abbreviation Meaning

MaGe Magnifying Genomes, graphical interface for the MicroScope platform.

Mb/Gb Mega bases, giga bases, units of quantities of deoxyribonucleotides in a sequence.

MCA Multiple Correspondence Analysis

MFA Multiple Factorial Analysis

MPL Minimum Path Length

MSA Multiple Sequence Alignment

NCBI National Center for Biotechnology Information (USA)

NGS Next Generation Sequencing

PkGDB Prokaryotic Genome Database, data management system of the MicroScope platform

PLoS Public Library of Science

PPI Protein-protein interaction (network, data...)

RNA Ribonucleic acid, generic name for a single-strand assembly of ribonucelotides

RPAIR Reaction Pair, a KEGG concept for modelling chemical group transfers in metabolic reactions.

PHF Pathway Hole Filler tool. PHF-GC refers to PHF - Genomic Context, a more recent version of PHF.

PIR Protein Information Resource

PubMed Published articles and citations for biomedical literature from MEDLINE, life science journals, and online books

SIB Swiss Institute of Bioinformatics

SNAP Similarity-neighborhood approach for finding functionally related genes

SQL Structured Query Language

STRING Search Tool for the Retrieval of Interacting Genes

SVM Support Vector Machine, a family of statistical supervised learning methodologies

UK United Kingdom

USA United States of America

WIT the  “What  Is  There”  integrated  system  for  high-throughput  genome  sequence  analysis  and  metabolic 
reconstruction
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 II.  Introduction
As  sequencing  technology  becomes  more  powerful,  cheaper  and  accessible,  experimentally 

validating  the  functions  of  all  the  newly  sequenced  genes  has  gradually  gone  from extremely 

resource-consuming to downright unimaginable. Over the past two decades,  bioinformatics (also 

known as computational biology1) tools have been developed in order to help guide experiments, or 

to  replace  them  altogether.  The  most  widely  used  technique  involves  detecting  evolutive 

relationships between genes by exploiting similarity between their sequences, and on this basis, 

transferring  the  functional  annotation of  one  to  the  other.  Incredibly  useful  for  propagating 

knowledge from well-studied organisms to newly sequenced ones, tools based on this technique 

have  been  shown on one  hand  to  be  error  prone,  and on the  other  hand to  be  approaching a 

usefulness threshold, as most of the widespread conserved genes are now thought to be known [1]. 

Other techniques have been developed in order to resolve or circumnavigate these drawbacks. The 

use of contextual information (rather than sequence information) is one of the pursued avenues of 

research in this direction. The subject of my thesis was designed to participate in this research. 

More specifically, it was dedicated to the development of bioinformatics tools or strategies using 

genomic and metabolic contextual information in order to assist with the functional annotation of 

prokaryote genomes. It did, however, have a more precise goal than general functional annotation.

As of today, roughly 27% of all enzymatic activities documented by the International Union of 

Biochemistry and Molecular Biology (IUBMB) are sequence-orphan activities  (orphan enzymes 

for short), meaning that despite biochemical knowledge of the activity, no coding gene sequence nor 

protein sequence has ever been established for the catalysing enzyme. This obviously proscribes the 

use of all sequence-based transfer techniques mentioned above. Extensively carrying out wet-lab 

surveys for identifying, for each sequence-orphan activity, coding genes amongst all un-annotated 

genes  would  also  be  prohibitively  resource-consuming.  Bioinformatics  methods  are  thus  a 

prerequisite to help guide experiments and reduce the gene and function spaces to explore. 

However, although some high-level work has been done to address the orphan enzyme problem 

[2,3],  relatively  few  methods  have  been  designed  to  propose  candidate  genes  for  orphan 

enzymes. The main focus of my thesis was to develop a methodology capable of doing specifically 

this. The first work presented in this manuscript is thus  the CanOE  strategy (finding  Candidate 

1 These terms can currently be considered as interchangeable, though efforts to define each separately are under way.
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genes for Orphan Enzymes), that we put together as a local solution to this problem.

There exists a mirror problem to that of orphan enzymes: that of proteins of unknown function.  

Much more work has been done on trying to associate more or less detailed functions to these 

proteins, from the previously-mentioned simple homology-inferring methods to using annotation 

platform tools such as those in MicroScope  [6,4]. Stemming from an initial discovery of a novel 

enzymatic activity associated to a protein family of previously unknown function, a collaborative 

project  called  the  BKACE  project  (for  beta-keto  acid  cleaving enzyme)  was  initiated  at  the 

Genoscope. This project had as objective the exploration of the functional space of the family of 

proteins of unknown function. I worked on this project, using contextual information to attempt to 

discover alternate protein functions, and to help guide the biochemical assays.

To  summarise,  the  tasks  in  this  thesis  were  carried  out  with  the  objectives  of  creating  new 

bioinformatics methodologies exploiting contextual information to generate functional annotations 

between genes from prokaryote genomes and enzymatic  activities.  The first  project  specifically 

aimed to help find candidate genes for orphan enzymes; the second to help explore the functional 

space of a newly discovered enzyme family.

In this manuscript, I shall first go over the main source of data which bioinformatics tools process: 

genome  sequencing  and  analysis,  along  with  several  noteworthy  illustrative  projects,  before 

presenting the field of prokaryote genome annotation, its platforms and strategies (Chapter  III). I 

shall  detail  what  functional  annotation  is,  and shall  propose a  new classification  of  annotation 

methodologies  (Chapter  IV).  It  will  then  be  necessary  to  discuss  prokaryote  metabolism,  as 

metabolic reactions are one of the types of function a gene may be annotated with (Chapter  V). I 

shall conclude my state of the art by presenting the concept of orphan enzyme and the solutions that  

have been proposed to find parent genes for them (Chapter VI). I shall then be able to present and 

discuss the projects I have worked on during this thesis (CanOE in Chapter VII, BKACE in Chapter 

VIII, and other smaller projects in Chapter IX). Finally, a general discussion will attempt to place 

all  of  these  works  under  the  banner  of  my  general  thesis  subject  and  will  mention  future 

developments and perspectives on them (Chapter X). Bibliography and annexes will be consigned 

to Chapters XI and XII.
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 III.  Microbial Genomes and their Analysis
The availability of whole genome sequences for an increasing number of organisms has, amongst 

others,  spurred  the  development  of  the  heterogeneous  field  of  bioinformatics  along  with  our 

comprehension of  Life  itself.  As is  often in science,  though,  it  has generated at  least  as  many 

questions as it has answered, ensuring that bioinformatics remains an important emergent scientific 

domain.

In this chapter, I shall give an overview of how whole genome sequences came about, before giving 

a few perspectives in the shape of noteworthy sequencing projects that are currently underway or 

planned for the near future. I shall also point out a few sequence data resources that have become 

central to bioinformatics today. A word will be said about metagenomics, as one of my side projects 

involved metagenome analysis. Finally, I shall present the tools which are used to transform all this  

sequence data into usable, biologically-relevant information: annotation platforms.

 III.A.  Genome sequencing and resources

 III.A.1.  History and evolution of biological molecule 
sequencing

 III.A.1.a.  Birth of sequencing

As  early  as  the  late  19th  century,  much  scientific  attention  was  focused  on  determining  the 

composition and structure of biological molecules. Proteins in particular were under close scrutiny, 

as they were hypothesised to be associated with the basic functions of life, or even to be physical  

support for heredity.

Determining protein  sequences  first  became possible  after  the  development  of  an experimental 

protocol  based  on  protein  fragment  end  group  identification.  This  approach  was  imagined  in 

Frederick Sanger's laboratory in 1949 [7–10], and led to the discovery of the amino-acid sequence 

of insulin (a peptide hormone with two subunits totalling 51 amino acids in humans) after 10 years 

of effort. Both P. Edman's protocol, developed in 1950 and based on a stepwise protein degradation 

approach, and A. Maxam and W. Gilbert's protocol, developed in 1972, were also very popular [11]. 

In 1953, Watson and Crick discovered the sequence-like molecular structure of nucleic acids [12–

14] and postulated the “sequence hypothesis”, which stated that a) the biological specificity of a 

nucleic acid segment is expressed solely by its sequence in nucleotide bases  (adenine, cytosine, 
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thymine and guanine), that b) nucleic acid sequences are a simple code representing the amino acid 

sequence  of  a  particular  protein,  and finally  c)  that  these  proteins  are  the  building  blocks  the 

organism requires to exist and live.

Evidence  supporting  this  informational  rather  than  biochemical  view  was  uncovered  in  the 

following  decades2.  Sanger  was  affected  by Crick's  ideas,  and  orientated  his  research  towards 

directly sequencing nucleic acids rather than proteins. The year 1977 saw the birth of both Sanger 

and  Maxam-Gilbert  DNA  sequencing  methods.  The  latter  method  depended  on  cutting 

radioactive DNA molecules (maximum length: 250 nucleotides) at a random base of a given type 

(not exactly equivalent to each nucleotide type, but combinations thereof); electrophoresis of the 

fragments of different lengths obtained for cuts of each of 4 types led to a profile that could be 

interpreted in order to reconstitute the original sequence.

The Sanger method was based on synthesising DNA in presence of a mix of deoxyribonucleotides 

(dNTP) and dideoxyribonucleotides (ddNTP) that blocked the polymerase reaction. DNA synthesis 

primers,  and  later  the  ddNTPs  themselves,  were  radioactively  marked  in  order  to  render  the 

synthesised DNA fragments (“reads”) easily detectable. Electrophoresis of the fragments obtained 

using  different  mixtures  of  each  of  the  4  types  of  ddNTP generated  interpretable  profiles  for 

reconstituting the final read sequence, which at the time was of roughly 250 nucleotides. The larger 

sequence length, along with the lesser toxicity of used reactants and ease of use, led the Sanger 

method to finally being preferred over the Maxam-Gilbert method.

Since, the Sanger method has been refined and automated. Two main developments are of note. The 

first  is  the  use  of  fluorochromes  rather  than  radioactive  elements  to  mark  the  primers  or  the 

ddNTPs, which can be excited with a laser and read by an automatic optical apparatus. This allowed 

results to be automatically processed, rather than relying on manual inspection of an electrophoresis 

gel. This led to the development of the first partially-automated DNA sequencing protocol at L. 

Hood's  laboratory  in  1986  [15],  followed  by  the  marketing  of  the  first  gel-based  automated 

sequencer, the ABI 370 by Applied Biosystems, in 1987.

The second development appeared at the end of the 1990's, and involved the replacement of gel 

electrophoresis  by  capillary  electrophoresis,  allowing  much  faster  sequencing  and  higher 

throughput. The data produced by these sequencing techniques remained humanly analysable, and 

protocols derived from them are still used today.

2such as proof of the collinearity between DNA and protein amino-acid mutation positions, in 1964
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Obviously, it was not possible to sequence an entire genome in one go using Sanger sequencing. 

Further more, multiple molecules of genomic DNA were required (for multiple fragments). In order 

to  address  these  two problems,  DNA clonal  banks were  created.  To create  a  bank,  the  target 

genome was broken up into large, 200 kb fragments, and each fragment was inserted into a vector, 

creating  Bacterial  Artificial  Chromosomes (BACs).  Each  BAC  was  then  cultivated  in  pure 

colonies. These BACs generated sufficient quantities of target genome DNA fragments to be broken 

up in turn and inserted into “multicopy” plasmids. These plasmids could carry up to 5 kb of the 

target  genome sequence,  and a single vector  could host  one or  two hundred copies  of it.  This 

provided enough genetic material for the final sequencing step by a Sanger method. The reads thus 

obtained then have to be assembled into a final sequence. This burden is placed on the assembly 

software, which relies on overlapping sequences, on established genetic maps of the target genome 

if  available,  an  on  BAC  extremity  sequencing.  Finally,  a  finishing stage  can  be  undertaken, 

consisting of targeted sequencing of previously “missed” or low-quality parts of the target genome.

 III.A.1.b.  The Human Genome Project

A major  driving  force  behind  the  development  of  more  advanced,  cheaper,  and  faster  DNA 

sequencing was the Human Genome Project. This scientific objective was officially launched in 

1990 with the cartography of the human genome. However, the sheer volume of base pairs to be 

sequenced  (approximately  3*109)  was  beyond  the  reach  of  previous  techniques,  requiring 

experimental and computational improvements. Two competing efforts took up the challenge. The 

International  Human  Genome  Sequencing  Consortium was  a  publicly-funded  effort 

coordinating laboratories worldwide, that used a BAC genetic map approach to separate the human 

genome into over 20 000 more manageable “bites”. The total project cost roughly 3 billion US 

dollars.  The  Genoscope  was  part  of  this  endeavour,  and  completed  the  sequence  of  human 

chromosome 14. Craig Venter, at the time president of  Celera Genomics, led a privately-funded 

effort based on “shotgun sequencing”, which claimed that a protocol using less BACs and relying 

on powerful sequence assembly software to piece together many more reads could outperform the 

older protocols. Over the years, the much slower public project published several high-quality draft 

versions of parts of the human genome, but building on the latter, Venter finally managed to publish 

his own, low-quality version of the complete human genome first [16]. The public project finished 

mere weeks later  [17,18].  The speed and relative cost  (a tenth of that  of the public effort)  led 
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computer-heavy approaches such as Venter's to be the most popular in subsequent developments, 

and they are still used today, even though they require a more costly finishing phase to ensure a 

good final sequence quality.

 III.A.1.c.  Sequencing technologies today

Over the past ten years, the sequencing landscape has evolved into a fast-paced race towards data.  

Since 2004, new sequencing technologies that are not based on Sanger's protocol have appeared. 

For example, the necessity of creating libraries of bacterial clonal colonies has been reduced in 

some sequencing technologies by the use of PCR amplification within the sequencers. Three great 

families of techniques have emerged: those based on DNA synthesis, those based on hybridisation, 

and those based on single-molecule sequencing, though the latter are much more recent and only 

starting to be commercialised.

DNA synthesis-based sequencing techniques: Pyrosequencing is a sequencing technique 

which relies on step-by-step synthesis of a complementary DNA strand using “washes” of dNTP of 

known types.  When a dNTP is  successfully incorporated into the new strand,  the liberation of 

diphosphate triggers a chemical cascade that emits light that can then be detected by a photosensor. 

Illumina sequencing is a stop-and-go synthesis-based sequencing technique. In each cycle, a mix 

of modified dNTPs are added, each type carrying a fluorochrome with a specific colour that blocks 

elongation,  and all  blocking the  polymerase  reaction.  Under  laser  stimulation,  the  latest  added 

dNTP can be “read” thanks to its colour. Then, a chemical reaction removes the fluorochrome and 

unblocks the new DNA strand, which is then ready for another cycle.

Hybridisation-based sequencing techniques:  SOLiD sequencing (Sequencing by  Oligo 

Ligation and Detection) is based on hybridising DNA fragments with pre-prepared oligonucleotides.

Currently available sequencers of each of the previous techniques are compared in the table below:
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Technique Make Sequencer Read 
length 
(bases)

Output Run Time Error rate Cost per 
base

Sanger Applied 
Biosystems

 ABI 
3730XL 700 96 

reads/run 2 hours Medium High

Pyrosequencing Roche 

454 
Genome 

Sequencer 
FLX 

Titanium

500 500 
Mb/run 8 hours High Medium

Illumina Illumina  Solexa 
HiSeq 2000 100 250 Gb/

flowcell 10 days Low Low

SOLiD Applied 
Biosystems

 5500xl 
series 60 20 Gb/day Low Low

b: bases (nucleotides)

All these techniques make up what is called “second generation sequencing” or “next generation 

sequencing” (NGS). NGS has rendered sequencing much more accessible to small laboratories, and 

new ways of using sequencing have emerged (such as RNA discovery,  PCR amplicon analysis, 

expression level measuring “RNA-seq”, metagenomics...)  [19]. In 2009, the cost of sequencing a 

human genome was evaluated at 100,000$, 3,000 times less than Venter's first supposed success, 

bringing within reach previously unimaginable projects such as the 1,000 human genomes project 

(see part III.A.2.a). The increase in accessibility, in number of sequencing techniques, of use cases, 

and sheer data volume, have led to the development of a plethora of ways of dealing with the data,  

with  each  lab  basically  coming  up  with  specific  software  designed  to  meet  their  needs.  This  

obviously rendered a previously complex domain increasingly confused.

With  sequencing  technology  available  to  all  laboratories,  it  is  thought  that  major  centralised 

sequencing  centres  have  outlived  their  prime  mission  and  that  they  too,  should  evolve.  New 

missions could include comprehensive development of sequence analysis software, establishment of 

data  formats  to  ease  data  and  competence  transfer,  and  dispensing  training  courses  in  good 

sequencing practices and sequence analysis. This will hopefully help to harmonise the sequencing 

landscape and avoid misconceptions or false ideas [20]. In this social era, discussion forums such as 

SEQanswers [http://seqanswers.com/] will probably be informational hubs for sequencing-related 

questions.

Perhaps the “$1,000 genome” is  no longer  such an unimaginable goal  [21] though the cost  of 
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sequence data storage and analysis is, for its part, on the rise [22].

 III.A.1.d.  Sequencing technologies for the near future

Several new technologies (also called “third generation technologies”) have emerged and are soon 

to be commercially available.

Pacific Biosciences Single Molecule Real Time (PacBio SMRT) sequencing relies on the synthesis 

of the complementary strand of a single DNA molecule in a tiny well. Individual types of dNTPs 

carry chromophores that are stimulated by laser when they are added to the DNA, after which they 

break off.  It  is  thus  possible  to  follow in  real  time the  adding of  successive dNTPs,  and thus 

determine  the  sequence.  The  laser  can  be  switched  on  or  off,  leading  to  strobe  sequencing, 

particularly useful for reading longer and gapped sequences, as switching the laser off periodically 

reduces damage done to the DNA.

Ion Torrent sequencing also relies on a single complementary DNA strand being synthesised. The 

well is flushed in turn by different types of dNTP. When a dNTP is added to the strand, the release 

of hydrogen ions (H+) is detected, allowing determination of the sequence.

PacBio SMRT is capable of generating large quantities of relatively long reads quickly (3Mb per 

hour,  1000 bp reads).  It  is,  however,  currently plagued by a low read quality.  The Ion Torrent  

sequencer, however, is relatively small, portable, with a high turnover and read quality (<1% error 

rate), useful for quick desktop sequencing, but not for large genome sequencing projects (reads of 

100-200 bp). As an example use case, in 2011, the speed and ease of Ion Torrent technology helped 

a team from the Lille Pasteur Institute to sequence the genome of a pathogenic  Escherichia coli 

strain that had caused a widespread food intoxication across Europe in less than 3 days.

Even more technologies are emerging, and it is suggested to the interested reader to keep an eye out 

for these new developments, though all might not be successful.

 III.A.2.  Ongoing projects and resources
 III.A.2.a.  Genome projects

As  sequencing  technology  and  sequence  assembly  become  faster,  more  reliable  and  cheaper, 

genome sequencing projects will become increasingly ambitious. Below, I describe three projects 

that plan to revolutionise bioinformatics and its applications in different ways.
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Genomic Encyclopaedia  for Bacteria  and Archaea: There  are  currently  over  2,000 

bacterial  and  archaeal  genomes  available  in  public  sequence  data  banks.  However,  sequenced 

genomes  show  heavy  phylogenetic  bias  towards  laboratory-cultivable  organisms  (estimated  to 

represent less than 10% of existing microbes thanks to metagenomic analyses, see part  III.A.2.b) 

[23,24]. Though sequencing more genomes from diversified phyla is not expected to result in many 

more biological discoveries due to “diminishing returns”, it is argued that they are necessary for a) 

opening usual molecular biology study approaches to new organisms, b) obtaining a broader view 

of the tree of life, c) countering previously described sampling biases, d) assessing taxon diversity 

in this era of popular interest in biodiversity [24], e) improving gene/protein family detection (see 

part IV.C.2), f) winkling out novel biological discoveries, and more.

To  this  end,  leading  researchers  have  instigated  projects  like  the  Genomic  Encyclopaedia  for 

Bacteria and Archaea (GEBA) and the USA National Science Foundation project “Assembling the 

Tree of Life”. The GEBA project is an international effort started in 2008 and that now covers 

roughly 100 recently-sequenced microbial genomes (estimated from a PubMed search of articles 

following  the  GEBA publication  guidelines).  The  added  value  of  increased  and  less  biased 

phylogenetic coverage has already been shown [25].

The  GEBA project  is  followed  up by an  interesting  educational  program created  by the  Joint 

Genome Institute  (JGI)  of  the  Department  of  Energy (DOE) of  the  USA,  entitled  “Interpret  a 

Genome”  [http://www.jgi.doe.gov/education/interpretagenome.html].  This  program proposes  that 

sequenced  GEBA genomes  be  annotated  in  the  context  of  biochemistry  and  bioinformatics 

undergraduate courses in universities across the world,  and several  genomes have already been 

annotated over past yearly sessions.

The 1,000 Genomes Project:  The  1,000 Genomes Project [http://www.1000genomes.org/], 

launched  in  2008,  aims  to  completely  sequence  (with  good  coverage)  the  genomes  of  a  large 

number of humans in order to establish the first comprehensive map of human genetic variability 

(sufficient for 95% coverage of all alleles3 present in over 1% of the global population). This will 

obviously  be  of  great  scientific  value  to  multiple  domains  of  medicine,  and  should  lead  to 

interesting discoveries in the field of population genomics (which studies the evolution of genetic 

variations over multiple generations). It should also be able to complement results obtained from 

3 An allele is one of several variants of a gene (i.e. differing by one or several nucleotide polymorphisms) .
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human metagenomics projects by shedding further light on the relationships between a human host 

genome and its harboured microbial communities (see next section III.A.2.b). With the development 

of cheaper, faster sequencing methods, this project is becoming less of a challenge and more of a 

research milestone. Indeed, pilot sub-projects have already been completed, leading to interesting 

results validating the approach [26].

The  10,000 Genome Project:  The  Beijing  Genomics  Institute  (China)  has  organised  the 

10,000 Genome Project, which is  similar to the Genomic Encyclopaedia of Bacteria and Archaea 

project, but specifically for microbes present in conventional environments, extreme environments, 

and human body samples, all geographically located in China. This will thus call on traditional 

genomics  and metagenomics (see  III.A.2.b).  Archaea,  bacteria,  fungi,  algae and viruses will  be 

studied  in  the  hope  of  uncovering  biological  particularities  with  industrial  applications.  A 

description  of  this  project  can  be  found  at  [http://www.genomics.cn/en/research.php?

type=show&id=498].

Project  to Annotate 1,000 Genomes: In  2003,  the  Fellowship  for  the  Interpretation  of 

Genomes (FIG) [www.thefig.info] initiated the Project to Annotate 1,000 Genomes, which had as 

primary  objective  to  develop  methodologies  for  accurate  and  high-throughput  annotation  of 

genomes from all domains of life, while still maintaining expert curation as an active part of the 

process in order to guarantee necessary precision and error correction. Though this is not strictly 

speaking a “genome” project (dedicated to annotation, not sequencing), it is still of relevance in the 

context of this thesis. Is namely formed the heart of the collaborative effort out of which the SEED 

was born [www.theseed.org] (see section III.B.3).

As announced, science has advanced from sequencing and studying single genomes to multiple 

genomes, which I shall now briefly describe.

 III.A.2.b.  Metagenomics and metagenome projects

Metagenome  sequencing  is  an  even  younger  science  than  single  genome  sequencing,  and  has 

opened several unexpected doors into the biology of micro-organism communities. Here, I shall 

briefly define what is metagenome sequencing, along with its generic protocol, before presenting 
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other projects of interest in this expanding domain that hold high hopes for future bioinformatics 

developments.

A major fraction of all living micro-organisms currently evade biologists' attempts to cultivate them 

in isolated, laboratory-controlled conditions (“clonal cultures”). Studying their inner workings, their 

metabolism and interactions is thus rendered infinitely more complex than for species easier to 

cultivate, let alone sequencing their genomes. However, early sequencing attempts of non-clonal 

samples showed that biodiversity had been grossly underestimated by lab cultures  [27], as many 

environments absolutely team with life, such as soil, digestive tracts and sea water. 

Modern molecular biology techniques and micro-organism genomics have now opened a door to 

the workings of these evasive organisms. It is possible to sequence and study the genomes of many 

different,  non-isolated  organisms from a  single  environmental  sample,  a  process  referred  to  as 

metagenomics  analysis  [28].  This  allows  the  study  of  micro-organisms  without  the  biases 

introduced by laboratory limits  [27]. The scaling  up  in  quantities  of  sequenced DNA, and the 

mixture of original species that  can be quite  close,  pose new computational  problems for their 

analysis, and has spawned a fervent era of bioinformatics research [29].

Metagenomics studies all follow a same general procedure. The first step is, obviously, to retrieve a 

sample  of  which  the  metagenome  is  to  be  sequenced.  This  usually  involves  environmental 

sampling, where experimental protocols much be chosen and followed scrupulously to ensure that 

there  is  enough  genetic  material  to  detect  all  of  the  species  in  the  sample  (the  number  and 

distribution of which should be estimated), and that it is not contaminated by unwanted organisms 

(e.g. eukaryotes,  small  multicellular  organisms,  human  cells...).  The  metagenome  can  then  be 

constructed by extracting the DNA from the sample, generating reads of this DNA, assembling the 

reads  into  contigs  (stretches  of  high-confidence  DNA sequence),  and then  into  scaffolds  (even 

longer sequences supposed to belong to a single organism). One can attempt to use codon usage or 

sequence homology (see IV.B.1) to assign scaffolds to already-known or related taxa (identified by 

Operational Taxonomic Units, species distinctions in microbiology), a process known as “binning”. 

Once  ready,  a  metagenome can be  annotated  just  as  a  set  of  single  genomes  might  be,  using 

automated methods and/or manual expertise (see III.B). Several analyses are available: biodiversity 

evaluation by estimating the number of species present and their distribution; reconstructing the 

metabolisms of each specie and underlining their ecological interactions, establishing the phylogeny 
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of the species present, etc.

Many projects exist that aim to take advantage of what metagenomics has to offer in order to extend 

our comprehension of the living world that surrounds us. I shall present a select few below.

The Human Microbiome Project: It has long been known that a human body does not live 

in isolation in respect to other organisms, but instead is actually host to a plethora of living entities 

that  co-exist  symbiotically4 with  it;  for  example,  the  number  of  microbial  cells  in  the  human 

gastrointestinal tract far outnumber the number of cells in the human body [30,31]. With the advent 

of  metagenomics  it  has  become  possible  to  study  these  complex  populations.  The  Human 

Microbiome Project [https://commonfund.nih.gov/hmp/] intends to elucidate the workings of the 

complex microbial populations that inhabit human skin, gut, and other mucosal cavities, hopefully 

discovering how they interact with their host, and how perturbations of human microbiomes may 

result  in  diseases  [http://en.wikipedia.org/wiki/Human_microbiome_project].  The  MetaHIT 

project is a European subsection of this effort, that focuses on gut metagenomes, and in which the 

Genoscope is currently participating.

Ocean  sequencing  expeditions: Genome  research  centres  worldwide  have  collaborated 

within  two  recent  adventures  into  the  little-explored  biodiversity  of  the  ocean.  Both  projects 

involved scientific teams manning an adapted sea vessel, sailing it around the world, sampling sea 

water at various depths, isolating the various micro-organisms thus captured, and performing basic 

biochemical experiments while waiting for the samples to be shipped off to sequencing centres at 

the  next  port  of  call.  The  first  of  these  is  the  Global  Ocean  Sampling  Expedition 

[http://www.jcvi.org/cms/research/projects/gos/]  and was formed by the J.  Craig Venter  Institute 

(USA),  while  the  second is  the  Tara  Oceans Expedition [http://oceans.taraexpeditions.org/],  a 

European initiative in which the Genoscope is participating, focusing primarily on marine plankton. 

It  is  hoped that  these  endeavours  will  help  complete  our  understanding of  marine  ecosystems, 

biodiversity,  and of evolution in general.  They should also contribute to the establishment of a 

marine cartography of geological, physico-chemical properties, as well as discovering biomarkers 

of marine pollution. They might also offer new opportunities for biotechnologically harnessing new 

agronomic, energetic, medical and cosmetic resources.

4 The relationship can thus be commensal, mutual, parasitic, or any intermediate of these.
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All these projects would be of little use without a system for exchanging sequence information and 

data, hence the birth of biological sequence resources.

 III.A.2.c.  Biological sequence resources

Sequenced gene and protein sequences, along with their known functions, have been consigned to 

specialized publicly-accessible databases and databanks, allowing researchers to retrieve at will any 

information they require for their work.

INSDs:  One of  the  main  sequence  resources  is  the  set  of  International  Nucleotide  Sequence 

Databases, of which specific mirrors are the NCBI's GenBank (USA), the DDBJ (Japan), and the 

EBI's  ENA (Europe).  The  INSDs  are  maintained  collectively  by  the  International  Sequence 

Database Collaboration [http://www.insdc.org/], in order to contain precisely the same data for a 

given release. They collect all known publicly-available nucleotide sequences (DNA & RNA) to 

which several annotations of different types are attached (genes, coding sequences, functional roles, 

located  domains,  bibliographic  references,  exon/intron  mapping...).  INSDs  are  designed  to  be 

primary resources for nucleotide sequence data.

RefSeq: The  RefSeq  collection  [http://www.ncbi.nlm.nih.gov/RefSeq/]  is  maintained  by  the 

NCBI. It collects non-redundant DNA, RNA and protein sequences that are annotated with much 

more detail (generally of medical interest) than what is contained in the INSDs.

UniProt: UniProt [http://www.uniprot.org/] is maintained by the UniProt Consortium, formed in 

2002  by  the  pooling  of  resources  and  expertise  between  the  EBI,  PIR  (Protein  Information 

Resource)  and  SIB  (Swiss  Institute  of  Bioinformatics).  It  is  dedicated  to  maintaining  protein 

sequence data and associated annotations of various sorts (functional roles, ontology annotations, 

sequence  features,  bibliographical  references,  links  to  other,  more  specialised  databases...).  It 

contains several modules with different objectives:

• UniProt KnowledgeBase comprises two parts, previously known as SwissProt (database of 

protein sequences with manually-curated functional annotations) and TrEMBL (database of 

protein sequences translated from gene sequences with mainly computationally predicted 

annotations).

• UniRef clusters protein sequences into families in order to speed up sequence similarity 

searches.
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• UniParc is an archive of past sequences and annotations.

The latest UniProt developments are presented in [32].

An  initiation  to  the  differences  between  these  various  resources  can  be  found  at 

[http://www.ncbi.nlm.nih.gov/books/NBK21105/#ch1.Appendix_GenBank_RefSeq_TPA_and_Uni

P]. 

Though many bioinformatics resources also propose research-orientated sequence data banks and/or 

bases, the implicit requirement of referencing corresponding entries in the main resources presented 

here is generally respected. Actually associating functional data with genome or protein sequences 

is called functional annotation, as is discussed in chapter IV. 

Many genome- and metagenome-sequencing projects exist today that promise riches of genomic 

sequence data. However, knowing genome sequences without knowing their function is of little use 

for understanding the dynamics of life. Genomes and genes must thus be functionally annotated to 

be of any use.

 III.B.  Annotation strategies and platforms

 III.B.1.  The different levels of genome annotation
Genome annotation is the process of assigning biological roles to nucleotide spans in the genome. 

Three levels of genome annotation exist, relating to three levels of complexity [33,34].

Syntactic annotation: this  level  deals  with locating genome stretches  of  particular  interest 

(typically Coding Sequences “CDS”, which are the portions of a gene's DNA that actually encode 

the amino acid sequence of a polypeptide or  protein).  Namely,  identifying which ones actually 

correspond to true coding genes (a process referred to as gene calling), which ones are dedicated to 

transcription regulation, etc.

Functional  annotation: this  level  assigns  functions  to  genes  of  interest  detected  during 

syntactic annotation, and includes (but is not limited to) metabolic activities. As said, functions can 

belong  to  biological  processes  described  at  varying  levels  of  detail.  Three  levels  can  be 
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distinguished: a)  molecular function,  capturing the biochemical or structural  role of the coded 

protein or ribozyme; b) cellular function, which describes the gene product's role in a higher-level 

cellular process, such as a metabolic pathway for an enzyme-coding gene; c) phenotypic function 

includes function of the gene product at the systemic level, and takes into account organism-wide 

effects stemming from gene modifications. Free text or preferably functional ontologies are suited 

to  describing  molecular  functions  of  genes.  Some relevant  details  of  functional  annotation  are 

developed in part IV.A.

Relational annotation: this is the level that describes the relationships between all the objects 

and functions previously found. It is focused on building contextual representations of previous 

knowledge,  such  as  inserting  an  enzymatic  activity  into  a  metabolic  pathway  (see  part  V.A), 

highlighting  a  gene's  position  in  a  gene  expression  network,  or  establishing  evolutionary 

relationships  across  multiple  gene  families.  Such annotation can be exploited  to  improve upon 

itself, as we shall see in chapter IV.

 III.B.2.  Annotation platforms: ultimate annotation tools
Before  bioinformatics  became  a  scientific  field  in  its  own  right,  all  three  levels  of  genome 

annotation  had  to  be  done  sequentially  by  the  manual and  painstaking  work  of  geneticists, 

biochemists and molecular biologists, exploiting available experimental evidence.

Today,  under  the  pressure  of  the  sequence  data  deluge,  many  resources  and  tools  have  been 

developed to ease and speed up genome annotation. The foremost of these developments is the 

possibility  of  computationally  storing  and  representing  a  genome,  its  located  genes  and  their 

associated  functions.  Experimental  data  has  since  been  used  to  populate  databases upholding 

various data models. Bioinformatics tools have been developed to predict annotations on the basis 

of sequence data. Gene calling, function prediction, and relational annotation can now all be carried 

out by automated programs to some extent. However, manual expertise continues to be required to 

evaluate,  compare  and  combine  the  results  of  these  predictive  methods  into  clear,  correct 

annotations.

Annotation platforms are collections of bioinformatics data, models, tools and interfaces made 

accessible  to  the  scientific  community  in  order  to  help  bioanalysts  create  new  or  improved 

annotations by taking advantage of existing syntactic, functional and relational annotations [33]. 
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Each platform necessarily includes three components:

• Data  management  system: large  quantities  of  biological  data,  such  as  nucleic  acid  or 

amino  acid  sequences,  but  also  gene/protein  annotations,  organism  phenotypes,  cross-

references to other bioinformatics resources, pre-calculated results for heavy bioinformatics 

methods... obviously require proper management in order to be stored, traced, exchanged 

and accessed. Flat files, file formats, and databases are at the heart of this component.

• Production system:  at the most basic computer level, a genome is little more than a file 

describing its sequence in letters. Actually parsing this crude data into the data management 

system  and  transforming  it  into  something  useful  for  scientists  is  the  objective  of  the 

production system, which can be more or less automated. The system is generally in the 

form of  a  pipeline  that  streams  data  from the  initial  genome sequence  to  the  syntactic 

annotation methods, the results of which the functional and relational annotation methods 

can build upon.

• Visualisation system and analysis tools: A genome that has been parsed by the production 

system into the data  management  system must  be made accessible  to  the scientists  that 

intend  to  use  it.  Programs  or  web interfaces  are  thus  conceived  to  interrogate  the  data 

management system and analyse the results in a transparent way for users. Some interfaces 

allow bioanalyst users to enrich or improve the data contained within the underlying data 

management system.
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Many available bioinformatics resources contain one or combine several of these components. The 

Generic Model Organism Database (GMOD) project [www.gmod.org] is a well-used collection of 

freely-available software tools encompassing data management (via flat files or relational databases 

using  Chado  [35] or  BioSQL  [www.biosql.org])  and  visualisation/analysis  tools  such  as  the 

ARTEMIS viewer developed at the Sanger Institute [36]. Listing all such resources is not pertinent 

to this thesis, however I shall cite several full-blown  prokaryote annotation platforms of note, to 

serve as landscape references.
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Illustration III.1: General structure of a bioinformatics platform

Publicly-accessible databases (such as the selection illustrated on the left) feed the data management  
system with primary data. The production pipeline sequentially transforms the data into higher-level, 
secondary  data  (from  genome  sequences  to  gene  sequences  to  annotations  to  bio-processes).  The  
visualisation and analysis tools allow platform users to interrogate the primary and secondary data (full 
red arrows), and possibly to generate novel data that is re-injected into the platform (empty red arrows).
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 III.B.3.  Noteworthy prokaryote genome annotation 
platforms

A large number of such platforms exist and are currently used to annotate prokaryote genomes, each 

with their own specificities. Listed below is a selection of these:

• Integrated  Microbial  Genomes (IMG)  is  a  comparative  genomics  annotation  platform 

dedicated to  annotating prokaryote genomes  hosted  by the United States  Department  of 

Energy [37].

• ERGO is a professional (and thus fee-requiring) comparative genomic platform boasting 

high organism and function coverage [38].

• The SEED is  an annotation platform maintained by the Fellowship of  Genomes and is 

centred  on  a  gene-family-wide  annotation  approach,  with  manually-defined  functions 

grouped into biological subsystems [39]. 

• AGMIAL is an INRA-hosted system for bacterial genome annotation which strives to offer 

a modular approach to annotation [40].

• GenDB is  a bioinformatics platform maintained by the Center for Biotechnology of the 

Bielefeld University (Germany). It is dedicated to the automatic and expert annotation of 

prokaryote genomes. It is particularly rich in ontology sources (see part IIV.A for details on 

functional ontologies).

• The former TIGR institute hosted a prokaryote genome expert annotation platform. At the 

merger of the institute with others, the platform has since been split into two child platforms 

maintained by different teams. The Institute of Genome Sciences (Maryland, USA) hosts 

one of these, called the “Annotation Engine”, to which researchers may submit prokaryote 

genomes in FASTA format [http://ae.igs.umaryland.edu/cgi/index.cgi]. The J. Craig Venter 

institute provides the “Annotation Service”, as well as their consultative Comprehensive 

Microbial  Resource  (CMR) website.  Both platforms  use  MANATEE,  a  freely-available 

web-based tool for the manual annotation and analysis of data produced by a production 

pipeline.

• MicroScope is  a  comparative  genomics  annotation  platform  dedicated  to  annotating 

prokaryote  genomes  and  is  hosted  by  the  French  National  Sequencing  Center,  the 

Genoscope [4]. MicroScope's web-based visualisation system is called MaGe (Magnifying 
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Genomes)  [6] and  its  data  management  system is  called  PkGDB  (Prokaryote  Genome 

DataBase).  It  contains  a  local  installation  of  a  collection  of  species-specific  metabolic 

pathways called MicroCyc. Further details on the inner workings of MicroScope relevant to 

the works in this thesis are given in the following section, as well as in parts  VII.D.1 and 

VII.F.1.

 III.B.4.  MicroScope Platform Overview
As for all bioinformatics platforms, there are three major components in the MicroScope platform :

• Data management system: the relational database system “PkGDB” (prokaryote  genome 

database) stores all MicroScope's sequence and non-sequence data in object- or relation-

specific database tables5. This data includes data from public databases and pre-calculated 

results  from  the  production  system,  including  MicroCyc,  a  pathway  genome  database 

resource initially based on MetaCyc. This component is detailed in part VII.D.1.

• Production system: the script pipeline is handled by a Java-based automated controller, and 

regularly re-runs a large set of bioinformatics methods on MicroScope genomes.

• Visualisation system:  the  web interface  “MaGe”  (Magnifying  Genomes),  which  allows 

users to access all PkGDB data via interactive graphical representations and data tables. This 

component is detailed in part VII.F.1.

One  of  the  main  particularities  of  the  MicroScope platform at  its  time  of  conception  was  the 

inclusion  of  pre-calculated  syntons (i.e. groups  of  genes  conserved  across  two  genomes). 

MicroScope  also  allows  users  to  annotate  genes  in  a  relatively  controlled  way and  conserves 

annotation history for further reference, ensuring that human expertise continues to improve the 

data. Users are encouraged to cite articles by their PubMed IDs when appointing an annotation, 

ensuring that experimental evidence may be shared across annotations.

Armed with these annotation resources, tools and interfaces, bioanalysts can look to discovering the 

functions of prokaryote genes. Actually establishing an accurate way of defining gene function is, 

5 Terminology remark: the entire PkGDB “database system” contains multiple child “databases” that are each 
dedicated to specific data. One of these is called “pkgdb” itself, and contains the core MicroScope tables. I shall 
strive to make distinctions clear in this manuscript.
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however,  a  non-trivial  subject.  In  the  following section,  I  shall  thus  briefly  review what  gene 

function is, and ways of defining it. Furthermore, a plethora of methods exist that aim to uncover 

the functions of genes  from newly-sequenced genomes,  adding to  the complexity of  functional 

annotation. I shall present some of the core concepts behind these methods, before proposing a 

classification of automatic annotation methods to help understand their diversity.

38 / 229



Functional annotation

 IV.  Functional annotation
DNA sequences can be read and copied into RNA sequences by RNA polymerases and associated 

enzymes, a process known as transcription. Some of these RNAs, called mRNAs (for messenger 

RNAs) are then translated by special molecules, ribosomes, into proteins, using the three-base-to-

one-amino-acid codon correspondence known as the genetic code. Each protein is thus created as a 

sequence of amino acids that then folds (either spontaneously or aided by other biomolecules) into a 

complex  three-dimensional  structure.  Some  proteins  remain  as  single  structures,  others  are 

assembled together into multi-protein complexes. A cell's genome thus encodes all the necessary 

information to continue its own life [41].
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1)

2)

Illustration IV.1: Prokaryote transcription and translation

In prokaryotes, transcription and translation can occur at the same time. 1) Electron Micrograph of a  
strand of DNA being transcribed by RNA polymerases, generating messenger RNA (mRNA) that itself is  
translated into polypeptides (not visible) by ribosomes or polyribosomes. 2) A schematic representation 
of this process.  Reproduced following course material by Steven M. Carr.
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These synthesised proteins can fulfil many roles in a cell: structural proteins make up the matrix 

which holds the cell together; transporters allow the passage of specific molecules through cell 

membranes; signalling proteins can pass on chemical messages across the cell; chaperones help 

other proteins fold into correct 3D structures, enzymes work the chemical transformations of life, 

etc. An estimated 30% of any cell's dry matter is protein. Even non-proteic constituents of a cell 

require preparation or transformation by proteins. Proteins and protein functions are thus central to 

cellular life.

Webster’s  online Dictionary [http://www.merriam-webster.com/dictionary/]  describes  function  as 

“any of a group of related actions contributing to a larger action, especially the normal and specific 

contribution of a  bodily part  to the economy of a living organism”.  Gene functions are  all  the 

various roles each gene product (be it RNA or protein) can fulfil in vivo, and at diverse abstraction 

levels, from specific molecular role to cell-wide high-level processes [42].

Scientists from many disciplines (molecular biology, genetics, biochemistry, medicine...  to name 

but a few) are likely to generate functional annotations for genes and proteins during the course of 

their work. Different types of annotation, different professional origins and personal preferences 

shape the way they build their annotations, leading to wide variations in terminology that hamper 

information  storage  and  retrieval  from  computerised  systems  [43]. Several  efforts  have  been 

undertaken in order to develop a widely-used, precise and computationally meaningful  ontology 

(i.e. a controlled vocabulary) to solve this problem.

 IV.A.  Gene/Protein function ontologies
Several relatively-used functional ontologies are based on one of the first efforts, presented in [44].

MultiFun: The first ontology based on the initial works of Riley  et al. is  MultiFun [45], an 

ontology designed primarily for use in  Escherichia coli.  Main gene product function categories 

include Metabolism, Information Transfer, Regulation, Transport, and Cell Structure. The current 

MultiFun classification is available from [http://genprotec.mbl.edu/files/MultiFun.html]. 

MIPS FunCat ontology: this ontology is described as a hierarchically structured, organism-

independent protein function classification scheme applicable to all domains of life, though it was 

designed specifically with Yeast in mind  [46]. In order to retain a minimal level of descriptive 

quality, FunCat specifies protein activities only down to a broad functional level (e.g. biosynthesis 
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of glutamine), rather than a specific role (such as glutamine synthetase). FunCat terms are thus 

more process- and pathway-related than activity-related. 

JCVI ontologies: The J. Craig Venter institute (JCVI) uses two types of ontologies. The JCVI 

roles (previously TIGR roles) are a two-level functional classification system of protein cellular 

functions based on Riley's works [47], assigned on the basis of proteins belonging to JCVI protein 

families (TIGRFAMs). The JCVI Genome Properties are organism-level hierarchical descriptions 

of taxonomic, phenotypic, and predicted traits [48].

UniProt: The protein sequence database uses a  keyword-based controlled vocabulary for rapid 

annotation and retrieval of the functional data associated to its protein sequences. The keyword 

categories are Biological process, Cellular component, Coding sequence diversity, Developmental 

stage, Disease, Domain, Ligand, Molecular function, Post-translation modification and Technical 

term [49].

Gene Ontology: One of the well-used systems for describing gene functions (and not limited to 

metabolic functions) can be viewed as a generalisation of all previous attempts.  Gene Ontology 

(GO)  terms [43] are  terms  that  are  organised  hierarchically,  each  level  providing  additional 

functional  detail.  However,  unlike  FunCat,  multiple  inheritance  and  multiple  types  of  term 

relationships  are  allowed,  giving  this  scheme  much  more  flexibility,  at  the  cost  of  increased 

complexity. Belonging to a structured ontology, GO terms are much more informative and easier to 

handle  computationally  than  Enzyme Commission  (EC)  numbers (for  details  on  this  strictly 

metabolic annotation terminology, see section V.A.5.b) for example. They are organised into three 

main directed acyclic graphs: molecular function, biological process, and cellular localisation. The 

current trend in bioinformatics is to annotate genes with GO terms, and many automated prediction 

methods now output GO terms. An example set of GO terms is represented below using Cytoscape 

[www.cytoscape.org]:
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Ontologies like GO terms describe gene and protein functions in various levels of detail, but are not  

adapted to linking them to the actual chemical transformations carried out by enzymes, and hence 

are of limited use when studying an organism's metabolism in fine. Detail on metabolism-specific 

alternatives are given in part V.A.5.

Having defined the terminology with which genes can be annotated, it  remains to be seen how 

annotations  are  actually  assigned  to  a  given  gene.  Many annotation  protocols  actually  require 

retracing the evolutionary history of several proteins. I shall thus detail how protein evolution can 

be of importance to functional annotation, before discussing a classification of the different types of 

annotation that exist.

 IV.B.  Key concepts in functional annotation
Many mechanisms are known today that can account for the accumulation of punctual or large 

mutations  in  genetic  material  over  the  course  of  many generations,  and  most  are  of  common 

knowledge. Analysing the sequences of several genes, in the light of these mechanisms, can shed 

light upon the evolutionary relationships between them, as described in the following section.
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Illustration IV.2: An example of the hierarchical graph structure linking Gene Ontology terms.

Each Gene Ontology term can inherit from one or several other terms. Here, protein biosynthesis is a 
descendant of the head term “biological_process” via two different paths.
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 IV.B.1.  Phylogenetic links
Homology,  orthology,  and paralogy: Historically,  homology  was  used  by  comparative 

biologists to describe an evolutive link between organs or traits of different species. Structural and 

functional similarities between organs allowed scientists to uncover these links. Two organs from 

two species thought to originate from an ancestral organ in a common ancestor to these species 

were said to be homologous (e.g. flipper of seal and hand of human). Similar organs or traits that 

evolved separately to fulfil the same function are referred to as analogous (e.g. wing of bird versus 

wing of bat).

These  notions  have  been  transferred  to  genetics.  Two  genes  (or  gene  products)  of  different 

organisms  are  said  to  be  homologous (i.e. are  homologs/homologues  -  for  details  concerning 

spelling see references towards the end of this section) when sufficient evidence has been found to 

assert that both genes have evolved from a common ancestral gene. Analogous genes have similar 

molecular  functions  but  have  evolved  separately.  The  typical  working  hypothesis  is  that 

homologous genes encode proteins with identical or at least related functions. Put simply, two genes 

having diverged over evolution by only a few base pairs lead to proteins diverging in only a few 

amino  acids,  and  thus  to  functions  with  very  little  difference.  Obviously,  the  non-linear  links 

between  gene  sequence,  protein  sequence,  protein  3D  structure  and  activity  cloud  these 

relationships somewhat.

Different types of gene homology can be observed, corresponding to different evolutionary paths 

which led to different selective pressures being applied to the genes. These different pressures limit 

the possibilities for the evolution of these genes. Thus, actually inferring the conservation of low- or 

high-level gene function from homologous genes requires identifying the specific type of homology 

involved.

A speciation event is a complex event (usually including many mutations accumulated over several 

generations) that leads to the creation of two new species from a single ancestor specie. Due to the 

common ancestry, most of the genes of both species have common ancestral genes in the ancestor 

specie. Genes having a common ancestral gene with which they are separated only by speciation 

events  are  known  as  orthologs  (orthologues).  Orthologous  genes  are  supposed  to  have  been 

submitted to the same selective pressures  in both lineages,  ensuring conservation of  the genes' 

functions.

A gene duplication event leads to the creation of two copies of the same gene in the genome of a 
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given specie, that can evolve with lightened selective pressures. These genes are known as paralogs 

(paralogues), and the lesser selective pressure is not considered to conserve gene function, though 

paralog functions can be similar (e.g. enzymes with different substrate specificities, see part V.C.1).

Both gene duplications and speciation events can line the evolutionary paths of a pair of genes, 

making it difficult to classify them as orthologues or paralogues. Different cases arise depending on 

whether  a  given  speciation  took  place  before  duplication,  or  after.  A duplication  pre-dating  a 

species'  split  is  considered “ancient” enough so that  the genes it  gave rise to have diverged in 

function; these genes are called out-paralogs (a terminology inspired from phylogenetics). Genes 

born  from  a  post-speciation  duplication  are  considered  recent  enough  to  have  not  diverged 

functionally; they are called in-paralogs, and can be considered as orthologs (they are sometimes 

referred to as co-orthologs)  [50]. When considering more than two genomes (and thus more than 

one speciation event), in- and out-paralogy becomes dependant on the chosen reference speciation 

[51]. In all cases, the number of generations since the duplication event should be considered, in 

order to evaluate how “recent” or “ancient” it really is. These concepts are illustrated in the figure  

on the following page [Illustration IV.3: Homology, orthology, paralogy over three related species].

Further complicating evolutive history is the possibility of Horizontal Gene Transfer (HGT). This 

phenomenon  occurs  when  a  stretch  of  DNA (containing  potentially  one  or  several  genes)  is 

transferred from an organism from one specie  to  one of  another  specie.  HGT mostly concerns 

prokaryotes and single-cell  eukaryotes,  though some evidence has been reported showing HGT 

concerning higher eukaryotes,  e.g. [52]. Homologs suspected or proven to have been acquired by 

HGT during evolution are referred to as  xenologs. Xenologous gene displacement occurs when a 

xenolog gene is acquired in a genome and the original gene is lost, effectively replaced.
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Many of the terms defined here were first launched in genetics in the seminal paper [54]. They have 

further been discussed, along with their spelling (e.g. homologue versus homolog), in many papers 

and comments, the most amusing of which may be the series [55–57]. [52] also provides (amongst 

other things) an interesting review of the question.
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Illustration IV.3: Homology, orthology, paralogy over three related species

Homology: The genes vA, xA, xA', yA, yA' are all homologs as their evolutionary history can be traced 
back to a common ancestor gene (uA). 

In- and out-paralogy: Gene pairs (xA, xA'), (yA, yA') are reciprocally paralogs (as well as the ancestral  
(wA, wA')). Actually specifying in/out-paralogy depends on the chosen speciation event. For instance, 
genes xA and yA' are in-paralogs with respect to speciation S1 (duplication post-speciation), but are out-
paralogs with respect to speciation S2 (duplication pre-speciation).

Group of orthologs: In the case illustrated here, it is not possible to partition the genes into groups of  
orthologs and in-paralogs with respect to the last speciation event (S2). Indeed, vA is orthologous to all  
other genes, but they do not form a group because every other pair is out-paralogous with respect to  
speciation S2. 
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 IV.B.2.  Conserved sequences, domains, and 
gene/protein families

One type of hint to the homology between genes or gene products is that of conserved sequence. 

Indeed, given that nucleotide or amino acid sequences evolve over time, similar sequences can be 

thought  to  belong  to  genes  or  gene  products  of  common  origin.  Sequence  similarity  is  often 

analysed in order to detect homologs across two or more organisms, and is the historical approach 

at the basis of bioinformatics today (more details in section IV.C.2). It is, however, prone to over-

interpretation, leading to false homology detections  [53]. Others have also pointed out that pure 

sequence-based approaches are reaching an informational threshold [1].

A slightly more function-orientated homology signal is that of conserved  protein domains. The 

modular  nature of protein structures became experimentally apparent  in  the early 1970s.  X-ray 

crystallography  and  nuclear  magnetic  resonance  (NMR)  spectroscopy  revealed  that  proteins 

contained structurally distinct parts that were later shown to be units of protein folding, function, 

and evolution.  The 3D elucidation of  protein structure being a  relatively long and complicated 

experiment to perform, bioinformatics were called in to help. The alignment of multiple sequences 

containing similar domains showed that the amino acid sequence of the domains was generally 

much more conserved than that of the rest of the proteins. The definition of protein domains has 

grown to include stretches of conserved sequences (even non-contiguous stretches) that may or may 

not  have  a  basis  in  particular  3D  structures.  Today,  the  crossover  between  manually-curated 

experimental 3D structure-defined domains and automated sequence alignment-defined domains is 

such that some care must be taken in distinguishing the origin(s).

Conserved domains, given their relationship to gene product function, can be a strong marker of 

evolutionary  relationship  that  conserve  function,  hence  their  use  in  determining  homologous 

gene/protein families.

A loose  way  of  finding  groups  of  genes/proteins  with  homology  relationships  is  establishing 

gene/protein families. Gene families can be defined in two ways. The first is based on identifying 

domains within the sequences or structures; proteins with similar domains or domain architectures 

can be expected to be related functionally, and form  domain-based protein/gene families.  The 

other requires establishing evolutionary relationships between proteins (or their coding genes) in 

order  to  infer  shared  function.  Once these  links  have  been untangled,  it  is  often of  interest  to 
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regroup genes into clusters sharing a given history and hopefully being relatively iso-functional (i.e. 

sharing a same function). These clusters are called (sequence-based) protein/gene families and are 

generally based on orthologs, as well as added in-paralogs (“recent” paralogs) that are considered to 

not have had the time to diverge significantly, while taking care to exclude out-paralogs (“ancient” 

paralogs) that have probably diverged.

If domains are units of folding, evolution, and function, then the entire 3D structure of a protein can 

also be relevant to these notions. As such, comparing 3D structures can shed light on otherwise-

invisible evolutionary relationships (or their absence). It is thus possible to generate protein families 

based on 3D structure conservation, rather than on sequence feature conservation.

Families are not the only way of exploiting evolutionary clues. A less direct way involves the use of 

contextual information across many different genes in order to capture higher-level evolutionary 

pressures, as presented below.

 IV.B.3.  Functional dependence
Genes  whose  products  participate  in  a  same  biological  process  are  likely  to  be  submitted  to 

common evolutive, regulatory and physical constraints. Indeed, if a complete process contributes to 

the fitness of an organism (an evaluation of how adapted it is to its environment and how likely it is 

to produce offspring), then loss of one or more parts of the process are as detrimental as the loss of  

the whole process. Also, the entire process can evolve, rather than just parts of it. Such an evolutive 

pressure can be identified using several sources, such as gene clustering, syntenies, phylogenetic 

profiles and gene co-expression (definitions and detection methods will be given in part IV.D.2 and 

later). Functional dependency is also referred to as “guilt-by-association” [54].

As  all  these  methods  rely on identifying  clues  from information  between or  across genes  (i.e. 

contextual information), rather than within the target gene to annotate. They are thus referred to as 

context-based methods. They are opposed to sequence similarity-based methods, though obviously 

the knowledge of the sequences of all concerned genes is, at some step or other, required. For this 

reason, I will always consider that the full genome sequence is available when describing these 

methods in the rest of this manuscript.
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 IV.B.4.  The three types of gene functional annotation
We have seen that, by taking evolutive history into account, the functions of some genes can be 

clues for the functions of others. I propose that annotation methods be classified into three main 

types:  experimental  validation,  homology-based  transfer,  and  functional  dependency-based 

inference.  Experimental validations can demonstrate the function of a gene with high confidence, 

and are precious starting points for methods of the two other types. As suggested in [55], these are 

bioinformatics methods: one type is based on the transfer of existing annotations between genes of 

different organisms on the basis of detected homology; the other infers possible annotations from 

the annotations of other genes of the same organism on the basis of detected functional dependency. 

An annotation is experimentally validated when a scientific wet-lab experiment (be it in vivo or in  

vitro)  demonstrates  the  function  of  the  gene  or  genes  in  the  studied  organism.  Many different 

protocols exist that can help build these demonstrations, such as gene invalidation,  mutagenesis, 

atom tracing,  expression cloning... This kind of result is usually published in an  article which 

serves as a reference for the annotation. For example, the MicroScope platform specifically allows 

bioanalysts to flag genes with citations of papers that form the basis of its annotation. 

The three types of annotation ;are illustrated on the following page Illustration IV.4: The three main

types of functional annotation.
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As already said, the experimental association of a gene/protein sequence with a specific activity is  

tedious and costly; hence the utility of a) transferring previous annotations to new genes on the 

basis of detected homology, or b) using them in the context of inference. I shall now present these  

two approaches.
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Illustration IV.4: The three main types of functional annotation

Experimental validation (1) allows the high-confidence annotation of a gene with a given function. Lower 
confidence annotations can be generated by homology-based transfer (2) and functional  dependency-
based inference (3), which both rely on the comparison of gene or protein features (sequence, physico-
chemical  properties,  genomic  context...).  Said  features  concern  genes  in  the  same  or  in  different  
organisms for the former, and genes of the same organism for the latter.
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 IV.C.  Annotation transfer on the basis of homology

 IV.C.1.  Protocol
As described, the functions of homologous genes are thought to be near-identical (for orthologs), 

similar  (for recent  paralogs),  or vaguely similar  (for  ancient  paralogs).  Gene homology can be 

inferred upon analysis of gene data.

The field  of  bioinformatics  was born with  the  development  of  a  method for  establishing  gene 

homology on the basis of gene or protein sequence. Indeed, genes evolve through the accumulation 

of mutations in their sequence, so comparing gene sequences should allow one to reconstruct gene 

evolutionary  relationships  as  a  phylogenetic  tree.  Identifying  paralog  cases  requires  comparing 

multiple sequences from various species. To avoid problems posed by the redundancy of the genetic 

code, one can also directly use amino acid sequences, which additionally are more closely related to 

the protein's function.

Once homology has been established between a pair of genes, this new knowledge can provide 

support for the functional annotation of one gene, using previous information about the function of 

the other. This is referred to as “annotation transfer”.

With  the  exponentially  increasing  quantity  of  sequence  data  that  is  available  to  the  scientific 

community,  traditional  experimental  annotation  of  gene  function  for  all  genomes  has  become 

infeasible,  spurring  on  the  development  of  bioinformatics  methods  for  gene  annotation.  Many 

sequence-based approaches have been imagined in order to establish homology relationships to help 

annotation  transfer.  Those  based  on  phylogenetic  tree  construction  and  analysis  are  generally 

regarded  as  too  computationally  intensive,  and  often  require  manual  expertise,  making  them 

impossible to use on a large-scale basis. As already described, using simplifications or proxies has 

thus become standard. Some methods are based on establishing gene/protein families by comparing 

the sequences of all known genes/proteins and clustering the most similar; others look for conserved 

amino-acid  domains  that  can  be  linked  to  elements  of  protein  function;  some  use  a  more 

information-theoretical approach and count amino-acid motifs... Even predicting protein physico-

chemical properties, sub-cellular localization, secondary or tertiary structures from sequence gives 

insight into how two gene (products) can be related. In all cases, it boils down to analysing the 

similarity between sets of sequence-derived features describing two or more genes [56]. In essence, 

“sequence-similarity based methods” are all homology-determining methods.
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 IV.C.2.  Homology-determining methods
In bioinformatics, the historically-used evidence of homology is that of sequence (nucleotide or 

protein) similarity (and they are often used synonymously, which is a malapropism), which can be 

established by using sequence alignment programs such as BLAST [57], FASTA [58] or the Smith-

Waterman algorithm [59]. Slightly stronger than a good alignment hit is the notion of bidirectional 

best  hit  (BBH)6,  wherein each gene scores its  highest alignment score with the other,  all  other 

alignments with genes from both genomes considered. More recent developments go beyond simple 

sequence alignment, including PSI-BLAST [60] and HMM-based methods, e.g. [61–63].

In practice, a minimum BLAST-established sequence identity of 35-40% over a good match length 

is required between two prokaryote protein sequences for homology to be inferred by this method,  

though in the presence of many other clues supporting identical function, this number has been 

known to go as low as 10-15%. Applications of sequence similarity-based annotation transfer to 

whole genomes has helped the annotation of little-studied organisms,  e.g. in  [64,65], as well as 

speeding up the annotation of all newly sequenced organisms..

Functions  can  also  be  transferred  between  members  of  hopefully  iso-functional  families,  or  to 

newly added members  to  the family.  David VALLENET and I  distinguish three approaches  to 

building  families,  a  classification  detailed  in  this  Chapter:  de  novo sequence  clustering,  semi-

supervised sequence similarity-based aggregating, and semi-supervised domain-based aggregating.

Here, rather than present all available procedures than can be used to build gene/protein families 

and transfer annotations on that basis (which is beyond the scope of this thesis), I shall present a 

select few that are linked to the works in this thesis, either by their intervention in the CanOE 

strategy (chapter  VII), the BKACE project (chapter  VIII), or simply because of their use in the 

MicroScope platform.

 IV.C.2.a.  De novo sequence clustering

These methods rely on sequence similarity alone to cluster genes or proteins together into new 

families. The addition of novel sequences would ideally require recalculating all families, though 

sub-optimal incremental addition procedures can be used.

6 a.k.a. reciprocal best hits, or variants thereof.
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InParaNOId: The InParaNOId algorithm [50] was designed to detect ortholog and co-ortholog 

proteins between two eukaryote genomes, more specifically with the then nearly-completed human 

genome in view. The algorithm uses all-versus-all protein BLAST results (only keeping alignments 

whose bit-score and overlap are over a minimum threshold) to detect mutually best hits that are 

considered as seed ortholog pairs. One out-group genome can be included in order to refine this 

detection.  Seed ortholog pairs  are  then augmented with co-orthologs  (in-paralogs) by including 

same-genome proteins whose similarity to one of the proteins from the seed pair is at least as great  

as the similarity between the pair. These similarity scores are used to derive “confidence scores” for 

co-ortholog  addition.  Overlapping  protein  assignments  to  seed  pairs  are  resolved  using  several 

tailored rules, leading to the definition of high-confidence gene/protein families. Functions can then 

be reliably transferred across members of a family.

InParaNOId was the first algorithm, to my knowledge, that specifically distinguishes orthologs and 

various types of paralogs, in order to improve family construction.

Tribe-MCL: This algorithm uses all-versus-all protein BLAST results from multiple organisms 

[66]. Unlike InParaNOId, any number of genomes can be used. The -log10 of the e-values are 

parsed into a similarity matrix which is symmetrised. This matrix is then passed to the  Markov 

Clustering algorithm (MCL) developed by Stijn van Dongen [67]. The algorithm then quickly and 

efficiently partitions7 the proteins into clusters, i.e. gene/protein families.

Tribe-MCL is a precursor to Ortho-MCL, described below.

OrthoMCL: The  OrthoMCL algorithm  [68] also  uses  BLAST  results  between  proteins  of 

different genomes and the MCL algorithm. As with Tribe-MCL, any number of genomes can be 

used. Ortholog/paralog relationships are inferred between proteins from a pair of genomes, similar 

in idea to InParaNOId, though with many more out-group genomes. A normalisation procedure is 

included to account approximately for phylogenetic proximity between genome pairs. The resulting 

data is exploited to build a similarity graph that is then passed to the MCL algorithm. Additional 

practical details for the (Ortho)MCL algorithm are given in section VII.C.2, as a variant of it is used 

7 Technically, it is possible for the algorithm to return clusters that overlap, thus not leading to a strict partition; 
however this is extremely rare in practice, and the algorithm wrapper removes any detected overlap [van Dongen, 
http://micans.org/mcl/man/mclfaq.html#olapintro].
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as part of the CanOE strategy. OrthoMCL or a variant of it is also used in the IMG platform to 

define IMG ortholog groups [69].

CORRIE: the Correspondence Indicator Estimation procedure is a bioinformatics method which 

defines  functional  classes  (in  this  case,  EC numbers,  see  section  V.A.5.b)  to  which  it  assigns 

proteins with known annotations, effectively generating a priori iso-functional protein families. For 

new, un-annotated proteins (or proteins to re-annotate), correspondence indicators (CIs) measuring 

the strength of the association of each protein with each functional class are calculated, based on the 

sequence  similarity  between  the  protein  and  protein  members  of  the  functional  class.  Finally, 

different Bayesian approaches are proposed to select, using the protein's CIs, which functional class 

it is most likely belong to. This procedure is described in [70,71].

 IV.C.2.b.  Semi-supervised sequence similarity-based aggregating

These methods rely on manual curation at some step or other in order to validate the gene/protein 

families that are established by sequence similarity, multiple sequence alignments and other data. 

Adding novel sequences to a family is relatively easy.

COG: The Clusters of Orthologuous Groups of proteins (COG) database [72] is an early and still 

widely-used  effort  to  classify  proteins  from  bacterial,  archaeal  and  eukaryote  genomes  into 

hopefully iso-functional groups of common ascendency. Using all-versus-all protein BLAST results 

(masking certain sequence features considered to be of no interest for ortholog identification), it 

identifies paralogs and “collapses” them into a single representative sequence, before identifying 

triangles of pairwise best hits between proteins of different genomes. Such triangles are iteratively 

merged  along  shared  sides  into  COGs.  COGs  are  then  manually  analysed  to  reveal  spurious 

classifications due to multi-domain proteins or other evolutionary phenomena. The final COGs are 

thus generated by a semi-automatic procedure and benefit from an expert curation step. No cut-offs 

are applied to the BLAST results, thus allowing COGs to be based on high and low similarity 

triplets, though they must be consistent amongst themselves. This allows COGs to capture both fast- 

and slow-evolving families. Adding novel sequences to a COG family is relatively trivial.

HAMAP: The  HAMAP  (High-quality  Automated  and  Manual  Annotation  of  microbial 
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Proteomes) project was created to allow partially-automatic procedures to help propagate Swiss-

Prot (now UniProt-SwissProt) annotations with high confidence to members of a same gene/protein 

family, in the hope of keeping up with the continuous flow of new sequence data that expert manual 

analysis could not deal with  [73,74]. Rather than using sequence similarity to aggregate genes or 

proteins, families were defined on a case-by-case basis by manual expertise. Already well-known 

(sub-)families were researched and used to create family-specific sets of rules that could be used to 

transfer  annotations  from  actual  family  members  to  new  members.  These  rules  are  based  on 

multiple sequence alignments that are used to isolate 1) complete protein sequence profiles or meta-

motifs, 2) localised sequence motifs or patterns, or 3) specific sites. These rules can combine all of 

these to ensure highly specific detection of proteins that belong to the same family. In this regard,  

HAMAP could  also  be  classified  as  a  semi-supervised  domain-based aggregating  method,  and 

adding new sequences is simple.

FIGfam: FIGfam is another collection of protein families that are maintained by the Fellowship 

for the Interpretation of Genomes (FIG) [75]. FIGfam resembles HAMAP in that families are built 

upon expert manual curation, though functional annotations are rooted in the SEED system and thus 

extend beyond mere sequence similarity. FIGfam proposes an automated procedure for determining 

the  membership  of  newly added  proteins.  Family membership  is  manually evaluated  from the 

SEED [39] data using sequence similarity and genomic context.

 IV.C.2.c.  Semi-supervised domain-based aggregating

These  methods  rely  on  initial  manually-defined  families  and/or  manual  curation  of  located 

conserved domains. All proteins containing a given domain (or set of domains) is assigned to a 

family, making the addition of novel sequences relatively easy.

Pfam: The Protein Family (Pfam) database is based on tracking the presence of various conserved 

domains  within  protein  sequences  [76].  The presence  of  a  given  domain,  or  a  set  of  domains 

(known as a “domain architecture”) is used as a basis for defining protein families. Domains are 

located on the basis of high-confidence “seed” multiple sequence alignments, which are used to 

build a HMM profile representing the domain, which is in turn used to agglomerate additional, 

more distantly related proteins into what has become a protein family. Today, two types of Pfam 

54 / 229



Functional annotation

families exist: Pfam-A families are manually-curated, whereas Pfam-B families are automatically 

generated and have not yet been validated. Domains that have no currently assigned function are 

referred to as “Domains of Unknown Function” (DUFs) and represented roughly 3,000 (22%) of all 

Pfam families in 2010 [77]. Pfam families are widely used and were exploited in this thesis during 

the BKACE project (Chapter VIII).

PRIAM: This  approach is  dedicated to  identifying enzyme-coding genes  and their  enzymatic 

activities by using rules combining enzyme position-specific “profiles” built from collections of 

known  enzyme-coding  genes  [78].  These  profiles  are  analogous  to  protein  domains,  though 

positions are not necessarily contiguous. PRIAM thus assigns functions to new genes on the basis of 

a domain-detected homology. 

InterPro: InterPro  [79,80] was designed as an integrative repository for several protein-family-

defining efforts (see table below). It includes documentation on families, domains and functional 

sites as detected by resources such as: PROSITE [81], PRINTS [82], Pfam [76,77], Blocks  [83], 

ProDom [84], Gene3D [85], SMART[86], SUPERFAMILY [87], PIRSF [88], TIGRFAM [89], and 

PANTHER [90].

MicroScope paltform: all  of  the gene/protein family resources  discussed above have been 

integrated into the MicroScope platform, either directly, or via InterPro.

 IV.C.2.d.  3D structure-based methods

Another bioinformatics development is the use of 3D protein modelling in order to derive protein 

structural similarities or to carry out substrate docking experiments. These methods deal much more 

directly with the elements responsible for protein function (i.e. 3D distribution of amino acids with 

various  physico-chemical  properties)  and thus  hold great  promise for  future annotation,  though 

obviously they are still dependant on sequence for structure elucidation. Unless otherwise stated, 

these approaches define protein families on the basis of 3D structure, and these families can be used 

for functional transfer.
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The Protein Data Bank Resource: Before discussing 3D-based methods, it is necessary to 

cite the Protein Data Bank. The PDB is a freely-accessible archive of large biomolecule (including 

proteins and nucleic acids) 3D structures, maintained by the Research Collaboratory for Structural 

Bioinformatics (RSCB) [www.pdb.org] [91]. PDB data is available via web interfaces and can also 

be  downloaded  in  the  PDB file  format,  which  describes  3D  coordinates  of  the  atoms  in  the 

structure. Such data is obviously essential to 3D structure-based homology methods.

SCOP: the  Structural  Classification  of Proteins classifies proteins into folds, superfamilies, and 

families.  Families  and super-families  are  based on common evolutionary origin  as  revealed  by 

sequence similarity and structures, respectively. Folds are built on conserved secondary structures, 

and can be additionally regrouped into classes.

CATH: CATH [92,93] is a manually-curated database of hierarchically-classified protein domain 

3D structures. Structures are classified into Class, Architecture, Topology and Homologuous family. 

In  order  to  build  the  classification,  proteins  having  good 3D models  in  the  PDB are  grouped 

according to sequence similarity, domains are isolated along their sequences before being aligned in 

the group in order to establish protein architecture. CATH is more focused on sequence & structure 

similarity than SCOP. The Gene3D resource [94] is based on CATH domains.

ASMC: The  Active  Sites  Modeling  and  Clustering  (ASMC)  method  [95],  developed  at  the 

Genoscope in the LABIS team, is capable of grouping modelled proteins from a given family into 

(hopefully) iso-functional sub-families by analysing key amino acids in their predicted active site 

pockets (see section VIII.C.5 for more details).

Others: [96] propose an integrated strategy, exploiting many bioinformatics resources and tools, 

in order to derive functional predictions from sequence and 3D structure.

 IV.C.3.  Limits
There are several limits to homology-based annotation transfer methods.
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For  a  start,  despite  the  increasing  number  of  new genes  and  genomes  that  are  sequenced,  an 

increasingly small fraction of these are considered as representatives of novel “islands” of sequence 

space  [1]. In this respect, homology-based methods will hit an asymptotic threshold of sequence 

diversity from which to transfer functions, though much work remains before the known sequence 

space is correctly annotated, which is in itself another limit.

Beyond simple divergence as suggested by paralogy,  homology does not necessarily imply iso-

functionality,  given  that  protein  functions  can  be  multiple  and  diverge  very  quickly  with  few 

mutations. This is a painful thorn in the homology-based annotation transfer approaches, a fact that 

has been demonstrated and underlined in many works, such as  [97–100]. Indeed, for some years 

now, scientists  have had a  hard time debunking the overly-simplistic  view of  “one gene -  one 

protein - one function”. However, evidence has accumulated backing the fact that many proteins 

can actually fulfil not one, but many different roles in the cell. Some enzymes can catalyse sets of  

similar metabolic reactions, or even several completely different reactions; signalling proteins have 

been known to have structural roles; etc. This phenomenon is called functional promiscuity (see 

also section V.C.1). Many types of functional promiscuity exist, and several classifications thereof 

have been proposed [101–106]. Common to all, however, is the notion that some protein functions 

have  been  selected  by  evolution  as  the  “primary”  function  of  the  protein,  whereas  the  more 

numerous adventitious “secondary” functions have sprung up by chance, either within the same 

active site as the primary function,  or in other sites anywhere on the protein.  This reservoir  of 

secondary functions is thought to be part of the great engine of evolution, allowing new functions to 

be tested without disrupting the cells' inner workings, and serving as a functional recruitment base 

when needed  [107,108].  The phenomenon leading to  this  robustness  is  known as  canalisation 

[109,110].

Homology-based annotation transfer methods are also subject to phylogenetic bias, as compared 

feature sets are most likely to be close when the host organisms are close themselves. Normalisation 

procedures can limit this effect, such as the protocol presented in OrthoMCL [68].

Finally, the plethora of methods for inferring homology and transferring annotations on that basis 

(of which only a small selection of methods have been presented here) can deter any newcomer to 

the field.  To pair  with this  diversity,  the evaluation of method performances is  still  difficult  to 

perform and seldom done, not making choosing a given method any easier. To my knowledge, the 

best attempt of comparing multiple family-building methods can be found in the excellent paper 

[51].
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Despite the best results obtained using ever-finer sequence-derived homology detection approaches, 

such methods obviously cannot help when searching for candidate genes for orphan reactions, as no 

known gene sequences correspond to the target activity. They cannot help either when an entire 

protein family yields no existing functional annotations as no annotations can be transferred to it. 

Hence the requirement for so-called “sequence-independent” context-based methods.
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 IV.D.  Annotation inference on the basis of functional  
dependence

Functional inference is carried out between genes of a same target organism, and has only become 

feasible with the advent of whole genome sequencing [111].

Three  steps  are  required  before inferring functions  from functional  dependence:  1)  dependence 

detection  for  all  genes,  2)  gene  context  extraction  for  a  target  gene,  and 3)  functional  context  

construction  for  the  target  gene.  This  functional  context  can  then  be  used  to  4)  infer  possible 

functions for the target gene [112,113].

 IV.D.1.  Steps
Dependence  detection:  Functional  inference  is  based  on  the  precept  that  genes  working 

together in a same biological process are submitted to common evolutive, regulatory and physical 

constraints. Measures of functional dependency genes attempt to capture these constraints, and their 

known evidence sources are listed in the following section.

Gene context extraction: Functional dependency between genes can usually be represented as 

weighted networks, wherein genes are nodes and functional dependency is captured in edge weights 

(binary or real). The neighbourhood of a target gene is a set of genes that are “close” to it in the 

network (e.g. at most k edges away). The actual context used in the next step is defined in some 

methods as simple neighbourhoods, in others as gene clusters based on network connectivity.

Functional context construction: Functional context can broadly be defined as the set of all 

functional data available for all  genes from the gene context of a gene of interest.  While gene 

context allows linking functionally dependent genes together,  functional context reconstructs an 

image of the way the involved genes all participate in a same biological process. When annotating a 

gene of interest, bioanalysts manually reconstruct the surrounding gene and functional contexts in 

order to guess the target gene's possible activity. 

Function inference:  Computationally, the function of a target gene (or a set of more or less 

likely functions) can be inferred from its functional context either directly (e.g. using the 'majority 

rule',  transferring  the  highest-level  most  common  annotation  in  the  context  to  the  target)  or 

indirectly (e.g. finding reaction gaps, using machine learning predictors, using functional similarity 

measures...).  In  the  second case,  it  may be  necessary  to  determine  beforehand  which  possible 
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functions can be inferred.

As  said,  several  evidence  sources  can  attest  to  the  functional  dependence  of  genes  or  their 

corresponding proteins. Below, I detail those that belong to what is collectively termed “genomic 

context”, as well as those that are “experimental data-based”, along with the biological roots of 

these  sources,  and a  few example  methods  that  exploit  them.  I  then  conclude  this  Chapter  by 

describing methods that call upon multiple different sources.

 IV.D.2.  Genomic Context-based sources
 IV.D.2.a.  Prokaryote genome organisation

DNA is not organised in the cell identically across all domains of life. Prokaryote genomes (i.e. 

bacterial & archaeal) are organized into cytoplasmic chromosomes and plasmids,  a contrario to 

eukaryote genomes where chromosomes are secured inside a nucleus. This has led to a prokaryote-

specific genome organization. Indeed, the absence of nucleus  and endoplasmic reticulum means 

that transcription and translation both take place in the same cellular compartment, as is shown in  

Illustration IV.1: Prokaryote transcription and translation. Protein synthesis can thus be rendered 

more  efficient  by  streamlining  these  two  processes.  Evolution  has  thus  favoured  prokaryote 

genomes on which genes coding proteins participating in same biological processes cluster together 

on  the  chromosome  or  on  plasmids.  Indeed,  closely  clustered  genes  can  be  transcribed  and 

translated quickly together at the same time and place in the cell (the extreme examples being a) 

polycistronic  mRNAs,  i.e. mRNAs carrying  several  genes,  and b)  gene  fusion,  leading  to  one 
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Illustration IV.5: Using functional dependence to annotate a gene

Functional  inference using functional  dependence follows several  steps.  First,  functional  dependency 
within the studied genome are established. These dependencies are then used to define a neighbourhood 
of the gene. The functional context formed by the functions of the other genes in this neighbourhood are 
then used in order to propose possible functions for the original gene.
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mRNA  coding  for  two  proteins).  They  can  also  share  common  transcription  initiators  and 

terminators,  forming a structure called “operon” and thus  simplifying  genetic  regulation  of  the 

concerned  bioprocess  [114].  Eukaryote  genomes,  with  their  spatially/temporally  decoupled  and 

more  complex  transcription  and  translation,  rely  more  heavily  on  regulatory  processes  and 

chromosomal 3D organisation, which do not shape the organisation of genetic material in the same 

way.  For  both types  of  organism, “regulons” are  multiple  sets  of  genes  all  sharing  a  common 

regulatory mechanism that are not necessarily co-localised on the genome. Locating such structures 

in a studied genome gives valuable insight into its workings.

 IV.D.2.b.  Definition of genomic context

Many types of evidence form what is termed the “genomic context” of a gene, and are at the heart 

of comparative genomics [115]. The genomic context of a gene can be loosely regarded as the sum 

total  of  all  data  concerning  the  genome  and  other  genes  on  this  genome,  that  are  linked 

mechanistically or spatially to the gene of interest. The most obvious of such links is chromosomal 

proximity, for which we make the underlying assumption that genes that are “close” on a genome 

have products that may interact in some way.

Genomic  context  is  more  easily  exploitable  in  (though  not  exclusive  to,  as  we  shall  see) 

prokaryotes,  as eukaryote genomes are organized to  exploit  genetic  regulation and genome 3D 

structure  more  than  structural  regulation.  However,  should  cellular  biology  techniques  evolve 

sufficiently one day to allow access to 3D representations of working eukaryote genomes,  then 

perhaps “structural genomic context”-based methods will emerge. Progress has already been made 

in  this  direction  by the  characterisation  of  chromosomal  “territories”  in  higher  eukaryotes  that 

appear closely linked to gene expression regulation [116].

 IV.D.2.c.  Gene clusters and syntenies

The foremost of the functional dependency evidences used in the study of prokaryote genomes are 

gene clusters,  i.e. the tendency of prokaryote genes participating in a same biological process to 

cluster  together  on  the  chromosome,  creating  operon structures  or  regions  bi-directionally 

transcribed from a central  promoter.  However,  the definition of  gene clusters  in  bioinformatics 

literature varies widely, and can be confused with that of syntenies, which are groups of conserved 

genes across multiple genomes. Here, I shall attempt to separate definitions that involve a single 

genome from those that involve multiple genomes.
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Single-genome gene runs: The simplest form of gene neighbourhood is that of  gene runs. 

These are sequences of immediately contiguous genes on a genome that respect some constraints 

that  may  vary  between  approaches.  The  most  typical  constraints  are  a)  identical  transcription 

direction (or not), and b) a maximum intergenic distance threshold. For example, the DOE IMG 

platform defines chromosomal cassettes as sequences of genes whose intergenic distance is never 

superior to 300 base pairs (bp), whatever the strand they are on  [69], a single-genome variant of 

what is presented in [117,118]. The 300 base pair limit was proposed in [118]on the basis that for 

the set of roughly 10,000 genes from ten genomes that the authors analysed, the mean intergenic 

gap was  91  bp,  with  a  standard  deviation  of  136 bp.  As is  common in  statistics,  a  cut-off  is 

established by taking the mean plus two standard deviations, i.e. 91+2*136=363, rounded down for 

convenience to 300 bp. 

Beyond the simple notion of  gene run is  that  of  the previously-described  operon,  a  structural, 

transcriptional  and  functional  unit.  Many  methods  exist  that  attempt  to  predict  operons  from 

genomic  sequences,  using  single-genome  or  multiple-genome  data,  functional  clues,  and 

experimental evidence [119–125].

Multiple-genome  syntenies: Gene  clusters  can  be  conserved  (as  shown  by  gene-gene 

homology relationships)  across  several  genomes  and are then  called  syntenies (Nota bene:  the 

traditional meaning of the term “synteny” has, over the years, been superseded by a new meaning of 

the bioinformatics era, see [126], and I shall be using the latter, for want of a better term). Syntenies 

are even stronger evidence for functional dependence than gene runs, as high conservation indicates 

that the cluster structure is not a simple result of chance, but the result of evolutive pressures. Gene 

syntenies  are  generally used in  prokaryote comparative genomics,  though they are also studied 

between  eukaryote  genomes,  where  they  tend  to  be  larger  supports  for  chromosomal 

rearrangements over the course of evolution (e.g. [127–129]). Given the drift of the term's meaning, 

it is not surprising that gene synteny definitions and methods of localisation are highly variable. 

They differ in their consideration of gene directions, of homology, in the number of genomes, in the 

number of allowed gene gaps... Below, I present some of the current works and their definitions that  

are relevant to this thesis.

Overbeek et al. [118,117] were the first to explicitly propose using gene clustering as an indicator of 

functional  dependence and developed the  WIT server to  allow users  to  consult  the calculated 
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results of their methodology. Their gene clusters were defined as “pairs of close bidirectional best 

hits” between two genomes. Genes were “close” if they belonged to a same “run”, defined as a 

sequence of genes on the chromosome along which the intergenic distance was never superior to 

300 base pairs. Yanai  et al. [130] confirmed the high-level predictive power of using such gene 

clusters by showing that 80% of all ortholog families whose members were in a same gene cluster 

in  one  or  several  genomes  coded enzymes  participating  in  a  same KEGG metabolic  map (see 

section V.A.5 for details about KEGG).

Kolesov  and  Frischman  [131,132] propose  the  SNAP (Similarity-Neighbourhood  Approach) 

method as a generalisation of the previous. Gene clusters are detected through the combined use of 

inter-genome sequence similarity and chromosomal co-localisation, basically allowing genome re-

arrangements to be tracked across multiple genomes, capturing extended genomic context for a 

given gene. This idea was further extended in [133], presented in section VI.C.

For the IMG platform, a cassette of at least 2 genes that is conserved across at least 2 genomes 

(homology as defined in COG, Pfam or IMG-based families) is called a conserved chromosomal 

cassette, akin to a synteny [69]. A related definition is that of a conserved pair of neighbouring 

genes [134], which is  a pair  of adjacent genes whose orthologues in multiple genomes are not 

separated by more than a given number of intermediate genes.

A similar method is presented in [135]. Within, a suite of programs (including, but not limited to, 

BLAST and MCL) are used to establish gene homology. Conserved adjacent gene pairs (called 

positional  orthologous  genes  or  POGs  for  short)  are  then  isolated,  before  being  accreted 

incrementally into full-blown “synteny blocks”. Results are stored in the SynteBase database and 

are made available via a java front-end called SynteView.

Syntenies based on the concept of gene teams over multiple genomes (groups of genes that are 

never separated by more than a given threshold in any of the target genomes) was used in [136] and 

extended  for  example  in  [137]. A domain-centred  (rather  than  gene-centred)  version  of  this 

approach is proposed in [138].

The ADHoRe method (Automatic Detection of Homologous Regions) [139] locates regions where 

the order of homologous genes is conserved between 2 genomes. The I-ADHoRe [140] compiles 

these 1-versus-1 syntenies into multi-genome syntenies.
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More mathematically-precise synteny definitions exist. The GRIMM-synteny [141] and Cynteny 

[142] methods represent genomes as singed numbered vectors that indicate relative positions of 

genes  and their  transcription direction.  The method searches  for  inversions,  fusion/fissions  and 

translocations  in  order  to  reconstruct  whole  genome rearrangements  between  only  2  genomes. 

These rearrangements can serve as the basis for determining syntenies. However, these methods are 

not  adapted to  many-to-many homology relationships  in  the target  genomes and cannot  handle 

insertions/deletions of genes.

Graph-based  synteny definitions  exist  as  well,  wherein  genes  and  genomes  are  represented  as 

graphs,  with  gene  neighbouring  and  sequence  similarity-based  edges  linking  genes.  Locating 

syntenies becomes a question of locating structures in this graph. For example, in the Kanehisa lab 

(that maintains the KEGG database, see section V.A.5), “correlated gene clusters” are identified 

using an adapted version of a graph alignment algorithm [143] that they developed with another 

objective in mind ([144], see section VI.C.1.c for more details). The algorithm searches for groups 

of co-localised genes in one genome that correspond, via best hits, to groups of co-localised genes 

in one or several other genomes. They proceed further by clustering their correlated gene clusters 

into “conserved correlated gene clusters”. They use all this information to construct KEGG ortholog 

families.

Another  example  is  Cyntenator [145],  which  uses  sequence  similarity  cliques  to  define  the 

homology relationship (analogous to making families), and links cliques together when a significant 

fraction of the target genomes possess members of each clique as neighbouring genes transcribed in 

a same direction.

Finally, the works of [5,146] detail their own mathematical definition of a synteny (which they call 

a  synton),  along  with  the  CCCPart algorithm  that  is  described  more  in  section  VII.C.1.  A 

mathematical generalisation of graph alignment algorithms can be found in [147]. Of these works 

were born the synteny-locating algorithm that is used in MicroScope, one of the main features of 

the platform. In fine, a synteny is defined in MicroScope as: a group of genes in one organism with 

correspondences (bidirectional best hits or at least 30% identity on 80% of the length of the shortest 

sequence) with a group of genes in another organism; the genes in each group many not have more 

than  5  intervening  genes  without  correspondences,  though  intergenic  distances  and  gene 

transcription frame/direction are ignored.  The CCCPart  algorithm also serves  as a  base for the 

CanOE strategy (see chapter VII).
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All in all, many ways to determine syntenies exist, capturing various evolutive pressures, and thus 

not necessarily finding overlapping results. Any of them, of course, can be used as a marker of 

functional dependence.
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Illustration IV.6: Gene clusters and syntenies

All arrows represent genes. (A) In light green, a gene run based on a) same transcription direction (e.g.  
right border) and b) intergenic spacing less or equal to 300 bp (e.g. left border). (B) In light green, an  
operon determined by the position of a transcription initiator sequence (left) and terminator sequence 
(right). (C) Gene homology is represented by red edges between genomes. In light green, one gene cluster  
(bidirectional best hit pair) according to the works of Overbeek. Notice the requirement of homology,  
gene runs, the allowance for gaps, and the lack of constraint on gene order. (D) In light green, a synteny 
without transcription direction nor gene order constraints, allowing for a maximum of 1 consecutive gap 
(in gray).
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 IV.D.2.d.  Rosetta stone (gene fusion/fission)

In some cases, chromosomal proximity is taken to an extreme when genes actually fuse together. A 

triplet of one fused gene and corresponding separate homologous genes from another genome has 

been called a “Rosetta stone”, as it helps decipher the interaction between gene products [112,113]. 

Many other works have included fusion/fission events in comparative genomics efforts  [148,149] 

and they are now considered as a staple of genomic context. AllFuse [150] and FusionDB [151] are 

databases  dedicated  to  detecting  and listing  fusion/fission  events,  with  the  latter  extending the 

concept to COG families rather than just genes. Fusion/fissions are singled out in the MicroScope 

platform as tentative targets of interest to annotate.

 IV.D.2.e.  Shared regulatory sites

Genes can also be grouped together based on shared regulatory sites. These sites are usually found 

within non-coding DNA regions  upstream of  the regulated genes.  Automatic  regulation pattern 

discovery and matching software  exists,  such as  the Regulatory Sequence Analysis  Tools  suite 

[rsat.bigre.ulb.ac.be/rsat/] developed at the BiGRe (Bioinformatique des Génomes et des Réseaux) 

lab  [152–154]. Actually using regulatory sites in order to group genes has been carried out semi-

manually in works such as  [155], and gene regulation databases include RegulonDB  [119,156], 

SwissRegulon  [157] and PRODORIC [158]. Such gene groupings should be particularly close to 

the definition of operons or über-operons that are strong indicators of functional dependence.

 IV.D.2.f.  Phylogenetic profiles

Phylogenetic profiles (sometimes referred to as phylogenomic profiles) are vectors describing the 

presence/absence of a given gene family across many genomes. Similar phylogenetic profiles are 

evidence of functional dependence: two genes participating in a same biological process are more 

likely to be either both present, or both absent, in the same organisms, as the loss of either one 

would disrupt the process. [159] were the first to propose the use of gene phylogenetic profiles to 

measure  gene  dependence,  and  study  “exact-matching-but-1”  profiles  to  highlight  a  proof-of-

concept case study. Many variants have since been proposed, diverging in the detection of gene 

orthology,  the usage of  binary or weighted vectors,  and in profile  similarity measures.  Though 

phylogenetic profiles are still based on sequence similarity, the latter is not the source of transferred 

annotations, merely an integrated indicator of evolutive constraint between genes. 
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Phylogenetic profiles are not based on gene chromosomal proximity, and thus are genomic context 

indicators that can be, and have been [160] used in eukaryote genomes.

As seen, many genomic context-based functional dependency measures can be derived. Not all are 

equal in performances when it comes to serving as a basis for protein function prediction. The best  

performing of these are arguably the various versions of the gene clusters approach, as described in 

[161–163].

Now that we have seen gene-based genomic context, we can now proceed to functional dependency 

detection methods that rely on experimental data sources.

 IV.D.3.  Experimental data-based sources
These  sources  require  data  other  than  genomic  data  to  be  established.  However,  due  to  this 

requirement, they are not readily used across a great number of genomes, and thus did not fit in with 

the objectives of my thesis. I shall thus only briefly describe these sources here.
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Illustration IV.7: Phylogenetic profile principle

On the left, two target genes from are target genome. Family-based homologs from other genomes are  
represented  (one  very  partial  match  in  genome  5  for  gene  family  1).  The  presence/absence  across  
genomes is  converted into binary vectors for each target  gene. The two vectors are compared and a  
similarity metric is derived from them. This cross-genome similarity is then transferred to the target genes 
as a signal of functional dependence.
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 IV.D.3.a.  Co-expression / co-regulation

In the same frame of mind as for shared regulatory sites, two genes presenting a similar expression 

profile  across  a  set  of  experiments  may  share  a  common  regulation  mechanism,  and  thus  be 

functionally related. Multiple co-regulated operons are called regulons.

 IV.D.3.b.  Co-citation

A literature-based measure of association between genes is the frequency at which both genes are 

cited together in the same scientific publications. Such meta-data analysis  has found increasing 

popularity since its first uses in psychology  [164,165]. Examples of using scientific literature to 

derive associations between genes can be found in [166,167] and in STRING (Search Tool for the 

Retrieval of Interacting Genes) [168].

 IV.D.3.c.  Protein-protein interaction

Many proteins act by interacting with other proteins, often by binding to them to form protein 

complexes.  These  physical  events  can  be  detected  by wet-lab  experiments  such  as  two-hybrid 

techniques  in  yeast  [169] and  co-immuno-precipitation  [170].  Protein-protein  interaction  (PPI) 

networks  derived  from such  experiments  have  been  extensively  used  as  a  different  source  of 

functional  context  for  annotation  inference  [171,56].  More  recently,  aligning  protein-protein 

interaction networks has been shown to improve protein orthology prediction, thus forming a better 

base for functional annotation transfer [172], such as with the IsoRank and IsoRank-N algorithms 

[173,174].

 IV.D.3.d.  Other data sources

Other information can be used to detect functional dependency between genes. Growth medium-

specific  gene  essentiality  data can  give  clues  as  to  which  metabolic  pathways  certain  genes 

participate in [175]. Protein 3D structure can deliver protein-protein interaction predictions, ligand 

binding site predictions, or even broad fold similarities used to infer common metabolic pathways 

[176].
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 IV.D.4.  Multiple-context-based annotation methods
Any  of  the  previously  cited  data  sources  can  be  used  individually  to  establish  functional 

dependencies. However, as across the domain of bioinformatics, the trend is to  integrate several 

data sources in various ways in order to improve coverage and power. The first attempts at this were 

manual and  correspond  to  traditional  bioanalysis,  as  in  [117,177].  The  first  computational 

approach was in  [113] where yeast gene-gene dependency edges (established from phylogenetic 

profiles, experimental protein-protein interaction data, sequential metabolic step catalysis, Rosetta 

stone fusion/fission, and correlated mRNA expression data) are basically summed together, with 

different  confidence  scores  according  to  the  different  sources,  in  order  to  predict  and  score 

functional SwissProt keywords. [178] were the first to use the SVM machine learning technique to 

integrate  gene  expression  data  with  phylogenetic  profiles  to  predict  a  special  functional 

classification in yeast. [179] used Markov Random Fields to combine physical interaction networks 

and functional descriptions from the Yeast Proteome Database in view of functional prediction. 

Joshi et al. [180] teach an algorithm to estimate the probability that any two genes share a similar 

function  for  several  types  of  high-throughput  data  (two-hybrid  screening,  physical  protein 

interactions,  micro-array data,  protein  complexes)  in  Yeast.  Chen  et  al. [181] train  a  Bayesian 

algorithm on yeast to transfer GO terms between proteins showing high similarities for various data 

sources (protein-protein interactions, protein complexes, & gene expression data). Zhu et al. [182] 

derive protein features and train a SVM algorithm that does not depend on sequence similarity to 

predict protein functions. Ferrer et al. [163] generate scores between genes reflecting the likelihood 

that they participate in a same biological process, on the basis of genomic context information 

(phylogenetic profile similarity, conserved gene neighbourhood, gene clusters, and Rosetta Stone), 

which they use to derive gene groups, the relevance of which is estimated by considering their 

conservation across multiple, selected genomes. 

Over  the  years,  many  bioinformatics  methods  have  developed  by scientists  of  various  origins 

(mathematicians,  biologists,  computer  scientists,  ...)  in  the race for  the perfect  protein function 

predictor. Presenting all of the numerous functional prediction methods that exist today is beyond 

the scope of this thesis. I shall thus only present a few here, and several more that can specifically 

answer the “orphan enzyme problem” in chapter  VI. For more information on these methods, I 

recommend the following articles. 
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The  review  by  Sharan  et  al. [56] presents  several,  protein-protein  interaction  network-centred 

approaches,  which  the  authors  classify into  two types:  those  based  on propagating  annotations 

through  the  network,  and  those  based  on  identifying  clusters  in  the  network,  and  propagating 

annotations within each cluster separately. The article by Erdin  et al. [183] is a recent and well-

written tour of protein functional prediction methods, discussing issues such as function description, 

and  describing  the  main  sequence-based,  structure-based  and  network-based  methodologies  for 

functional annotation.

 IV.D.4.a.  Annotation platforms

All annotation platforms (such as MicroScope  [4], IMG  [37], the SEED  [39], and ERGO  [38]) 

formalise both sequence-based and context-based functional annotation approaches. Indeed, they 

offer  computed  results  for  a  number  of  different  methods concerning any target  gene,  such as 

sequence similarity, syntenies, gene clusters, phylogenetic profiles, gene/protein families, predicted 

domains,  co-expression...  The  bioanalysts  play the  role  of  human integrators  of  this  wealth  of 

information,  coercing increasingly precise annotations from the complex picture they can paint 

about their gene of interest.

Parts of the modus operandi of expert bioanalysts can be automated, easing their workload, focusing 

on interesting cases, ranking candidates. This is the true objective of all the automatic context-based 

methods conceived so far.

 IV.D.4.b.  The STRING

The  STRING (Search  Tool for the  Retrieval  of  Interacting  Genes)  [184,162,149] is  a  database 

storing  many different  protein-protein  dependency measures  for  proteins  pairs  from over  1100 

organisms. Each measure is transformed into a confidence score by the following benchmarking 

approach:

• a true interaction is defined as a pair of proteins known to participate in a same KEGG 

pathway

• a positive interaction is defined as a pair of proteins with a dependence measure above a 

certain threshold

• establish true positive rate curve using these definitions, over all values of the given measure
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• the confidence for a given measure value is the true positive rate for that value

Each confidence score can be viewed as a probability. Individual functional dependence confidence 

scores are combined into a single integrated confidence score by multiplying the probabilities of 

associations  not predicting a functional interaction, assuming the statistical independence of each 

different data source.

STRING protein-protein associations can then be used manually to infer functional context and 

ultimately, function, for a given target gene. A relatively large-scale manual analysis of STRING 

results in conjunction with COG families was presented in [185]. The interface's ease of use (web 

query tool or access to downloadable data) and the summarising of multiple functional dependency 

measures  into  one network are  a  boon to bioanalysts  with  precise questions  in  mind (see  also 

section VI.C.1.b for some relevant case studies).

Furthermore,  many function  prediction  tools  are  based  on STRING data,  and it  has  become a 

reference source of pre-calculated functional dependence information. For example, [186] combine 

STRING association scores and intergenic distances to train a neural network for predicting operon 

structures in  Escherischia coli &  Bacillus  subtilis.  [187] develop a “network-based hierarchical 

Bayesian  auto-probit  model”  for  exploiting  STRING association scores  in  order  to  predict  GO 

terms for unannotated proteins.

The  PINTA website  [188–190] proposes  a  battery  of  prioritisation  algorithms  to  be  run  on 

differential gene expression data populating the protein nodes of a binary STRING network in order 

to determine novel candidate genes, not for orphan enzymes, but rather for implication in diseases. 

The website is dedicated to eukaryotes (human, mouse, rat,  worm and yeast).  The prioritisation 

algorithms are Heat Kernel Ranking [189], Arnoldi Diffusion Ranking [188], Randow Graph Walk, 

HITS with priors [191], or k-step Markov [191]. 

In [192], the authors propose an algorithm to use STRING association data with yeast phenotype-

associated proteins to predict phenotypes for other yeast proteins. 

In [193], the authors develop a strategy of finding conserved functional modules between STRING-

based  binary  protein-protein  association  networks  (using  NetworkBLAST  [56])  to  reinforce 

OrthoMCL-inspired GO annotation transfer between Mycoplasma genitalium proteins.

71 / 229



Functional annotation

 IV.D.4.c.  Predictome

In [194], the authors describe the Predictome database, which predicts and stores functional links 

between  genes.  Links  are  predicted  using  chromosomal  proximity,  phylogenetic  profiles,  and 

fusion/fission. Once again, having a compiled network of dependencies relieves some of the effort 

that bioanalysts must put into building a representative functional context for their target gene.

 IV.D.4.d.  ProLinks

The ProLinks database  [134] stores  gene  functional  dependence  data  concerning Rosetta  stone 

fusion/fission, phylogenetic profiles, gene clusters (groups of genes on a genome whose probability 

of  being  in  a  same  operon  is  a  function  of  intergenic  spacing),  gene  neighbours  (gene  pairs 

conserved across genomes without being separated by more than a certain number of genes), and 

literature co-citation. Each of these methods generates a gene interaction p-value. In order to be 

comparable, these p-values are scaled into probabilities by a COG-based benchmarking approach.

Prolinks dependencies are exploited by the “Pathway Hole Filler - Genomic Context” algorithm that 

is detailed in section VI.C.1.e.

 IV.D.4.e.  GeneMANIA

GeneMANIA [195,196] is a web server that dynamically interrogates a database comprising many 

gene-gene/protein-protein  interaction  networks  of  various  sources  (co-expression,  physical 

interaction, genetic interaction, co-localisation, shared pathway, shared domains, etc.) with a query 

set of seed genes. Local functional association networks from each data source are combined using 

dynamically-calculated  weights,  and  gene  function  labels  are  propagated  across  the  integrated 

network and can  be  used as  predictions  for  the  seed genes.  GeneMANIA currently supports  6 

eukaryote  organisms  (Arabidopsis  thaliana,  Caenorhabditis  elegans,  Drosophilia  melanogaster, 

Mus musculus, Homo sapiens, and Saccharomyces cerevisae).

These annotation tools allow the study of the functions of prokaryote (and for some, eukaryote)  

genes.  One  category  of  functions  is  of  particular  interest  to  biologists,  biochemists  and 

biotechnologists: metabolic enzymatic activities. As the goal of this thesis is the development of 

methods for annotating genes with metabolic reactions, I shall now briefly present the basics of 

prokaryote metabolism.
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 V.  Metabolism

 V.A.  Key Actors

 V.A.1.  Compounds
Chemical  compounds are  made up by several  atoms of  one  or  more  chemical  elements  (e.g. 

carbon, oxygen, hydrogen...) that are maintained in a more or less rigid three-dimensional structure 

by chemical bonds. Some compounds can be small, others very large with many atoms (e.g. DNA, 

or  crystalline  structures).  Compounds  are  called  metabolites when  they  correspond  to  small 

molecules or ions that are processed in biochemical (metabolic) reactions (see section V.A.2).

Compounds are identified primarily by chemical formulae that describe the number of atoms of 

each element that compose it, with various systems for representing various levels of substructure 

detail; the simplest of these is the general chemical formula. The three dimensional structure itself 

can be described by a  structural formula,  using a  variety of representation systems, the most 

common in biology being the skeletal formulae which supposes carbon-based molecular backbones 

with  implicit  hydrogenation.  Attempts  have  been  made  in  order  to  make  chemical  structure 

description  easily  accessible  to  humans  and  computers.  For  example,  the  SMILES (simplified 

molecular input line entry specification) can describe any molecule as a linear series of characters 

that represent successive atoms (less hydrogen) along the molecules' backbone, all cycles being 

“broken”. The InChi scheme (IUPAC  International  Chemical  Identifier) also proposes linear text 

descriptions of molecules that deal more directly with the chemical structure. Additionally, InChi 

defines a standard for hashing (a computational approach to compressing data) in order to shorten 

the representation.

As an example, several different representations of a compound central to metabolism across all 

domains of life are illustrated in the following table.
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Common name Pyruvic acid
General formula C3H4O3

Structural formula
(hydrogen atoms 

hidden, carbon 
atoms implicit)

Balls-and-sticks 
3D representation

SMILES formula O=C(C(=O)O)C 
InChi formula 

(non-hashed)
1S/C3H4O3/c1-2(4)3(5)6/h1H3,(H,5,6)

 V.A.2.  Reactions
Chemical reactions  involve the transformation of one or more substrate compounds into one or 

more product compounds (collectively called reactants). This transformation can be described at its 

simplest by a stoichiometric formula which compiles the number of molecules of each involved 

compound and the  reaction  direction.  More  detailed  descriptions  exist  that  detail  the  chemical 

structures  of  the  reactants  and  the  mechanism  of  the  transformation.  Chemical  reactions  are 

generally  spontaneous  and reversible  (i.e. can  take  place  in  both directions,  from substrates  to 

products  or from products  to substrates)  but  not  all  reactions  nor directions  are  equal  from an 

energetic point of view, and most are extremely unlikely to happen spontaneously.  An example 

reaction is given in the following figure:
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Illustration V.1: Example reaction for pyruvate

A metabolic reaction taken from MetaCyc [www.metacyc.org], illustrating the reversible transformation  
of pyruvate (the base ion for pyruvic acid) into formate.
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The speed v+ at which a chemical reaction transforms substrates into products (or v- for products 

into substrates) is dependant on a number of factors:

• reactant  activities,  which  are  closely  linked  to  reactant  concentrations  for  entities  en 

aqueous solution

• reaction  surface  area,  or  the  sum  total  of  all  reactant-reactant  interface  surfaces,  of 

particular importance when reactants do not belong to a same phase (i.e. solid, aqueous, 

alcohol, gaseous...)

• pressure  and temperature, which influence how often reactants can approach each other 

sufficiently for the transformation to take place

• presence of a catalyst

• activation energy EA, which is the minimum amount of energy that must be provided to 

reactants for a reaction to initiate.

Given initial concentrations of reactants in aqueous solution, a chemical reaction will modify these 

concentrations over time until they reach asymptotic limits that correspond to chemical equilibrium, 

a sign that v+ and v- are equal. The equilibrium constant Keq is the ratio of the reaction speeds.

 V.A.3.  Enzymes
Many reactions  are  considered  irreversible  in  typical  laboratory  operating  conditions  (25°C,  1 

atmosphere  pressure)  and many require  specific  conditions  (e.g. solution  acidity)  or  an  energy 

source (e.g. heat) to take place.  The use of  catalysts,  i.e. substances that can participate in the 

reaction but that are not modified durably by it,  can greatly increase the efficiency of a given 

reaction. Catalysts reduce the activation energy a reaction requires to initiate, effectively increasing 

the  reaction  speed  and/or  reducing  exterior  energy  source  requirements,  without  affecting  the 

equilibrium constant. In inorganic chemistry for example, the use of platinum as a catalyst greatly 

reduces the heat and pressure conditions required for organic molecule hydrogenation to take place.

Metabolic reactions are chemical reactions that take place in a living cell. High levels of heat and 

pressure  are  obviously  incompatible  with  Life  (even  thermophile  bacteria,  that  can  withstand 

temperatures close to the boiling point of water, could not withstand the high temperatures required 

to hydrogenate unsaturated fatty acids for example). Hence, biologically-available catalysts are of 
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prime importance in the biochemistry of life. 

The great majority of biocatalysts are enzymes, which are a particular type of protein. Some other 

biological molecules have catalytic properties, such as ribosomes, ribozymes, and other types of 

active RNAs. Unlike usual catalysts, however, enzymes may have particular behaviours in respect 

to the equilibrium constant. Indeed, if a given constant heavily favours one reaction direction, then 

conditions (such as sequential enzymatic reactions) may ensure that the enzyme effectively catalyses 

only this direction. Furthermore, enzymes often couple secondary reactions to their primary ones. 

Enzymatic coupling allows the  transfer  of  chemical  energy between reactions,  e.g. using  ATP 

hydrolysis to initiate liposynthesis reaction, or using the concentration-gradient driven passage of 

protons through a membrane ATP synthetase in order to regenerate ATP.

Enzymology, or the study of enzymes, generally assumes that reactants and the studied enzyme are 

in an aqueous solution and at conventional laboratory conditions compatible with Life. However, 

studying enzymatic activities is more complex than for simpler chemical reactions, as the catalyst 

intervenes actively in the reaction mechanism and often couples one reaction to another, rendering 

the depiction of a molecular model difficult. The simplest of such models is the Michaelis-Menten 

model, that considers that the enzyme and its substrates must bind in an easily reversible step into 

an enzyme-substrate complex, that is then transformed into a product by a more favourable second 

step. Closed-form mathematical descriptions of reactant and free-enzyme concentrations, as well as 

reaction speeds, over time are derivable with this model, and several quantities of interest are used 

to characterise enzymatic reactions:

• Unlike inorganic catalysts,  enzymes have saturation dynamics; indeed,  each enzyme has 

only a limited number of active sites (usually one per reaction type except for multimeric 

enzyme complexes). This means that the reaction rate approaches an asymptotic maximum, 

noted Vmax, as the concentration of substrate increases.

• The Michaelis constant KM is the substrate concentration at which the global reaction rate is 

at half its maximum Vmax, and is a measure of the inverse of the affinity of the enzyme for 

the substrate. The smaller the KM, the higher the affinity, and the faster Vmax will be reached.

• Vmax can be expressed as a function of the initial quantity of free enzyme times a constant. 

This  constant  is  the  turnover  number,  kcat,  which  is  the  maximum number  of  substrate 

molecules  that  one enzyme molecule can convert  per second. The enzymatic  efficiency, 

Kcat / KM, is useful in comparing enzymes.

76 / 229



Metabolism

Protein  activity  is  heavily dependant  on its  3D structure  and amino acid  sequence.  Indeed,  an 

enzyme  intervenes  in  the  chemical  reaction  thanks  to  several  mechanisms  such  as  correctly 

positioning the substrates,  distorting electron fields,  forming temporary chemical bonds,  readily 

providing labile protons, etc., thanks to the disposition of its amino acid side chains (“residues”). 

Structural proteins stick together thanks to specific binding sites. Regulatory proteins interact with 

other  proteins  or  molecules  thanks  to  3D domains.  Actually,  the  entities  coexisting  within  the 

bubbling cauldron of a cell are so numerous and varied, that many different types of interactions 

can take place between them, leading to a phenomenon known as  functional promiscuity (see 

section V.C.1). Thus, the relationship between coding gene and activity can be a many-to-many one. 

For example, some enzymes are made up of one or more identical (different) proteins, and are thus 

homopolymeric  (heteropolymeric,  respectively).  Inversely,  one  activity  may  be  catalysed  by 

different proteins without evolutive relationships, which are then called isozymes or isoenzymes.

All in all, this serves to show that any functional annotation can always be considered with doubt, 

as it can not only be possibly wrong or biologically irrelevant, but it can be incomplete in many 

unexpected ways, especially since experimentally testing every different protein for every function 
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Illustration V.2: Experimental determination of Vmax

The  maximum  reaction  rate  of  an  enzyme  that  follows  Michaelis-Menten  reaction  kinetics  can  be  
determined  by plotting  the  reaction  rate  (i.e. the  speed  at  which  substrate  is  consumed  or  products 
produced) of the enzyme against different concentrations of substrate. The reaction rate approaches an  
asymptotic maximum for increasing substrate concentrations. The Michaelis constant KM can also be read 
from the same plot, as shown here.
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imaginable in each different type of cell is simply not feasible. This should always be kept in mind 

when creating functional annotations or when studying the activity of a given enzyme, even when 

its coding gene's context points rather clearly to a specific activity, such as a step out of a metabolic  

pathway.

Enzymes catalyse biochemical reactions, transforming environment substrates into molecules better 

adapted to the cell's requirements. A single substrate can be submitted to sequential transformations, 

gradually modifying or incorporating it. Such chains of transformations are known as metabolic 

pathways and are presented below.

 V.A.4.  Metabolic pathways
Metabolic reactions do not operate alone within the cell; indeed, often the product of one reaction is 

a substrate of another, allowing a cell to transform one metabolite into another in a series of simple 

steps. A metabolic pathway can be broadly defined as a set of linked metabolic reactions that 

participate in a same higher-level metabolic process, along with contextual and experimental data. 

However, the exact definition for what a metabolic pathway actually is remains in debate and some 

of the important points are discussed below.

Historically,  metabolic  pathways  were  described  experimentally  by  biochemists  in  a  given 

organism.  Metabolic  pathway definition  was  thus  organism-specific  and  its  reactions  respected 

stoichiometry balance. Phenotypic data, gene regulation data, gene essentiality data and genomic 

data could also be used to describe environment-specific pathways, their regulation and genomic 

localisation, such as with the lactose operon [197]. Most importantly, certain compounds from the 

pathway were considered as more important than others: “main compounds” captured the most 

important path through the metabolic  reactions,  not linking reactions via  secondary compounds 

(often that could be considered to come from an available cellular “pool”, such as with energetic 

substrates).  These  paths  were  considered  biologically  relevant  as  they  followed  the  flow  of 

biochemically  relevant  atoms  (such as  carbon  and  nitrogen)  and  could  thus  be  experimentally 

validated by atom-tracing experiments (e.g. [198]). Anabolic pathways concerned the synthesis of 

compounds  from others,  usually  at  the  expense  of  energetic  substrates  (e.g. DNA replication); 

catabolic pathways  degrade  compounds  into  simpler  products  and  energetic  substrates  (e.g.  

glycolysis).
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 V.A.5.  Metabolic Resources
 V.A.5.a.  Compounds

The Chemical Entities of Biological Interest (ChEBI) is a publicly-accessible database dedicated to 

describing chemical atoms or compounds that are known to participate in the metabolism of living 

organisms. It is maintained by the  European  Bioinformatics  Institute (EBI) (located in the UK). 

Large molecules (such as biopolymers) are not included in ChEBI. The ontology used in ChEBI 

conforms to directives from both the International Union of Pure and Applied Chemistry (IUPAC) 

and the International Union of Biochemistry and Molecular Biology (IUBMB). PubChem is another 

public database maintained at the National Center for Biotechnology Information (NCBI) (located 

in  the  USA) that  describes  molecules,  complexes  and mixtures.  Both  of  these  resources  allow 

retrieval of various chemical data, as well as keyword or chemical structure searches.

 V.A.5.b.  Reactions and Enzymes

The  International  Union  of  Biochemistry  and  Molecular  Biology  (IUBMB [www.iubmb.org]) 

provides  community  interactions  and  statutes  on  values,  ethics  and  standards  in  biochemistry-

realted scientific  domains.  Amongst  other  things,  they propose the  EC (Enzyme Commission) 

classification  scheme [www.chem.qmul.ac.uk/iubmb/enzyme], which is a vocabulary specific to 

metabolic reactions that are catalysed by enzymes (i.e. enzymatic activities). Distinct activities are 

identified  by  a  4-digit  number.  Each  number  refers  to  a  increasingly  precise  biochemical 

description.  The  first  number,  for  example,  describes  a  “reaction  group type”  and can  be  any 

number from 1 to 6 (1: oxidoreductases, 2: transferases, 3: hydrolases, 4: lyases, 5: isomerases, and 

6:  ligases).  The  4th  digit  generally  refers  to  substrate  specificity.  EC numbers  present  several 

inconveniences,  of  which:  sub-class  digits  do  not  correspond  between  classes;  the  sequence-

structure-EC number relationship is not straightforward; and EC numbers are not designed to take 

into account multi-functional enzymes. All of these are well-known problems for computational 

biology [100,199,200,183].

Quite obviously, EC numbers cannot be used for describing non-metabolic functions.
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Dedicated databases exist that census enzymes and associated information. Some sequence data-

banks generically track which genes/proteins are associated with which enzymatic activities,  e.g. 

UniProt  [201]. The ENZYME database catalogues EC numbers that are associated to proteins in 

UniProtKB/Swiss-Prot,  guaranteeing  high-quality  annotations  [202].  The  BRENDA  database 

[203,204] is dedicated to compiling experimental biochemical information for each EC number in 

each organism, such as the enzyme reaction constants presented previously in this section, as well 

as bibliographic references that back them. Rhea [http://www.ebi.ac.uk/rhea/] is the EBI's academic 

metabolic reaction database. However, many databases describing metabolic reactions also put them 

into biochemical contexts: metabolic pathways.

 V.A.5.c.  Metabolic pathways

Several bioinformatics resources exist that formalise metabolites, metabolic reactions and metabolic 

pathways in their own way.

KEGG: The Kyoto Encyclopedia of Genes and Genomes (KEGG) is, despite its name, first and 

foremost  an  academic  database  of  metabolic  reactions  and  pathways,  with  large  pan-organism 

metabolic  maps with organism-specific  projections  [205].  A KEGG map is  made up of KEGG 

Reactions and KEGG Compounds. KEGG Reactions generally correspond to EC numbers, though 

many KEGG reactions are specific instances of generic EC numbers. KEGG supports the KEGG 

RPAIR database, which contains ReactionPairs. These are -in essence- pairs of compounds involved 

in a given reaction, with focus upon chemical groups that are modified or transferred during the 
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Illustration V.3:  The Enzyme Commission number principle

Distinct activities acknowledged by the IUBMB are identified by a 4-digit number. Each number refers to 
a increasingly precise biochemical description. The first number describes a “reaction class”. The 2nd 
describes a “reaction sub-class”. The third gives an indication on the involved compounds. The 4th digit  
is arbitrary, and can be considered to refer to substrate specificity.
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reaction between molecules. The KEGG LIGAND database is an integrated database containing 

(amongst other things) KEGG Reactions, Compounds, and RPAIRs. Other more specific resources 

are available, such as KEGG Glycan and KEGG DRUGS. To complement the large KEGG maps, a 

smaller-scale definition of metabolic pathways is implemented in the KEGG modules resource.

EcoCyc, MetaCyc and BioCyc: Peter D. Karp et al. developed the EcoCyc database in 1997 

[206,207].  EcoCyc  comprised  an  original  database  system storing  experimentally-demonstrated 

information on the genes, enzymes, and associated metabolic reactions and pathways found within 

the Esherichia coli K-12 genome, as well as a graphical interface for accessing the data. Since, the 

same procedure has been applied to the genomes of many well-studied prokaryote and eukaryote 

organisms,  creating  what  have  become  known as  organism-specific  pathway/genome  databases 

(PGDBs) for each. The collection of databases with experimental results is called MetaCyc, and 

together  with  EcoCyc they form the “tier  1”  PGDBs.  Building on the  success  of  EcoCyc and 

MetaCyc, other *Cyc databases were created, using bioinformatics predictions benefiting from the 

previous experimental demonstrations in other organisms. These predictions were established by the 

Pathway  Tools  software  suite  [208,209],  and  the  generated  PGDBs  are  “tier  2”  and  “tier  3” 

according  to  the  level  of  manual  verification  and  curation  they  have  undergone  since.  The 

MicroCyc  component  of  the  MicroScope  platform  is  an  extended  pathway  genome  resource 

stemming from a “local” installation of the MetaCyc database and software. It contains the PGDBs 

of all the MicroScope organisms.

Reactome:  Reactome  [210–212] is an open-source expert-curated database of human reactions 

and pathways with multiple inter-database cross links, with a focus on inferring orthology events in 

other higher eukaryote species.

Unipathway: Unipathway [http://www.grenoble.prabi.fr/obiwarehouse/unipathway] is an expert-

curated database with a novel reaction-chain model. It also stores metadata about its hierarchically-

organised pathway definitions. It is integrated with the UniProtKB resource [213].

ExPASy: ExPASy provides a web access to the Roche Applied Science "Biochemical Pathways" 

wall  charts  [http://web.expasy.org/pathways/].  The  portal  allows  searching  by keywords  or  EC 

numbers,  and returns clickable pathway images with links to the ENZYME database. There is, 

however, no underlying data model allowing the resource to be queried in respect to the pathways.
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A survey of the metabolic resources, classified into “resource families” such as MetaCyc, KEGG, 

Reactome  and  BiGG,  can  be  found  in  [214],  where  the  authors  compare  present  data  types, 

metabolism coverage,  and analysis  tools.  During  this  thesis,  I  worked almost  exclusively with 

KEGG and MetaCyc, due to their availability in the MicroScope platform. See [Illustration V.4: The

allantoin degradation pathway in KEGG and MetaCyc] in the following section for a graphical 

representation of a pathway from each.

 V.B.  Dealing with Metabolic Pathways

 V.B.1.  Metabolic pathway representations
 V.B.1.a.  Representing pathways as networks

With the advent of computational biology arose the need to represent metabolic pathways using 

abstract, mathematical models that computers could process. A common and humanly-readable way 

of representing one or several metabolic pathways is as networks (also known as graphs). Three 

types of metabolic pathway network representation exist:

Compound-centred network: network nodes are chemical compounds, and directed network 

(hyper-)edges are the reactions that can transform the compounds. The use of hyper edges (i.e. 

edges with multiple start and end vertices) for reactions modifying several metabolites at once is  

useful for capturing reaction reversibility, though it implies a rather daunting network complexity. 

Hyperedges can be broken down into “normal” edges, though in this case a single reaction would 

correspond to multiple edges (and a same edge could correspond to multiple reactions).

Reaction-centred  network: network  nodes  are  the  reactions,  with  network  edges  added 

between  two reactions  when they share  a  common compound.  This  representation  is  the  least 

humanly readable,  as the conceptual link from a compound of interest to the clique (see graph 

theory annex) of reactions it links in this sort of graph is not easy nor readily visible.

Bipartite network: both reactions and compounds are represented by different types of nodes, 

and edges  indicate  compound  participation  in  linked reactions.  This  representation  is  the  most 

understandable,  but the existence of two types  of nodes increases algorithmic & computational 

complexity, as well as posing reversibility tracking problems. KEGG and MetaCyc use this kind of 

representation, even if the underlying data models are more complex (see [Illustration V.4: The

allantoin  degradation  pathway  in  KEGG  and  MetaCyc]  on  the  next  page  for  a  graphical 
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representation of each).

Petri Network: a Petri network is a special kind of bipartite graph composed of two types of 

nodes called places and transitions, linked together by directed arcs. Tokens can occupy the places, 

and can be moved about via the arcs when transitions fire. They were initially designed to describe 

chemical reactions, but are also suited to metabolic networks. In the latter context, places represent 

types of molecules, and tokens are instances of these molecules, that are transformed by metabolic 

reaction transitions. A seminal paper that presents the methodology is [215].

Other  ways  of  modelling metabolic  networks  exist,  though it  is  not  necessary in  this  thesis  to 

develop them all. Do note that it is possible to pass from one network representation to another, if  

the necessary information is available, which is particularly useful for producing human-readable 

results.  In  the  rest  of  this  manuscript,  we  will  use  compound,  reaction  or  bipartite 

compound/reaction graph representations. For each of these, several choices must be made on how 

to process metabolic information.
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a) b)

Illustration V.4: The allantoin degradation pathway in KEGG and MetaCyc

a)  What  biochemists  consider  as  the  anaerobic  degradation  of  allantoin  pathway  is,  in  the  KEGG 
database,  part  of  a  broader  metabolic  map  called  “Purine  Metabolism”  (ec00230).  The  allantoin 
degradation  part  is  surrounded by a  red box.  b)  A dedicated pathway object  exists  in  the  MetaCyc  
database to describe this metabolic process (PWY0-41).



Metabolism

 V.B.1.b.  Metabolic network scope

First of all is the scope: a) does the network represent metabolic data for one, or for all organisms ? 

and  b)  does  the  network  represent  a  single  metabolic  pathway,  or  the  sum  of  all  metabolic 

pathways ? One network of note is the  Global Metabolic Network,  representing all  metabolic 

reaction connectivity across all known organisms.

 V.B.1.c.  Metabolic network edge building

The second important choice is that of which compounds are used to link reactions together. As 

previously  mentioned,  historical  metabolic  pathways  define  main  compounds  and  secondary 

compounds.  Linking reactions  by ubiquitous compounds such as water  (a  common product)  or 

Adenosine Tri-Phosphate (ATP, a common chemical energetic substrate) results in highly connected 

networks which are not necessarily relevant, either biologically, computationally or graphically. For 

example,  when representing the glycolysis  pathway,  which describes the general degradation of 

glucose and the use of the liberated energy to produce ATP, the pathway should represent the fate of 

the atoms of most important pathway-relevant compounds, namely glucose itself. It is natural to 

link the successive reactions that transform glucose; it would not be natural to link together all the 

different  reactions  from the  pathway that  actually  produce  (or  consume)  ATP:  as  an  energetic 

substrate, this would be biologically irrelevant, even if in situ, ATP produced by one enzyme could 

very well be consumed by another in the pathway. Conversely, ATP can be a main compound in 

certain metabolic pathways, such as in purine metabolism, where it is a substrate for RNA and DNA 

synthesising processes.

Different  computational  biology  protocols  have  been  developed  to  address  the  problem  of 

identifying main compounds in metabolic networks:

• connect reactions by all shared compounds

• use main compound definitions where they are available

• attempt to infer main/secondary compound assignments

The first case is trivial, leading to heavily connected networks, and generally requiring some sort of 

filtering of results found with them. The second case relies on the definition of main compounds 

that  can be extracted from experimental  metabolic  pathway definitions.  The last  case relies on 

predictive methods such as:
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Compound removal: a heavily-used (ubiquitous) compound should be either removed or at 

least less favoured as it is less likely to be pathway-relevant.

Computational  atom  tracing: attempt  to  match  computationally  the  atoms  from  the 

structures  of  a  reaction's  substrates  and  products;  use  this  knowledge  over  several  successive 

reactions to decide which compounds are “main”.

Compound  removal  on  the  basis  of  degree  is  commonly  used,  e.g. in  [216].  Using  weighted 

networks  that  impose  a  heavier  cost  of  passing  through ubiquitous  compounds has  since  been 

shown  to  outperform previous  protocols  and  has  been  used  for  example  in  [217].  Compound 

matching  corresponds  much  more  to  the  biological  point  of  view on  metabolic  networks  (i.e. 

focuses on the fate of key atoms or molecular substructures) and has been extensively explored over 

the past decade [218–224].

 V.B.2.  Metabolic pathway reconstructions
In  order  to  build  a  comprehensive  global  view  of  an  organism's  metabolism,  it  has  become 

commonplace  to  carry out  a  “genome-scale  metabolic  reconstruction”.  This  is  a  computational 

network model of the chemical transformations that can take place within a cell,  extracted and 

extrapolated  from the  sum total  of  metabolic  knowledge  with  which  its  genome is  annotated. 

Metabolic  reconstructions  can  then  be  used to  complete  current  metabolic  knowledge,  to  align 

observed phenotypes with current metabolic knowledge, to compare the metabolisms of different 

organisms  [225],  to  make  metabolic  predictions,  to  help  with  metabolic  engineering,  to  help 

understand the evolution of metabolism, etc [226].

 V.B.2.a.  Protocols

A metabolic reconstruction starts with the extraction of all known metabolic reactions assigned to 

the genes of the target genome. After this, two strategies are possible.

The first strategy is the ab initio reconstruction of the metabolic pathways from known activities. 

The latter  serve as  anchor  points,  between which additional  reactions  can be added so that  all 

reactions  form  a  connected  component.  The  choice  of  additional  reactions  can  be  based  on 

connected reactions from a global metabolic map of all known metabolic activities, or can be based 

on  inferring  required  chemical  transformations.  For  example,  Boyer  et  al. [221] reconstruct 

pathways on the basis of atom transfers. Faust  et al. [227] walk a global metabolic network with 

nodes weighted in order to favour non-ubiquitous compounds so as to connect multiple known 
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reactions. A review of such methods can be found in [227,226].

The other strategy is reconstruction by homology, where pathway existence is extrapolated from 

present reactions and known pathways in other, phylogenetically close organisms. This is typically 

what the Pathologic software of the Pathway Logic Software Suite does  [209]. Given an initial 

genome annotation file (such as a GenBank file), PathoLogic first establishes the list of all known 

metabolic reactions in the genome using annotated EC numbers and/or product descriptions, before 

assessing whether there is sufficient evidence for the existence of each MetaCyc pathway within the 

studied organism8.  KEGG, however,  does  not  benefit  from such top-down reconstruction;  their 

organism-specific pathway maps are merely projections of current knowledge onto global maps.

In both cases, inconsistencies (mis-annotations, dead-end metabolites, etc) can be checked for and 

manually curated, iteratively improving the network [228].

 V.B.2.b.  Reaction gaps

With a metabolic reconstruction, dead-end metabolites (i.e., a metabolite in a metabolic network 

that  is  either  only  consumed  or  only  produced)  and  incomplete  metabolic  pathways  become 

apparent. Reactions that are missing but are required to complete the map are known as reaction 

gaps and  are  often  considered  as  potential  metabolic  functions  that  require  uncovering  in  the 

genome  of  an  organism.  In  methods  such  as  [216], reaction  gaps  derived  from  metabolic 

reconstructions are specifically targeted for the creation of novel functional annotations (see section 

VI.C.1.d for more detail).

 V.C.  Biocatalysis applications

 V.C.1.  Enzyme promiscuity
Previously-discussed protein promiscuity also applies to enzymes. Enzyme-specific promiscuity has 

generally been classified into two types:

• Substrate  promiscuity describes  the  fact  that  some  enzymes  may  catalyse  the  same 

chemical reaction but on multiple similar substrates; the opposite of this is high substrate 

specificity. Both of these cases have been observed by biochemists. 

• Catalytic  promiscuity refers  to  the  ability of  an  enzyme to catalyse different  chemical 

8 Arbitrarily, predicted pathways are declared “possibly” present when their completion (i.e., the ratio of the number 
of present reactions from the pathway over the total number of reactions in the pathway) is in ]O%; 50] ; they are 
“probably” present in ]50%; 100[.
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reactions. This is often observed for multi-functional enzymes or protein complexes that 

catalyse successive steps from a given metabolic pathway. 

Comparing relative enzyme efficiencies Kcat can indicate which substrates/reactions are the most 

important for the cell (as it is expected to be submitted to more stringent selection which should 

render the enzyme more efficient for it), though in vitro and in vivo conditions might be different 

enough to scramble the signal, or substrate preference can be context-dependant  [229]. It is even 

thought that entire metabolic pathways could actually present yet-unknown alternative activities 

that  would be relevant  only under specific conditions;  this  is  called “underground metabolism” 

[230] and is thought to be behind much of the “dark matter” of modern metabolomics [229]. 

 V.C.2.  Industrial applications
Using the chemical transformation properties of living organisms has been an age-old practice in 

human culture. Be it for fermenting hops into beer, grapes into wine, starch into raised bread, or 

fixation of leather by saliva enzymes, humans have exploited organic substances throughout history, 

without even knowing exactly what they were doing until the 19th century. As biological sciences 

progressed,  the  origin  of  biologically  catalysed  transformations  became apparent,  and enzymes 

started to be isolated from parent organisms in view of scaled-up applications. However, the lack of 

biological  knowledge,  know-how  and  the  inherent  complexity  of  life  constrained  biochemical 

efforts.  Since  the  1970s,  these  hurdles  have  been  jumped,  thanks  to  genetic  engineering  and 

molecular biology, opening new possibilities for industrial developments [231].

The advantages and drawbacks of biochemical over chemical transformations are numerous and 

cannot all be listed here. Of particular note to the non-initiate are (amongst others):

Advantages: enzymes often function at conditions not harmful to life, and are thus much easier 

to manipulate; they are very efficient catalysts and can be used in small quantities; they are entirely 

biodegradable, with no impact on the environment, which is particularly interesting in this day and 

age of green technologies

Drawbacks: enzymes can be fragile; enzymes can be hard to isolate in large quantities; enzymes 

can depend on co-factors  that  require  regenerating  (such as  nicotinamide  adenine  dinucleotide, 

NAD+, a common enzyme cofactor involved in many redox metabolic reactions); enzymes are often 

kinetically  challenged  by  substrate/product  concentrations;  and  the  full  spectrum  of  possible 

enzymatic transformations is not yet known.
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It is in particular this last point that the methods explored in this thesis might help to alleviate.

Our  knowledge of  prokaryote  (or  even eukaryote,  for  that  matter)  metabolism continues  to  be 

plagued by many gaping holes. The works in this thesis hope to address at least part of this problem 

by helping scientists to comprehend the inner workings of prokaryote organisms, which as pointed 

out might give rise to interesting industrial applications. In the following Chapter, I shall focus on 

one specific issue of our knowledge of metabolism: the orphan enzyme. I will present the extent of 

this problem, as well as several existing methods that strive to address it.
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 VI.  Orphan enzymes and how to adopt them

 VI.A.  Definitions
Diverse biochemical experiments can reveal metabolic enzymatic activities in cultivated organisms. 

However, actually associating gene/protein sequences with these activities is a tedious and costly 

process (see chapter  IV). As a consequence, such associations lag behind the discovery of new 

activities, leading to an accumulation of “metabolic knowledge holes” in our representations of 

metabolism.

Two  types  of  “holes”  are  formalised  in  [232],  depending  on  the  state  of  current  metabolic 

knowledge. On the one hand, when either the presence of an incomplete metabolic pathway, or the 

existence of dead-ends in a metabolic network reconstruction, suggest that a given organism should 

be able to catalyse a metabolic reaction (for the pathway to be complete),  but the gene for the 

corresponding enzyme is unknown, then this organism is said to have a “reaction gap”. On the 

other  hand,  if  an  organism is  known (thanks to  experimental  evidence)  to  produce an enzyme 

catalysing a given reaction, but the gene for it is unknown, then this metabolic activity is called an 

“orphan  reaction”9.  Due  to  the  correspondence  between  gene  and  reaction  transiting  via  an 

enzyme, these orphan reactions are sometimes abusively nicknamed “orphan enzymes” for short. So 

as to be as precise as possible,  I will  employ the term “orphan reaction” to designate a  “local 

sequence-orphan enzymatic  activity”,  where “local”  indicates  that  the  activity is  a  sequence-

orphan in the studied organism. The reasons for this distinction will become clear in the paragraph 

after next.

Establishing  the  list  of  organisms  able  or  unable  to  catalyse  a  given  reaction  is  not  a  trivial 

endeavour. Indeed, resources such as BRENDA [203] catalogue known activities for each organism, 

but not their absence. Correctly establishing per-organism orphan enzymes would require both types 

of knowledge. For this reason, a common work hypothesis is that all organisms can potentially code 

all known activities, until the perfect annotation of their genome proves otherwise. Hence, orphan 

enzymes can be supposed to exist even in organisms with no experimental evidence that they can 

catalyse them (or not).

Building  upon  this  hypothesis,  it  becomes  possible  to  define  phylogenetic  scopes  for  orphan 

enzymes. An enzymatic activity that is orphan in a single organism is a local orphan reaction; if it 

9 Not to be confused with “ORFans”, i.e. Open Reading Frames with no detected homology to any already-annotated 
ORFs.
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is orphan across a given clade (i.e. across a single branch of the Tree of Life), it is a clade-specific 

orphan reaction;  finally,  if  it  is  orphan across  all  sequenced genomes,  it  is  a  global  orphan 

reaction.  An  example  of  clade-specific  orphan  enzymatic  activity  is  EC  1.1.1.10  (L-xylulose 

reductase), which has known coding genes in several Eukaryotes (including various fungi,  homo 

sapiens,  mus musculus...), and although it is known to be catalysed in  Erwinia sp., no prokaryote 

genes encoding it are known: it is thus a prokaryote orphan reaction.

In the  rest  of  this  work,  I  will  work with  the  hypothesis  that  all  organisms could  catalyse  all  

reactions, and will restrict myself to prokaryote orphans unless otherwise specified.

The main objective of methods aiming to solve the orphan enzyme problem is to find  candidate 

genes for the target activity. Candidates should preferably be ranked according to some measure of 

plausibility.

Another  issue  in  bioinformatics  uses  the  term “candidate  genes”.  In  genetic  studies,  scientists 

attempt  to  discover  which  genes  participate  in  a  given  phenotype  or  disease  on  the  basis  of  

experimental evidence. As for the orphan enzyme problem, the objective is to identify these genes, 

evaluate and rank the likelihood of their involvement in a higher-order process.

 VI.B.  Adoption status
The  high  number  of  global  sequence-orphan  enzymatic  activities,  and  their  impact  on  the 

performances of automatic gene annotation methods, has motivated the call of several scientists for 

a “global enzymatic genomics initiative” [233–236]. Several surveys of enzyme orphans have been 

undertaken, trying to establish exactly how many orphan enzymes there are, and whether they are 

averred orphans, or merely artefactual due to lack of proper efforts of scientists submitting results to 

journals  or  to  biological  databases  [2,237].  In  [2],  Karp  shows that  almost  18% of  enzymatic 

activities are probably artefactual (fraction evaluated on a sample of 228 out of 1500 of the orphan 

activities at the time).

These calls  are  probably part  of  the driving force that  led to the recent  efforts  of the UniProt  

Consortium [3]. In parallel, [238] have set up the OrEnzA database that is dedicated to listing, for 

the  most  recent  UniProt  release,  all  the  Orphan  Enzymatic  Activities  (as  defined  across  all 

organisms, be they prokaryotes, eukaryotes or archaea).

Here, I present a brief database study that David VALLENET and I carried out in order to establish 
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the adoption status of the EC numbers used in UniProt and the MicroScope platform.

 VI.B.1.a.  EC numbers over the years

The number of orphan enzymes varies over the years due to several factors:

• new EC numbers are discovered

• EC numbers are modified or removed

• coding genes for EC numbers are discovered and are published directly

• bibliographic efforts associate coding genes to EC numbers in old publications

• annotations are modified, corrected or removed

Here, we established a snapshot of the evolution of EC number discovery and gene association, 

allowing us to represent how badly annotations lag behind the discovery of new activities.

Protocol: We wanted to evaluate, for each year since the beginning of molecular biology:

• the number of EC numbers discovered;

• the number of EC numbers successfully associated to a gene/protein sequence in a scientific 

publication.

The list of EC numbers and their year of creation are accessible in the ENZYME database. In order 

to evaluate the date of the first successful gene/protein assignment for a given EC number,  we 

decided to  keep the earliest  publication giving an EC-sequence association,  with the additional 

constraint  of  ignoring  publications  concerning  more  than  10 proteins  (a  heuristic  for  avoiding 

whole-genome publications that cannot be considered as biologically precise enough for a given 

enzymatic activity).

To obtain our primary data, we followed the following protocol:

• From the  ENZYME database,  extract  the  list  of  all  current  EC numbers  (thus  ignoring 

deleted numbers). We obtain an up-to-date list of EC numbers.

• From the  UniProt  KnowledgeBase,  extract  the  list  of  all  proteins  associated  to  an  EC 

number (be they from the SwissProt component or the TrEMBL component). We thus have 

an instantaneous “snapshot” of the annotation state of all EC numbers.

• From PubMed, extract the list and correspondences of all publications referencing proteins.
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From this data we thus extracted, per year, the number of ECs discovered, and an estimation of the 

number of ECs assigned to a protein/gene sequence.

Results: Results are given in [Illustration VI.1: EC numbers over time]. Biochemists have actively 

discovered  new chemical  reactions  catalysed  by biological  agents  over  the  past  century.  Now-

computerised scientific publications indicate the use of IUBMB-defined EC numbers since the mid-

1930's.  Other  publications  show that  the discovery of  the  protein sequences  of  the  responsible 

enzymes started shyly in the 1950's with the development of Sanger protein sequence sequencing. 

In the 1970's, the development of Sanger DNA sequencing greatly boosted the number of gene 

sequences  associated  to  EC-bearing  enzymes,  while  the  development  of  Expression  Cloning 

stimulated the discovery of novel enzymatic activities. Over the past decade, despite the completion 

of the genomic sequence of one, then thousands of organisms, both the discovery of new activities 

and of coding sequences have dropped considerably. More worryingly, this drop has not allowed 

sequence discovery to catch up with activity discovery. This explains the current 1,186 (27% of 

4,150) of enzymatic activities that remain sequence orphans to this day.
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These estimations are not fixed over time, however. Indeed, as already said, activity descriptions 

evolve, and bibliographic computerisation efforts allow improved access to results dating back to 

the start of the century. UniProt is typically undertaking such an effort [3]. The differences between 

the counts from 2007 and today are not graphically visible, yet the total number of orphans has 

fallen from 35% to 27% in the intervening time, despite an increase in EC number count (data not 

shown).

 VI.B.1.b.  Orphan activity counts

As a  result  of  the  previously represented  history,  a  certain  number  of  metabolic  activities  are 

considered globally orphan today. Establishing an up-to-date list of them is of prime importance for 

bioinformatics methods that focus on finding candidate genes for orphan enzymes.

Protocol: As before, the set of all EC numbers was extracted from ENZYME. All annotations 

were extracted from UniProt KnowledgeBase, KEGG and MicroScope's database. Finally, OrEnzA 

was interrogated.

Results: The following results were obtained in autumn 2010:

Database Number of EC 
numbers

Percentage 
of total

ENZYME 4,150 100.00%
Number of global 

orphan EC numbers
UniProtKB 1,186 28.58%
 - SwissProt 1,664 40.10%
 - TrEMBL 1,440 34.70%
KEGG 1,938 46.70%
MicroScope 2,038 49.11%
OrEnzA 1,170 28.19%
All 1,132 27.28%

SwissProt has a higher level of global orphan EC numbers than TrEMBL, as the latter contains 

mostly (but not exclusively) bioinformatics predictions that have not been sufficiently verified for 

integration into the former.

MicroScope has the highest level of orphan EC numbers, however this is to be expected, as it is 

limited to prokaryote organisms only, while some EC numbers can be eukaryote-specific.
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All of these resources, however, have a small number of non-orphan EC numbers that is specific to 

them (data  not  shown),  likely  due  to  differences  in  procedures  and  effort  investment.  This  is 

underlined by the lower global orphan EC fraction when considering the union of all the resources 

(27.3%).

The OrEnzA resource should have exactly the same count of orphans as UniProtKB, as it is derived 

from it using the same protocol presented above; the observed difference is due to a difference in 

releases.

 VI.C.  Methods for finding candidate genes
As  already  stated,  homology-based  annotation  methods  are  not  capable  of  solving  the  orphan 

enzyme  problem  for  lack  of  known  sequences  for  the  target  activities,  unlike  context-based 

methods. A review of web-based tools that can be used manually by bioanalysts to find the most 

promising candidate genes for a target reaction (not necessarily orphan) can be found in  [239]. 

Below,  I  review  for  my part  several  context-based  methods  specifically  capable  of  proposing 

candidate genes for orphan enzymes.

 VI.C.1.a.  Annotation platforms

In  section III.B.2,  I  pointed  out  how annotation  platforms  allow  bioanalysts  to  act  as  human 

integrators  of  diverse  sequence-  and  context-based  information  sources  in  order  to  brew up  a 

plausible  functional  annotation  of  a  target  gene.  A bioanalyst  might  thus  be  able  to  propose 

candidate genes for an orphan enzyme. One such success story can be found in  [240]. However, 

bioinformatics  aim  (amongst  other  things)  to  develop  increasingly  automated  methodologies, 

simplifying and speeding up manual analysis.

 VI.C.1.b.  Exploitation of STRING data

The STRING is not an annotation platform. Even though it does not provide functional predictions 

based on its associations, it has been manually exploited by its users to find candidate genes for 

missing  enzymes  in  several  showcases  [241–243].  To  my knowledge,  however,  no  automated 

methods exploit STRING data specifically in order to find candidates for orphan enzymes. At best, 

[157] use STRING data with their  “elementary mode”-based pathway reconstruction method in 

order to extract lists of candidate genes for reaction gaps in the purine and pyrimidine metabolic 

pathways.
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 VI.C.1.c.  FRECs

[144] were the first to use metabolic context with genomic proximity to help locate sets of co-

localised  genes  coding  metabolically  linked  reactions,  allowing  gaps,  which  they  called 

Functionally  Related  Enzyme  Clusters  (FRECs).  Their  method  represents  genomes  as  circular 

graphs with edges capturing gene co-localisation, ignoring transcription direction. Their KEGG-

based metabolic network had reaction nodes linked by shared reactants,  i.e. compounds that are 

products of one reaction and substrate of the other. Correspondences between the two are derived 

from existing KEGG EC number annotations. 

Their algorithm is heuristic and searches for clusters of nodes in each graph that correspond via 

these annotations,  allowing for gene and reaction gaps.  It  is similar to a hierarchical ascending 

clustering algorithm: starting from the set of all gene-reaction associations as initial clusters, the 

latter are aggregated progressively using a single linkage algorithm that processes a distance matrix 

derived from two separate distances, the one calculated on the gene graph, the other in the reaction 

graph. More specifically, if Ci and Cj are two clusters, dg(i,j) describing the distance in the gene 

graph between the clusters, and dr(i,j) the distance in the reaction graph, then the integrated distance 

δ(i,j) is a binary value that is only worth 1 when the minimum distance between all pairs of genes  

from Ci and Cj is less or equal to 1 + Gapgene, and when  the minimum distance between all pairs of 

reactions from Ci and Cj is less or equal to 1 + Gapreaction.

Conservation of located FRECs across genomes was evaluated manually until  the slightly later 

works of  [143], which used the same graph comparison method along with another algorithm in 

order to locate a) conserved syntenies between pairs of genomes and then b) conserved syntenies 

across all genomes. This served as a basis for establishing KEGG's ortholog families (KEGG KOs).

These works were continued somewhat  in  [244],  where the authors integrate  several functional 

dependency indicators into a single indicator using a supervised learning approach. They teach a 

kernel  canonical  analysis  algorithm  [245] to  predict  protein-protein  associations  from  kernel 

similarities  calculated  for  gene  cluster  and  phylogenetic  profile  data.  Candidates  for  missing 

enzymes in known metabolic pathways are manually selected amongst the network neighbours of 

genes present in the given pathways, preferring genes already having annotations with partial EC 

number matches to the target reaction.

 VI.C.1.d.  ADOMETA

Various methods have been developed at Vitkup labs, the current show case being  ADOMETA 
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(Adoption of  Metabolic Genes for Orphan Activities), their orphan enzyme candidate gene finder 

that exploits genomic and expression context information [246,216]. Its general procedure is given 

in [Illustration VI.2: ADOMETA General procedure]. ADOMETA uses organism-specific metabolic 

reconstructions  to  define  EC-number  reaction-centred  metabolic  networks  with  degree-filtered 

compounds [Figure step 1]. Each reaction node is then “populated” with known enzyme-coding 

genes when available; unpopulated nodes are local orphan enzymes [Figure step 2]. The metabolic 

context of a target orphan is the set of all reactions connected to it by a path of maximum length k 

(k is typically set to 1, 2 or 3) [Figure step 3]. ADOMETA compiles several genomic context-based 

functional dependency measures: co-expression profile similarity, phylogenetic profile similarity, 

gene fusion/fission score, ordered gene clustering score, and protein interaction data. ADOMETA 

then  builds  an  integrated  score  using  two  approaches,  “direct  likelihood-ratio”  integration  and 

integration using the ADABOOST [247] algorithm. These scores are then used to rank genes of 

unknown function for gene-less reaction nodes [Figure steps 4 and 5]. A candidate gene's functional 

dependency for a target gene-less reaction is a weighted combination of its functional dependencies 

with the genes populating the target reaction's neighbour nodes - any of the component dependency 

measures, as well as the two integrated measures, can be used. The ADOMETA web server gives 

access to all these scores and ranks candidate genes based on them. ADOMETA is the first resource, 

to my knowledge, that can effectively propose candidate genes for orphan enzymes using contextual 

information in an entirely automated approach.
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 VI.C.1.e.  Pathway Hole Filler

A naïve Bayesian network-based approach called the PathwayHoleFiller (PHF) in [248] integrates 

genomic  (BLAST data)  and metabolic  (reaction  adjacency,  pathway “directon”)  information  in 

order to improve homology-based functional transfer. However, PHF cannot work for global orphan 
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Illustration VI.2: ADOMETA General procedure

From left to right: 1. For a target organism, retrieve metabolic network and list of genes. 2. Populate  
reaction nodes with genes according to gene annotations. Unassigned genes form the candidate gene list.  
3.  Local functional dependency network (metabolic context) for a target orphan enzyme is the set of 
reactions connected to the orphan activity in the metabolic network. The local functional dependency 
network for a candidate gene is extracted. A “fitness” score is derived for the candidate gene based on its  
functional dependency scores with genes encoding reactions from the orphan reaction metabolic context.  
4. All candidates are scored, then ranked.
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enzymes. This shortcoming was addressed in  [249,248], where the authors adapted their previous 

strategy to allow for context-based functional dependence. Firstly, they extracted protein-protein 

association  data  from Prolinks  (gene  neighbours,  gene  clusters,  gene  fusion,  and  phylogenetic 

profiles), in order to derive a binary functional dependence network. Secondly, they modified the 

strategy for proposing gene candidates for specific activities. In the case of orphan activities, not all 

genes from a genome were considered as candidates; rather, they were selected on the basis of three 

rules.  Given a  set  of  “seed” genes  coding proteins  catalysing other  reaction steps  of  pathways 

containing the target orphan activity, candidate genes are necessarily 1) in the same transcription 

directon as at least one of the seed genes, or 2) in the immediate network neighbourhood (as defined 

by ProLinks functional associations rendered binary) of at least a seed gene, and 3) not encoders of 

proteins already known to participate in the  same  pathway (allowing existing annotations to be 

questioned). Finally, they extended their original Bayesian classifier with new nodes to take into 

account context-dependant information, though exactly  how is not described in their paper  [248]. 

These modifications allowed candidate genes for global orphan enzymes to be proposed, scored and 

ranked in all organisms with a PGDB. They validate their new approach by performing a 5- or 10-

fold cross validation on a restricted list10 of known reaction-coding genes from EcoCyc  [207], as 

well as on a less well curated PGDB, CauloCyc.

 VI.C.1.f.  Miscellaneous

A couple  of  other  methodologies  might  be  worth  mentioning  for  the  more  algorithmic-hungry 

readers. Yao et al. [250] use a k-nearest neighbour clustering approach in a feature space integrating 

several more traditional dependency measures (expression correlation, chromosomal distance, gene 

clusters, and paralogy) into one using a chosen kernel. Obtained clusters are assigned functional 

terms  from KEGG maps,  COGs,  or  MultiFun  using  a  voting  scheme allowing  for  confidence 

estimation.  Chen  et  al.  [133] use  an  algorithm  based  on  path-walking  through  a  gene  co-

localisation/sequence similarity-based graph reminiscent  of SNAP to derive a novel measure of 

functional dependency. Missing enzymes in KEGG pathways are proposed and ranked on the basis 

of their functional dependency with genes already participating in those pathways.

The small number of accessible automated methods for finding candidate genes for orphan enzymes 

is one of the driving forces behind our intent to develop the “finding Candidate Genes for Orphan 

Enzymes” (CanOE) strategy, as presented in the following chapter.

10 Namely removing multi-functional enzyme-coding genes.
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 VII.  Development: The CanOE strategy
The CanOE (“finding Candidate Genes for Orphan Enzymes”) strategy is described in the scientific 

article  (and  its  associated  supplementary  material)  that  is  included  hereafter.  Some  points  are 

discussed more in detail here, particularly concerning experiments and technical implementation 

that were a major part of my work and that are not put forward in the article. Finally, additional  

perspectives and considerations are discussed concerning the use of the strategy.

 VII.A.  Overview
As already stated, a large fraction (27% at latest estimate) of all EC numbers refer to sequence-

orphan enzymatic activities. The use of context-based inference is a necessity, as usual homology-

based annotation transfer methods cannot annotate genes with these activities. The aim of this work 

was to propose a new strategy, inspired by bioanalysts'  manual  modus operandi,  that could use 

genomic  and  metabolic  context  information  contained  in  MicroScope's  database  to  propose 

candidate genes for global (or at least  prokaryote) orphan activities. This is done using a graph-

based algorithm that locates  groups of co-localised genes coding enzymes catalysing groups of 

reactions that are “close” in the global metabolic network, specifically allowing for gaps. Potential 

associations are proposed between gene and reaction gaps, and prioritised using a score integrating 

results  over  all  organisms  by  a  family-based  approach.  Generated  high-ranking  functional 

hypotheses  can  then  be  verified  experimentally,  for  example  by  the  LGBM  (laboratoire  de 

génomique et de biochimie du métabolisme) and LCAB (laboratoire de clonage et de criblage des 

activités de  bioconversion) teams at the Genoscope, which have a working history of elucidating 

orphan enzyme puzzles  [240,251,252]. The strategy must be accessible to all MicroScope users, 

preferentially via dedicated web interfaces.

 VII.B.  Article
Author Contributions and Acknowledgements:  Alexander  SMITH  and  David  VALLENET 

designed the strategy. AATS implemented it, as well as the web interface. DV and Gregory SALVIGNOL adapted  

the web interface for its public deployment. DV and Eugeni BELDA directed the bioanalysis of the case study.  

Claudine  MEDIGUE and  Alain  VIARI  reviewed  the  manuscript.  AV lead  the  development  of  the  CCCPart  

algorithm and graciously granted us permission to use it in this application. Damien MORNICO and François  

LEFEVRE assisted with parsing MetaCyc data to the MicroScope database. Marcel SALANOUBAT and Alain  

PERRET are involved with the tentative biochemical validation of the CanOE case study presented in the article.
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 VII.C.  Used concepts and tools
The CanOE strategy uses few outside tools but each of particular importance.

 VII.C.1.  The CCCPart algorithm
The Common Connected Component Partitioner (CCCPart or simply C3P) was developed in 2005 

by Frederic BOYER and co-workers  [5], and of which I summarise the general  modus operandi 

here (see [Illustration VII.1: The CCCPart algorithm], borrowed from [5]).

Consider two unweighted, undirected graphs G1 and G2, the nodes of which are linked (or not) by a 

set of binary relationships R. These two graphs can be summarized in a single graph, called the 

correspondence multigraph, the “multi-nodes” of which represent distinct pairs of nodes from G1 

and G2 that are linked in R, and with two types of edges: “G1 edges” between multinodes of which 

the G1 vertices are linked by an edge in G1, “G2 edges” between multinodes of which the G2 

vertices are linked by an edge in G2.

Connected Components are, intuitively, groups of nodes in a given graph that can all be reached 

from one another by walking the graph. Common Connected Components (CCCs) are the extension 

of this notion to multigraphs, and sets of vertices such that every vertex is reachable from each other 

vertex, through each type of edge taken separately. 
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The mathematical definition and algorithmic treatment of the problem of locating the set of CCCs 

between two input graphs are given in [5]. The algorithm is fast and deterministic, unlike previous 

similar approaches [144,253]. The algorithmic complexity is slightly worse than in [254,255], but 

[5] show that the time-limiting step is not CCC calculation, but multigraph construction. This has 

been greatly improved in following versions of CCCPart [146,147,256].

CCCPart  and its  more  recent  version  have  been  used  in  several  applications,  such as  locating 

syntons, or finding conserved modules between protein-protein interaction networks [6,256]. Here, 

we decided to apply it to locating units of metabolic function on prokaryote genomes, also known 

as  “metabolons”,  as  suggested  by the  authors.  This  required  some  adaptations,  especially  the 

recovery of metabolon gene and reactions gaps from the CCCs returned by the CCCPart algorithm. 

The  most  important  details  of  this  development  are  described  in  the  paper's  Supplementary 

Material.

 VII.C.2.  OrthoMCL
The process of building gene/protein families for the multi-organism metabolon integration step 

was done by a home-made program heavily inspired from the  OrthoMCL software  [68], a well-

known program that had already proven itself for protein clustering on sequence similarity [257]. 
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Illustration VII.1: The CCCPart algorithm

The metabolic network on the left and the gene graph on the bottom (with correspondences between the 
two shown by shared colours/hatches) are merged into a since graph, the MultiGraph, where each node  
corresponds to a (gene, reaction) pair,  i.e. an annotation. Two types of edges can connect two multi-
nodes, thos corresponding to metabolic adjacency in the metabolic graph, and those corresponding to 
gene adjacency in the gene graph.  For example,  (R2,  G5) is  connected to (R7,  G6) by a gene edge 
because G5 and G6 are adjacent.  CCCPart  creates a partition of the  multigraph,  where each cluster  
(Common Connected Component, CCC) corresponds to a component that is connected for each type of  
edge (e.g. (R2, G5), (R1, G4) and (R3, G3) are in a same CCC because (R2, G5) is connected to (R1, G4) 
and (R3, G3) by reaction edges, and (R1, G4) is connected to (R2, G5) and (R3, G3) by gene edges).
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The reasons we did not  use the original  program for  CanOE were:  a)  the available  version of 

OrthoMCL at the time (version 2, published in February 2008) did not allow us to use protein 

similarity  data  already stored  in  the  MicroScope  database,  requiring  complete  recalculation  of 

similarities,  which  was  not  tractable;  b)  the  available  version  of  OrthoMCL at  the  time  was 

implemented in Perl, a scripting language none of the LABGeM team were comfortable with; and 

c) studies by myself and Damien MORNICO seemed to suggest that the then-available version of 

OrthoMCL actually  had  bugs  that  invalidated  some  of  its  results.  OrthoMCL has  now  been 

completely overhauled by its authors (now available: version 5 published in March 2011), but we 

will continue to use our own version until the MicroScope policy on explicitly integrating gene 

families into its annotation pipeline has been determined.

The principle  of  OrthoMCL is  relatively straightforward:  using  all-against-all  protein  sequence 

similarity results from BLAST, it builds a n*n similarity matrix (where n is the number of proteins) 

summarising the similarities by scores.  These scores are  normalised following a procedure that 

deprecates similarities between phylogenetically close organisms, as well as taking into account 

inferred ortholog/paralog relationships between proteins. This matrix is then submitted to MCL, the 

Markov  Clustering Algorithm devised by Stjin van Dongen  [67], a now well-known and proven 

weighted graph-clustering algorithm that has since been applied to many different problems [258]

The MCL algorithm is based on the notion of random walks in a graph: two nodes should cluster 

together if the probability of randomly walking from one to he other is high. Simply put, the MCL 

algorithm  iteratively  updates  positive  edge  weights  (possibly  creating  or  removing  edges), 

favouring those that correspond to high random walk probabilities during an “expansion” step, and 

down-favouring  those that  have  lower probabilities  in  an “inflation”  step.  The process  (almost 

always)  converges,  and  final  clusters  can  (almost  always)  be  identified  as  distinct  connected 

components in the final graph. Many indicators are available at program termination, allowing a 

user to manually assess how well the clustering performed (such as clustering agreements, sum of 

edge weights preserved/cut, number of singleton nodes, and many many more).

 VII.C.3.  Metabolic Data used in CanOE
In the CanOE article, the only metabolic data used is that from the MetaCyc database; however, in 

other experiments, data from the KEGG database were used, and others could be. Indeed, CanOE's 

implementation surrounding CCCPart was designed to allow a certain degree of freedom regarding 

the source of metabolic data,  i.e. metabolic database specificities are NOT hard-coded into the 
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program. Rather, metabolic database data is parsed into a CanOE-specific standardised MicroScope 

database prior to running, and is retrieved by CanOE using generic Structured Query Language 

(SQL11) scripts.

In the article, we presented results calculated off a metabolic network built from MetaCyc data 

[259]. However, during conception of the CanOE strategy, several different protocols were tested 

out  for  creating  different  metabolic  networks,  referred  to  as  “metabolic  schemas”.  These  other 

schemas will briefly be described here, as well as the reasons behind our final choice of publishing 

only the MetaCyc schema (though use of KEGG as a metabolic data source is suggested in the 

supplementary material).

The first metabolic networks I tested were based on KEGG data [260] stored locally in MicroScope. 

Reactions  were  KEGG  reactions  (removing  multi-step  reactions  for  which  each  step  had  a 

corresponding  specific  reaction).  Gene-reaction  associations  were  created  based  on  gene-EC 

associations from MicroScope and EC-KEGG reaction correspondences. One EC could correspond 

to many KEGG reactions and vice versa, posing some spurious multiplicity problems, which were 

the primary impetus for the development of the metabolon gap-filtering step mentioned previously.

 VII.C.3.a.  “Main KEGG Reaction” Schema

The “main KEGG reaction” schema was a first attempt at translating data from KEGG's LIGAND 

database into a global network of reactions connected by edges when biologically relevant “main” 

compounds were shared (i.e. an important product of one reaction was an important substrate of the 

other). At the time, I had not found any way to extract the notion of “main compound” from the 

KEGG  data,  and  resorted  to  an  ad  hoc approach  already  used  in  previous  works  (such  as 

[261,216,262] and many others):  some ubiquitous  compounds were not used to  generate  edges 

(such as water, oxygen, carbon dioxide, protons...), and others were eliminated based on the high 

number of edges their use would generate (compounds from KEGG's specialist GLYCAN database 

were  not  used  either,  though  most  had  corresponding  compounds  in  LIGAND).  Also,  KEGG 

reactions that were known to be multi-step reactions (of which each known step already had a 

corresponding KEGG reaction) were ignored. Finally, given that the assignment of KEGG reactions 

to MicroScope genes was based on EC number correspondences, I was forced to ignore KEGG 

reactions that corresponded to more than 20 distinct EC numbers in order to avoid creating simply 

11 For some additional detail on SQL, see part VII.D.1
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unbelievable metabolons.

Metabolons obtained with this schema generally had high gene-reaction multiplicity due to the EC-

KEGG reaction conversion and showed many cases of biologically irrelevant reaction associations 

due to reaction-reaction edges being created from non-main compounds that the previous heuristic 

failed to recognise as such (e.g. acetyl-CoA).

KEGG Reaction-based networks can be hard to interpret without representing Compounds as nodes.

 VII.C.3.b.  “Main KEGG RPAIR” Schema

The “main KEGG RPAIR” schema was a later attempt to achieving a more relevant metabolic 

network (with less spurious edges) by exploiting not reaction descriptions, but RPAIR knowledge 

[263].  RPAIRs (reaction  compound  pairs)  are  defined  for  each  metabolic  reaction  as  pairs  of 

compounds between which chemical functional groups were transferred during the reaction, and are 

instrumental at  computationally following atom trajectories through a metabolic pathway  [264]. 

They are created by a chemical graph alignment  algorithm and are manually curated to  ensure 

biological relevance. RPAIRs can be classified into different types, the most remarkable of which 

are “main” (i.e. determines exchange of functional groups between “main” compounds), “trans” 

(i.e. determines  transfer  of  functional  groups  from a secondary metabolite  to  a  main  one)  and 

“leave” (i.e. for a functional group that becomes an isolated compound, as in decarboxylation). 

RPAIRs have been used as a proxy for main compound definition in order refine KEGG metabolic  

knowledge in previous works  [223,217]. They are, however, even more difficult to interpret in a 

network than Reactions. As to the lack of Compound representation, there is the added complexity 

that several RPAIRs can belong to a same reaction.

In this first RPAIR-based metabolic schema, the metabolic network nodes were RPAIRs rather than 

Reactions. RPAIRs were connected via edges corresponding to shared compounds. Only RPAIRs of 

type “main” were used, ensuring the use of “main” compounds in connecting the RPAIRs. As with 

the main KEGG reaction schema, I filtered out RPAIRs belonging to mutli-step reactions, as well as 

those corresponding to too many EC numbers to be usable.

Despite the use of “main” RPAIRs only, the resulting network was rather dense, even after filtering. 

This is probably due to the high number of RPAIRs that exist, and to the fact that many reactions 

have several RPAIRs, of which one or more can be “main”.
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 VII.C.3.c.  “Main KEGG RPAIR-to-Reaction” Schema

In order to address the difficult interpretation of the RPAIR-based schema, I decided to try to use a 

Reaction-centric  network,  with  edges  defined on the  basis  of  RPAIRs.  Put  simply,  the  “main” 

RPAIR-based  network  presented  in  the  previous  schema was  transformed,  replacing  groups  of 

RPAIRs by their corresponding Reactions, while conserving connectivity.  The resulting network 

was sparser than the KEGG RPAIR one, but denser than the KEGG Reaction one. Furthermore, it 

was difficult to establish if this schema actually outperformed the previous two or not.

 VII.C.3.d.  “KEGG MAP” Schema

KEGG is a resource in constant development. During my thesis, KEGG released XML-formatted 

files for their KEGG Maps, each of which describes large sets of reactions belonging to a high-level 

metabolic process, such as glycolysis (ID: map00010), purine metabolism (ID: map00230) or the 

sum of all metabolic pathways (ID: map01100). Of particular interest to us here is the fact that 

reactions are linked in these maps by KEGG-defined main compounds. Unfortunately, due to 1) the 

large sizes of KEGG maps (which include several of what biochemists would usually consider as 

metabolic pathways), 2) the existence of errors in the XML data, and 3) the possibility for a same 

compound to appear in several disconnected locations on the same map, we were unsatisfied with 

this schema. The generated metabolons still contained many spurious reaction-to-reaction edges or 

missed metabolons altogether, and we were forced to abandon the use of this otherwise promising 

metabolic schema.

 VII.C.3.e.  KEGG afterword

KEGG was and still  is an important source of computationally-formatted metabolic data that is 

widely used in the field of bioinformatics, even though the resource itself was never designed nor 

funded  as  a  public  database  [http://www.genome.jp/kegg/docs/plea.html].  Unfortunately,  due  to 

concurrent  circumstantial  pressures,  Kanehisa  laboratories  are  no  longer  able  to  fund  the 

maintenance and development of KEGG beyond that of KEGG MEDICUS, a medically-orientated 

subset database. KEGG data shall remain web-accessible, but will only be available for download 

for paying subscribers, though the fee shall be cheaper for purely academic clients.

 VII.C.3.f.  “MetaCyc” Schema

After  the  disappointing  results  with  KEGG-based  schemas,  and  thanks  to  the  continued 

development and integration of MetaCyc data into MicroScope, we decided to turn to this metabolic 
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data resource instead. In the “MetaCyc” metabolic schema, two reactions are linked by an edge 

when the product of one is a substrate of the other. This information is readily available in the 

MetaCyc data system, and has been parsed to the MicroScope “MicroCyc” database. To avoid the 

high connectivity problems that are common when building metabolic networks (as was the case in 

the  KEGG-based  schemas),  we  limited  such  shared  compounds  to  “main”  compounds.  In  the 

original MetaCyc data, “main” compounds can be extracted relatively easily for a pair of reactions 

belonging to a same metabolic pathway. However, in order to link reactions between pathways, we 

relied on the pathway-level inter-pathway connections also available in the MetaCyc data. These 

connections allow the reactions of one pathway to be linked to a reaction of another pathway, and 

we considered  “main”  any product  of  one  that  was  substrate  of  the  other.  Note  that  we  only 

considered “reciprocal” inter-pathway links, i.e. for reaction R1 in pathway P1, and reaction R2 in 

pathway P2, it was necessary for P1 to link R1 to P2, and for P2 to link R2 to P1, for R1 and R2 to  

be connected. We enforced this condition as there are still many “imprecisions” in the MetaCyc data 

that would otherwise lead to incorrect pathway connections.

Some numbers describing the presented metabolic network schemas are given in the table below:

The MetaCyc schema has the highest number of compounds kept after the pre-processing filters as, 

indeed, no filters based on compound usage or reaction degrees are used in it. However, it also has 

the sparsest network in terms of edges. Though this might reduce the number of alternate paths 
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Illustration VII.2: Summary Description of Metabolic Network Schemas

Each row corresponds to a metabolic network schema, from top to bottom: KEGG_mainR (main KEGG 
reaction  schema),  KEGG_mainRPAIR  (main  KEGG  RPAIR  schema),  KEGG_mainRPAIR_R  (main 
KEGG  RPAIR-to-Reaction  schema),  KEGG_map  (KEGG  map  schema)  and  MetaCyc  (MetaCyc 
schema). Columns from left to right: NbCs (number of compounds), NbOKCs (number of compounds 
having  passed  pre-processing),  NbRs  (number  of  reactions),  NbGlobOrphReacs  (number  of  global  
orphan  reactions),  NbOKRs  (number  of  reactions  having  passed  pre-processing),  NbEs  (number  of 
edges), NbOKEs (number of edges having passed pre-processing).

Compounds Reactions Edges

Schema  NbCs   NbOKCs  NbRs   NbOKRs  NbEs    NbOKEs 

 KEGG_mainR       16,429 3,263 8,395 3,234 5,617 30,381 21,723

 KEGG_mainRPAIR   16,429 3,488 12,460 8,771 4,603 43,919 14,166

 KEGG_mainRPAIR_R 16,429 3,476 8,395 3,234 6,256 235,081 29,283

 KEGG_map         16,429 2,419 8,395 3,234 4,495 13,898 12,081

 MetaCyc          10,801 10,801 9,531 5,157 5,157 5,661 5,661

 NbGlob 
OrphReacs 
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between any two reactions, we are assured that - thanks to the network construction protocol - all of 

these edges are of biological relevance, unlike in the KEGG-based schemas.

 VII.D.  MicroScope & CanOE data models
The CanOE strategy uses data and stores its results in MicroScope's PkGDB database system. It is 

thus necessary to present the latter in order to detail CanOE's implementation.

 VII.D.1.  MicroScope PkGDB
PkGDB is MicroScope's relational database system. Relational databases are a particular type of 

database,  wherein different types of data are modelled with various n-ary relationships between 

them  [265].  They are  particularly  useful  in  storing  large  amounts  of  structured  data.  Actually 

accessing the data requires the use of a querying language. SQL (“Structured Query Language”) is 

the most widely used scripting language for constructing and querying relational databases. MySQL 

is an open-source relational database management system including both a database server and an 

SQL querying  interface.  PkGDB is  a  MySQL database  system,  and  working  with  it  requires 

knowledge of the way its data is modelled. Here, I shall present the databases and tables within 

PkGDB that are most relevant to my work and to the comprehension of the MicroScope platform as 

a whole.

 VII.D.1.a.  Primary Data

As explained in [6,4], MicroScope collects and compiles primary data from many different sources 

in  order  to  propose  the  most  complete  vision  possible  of  genomic  sequence  annotation.  Such 

sources include UniProt, KEGG, MetaCyc, ENZYME, COG, InterPro, and others. Data from these 

sources are generally organised into specific PkGDB databases, and can be queried in conjunction 

with MicroScope-specific data.

 VII.D.1.b.  Core MicroScope data

The core MicroScope-specific data is contained in the “pkgdb” database. MicroScope is a platform 

dedicated to annotating prokaryote genomes (see chapter  IV for details on annotation).  The first 

tables  of interest  are  thus  those that  describe the genomes contained within.  Table “Organism” 

contains one row per prokaryote organism whose genome is available in MicroScope. Rows in table 

“Replicon” describe, for each organism, the various DNA molecules that compose the organism's 

genome  (chromosomes,  plasmids,  megaplasmids...).  Finally,  table  “Sequence”  describes  the 
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available DNA sequences available for the previously described replicons. Indeed, organisms can be 

resequenced  (or  more  often  re-assembled  and  finished  with  more  recent  methods),  rendering 

previous sequences obsolete. Additionally, this table tracks the public or private status of some of 

MicroScope's organism sequences (as some projects are submitted for private annotation), as well 

as the advancement of the sequence through MicroScope's automated annotation pipeline (syntactic 

or functional).  Now that  individual  sequences have been defined,  I  can expose how individual 

“genes” are modelled in the database.

The  atomic  unit  of  the  PkGDB  database  system  is  the  Genomic  Object  (GO).  Current 

implementation defines a Genomic Object as a short stretch of genome (generally a CDS, a falsely-

predicted  CDS,  or  ribosomal/transfer  RNAs)  that  has  been  annotated  (either  by the  automatic 

pipeline or by an expert bioanalyst). With each new annotation of a given stretch, a new Genomic 

Object is created, with a historical reference to the first Genomic Object for that given stretch (if  

any),  ensuring  that  annotation  history  can  be  recovered  if  required.  Annotation  information 

contained in  this  table  include Genomic Object  type (CDS, fCDS12,  rRNA, tRNA...),  sequence 

frame (-3 to +3), start and stop positions, annotation status (automatic annotation finished, artefact, 

curated, in progress...), a reference label, gene names & synonyms if any, a description of the GO 

product, comments, any EC numbers or MetaCyc reactions in the case of a metabolic gene, and 

whether  the  GO  is  obsolete  or  not,  amongst  other  things.  Given  the  number  of  organisms, 

sequences, and the archiving of annotation history, this table is very large (32 columns, >7.6.106 

rows, 4.7 Gigabytes on the 30th of August 2011).

12 fCDS: “fragment of coding sequence”, typically a CDS that has been broken during evolution by one or several 
nucleotide mutations (i.e. a pseudogene).
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 VII.D.1.c.  Predicted annotations

The predicted annotations established by MicroScope's automatic pipeline are stored in separate 

tables,  some  of  which  in  the  “pkgdb”  database.  One  notable  exception  to  this  is  the  tables 

containing  BLAST  and  synteny  data  for  all-versus-all  protein  pairs,  which  are  stored  in  the 

“GO_CPD” database.  Obviously,  all-versus-all  protein  comparisons  require  a  lot  of  room (the 

GO_CPD PkGDB database currently takes up 4 terabytes, though it also contains other data than 

sequence similarities, such as phylogenetic profile data), and querying a single table containing all 

data would be computationally infeasible. To address this problem, the data was split into multiple 

tables, basically one table per genomic Sequence containing all GO BLAST results against GOs 

from all other genomic Sequences, and tracking which BLAST hits are part of a synteny or not.  

Fusion/fission data is also stored in this manner.

 VII.D.2.  CanOE database
CanOE exploits  gene  and  reaction  data  as  extracted  from the  MicroScope  database.  However, 

during its  initial  conception phases,  it  appeared that  running CanOE would be computationally 

intensive, thus proscribing regular atomic updates for each new annotation made using the platform. 
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Illustration VII.3: The PkGDB Genomic Object Model

One Genomic Object (identified by a GO_id) corresponds to one annotation of a stretch of nucleotides. 
Re-annotating a previous stretch generates a new Genomic Object; previous versions are referenced by 
the 'GO_ori_id' field which points to the GO_id of the first Genomic Object having been created on the 
given stretch of DNA. Genomic Objects belong to a given Replicon sequence (one replicon can have 
several Sequences, but only a single one that is up-to-date). An Organism can contain several Replicons  
(chromosomes, plasmids, etc).
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It was thus necessary to insure that CanOE would be run at regular, not-too-frequent intervals, and 

that the underlying data did not change. The CanOE database was designed to host a working copy 

of  relevant  MicroScope data,  formatted  for  quick  access,  without  losing  references  to  “active” 

MicroScope data. Here, I shall present an ideal database structure for CanOE as I see it, though its  

implementation is not yet optimised, though it should be during the development of the deliverable 

version of CanOE. I might thus make references to the improvements to PkGDB and the CanOE 

data models that I propose in section VII.D.3.

 VII.D.2.a.  Primary data: Genes and gene data

The CanOE database contains a copy of the latest data from the MicroScope “pkgdb” database, a 

sort  of  snapshot  taken  at  a  given  point  in  time  that  is  recorded.  The Organism,  Replicon  and 

Sequence tables are present, as in “pkgdb”, though only current public & private sequences are 

allowed, leading to a 1-to-1 relationship between replicon and sequence ids. The Genomic Object 

table is split in such a way as to optimise some requests. First, no annotation history is required,  

thus eliminating the need for a historical table. Second, a correspondence table tracking sequence 

and genomic object ids is stored, called Genomic_Object_ID (akin to the Genomic Object table 

proposed in my new data model in later section VII.D.3). Genomic_Object_Data contains all GO-

specific data that is relevant to CanOE (akin to the Genomic Object Annotation proposed in my new 

data model).
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Illustration VII.4: Schema of the CanOE Genomic Object Data model

The  Genomic  Object  data  model,  in  CanOE,  is  composed  of  Organism objects,  Genomic  Objects, 
corresponding Gene Vertices, the Gene-to-gene Edges. Not all foreign key relationships are shown for 
clarity.
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 VII.D.2.b.  Primary data: Metabolic Network Reactions

Metabolic data is saved using a different approach. The database was designed to store data parsed 

from MicroScope metabolic databases into a CanOE-specific data model. In CanOE metabolons, 

reactions are represented by vertices and edges correspond to main compound sharing. The model 

was designed so that metabolic reactions could be extracted from any type of metabolic database 

(e.g. MetaCyc or KEGG). I called a “Metabolic Schema” the parsed data for a given metabolic 

database extracted following a given protocol.  Table MNW_Schemas (MNW is the acronym of 

Metabolic  NetWork,  and is  a  prefix for all  CanOE metabolic  data  tables  & IDs) describes the 

various available Metabolic NetWork schemas; table MNW_Reactions associates a distinct ID to 

any kind of metabolic reaction.
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Illustration VII.5: Schema of the CanOE Metabolic Network Model

The CanOE Metabolic Network Model is composed of metabolic Schemas, Compounds, Reactions and 
Reaction-to-reaction Edges. The Reaction_Info table contains data from the source metabolic database of  
each Reaction. Compound and Reaction degrees are stored in separate tables for the filtering phase. Not  
all foreign key relationships are shown for clarity.
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 VII.D.2.c.  Primary data: Gene-reaction associations

Thirdly, correspondences between GOs and metabolic reactions are stored in separate tables. Two 

types of association are kept. Metabolic data was initially stored in MicroScope using EC numbers 

(though since MetaCyc reactions have been added), so a GO_EC_CPD table was thus created in 

CanOE in order to store a snapshot of all (GO,EC) annotations for all GOs. Then, schema-specific  

SQL  scripts  (dependant  or  not  on  the  GO_EC_CPD  table)  are  executed  in  order  to  fill  a  

GO_MNWR_CPD table that tracks correspondences between GOs and schema-specific reaction 

identifiers.

 VII.D.2.d.  Primary data: gene and reaction graphs

In order to simplify and speed up the execution of the Metaboloniser algorithm, gene and reaction 

graphs are prepared beforehand and stored in the database (see [Illustration VII.4: Schema of the

CanOE Genomic Object  Data model]).  The Gene_Vertices and Gene_Edges tables describe the 

gene  graph,  with  indexed  references  to  organism and  sequence  IDs  to  speed  up  queries.  The 

MNW_Reaction_Edges  table  contains  reaction  graph  edges,  and  the  already-existing 

MNW_Reactions tables describes the reaction graph vertices  (see [Illustration VII.5: Schema of the

CanOE Metabolic Network Model]).
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Illustration VII.6: Schema of the CanOE Primary association tables

The primary association tables describe the initial knowledge about gene-reaction associations given to 
CanOE. Reactions occurences are accounted for per organism and globally, in order to determine per-
organism and MicroScope-wide orphan reactions.
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 VII.D.2.e.  Secondary data: Metabolons

A metabolon is a graph containing two types of nodes (gene, reaction) and three types of edges 

(gene-reaction  associations,  gene-gene  adjacency,  reaction-reaction  compound  sharing). 

Furthermore,  the  gene-reaction  associations  are  of  several  types:  Known  annotation,  Potential 

association, and Inferred annotation. It was thus necessary to come up with a data model that might 

save all this information the most efficiently as possible.

The first obvious step was a table listing all found metabolons in all organisms, containing several  

indexes for easy and rapid access. The Metabolon_List table compiles references for the organism 

and  the  sequence,  as  well  as  containing  an  automatically-incremented  primary  ID  for  each 

metabolon.  This  table  can  then  be  joined  to  the  other  tables  describing  the  contents  of  each 

metabolon.

The gene-gene and reaction-reaction edges are already stored as primary data and do not need to be 

saved again. The “most defining” objects in a metabolon are, due to the way CCCPart works, the 

Known gene-reaction associations it contains, though these are also primary data, and are not an 

intuitive way of dealing with metabolons. I thought it simpler to save, for each metabolon, the list of 

vertices it  contains;  edges would then be recoverable using these and the primary data.  Tables 

Metabolon_Vertices_GOs  and  Metabolon_Vertices_Reactions  store,  for  each  metabolon  ID,  the 

GO_ori_id or MNW_R_id for its genes or reactions, respectively. It also stores whether the vertex 

is  primary  (i.e. participates  in  a  Known  association)  or  secondary  (gap).  However,  generated 

potential  gene-reaction  associations  also  need  to  be  stored,  and  MinPathLengths  need  to  be 

calculated for them and for the Known associations. Thus, I created the Metabolon_Assocs table 

that stores for each metabolon ID, the list of (GO_ori_id, MNW_R_id) pairs that it contains, with 

the  MPL and its  type  (“Known”,  “Potential”,  or  “Imaginary”,  a  type  added  for  benchmarking 

purposes13).

13 Reminder: Inferred associations are created from Potential associations later on in the CanOE pipeline.
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Illustration VII.7: Schema of the CanOE Metabolon data model

Metabolons are described by their component vertices (Genomic Objects and Reactions),  and by the 
gene-reaction edges they contain,  be  they Known or  Potential  (pre-integration)  ones  (gene-gene and 
reaction-reaction edges can be recovered from the primary data). A metabolon summary table is also 
available.
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 VII.D.2.f.  Tertiary data: Gene families

For the next steps of the CanOE strategy, the gene families established by our OrthoMCL-like 

protocol are required (see part VII.C.2). The results of the gene-family building algorithm are stored 

in  the  database  in  the  MCL_clusters  table,  in  the  form of  (GO_ori_id  ,  CL_id)  associations. 

Additional family information is stored in the MCL_CL_Data table, such as cluster size and family 

metabolic  status  as  determined by the Gene Ontology-based protocol  (described in  the article's 

Supplementary Material).
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Illustration VII.8: Schema of the CanOE Metabolon integration data

The central  table  for  the  integration  of  CanOE results  across  organisms  is  the  MCL_clusters  table, 
describing gene assignments to gene families. Family-wide data (notably which families are metabolic or 
not)  is  stored  in  MCL_CL_Data.  Metabolon-based  gene-reaction  associations  are  parsed  into  the 
Metaboloniser_KnownAssocs, Metaboloniser_PotAssocs, and Metaboloniser_InferredAssocs tables, and 
are integrated into family-reaction associations (with scores) described in table MCL_MNWR_CPD. The 
scores  are  then  used  to  rank  genes  in  each  organism  for  each  reaction,  ranks  that  are  stored  in 
GO_MNWR_Ranks.
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 VII.D.2.g.  Tertiary  data:  Known,  Potential  and  Inferred  

associations

The  previously-saved  metabolon  gene-reaction  associations  are  processed  during  the  CanOE 

pipeline  into  distinct  tables  according  to  their  type.  Known  associations  are  saved  in  table 

Metaboloniser_KnownAssocs as they are. As described in the article, Potential associations (from 

table  Metabolon_Assocs)  are  then  processed  into  Potential  associations  (in  table 

Metaboloniser_PotAssocs) and into Inferred associations (in table Metaboloniser_InferredAssocs), 

taking care  to  delete  Potential  associations  corresponding to  non-metabolic  gene families  or  to 

genes/reactions that are no longer gaps in the inference step. See [Illustration VII.8: Schema of the

CanOE Metabolon integration data].

 VII.D.2.h.  Tertiary  data:  Family-Reaction  Association  scores  

and ranks

The previous family and gene-reaction association data is compiled into family-reaction association 

data and transformed into the R=>F and F=>R scores using the formulae described in the article. 

These scores are stored in table MCL_MNWR_CPD. Then, for each organism and each reaction, 

the list of candidate genes for that reaction within that organism are ranked according to each score, 

and these ranks are  stored in  table  GO_MNWR_Ranks.  See [Illustration VII.8:  Schema of  the

CanOE Metabolon integration data].

Taken altogether, the data stored in the previously described tables can describe in full detail all the 

objects and results obtained in the CanOE strategy, and it is queried in the CanOE web interface 

presented in section  VII.F.2. However, the data models found within PkGDB, including those of 

CanOE, do not always conform to the ideal versions presented here. Even the latter could bear  

improving in some points. Having given the matter some thought, I have decided to lay my ideas 

down in writing here.

 VII.D.3.  Proposed PkGDB & CANOEDB improvements
MicroScope has grown over the years from a tool dedicated to the annotation of a single genome to 

a full-blown comparative genomics prokaryote annotation platform containing over 1,400 genomes. 

The production, database and visualisation systems (hardware and software) behind it have also 

evolved and are still perfectly capable of handling the requirements of over 6,000 annotations per 
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month14. However, given the exponential increase in sequenced genomes, the MicroScope platform 

is expected to hit its limit in the years to come. Efforts are being planned to address this problem, 

such as the recruitment of a database specialist.

Indeed, one of the most criticised points on which improvements will have to focus is the design of 

the database. Though I am in no way a database specialist, I have decided to transcribe here my 

thoughts on this problem, in the hope that they might speed up future work. In any case, they shall 

allow the reader to understand the discrepancies found between the PkGDB database system, the 

implementations and the ideals I discuss in this manuscript concerning my thesis projects.

First of all, some renaming efforts are required. Foremost, the whole database system should have 

a distinct name from its child databases. Furthermore, the “pkgdb” database should have both a 

development version and a production version. The development version would obviously be used 

by the development team for tests, limiting the risk of messing the production database up, and not 

blocking SQL access  to  it  for users.  Currently,  there is  only a one database which is  both for 

development and production.

As pointed out previously, my database designs relevant to my projects are somewhat different to 

those  found  in  the  PkGDB  database  system;  indeed,  I  propose  an  alternative  data  model  for 

Genomic Objects. The objective of the new model is multiple: it would be more efficient, especially 

space-wise, and also more intuitive, than the current one. The rationale behind it is basically to a) 

split Genomic Objects into Genomic Objects (GOs) and Genomic Object Annotations (GOAs), and 

to b) keep historical annotations in a different table than current annotations.

Genomic Objects should refer in a fixed way to specific DNA stretches on a genome sequence 

(though start and stop positions can be modified, and objects can be declared obsolete). Genomic 

Object Annotations would then be associated to these objects. Indeed, a GO does not evolve much 

over time, though multiple GOAs can be created for a single GO. Since only one GOA is the most  

recent,  then this one could be kept for rapid access in a GOA table; historical GOAs could be 

transferred to a historical GOA table for future reference (especially since consulting the annotation 

history in MicroScope requires a specific action from the user). This would allow the main GOA 

table to be much smaller (a lot less rows, and no “GO_update” index column) without losing data 

accessibility15.

14 Average over year 2010.
15 The same strategy could be applied to the Sequence table, that would then become obsolete: the Replicon table itself 

could contain data for the latest Sequence, and past Sequences could be kept in an OldSequence table. This idea is 
not presented in the figure on the next page.
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On a more technical note, relational databases offer the possibility of using “Foreign Keys”. These 

describe referential constraints between two tables. They ensure that rows in one table correctly 

refer to rows in another table. For example, it should not be possible to create a GO for a non-

existent Sequence. Another example is of ensuring that if a referred-to row is deleted, then all rows 

relating to it are also deleted. Basically, foreign keys enforce database coherence and integrity, and 

also provide a framework on which to build efficient indexes for linking data together. Currently, no 

foreign keys are used in PkGDB except in some specialised tables. However, it is unclear whether 

they could be used, as foreign keys are only available for “InnoDB” type tables, and most PkGDB 

tables are “MyISAM” (a choice motivated by performance issues; the interested reader can find a 

comparison of the two types at [http://www.kavoir.com/2009/09/mysql-engines-innodb-vs-myisam-

a-comparison-of-pros-and-cons.html]).  This  choice  may change  if  the  previously-proposed  new 

model improves performance.

On the same gist, a few tables are not designed correctly in respect to their primary keys. A primary 
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Illustration VII.9: A proposed PkGDB Genomic Object Model

One Genomic Object (identified by a 'GO_id') corresponds to one identified stretch of nucleotides of  
interest. Annotating this stretch generates a new Genomic Object Annotation (identified by a 'GOA_id'). 
Any  previous  Genomic  Object  Annotation  of  the  same  Genomic  Object  is  moved  to  the 
Genomic_Object_OldAnnotations table for tracing reasons. As previously, Genomic Objects belong to a  
given Replicon sequence, which in turn belongs to one Organism. The 'S_id' field is kept in the Genomic 
Object Annotation tables for quick reference.
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key is a combination of table fields whose values ensure that each row is unique, and is often used 

is cross-referencing tables. When no such combination exists, it becomes necessary to create an 

additional column in order to establish a primary key. It can be also interesting to do this if the 

primary key would otherwise be complex to reference completely from another table (i.e. it has 

multiple  columns  each  with  multiple  distinct  values).  Similarly,  indexes  help  speed  up  table 

searches for specific field combinations. I have noticed a few tables where the creation of a specific  

a  primary key column was not  justified in  regard to  the other  available  columns (e.g. PkGDB 

GO_PRIAM_CPD), or where existing indexes were debatable or at least required documentation 

(e.g. MicroCyc  Metacyc_Pathway).  Reworking  these  instances  would  save  database  space  and 

ensure additional database integrity.

Many of these improvements would be beneficial to the database. However, none have yet been 

started, as they would require profound adjustments across the MicroScope platform (in PkGDB 

itself,  but  also  in  MaGe  and  the  production  system).  There  are  probably  other  possible 

improvements that I have not noticed and that require the intervention of a specialist to ensure that  

MicroScope can keep delivering a high-quality prokaryote genome annotation platform service.

 VII.E.  Benchmarking
In order to validate the CanOE strategy, I conducted several benchmarking experiments, of which 

only one is briefly described in the published article and its Supplementary Material. Details for all 

experiments are given in this section.

 VII.E.1.  Validating the MinPathLength prior 
 VII.E.1.a.  Protocols

The  first  part  of  the  CanOE  strategy  that  requires  some  form  of  validation  our  use  of  the 

“MinPathlength” (MPL) prior. As described in the paper, we hypothesise that the graph walk-based 

distances  between  correctly  associated  genes  and  reactions  should  be  shorter  than  those  of 

incorrectly associated genes and reactions. The gene-reaction or integrated family-reaction scores 

include  an  association  weighting  protocol  that  uses  these  distances  to  favour  gene-reaction 

associations that deal with a gene and a reaction that are “close” in the metabolon.

The idea behind the MPL (as described in the paper's supplementary material) is that it is more 
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likely for genes to be roughly co-linear to their catalysed reactions in a metabolon, rather than the 

associations be completely random. This idea is illustrated in the figure below. To measure this 

MPL distance for Known or Potential associations, a path-walking algorithm finds all the shortest 

paths between the gene to the reaction. Only Known associations can be walked between genes and 

reactions.  If  the  studied  association  is  Known itself,  it  cannot  be  used  to  walk  straight  to  the 

reaction, otherwise all Known MPLs would be worth 1 and would not capture local metabolon 

structure. In order to validate this prior, I conducted an experiment.

This experiment simply established the distribution of the MPL across all Known gene-reaction 

associations, in the hope of showing that the distribution is highly skewed towards small values.

 VII.E.1.b.  Results

The first experiment and its results are included in the Supplementary Material of the article. I show 

that the distribution does heavily favour short MPLs, though it does not exclude MPLs of up to 10 

or more. The distribution itself could have been used to derive a more accurate MPL-weight prior 

(such  as  taking  quantiles  rather  than  1/MPL),  though  I  deemed  this  additional  complexity 

unnecessary in the already complicated CanOE pipeline.

It might be possible to imagine a more rigorous way of verifying this prior. I did not, however, 

manage to come up with a way of doing this that I thought was implementable in the time left to me 

for my PhD studies.
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Illustration VII.10: The MinPathLength prior

An example metabolon illustrating our MinPathlength prior. Two gap genes (g2 and g8) are potential 
candidates for reaction gap r3. Any bioanalyst would consider g2 to be the most likely candidate given 
the collinear structures in the metabolon. The MinPathLength for each candidate gene is given in pink: g2 
is indeed the best candidate according to this measure. Please note that the MPL of gene g8 would not be 
different if genes g6, g7, g8 and g9 were reversed: the MPL captures local collinearity.
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 VII.E.2.  Validating the entire approach
 VII.E.2.a.  Protocols

The “VerticalOrpheny1” protocol was the first benchmarking protocol I came up with in order to 

test how well the CanOE method worked and how informative our integrated scores were. Since 

CanOE deals with identifying candidate genes for orphan reactions, it had to be tested on known 

cases,  i.e. on Known gene-reaction associations. The general idea was simple: for a given set of 

reactions,  separately render  each one orphan (i.e. remove all  Known gene-reaction associations 

concerning that reaction from all organisms), relaunch the CanOE pipeline, and evaluate how well it 

recovered the removed information in Potential associations and family-reaction scores.

This protocol is calculation heavy, as it involves reproducing the whole CanOE pipeline (primary 

graph building, metabolon locating, family building, score integration, ranking) for each and every 

reaction thus “orphaned”. Two choices helped reduce the experimental load. First, we hypothesised 

that rendering reactions orphans would at worst remove gene families from CanOE data, but not 

perturb gene family construction; this allowed us to skip the family reconstruction step, using the 

families built during the normal CanOE run.

We also limited  the  number of  reactions  to  “render  orphan” to  those that  had at  least  one in-

metabolon Known association in a highly-curated target organism. This typically led us to keeping 

approximately 340 reactions when using E. coli K-12 as a reference. Both these limits (no family 

recalculation, limited reactions) allowed us to perform the VerticalOrpheny1 benchmarking in a 

decent amount of time.

Processing  the  results  (metabolons,  gene/reaction  vertices,  gene-reaction  associations,  gene 

families, gene/family-reaction association scores) across the several hundred experimental CanOE 

runs was a complex task as no comparable benchmarking work was available in the literature. I 

shall present the points deemed important to benchmark below.

Element Recovery:  Establishing which metabolons in the experimental runs corresponded to 

those  of  the  original  run  was  done  using  Known  gene-reaction  association  sharing  (i.e. if  an 

experimental  metabolon  contained  at  least  two  same  Known  gene-reaction  associations  as  a 

metabolon in the original run, the experimental one was considered a “child” of the original one, 

thus  allowing  a  one-to-many  relationship  in  the  case  of  metabolon  breaking).  Using  these 
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correspondences,  it  became possible  to track which elements (i.e. metabolons,  genes,  reactions, 

associations  etc.)  were lost  and which  were recovered.  It  was  namely possible  to  estimate  the 

impact of multi-functional genes. Indeed, “orphaning” one reaction from a multifunctional gene 

leads to the loss of the association (as the gene is still associations with one reaction, it cannot be a 

candidate for the other), but not of the gene, which can bias gene/family-reaction association scores. 

Results could be considered across all organisms, or only in the chosen reference organism. Please 

note that unlike what is described in the following section, association scores and ranks are not 

considered for this point.

Association Recovery: The objective of the VerticalOrpheny1 benchmarking was to evaluate 

how well  removed Known associations were recovered as  Potential  associations.  Any Potential 

association can be scored according to gene-reaction association scores or corresponding family-

reaction association scores, as described in the paper. Then, for each organism, candidate genes 

associated to the target “orphaned” reaction can be ranked according to these scores. A cut-off on 

scores or ranks can be used; any Potential  associations kept after  cut-off are then positive hits. 

When Potential associations actually correspond to removed Known associations, these are true 

associations.  It  is  thus  possible  to  define  True  Positive,  False  Positive,  and  False  Negative 

associations, for varying levels of a cut-off, that can be applied to gene-level or family-level scores 

or  ranks.  This  is  illustrated  in  the  figure below.  With  these values,  it  is  then  possible  to  draw 

Precision/Recall  curves,  which are a handy way of graphically assessing how well  a prediction 

methods performs.
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Findable orphaned reactions: As will be seen, VerticalOrpheny1 benchmarking results were 

rather catastrophic. Indeed, many metabolons are small, and rendering orphan many reactions leads 

to the loss of the entire metabolon; reactions close to the extremities of metabolons are also easy to 

lose. Because of this, it seemed necessary to evaluate benchmarking results on reactions that were 

deemed “findable”, i.e. for which at least one Potential association was recovered (irrespective of it 

being correct or not). This allows the results to reflect only cases where the CanOE strategy could 

effectively come up with something, and together with the previous results gives insight into how 

much information CanOE might actually be missing.

 VII.E.2.b.  Results

Element recovery:  The first  figure  below gives  the  distribution  of  metabolon loss/retrieval 

cases. Results are pooled across all experiments, for a total of almost 64,000 metabolons. As is 

rapidly observed, a whopping 50% of those that  had originally contained a Known association 

involving  the  target  reaction  lost  gene,  reaction  and association  after  the  target  reaction  was 

orphaned. 11% lost gene and association (meaning the reaction was still present as a gap), and 21% 
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Illustration VII.11: Annotation recovery in CanOE benchmarking

Reaction r4 is rendered orphan by deleting all  Known gene-reaction associations involving it.  In the  
presented metabolon, gene g4 catalysed reaction r4. In the new metabolon below, genes g2, g4 and g7 are  
candidates for r4, and g4 has also become candidate for reaction r3. When not applying any cut-off,  
amongst the created Potential associations, 1 is a True Positive hit, and 3 are False Positive hits. False  
Negative hits occur when a gene is not proposed as a candidate for the reaction it catalysed prior to the  
latter being rendered orphan (due to gene multi-functionality, enzyme subunits, or metabolon partial/total 
loss).



Development: The CanOE strategy

lost reaction and association (meaning the gene was still present as a gap). Interestingly, 7% still 

contained  both  gene  and  reaction,  but  the  association  was  not  recovered  as  a  Potential.  This 

corresponds to cases of multi-functional genes (i.e. a gene with multiple functions, of which the 

target reaction, cannot be proposed as a candidate for the target reaction once this one has been 

orphaned), or multimeric enzymes (i.e. a target  reaction associated to multiple genes, cannot have 

candidate  genes  proposed for  it).  Finally,  only 10% of  metabolons  actually recovered  removed 

gene-reaction associations as Potentials.
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Illustration VII.12: VerticalOrpheny1 element recovery details

Metabolon element recovery/loss details across a total of 63 963 metabolons. During VerticalOrpheny1 
benchmarking, the target association can be lost from a metabolon in multiple ways: loss of the gene 
(“0g” instead of “1g”), loss of the reaction (“0r” instead of “1r”), or simply loss of the association itself  
(“0a” instead of “1a”).  Several  cases thus appear:  complete loss “0g+0r=0a”,  gene loss “0g+1r=0a”,  
reaction loss “1g+0r=0a”, association loss “1g+1r=0a” (which occurs for enzymes with subunits or multi-
functional genes), and finally association recovery “1g+1r=1a”.
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When only considering findable reactions (see below), things improve somewhat. Most importantly, 

metabolons containing retrieved gene-reaction associations now represent 30% of the total, which is 

now only about 16,000 metabolons. As expected, complete losses have decreased, now affecting 

36% of metabolons (not 0%, as the definition of “findable” does not remove all metabolons with 

lost associations, only those whose target reaction had no recovered associations anywhere).

These results encourage us to use the “findable” filter for further results.

Gene-level recalls and ranks:  As the figures below show, results  are  rather  catastrophic. 

Indeed, the highest recall value is not even 20%; the best precision is 55% (for a recall of roughly 

15%) obtained for the G2R_W score, at a minimum cut-off of 0.7. Clearly, gene-level scores and 

ranks are of little interest when considering the CanOE strategy as a whole.
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Illustration VII.13: VerticalOrpheny1 findable element recovery details

Metabolon element recovery/loss details across a total of 16,082 metabolons. During VerticalOrpheny1  
benchmarking, the target association can be lost from a metabolon in multiple ways: loss of the gene 
(“0g” instead of “1g”), loss of the reaction (“0r” instead of “1r”), or simply loss of the association itself  
(“0a” instead of “1a”).  Several  cases thus appear:  complete loss “0g+0r=0a”,  gene loss “0g+1r=0a”,  
reaction loss “1g+0r=0a”, association loss “1g+1r=0a” (which occurs for enzymes with subunits or multi-
functional genes), and finally association recovery “1g+1r=1a”.
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Illustration VII.14: VerticalOrpheny1 gene-level benchmarking results

Precision-Recall curves for a varying cut-off applied to numeric scores (A, B) or to the ranks thereof (C, 
D), for gene-to-reaction (A, C) and reaction-to-gene (B, D) scores. Most lenient cut-offs correspond to  
the highest Recall values.
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Family-level recalls and ranks: The curves below are slightly better than the corresponding 

gene-level ones. Especially R2F_W score (precision of 62%, recall of 15%, for a minimum score 

cut-off of roughly 0.3) and R2F_W rank (precision of 61%, recall of 15%, for a maximum rank cut-

off of 1). Still,  values remain low and precision/recall trade-off for varying values of cut-off is 

uninteresting.
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Illustration VII.15: VerticalOrpheny1 family-level benchmarking results for Coverage score

Precision-Recall curves for a varying cut-off applied to numeric Coverage score (A) or to the rank thereof  
(B).
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Illustration VII.16: VerticalOrpheny1 family-level benchmarking results

Precision-Recall curves for a varying cut-off applied to numeric scores (A, B) or to the ranks thereof (C, 
D), for family-to-reaction (A, C) and reaction-to-family (B, D) scores.
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We shall thus now examine the corresponding benchmarking results for “findable” reactions only. 

These are given in the following figures.
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Illustration VII.17: Findable VerticalOrpheny1 family-level benchmarking Coverage results

Precision-Recall curves for a varying cut-off applied to numeric Coverage score (A) or to the rank thereof  
(B), when only considering findable reactions.
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These results are much more encouraging than the previous, illustrating that the CanOE strategy is 

relatively powerful  at  recovering gene-reaction associations,  at  least  when metabolon structures 
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Illustration VII.18: VerticalOrpheny1 findable family-level benchmarking results

Precision-Recall curves for a varying cut-off applied to numeric scores (A, B) or to the ranks thereof (C, 
D), for family-to-reaction (A, C) and reaction-to-family (B, D) scores, when only considering findable  
reactions.
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allow it. Indeed, for the ranks based on the F->R score, we obtain roughly 40% precision at 63% 

recall when we keep all results, which improves to 57% precision at 61% recall when keeping only 

the 1st and 2nd best ranking candidate genes. Transposing to real-life cases, we can expect CanOE 

to be powerful for associations involving prokaryote orphan reactions that have at least several 

associations with a given gene family, though it very likely misses large portions of metabolism that 

just cannot be seen with current levels of genome annotation.

In conclusion, benchmarking results with the VerticalOrpheny1 protocol were relatively poor, and 

bad results for the most part were due to metabolon loss because of known association removal 

(“metabolon breaking”). This encouraged us to develop another protocol, using a more favourable 

approach, that could still allow us to serenely conclude how informative our integrative scores were.

 VII.E.3.  Validating the integration over n only
 VII.E.3.a.  Protocol

The  “VerticalOrpheny2”  protocol  is  the  one  described  in  the  article.  It  is  similar  to 

VerticalOrpheny1, except that a) it does not recalculate metabolons and b) does not use reactions 

from a reference organism, rather a selection of reactions respecting the following rule: only select 

reactions that  have at  least  one known association in  a  metabolon that  is  “big enough” in  one 

organism. A “big enough” metabolon is one that would not automatically be lost after removal of 

the known association (i.e. contains at least 3 reactions, 3 genes and 3 known associations). The 

rationale  behind  this  is  that  metabolons  are  the  given  information  and  their  localisation  is 

deterministic; what it is important to test is how the whole strategy combines them into informative 

results. Skipping metabolon recalculation denies metabolon loss16, thus ensuring that CanOE works 

with all known information, less the actual orphaned reaction associations. Though heavily biased, 

this simpler approach allows us to evaluate the integration over multiple genomes procedure.

 VII.E.3.b.  Results

The results obtained with this benchmarking approach are already discussed in the paper and are 

rather reassuring. Indeed, maximum recall is slightly more than 80% for all scores, for a precision 

of roughly 52%. Filtering out worse-ranked candidates can improve precision at the cost of recall;  

the best trade-off is obtained for the ranks based on the R=>F score, as shown in the article. Finally,  

16 It is similar in this way to the “findable” condition in the VerticalOrpheny1 benchmarking.
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we can observe that in all cases, precision and/or recall are higher for a given rank threshold on the  

integrated scores  (F=>R and R=>F) rather  than the gene-level  scores  (G=>R and R=>G). This 

confirms the intuition that integrating over many organisms can improve results.
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A B

Illustration VII.19: VerticalOrpheny2 benchmarking results

A:  Precision-Recall  curves  using  gene-to-reaction  (G=>R)  or  family-to-reaction  (F=>R)  ranks.  B: 
Precision-Recall curves using reaction-to-gene (R=>G) or reaction-to-family (R=>F) ranks.
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 VII.F.  Web Interface overview
All the results of the CanOE strategy need to be made accessible to the bioanalyst users of the 

MicroScope platform if they are to be of any use. CanOE has been integrated into MicroScope's 

web interface,  MaGe, to this end. I  shall  thus present MaGe, before detailing what the CanOE 

interface has become over the past months.

 VII.F.1.  The MaGe web interface
MaGe (Magnifying Genomes) is the web-based interface to the tools and data of the MicroScope 

platform [4]. It is mostly coded in PHP and uses AJAX-based technologies to create dynamically 

generated and interactive web pages, with asynchronous creation and submission of SQL queries 

for retrieving required data (i.e. that can be sent on demand even after a page is rendered by the web 

browser).  Page  structure  itself  is  coded  using  CSS  and  HTML.  Recent  work  by  Gregory 

SALVIGNOL has lead to the development of MaGe version 2.0, which uses increasing amounts of 

dynamic technologies, and aims to meet common web page quality and coding standards (HTML 

5.0, W3C standards...).

The interface is organised into 3 types of pages. The first of these is the Genome Browser, that  

represents the location of Genomic Objects across all 6 translation frames of a given DNA sequence 

chosen by the user. A homology/synteny viewer below allows rapid appreciation of the conservation 

of one or multiple gene sequences between the sequence of interest and other selected genomes 

(from related or distant organisms). Finally, a dynamic table lists interesting data for all currently 

visible  GOs.  With  this  page,  a  user  bioanalyst  can  rapidly  navigate  the  genome,  appreciating 

conservation with others, and accessing basic annotation.

The second type of page is the Genomic Object Editor, which is accessible (amongst others) from 

the Genome Viewer. It allows consultation of all annotation data (automatic predictions, various 

bioinformatic method results, previous manual annotations, GO sequence, annotation history...) for 

a  given  Genomic  Object.  This  is  also  the  interface  that  bioanalysts  can  use  to  create  new 

annotations when they have sufficient editing rights.

The final  type  of  page  is  the  “template”  tool  page.  A large  number  of  bioinformatic  tools  are 

available, each coming with their own interface tailored to their needs. Proposed services include 

BLASTing, genome-wise descriptive statistics, specific annotation queries, specialised interfaces 

for  genome  projects  with  particular  requirements,  gene  cart  handling  and  queries,  various 
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comparative genomics and metabolic tools, and more. The diversity of approaches offered to the 

bioanalyst is one of MicroScope's strengths.

Additional administrative, user preferences, news pages, etc., that do not concern direct interfacing 

with MicroScope data, are also available.

 VII.F.2.  The CanOE web interface
Only a pre-release version of the web interface designed to make CanOE results available to the 

scientific community was ready for the publication of the CanOE article; it was thus decided that  

the final  version would be prepared and published in  the following MicroScope platform-wide 

publication. I designed this version on the basis of a previous draft version that I had developed in 

order to ease my exploration of CanOE results.  David VALLENET and Gregory SALVIGNOL 

integrated it into MaGe. I shall present this work and its perspectives, as they are relevant to my 

thesis and the professional career I am planning.

The MicroScope platform is  designed to help expert  bioanalysts  functionally annotate genes in 

prokaryotic genomes. The CanOE results thus have to be made accessible to them in the clearest 

manner, presenting them with precise biological questions in mind. Several “access points” have 

been imagined for these results, some of which have already been implemented in the beta version. 

Current implementation accounts for the choice of metabolic schema, though only the MetaCyc-

based schema is currently used.

 VII.F.2.a.  CanOE main page

CanOE  can  be  used  as  a  stand-alone  tool  for  the  MicroScope  platform  at 

[www.genoscope.cns.fr/agc/microscope/metabolism/canoe.php].  It  can thus be accessed, like any 

other tool, via a MaGe menu (though, until the beta version is properly put into production, the 

menu item will remain hidden from the platform users). The main page is basically an interface for 

requesting  CanOE  data.  It  allows  users  to  select  the  metabolic  schema,  to  consult  a  list  of 

metabolons  for  a  specific  organism,  to  consult  lists  of  local  or  global  orphan  reactions  with 

candidates at different detail levels, or to search CanOE for genes or reactions. Available results are 

obviously limited to organisms for which the user has access rights. The results that can be obtained 

from this interface are described in the following sections.
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 VII.F.2.b.  Organism-centric view

Most bioanalysts work on the annotation of a single genome (or a group of related genomes). It is  

thus be interesting for them to be able to quickly access the metabolons of their target organism(s).

With this focus in mind, three access points have been imagined:

• Genome viewer (imagined): create  a  graphical  representation  of  metabolons  along  the 

genome,  inspired  by  the  current  presentation  of  syntenies  along  the  genome.  Genes 

belonging  to  a  same  metabolon  would  have  illustrative  copies  of  a  same  colour  in  a 

“metabolon track”, which could be clicked to open the metabolon viewer.

• Gene editor (imagined): the Gene Editor lists all the MicroScope data available for a given 

gene in various tables, including synteny belonging. It would be trivial to add a Metabolon 

table to the list of available data for a given gene, especially as genes rarely belong to more 
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Illustration VII.20: CanOE main web page

CanOE's main page can be accessed from the “Metabolism” MicroScope tools menu. Most of the access 
points  imagined for  the  CanOE tool  are  available  from this  page:  listing  metabolons  per  organism, 
consulting local or global orphan reactions at varying levels of detail, and searching trough the results 
with keywords.
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than one metabolon17 (94.5% single metabolon, 4.7% two metabolons, 0.9% above).

• Metabolon List (implemented):  Simply list  all  the metabolons detected within a target 

organism, allowing a user to scan through the structured metabolic knowledge located by the 

CanOE strategy.

The Metabolon List results page (accessible from the CanOE main page) separates metabolons into 

categories based on their reaction content: 1) metabolons with at least one global orphan reaction, 2) 

metabolons with at least one local orphan reaction and no global orphan reactions, 3) metabolons 

with at least one gap reaction but no orphan reactions, and 4) “complete” metabolons in respect to  

reactions. Each metabolon is described in terms of primary/gap genes and reactions, as well  as 

associated  metabolic  pathways,  and  gives  access  to  the  MetabolonViewer  page  in  order  to 

graphically represent it. The other organism-centric access points will be implemented in the future.

17 Indeed, a single Known gene-reaction association can only belong to a single metabolon. Genes belonging to 
multiple metabolons thus have multiple Known gene-reaction associations, each captured by a different metabolon.

139 / 229

Illustration VII.21: CanOE metabolon list

The MicroScope user can access a list of metabolons for a specific organism to which he/she has access.  
Metabolons are described in terms of gene and reaction content,  associated metabolic pathways,  but  
foremost, by any local/global orphan reactions they may contain.
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 VII.F.2.c.  Metabolon Viewer

The first and foremost of representations of metabolon data is obviously a graphical illustration of 

the  metabolon  itself.  To  this  end,  I  implemented  a  Java  package  (based  on  the  Jung  package 

[http://jung.sourceforge.net/]) that could draw a metabolon using CanOE results extracted from the 

MicroScope database. Current implementation displays genes as arrows and reactions as rectangles, 

with  colour  variations  corresponding  to  specific  flags  (annotated/non-annotated  gene, 

metabolic/non-metabolic  gene,  global/local/non  orphan  reaction),  and  edges  with  confidence-

specific patterns (Known/Potential/Inferred). I intend to represent compounds in a further version, 

in order to increase readability of the metabolic part. Ideally, the genes and reactions should be laid 

out automatically to best highlight the metabolon structure. I was not, however, able to discover an 

algorithm  for  efficiently  doing  this  low-priority  task,  and  nodes  currently  must  be  manually 

displaced by the user. Alain VIARI has helped me find a promising algorithm that is implemented 

in Javascript rather than Java. I shall use it to replace the currently too-heavy MetabolonViewer 

applet when I have the time.
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Illustration VII.22: CanOE metabolon viewer

The MetabolonViewer generates a graphical representation of a metabolon, with genes, reactions, and all  
types of edges. Users can currently move each vertex manually in order to improve the graph's layout.  
Basic information is available by right-clicking on the vertices; full information about metabolon contents 
is given in the tables below the viewer itself.
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The MetabolonViewer page contains additional information, such as the colour legend, the list of 

genes,  reactions  and  metabolic  pathways  with  details,  the  list  of  metabolon  gene-reaction 

associations (Known, Potential and Inferred), as well as a list of any other metabolons which share 

genes with the current one (useful for overlapping metabolons or alternate pathway metabolons).

 VII.F.2.d.  Orphan reaction pages

Some bioanalysts might approach MicroScope with the hope of finding candidate genes for local or 

global orphan reactions. In order to assist them in this endeavour, we propose a web page listing all 

local or global orphan reactions with at least one candidate gene in at least one metabolon. The 

results can be consulted at three different detail  levels:  a summary of all orphan reactions with 

candidates, a family-level detail of candidate families for each reaction, or a gene-level detail of 

candidate genes for each reaction. According to the chosen level, results provide quick link access 

to data  pages describing the reactions,  the families,  the genes,  the metabolons,  and the family-

reaction associations involved.
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Illustration VII.23: CanOE orphan reaction pages

The orphan reaction pages can specify, at three levels of detail (summary, family, and gene), CanOE's  
candidate genes for either local or global orphan reactions, with dynamic links to other relevant pages.
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 VII.F.2.e.  Search result page and object-specific pages

Searching for a gene returns results and links concerning genes, as well as families and metabolons 

containing those genes, for all metabolic schemas. Searching for a reaction returns the list of all  

CanOE reactions that contain the specified keyword in their name or equation, for all metabolic 

schemas.

Each  object  used  in  the  CanOE  data  model  (reaction,  family,  metabolon,  family-reaction 

association)  has  its  own  description  page  (the  metabolon  page  being  the  already-described 

MetabolonViewer page). These provide internal links to other associated objects and results, as well 

as  external  links  for  metabolic  reactions  and  pathways  (current  implementation  works  for 

MetaCyc).

Altogether, these web pages should provide sufficient access to CanOE results for bioanalysts to 

exploit them correctly in the manners discussed below. Documents describing the tool and tutorials 

for bioanalyst users of MicroScope are under preparation.
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Illustration VII.24: CanOE search result page

A user  can  search for  reactions  or  genes  using  keywords.  A reaction search  locates  reactions  in  all  
metabolic schemas with the specified keyword associated to them (EC numbers, compounds,  part of  
reaction name...).  A gene search locates genes and their  containing families with GO_labels or  gene  
names including the keyword. For each type of search, a table is returned with a list of hyperlinks to 
relevant  CanOE objects.  For  security  reasons,  the  gene  search  is  not  intended  to  be  made  publicly 
available.
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 VII.G.  CanOE uses
The  CanOE  strategy,  once  its  development  is  complete,  shall  offer  bioanalyst  users  of  the 

MicroScope platform 4 services, graded in increasing usefulness and decreasing result volumes:

1. CanOE predicts metabolons, which are original objects that can be used to  visualise and 

synthesise metabolic and genomic information, easing bioanalysis;

2. These metabolons  serve as a basis  for  proposing Potential  gene-reaction associations, 

with scores reflecting results integrated across several genomes and thus conservation;

3. Combining  Known  and  Potential  gene-reaction  associations  across  sequence  similarity-

based families allows the creation of relatively high confidence Inferred associations that 

bioanalysts may use to complete gene annotations;

4. Finally, metabolons can propose  candidate genes even for sequence-orphan enzymatic 

activities, as association generation is not sequence-dependent.

All 60,00018 metabolons are available as support for point 1. Only a sub-selection of them (3,867) 

contain novel association propositions necessary to point 2. Only 1,125 of these metabolons contain 

Inferred  associations  (point  3).  Finally,  despite  the  effort  put  into  the  design  of  CanOE,  a 

disappointing number of metabolons (597) contain one of the 78 sequence-orphan activities that 

have candidate genes (point 4). This last point is discussed later, in section VII.H.2.

Thankfully, the strategy is open-ended, in that many improvements can be made to it, that hopefully 

will  increase  the  number  of  interesting  predictions.  Furthermore,  several  other  use  cases  for 

metabolons can be imagined. Finally, it may one day be able to take enzymatic promiscuity into 

account. I shall discuss these points below, before concluding the main project of my thesis.

 VII.H.  Discussion and perspectives

 VII.H.1.  CanOE general improvement leads
The VerticalOrpheny1  benchmarking protocol  showed that  CanOE can be  powerful  for  orphan 

reactions that have been seen in a few metabolons. In this sense, we feel that it is possible to defend 

the “candidate gene finding for orphan enzymes” aspect of CanOE. Obviously, the small number of 

orphan  reactions  for  which  metabolons  or  candidate  genes  are  available  is  disappointing. 

Furthermore, bioanalysis of the propositions leads one to consider many as false positives. We argue 

18 Numbers are given for August, 2011
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that if bioanalysis of these propositions allows the identification of only a few correct candidate 

genes  for  orphan enzymes,  then  that  is  better  than nothing;  furthermore,  as  pointed out  in  the 

previous  conclusions,  CanOE  results  are  interesting  to  the  bioanalyst  for  other,  non  orphan-

dependant reasons. We also argue that improvements to a) CanOE metabolic networks, b) CanOE 

gene family construction (or use of gene similarity), c) CanOE functional dependence indicators, 

and d) MicroScope annotations will  alleviate this.  Indeed, point a) will  increase the number of 

available  reactions  and  better  connect  them  to  each  other  (even  possibly  involving  transport 

activities); point b) might help refine association scores; point c) will make large, more process-

related metabolons possible; point d) will allow CanOE to capture additional metabolic contexts, 

thus increasing possibilities for hypothesis generating. All these improvements will be discussed 

amongst the following sections.

 VII.H.2.  Improving the metabolic graph
As pointed out in the article, a not-so-small fraction of orphan enzymatic activities are excluded 

from the global metabolic graph used in CanOE's Metaboloniser because they cannot be connected 

to other metabolic reactions by only keeping “main” compounds. In the MetaCyc schema presented 

in this thesis and in the article, this could be due to the absence of metabolic pathways including 

these orphan reactions, or because the containing pathways are too small or not linked to others in a 

way that allows the orphan reaction to be linked to other reactions in other pathways. In the KEGG-

based metabolic schemas presented in this manuscript, reaction disconnection could just as well be 

due  to  the  absence  of  a  parent  metabolic  pathway,  to  overly-stringent  or  sub-optimal  filtering 

conditions. In any case, disconnected orphan reactions cannot be included in a metabolic context, 

and  de facto, cannot be found in a metabolon. Improving the metabolic graph in any way would 

seem the best place to start in order to capture additional orphan reactions, and hopefully, more 

candidate genes.

The source metabolic databases are in a state of constant manual curation, MetaCyc with in-house 

curators and its user feedback, KEGG with the research projects piloted by Kanehisa labs, both 

being fuelled by the novel experimental discoveries described in published literature. The metabolic 

network can thus only improve in terms of coverage, though should connectivity be an issue (as was 

the case with the KEGG schemas), then improved protocols for defining “main” compounds might 

be necessary, using for example better KEGG Map data, RPAIR data, or even simple Reaction data.

Another  possibility,  discussed  more  in  length  in  chapter  X,  would  be  the  use  of  CanOE and 
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BKACE-like  (see  chapter  VIII)  strategies  in  an  iterative  way,  gradually  exploring  further  the 

metabolic space of prokaryote organisms.

Finally, a bibliographical effort may be useful. I detail this approach in the following section.

 VII.H.3.  New Enzymatic Activity Survey
During this thesis and more specifically during the genesis of CanOE, we pondered on how the 

LABGeM could contribute to reducing the number of orphan enzymes in a way that would readily 

benefit the MicroScope platform. As has already been suggested (see section VI.B and [2]), a non-

negligble fraction of orphan enzymatic activities may be orphans only because of insufficient efforts 

in  the  computerisation  of  knowledge already present  in  scientific  articles.  Also,  the number  of 

known activities continues to grow each year (several hundred EC numbers gained over the past six 

months), with the creation of candidate activities (validated or not), which further complicates the 

tracking of reaction bibliography. The recent UniProt effort [3] helped reduce by a few percent the 

number of global orphan enzymes, but many still seek parent genes.

In order to deal with these shortcomings, we imagined setting up an internal bibliographical tool 

called “New Enzymatic Activity Survey” (NEAS) at the Genoscope that would allow us to follow 

the evolution of enzymatic activities (i.e. discovery, formalisation, modification, transfer/renaming, 

deletion,...),  their  annotation  status  (i.e. how  many  genes,  across  how  many  organisms,  are 

annotated  with  such  and  such  activity?),  and would  also  allow us  to  create  new,  user-defined 

activities and protein-activity annotations backed by bibliographic evidence. The use of such a tool 

would lead to :

• a reduction in artefactual orphan activities

• the maintenance of an up-to-date, manually curated metabolic resource

•  the maintenance of an up-to-date, manually curated bibliographical resource for:

◦ the discovery of novel activities

◦ their assignment to gene/protein sequences
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All in all, automated and manual gene functional annotation methods would all benefit from this 

kind of tool. It would also contribute to establishing descriptive statistics of the field over time, such 

as described in section  VI.B. However, due to time and resource constraints, this project was not 

initiated during my thesis, though it should see the light in the coming months. When it is ready, 

NEAS  should  be  able  to  improve  CanOE  results  by  feeding  it  better  coverage  of  prokaryote 

metabolism.

I shall now discuss the other improvements or ideas we have imagined that could be applied to the 

CanOE strategy.

 VII.H.4.  Various CanOE improvements
 VII.H.4.a.  Annotation transfer by Context Similarity

Our  first  musing  concerned  how could  similar metabolons  be  used  to  transfer annotations 

between non-similar genes. This idea is illustrated in the figure below. The reasoning is thus: if a 

metabolon  M1  shares  many  reactions  with  metabolon  M2,  and  several  of  these  reactions  are 
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Illustration VII.25: Schema of NEAS objects and their relationships

NEAS would be dedicated to tracking the associations between metabolic reactions (formalised by EC 
number for example), genes/proteins, and their sequences and host organisms. All of these objects and 
associations would require references to scientific literature.  By keeping such a resource up to date,  
NEAS would provide precise tracking of activities.
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catalysed by genes  that  have detectable  sequence similarity between M1 and M2,  should it  be 

possible to increase the “score” of a potential association between a gene gap g2X and a reaction 

gap r4 in M2, given that a gene g1D has a Known association for r4 in M1, even though g2x and 

g1D share no detectable sequence similarity? Despite the lack of sequence similarity, the contextual 

evidence might convince a bioanalyst to consider gene g2x as a member of a yet-unknown family 

able to catalyse r4 (or perhaps some variant of it).

Actually defining a procedure for carrying out this kind of transfer is, obviously, a major challenge. 

I can currently imagine two ways to do this. A first possibility would be to use the expertise of 

several bioanalysts to create a rule-based system, capable of analysing two or more metabolons in 

respect to gene, family and reaction content, taking into account gene and reaction similarities, in 

order to make high-level inferences. A second possibility would be to use an approach akin to that 

of the Genomic Context  Similarity presented in  the next  chapter,  section  VIII.C.2.  This would 

require defining some sort of numerical measure of context similarity, be it in terms of genomic 

context or metabolic context, that could “replace” the absent sequence similarity between them.

Either way, this kind of transfer would be particularly useful for metabolons having been affected 
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Illustration VII.26: Annotation Transfer by Context Similarity

Two metabolons in two related genomes G1 (genes g1A to g1H) and G2 (genes g2A to g2H).  Both 
concern metabolic reactions r1 to r7. Functional annotations are shown as green curves. High sequence 
similarities are shown as large orange lines. Gene g1D catalyses reaction r4, and gene g2x is a candidate 
for the same reaction; however, gene g2x has no identifiable sequence similarity to gene g1D. Given this 
evidence, a bioanalyst might want to consider g2x as a valid candidate for r4, perhaps belonging to a yet-
unknown family of enzymes. In an automatic procedure, it would be interesting to be able to reinforce the 
association score between g2x and r4 on the basis of  that  existing between g1D and r4,  despite the  
absence of similarity:  an annotation transfer on the basis solely of conserved genomic and metabolic  
contexts.
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by  xenologuous  gene  displacement,  or  promiscuous  enzyme  recruitment.  However,  it  would 

probably  generate  a  large  number  of  false  positive  potential  associations  (or  up-score  them 

erroneously). It would also be of no use in the case of orphan enzymes: indeed, if g1D only had a  

potential association with r4, then there would be not enough evidence to hypothesise that g1D nor 

g2x catalyse r4. For all these reasons, this specific avenue was not explored further in this work.

 VII.H.4.b.  More functional dependence evidence

As has been suggested in the paper,  additional functional dependence clues could be added to 

CanOE. The use of the current version of CCCPart imposes the transformation of these clues into 

binary gene-gene dependency edges. Clues that could be used include high phylogenetic profile 

similarity, regulation by a same molecule (requires prediction of individual gene regulations), or 

high expression profile similarity (requires the use of experimental data). Preparing protocols for 

these might prove difficult to adjust, especially in selecting a value cut-off for generating binary 

edges. As gene neighbourhood has been shown to be the most informative of genomic context 

indicators [163], it would also be necessary to check that their addition does indeed increase CanOE 

coverage and usefulness. The main expected benefit would be the possibility of having metabolons 

span multiple locations in a genome, functionally dependent in a way that obviously goes beyond 

chromosomal proximity. It should thus be possible to capture higher-level metabolons, increasing 

opportunities for the generation of hypothetical gene-reaction associations.

 VII.H.4.c.  Non-metabolic genes and functional subsystems

Another kind of improvement for the CanOE strategy (that would pair  well  with the previous) 

would be the  inclusion of non-metabolic genes into metabolons. More specifically, it would be 

desirable to include non-metabolic genes whose products still participate, in one way or another, in 

metabolism. This brings the metabolon closer to the notion of “subsystem” which is central in the 

SEED  platform  [39],  and  becoming  it  for  MetaCyc  [214].  For  example,  an  urea  degradation 

metabolon might benefit from the addition of an urea transporter that happens to be included in the 

same operon. Other examples might be the inclusion of genes responsible for regulatory processes, 

signalling cascades, the construction of protein chaperones, etc. This might be useful for capturing 

additional  candidate  genes,  and  for  making  metabolons  more  representative  of  the  organism's 

working metabolism. The main hurdle to be overcome is obviously encoding the participation of a 

given non-metabolic  gene in  a  given metabolic  pathway.  The exact  functions of non-metabolic 

genes are rarely well described, and not encoded as easily as metabolic activities. Text searching 
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through the MicroScope database for precise descriptions would probably not work. It might be 

possible to associate genes with specific compounds (not activities) in this way, though how to add 

these genes to a metabolic pathway remains an open question.

 VII.H.4.d.  Gene families, similarity matrices

The use of gene families is sometimes disputed in the world of bioinformatics, due to the risks in 

erroneous annotation transfer [53,266]. Indeed, not only is the definition of “gene/protein family” 

subject to many variations (some families are defined using whole-sequence similarity, others detect 

functional conserved domains, see section IV.B.2), but actually establishing function on the basis of 

families  is  not  direct  and  depends  on  the  former  (due  to  multiple-domain  proteins,  functional 

promiscuity, see section V.C.1). It may thus seem preferable to replace the OrthoMCL-based family 

definition by something else. It might even seem feasible to avoid defining families altogether. In 

such as case, a more domain-based approach could be selected, akin to EFFICAz [267] or Pfam. 

Another possibility would be a more context-based approach, such as using IsoRank  [173] with 

protein-protein interaction networks when available. 

If  one  still  wishes  for  the  simplicity  of  whole  sequence  similarity,  then  it  might  at  least  be 

interesting to conserve all similarity information, rather than lose some by cutting the sequence 

universe into non-overlapping families. At one point, I thought that it might be possible to directly 

use a  similarity matrix H of size G*G (where G is  the total  number of genes)  of gene-gene 

similarity scores (i.e. the matrix fed to the MCL algorithm). If gene-reaction association scores were 

to be consigned in an association matrix A of size G*R (where R is the total number of reactions),  

than a simple matrix product H*A would lead to “association diffusion” amongst the genes. Put 

simply,  a gene would inherit  associations to  reactions owned by its  neighbours,  factored by its 

similarity with said neighbours. Several “rounds” of such multiplication (diffusion) would ensure 

associations would be shared by all genes with some sequence similarity, and correct associations 

would “accumulate” in clusters of genes. This would also allow genes to be associated to many 

reactions,  with  varying  weights.  Several  pitfalls  line  this  path,  however.  Firstly,  it  would  be 

necessary  to  define  prior  association  values  for  “Known”  and  “Potential”  associations,  as  is 

currently the case, though these choices might affect results more profoundly. Secondly, some sort 

of normalisation method would be required to actually locate final scores that are indicative of a 

true association, a feat that is likely to be difficult as maximal association scores will be heavily 

influenced  by  localised  clusters  and  clique  structures.  Finally,  CanOE  currently  generates 
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metabolons for over 200,000 genes. The corresponding H matrix, thought very sparse, would still 

be difficult to handle computationally. Even the A matrix would be. This lead still seems promising 

to  us,  and if  further  research is  encouraging,  will  probably supersede the current  family-based 

approach.

 VII.H.4.e.  Aligning multiple graphs at once

As has already been said, the  CCCPart implementation developed by Yves-Pol DENIELOU has 

many algorithmic improvements over the previous version. One of the main new features is the 

computational  tractability  of  aligning  multiple  input  graphs  in  one  go (other  improvements 

include imposing node order constraints, or conservation quotas across multiple input graphs). It 

could, for example, be used to calculate conserved syntenies across several genomes at once. This 

could be exploited in order to establish metabolons that are conserved across several genomes at 

once. The added value of this would be of being able to skip the “integration over n organisms” step 

entirely, as it is already done. However, several hurdles would have to be overcome before doing 

this. First of all, the algorithm's output would be highly complex. Indeed, CCCs would be reported 

across subsets of input graphs (metabolons conserved across variable numbers of genomes), and 

they would certainly be overlapping (e.g. a three-genome metabolon could overlap with a larger 

two-genome metabolon). This would make dealing with the output very complicated. Secondly, the 

method would be sensitive to phylogenetic bias, in that heavily conserved metabolons would easily 

be found amongst groups of closely related genomes; defining genome sets  on which to run it 

would probably have to be done manually. Once again, we stress that the CCCPart algorithm is not 

adapted to using weighted edges, be it within an input graph or between input graphs; this would be 

a  problem for  the  gene-gene  similarities,  as  they  would  have  to  be  made  binary,  thus  losing 

information, especially since determining a global similarity threshold across the whole gene space 

would not be biologically relevant. It might be possible to use other algorithms for this task, such as 

IsoRank or IsoRank-N [173,174], though they were not designed with different types of input graph 

(e.g. genes *and* reactions for metabolons) in mind. Finally, even if integration over n organisms is 

built  in  per  se into  the  metabolons,  this  does  not  determine  how  individual  gene-reaction 

associations would be scored: an entirely new procedure would be required.

Another possibility of dropping gene family use from the CanOE strategy would be to integrate not  

genes via families, but entire metabolons. Ways of aligning metabolon graphs by using algorithms 

such as  IsoRank  [173],  [144],  or  even CCCPart  itself  [5],  or  establishing tailored measures  of 
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“metabolon similarity” (e.g. counting the number of shared genes or reactions, factoring in gene 

similarities,  etc) could be imagined to regroup metabolons across many genomes. This would be 

interesting for comparative genomics, though the same problem of redefining a scoring system for 

this approach remains.

Other improvements can be imagined, in the way that CanOE data is exploited.

 VII.H.5.  Metabolon & CanOE use cases
Metabolons are a formalisation of high-level annotation information. Several uses for them could 

potentially be explored.

The first that springs to mind is their use in predicting operons. In their current shape, metabolons 

are  indications of functional  coherence in one genome that  is  in  line with the definition of an 

operon.  Perhaps  crossing  predicted  operons  and  metabolons  could  help  extend  the  latter. 

Furthermore, as said in section IV.D.2.c, some operon-predicting algorithms require function to be 

conserved across several genomes, as well as sequence; multi-genome metabolons (or alignments of 

several single-genome metabolons) could capture this kind of signal. Perhaps a simplification of 

this idea would be the use of multi-genome metabolons with loose constraints on its metabolic part 

in order to derive multi-genome syntenies.

Another interesting possibility would be to examine if metabolons associate with other context-

gathering units of function (gene runs, gene clusters, syntenies, operons, regulons...). If this was the 

case, it might be possible to learn more relaxed rules of defining metabolons, that would in turn be 

useful  for  predicting  new  metabolons,  or  extending  the  previous.  exploring  this  lead  would 

obviously be complex and time consuming and could form the basis of a brand new thesis project.

Finally, metabolons could be used to  correct functional annotations. In  [268], the authors adapt 

their orphan enzymes candidate gene finder to a different problem: that of locating potential mis-

annotations. Their idea is that if a gene G is annotated with function belonging to bio-process P, but 

has low functional dependency with other genes whose annotated functions participate in P, then the 

annotation  of  G is  probably false.  Furthermore,  if  G has  a  higher  functional  dependency with 

another set of genes than the one its annotation links it to, then the annotation of G is probably false 

as well. In the latter case, a new function for G can be proposed; this idea is illustrated in the figure 

below. Metabolons could be used similarly to this. Any gene gap that belongs to a metabolon and 
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whose annotated product does not participate in the metabolon can be viewed as a potential mis-

annotation.  Our  integration  over  n  organisms  approach  can  help,  as  annotations  that  are  not 

supported by a metabolon are not considered; a bad annotation that has been transferred by simple 

homology will thus be thwarted. Potential associations across the family, however, can propose new 

metabolic functions for it.

 VII.H.6.  Enzymatic promiscuity
As I have already pointed out, I believe any new bioinformatics method dealing with functional 

annotation  should  in  some  way deal  with  functional  promiscuity.  Indeed,  as  has  already been 

highlighted out in [97,98,100], the relationship between sequence similarity - the most heavily-used 

proxy  for  functional  similarity  -  and  function  is  far  from  straightforward,  and  functional 

promiscuity is one of the mechanisms that clouds it up.

The first  version of CanOE does not deal with promiscuity either.  Worse,  some of its  working 

hypotheses expect genes to  be mono-functional  (e.g.,  not  proposing already annotated genes as 

candidates for a reaction gap).  Still,  one might excuse CanOE, given that I was unable to find 

anything in the literature that approached this problem. We have, however, imagined some ways of 
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Illustration VII.27: Annotation correction using context-based methods

The figure  represents  genes  from a  genome  (green  and blue  circles)  and  their  respective  annotated 
functions (grey rectangles), as well as the links between the latter (orange lines with dots in the centre). In  
functional Context 1, the gene in green is annotated with one function, but has a low “goodness-of-fit  
score” for this position, as calculated from its functional dependencies with the other genes (purple lines).  
However, the same gene has a higher score for a different function in Context 2. The green gene can thus 
be considered as mis-annotated, and in this case, could be re-annotated with the function from Context 2.
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dealing with functional promiscuity in the CanOE framework, and I wish to present them here on 

the off chance that they may one day be of some use to future developers.

It has already been question about the “underground metabolism” [230], the idea that the genes 

encoding one metabolic pathway may actually be capable of catalysing parallel or even completely 

different metabolic pathways, either at negligible speeds, or only when the right conditions are met 

(such as the absence of the first substrate of the primary pathway). The CanOE metabolons can 

capture some of this, either by a) allowing genes to be associated to multiple reactions in a same 

metabolon, or b) allowing genes to be assigned to multiple metabolons.  Case a) would capture 

parallel  or  similar  pathways  whose  reactions  share,  at  some  point  or  other,  identical  main 

compounds. Case b) can capture different pathways or those who do not share main compounds. 

Cases  like  these  were  observed  within  CanOE,  especially  for  KEGG reaction-based metabolic 

schemas, due to the uncertainty of EC to KEGG reaction conversions (often allowing one gene to 

associate  with  a  panoply  of  related  KEGG  reactions).  However,  most  of  these  cases  seemed 

anecdotal or spurious, and depended on genes that have already been annotated as multi-functional. 

Underground metabolism is currently expected to be largely unknown, so the CanOE strategy as is 

may be useful in filling in blanks, but will probably not help discover these cases directly. To be 

able to live up to this mission, CanOE would have to be improved in some manner beforehand.

The main point to address prior to improving CanOE in this direction is “how exactly to  model 

functional promiscuity?”. The current model allows for it by accepting multiple Known gene-

reaction associations for a same gene. Additionally allowing Potential associations to be generated 

for genes with Known associations would further open CanOE up to functional promiscuity, but 

would result in creating many, many false positive Potenial associations. One interesting alternative 

would be to model reaction-reaction similarities in a graph. These similarities would be designed to 

capture  enzymatic  promiscuity.  For  example,  a  reaction  R  could  be  proposed  in  a  Potential 

association for a gene G that already has a Known association with reaction R', if and only if R and 

R'  are  two  enzymatic  reactions  that  can  be  catalysed  by  a  same  enzyme.  More  boldly,  low-

confidence Known associations could be automatically generated on the basis of these similarities, 

thus hypothesising that if  an enzyme catalyses one reaction that is known to be catalysed with 

another, then it probably also catalyses the other.

The simplest way that springs to mind of constructing such a similarity is to count the number of  

co-annotations (i.e. the number of times a gene has been annotated with reaction R and reaction R') 

and to divide it by the number of individual annotations (i.e. the number of times a gene has been 

153 / 229



Development: The CanOE strategy

annotated with R or with R'). This approach would ensure that reactions that are known to be able to 

cohabitate  within  a  same  enzyme  are  effectively  given  this  possibility  when  designing  novel 

Potential associations. Another possibility would be to base reaction similarities on  EC number 

sharing. This is implicitly the case in [244], where candidate genes are favoured when they share 

the first three digits of the EC number corresponding to the target gap reaction. However, the power 

of the EC number system to capture reaction similarity has been disputed, either because of the 

accumulation  of  example  cases  where  EC  number  similarity  could  not  be  traced  to  sequence 

similarities [269,100], or because of discrepancies with reaction mechanistic knowledge [270].

Reaction similarity should thus take the chemical reaction into account, preferably with knowledge 

of mechanistic steps.  [271] built  reaction-describing feature vectors based on reactant structural 

physico-chemical properties observed to change during the reaction. They classified these features 

using factorial analysis or Kohonen self-organising maps and derived a reaction similarity measure 

from the  resulting  spaces.  In  [270,199],  the  authors  propose  a  more  mechanistically-orientated 

approach: a) individual mechanism step similarity between reactions was evaluated on physico-

chemical properties, transformations or bond changes, b) aligning the steps of 2 reactions using 

step-to-step similarities using the Needleman-Wunsch algorithm, and c) deriving a normalised score 

from  the  alignment  to  represent  reaction  similarity.  The  drawback  of  mechanistically-precise 

approaches  is  that  they  are  obviously  limited  to  reactions  for  which  the  mechanism has  been 

elucidated. The latter are far and few between, as state-of-the-art databases dedicated to this sort of 

information, such as the MACiE database  [272], only cover 321 EC numbers (for a total of 335 

distinct  reaction  mechanisms)  at  the  time  of  writing  [www.ebi.ac.uk/thornton-

srv/databases/MACiE].

Work conducted by Syed Asad Rahman at the Thornton Group of the EBI recently presented at 

ISMB/ECCB 2011 dealt  with deriving reaction similarities  on the basis  of  chemical  structure 

transformations between substrates and products, a biologically-relevant approach that does not 

depend  on  reaction  mechanism.  However,  these  works  are  still  in  progress,  though  the  first 

publications should be coming out soon. Once they become available, they should provide another 

way of measuring reaction similarity that is adapted to enzymatic promiscuity.

Once all similarities between reactions have been obtained, it remains an open question on how to 

use them. The methodologies hinted above propose to use some sort of binary rule, allowing or 

disallowing the generation of Potential  associations  on the basis  of reaction similarity.  Another 

possibility  involves  using  the  matrix-based  integration  approach  discussed  in  section  VII.H.4. 
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Reaction similarities would be put into a matrix T of size R*R (R being the number of reactions).  

Diffusing gene-reaction association scores across matrix A on the basis of reaction similarity could 

then be done simply by taken the matrix product A*R. Iteratively setting An = H * An-1 * R would 

ensure  that  association  information  would  be  diffused  according  to  both  gene  and  reaction 

similarities.  It  would  arguably  be  even  more  complicated,  however,  to  devise  a  normalisation 

scheme to extract conclusions out of a resulting An matrix.

All  these  leads  and  ideas  are  potential  starting  points  for  future  improvements  to  the  CanOE 

strategy, and it is my fond hope that someday they may help continue to carry research forwards in 

the domain of prokaryote genome annotation.

 VII.I.  Strategy conclusion
The CanOE strategy is a useful contribution to the domain of automatic gene function prediction for 

several reasons:

• it generates metabolons, a useful unit of metabolic function in a genome, that can be readily 

exploited by bioanalysts to ease manual annotation;

• it  can  propose  potential  and  inferred  associations  and  between  un-annotated  genes  and 

reaction gaps, with scores integrated across multiple genomes, thus helping bioanalysts to 

focus on the most promising cases;

• it can even propose candidate genes for organism-orphan reactions (albeit in small numbers) 

without  use  of  sequence  similarity,  which  is  of  particular  interest  for  global/prokaryote 

orphan reactions;

• it uses a computationally efficient and exact algorithm (with biological priors to result post-

processing) to locate genomic metabolons in single prokaryote genomes;

• though it  exploits  metabolic  context  and solely gene co-localisation  as  genomic  context 

information, it should be adaptable to other types of useful contextual information, such as 

phylogenetic profiles and co-regulation (this will probably form the basis of a new doctoral 

or post-doctoral project at the LABGeM);

• unlike  competitor  methods,  CanOE  is  the  first  -  to  our  knowledge  -  to  propose  the 

computational integration of results across all available genomes, leading to the calculation 
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of family-reaction association scores that we showed to be informative for bioanalysts in 

prioritising gene candidates for target reactions;

• competitor  methods  such  as  [144,244] do  not  propose  their  results  to  the  scientific 

community via a web interface or downloadable data sets, or even downloadable programs 

or source code. Results of the CanOE strategy will be fully integrated into the MicroScope 

web-based  prokaryote  genome  annotation  platform  (though  source  code,  presenting  no 

particular general interest and being MicroScope-specific, will not be made available).

• the  CanOE  strategy  shall  be  presented  to  the  scientific  community  via  two  scientific 

publications,  one detailing the strategy,  inserted above, and another describing the latest 

MicroScope developments.  The MicroScope platform now offers users the possibility to 

directly annotate genes with MetaCyc reactions (as well as previously-used EC numbers), a 

development which should form an interesting synergy with CanOE.

• The CanOE strategy provides interesting development and use case perspectives that would 

be well worth exploring in the future.
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 VIII.  Development: The BKACE project
The strategy imagined and implemented here will be presented in a collaborative paper regrouping 

the many Genoscope actors of the entire project, wherein the bioinformatics part will be relatively 

restricted. Full details of my work are thus discussed here.

 VIII.A.  Motivation and Objectives
In 2007, a collaborative work between the LABGeM and the LGBM teams at the Genoscope led to 

the discovery of the coding genes for three reaction steps in the lysine fermentation pathway that 

had  previously  evaded  identification  [240].  A  comparative  genomics  approach  using  the 

MicroScope platform showed that a group of co-localised genes were conserved across several 

genomes,  several  of  which corresponded to genes  encoding enzymes  from the  then-incomplete 

pathway,  the  others  encoding  hypothetical  proteins.  With  this  strong  evidence  of  functional 

association,  wet-lab experiments were carried out in order to elucidate the functions of the un-

annotated genes, successfully assigning the three gene-less steps to members of three hypothetical 

gene families.
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Illustration VIII.1: The lysine fermentation pathway

Shown enzymatic reactions are: L-lysine-2,3-aminomutase (1), beta-L-lysine-5,6-aminomutase (2), 3,5-
diaminohexanoate  dehydrogenase  (3),  3-keto-5-aminohexanoate  cleavage  enzyme  (BKACE activity) 
(4), 3-aminobutyryl-CoA ammonia lyase (5), acyl-CoA dehydrogenase (6), acetoacetate:butyrate CoA-
transferase (7), acetoacetyl-CoA thiolase (8), phosphate acetyltransferase (9), and acetate kinase (10)
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One of the involved gene families was classified in Pfam  [76] as “DUF849”, meaning that the 

family had been built on the presence of a conserved protein Domain of Unknown Function, and 

several members of this family were shown to catalyse the 3-keto-6-aminohexanoate cleavage step, 

illustrated in [Illustration VIII.1: The lysine fermentation pathway] (figure borrowed from [240]). 

However, this function was not shared by ALL the members of this family, of which most came 

from organisms unable to ferment lysine. This and the high conservation of the protein domain 

suggested that proteins from this family were able to catalyse a broad range of enzymatic activities, 

affecting different substrates by a similar chemical mechanism: enzymatic promiscuity at least at  

the family level (though promiscuity at protein level,  i.e. a same protein being able to catalyse 

several  reactions,  was  not  ruled  out).  The  project  was  then  extended,  with  the  objective  of  a) 

characterising  the  3D  structures  of  representative  proteins  of  this  family,  b)  elucidating  the 

associated mechanism, and c) exploring the functional diversity of the family. The first and second 

points were accomplished by a collaboration between the Structural Microbiology team at Institut 

Pasteur  and  two  other  Genoscope  teams:  the  Laboratoire  de  Chimie  Organique  et  Biocatalyse 

(LCOB) and the Laboratoire d’analyses bioinformatiques des séquences (LABIS)  [273]19. Protein 

3D structure modelling carried out in the LABIS showed that the active site of the enzyme was very 

probably conserved across the family. Together with the proposed mechanism, this comforted the 

hypothesis of a set of similar activities acting on similar substrates, and led us to name the family 

“BKACE”, for “beta-keto acid cleaving enzyme family”.

19 Though this study was limited to a single lysine degradation-related BKACE protein.
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Illustration VIII.2: The generic beta-keto acid cleavage reaction

Substrates  are  a  beta-keto  acid  and  an  acetyl-CoA molecule.  An  acetyl  group  (carbons  in  red)  is  
transferred to the acetyl-CoA's acetyl group, generating acetoacetate, while the CoA replaces it in the 
beta-keto acid, giving an acyl-CoA (conserved carbon chain in blue). We hypothesise that the variable  
part  of  the  beta-keto  acid  (R)  can  contain  many different  functional  groups:  alkyl  chains,  alcohols,  
amines, unsaturated alkyl chains...
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My work in this project addressed two main points of the exploration of the functional diversity of  

DUF849. The first of these concerned using existing bioinformatics tools to help divide DUF849 

into subfamilies that would hopefully prove to be iso-functional (i.e. act upon a same set of similar 

substrates). This would reduce the protein space to explore from all 749 proteins from DUF849 to 

only several hundred (choosing, for example,  192 that would conveniently fit  into two 96-well 

plates  during  wet-lab  experiments).  Furthermore,  using  bioinformatics  tools,  chemoinformatics 

tools and expert knowledge, we wanted to propose a set of plausible substrates that the proteins 

could act on. 

The second point I intervened on was the statistical  analysis  of the experimental data that was 

finally obtained by the LCAB team.

 VIII.B.  Article
A collaborative paper is currently being written in order to publish our findings. Its advancement, however, does  

not allow me to insert the draft here. Instead, I shall insert the short submission I sent in order to present these  

works at the “Journées Ouvertes de la Bioinformatique et des Mathématiques” (JOBIM) conference in September  

2010. The submission was accepted for a 5-minute flash oral presentation and a poster.

Author Contributions and Acknowledgements: Many  different  teams  collaborated  on  this  

project: the Laboratoire de Génomique et de Biochimie du Métabolisme (LGBM), the Laboratoire d'Analyses  

Bioinformatiques  de  Génomique  et  du  Métabolisme  (LABGeM),  the  Structural  Microbiology  team,  the  

Laboratoire  de  Chimie  Organique  et  Biocatalyse  (LCOB),  the  Laboratoire  d’Analyses  BIoinformatiques  des  

Séquences (LABIS), and the Laboratoire de Clonage et de criblage des Activités de Bioconversion (LCAB).One  

can only acknowledge as a whole the work provided by all the team members that were involved in the BKACE  

project.
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 VIII.C.  Methods and results
Dividing a protein family into subfamilies supposes the use of at least one type of protein similarity 

measure  to  calculate  an  optimal  partition.  Following  the  general  trend  in  bioinformatics,  our 

approach  used  several  protein  similarity  data  sources  and  integrated  them  together,  hopefully 

reaching increased method precision and coverage. Here, I shall present the methodologies for each 

individual  similarity,  as  well  as  the  integration  method.  The  complete  clustering  pipeline  is 

represented in the figure below. I shall then detail the experimental protocol used, as well as the 

statistical  treatments  I  applied  to  its  biochemical  results,  insisting  on  some  points  of  the 

experimental design that motivated my choices.
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Illustration VIII.3: The BKACE clustering pipeline

Primary sequence and structure data are extracted from public databases. Five main component BKACE 
clusterings  are  carried  out:  complete  linkage,  quicktree,  Sci-Phy,  Genomic  Context,  and  ASMC 
clusterings.  These  are  then  integrated  using  the  cluster  ensemble  framework  into  a  single  
“MegaClustering”, the clusters of which are supposedly iso-functional. The Genomic Clustering is also  
used as a basis for finding coherent metabolic contexts from which to draw potential BKACE substrates. 
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 VIII.C.1.  Multiple Sequence Alignment
The study of gene or protein families usually starts with the examination of all involved nucleic or 

amino acid sequences. Tools such as BLAST determine optimal pairwise sequence (nucleotide or 

amino-acid)  alignments.  However,  to  build  representations  for  several  proteins  and  to  study 

sequence evolution, it is necessary to align several proteins at once, making what is called Multiple 

Sequence Alignments (MSAs). Specific algorithmic challenges arise for this sort of problem and 

several tools have been created in answer, such as Clustal  [274], MUSCLE  [275], and the very 

recent Clustal OMEGA [276]. In this work, we used MAFFT [277]. MSAs can be used to establish 

phylogenies of the involved sequences by establishing protein-protein similarities that benefit from 

the family alignment, which from an evolutive point of view should be more precise than simple 1-

versus-1 sequence similarity. In practice, they can also be used to filter out proteins that do not align 

very well with the rest, such as proteins with sequencing errors or fragmented proteins. Here, 739 

BKACE proteins were initially aligned, but we filtered them down to the 725 that will be used in 

the subsequent analyses.

 VIII.C.2.  Clustering on conserved genomic context
We  used  an  in-lab  tool  called  the  Syntonizer (developed  by  Laurent  LABARRE  and  David 

VALLENET [6]) to locate syntenies (according to the MicroScope definition given at the end of 

section IV.D.2.c). It uses the CCCPart algorithm from [5] (see section VII.C.1), using edges based 

on discrete gene contiguity and binary gene homology relationships. The Syntonizer was used in 

establishing genomic context similarity measures presented in the following section.

We developed an original clustering approach specifically for the BKACE project. The general idea 

was to cluster together BKACE proteins that had similar genomic contexts. We decided to build a 

measure  of  genomic  context  similarity based  on  the  conservation  of  gene  neighbourhoods 

between  BKACEs  identified  using  the  previously  described  Syntonizer.  I  implemented  the 

following protocol :

• For each and every BKACE-coding gene,  extract from MicroScope all  the neighbouring 

genes that are entirely within a 10,000 base-pair distance (the average CDS length in E. coli 

K12 is 960 base pairs, and the average intergenic distance is 142 base pairs, meaning we can 

capture on average 9 genes on either side of the BKACE gene). This will be referred to as a 
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BKACE neighbourhood.

• For  each  concerned  organism  pair  (nota  bene:  several  BKACEs  can  exist  in  a  same 

organism,  so  self-pairs  are  allowed),  extract  all  gene-to-gene  sequence  similarities  as 

calculated by BLAST for all genes in all neighbourhoods (including the BKACE proteins 

themselves).

• Find all syntenies (i.e. groups of conserved genes) between all BKACE neighbourhoods 

using the Syntonizer with the following parameters:

◦ Gene  similarity  was  established  using  BLAST alignments  of  the  sequences  of  the 

encoded proteins. Homology was concluded between two best-bidirectional best hitting 

proteins that had at least 30% amino-acid identity over 80% of the length of the shortest 

protein20, which are the default settings for syntenies determined in MicroScope [6]. 

◦ Syntonizer gene gap parameter was set to 3, which is more restrictive than MicroScope 

base settings (which allow 5 gap genes), and only syntenies involving more than 3 gene-

to-gene relationships were conserved.

• Drop all syntenies that do not include a BKACE protein as they probably don't concern the 

latter.

• Using each remaining synteny (thus linking a BKACE and part of its gene neighbourhood 

on  one  organism to  another  BKACE and  its  neighbourhood  from the  same or  another 

organism), establish a genomic context similarity measure between the involved BKACE 

proteins.

We decided to choose an intuitive and simple measure of genomic context similarity: the number 

of genes shared between two neighbourhoods in a synteny. It is intuitive that the more genes 

conserved between two organisms, the more the BKACE contexts should be similar, and hence the 

more their functions are probably similar. This approach might be improved by taking into account 

the actual similarity scores involved.

BLAST results are inherently asymmetrical due to the nature of the algorithm, i.e. the similarity of 

protein A to protein B is not necessarily identical to the similarity of B to A. Furthermore, syntenies 

are not necessarily symmetrical either,  i.e. the number of conserved genes of neighbourhood A in 

20 Nota bene: please note that not all pairs of BKACE proteins actually pass these criteria. Thus, two heavily dissimilar 
BKACE proteins cannot be part of a same Genomic Context in our protocol.
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neighbourhood B is not necessarily the same as the number of conserved genes of B in A, as there 

can be gene fusion/fission and duplication events. Four possible counts of conserved genes are thus 

available  for  each  pair  of  BKACE proteins.  To establish  a  single  measure,  we thus  chose  the 

minimum number of  conserved genes  from each version of  a  same synteny (neighbourhood A 

versus neighbourhood B and B  versus A) and summed the values for  each version of BLAST 

(organism A versus organism B and B versus A), which is equivalent to taking the average. This is 

illustrated in the figure below.

The resulting counts were used to weight edges in a graph, wherein each node represents a BKACE 

gene neighbourhood. This graph required pre-processing in order to make its latent structure more 

apparent, and to render it more robust to perturbations. Indeed, this kind of similarity graph is not 

transitive: if neighbourhood A is similar to neighbourhood B and B to C, A is not necessarily similar 

to C, or can be similar to C, but via a different set of genes. To address these shortcomings, we  

iteratively removed edges that were a) too weak (minimum edge weight:4) and b) connected nodes 

with too low a degree (minimum node degree:3), ensuring minimal levels of connection strength 
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Illustration VIII.4: The Genomic Context similarity measure

Genes from a synteny between genomic sequences Seq1 and Seq2 are shown in green, with BKACE 
proteins in striking green. The Genomic Context Similarity measure is an approximation of the number of  
genes in synteny. The asymmetry of synteny results (due to fusions/fissions) is dealt with by taking the 
minimum number of involved genes from one genome. BLAST result asymmetry is dealt with by taking 
the sum of the previous for each possible setup (Seq1 versus Seq2, and Seq2 versus Seq1).
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and connectivity,  until  convergence of  graph structure.  Distributions  are  given in  the following 

figures for illustrative purposes:

We then applied a recursive spectral clustering algorithm (a class of clustering algorithm to which 

the tutorial  in  [278] can be considered a  practical  introduction)  to  divide the graph into dense 
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A1 B1

A2 B2

Illustration VIII.5: Edge weight and vertex degree distributions in the Genomic Context graph

The distributions of edge weights (A) and vertex degrees (B) is shown for the Genomic Context graph 
before (1) and after (2) the iterative filtering.
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modules  with  sparse  inter-connexions.  These  yielded the  BKACE clustering based on genomic 

context similarity that we desired, called “GC clustering”. Unfortunately, due to the pre-processing 

steps, many BKACEs were singletons in the graph, and could thus not be clustered. The number of 

clusters was manually fixed to 32, covering 412 BKACE proteins (56.8% of all BKACE proteins).  

The Genomic Context graph is shown in the following figure, with vertices coloured according to 

cluster membership. 
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Illustration VIII.6: Genomic Context graph with clusters

Each vertex in the graph corresponds to one BKACE protein and its neighbouring genomic context. Each 
edge represents a similarity, the score of which passed the pre-processing filters. Vertices are coloured  
according to the final Genomic Context clusters obtained by spectral clustering of the graph.
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 VIII.C.3.  Clustering on sequence similarity
Clustering proteins on the basis of sequence similarity has been heavily used over the years. Using 

1  versus  1 protein-protein  similarities  calculated  by BLAST alignments,  one  can  represent  the 

proteins in a similarity graph to which traditional graph-clustering algorithms can be applied. We 

filtered the BLAST results using manually-established thresholds on several criteria after observing 

their distributions in the data: matches covering less than 75% of the length of the shortest protein 

were dropped; matches less than 200 base pairs were dropped (the conserved domain on which 

DUF849 was built  is  roughly 200 base pairs  long);  matches  with an e-value  above 10 -50 were 

dropped.  Gene similarity was then summarised by a  common score:  the opposite  log10 of  the 

BLAST e-values.

The similarity graph S was made symmetrical (by averaging scores of A against B and B against A) 

and transformed into a distance matrix D using the usual formula: Dx,y = (Max(S) - Sx,y) / Max(S). 

We then built  a  hierarchical  tree  of  BKACE proteins  from this  distance  matrix  using the base 

complete linkage algorithm available in the R statistical scripting language. Clusters were finally 

determined traditionally, using a manually-chosen (after observing the tree structure) height cut-off, 

which led to 88 clusters of which 49 (representing 6.6% of the 739 BKACE proteins clustered this 

way) were singletons.

This clustering was called “SIM clustering” for simple similarity-based clustering, and had 39 non-

singleton clusters covering 690 (95.2%) of all kept BKACEs.

 VIII.C.4.  Phylogeny-based clustering
We used the DUF849 MSA in two phylogeny-based methods for clustering.

First, we created a phylogenetic tree using  QuickTree [279], generating bootstrap values for all 

nodes (which basically gives an indication of the robustness of the tree structure at  each node 

regarding small perturbations in the sequences). I then proceeded to manually cut branches of the 

tree  in  order  to  determine  the  clusters,  taking  into  account  tree  topology,  cluster  size  and  the 

bootstrap  values,  which  is  the  traditional  approach  of  the  phylogenetician.  In  this  “PHYLO” 

clustering, 71 non-singleton clusters were established, covering 701 BKACEs (96.7% of 725).

Secondly,  we  used  a  more  advanced  and  automated  approach  called  SCI-PHY (Subfamily 

Classification  in  Phylogenomics)  [280].  SCI-PHY  builds  a  hierarchical  sequence  tree  using 

Dirichlet mixture densities to construct sub-tree sequence profiles and using relative entropy as a 
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measure of profile-to-profile or sequence-to-profile similarity. It does not use information on host 

species phylogeny. It then applies minimum description length principles from information theory 

to cut the tree into optimal subfamilies. Full details on the statistical protocols can be found in the  

method's  publication  and  references  therein  [280].  This  clustering  generated  46  non-singleton 

clusters covering 704 BKACEs (97.1% of all BKACEs).

 VIII.C.5.  Clustering on key amino acids
Within an enzymatic protein,  several amino-acids in the sequence are of particular  importance. 

Indeed, beyond the large part of amino acids responsible for the secondary and tertiary structures of 

the protein, several directly can intervene in the enzymatic activity's mechanism, such as by offering 

a proton donor group at the right place, or deforming a substrate's electron cloud so as to facilitate 

group substitutions. Other amino acids are responsible for constraining the molecules involved in 

the reaction to spatial conformations more favourable to the mechanism. Identifying key amino 

acids  is  an active area of research in  structural  chemoinformatics,  as  they can help understand 

chemical mechanisms and their evolution. 

In  the  BKACE  project,  the  (now  disbanded)  Laboratoire  d'Analyses  BIoinformatiques  des 

Séquences (LABIS) contributed -amongst other things- by using their in-lab method called ASMC 

(Active Site Modelling and Clustering) to identify important amino acids in the family  [95]. The 

methodology is summarised in [Illustration VIII.7: ASMC pipeline] (as borrowed from [95]), and is 

described hereafter:

• retrieve set of proteins from a target family.

• retrieve known 3D structures for proteins of the family, or of proteins similar to those of the 

family, from the Protein Data Bank (PDB) [91].

• use  the  homology  modelling  tool  MODELLER [281] to  establish  3D  models  for  all 

proteins.

• use Fpocket [282] to detect the putative active site pocket in the known models.

• use MultiProt [283] to align all 3D models.

• retrieve spatially- (and not sequence-) aligned amino acids from the active site pocket and 

represent as an MSA.

• create a hierarchical tree of proteins based on this MSA using the CobWeb algorithm [284] 
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from the Weka software [285].

• use a log-likelihood analysis statistical approach [286] to identify sub-families and key sub-

family segregating amino-acid positions within the MSA.
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Illustration VIII.7: ASMC pipeline

The bioinformatics pipeline of the Active Site Modelling and Clustering method uses a set  of  initial  
protein sequences  from a given family,  as  well  as  at  least  one 3D structure  for  one of  the  family's 
members.  Cavity detection  allows  the  retrieval  of  the  3D coordinates  of  the  active  site.  Homology 
modelling ensures the retrieval of the amino acids involved in the active site for all proteins. A statistical  
analysis allows the isolation of key amino acids from the set, and the clustering separates the protein  
family into subfamilies based on these key residues.
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The method results in a protein subfamily clustering as well as knowledge of which amino acids are 

highly conserved in the active site,  and which ones are  discriminant  between subfamilies.  This 

clustering was called “ASMC-Cobweb” and had 31 non-singleton clusters, covering 672 BKACEs 

(92.7% of 725)

An additional clustering of ASMC active site residues was attempted using multiple correspondence 

analysis. This clustering was called “ASMC-MCA” and had 15 non-singleton clusters, covering all 

725 BKACEs. I decided to keep both clusterings for ASMC as each was able to isolate different 

kinds of extreme cases that the other did not, as shown in a manual analysis by Karine BASTARD.

High-level clustering results are summarised in the following table:

Clustering Coverage21 Non-Singleton Clusters
GC 562 (77.5%) 33
SIM 690 (95.2%) 39

PHYLO 701 (96.7%) 71
SCI-PHY 704 (97.1%) 46

ASMC-Cobweb 672 (92.7%) 31
ASMC-MCA 725 (100%) 15

 VIII.C.6.  Cluster ensembles
Historically, a first foray into BKACE functional space was conducted on the basis of an  ad hoc 

rule-based clustering,  integrating results  from previous PHYLO, GC and SIM clusterings.  This 

approach  was  later  abandoned  due  to  its  lack  of  rigour,  but  was  useful  in  confirming  in  a  

preliminary  biochemical  assay  that  the  approach  was  indeed  promising.  The  framework  that 

superseded it is known as cluster ensembles.

 VIII.C.6.a.  Protocols

Cluster  ensembles is  a  statistical  framework  that  deals  with  integrating  multiple 

clusterings/partitions  of  a  same  set  of  objects  [287].  It  is  mostly  used  to  combine  multiple 

component  clusterings  in  a  particular  way  so  as  to  obtain  one  single  integrated  “consensus” 

clustering, and can also establish hierarchical trees of clusterings to help compare them. 

Our  objective  here  was  to  obtain  a  final  protein  subfamily  clustering  based  on  the  individual 

21 Coverage is given only for non-singleton clusters.
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clusterings previously discussed. We used  CLUE, an R package implemented by Hornick  et al. 

[288].

Several  different  choices  can  be  made in  CLUE to determine  how the  integrated  clustering  is  

established from the component clusterings:

• component clusterings of a same set of objects can be attributed different weights modifying 

their influence on the integrated clustering. 

• the integrated clustering can be calculated using several methods that attempt to optimise a 

given  summary statistic that measures how “close” the integrated clustering is to all the 

component clusterings according to a clustering similarity metric. 

• the integrated clustering can be either “hard” (objects are attributed to a single cluster) or 

“soft” (objects have probability-like attributions to one or several clusters). 

• finally, CLUE does not support missing values for object clusterings (i.e. unclustered objects 

in  a  component  clustering).  Two  approaches  are  possible  for  adapting  our  component 

clusterings with missing values: 1) as missing values correspond or can be considered to 

correspond to singletons, they can be replaced by artificial singleton clusters 2) as missing 

values report the inability of the method to cluster the given BKACE proteins, they can be 

all added to a single “dustbin” cluster.

Several tools are available to evaluate the quality of on integrated clustering. The clustering tree is 

a hierarchical classification of the component and integrated clusterings, based on the clustering 

similarity  metric.  The  agreement  matrix is  an  n*n matrix  (where  n  is  the  number  of  objects 

clustered) where each cell (i, j) counts the number of different component clusterings that cluster 

object i and j together (modulated, if necessary, by component weights). High agreement amongst 

component clustering leads to many high and low values in the matrix, and few intermediate values. 

When  represented  graphically  using  a  colour  scheme  reflecting  count  value,  if  the  rows  and 

columns are permuted properly, a block structure should be visible across the matrix diagonal when 

the agreement is strong. The quality of an integrated clustering can thus be appreciated by visually 

evaluating this block structure after ordering the rows and columns according to integrated clusters 

(themselves ordered by cluster size for best visual effect).

I experimented with component cluster weights, cluster integration methods, their parameters, and 

the singleton/dustbin approach to singleton/missing value management. I also experimented with 
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using a factorial analysis in order to integrate the clusterings (a multiple correspondence analysis, 

followed  by  a  hierarchical  clustering  in  the  resulting  factorial  space).  Resulting  integrated 

clusterings were manually evaluated on the basis of the number of final clusters, the number of final 

singletons, on the aspect of the agreement matrix, of the clustering tree...

All of the component clusterings used here were born of trees, so it would seem natural to try and 

establish  the  tree  behind  the  consensus  clustering.  Please  note,  however,  that  the  consensus 

clustering is not based on a tree, but is the direct result of an optimisation algorithm using clustering 

metrics. It is thus not possible to obtain a hierarchical tree of the objects clustered in the consensus 

clustering.  In  order  to  derive  a  consensus  tree,  one  would  have  to  turn  to  the  tree  ensembles 

statistical framework (as noted in the discussion later).
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 VIII.C.6.b.  Results

The  agreements  between  the  various  component  clusterings  (in  both  their  dustbin/singleton 

versions)  and  the  possible  consensus  clusterings  (i.e. Factorial  analysis,  Hard  Manhattan/Hard 

Euclidean, weighted/unweighted versions) are illustrated in the following agreement tree:
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Illustration VIII.8: Agreement clustering tree

The agreement tree is a hierarchical clustering tree based on the disagreements between component and  
consensus clusterings. Component clusterings have the “cl_” prefix, and are: GC (Genomic Context),  
ASC_WEB (ASMC with CobWeb), ASC_MCA (ASMC with factorial analysis), PHY (PHYLOgenetic), 
SIM (similarity-based) and SP (Sci-Phy), each for different protocols for handling of unclustered proteins 
(dustbin or singletons). Possible consensus clusterings have the “con_” prefix and are boxed in purple.  
The different consensus clustering settings are: MCA-M-W (factorial analysis), HM (hard manhattan),  
HE (hard euclidean), for weighted and unweighted components (TRUE/FALSE, respectively), and for 
both  unclustered  proteins  protocols  (dustbin/singletons).  The  chosen  MegaClustering  corresponds  to 
“con_HM_TRUE_singletons”.
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Using this tree and details on the various consensus clusterings, the final parameter choices were:

Parameter Choice Justifications
SIM weight 0.66 All three of these methods were expected to share a 

large  part  of  common information.  Their  weights 
were  downsized  to  account  for  this  and  their 
respective coverages.

PHYLO weight 0.33
SCI-PHY weight 0.33

GC weight 2.00 The GC weight was favoured as it was built from a 
unique information source, and to compensate for 
its low coverage.

ASMC (CobWeb) weight 0.67 ASMC  clustering  is  considered  to  be  built  on 
functionally-relevant amino acid residues, hence a 
relatively good weight, both clusterings considered.

ASMC (MCA) weight 0.50

Cluster similarity measure Manhattan Manhattan  distances  are  more  stringent  for 
integrated  clustering  construction  than  Euclidean 
distances, as they amplify differences. 

Integrated clustering type Hard We wanted proteins to be each assigned to a single 
determined clusters, not probabilistically to several.

Singleton handling Singletons Empirically,  the  Dustbin  approach  tended  to 
exaggerate  false  relationships  between  BKACEs 
whose only common point  was  that  they weren't 
clustered by the same methods.
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The chosen integrated clustering, affectionately called the  MegaClustering, covered all 725 kept 

BKACE proteins and was composed of 32 MegaClusters, of which no singletons. MegaCluster size 

varied from 3 to 130, with an average of 22.7 and a median of 10.5. Only 4 MegaClusters contained 

more than 40 proteins (sizes: 56, 73, 99, 130), though 14 contained less than 10. This choice is 

comforted by a visual inspection of the agreement matrix below:
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Illustration VIII.9: MegaClustering Agreement Matrix

The agreement  matrix  is  a graphical  representation of  how well  the  different  component  clusterings  
agree, and how well this agreement is captured by the MegaClustering. For each pair (i,j) of clustered  
objects (here, BKACE proteins), the value in the matrix M i,j counts the number of distinct component 
clusterings that cluster objects i and j together. A colour scale from black to blue to red reflects in this  
figure  the  different  value  levels.  Ordering  the  rows  and  columns  according  to  increasing  size 
MegaClusters should, in the case of high agreement between component and Mega clusterings, reveal a  
diagonal block-like structure of higher values, as is the case here.
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 VIII.C.7.  Genomic Context Gene Families
In order  to assist  bioanalysis  of individual BKACE proteins,  it  was decided that  proteins from 

BKACE gene neighbourhoods should be clustered into gene/protein families that would capture 

information at the MegaCluster level. This was done using stringent BLAST score cut-offs to render 

binary all  protein-protein similarities for BKACE context proteins.  A similarity graph was then 

constructed using all BKACE context proteins for BKACEs  from a same MegaCluster. A simple 

single-linkage algorithm (i.e.  connected component detection algorithm) was used to isolate the 

families, which were then saved to the database. This very conservative approach should be useful 

in identifying only the best co-conserved gene families with the BKACE family, and should be 

instrumental in extracting specific annotations for them.

A total of 5,544 genes coming from all 32 GC clusters were clustered by this protocol into 955 gene 

families.

 VIII.C.8.  Inference of possible BKACE substrates
In [240], a subset of BKACE proteins was shown to catalyse the transformation of 3-keto-5-amino-

hexanoate, and in [273] the study of the 3D structure of one of these proteins led to the proposition 

of  a  chemical  mechanism  that  could  be  linked  to  key  amino  acids  heavily  conserved  across 

DUF849. The working hypothesis  behind the BKACE project  was that  the members  of  family 

DUF849 all catalysed similar reactions, alike in their chemical mechanisms, but differing in their 

substrates. More specifically, DUF849 proteins were expected to catalyse the cleavage of a carbon-

carbon bond of 3-ketoacids (beta-keto acids, hence the name BKACE for beta-keto  acid  cleaving 

enzyme) for a variety of substrates with varying “chemical decorations” (i.e. chemical functional 

groups with different physical, chemical and steric properties) that other, less conserved amino-

acids would interact with so as to define substrate specificity.

It was thus necessary to establish a list of potential substrates that could be catalysed by BKACEs. 

The most obvious approach would be to list all beta-keto acids known to life chemistry today. Using 

chemoinformatics tools proposed by KEGG and PubChem, we performed substructure searches 

for  beta-keto  acid  groups,  which  lead  to  a  long  list  that  had  to  be  manually  pruned  by  our 

biochemists.

Not all these molecules were commercially available. Some were successfully synthesised by the 

Laboratoire de chimie organique et biocatalyse (LCOB) at Genoscope, though others were not. The 
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list  of  substrates  tested,  along  with  their  classification  according  to  stereochemistry  properties 

involved in  substrate-enzyme interaction (as determined by some preliminary substrate docking 

experiments),  and some indications  of  protocol  modifications  (for  future  reference22)  are  given 

below (chemical names have been simplified, and designate the substrate used in the biochemical 

assay,  which  does  not  necessarily  correspond  to  the  actual  BKACE  activity  substrate  due  to 

protocol variations):

Name Functional group Charge  / 
hydrophobicity

Steric 
hindrance

Protocol

Negative charged groups

ketoglutarate carboxyl negative +

malonyl-CoA carboxyl negative + reverse

ketoadipate carboxyl negative ++

succinyl-CoA carboxyl negative ++ reverse

Partial charged groups

acetoacetyl-CoA carbonyl partial negative + reverse

hydroxybutyryl-CoA hydroxyl partial negative + reverse

Hydrophobe

benzoyl-CoA aromatic hydrophobe ++ reverse

crotonyl-CoA unsaturated aliphatic chain hydrophobe 0 reverse

propionyl-CoA aliphatic chain hydrophobe 0 reverse

butyryl-CoA aliphatic chain hydrophobe + reverse

isobutyryl-CoA branched aliphatic chain hydrophobe + reverse

hexanoyl-CoA aliphatic chain hydrophobe +++ reverse

decanoyl-CoA aliphatic chain hydrophobe ++++ reverse

methylketopentanoate aliphatic chain hydrophobe + ester

methylketohexanoate aliphatic chain hydrophobe ++ ester

methylketoisocaproate branched aliphatic chain hydrophobe ++ ester

methyloxooctenoate unsaturated aliphatic chain hydrophobe +++ ester

Positive charged groups

ketoaminohexanoate aliphatic + amine positive +

carnitine aliphatic + amine positive 0 carnitine

“Mixed”

aminooxohexanedioate carboxyl+amine overall: neutral ++

22 Protocol modifications: “reverse”: reaction tested in reverse direction, i.e. from the CoA-ligated product; “ester”: 
substrate available as an ester, requiring coupling with an esterase reaction to produce, reaction tested in the normal 
direction; “carnitine”: this substrate required a specific protocol, reaction tested in the normal direction.
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I shall now detail somewhat the experimental protocol used for testing these BKACE activities for 

these substrates.

 VIII.C.9.  Experimental Protocol
The  details  of  the  biochemical  protocol(s)  used  to  evaluate  the  activity  levels  of  the  BKACE 

proteins  on  the  various  proposed  (and  available)  substrates  will  certainly  be  described  in  the 

BKACE article and are not part of my expertise. However, I shall underline several important points 

concerning the assays that determine in great part how I chose to conduct the statistical analyses of 

the results.

• Choice of BKACE proteins to test: many experimental factors influence the organisation 

and  success  rates  of  biochemical  assays.  The  coding  genes  for  BKACE  proteins  are 

generally GC-rich (i.e., have a high proportion of Guanine and Cytosine in their nucleic 

sequence) which in practice means the genes are much harder to amplify by PCR before 

transferring them to expression vectors (transformed Escherischia coli). Furthermore, some 

of the BKACE host organisms were not available in the Genoscope prokaryote strain bank, 

nor commercially. BKACE proteins to test were thus manually selected by the LCAB team 

while trying to cover each MegaCluster evenly (roughly 10% of each cluster). 171 were 

finally successfully cloned and expressed in vectors.

• Experimental design: all chosen BKACE proteins (171) were tested against all available 

substrates (a total of 16 were tested). Crude total protein lysate was recovered from each 

vector expressing a different BKACE. The lysate was equally distributed across 4 wells for 

each  substrate:  2  with  the  substrate,  two  without,  making  2  repetitions  for  each. 

Furthermore,  the  entire  experimental  protocol  was  duplicated  (the  repetitions  will  be 

referred to as “repetition 1” and “ repetition 2”).

• Activity estimation: Activity was estimated using substrate-type-specific protocols across 

the 4 wells for each BKACE. These protocols had in common that they involved measuring 

the optical density (absorbance) at a given wavelength of each well over time, giving access 

to the concentration of a substrate or product during the experiment. The resulting curves 

were windowed and used to  derive the initial  reaction speed (which corresponds to  the 

derivation  of  the  curve  at  time  0,  but  in  the  case  of  BKACE  activities,  could  be 

approximated by the slope of a linear function fitted to the windowed concentration curve). 
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Finally, the difference in initial reaction speeds between substrate-containing and substrate-

free wells was taken to represent the initial reaction speed for the tested BKACE enzyme. 

Due to the use of total  protein lysate,  in which the proportion of  protein corresponding to  the 

BKACE protein is unknown (and, as has been shown by the biochemists, is NOT constant across 

BKACEs), the actual activity measures are NOT directly comparable between BKACE proteins. 

This issue will be discussed in the statistical analysis sections.

 VIII.C.10.  Statistical representations and analyses
 VIII.C.10.a.  Repeatability analysis

The first step in validating the experiment requires showing that it is repeatable and not too subject 

to noise or exterior factors. To do this, I verified that measures were comparable from one repetition 

to the next. First, the repeatability of lysate quantities across repetitions is graphically represented in 

the figure below. The dots cluster around the diagonal, indicating good repeatability.
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Illustration VIII.10: Lysate quantity repeatability

The quantity of total protein from extracted lysate is shown here, plotting values from repetition 1 against  
those of repetition 2 (arbitrary units). Even though it is not possible to link protein quantity to BKACE  
enzyme quantity, the relatively good repeatability of extracted protein is reassuring, allowing us to work 
with  the  hypothesis  of  comparable  quantities  of  enzyme  between  repetitions.  Different  dot  shapes  
correspond to different activity-measuring protocols.
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Next,  one  can  visualise  enzymatic  activity  repeatability  by  plotting  activity  measures  for  one 

(substrate,  BKACE) pair  from one repetition  against  measures  from the  other.  Again,  the  dots 

follow the diagonal, thus showing high repeatability.

Taken together, these results reassured us that the measured biochemical activities were consistent 

across repetitions, allowing us to treat both equally. The next step in the analysis of these values is, 

of course, deciding which pre-treatments may be necessary.

 VIII.C.10.b.  Activity preprocessing

Biochemical assays are subject to many kinds of perturbations that add stochasticity to all measures. 

It is thus important to evaluate which measure values actually reflect the process measured, and 

which ones correspond to noise. This is particularly important in the BKACE project because, as 

said, different activity measures are not comparable between BKACE proteins. Some way, however, 

had to be found to distinguish active from inactive proteins for each substrate.  I  imagined and 

implemented several strategies for dealing with this particular kind of noisy data. I shall briefly 
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Illustration VIII.11: Activity repeatability

The measured activities are shown here, plotting values from repetition 1 against those of repetition 2  
(arbitrary units). Each colour corresponds to one type of substrate. Negative activities are not shown. All  
points  are  heavily  grouped  around  the  diagonal,  indicating  that  the  activity  measures  are  highly 
repeatable.
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describe different points of interest that are common or not to these different strategies, focusing 

more on the final choices made in the analysis for publication.

Manual cut-offs: The first, simplest idea is to ask the biochemists which activity measure values 

they consider  as high enough to be trustworthy,  and which ones they consider  too small  to  be 

distinguishable from noise. This boils down to establishing a list of manually-chosen value cut-offs 

specific to each substrate. My first analyses were based on manual cut-offs supplied by the LCAB 

team.

Distribution-based cut-offs: The next idea was to analyse the activity measure distribution for 

each substrate, and attempt to base a cut-off on it. Manual definition of a cut-off on the basis of a  

distribution aimed at  separating  the  numerous low values  from the few high values,  as  only a 

minority of BKACE proteins were expected to act on any given substrate. I refined this procedure 

by  fitting  a  mixture  of  normal  distributions  to  the  activity  distribution  using  the  “mixdist”  R 

package. The idea behind this is simple: the measures we observe should arise from two parent 

distributions, one concerning the majority of proteins inactive on the given substrate and thus being 

centred on 0 or some small value, the other corresponding to the minority of active proteins for that 

substrate, but whose values cannot be compared, meaning that their parent distribution is a very 

wide normal distribution23 centred on the average measure value. Proteins were then declared active 

or not when their activity measure was over the value for which the inactive distribution becomes 

negligible (empirically 10x less) when compared to the active one.  The final approach kept for 

publication was this distribution-based cut-off procedure.

Real values versus Binary values: Once a cut-off has been applied, the activity measures can 

either be kept as is (i.e. zero or strictly positive real values) or rendered binary (0 or 1). Most of my 

first  analyses  were  based  on  real-valued  activities,  though  since  values  were  not  comparable 

between BKACEs, we finally decided to use binary values as whatever resolution was lost in this 

transformation could not correspond to any actual difference in activity levels, but only in BKACE 

protein expression levels.

Normalisation: Under the hypothesis that the fraction of protein in the total lysate corresponding 

to BKACE proteins was constant across BKACEs, “normalising” (dividing) measured activities by 

the  total  quantity  of  complete  lysate  was  an  obvious  procedure  for  results  to  be  comparable. 

23 It would have been interesting to try out a uniform distribution rather than an extremely flat normal distribution. 
However, estimating the borders of a uniform distribution would not have been straightforward, and I was unable to 
find an R package capable of estimating a mixture of distributions of different types (normal + uniform).
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However, given that the fraction was NOT constant across BKACEs, it remained debatable whether 

to normalise or not. I thus tested with and without. Finally, we decided that it was not useful to  

normalise as it had very little influence in practice on numerical or binary activities.

Profiling: Activity measures might not have been comparable between BKACE proteins, but they 

were across all substrates for a given BKACE. Hence the idea of analysing not the activity values 

themselves, but the fractions of each observed activity divided by the total activity per BKACE. 

Activity  measures,  expressed  as  percentages,  thus  become  comparable  across  BKACEs. 

Unfortunately, this approach has several drawbacks:

• percentage analysis is not as straightforward as value analysis, especially for multivariate 

statistical methods such as ANOVAs and Factorial Analysis;

• activity percentages behave in a particular way in respect to total activity. Thus, for proteins 

with systematically low activity values (i.e. not  responsive to  any substrates),  the small 

values that subsist (even after applying the cut-offs if any) and that correspond to noise are 

over-represented;

• working with profiles based on binary values only worsens the previous problem;

• a profile corresponding to no values (when none passed the cut-off) is meaningless.

I experimented heavily with profiling as it was the only way to render measures comparable across 

BKACEs. Finally, however, working with simple binary activities was simpler, more intuitive and 

easier to analyse correctly than working with profiles.

Perspectives: I am relatively sure that a better approach based on distribution mixtures and fuzzy 

clustering is possible to process this data with better resolution and power. It is too late, however, to  

try to develop a new analytical method for the upcoming publication. Once the next similar project  

is  initiated,  I  intend  to  propose  a  collaboration  between  the  Genoscope  and  the  Laboratoire 

Statistiques et Génome, where I did my masters internship, whose expertise includes dealing with 

this kind of data.

 VIII.C.10.c.  Substrate tree and clustering

One might wish to compare the pre-defined substrate typology to the observed results, in the hope 

of determining if there is any link to activity profiles and substrate characteristics. It is possible to 

build a hierarchical tree based on the similarities between their activities as measured across all 
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tested BKACE proteins. To build such a tree, I carried out a ascending hierarchical clustering using 

“Manhattan”  distances  (in  order  to  exaggerate  differences)  between  binary  substrate  activity 

profiles, though other protocols could be used. This tree can also be cut in order to establish a 

clustering of substrates that might then be interesting to compare to the substrate typology based on 

physico-chemical properties. Unfortunately, I did not have the time to deepen this king of analysis, 

as it  would have required an improved formalisation of the substrate  typologies that  I  was not 

qualified  to  make.  The  tree  itself,  however,  was  useful  for  the  graphical  representations,  as 

described below.

 VIII.C.10.d.  Graphical representation of results

In order to appreciate how the BKACE proteins performed across substrates, hopefully showing 

that the MegaClustering (or any component clustering of interest) indeed segregates proteins into 

iso-functional  sub-families,  it  was  necessary  to  conceive  graphical  representations  that  could 

account for the different factors. Several points relative to the representation are discussed here.

Substrate  typology: substrate  typology  was  determined  a  priori on  the  basis  of  substrate 

physico-chemical properties, as detailed in section VIII.C.8. Substrate typology can be represented 

by a colouring scheme. Activity-based substrate clustering could also be representative of substrate 

typology, and can be represented by a hierarchical tree of substrates, as described in the previous 

section.

BKACE phylogeny: BKACEs can be organised according to any evolutive phylogeny. Here we 

have  access  to  the  QuickTree-based  phylogeny  established  on  the  basis  of  BKACE  sequence 

similarity.  We also had access  to  the ASMC tree that  is  a  sort  of  phylogeny based on the 3D 

positions of key active site amino acids, though no figures using this tree will be shown here.

Component/Mega  Clustering: BKACEs  can  be  organised  or  coloured  according  to 

component/consensus cluster belonging.

Real/Binary values:  different real activity values for a same BKACE can be represented by 

stacked coloured bars. Binary activities can be represented by stacked bars or by a presence/absence 

matrix.

These different considerations led to various representations, of which the most informative and 

visually striking are detailed hereafter.
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Real-valued activities (with cut-off) grouped by MegaCluster: 

Real-valued activities (after applying distribution-based cut-offs) for each BKACE are represented 

as  stacked  bars  coloured  according  to  substrate  typology.  BKACE  are  horizontally  organised 

according to MegaCluster membership. It is visually obvious that generally, each MegaCluster has a 

coherent activity profile. This is a first step in validating the MegaClustering approach, as well as 

the working hypothesis: BKACEs can be organised into sub-families that catalyse mechanistically-
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Illustration VIII.13: Real-valued activities (with cut-off) grouped by MegaCluster

Each colour  corresponds to  a  single  activity.  Each bar  corresponds to  the  stacked activities  of  each  
BKACE. BKACEs are horizontally grouped according to their MegaClusters. As activity measures are 
not comparable between BKACEs, the vertical axis can be considered to have an arbitrary unit.

Illustration VIII.12: Substrate colour code chosen for BKACE graphical representations

Each colour  corresponds to  a  single  substrate.  “Mixte” designates  aminooxohexanedioate,  and KAH 
designates ketaoaminohexanote, which is the original substrate from the lysine degradation pathway. This 
colour code will be used in all figures for the substrates.
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similar reactions on different substrates.

Binary activities organised by phylogenetic and substrate trees: 

Binary activities (after applying distribution-based cut-offs) are represented by squares coloured 

according to substrate typology. Substrates are organised vertically according to the hierarchical tree 

based  on  activity  profile  similarity  described  in  section  VIII.C.10.c.  BKACEs  are  organised 

horizontally  according  to  phylogeny.  The  phylogenetic  tree  leaves  are  coloured  according  to 

MegaClustering. Once again, this graphical representation illustrates the coherence between an  a 

priori grouping of BKACEs (here, the phylogenetic tree) and the observed activity profiles.

 VIII.C.10.e.  Statistical validation of clustering

Validating  the  MegaClustering  in  a  rigorous,  statistical  manner,  in  respect  to  the  biochemical 

results, is at best, a hard task. Indeed, one must compare a partition of the proteins in the DUF849 

family, to the protein's respective activities, or some sort of clustering thereof. Several protocols 
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Illustration VIII.14: Binary activities organised by phylogenetic and substrate trees

Each row in the matrix corresponds to a substrate, and each column to a BKACE protein. Non-white  
blocks  indicate  a  positive  activity.  Substrates  are  organised according  to  a  hierarchical  tree  built  on 
binary activity similarities.  BKACEs are  organised according to  the  corresponding phylogenetic  tree 
below. The leaves of the phylogenetic tree are coloured according to MegaClustering membership. “+” 
and “-” signs are qualitative indications of the quantity of protein extracted in the experiments: “-” values  
are to be interpreted with more care (as in these cases, the absence of an activity could correspond to the  
absence of the protein, rather than the absence of catalysis).
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could be imagined, each with their advantages and drawbacks.

The first idea I put into application after several discussions with Alain VIARI was to compare, for 

each separate activity, the partitioning of BKACE proteins according to a) the MegaClustering and 

b) the presence/absence of said activity in the proteins. Fisher's exact test is adapted for this kind of 

comparison. Indeed, it tests whether the modalities of two categorical variables (here, the different 

MegaClusters, and the presence/absence of the target activity) “attract” or “repel” each other,  i.e. 

some combinations of each are seen more (respectively less) often then expected by chance alone. I 

thus  conducted  a  Fisher  test  on each activity,  and used  the Benjamini-Hochberg correction for 

multiple tests. The results are summarised in the table on the next page.
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Even after correcting for multiple tests, most substrates have their binary activities either strongly 

associated or strongly dissociated with MegaClusters. This suggests that the MegaClustering does 

indeed capture some measure of substrate specificity amongst the BAKCE proteins.

My second  idea  involved  using  factorial  analysis  to  try  and  bridge  the  gap  between  multiple 

variables  (activities)  and  one  categorical  variable  (the  MegaClustering  partition).  A Principal 

Components Analysis on the real-valued activities (or a Multiple Correspondence Analysis on the 

binary values) could distribute the proteins into a multidimensional space, within which one could 

either 1) establish an activity-based clustering of proteins, to be compared to the MegaClustering, or 

2) project the MegaClustering as an illustrative variable, and evaluate visually if proteins of similar 

activities  correspond  to  the  MegaClusters.  The  latter  is  of  little  more  use  than  the  previous 

validations, as it requires manual expertise of the results as well. I chose to cluster BKACE proteins 

using their binary activity profiles, using an MCA and a hierarchical clustering on a Manhattan 
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Illustration VIII.15: Fisher tests on binary activities versus MegaClustering

For each substrate, results of the Fisher test are given, pre-correction (“crude”) and post-correction using  
Benjamini-Hochberg.  Significance  codes  ('***':  highly  significant,  '**':  moderately  significant,  '*':  
significant, '.': non significant but could be a trend) are shown for convenience.

crude corrected
p-value p-value

0.00E+000 *** 0.00E+000 ***
2.00E-004 *** 4.00E-004 ***
0.00E+000 *** 0.00E+000 ***
1.00E-004 *** 1.00E-004 ***
5.95E-001 0.6278
0.00E+000 *** 0.00E+000 ***

0.0075 ** 0.0109 *
3.00E-004 *** 5.00E-004 ***
0.00E+000 *** 0.00E+000 ***
0.00E+000 *** 0.00E+000 ***

0.0182 * 0.0231 *
0.0018 ** 0.0033 **
0.0029 ** 0.005 **

KAH 0.0464 * 0.0551 .
carnitine 0.00E+000 *** 0.00E+000 ***

0.0169 * 0.0229 *
0.8338 0.8338
0.0041 ** 0.0064 **
0.5612 0.6272

sign.code sign.code
ketoglutarate
MalonylCoA
ketoadipate

succinylCoA
AcetoacetylCoA

HydroxybutyrylCoA
BenzoylCoA
crotonylCoA

PropionylCoA
ButyrylCoA

IsobutyrylCoA
hexanoylCoA
DecanoylCoA

Mixte
ketohexanoate

ketoisocaproate
methyloxooctenoate
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distance in the factorial space. After manual inspection, the obtained tree could be cut cleanly into 9 

clusters.  I  thus  attempted  to  apply  Fisher's  test  to  this  clustering  and  the  MegaClustering. 

Unfortunately, this proved to be non-tractable, and I resorted to an approximate Chi-Square test. 

The test concluded that there were highly significant attractions/repulsions between activity-based 

clusters and MegaClusters (p-value < 2.2*10-16). Manual inspection of the contingency table shows 

this  as  well,  though  the  segregation  is  not  as  exclusive  as  we  might  have  hoped  (i.e. each 

MegaCluster corresponding to one activity cluster and vice-versa). To illustrate the cross-links, I 

generated a graphical representation of the contingency table, shown below:

Another idea that I chose not to explore would have been to use Linear Discriminant Analysis to see 

if it would be possible to discriminate MegaClusters on the basis of real-valued activities. An issue 

with LDA is that it attempts to build linear predictors, based on the quantitative variables (activity 

measures), that can be used to maximally separate cluster barycentres. As already said, the real-

valued activities are not really exploitable due to the impossibility of comparing numeric results 

across  BKACEs.  Furthermore,  such linear  predictors  would  not  correspond to  latent  biological 
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Illustration VIII.16: Correspondence between activity-based clustering and MegaClustering

The MegaClustering contained 32 clusters  (cl_MEGA_1 to cl_MEGA_32),  the  binary activity-based 
clustering had 9 (act_1 to act_9). Correspondences between the two are represented here in a graph,  
whose adjacency matrix corresponds to the contingency table between the two clusterings. This means  
that the thickness of an edge between a MegaCluster node and an activity cluster node is proportional to 
the number of BKACE proteins that is contained by both. Despite multiple correspondences between 
clusters of each type, the BKACE proteins are not distributed as one would expect by pure chance.
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concepts, and their interpretation would thus be near impossible. For these reasons, I did not carry 

out this particular analysis.

 VIII.D.  Conclusion
In this  study,  a collection of bioinformatics strategies and experimental  procedures  allowed the 

exploration  of  the  functional  space  of  a  yet  little-known  enzyme  family  called  DUF849.  A 

comparative genomics study suggested a first enzymatic activity for a dozen DUF849 proteins: the 

3-keto-5-aminohexanoate cleavage enzymatic activity (KCE) from the lysine degradation pathway, 

which was confirmed by biochemical assays. The experimental determination of the 3D structure of 

the protein opened the way to establishing the chemical mechanism of the KCE activity, and of its 

extrapolation to the generic BKACE activity for the rest of the family.  In order to explore this 

avenue, protein members of DUF849 were clustered together using both sequence- and context-

based methods, in order to obtain sub-families that would hopefully be iso-functional in respect to 

substrate specificities. Potential candidate substrates for the BKACE activity were selected using 

chemical  substructure  searches.  The  sub-families  were  used  to  select  BKACE  proteins  for 

biochemical testing. Activity profiles seemed to concord well with sub-family delimitation. All in 

all,  the  close  collaboration  between  bioinformatics  and  experimental  biochemistry  has  helped 

advance our understanding of DUF849, and has led to the discovery of several novel enzymatic 

activities of type BKACE. This strategy might be applicable (warranting some modifications) to the 

study of other families of unknown function, or even of families of known function but suspected of 

functional promiscuity and/or underground metabolism.

I shall now discuss some of our results, in the light of work still in progress.

 VIII.E.  Discussion and perspectives

 VIII.E.1.  From in vitro to new metabolic pathways
The work on the BKACE project has led to the discovery of many novel enzymatic activities. To 

obtain additional information about these, we conducted a  bioanalytical survey of the genomic 

contexts of BKACE proteins with confirmed activities. The rationale behind this was, if bioanalysis 

traditionally found functional clues from the functions of co-localised genes, then conserved co-

localised genes should be all the more informative. Three genomic and metabolic contexts were 

validated  by  manual  bioanalysis:  the  confirmation  of  the  original  lysine  degradation  pathway 

(which is already presented in  [240]), and the discovery of two new pathways concerning beta-
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ketoadipate and dehydrocarnitine cleavage activities.

Ketoadipate: The ketoadipate degradation pathway in MetaCyc (ID: PWY-2361) is composed of 

two reactions. The first transfers a CoA to the ketoadipate. The second uses another CoA while 

breaking a carbon bond of the ketoadipyl-CoA, producing succinyl-CoA and acetyl-CoA. From a 

carbon chain point of view, the ketaoadipate BKACE activity summarises both these reactions in a 

single step, while using one less CoA. 
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Illustration VIII.17: The BKACE ketoadipate degradation pathway

1. Ketoadipate degradation operons in Acinetobacter baylyi and Ralstonia eutropha. 

2. Ketoadipate degradation pathways. In Acientobacter baylyi, ketoadipate is transformed into succinyl-
CoA and acetyl-CoA via two reactions catalysed by genes catI, catJ, and catF. In Ralstonia eutropha, a 
single DUF849 protein transforms ketoadipate into acetoacetate and succinyl-CoA. 
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Dehydrocarnitine: In MetaCyc, the carnitine degradation pathway variant II (ID: PWY-3602) 

involves the transformation of carnitine into dehydrocarnitine by a dehydrogenase, before being 

processed  by two hypothetical  decarboxylation  reactions  into  glycine  betaine.  With  a  DUF849 

enzyme,  these  two  reactions  could  be  replaced  by  two  others:  the  BKACE  activity,  and  a 

thioesterase to transform the produced glycine betaine-CoA into glycine betaine. In Pseudomonas 

putida, a potential operon (genes with MicroScope labels PP0301 to PP0303) containing a carnitine 

dehydrogenase, a DUF849 member and a putative thioesterase was found. The biochemical assays 

later  showed that  the DUF849 member indeed catalysed the cleavage of dehydrocarnitine.  The 

activities of all the gene products for this pathway have now been experimentally confirmed (data 

not shown).

Thus,  our  study  led  us  to  the  discovery  of  novel  enzymatic  activities,  of  which  some  were 

assignable to new metabolic pathways. Associating these pathways with operons proves that the 

pathways are of biological relevance to the host organisms.

191 / 229

Illustration VIII.18: The BKACE carnitine degradation pathway

Carnitine is transformed into dehydrocarnitine (a beta-keto acid) upon which the DUF849 protein acts to  
generate betaine-CoA and acetoacetate. The former is then processed by a thioesterase into betaine. The  
three  genes  encoding  the  enzymes  from this  carnitine  degradation  pathway were  found  in  a  single 
Pseudomonas putida operon.
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 VIII.E.2.  High-throughput Screening limitations
The  high-throughput  screening  protocol  briefly  described  in  this  manuscript  allows  the 

simultaneous experimental validation of the presence or absence of many activities across a large 

number of proteins. It does, however, have several drawbacks, some of which have been pointed out 

previously: low comparability of results, imprecision in substrate specificity by having no access to 

traditional enzymology values (KM, Vmax... which could better describe the enzymatic efficiency), 

necessity of using an expression vector that can bias the results... Any biochemist wishing to publish 

enzymology data would thus have to carry out separate characterisation experiments. This is not 

necessarily a problem, as the high-throughput screening was designed to be purely exploratory, 

essentially greatly reducing the amount of characterisation experiments to perform.

An alternative for the evaluation of substrate specificity within BKACE subfamilies would be the 

use of homology modelling and  3D docking simulations to check which BKACE proteins can 

accept a given substrate into their active site. Karine BASTARD (from the previous LABIS team) 

has  initiated  such a  study,  and preliminary  results  have  help  deepen  our  understanding  of  the 

interaction  between  substrates  and  BKACE  proteins.  Once  again,  combining  bioinformatics 

analysis with experimental tests has proven to be beneficial.

 VIII.E.3.  Genomic Context Clustering
As the definitions of genomic context and the methods for dealing with it are varied, the ways of 

generating clusterings  based on them are numerous as  well,  though -to  our knowledge-  not  so 

actively researched. It may thus be possible to come up with different bioinformatics protocols in 

order to generate genomic context clusterings.

Multi-genome syntons could be seen as a means of generating clusters of similar neighbourhoods 

[5].  Each mutli-genome synton would thus  be a genomic context  cluster,  though some way of 

dealing with overlapping syntons would have to be found. Other, similar approaches to this are 

presented in [143,289]. In comparison, our approach is much simpler than these, requires less data, 

is faster to run and interpret, even though it requires more manual work. This is consistent with our 

very “hands-on”  modus operandi in this study. And considering that the GC clustering is only a 

component of the MegaClustering, as well as a crude basis for finding genomic contexts for target 

BKACE reactions, it might be considered overkill to develop a more complicated method. This 

choice will be up to future users of BKACE-inspired strategies.
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 VIII.E.4.  Why a BKACE activity ?
Biochemical  reactions  are  always  of  interest  to  many industrial  applications  (in  phamacology, 

cosmetics,  agronomy,  agrochemistry,  food  industry...)  as  they  often  offer  many  advantages  in 

respect to pure chemistry approaches; a panorama of the place of biochemistry in industry can be 

found in [231].

The BKACE reaction may not appear, at first sight, of any particular industrial interest. Involved 

chemical entities are relatively common, though they do not participate in any metabolic pathways 

that  draw any attention for the time being.  The decarboxylation of beta-keto acids into shorter 

carboxylic acids is known to occur spontaneously in normal working lab conditions, so one may 

wonder  at  the  use  of  an  enzyme  capable  of  generating  these  products.  The  use  of  a  BKACE 

enzyme, particularly for its host, lies in the fact that rather than producing carbon dioxide and a 

carboxylate via the spontaneous reaction, it produces acetoacetate and a carboxylate activated by a 

Coenzyme-A group (see [Illustration VIII.1: The lysine fermentation pathway] page 157). Both the 

latter are much more easily re-injected into the organism's central metabolism. A hypothetical gain 

in fitness brought on by possessing a BKACE protein is highly supported in some organisms due to 

the existence of genomic contexts surrounding its coding gene, even replacing a two-step reaction 

by a single-step reaction in the case of ketoadipate. Likewise, BKACE might interest the industry, if 

this kind of metabolic pathway optimisation is required. However, the objective of this study was 

not to revolutionise the biochemical industry, but to prove the worth of the presented investigation 

strategy, which can now be applied to other families of higher technological value.

 VIII.F.  Conclusion
A comparative genomics breakthrough, confirmed by biochemical assays, allowed researchers at 

the  Genoscope  to  gain  a  foothold  in  the  functional  space  of  metabolic  reactions  catalysed  by 

proteins  of  the  BKACE family.  Analysis  of  the  corresponding  conserved  domain  of  unknown 

function (DUF849) and of the genomic contexts of said proteins suggested that a family of similar  

metabolic reactions was waiting to be discovered. The strategy described here was created in order 

to  explore  this  diversity  of  reactions  through  a  close  association  between bioinformatics-based 

hypotheses and high-throughput experimental verification. Several of the molecules proposed by 

the strategy were effectively found to be substrates for BKACE proteins, validating the proposed 

mechanisms  (though  not  all  are  perfectly  understood).  The  high-throughput  approach,  despite 

several drawbacks, was able to confirm or refute these activities within the set of tested proteins,  
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thus  narrowing  down  future,  more  biochemically  precise  tests.  Finally,  in  both  manual  and 

statistical  tests,  the  sub-families  generated  by bioinformatics  analysis  appeared  to  be  relatively 

homogeneous in terms of metabolic functions, thus validating the entire strategy.

Thanks  to  this  study,  a  set  of  beta-keto  acid  cleaving  enzymes  corresponding  to  previously-

unknown  enzymatic  activities  has  been  elucidated.  We  have  thus  validated  our  strategy  on  a 

previously unknown family. It should be possible to adapt and improve upon this strategy in order 

to explore the functional diversity of other unknown families for which some functional starting 

point is available. Furthermore, it should be possible to rework our visions of known families with 

known functions,  refining  our  understanding  of  the  involved mechanisms,  and  describing  with 

increased precision the functional promiscuity of the enzymes. Indeed, as has already been pointed 

out, our knowledge of functional promiscuity is expected to be far from complete, due to the loss of 

interest a protein has once one of its functions have been discovered. It is our hope that this strategy 

will be of use in extending knowledge of enzyme families far and wide.
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 IX.  Other works

 IX.A.  The Carnoulès Acid Mine Drainage project

 IX.A.1.  Introduction
As presented previously in this thesis, “metagenomics” englobes techniques and analyses that allow 

the sequencing and study of multiple genomes at once. It is of particular interest when dealing with 

complex ecosystems containing microbial species for which pure cultures have not been obtained in  

vitro. This study focused on the genomes and metabolic capacities of the microbe ecosystem that 

has developed in a particular extreme environment: the acidic, sulphurous and arsenic-rich drainage 

waters  of  a  mine  in  Carnoulès,  known to pollute  the stream Reigous (Gard,  France).  Previous 

studies underlined the role of the said ecosystem in the cleansing of Reigous waters over the 1.5 km 

run until its confluence with the river Amous, where sulphur and arsenic levels drop to 5% of their 

initial  values.  The metagenomic analysis  of the Canoulès Acid Mine Drainage was designed to 

explore the genomes and metabolic capacities of the microbes responsible for this clearance. The 

article published on this project is available as an annex to this manuscript.

 IX.A.2.  Work provided
Damien MORNICO was assigned to working on the predicted reaction content on the Carnoulès 

supercontig bins. His objective was to compare the different bins in order to establish common 

features (with the idea that these might be linked to adaptations to living in the extreme Carnoulès 

conditions) and specific features (with the idea on establishing possible ecological relationships 

between different species), hopefully generating a revealing figure that would put forward these 

notions.

Metabolic  reaction  content  of  the  various  bins  was  predicted  using  a)  the  automated  transfer 

procedure on the basis of sequence homology, and b) domain-based predictors, that are part of the 

main MicroScope pipeline. As we were dealing with a metagenome, for which the assembly was 

still  as  unverified  bins,  we  decided  to  analyse  metabolic  reaction  absence/presence  across  the 

different bins. This  would give us a high-level view of the metabolic capacities of the various bins,  

their specificities and common points (and perhaps help confirm them as coming from separate 

organisms).

The high-dimensionality of the data, as well as the specific objectives of this analysis, suggested use 

195 / 229



Other works

of factorial analysis. I worked with Damien MORNICO on the analysis of his metabolic data. All 

figures and results are available in the paper itself.

 IX.B.  The Bradyrhizobium project

 IX.B.1.  Introduction
Bacteria of the  Bradyrhizobium genus are common micro-organisms that live in soil and that are 

able to colonise legume roots and stems, forming symbiotic nodules. The project presented here 

focused  on  the  comparative  analysis  of  the  genomes  of  9  Bradyrhizobium strains  specific  to 

legumes of the  Aeschynomene genus, selected for the atypical characteristics of its symbionts. In 

particular, some of these strains have photosynthetic capacities; some are able to colonise plant 

stems as well as roots; and some enter plant symbiosis without using the well-known  nod gene-

dependent  pathway.  The general  objective  of  the  study was to  reveal  how  Bradyrhizobia have 

adapted to their ecological niche, and how the specificities of the selected strains arose. The article 

published on this project is available as an annex to this manuscript.

 IX.B.2.  Work provided
The work provided for the Bradyrhizobium project closely resembles that of the Carnoulès project; 

indeed, the same kind of metabolic analysis is performed in both articles. In this case, however, the 

studied bacterial strains were not sampled from a whole ecosystem, but are closely-related strains 

from a  given  phylum.  Furthermore,  additional  information  was  available  for  the  strains:  their 

specific  abilities  in  respect  to  their  symbiosis  with  host  plants.  This  analysis  thus  focused  on 

associating  metabolic  pathways  to  the  latter.  Finally,  the  metabolic  information  analysed  was 

different: as we were using high-quality rebuilt genomes, this study analysed metabolic pathway 

completion  values  rather  than  simple  reaction  absence/presence.  The  pathway completion  of  a 

pathway P in organism O is the number of reactions of P that are known to be catalysed in O over  

the total number of reactions in P. This measure can give an idea of the evolutive pressures applied 

to  an organism's  metabolism (i.e. high  completion for  important  pathways,  low completion for 

pathways lost or in the process of being lost). Covariance of this measure between pathways across 

phylogenetically related organisms can be indicative of common pressures, especially in a high-

level analysis, though caution must be observed when interpreting fully completed pathways, or 

totally  absent  pathways.  Another  problem could  be  the  existence  of  pathway variants  amongst 

studied strains,  which can break pathway completion covariance even though a same evolutive 
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pressure exists. Finally, when observing factorial planes generated by analysing percentages (such 

as pathway completions), one must not forget that the dot cloud is confined to a hyper-cube or a 

hyper-pyramid. All figures and results are available in the paper itself.
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 X.  Global discussion & perspectives

 X.A.  Overview
Four projects that I worked on during my thesis were presented in this manuscript. The CanOE 

strategy  contains  a  method  for  locating  genomic  metabolons,  units  of  metabolic  function  of 

prokaryote genomes, that are then exploited in a novel, multi-organism way in order to generate 

hypothetical  gene  annotations  with  scores  that  can  help  bioanalysts  evaluate  their  worth,  an 

approach that is particularly interesting when the involved metabolic reaction is a sequence orphan 

one.  The  BKACE  project  focused  on  exploring  the  functional  space  of  a  protein  family  of 

previously unknown function, using bioinformatics methods to generate iso-functional subfamilies 

and potential alternative reaction substrates. These hypotheses were then tested in a high-throughput 

enzymology screening, an original development in itself by the Genoscope's LGBM, LCOB, and 

LCAB teams. Finally, two different applications of factorial analysis to metabolic data concerning 

metagenomes or related genomes were used to explore the metabolic specificities and generalities 

of multiple prokaryote organisms at once.

 X.B.  Discussion
The developments presented in this thesis all deal with functional annotation - more specifically, 

metabolic annotation - of prokaryote genomes. They exploit contextual information, established by 

comparative genomics approaches,  in order to propose metabolic activities for protein-encoding 

genes. These developments differ greatly in objectives, data and methods, and as such can be used 

in complementary ways.

 X.B.1.  The scope of each project
The  Factorial  Analysis  carried  out  in  Carnoulès  project  allowed  the  study  of  the  metabolic 

relationships between micro-organisms in a community,  while that of the Bradyrhizobia project 

shed light on the evolutionary specificities of micro-organisms from a same genus. These statistical 

analyses  are,  in  essence,  high-level  explorations  of  the  metabolic  capacities  of  the  provided 

genomes. They were designed not to discover novelty nor to generate annotations, but to provide a 

general picture of the workings of the studied organisms that is essential for any bioanalyst wishing 

to continue annotating his or her genomes.
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The  strategies  implemented  in  the  CanOE  and  BKACE  projects  were  designed  to  generate 

annotations.  CanOE  can  propose  candidate  genes  for  enzymatic  activities  in  each  prokaryote 

organism analysed, and can thus be seen as a "horizontal" annotation tool. It does, however, exploit 

gene family information, allowing it to propose candidate families for activities. The gene families 

are also instrumental in ranking candidate gene/family propositions. CanOE is thus also a "vertical" 

annotation tool, as it can cover multiple organisms at once. The BKACE project is also a "vertical" 

annotation tool, as it studies a single target gene family at a time. It does include a "horizontal" 

component, as sub-family-level annotations were proposed using integrated local genomic context 

and protein 3D structure studies.

In summary, each of the projects I worked on in this thesis generated different-level views useful to  

genome annotation: high-level for the metabolic factorial analyses, multi-organism gene families 

for BKACE, and cross-organism annotation for CanOE.

 X.B.2.  CanOE & BKACE are complementary
As underlined in the previous section, the CanOE and BKACE projects are complementary in their 

approaches to genome annotation. In practice, it is obvious that a single hypothetical annotation 

generated by CanOE between a candidate gene/family and a metabolic activity (be it global orphan, 

local orphan, or not as in the case of annotation policing) can serve as a starting point for a brand 

new BKACE-like analysis, focused on the biochemical declinations of the target activity. This will 

be especially important for families with evidence of being associated to several, similar reactions. 

Due to its pragmatism-driven design, the family-generating algorithm of the CanOE approach might 

not be the best adapted to delimiting a candidate gene family for examination: it might propose 

several small families at once, one big low-specificity family with many sub-families, or anything 

between these extremes. It would then be necessary to use the CanOE families as starting points for  

the  identification  of  more  accurate  families,  by searching public  databases  (such as  Pfam)  for 

correspondences. In the alternative CanOE multi-genome integration procedure presented in section 

VII.H.4.d, families are not used at all; only a set of candidate genes with varying confidence scores 

would be retrieved for a target metabolic reaction. Again, in would then be necessary to search 

existing family databases for families encompassing these candidates in order to launch a BKACE-

like study. It would theoretically be possible to base a BKACE-like study on a group of proteins that 

do not belong  a priori to a given family, though this would be risky and would make the entire 
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procedure more complex and doubtful. Indeed, several steps of the BKACE strategy presented here 

rely on the construction of a Multiple Sequence Alignment of the involved proteins (family pre-

filtering, 3D structure homology modelling, phylogenetic tree building), the quality which would 

not be guaranteed in the absence of a recognisable family/domain.

In summary,  it  should thus be possible  to iteratively apply CanOE and BKACE-like studies to 

gradually cover one or several organism's metabolism, at least when metabolic reactions are already 

formalised in public metabolic databases.

 X.B.3.  Reaction dependency
Metabolic  factorial  analysis  is  obviously dependent  on the metabolic  knowledge of  the studied 

organisms and the way it is modelled. Presence/absence of reactions is established by inventorying 

each genome's reactions, and these are then assigned to metabolic pathways. However, the final 

goal of metabolic factorial analysis is a very global, exploratory view of the data, and such a high-

level representation necessarily distances itself with the underlying data model somewhat.

CanOE is dependent on pre-defined metabolic reactions. Indeed, it works with a global metabolic 

network that only includes reactions present in the selected metabolic source database. It it thus 

unable to propose gap reactions corresponding to previously unknown reactions; it is also unable to 

generate on its own the instances of a given generic reaction (e.g. KEGG reaction R07326 describes 

an alcohol:NAD+ oxidoreductase with a  generic  alcohol  substrate;  it  has  several  instances that 

specify the given alcohol, such as R00754 which is ethanol:NAD+ oxidoreductase). This severely 

limits the novelty of CanOE propositions, and an interesting perspective would be the development 

of an automated procedure that might be able to "invent" gap reactions as necessary. Such future 

works  would  undoubtedly  be  inspired  by  previous  works  on  enzymatic  mechanisms  [272], 

metabolic pathway "compound-based" construction [218,221] and compound matching [290,222].

The BKACE strategy has  an opposite  limitation:  it  relies  on the  semi-manual  identification of 

alternative biochemical reactions from a generic mechanism, but is thus limited to a specific group 

of  similar  reactions.  This  means  that  alternative  gene  functions  (such  as  those  generated  by 

underground  metabolism  not  related  to  substrate  specificity,  multifunctional  proteins,  or 

"evolutionary leap-frogging" events that drastically change the function of a protein) cannot be 

proposed by the BKACE strategy without a manual intervention requiring a massive gene-by-gene 
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analysis effort that is not even guaranteed to deliver. Once again, it appears that using BKACE- and 

CanOE-like strategies in concert, bound together by manual expertise, might help circumnavigate 

the limitations of both.

As both are designed to generate novel gene-reaction annotations, one may wonder if would be 

more  interesting,  given an  exclusive strategy choice  and a  target  protein  to  annotate,  to  either 

conduct a BKACE-like study of the protein's family, or a CanOE study of the proposed annotations 

for this protein. This, obviously, depends on both the requirements of each strategy, and on the 

objectives one has. If a putative function of the protein is already expected, a BKACE-like study is 

possible. CanOE does not require this kind of previous knowledge. It does, however, require that 

any target reaction be already defined; furthermore, if no metabolons containing the protein's coding 

gene is available,  it  will  be powerless. If  the conditions of each strategy is  met,  the objectives 

determine  the  choice.  Indeed,  if  an in-depth  study with  experimental  biochemistry is  required, 

BKACE comes out first,  more so if the target reaction(s) is(are) not yet modelled in metabolic 

databases used by CanOE. All in all, CanOE is only useful in a small number of cases, concerning 

the annotation of proteins of unknown function in already-located metabolons that contain already-

defined  reactions,  and  its  results  remain  purely  hypothetical.  These  results  can  be,  however, 

instrumental in guiding experimental assays and reducing the functional and gene spaces to explore 

with them.

To summarise, all the projects presented in this manuscript rely on previous metabolic knowledge 

from public databases: metabolic factorial analysis and CanOE rely on the annotations of a genome 

with metabolic reactions (that are assigned to pathways in their model), BKACE on at least one 

metabolic  annotation of a protein from a gene family of interest.  The BKACE strategy further 

requires  the  identification  of  the  chemical  mechanism  of  its  target  reaction.  So  far,  few 

bioinformatics resources integrate chemical mechanisms into their data models.

 X.B.4.  Reaction definition
All the projects described in this thesis depend on the metabolic data models they work with in 

some way or another. The way the reactions and pathways are formalised influences how reactions 

can  be  connected  together  in  a  metabolic  network,  how instances  of  generic  reactions  can  be 

generated,  how  alternate  substrates  can  be  imagined...  To  our  knowledge,  however,  metabolic 

databases rarely model reactions in a way that accounts for substrate promiscuity and chemical 
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mechanisms.  The  best  efforts  that  we  know  of  are  the  MACiE  database  [272] that  stores 

mechanisms for 321 EC numbers, and KEGG and MetaCyc, which contain generic reactions that 

can  be  linked  to  substrate-specific  reaction  instances,  but  without  providing  full  detail  of  the 

different relationships nor full freedom for the creation of new instances.

Generic reactions and compound-specific instances of generic reactions are not the only issue with 

representing metabolic knowledge in databases. One of the most widely-used reaction ontologies, 

the Enzyme Commission (EC) number scheme, has many drawbacks. To start with, the number of 

enzymatic  reactions  described  is  lagging  behind  that  of  other  databases  such  as  KEGG  and 

MetaCyc. Also, the generic/specific aspect of a reaction is not addressed in a single, unified way. In 

practice, many proteins actually end up being annotated with several EC numbers, and not always 

due to multi-functionality.  EC numbers  do not describe chemical  mechanisms. Finally,  the link 

between sequence similarity, structural similarity and reaction similarity is not straightforward and 

filled with exceptions at any level of the EC classification scheme [100]. These issues lead to a new 

issue, that of establishing correspondences between EC numbers and other models of metabolic 

reactions. Preliminary work with KEGG schemas in CanOE showed that using EC numbers to infer 

gene-KEGG reaction annotations generated many spurious correspondences that impeded CanOE 

use. The use of the Gene Ontology (GO) is not a possibility either, as its terms are currently not  

adapted for describing metabolic reactions.

The Rhea database [http://www.ebi.ac.uk/rhea/] was created in response to several complaints about 

pre-existing metabolic reaction databases (such as KEGG, MetaCyc, and the list of EC numbers), 

concerning  reaction  equation  balance,  consistent  compound  references,  as  well  as  known 

biochemical reaction coverage. Rhea reactions can also be combined or split, giving larger freedom 

in respect to multi-step reactions. The UniPathWay database [213] was designed to contain heavily 

curated  metabolic  data  and  proposes  a  highly-formalised  hierarchical  data  model,  allowing  for 

metabolic pathways to be made up of elementary “chains” of reactions, which would be particularly 

useful is designing pathway-based main compound edges for a metabolic network based on it.

In  summary,  existing  metabolic  reaction  and  pathway databases  are  not  designed  for  handling 

reaction substrate promiscuity and chemical mechanisms at a good coverage, though many recent 

efforts  have  innovations  that  might  prove  valuable  in  designing  new  metabolic  networks  for 

CanOE.
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 X.B.5.  Consequences on knowledge and use of 
metabolism

Using strategies like metabolic factorial analysis, CanOE and BKACE should ensure that the level 

of general metabolic knowledge continues to increase. Indeed, it will complete our knowledge of 

the  workings  of  specific  metabolic  pathways  and  open  up  new  opportunities  for  biological 

experiments.  Proposing  new metabolic  reactions  or  variants  thereof  will  allow  better  pathway 

identification  and  completion,  as  well  as  deeper  insight  into  substrate  specificity-bound 

underground metabolism. Identifying and validating candidate genes for local or global orphans 

will generate precedence that may be copied to other genes thanks to functional transfer on the basis 

of detected homology. These new annotations might then be included in new metabolons, allowing 

the generation of further novel annotation hypotheses for neighbouring genes. As is the case with 

functional and relational annotation in their entirety, annotation results will feed future annotations, 

pushing the boundaries of our metabolic knowledge back ever further.

As our knowledge of prokaryote metabolism progresses, so do the opportunities of exploiting it in 

biotechnology procedures. Indeed, the discovery of new metabolic reaction-coding genes (of either 

previously  orphan  enzymes,  or  little-known metabolic  reactions)  opens  the  door  to  selectively 

cloning them, which is an often necessary step in producing the enzyme in industrial quantities 

[231]. Likewise,  using a metabolic activity in a synthetic biology application requires the prior 

identification of its coding gene so that it may be incorporated into the "building blocks" that are at  

the heart of this emerging discipline.

 X.B.6.  CanOE & BKACE feed metabolic analyses
The  previously-described  advance  of  general  knowledge  of  prokaryote  metabolism may prove 

central to exploring the metabolic capacities of complex microbial ecosystems as in the Carnoulès 

project. Indeed, the metabolic factorial analyses are built on whatever functional annotations can be 

made within the partial - and sometimes mixed up - genomes available in metagenomic studies. 

Better  comprehension and knowledge of global  prokaryote metabolism,  coupled with increased 

functional annotation transfer opportunities, should help fill in the blanks concerning metagenome 

metabolism  for  (supposedly)  separate  species.  This  should  help  inform  the  factorial  analyses, 

making it more informative and accurate. This in turn would help delimit more precisely where 

exactly the different organisms interact metabolically, which is obviously one of the key questions 

of metagenomic studies.
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 X.B.7.  Microme
The  Microme  project  [www.microme.eu]  is  currently  being  deployed  in  Europe  in  order  to 

assemble a bioinformatics infrastructure dedicated to prokaryote genome analysis and metabolic 

pathway reconstruction. Metabolic models generated within this project are destined to be exploited 

in metabolism-based evolutionary analyses and for biotechnological applications. Microme would 

obviously benefit directly from improved knowledge of prokaryote metabolism brought about by 

CanOE and BKACE. Metabolic reconstructions often contain metabolic pathways with one or more 

reactions with missing coding genes; in order to not "break" the reconstruction by creating dead-end 

metabolites,  these  reactions  are  hypothesised  to  be  present  in  a  "gap  filling"  step.  Increased 

metabolic knowledge would help eliminate the need for such hypotheses. 

 X.B.8.  Integration with experimental validation
Obviously,  putative annotations  generated by bioinformatics methods -  especially when dealing 

with novel metabolic reactions or little-known families - should be confirmed or invalidated by wet-

lab  experiments.  In  the  work  presented  here,  we  have  strived  to  approach  our  biochemist 

collaborators  at  the  Genoscope  in  view  of  validating  our  predictions.  Beyond  this  work,  the 

necessity for direct integration of bioinformatics predictions and experimental testing is now fully 

recognised, and at least two projects of interest dedicated to this issue are worth noting here. 

The  Computational  Bridge to  Experiments (COMBREX) project [www.combrex.org] is a USA-

based NIH-funded project  that  aims to  build a hub to which computational prediction methods 

could be submitted, where they would be run, and resulting predictions would then be screened for 

reactions and/or gene families of particular interest. These predictions would then be submitted to 

biochemistry teams (selected amongst many in order to match the prediction type to the team's  

expertise)  for  experimental  validation,  along  with  a  dedicated  small  grant  to  fund  the 

experimentation.  To  my  knowledge,  COMBREX  is  currently  being  tested  on  a  pilot  project 

launched in 2011 [291]. 

The  Enzyme  Function  Initiative (EFI) [enzymefunction.org] is a smaller USA-based NIH-funded 

effort  that  also  aims  to  integrate  gene  annotation  hypothesis  generation  with  biological  testing 

[292]. They are, however, more "biologically orientated" than COMBREX: a priori iso-functional 

families (not isolated genes) may be proposed as candidate catalysts of a given function, by manual 

expertise and/or by automated prediction methods; activity screening is carried out in vitro and in  

vivo;  and  enzyme/ligand  3D structure  is  determined  when  possible.  EFI  is  even  younger  than 
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COMBREX and is currently gauging community interest in order to decide whether the effort may 

be maintained. The objectives of the BKACE strategy are closer to those of EFI while the CanOE 

strategy objectives are closer to those of COMBREX. 

We can hope that both these efforts will last (or even merge) as they will help standardise the way 

computational predictions are made and dealt with, guaranteeing higher and more consistent quality 

of  gene  annotations  in  public  databases.  The  use  of  a  grant-based  incentive  for  experimental 

validation of predictions of particular interest should help speed up the discovery process, though 

one may wonder at how previous annotation prediction providers will deal with the abandonment of 

their previous experimental collaborators, and reciprocally. I also wonder at whether the fact that 

both these efforts are USA-based will prove to be a hindrance for scientific teams (bioinformatics 

and biologists  alike)  willing to participate  in such a endeavour.  Perhaps a European alternative 

might be necessary to federate efforts this side of the Atlantic (and why not an Asian version as 

well, mirroring the current GenBank/DDBJ/EMBL triumvirate). The Microme project, for example, 

could be integrated as a part of (or a collaborator of) such a project.
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 XI.  Annexes

 XI.A.  Spectral clustering
The term “spectral  clustering” actually designates  a family of clustering algorithms based on a 

common protocol. The data describing the objects to cluster is first transformed into a weighted, 

undirected graph using any metric (e.g. k-nearest neighbours graph using Euclidean distance). The 

weighted n*n adjacency matrix of this graph is then transformed into one of the graph's “Laplacian” 

matrices  (there  are  at  least  3  variants  of  Laplacian  matrix,  “un-normalised”,  “symmetric”  and 

“random walk”). The Laplacian matrix is then decomposed into eigenvectors. The rows of an n*k 

matrix derived from the first k eigenvectors can then be clustered using a simple k-means algorithm. 

This clustering is a spectral clustering of the initial data points.

An good introduction to spectral clustering with more detail can be found in [278].

 XI.B.  Factorial analysis
Factorial  analysis  designates  a large family of statistics methods that  aim to extract underlying 

information from large data sets. This information is gathered in the form of “factors” or “principle 

components”, which can be viewed as latent variables that summarise in one way or another the 

data. To put things graphically, the original data points can be imagined as a multi-dimensional 

cloud of points, through which factorial analysis tries to find the best planes onto which to project 

them, in order to capture the greatest part of the cloud's variability as possible. It is like trying to 

find the best angle at  which to take a photograph of an object,  in order to make the object as  

recognisable as possible (e.g. a lateral photography of a fish).

Multiple Factorial Analysis methods exist due to the numerous data types, analysis objectives, and 

philosophies. For the latter, two main approaches are opposed: Anglo-saxon (AS-FA) versus French 

(F-FA) factorial analysis. The differences between the two are linked to the prioritisations each give 

the  objectives  of  the  factorial  analysis.  Indeed,  latent  information  extraction  can  serve  several 

purposes:

• summarising: optimal low-dimensional data representation

• discovering: data exploration

• interpreting: explain the data
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• modelling: confirm a mathematical theory of the underlying generative processes

AS-FA is more bent on explaining the data, whereas F-FA is more concerned with representing the 

data. The fundamental algorithmic difference between them can be explained by this divergence. 

Indeed, AS-FA allows found factors to be rotated freely in the factorial space, in order to maximise 

captured variability: they thus maximise explanation. F-FA, however, imposes that all factors be 

two-by-two orthogonal, ensuring a comprehensive 2D or 3D graphical representation of the original 

data points projected into the factorial space, and enforcing independence of found factors.

In the works presented in this thesis, I have consistently applied F-FA, as 1) my training is specific 

to  it,  and  2)  I  have  generally  used  FA  to  either  ease  clustering  or  to  generate  graphical 

representations, both of which F-FA is good for.

Different F-FA methods exist for treating data of different types, and I shall list here those that I  

used in my PhD works.  Principal Components Analysis (PCA) is for use on only quantitative 

variables  (though  quantitative  and  qualitative  variables  can  be  used  as  illustrative  variables). 

Correspondence  Analysis (CA)  analyses  the  links  between  the  modalities  of  two  qualitative 

variables. Its corresponding multivariate method is  Multiple Correspondence Analysis (MCA), 

and  it  supports  quantitative  and  qualitative  illustrative  variables.  Multiple  Factorial  Analysis 

(MFA) is capable of analysing groups of variables; each group can have variables of only one type 

(quantitative,  qualitative),  but  each  group can  be  of  different  types.  MFA can be  powerful  for 

extracting common underlying factors from multiple data sets.  Hierarchical  Multiple Factorial 

Analysis (HMFA) is  an  extension  of  the  previous,  allowing  a  hierarchy to  be  defined  on the 

variable groupings.

All these methods can be found described in detail in [293].

 XI.C.  Some basics in graph theory
As a support for the notions handled at times in this manuscript, I wanted to present some of the 

basic concepts from graph theory that could be useful to the reader.

 XI.C.1.  Graphs and graph elements
A graph is a mathematical structure generally used to model real-life phenomenons in which certain 

objects  present  one-to-one (or  even many-to-many)  relationships.  Each object  is  modelled as  a 

vertex (also known as a node), and relationships are modelled as edges that connect the vertices.
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Edges can be binary (i.e. either present or absent) or weighted (i.e. with a certain real-valued weight 

that  measures  the  importance  of  the  edge).  They can  also  be  undirected  ( i.e. with  no  specific 

direction) or directed (i.e. the relationship applies specifically from one node to another). In some 

special types of graph, special types of edges can be found: multiple edges can connect the same 

pair of vertices, or a same edge can connect multiple vertices (hyperedges), or an edge can connect 

a vertex to itself (self-edges or self-loops)...

 XI.C.2.  Matrices of interest
All of the matrices presented here are often used in graph theory-based analyses.

For a graph containing n vertices, its (weighted) adjacency matrix A is a n*n matrix where each 

value Ai,j corresponds to the weight of the edge connecting vertex i to vertex j. Undirected graphs 

have symmetric adjacency matrices, directed graphs may have asymmetric ones. Self-loop edges 

are  obviously present  on  the  matrix  diagonal.  The  adjacency matrix  is  the  most  mathematical 

representation of a graph.

A vertex degree is the number of edges that vertex possesses. When edges are directed, in- and out-

degrees can be defined. When edges are weighted, degrees can also be weighted. Mathematically, 

degrees are often represented along the diagonal of the degree matrix D, an n*n matrix.

A distance matrix is also a n*n matrix which contains, for each vertex pair (i,j), the length of the 

shortest path between i and j. Paths are defined in the following section.

A graph's Laplacian matrix is related to D and A, though its exact matricial definition depends on 

its type. Indeed, it can be either normalised or not, and the normalised version has several sub-

versions.

 XI.C.3.  Paths, walks, breadth and depth-first searches
A “path” is a sequence of vertices in a graph that can be reached by traversing the edges between 

them, in order. It most of the literature, the definition of “path” (often implicitly) requires that no 

vertex be traversed more than once; a sequence of vertices where a single vertex can be visited 

more than once is then referred to as a “walk”.

Establishing the shortest path between two vertices is common practice in graph theory as it can 

give  an  idea  on  the  topology of  the  graph.  Two families  of  algorithms  are  generally  used  to 

determine  shortest  paths.  Depth-first  searches,  starting  from  a  first  vertex,  recursively  move 

209 / 229



Annexes

through the graph from a given vertex to a neighbour vertex, until a target vertex is reached or a 

maximum path  length  has  been  attained.  Breadth-first  searches,  starting  from a  first  vertex, 

consider all the neighbours of the current vertex; if none of them are the target vertex, then it moves  

on to one neighbour and proceeds recursively until the target vertex is found or a maximum path 

length has been attained.

 XI.C.4.  Graph structures of interest
Given its  nature,  the  most  interesting  features  about  a  graph generally  involve  its  structure  or 

topology. Vertices in a graph can form clusters, which can be described as groups of vertices that 

are more highly connected amongst themselves than with other vertices. A hub is a vertex that is 

connected to many other  vertices which,  for themselves,  are  lowly connected to  other vertices, 

forming a star-like structure; in biology, hubs are generally seen as vertices of central importance. A 

clique is a special cluster, in which all vertices are connected to all other vertices in the cluster.  

Finally, a connected component is a group of vertices in which each vertex can be reached from 

any other vertex along paths of any length.

This concludes my brief tour of the basics of graph theory.
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