1,668 research outputs found

    Evolutionary-aided negotiation model for bilateral bargaining in Ambient Intelligence domains with complex utility functions

    Get PDF
    Ambient Intelligence aims to offer personalized services and easier ways of interaction between people and systems. Since several users and systems may coexist in these environments, it is quite possible that entities with opposing preferences need to cooperate to reach their respective goals. Automated negotiation is pointed as one of the mechanisms that may provide a solution to this kind of problems. In this article, a multi-issue bilateral bargaining model for Ambient Intelligence domains is presented where it is assumed that agents have computational bounded resources and do not know their opponents' preferences. The main goal of this work is to provide negotiation models that obtain efficient agreements while maintaining the computational cost low. A niching genetic algorithm is used before the negotiation process to sample one's own utility function (self-sampling). During the negotiation process, genetic operators are applied over the opponent's and one's own offers in order to sample new offers that are interesting for both parties. Results show that the proposed model is capable of outperforming similarity heuristics which only sample before the negotiation process and of obtaining similar results to similarity heuristics which have access to all of the possible offers. (C) 2010 Elsevier Inc. All rights reserved.This work is supported by TIN2008-04446, PROMETEO/2008/051, TIN2009-13839-C03-01, CSD2007-00022 of the Spanish government, and FPU Grant AP2008-00600 awarded to V.Sanchez-Anguix.Sanchez-Anguix, V.; Valero Cubas, S.; Julian Inglada, VJ.; Botti Navarro, VJ.; García Fornes, AM. (2013). Evolutionary-aided negotiation model for bilateral bargaining in Ambient Intelligence domains with complex utility functions. Information Sciences. 222:25-46. https://doi.org/10.1016/j.ins.2010.11.018S254622

    Complex negotiations in multi-agent systems

    Full text link
    Los sistemas multi-agente (SMA) son sistemas distribuidos donde entidades autónomas llamadas agentes, ya sean humanos o software, persiguen sus propios objetivos. El paradigma de SMA ha sido propuesto como la aproximación de modelo apropiada para aplicaciones como el comercio electrónico, los sistemas multi-robot, aplicaciones de seguridad, etc. En la comunidad de SMA, la visión de sistemas multi-agente abiertos, donde agentes heterogéneos pueden entrar y salir del sistema dinámicamente, ha cobrado fuerza como paradigma de modelado debido a su relación conceptual con tecnologías como la Web, la computación grid, y las organizaciones virtuales. Debido a la heterogeneidad de los agentes, y al hecho de dirigirse por sus propios objetivos, el conflicto es un fenómeno candidato a aparecer en los sistemas multi-agente. En los últimos años, el término tecnologías del acuerdo ha sido usado para referirse a todos aquellos mecanismos que, directa o indirectamente, promueven la resolución de conflictos en sistemas computacionales como los sistemas multi-agente. Entre las tecnologías del acuerdo, la negociación automática ha sido propuesta como uno de los mecanismos clave en la resolución de conflictos debido a su uso análogo en la resolución de conflictos entre humanos. La negociación automática consiste en el intercambio automático de propuestas llevado a cabo por agentes software en nombre de sus usuarios. El objetivo final es conseguir un acuerdo con todas las partes involucradas. Pese a haber sido estudiada por la Inteligencia Artificial durante años, distintos problemas todavía no han sido resueltos por la comunidad científica todavía. El principal objetivo de esta tesis es proponer modelos de negociación para escenarios complejos donde la complejidad deriva de (1) las limitaciones computacionales o (ii) la necesidad de representar las preferencias de múltiples individuos. En la primera parte de esta tesis proponemos un modelo de negociación bilateral para el problema deSánchez Anguix, V. (2013). Complex negotiations in multi-agent systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/21570Palanci

    Reaching unanimous agreements within agent-based negotiation teams with linear and monotonic utility functions

    Full text link
    [EN] In this article, an agent-based negotiation model for negotiation teams that negotiate a deal with an opponent is presented. Agent-based negotiation teams are groups of agents that join together as a single negotiation party because they share an interest that is related to the negotiation process. The model relies on a trusted mediator that coordinates and helps team members in the decisions that they have to take during the negotiation process: which offer is sent to the opponent, and whether the offers received from the opponent are accepted. The main strength of the proposed negotiation model is the fact that it guarantees unanimity within team decisions since decisions report a utility to team members that is greater than or equal to their aspiration levels at each negotiation round. This work analyzes how unanimous decisions are taken within the team and the robustness of the model against different types of manipulations. An empirical evaluation is also performed to study the impact of the different parameters of the model.This work is supported by TIN2008-04446, PROMETEO/2008/051, TIN2009-13839-C03-01, CSD2007-00022 of the Spanish government, and FPU Grant AP2008-00600 awarded to Victor Sanchez-Anguix. This paper was recommended by Associate Editor X. Wang.Sanchez-Anguix, V.; Julian Inglada, VJ.; Botti, V.; García-Fornes, A. (2012). Reaching unanimous agreements within agent-based negotiation teams with linear and monotonic utility functions. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. 42(3):778-792. https://doi.org/10.1109/TSMCB.2011.2177658S77879242

    Studying the Impact of Negotiation Environments on Negotiation Teams' Performance

    Get PDF
    [EN] In this article we study the impact of the negotiation environment on the performance of several intra-team strategies (team dynamics) for agent-based negotiation teams that negotiate with an opponent. An agent-based negotiation team is a group of agents that joins together as a party because they share common interests in the negotiation at hand. It is experimentally shown how negotiation environment conditions like the deadline of both parties, the concession speed of the opponent, similarity among team members, and team size affect performance metrics like the minimum utility of team members, the average utility of team members, and the number of negotiation rounds. Our goal is identifying which intra-team strategies work better in different environmental conditions in order to provide useful knowledge for team members to select appropriate intra-team strategies according to environmental conditions.This work is supported by TIN2011-27652-C03-01, TIN2009-13839-C03-01, CSD2007-00022 of the Spanish Government, and FPU Grant AP2008-00600 awarded to Victor Sanchez-Anguix. We would also like to thank anonymous reviewers and assistants of AAMAS 2011 who helped us to improve our previous work, making this present work possible.Sanchez-Anguix, V.; Julian Inglada, VJ.; Botti, V.; García-Fornes, A. (2013). Studying the impact of negotiation environments on negotiation teams' performance. Information Sciences. 219:17-40. https://doi.org/10.1016/j.ins.2012.07.017S174021

    What to bid and when to stop

    No full text
    Negotiation is an important activity in human society, and is studied by various disciplines, ranging from economics and game theory, to electronic commerce, social psychology, and artificial intelligence. Traditionally, negotiation is a necessary, but also time-consuming and expensive activity. Therefore, in the last decades there has been a large interest in the automation of negotiation, for example in the setting of e-commerce. This interest is fueled by the promise of automated agents eventually being able to negotiate on behalf of human negotiators.Every year, automated negotiation agents are improving in various ways, and there is now a large body of negotiation strategies available, all with their unique strengths and weaknesses. For example, some agents are able to predict the opponent's preferences very well, while others focus more on having a sophisticated bidding strategy. The problem however, is that there is little incremental improvement in agent design, as the agents are tested in varying negotiation settings, using a diverse set of performance measures. This makes it very difficult to meaningfully compare the agents, let alone their underlying techniques. As a result, we lack a reliable way to pinpoint the most effective components in a negotiating agent.There are two major advantages of distinguishing between the different components of a negotiating agent's strategy: first, it allows the study of the behavior and performance of the components in isolation. For example, it becomes possible to compare the preference learning component of all agents, and to identify the best among them. Second, we can proceed to mix and match different components to create new negotiation strategies., e.g.: replacing the preference learning technique of an agent and then examining whether this makes a difference. Such a procedure enables us to combine the individual components to systematically explore the space of possible negotiation strategies.To develop a compositional approach to evaluate and combine the components, we identify structure in most agent designs by introducing the BOA architecture, in which we can develop and integrate the different components of a negotiating agent. We identify three main components of a general negotiation strategy; namely a bidding strategy (B), possibly an opponent model (O), and an acceptance strategy (A). The bidding strategy considers what concessions it deems appropriate given its own preferences, and takes the opponent into account by using an opponent model. The acceptance strategy decides whether offers proposed by the opponent should be accepted.The BOA architecture is integrated into a generic negotiation environment called Genius, which is a software environment for designing and evaluating negotiation strategies. To explore the negotiation strategy space of the negotiation research community, we amend the Genius repository with various existing agents and scenarios from literature. Additionally, we organize a yearly international negotiation competition (ANAC) to harvest even more strategies and scenarios. ANAC also acts as an evaluation tool for negotiation strategies, and encourages the design of negotiation strategies and scenarios.We re-implement agents from literature and ANAC and decouple them to fit into the BOA architecture without introducing any changes in their behavior. For each of the three components, we manage to find and analyze the best ones for specific cases, as described below. We show that the BOA framework leads to significant improvements in agent design by wining ANAC 2013, which had 19 participating teams from 8 international institutions, with an agent that is designed using the BOA framework and is informed by a preliminary analysis of the different components.In every negotiation, one of the negotiating parties must accept an offer to reach an agreement. Therefore, it is important that a negotiator employs a proficient mechanism to decide under which conditions to accept. When contemplating whether to accept an offer, the agent is faced with the acceptance dilemma: accepting the offer may be suboptimal, as better offers may still be presented before time runs out. On the other hand, accepting too late may prevent an agreement from being reached, resulting in a break off with no gain for either party. We classify and compare state-of-the-art generic acceptance conditions. We propose new acceptance strategies and we demonstrate that they outperform the other conditions. We also provide insight into why some conditions work better than others and investigate correlations between the properties of the negotiation scenario and the efficacy of acceptance conditions.Later, we adopt a more principled approach by applying optimal stopping theory to calculate the optimal decision on the acceptance of an offer. We approach the decision of whether to accept as a sequential decision problem, by modeling the bids received as a stochastic process. We determine the optimal acceptance policies for particular opponent classes and we present an approach to estimate the expected range of offers when the type of opponent is unknown. We show that the proposed approach is able to find the optimal time to accept, and improves upon all existing acceptance strategies.Another principal component of a negotiating agent's strategy is its ability to take the opponent's preferences into account. The quality of an opponent model can be measured in two different ways. One is to use the agent's performance as a benchmark for the model's quality. We evaluate and compare the performance of a selection of state-of-the-art opponent modeling techniques in negotiation. We provide an overview of the factors influencing the quality of a model and we analyze how the performance of opponent models depends on the negotiation setting. We identify a class of simple and surprisingly effective opponent modeling techniques that did not receive much previous attention in literature.The other way to measure the quality of an opponent model is to directly evaluate its accuracy by using similarity measures. We review all methods to measure the accuracy of an opponent model and we then analyze how changes in accuracy translate into performance differences. Moreover, we pinpoint the best predictors for good performance. This leads to new insights concerning how to construct an opponent model, and what we need to measure when optimizing performance.Finally, we take two different approaches to gain more insight into effective bidding strategies. We present a new classification method for negotiation strategies, based on their pattern of concession making against different kinds of opponents. We apply this technique to classify some well-known negotiating strategies, and we formulate guidelines on how agents should bid in order to be successful, which gives insight into the bidding strategy space of negotiating agents. Furthermore, we apply optimal stopping theory again, this time to find the concessions that maximize utility for the bidder against particular opponents. We show there is an interesting connection between optimal bidding and optimal acceptance strategies, in the sense that they are mirrored versions of each other.Lastly, after analyzing all components separately, we put the pieces back together again. We take all BOA components accumulated so far, including the best ones, and combine them all together to explore the space of negotiation strategies.We compute the contribution of each component to the overall negotiation result, and we study the interaction between components. We find that combining the best agent components indeed makes the strongest agents. This shows that the component-based view of the BOA architecture not only provides a useful basis for developing negotiating agents but also provides a useful analytical tool. By varying the BOA components we are able to demonstrate the contribution of each component to the negotiation result, and thus analyze the significance of each. The bidding strategy is by far the most important to consider, followed by the acceptance conditions and finally followed by the opponent model.Our results validate the analytical approach of the BOA framework to first optimize the individual components, and then to recombine them into a negotiating agent

    Global democratization and international regime complexity

    Get PDF

    An Investigation Report on Auction Mechanism Design

    Full text link
    Auctions are markets with strict regulations governing the information available to traders in the market and the possible actions they can take. Since well designed auctions achieve desirable economic outcomes, they have been widely used in solving real-world optimization problems, and in structuring stock or futures exchanges. Auctions also provide a very valuable testing-ground for economic theory, and they play an important role in computer-based control systems. Auction mechanism design aims to manipulate the rules of an auction in order to achieve specific goals. Economists traditionally use mathematical methods, mainly game theory, to analyze auctions and design new auction forms. However, due to the high complexity of auctions, the mathematical models are typically simplified to obtain results, and this makes it difficult to apply results derived from such models to market environments in the real world. As a result, researchers are turning to empirical approaches. This report aims to survey the theoretical and empirical approaches to designing auction mechanisms and trading strategies with more weights on empirical ones, and build the foundation for further research in the field
    corecore