Auctions are markets with strict regulations governing the information
available to traders in the market and the possible actions they can take.
Since well designed auctions achieve desirable economic outcomes, they have
been widely used in solving real-world optimization problems, and in
structuring stock or futures exchanges. Auctions also provide a very valuable
testing-ground for economic theory, and they play an important role in
computer-based control systems.
Auction mechanism design aims to manipulate the rules of an auction in order
to achieve specific goals. Economists traditionally use mathematical methods,
mainly game theory, to analyze auctions and design new auction forms. However,
due to the high complexity of auctions, the mathematical models are typically
simplified to obtain results, and this makes it difficult to apply results
derived from such models to market environments in the real world. As a result,
researchers are turning to empirical approaches.
This report aims to survey the theoretical and empirical approaches to
designing auction mechanisms and trading strategies with more weights on
empirical ones, and build the foundation for further research in the field