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Chapter 1 

Introduction 

Autonomous software agents are considered by many as the next step in com­
puter automation. Given a set of goals and tasks, an autonomous agent will try 
to maximally satisfy the interests of its owner. These agents should be capable 
of autonomously performing certain tasks which are currently done manually, like 
searching for information on the Internet , planning, booking a holiday, and buying 
and selling goods and services. 

Especially in the field of electronic commerce, an increased use of autonomous 
agents is expected [30, 56, 65, 70, 92 , 119, 144]. Such agents should be able to au­
tonomously negotiate with other agents about the price and other relevant aspects 
of a product or service, such as delivery time, quality, quantity, payment methods , 
and return policies. Furthermore, the agents should be adaptive in order to cope 
with diverse and changing environments. Current electronic markets are becoming 
increasingly transparent with low search costs. From a business perspective, this 
potentially results in strong price competition and low margins, with a negative 
effect on aspects such as quality and service. Through automated bargaining about 
a multitude of aspects, a business can go beyond price competition and gain a com­
petitive advantage by personalising products and services to the needs of individual 
customers. 

In such a setting, where multiple self-interested adaptive agents perform complex 
negotiations, the key question is how they will behave in a given environment and 
with specific rules of interaction. Moreover, an important challenge is to find effective 
bargaining strategies for the agents, and, if the rules can be changed, to determine 
the set of rules that achieves the best results. These are the main issues addressed 
in this thesis. 

Game theory is a field that studies the behaviour of interacting agents and can 
be used to address the above issues through mathematical analysis. The limitation 
of game theory, however, is that many restrictive assumptions need to be made 
in order for a mathematical analysis to be feasible . Commonly made assumptions 

1 



2 Introduction 

are, for example, that the agents act rationally and are completely informed. This 
means that the agents completely understand the rules of the game, have infinite 
reasoning capabilities, make no mistakes, and know all that needs to be known about 
the world and other agents' preferences to derive optimal outcomes. If such agents 
really existed, games like chess would no longer be a challenge. In reality, both 
humans and computational agents have only limited forward looking capabilities 
and information; instead, many tasks are learned through experience, by a process 
of trial and error. To analyse such settings with so-called boundedly rational agents , 
computer simulations are a helpful addi t ion to the set of game-theoretic tools. 

In this thesis we consider the setting where agents are adapt ive to their en­
vironment, and learn effective bargaining policies by trial and error. We apply 
learning techniques from the field of artificial intelligence, specifically evolutionary 
algorithms, to model the adaptive nature of bargaining agents in practical settings. 
In the first part of the t hesis, we consider fundamental aspects of bilateral bargaining 
between a buyer and a seller. We first validate the evolutionary model for bilateral 
bargaining by comparing the outcomes with game-theoretic results of relatively sim­
ple bargaining settings. We then investigate several extensions of game-theoretical 
bargaining games, which are more complex and closer to real-world settings than 
traditional models. Such settings are difficult to analyse game-t heoretically, but can 
be approached using computational techniques. 

In the second part , a number of business applications of automated bargaining 
are introduced and investigated using computational simulations. The focus here 
lies on one-to-many bargaining, where for example a seller negotiates with many 
buyers simultaneously. Either an auction or a bilateral bargaining protocol is applied 
to the one-to-many setting, depending on the application. Auctions can be an 
effective way to allocate scarce resources efficiently, or in other words, to ensure 
that goods are awarded to whoever values them the most. If resources are flexible, 
however, and negotiation involves multiple aspects, bilateral bargaining can again 
be the preferred way to reach an agreement. For the first case, we investigate the 
effectiveness of various auction rules using an evolutionary simulation for problems 
which are unwieldy to analyse mathematically. For the latter case, we present novel 
bargaining strategies for the agents that can be used in practical applications. These 
strategies are able to cope with complex goods and can maximise the gains of trade 
(i .e., the joint gains that results from an agreement) by adjusting different aspects 
of the goods to individual needs. We furthermore combine auctions with bilateral 
bargaining and propose strategies which benefit from the fact that the setting is 
one-to-many, even though the actual bargaining is bilateral. The performance of 
the strategies is evaluated using computational simulations. 
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1.1 Terms and definitions 

This Section introduces the general terminology used throughout this thesis. A more 
detailed explanation of game-theoretic concepts related to bargaining is presented 
in Chapter 2, particularly Sections 2.1 and Sections 2.3. Furthermore, additional 
local definitions are provided in the corresponding chapters. Some definitions are 
numbered in order to facilitate the lookup. Note that the numbers contain the page 
number where the definition is introduced, plus an additional index number. 

1.1.1 General economic concepts 

In order to analyse the choices that people make, such as in bargaining, it is impor­
tant to consider the preferences of decision makers for different outcomes. Within 
economics and in this thesis the notion of utility is used to quantify individuals ' pref­
erences. Utility can be considered as an individual 's measure of goal achievement 
and is usually expressed in real numbers. In general , this measure is subjective and 
cannot be compared to the utility of other individuals. For many real-world appli­
cations, however, utility corresponds to a monetary value, in which case comparison 
is possible. A utility function describes an individual's preferences over possible 
outcomes in terms of utility. 

In many cases, outcomes depend not only on choices made by individuals , but can 
also be affected by unpredictable events or lotteries. When such uncertainty exists, 
the notion of expected utility is used. Expected utility specifies the preferences over 
lotteries, and is computed by multiplying the utility of an event by the probability 
that this event occurs , and adding across all events (see [72, Ch.6] for further details). 

Often, people have several goals and trade-offs between these goals. For example, 
when buying a house, trade-offs exist between the location, size, and price of the 
house. A multi-attribute utility function [10, 101] can be used in order to represent 
preferences in case of several (often independent) goals: 

Definition 3.1 Multi-Attribute Utility Function A multi-attribute utility 
function defines the utility over multiple weighted attributes, where each at­
tribute corresponds to a goal, and the weight indicates the relative importance 
of the corresponding attribute. An attribute is also called a dimension or an 
issue. In general, the attributes are assumed to be preferentially independent 
or additive. In that case, the utility is calculated by multiplying each attribute 
by its weight and adding across the attributes. 

1.1.2 Game-theoretic concepts related to bargaining 

Game theory [11, 90][72, Ch.8+9] is a collection of mathematical tools designed to 
analyse situations where decision-makers interact , for instance when bargaining. 
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The decision-makers are usually assumed to be fully rational (utility maximising) 
and to be completely informed of the circumstances in which the game is played 1 [11 , 
Ch.10+ 11]. These assumptions are far from realistic, but are often necessary in order 
to make mathematical analysis feasible. We will elaborate on t hese assumptions in 
Chapter 2 (see Section 2 .1) . 

A decision maker in a game is henceforth called a player. We often use the term 
agent instead of player , especially in a computational context. 

Game theory is used in this thesis to investigate situations of bargaining. In a 
bargaining situation two or more players have the option to make a joint choice from 
a set of possible outcomes. The players may benefi t from an agreement , but they 

have different preferences for the various outcomes. In economic terms, the players 
can jointly produce some type of bargaining surplus, provided that they agree on 
how to divide it [81]. Examples include bargaining over the price of a house, but also 
choosing a restaurant together; in both cases, all parties involved benefit from an 
agreement , but might have conflicting preferences for the different outcomes. The 

bargaining surplus or just surplus is the joint gains that can be achieved through 
cooperation. For example, if a seller wants to sell a house for at least $100000, and 
buyer is willing to pay up to $150000, then the bargaining surplus that is jointly 
produced equals $50000. We define bargaining as the corresponding attempt to 
resolve a bargaining situation , i. e. , to determine the particular form of cooperation 

and the corresponding division of the bargaining surplus. Bargaining is bilateral 

when it concerns two players. We use the term negotiation interchangeably with the 

term bargaining. 
The interaction between negotiating agents is usually restricted by certain rules. 

For instance, in the alternating-offers game (discussed in Section 2.3.2) , the players 

are restricted to making offers and counter offers in a sequent ial order. The rules 
are set by the so-called bargaining protocol: 

Definition 4.1 Bargaining Protocol A bargaining protocol (also called negoti­

ation protoco0 specifies the rules that govern the negotiation process [5]. 

The outcomes of a bargaining game have two desirable features: individual ratio­
nality and Pareto-efficient [11 , Ch. 5]: 

Definition 4.2 Individually Rational A bargaining outcome is individually 

rational 2 if the utility assigned to each player is at least as large as a player 
can achieve by himself without cooperation. 

1 Complete information does not rule out uncertainty (e.g. about the preferences of other play­
ers). In case of uncertainty, however, it is assumed that the probabilities are known to the players. 
This topic is further discussed in Section 2.1 of the next chapter. 

2 Individual rationality is also used to denote a property of a mechanism (see Def.5 .1 ). In short , 

a mechanism is individually rational if it induces voluntary participation. 
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Definition 4.3 Pareto-Efficient, Pareto-Efficient Frontier A bargaining 
outcome is Pareto-effici ent if no outcome exists that is strictly preferred by 
one player and not less preferred by any other player. The Pareto-efficient 
frontier connects all the Pareto-efficient points in an N-dimensional space, 

where each dimension corresponds to the utility level of a player (see Fig. 2.1 
on page 21 for an example in a 2-dimensional space). 

Loosely put , individual rationality of the bargaining outcome ensures that an agent 

benefits from the agreement. In most cases, a utility of zero is set as the agent's 
status quo (i.e. , the agent 's utility for not part icipating). Any positive outcome is 
then individually rational. A Pareto-efficient outcome is desirable since there is then 
no waste in the allocation of the resources [72, p. 313]. If outcomes are not Pareto 
efficient , another deal could have been made which was at least better for one player 
(and equally good for the other player) , or even better for both. 

The players are endowed with strategies that determine how the bargaining pro­
ceeds. In general, a player's strategy is a plan which lays out a course of action for 

each possible state or history [90]. In a bargaining setting, a strategy determines 
the bids of a player , given the history of the game. Moreover , the strategy decides 
how the player responds to the bids received by other player (s) in the game. In 
the alternating-offers game (see Section 2.3.2) , for example, a player can respond by 
accepting or refusing the bid received by the opponent. 

Mechanism design An important application area of game theory is setting up 
the rules of the games, such as voting procedures or auctions rules, as to induce a 
certain outcome, given that players act rationally and in their own best interest. 
For example, game t heory can help to understand what type of penalties , rewards 
or tax system are most effective to induce industrial companies to apply environ­
mentally friendly production methods . In the context of bargaining, common goals 
are maximising social welfare (i.e., t he sum of utilities of the players) or maximising 
revenue. Choosing the right rules in order to achieve desired outcomes is known in 

economics as the problem of mechanism design [133] [72, Ch. 23]. First, we define 
the notion of mechanism. 

D efinition 5.1 Mechanism A mechanism is a set of decision rules that map the 
strategies of the agents to a collective outcome. 

A mechanism can be viewed as an institution with rules governing the procedure for 

making the collective choice [72 , p. 866]. In a direct mechanism, the agents are asked 
to state their preferences directly (either truthfully or not). An agent 's preferences 

or type is represented by a ut ility function, expressing the valuation of the possible 
outcomes or allocations. In an indirect mechanism, players do not communicate 
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an entire utility function , but for instance bids in an iterative auction such as the 
English auction. 3 

Mechanism design deals with the problem of finding a mechanism that results in 
a desired collective outcome, given that the agents maximise their individual utility, 
and given that the institution that governs the rules does not know the preferences or 
types of the agents beforehand (i.e. , we are in a setting characterized by incomplete 
information, see [72, Ch. 23.B] and Section 2.2). In other words , mechanism design 
tries to answer whether or not , and if so how, a desired social outcome can be 
materialised in a world of selfish agents. 

A mechanism is called incentive compatible if it induces the agents to reveal their 
preferences truthfully. An interesting theorem is the revelation principle [11, Ch. 
11][72, Ch. 23], which states that if a desired social outcome can be realised by an 
indirect mechanism, there exists an incentive compatible direct mechanism that also 
reaches the desired outcome. 

1.1.3 Concepts from computer sCience 

We describe software agents [144] in this thesis that fully or partially automate the 
task of negotiation. We define a software agent as an autonomous software program 
which operates on behalf of its owner. Software agents have a certain goal, which 
in this thesis is to maximise a given utility function. The software agents described 
here can usually learn from experience and adapt their behaviour given feedback from 
the environment, without any human intervention. When multiple software agents 
interact, the entire system is called a multi-agent system. Note that in a multi-agent 
system the agents can reside on different platforms, in which case communication 
occurs via a physical network. We also use the term evolutionary agent to denote 
an agent who's strategy is adapted using an evolutionary algorithm. 

1.2 Evolutionary algorithms 

Evolutionary algorithms (EAs) are powerful search algorithms from the field of ar­
tificial intelligence that are based on the principles of natural evolution [8, 45, 51, 
75, 103, 115]. EAs are originally applied to solve optimisation problems, such as the 
travelling salesman problem and the knapsack problem [29], but are now increas­
ingly being used to model societies of learning agents, especially within the field of 
agent-based computational economics (ACE) [4, 29, 104, 124, 127, 139]. Throughout 
this thesis EAs are applied to model adaptive agents that can learn to bargain ef­
fectively by means of trial and error . This section first briefly explains the basic 

3In an English auction players call out increasingly higher bids until no more increases are 
made. The winner is the last bidder. 
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principles of EAs. Then it motivates and explains the use of EAs in the context 
of bargaining. Furthermore, Section 1.2.3 describes in more detail the actual algo­
rithm used in this thesis. The basic approach is the same in all chapters that apply 
evolutionary algorithms. 

1.2.1 Principles of evolutionary algorithms 

The cornerstones of evolution in nature are "survival of the fittest" together with the 
transfer (with some variation) of genetic material from one generation to the next. 
EAs apply these aspects of biology to evolve an artificial population of individuals. 
These individuals are not living organisms in this case, but for instance solutions 
to a optimisation problem or bargaining strategies of an agent. The solutions are 
encoded on a chromosome of an individual , often consisting of a string of real or 
binary values. 

As in natural ecosystems, the survival of these individuals depends on their 
fitness. A suitable fitness measure in artificial ecosystems depends on the problem 
domain. It can for instance be an objective function in case of an optimisation 
problem, or the mean utility obtained by a strategy in a game. Using the example of 
the well-known prisoner 's dilemma4 [90, p.16], an individual 's chromosome encodes 
a player 's (binary) stra tegy: confess or not confess. The fitness is determined by the 
final payoff (or utili ty) obtained when the game is played. 

By reproduction new individuals are generated that inherit genetic material from 
the existing individuals in a population. Natural selection then removes individuals 
with a relatively low fitness from the population. This process of evolution causes 
good traits (i .e. , that contribute to a higher fitness) to remain and bad traits to die 
out in the long run. Additionally, variation or "errors" in the transfer of genetic 
material creates new type of individuals or solutions. 

1.2.2 Modelling adaptive bargaining agents 

Traditional game-theoretic studies of bargaining rely on strong assumptions such 
as full rationality of the agents and common knowledge of beliefs and preferences 
(for details see Chapter 2). In reality it is rare that these criteria are met. Even 
in the case of computational autonomous agents, which are capable of performing 
calculations much faster than humans, optimal or "rational" solutions cannot always 
be found. More importantly, since agents can be programmed by different parties, 
it is better to avoid strict assumptions on other agents ' behaviour , in particular 
concerning their rationality. Rather than fully rational, we assume that bargaining 

4In t his game, two suspects in a crime can choose either to confess or not to confess, without 
knowing the strategy of the other player. The payoff or final ut ility of a player depends on both 
his choice and of the choice made by the other player. 
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agents have little a-prori knowledge and gradually adapt and search for optimal 
solutions by a process of trial and error . Such agents are called boundedly rational. 

In this thesis we apply an EA to model this learning aspect of bargaining agents 

and to develop effective strategies for t hese agents. EAs are frequently used for 
modelling (adaptive) behaviour of human societies and societies of computational 
agents from the bottom up , especially within the field of agent-based computational 
economics (ACE). 5 EAs are also increasingly being used to study situations of bar­
gaining that are difficult to analyse game-theoretically, as in [31, 34, 73, 88, 126] (see 
also Section 2.4.1). The advantage of EAs is that t hey make no explicit assumptions 
or use of rationality; basically, the fitness of the individual agents is used to deter­
mine whether a strategy will be used in future situations. Nonetheless , surprisingly 
rational behaviour often emerges from such "low-rational" agents [146] (as we will 

also show in this thesis). 
There are several ways of modelling adaptive agents using EAs. In the approach 

used in this thesis, agents select their bargaining strategies from a pool of strategies. 
A separate pool of strategies exists for each agent type, where a type is defined 
by the preferences (i.e., utility function) of the agent and/ or the agent 's role (e.g. 
buyer or seller) . Agents of the same type select their strategies from the same pool, 
as these agents are likely to have similar behaviour. On the other hand, agents of 
different types will usually prefer different strategies, hence the use of separate pools. 
The pools then evolve independently, i.e. no genetic material is exchanged between 
the different pools. Note that if there is only a single agent of a certain type, all 

strategies in a pool belong to that agent . This is also called a model of individual 

learning. If there are several agents of the same type, this is called population 

learning, since a population of agents (of the same type) learns as a whole. Below, 
the implementation of the EA is explained in more detail. 

1.2.3 Implem entation 

The term "evolutionary algorit hm" refers to a broad class of algorithms. The imple­
mentation used in this thesis is based on a branch within EAs called evolution strate­

gies (ES) [8], originally developed by Rechenberg [103] and Schwefel [ll5]. The ES 
were developed independently from the well known genetic algorithms (GAs) [45, 75], 

introduced by Holland [51] . Whereas GAs are more tailored toward binary-coded 
search spaces, ES are originally designed for real-encoded representations, the latter 
being a more natural encoding for the type of bargaining strategies we employ in the 

simulations. Other classes of evolutionary algorithms include genetic programming, 
evolution strategies, and evolutionary programming. For an interesting overview of 
the various approaches within evolut ionary computation, see [7]. 

5 For an on-line survey of the field of ACE, see [125]. 
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replace 

t . . . .. ...... ···· · ··· ·· I 
Parental reproduce Offspring New parental 

Population Population Population 

. . . r· . ... . ...... .. .......... t 
select 

Figure 1.1: Iteration loop of the evolutionary algorithm. 

An outline of the EA is given in Figure 1.1. The EA starts with a randomly 
initialised parental population of individuals . Each individual contains a bargaining 
strategy which is encoded on the chromosome, a fixed-size string [x0 , .. . , X1-1] of 
length l and real values x; E [O, l ]. Subsequently, offspring individuals are created 
(see Figure 1.1) by first (randomly, with replacement) selecting an agent in the 
parental population, and then mutating his chromosome to create a new offspring 
(the mutation operator is described below). Figure 1.2 depicts the chromosomes of a 
parent individual and a corresponding (mutated) offspring individual. This process 
is repeated until the offspring population reaches the required size. 

Parent individual I xo I X1 I X2 I I X1-1 

l 
Offspring individual I x~ I x~ I x; I x;_1 

Figure 1.2: The chromosome of a parent individual and of an associated offspring 
individual. Each chromosome consists of l real values x;, x; E [O, l ]. The offspring 
individual is created by mutating the chromosome of the selected parent individual. 

In the next stage, the fitness or performance of both the offspring and parent 
individuals is determined by a process of negotiation. The way in which this is 
achieved depends on the negotiation setup. Details are provided in the corresponding 
chapters. 

In the final stage of the iteration (see Fig. 1.1), the fittest agents are selected 
as the new "parents" for the next iteration. Selection is performed using the deter­
ministic (µ+>.)-ES selection scheme [7, 8], whereµ is the number of parents and >. 
is the number of generated offspring. The µ survivors with the highest fitness are 
selected (deterministically) from the union of parental and offspring agents. This 
final step completes one iteration or generation of the EA. 
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Mutation and Recombination 

Mutation and recombination are the most commonly used EA operators for re­
production. Recombination exchanges parts of the parental chromosomes, whereas 
mutation produces random changes in a chromosome. In case of an ES, it is common 
to use mutation-based models without recombination, especially because the muta­
tion operator (explained below) is much more advanced compared to the standard 
operator used in e.g. genetic algorithms. Moreover, for many computational experi­
ments of the kind discussed in this thesis , the effects of recombination seemed to be 
negligible when using an ES (see also [126]). We therefore focus on mutation-based 
models in this thesis. 

The mutation operator of an ES implementation works as follows. Each real 
value x; of a parent chromosome (see Figure 1.2) is mutated by adding a zero-mean 
Gaussian variable with a standard deviation (]'; [8, 126], thereby producing a new 
value x; for the chromosome of the offspring: 

x: := X; + (J';N;(O, 1). (1.1) 

All resulting values larger than unity (or smaller than zero) are set to unity 
(respectively zero). 

In our simulations , we use two mutation models: a mutation model with self­
adaptive control of the standard deviations (]'; [8, pp. 71-73][126], and a model with 
exponential decay of the standard deviations, which we describe below. 

Self-Adaptive Control This model allows the evolution of both the strategy and 
the corresponding standard deviations at the same time. More formally, an agent 
consists of strategy variables [x0 , ... , Xt_1] and ES-parameters [(J'o, ... , (J't _1], where l is 
the length of the chromosome. 

The mutation operator first updates an agent's ES-parameters(]'; in the following 
way: 

<5; := <J;exp[T'N(O, 1) + TN;(O , 1)], (1.2) 

where T
1 and T are the so-called learning rates [8 , p. 72], and N(O, 1) denotes a 

normally distributed random variable having expectation zero and standard devi­
ation one. The index i in N; indicates that the variable is sampled anew for each 
value of i . We use commonly recommended settings for these parameters (see [8, p. 
72]). 6 After the strategy parameters have been modified, the strategy variables are 
mutated as indicated in Eq. 1.1. 

Note that, since selection works on the (J';'s as well as on the strategy variables , 
the <5; 's are part of the evolutionary process. The particular initial value chosen for <5; 

is therefore typically not crucial for this model, as the self-adaptation process rapidly 

6 Namely, r' = ( J2l)- 1 and T = ( Nt)- 1 , where l is the length of the chromosome. 
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scales CJ; into the proper range. For example, if solutions are far from the optimal 
value, the CJ; can increase as a result of the evolutionary process. On the other 
hand, if good solutions are found , the CJ;'s can converge to smaller values in order 
to maintain these solutions. To prevent complete convergence of the population , we 
force all standard deviations to remain larger than a small value E:u [8, pp. 72- 73]. 

Exponential Decay Using this model, the standard deviations CJ; decay expo­
nent ially such that every t generations their value is reduced to half the size. We 
call t the half-life parameter. This model is similar to the simulated annealing mech­
anism, where a temperature parameter is slowly lowered to reduce variation in the 
exploration space. Using this model, the EA always converges if the simulation is 
run for a sufficient number of generations. 

1.3 Organisation of the thesis 

Readers that are new to the field of game theory and bargaining are recommended 
to read the introduction to this topic in Chapter 2. Specific topics include the ult i­
matum game, the alternating-offers game, bargaining with incomplete information, 
multi-issue bargaining, and one-to-many bargaining. Chapter 2 also contains a sur­
vey of approaches using techniques from artificial intelligence and are in that way 
related to the general topic of the thesis. Chapter 8 concludes the thesis with a 
discussion and an overview of the the main results. 

The remaining chapters of the thesis are grouped into two parts: Part A consid­
ers fundamental aspects of bilateral bargaining systems using both game-theoretical 
and computational techniques. Part B investigates two business applications of 
automated bargaining, and introduces a number of effective bargaining strategies . 
Additionally, in the Appendix a game-theoretic analysis is provided for the games 
described in Chapter 3. Each chapter of parts A and B can, in principle, be read 
independently. Where necessary, cross-references are indicated within the chapters . 
A recurring theme is the application of evolutionary algorithms for simulating the 
strategic behaviour of the agents. The evolutionary algorithm is therefore treated 
separately in Section 1.2. Parts A and B are organised as follows: 

Part A: Fundamental aspects of bargaining systems 

Chapter 3 describes a system for bilateral negotiations in which artificial agents 
are generated by an evolutionary algorithm. The negotiations are governed by a 
finite-horizon version of the alternating-offers protocol. Several issues are negotiated 
simultaneously. This can reduce the competi t ive nature of the game since trade-offs 
can be made to obtain mutually beneficial solutions. These so-called Pareto-efficient 
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solutions are indeed found by the evolutionary agents. The outcomes of the evolu­
tionary system are also analysed and validated using the game-theoretic subgame­
perfect equilibrium as a benchmark. We furthermore present and investigate an 
extended model in which the agents take into account the fairness of the obtained 
payoff. The concept of fairness plays an important role in real-life negotiations and 
experimental economics. We find that when the fairness norm is consistently ap­
plied during the negotiation, the evolving agents reach symmetric outcomes which 
are robust and rather insensitive to the actual fairness settings. 

Chapter 4 extends the above game by allowing both agents to negotiate with 
other opponents in case of a disagreement. This way the basics of a competitive 
market are modelled where for instance a buyer can try several sellers before making 
a purchase decision. Negotiations are limited to a single round, which corresponds to 

the so-called ultimatum game. Whereas in the regular ultimatum game the proposer 
demands the entire surplus, responding agents can now choose to refuse unaccept­

able take-it-or-leave-it deals and negotiate with another opponent. As before, the 
game is investigated using an evolutionary simulation. The outcomes appear to de­
pend largely on the information available to the agents. We find that if the agents' 
number of future bargaining opportunities is commonly known, the proposer has the 
advantage. If this information is held private, however , the responder can obtain 

a larger share of the pie, even if the initial number of bargaining opportunities is 
equal for both agents. For the first case, a game-theoretic analysis of the game is 

also presented and compared to the evolutionary results. Although a theoretical 
analysis is hard for the incomplete information case, the evolutionary simulation is 
very suitable for analysing both settings. The game is further extended to allow 
several issues to be negotiated simultaneously. Furthermore, effects of search costs 
are investigated and the case where uncertainty exists about fu ture opportunities 
and a new opponent cannot always be found. 

Part B: Bargaining systems for business applications 

Chapter 5 considers a business application of automated negotiation, where sev­
eral supplier agents of goods and services compete for banner space or "consumer 

attention space" by bidding in an auction. Bidding occurs based on information 
about the consumers , their so-called profile. As a result of the auction, a small 

selection of banners is short-listed and presented to the consumer , for instance on 
a web site. The supplier agents are simulated using an evolutionary algorithm, 

and can learn, given feedback from the consumers and whether or not they were 
short-listed , the type of consumers to target and the amount to bid. A number of 
consumer behaviour models are investigated that simulate the consumer's response 
to the presented banners . In a relatively simple model, the response is independent 
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of other banners displayed concurrently. In other models, the response contains 
dependencies between the banners. The auctioneer can select the auction rules or 
mechanism that generates the best advertisements for the consumers, but at the 
same time provides the suppliers with sufficient profits. Several mechanisms are 
investigated using the simulation environment. 

Chapter 6 applies automated negotiation to buy and sell bundles of information 
goods. A single information provider agent or seller agent negotiates with a number 
of buyer agents simultaneously. Whereas in Chapter 5 an auction is used for a one-­
to-many setting, a bilateral negotiation protocol is applied in this case, where the 
seller negotiates with each buyer by alternating offers and counter offers, as described 
in Chapter 3. A bilateral protocol is more suitable here because information goods 
have no constraints on the supply and different buyers can be interested in very 
diverse bundles of goods. A personalisation of bundles is achieved by bargaining 
over multiple issues. Bargaining in this setting essentially has a double purpose: 
(1) division of the surplus, and (2) maximising the joint gains that can be achieved 
by finding win-win or Pareto-efficient (see Def. 4.3) outcomes. This chapter focuses 
on the latter part and introduces negotiation strategies for multi-issue negotiations 
which can approximate Pareto-efficient solutions. 

Chapter 7 also considers the one-to-many bargaining setting using a bilateral 
bargaining protocol, but focuses on the division of the surplus. Although the buyers 
perceive bargaining as bilateral, the seller can actually benefit from the fact that 
bargaining occurs with many buyers simultaneously. This is especially the case if 
buyers have time pressure and prefer early agreements. Several bargaining strategies 
for the seller are investigated and compared using an evolutionary simulation. A 
class of strategies are introduced which are based on the first-price auction. These 
strategies can especially benefit from competition arising from the time pressure. 
The seller's bargaining strategies also take into account a notion of fairness , which 
should ensure that buyers are treated fairly and do not feel discriminated based on 
their individual bargaining behaviour or preferences. 

1.3.1 Publications 

Chapters 3-6 are based on published work and/ or work that has been accepted 
for publication but has yet to appear. Chapters 2 and 7 are based on technical 
reports. 

• Chapter 2 is based on [41]: E.H. Gerding, D.D.B. van Bragt, and J.A. La 
Poutre. Scientific approaches and techniques for negotiation: A game theoretic 
and artificial intelligence perspective. Technical Report SEN-R0005, CWI, 
Amsterdam, 2000. 
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• Chapter 3 is based on [42]: E .H. Gerding, D.D.B. van Bragt , and J .A. La 
Poutre. Multi-issue negotiation processes by evolutionary simulation: Valida­
tion and social extensions. Computational Economics, 22:39- 63, 2003. 

• Chapter 4 is based on [38] : E.H. Gerding and J.A. La Poutre. Bargaining 
with posterior opportunities: An evolutionary social simulation. In M. Galle­
gati , A. Kirman , and M. Marsili , editors, The Complex Dynamics of Economic 
Interaction, Springer Lecture Notes in Economics and Mathematical Systems 
(L EMS) , Vol. 531, pages 241- 256. Springer-Verlag, 2004. 

• Chapter 5 is based on [17]: S.M. Bohte, E.H. Gerding, and J.A. La Poutre. 
Market-based recommendation: Agents that compete for consumer atten­
tion. A CM Transactions on Internet Technology, August 2004 (to appear). 
A shorter version appeared earlier as [16]: S. M. Bohte, E. H. Gerding, and 
H. La Poutre. Competitive market-based allocation of consumer attention 
space. In M. Wellman, editor, Proceedings of the 3rd A CM Conference on 
Electronic Commerce (EC-01) , pages 202- 206. The ACM Press, 2001. 

• Chapter 6 is based on [120]: K. Somefun , E.H. Gerding, S. Bohte, and J .A. La 
Poutre. Automated negotiation and bundling of information goods. In 
Agent-Mediated Electronic Commerce V, Springer Lecture Notes in Art ificial 
Intelligence (LN AI). Springer-Verlag, Berlin, to appear. 

• Chapter 7 is based on [40]: E.H. Gerding, K. Somefun, and J .A. La Poutre. 
Bilateral bargaining in a one-to-many bargaining setting. Technical Report , 
CWI, Amsterdam, to appear. A shorter version has been accepted for pub­
lication as [39]: E.H. Gerding, K. Somefun , and J .A. La Poutre. Bilateral 
bargaining in a one-to-many bargaining setting. In Proceedings of the 3rd 
International Joint Conference on Autonomous Agents and Multi Agent Sys­
tems ( AAMAS2004) , New York City, New York. IEEE Computer Society 
Press, 2004. 



Chapter 2 

Bargaining: • an overview 

This chapter contains an overview of approaches and techniques concerned with 
bargaining. We here focus on the large body of literature that has been published 
in the fields of economics (in part icular game theory) and art ificial intelligence (AI) . 
To give a brief impression of t he rapid developments in this field , we first highlight 
some important breakthroughs in economic bargaining theory in Section 2.1. Sec­
tion 2.2 discusses assumptions frequently made in game t heory to make mathemati­
cal analysis feasible, and motivates the use of computational techniques. Details on 
game-theoretic bargaining approaches follow in Section 2.3. Bargaining approaches 
using computational techniques from the field of artificial intelligence are the topic 
of Section 2.4. Finally, Section 2.5 concludes this chapter with a short discussion. 

2 .1 A brief history of bargaining 

Perhaps surprisingly, the bargaining problem has challenged economists for decades. 
Yet the bargaining problem is stated very easily [llO]: 

Two individuals have before them several possible contractual agree­
ments. Both have interests in reaching agreement but their interests are 
not entirely ident ical. What "will be" the agreed contract, assuming 
that both part ies behave rationally? 

Before the path-breaking work of Nash [82] and , much later , Rubinstein [llO] the 
bargaining problem was considered to be indeterminate. For example, in their influ­
ent ial work Von Neumann and Morgenstern [137] argued t hat the most one can say 
is that the agreed contract will lie in the so-called bargaining set. The bargaining 
set is the set of all feasible outcomes (an outcome is feasible if it can be jointly 
achieved by the players involved) that are individually rational (see Def. 4.2) and 
Pareto-efficient (see Def. 4.3) , i.e., it is no worse than disagreement and there is no 
agreement that both part ies would prefer. But because this bargaining set consists 

15 
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in general of an infinite number of different agreements this requirement does not 

yield a unique bargaining solution. A unique solution can be found, however, if 

the agreed contract satisfies additional axioms such as those proposed by Nash [82]. 

This solution is called the Nash bargaining solution and is discussed in Section 2.3.1. 

Because one can argue about which axioms are reasonable and which are not , Nash 

suggested to complement this axiomatic approach with a strategic game. This route 

was followed by Rubinstein [110] who proved that an important bargaining game 

(the alternating-offers game) has a unique solution (see Section 2.3.2). Binmore 

[12] then connected the fields of axiomatic and strategic bargaining by proving that 

the solution of Rubinstein's bargaining model coincides with the Nash bargaining 

solution under special circumstances. 

2.2 Game theory and artificial intelligence 

Game theory frequently makes simplifying assumptions to facilitate the mathemat­

ical analysis. Common assumptions are for instance: (1) complete knowledge of the 

circumstances in which the game is played and (2) full rationality of the players. 

The first assumption implies that the rules of the game and the preferences (i.e., the 

utility functions) and beliefs1 of the players are common knowledge. 2 A game has 

incomplete information if something about the circumstances in which the game is 

played, such as the preferences of other players, is not known to the players. Game 

theorists traditionally model incomplete information of other player's preferences 

and beliefs by specifying a limited number of player types (see also Section 2.4.3). 

Each type is then uniquely determined by a set of preferences and beliefs. Players 

are not completely certain about the exact type of their opponent. However , the 

probability that an opponent is of a certain type is, again, common knowledge for 

all players. In this manner, a game of incomplete information can be transformed 

in a game of imperfect information. 3 

The second assumption relates to the need for common knowledge on how players 

reason. It is assumed that players maximise their expected utility given their beliefs. 

Players have infinite computational capacity to pursue statements like "if I think 

that he thinks that I think. .. " ad infinitum. Furthermore, players are assumed to 

have a perfect memory.4 These assumptions limit the practical applicability of game-

1 Beliefs are subjective probability of events occurring about which the player is uncertain. 
2Common knowledge means that the players know what the other players know, etc., in an 

infinite regress . 
3In a game with imperfect information uncertainty exists about the state of the world. A game 

is said to have perfect information if (i) there are no simultaneous moves and (ii) at each decision 

point it is known which choices have previously been made [131 , Ch. l] . 
4 Lately, much research in game theory focuses on the field of "bounded" rationality, in which 

players have limited computational power and/or limited hindsight. An overview of recent work 
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theoretic results. In the field of AI , however, assumptions like complete knowledge 
or full rationality are not necessary because the behaviour of individual agents can 
be modelled directly.5 This gives the AI approach an important advantage over 
more rigorous (but at the same time more simplified) game-theoretical models. 

Researchers in the field of AI are currently developing software agents (see Sec­
tion 1.1.3) which should be able (in the near future) to negotiate in an intelligent 
way on behalf of their users . A survey of the potential of automated negotiation is 
given in [144, Ch. 9]. The state-of-the-art of agent technology is reviewed in [70]. 
In future applications for e-commerce, multi-agent systems will need to be flexible , 
especially for trading, brokering, and profiling applications [128]. In particular, it is 
important for the negotiating (software) agents to be able to adapt their strategies 
to deal with changing opponents, changing topics and concerns , and changing user 
preferences. Multi-agent learning, (the ability of the agents to learn how to com­
municate, cooperate and compete) becomes crucial in such domains [70, p.23]. This 
should lead to much more advanced and universal systems. 

Nevertheless , due to this rapidly increasing complexity, the connection between 
the AI approach and a game-theoretic analysis remains important . Game theory 
may aid in the difficult task of choosing a suitable bargaining protocol [14] (see 
Def. 4.1). Tools and techniques from AI can be used to develop software applications, 
bargaining strategies, protocols and mechanisms which are currently beyond the 
reach of classical game theory. 

2.3 Game-theoretic approaches to bargaining 

Traditionally, game theory can be divided into two branches: cooperative and non­
cooperative game theory. In cooperative game theory, groups of players are taken as 
primitives and binding agreements can be made. Cooperative game theory abstracts 
away from the rules of the game and is mainly concerned with finding a solution 
given a set of feasible outcomes.6 A topic like coalition forming is typically analysed 
using cooperative game theory. Often, in real life, companies can gain profits by 
working together, for example by securing a larger market share or by reducing direct 
competition with the competitors. In such games, a surplus (see Section 1.1.2) is 
created when two or more players cooperate and form a coalition. Cooperative 

in this field can be found in [112] . Binmore also gives a short discussion of this topic in [11 , pp. 
478-488]. 

5For example, agents can be programmed with a certain strategy and use for instance reinforce­
ment learning to improve this strategy. These agents are not explicitly rational or fully informed. 
Nevertheless, after a period of learning, the agents could exhibit behaviour that resembles that of 
rational and fully informed agents. 

6 Recall from above that an outcome is feasible if it can be jointly achieved by the players 
involved. 
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game theory can then determine how the surplus is to be divided , given a coalition 
and a set of assumptions (called axioms). Likewise, cooperative bargaining theory 
determines how the surplus is to be divided which results from an agreement , given 
the set of axioms (an example of such axioms resulting in a unique solution, the 
so-called Nash bargaining solution, is discussed in Section 2.3.1). 

Non-cooperative game theory, on the other hand, is concerned with specific games 
with a well defined set of rules, game strategies, and payoffs rather than axioms. 
All strategies, rules and payoffs are known beforehand by the players. A player 's 
strategy is a plan which lays out a course of action for each possible state or history. 
Strategies can be pure or mixed. A pure strategy determines the actions for a given 
state deterministically. A mixed strategy requires a player to randomise between his 
pure strategies. Payoffs are the final returns (expressed in utility) to the players 
when the game is concluded. 

Non-cooperative game theory uses the notion of a strategic equilibrium or just 
equilibrium to determine rational outcomes of a game. Numerous equilibrium con­
cepts have been proposed in the literature (see [131] for an overview). Some widely­
used concepts are dominant strategies, Nash equilibrium and subgame perfect equi­
librium. We define these notions below. 

Definition 18.1 Dominant Strategy A dominant strategy is optimal in all 
circumstances, that is, the strategy achieves the highest payoff no matter what 
the strategies of the other players are. 

This is obviously a very strong notion of an equilibrium strategy. A slightly weaker, 
but still very powerful, equilibrium concept is the so-called Nash equilibrium [83, 84]: 

Definition 18.2 Nash Equilibrium Strategies chosen by all players are said to 
be in Nash equilibrium if no player can benefit by unilaterally changing his 
strategy. 

Nash proved that every finite game has at least one equilibrium point (in pure or 
mixed strategies [83, 84]) . The concept of dominant strategies is a refinement of 
the Nash equilibrium. That is, if strategies are dominant , they also constitute a 
Nash equilibrium. The reverse is not necessarily true, however. Another important 
refinement of a Nash equilibrium is Selten's subgame-perfect equilibrium [116, 117] 
for extensive-form games. Extensive-form games are games with a tree structure, 
i.e., where players can make decisions sequentially and at various stages of the game 
(by contrast, in strategic-form games, players are required to make decisions once 
and simultaneously) . Subgame-perfect equilibrium is defined as follows: 

D efinition 18.3 Subgame-Perfect Equilibrium Strategies in an extensive­
form game are in subgame-perfect equilibrium if the strategies constitute a a 
Nash equilibrium at every decision point. 
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An overview of the main bargaining literature from t he field of cooperative game 
theory is given in Section 2.3.1. We note that the concepts from cooperative game 
theory are not necessary to understand the remainder of the thesis, and are intended 
for the interested reader. In Section 2.3.2 several non-cooperative bargaining games 
are discussed . Part icular attention is paid to the most important bargaining proto­
col: the alternating-offers game. In Section 2.3.2 bargaining over a single issue is 
assumed. Section 2.3.3 covers work on multiple-issue negotiations. 

As we mentioned before, traditional game theory assumes complete information, 
implying that the player's preferences and beliefs are common knowledge. However , 
lately many researchers in game theory have focused on the consequences of play­
ers having private information. Among other things, incomplete information could 
explain why inefficient deals are reached or why no deal is reached at all. For in­
stance, the occurrence of strikes and bargaining impasses, but also the occurrence of 
delays in negotiations can theoretically be addressed when complete information is 
no longer assumed. Literature related to this topic is discussed in Section 2.3.4. We 
also consider one-to-many bargaining, i.e., where one player interacts with mult iple 
opponents simultaneously. Auctions are the most common approach for such a set­
ting, and will be the topic of Section 2.3.5 (an alternative approach, using bilateral 
bargaining, is discussed in Chapters 6 and 7). 

2.3.1 Cooperative bargaining theory 

Cooperative game theory considers the space of possible outcomes of a game, without 
specifying the game itself in detail. In case of bargaining, the outcomes are often 
denoted in terms of utilities (see Section 1.1.1). In case of two-player games, the 
outcomes are then represented by utili ty pairs. Cooperative bargaining theory is 
concerned with the question of which outcome will event ually prevail, given the set 
of all possible utility pairs. A particular set of possible outcomes is also referred to 
as a bargaining problem. 

A function which maps a bargaining problem to a single outcome is called a 
solution concept. Usually, a solution concept is only valid for a certain subset of all 
possible bargaining problems. For instance, the first and most famous solution con­
cept, the Nash bargaining solution (see below) only applies to convex and compact 
bargaining sets (see [11, pp. 180- 181]). Only if these requirements are satisfied the 
bargaining problem can properly be called a Nash bargaining problem. 

An alternative bargaining solution has been proposed by Kalai and Smorodin­
sky [57]. Their approach is discussed below. Both the Nash and the Kalai and 
Smorodinsky bargaining solutions are invariant with respect to the calibration of 
the players' utility scales. The utilitarian solution concept differs in that respect 
and does actually depend on how the functions are scaled . For this reason, its appli­
cation is limited to those situations where inter-personal ut ili ty comparison makes 
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any sense. Cooperative theories of bargaining are discussed in more detail in [106]. 

The Nash bargaining solution 

Nash proposed four properties, now called the Nash axioms, which should be satisfied 
by rational bargainers [82],[11 , p. 184]: 

1. The final outcome should not depend on how the players' utility scales are 
calibrated. This means the following. A utility function specifies a player 's 
preferences. However, different utility functions can be used to model the 
same preferences. Specifically, any strictly increasing affine transformation of 

a utility function models the same preferences as the original function , and 
should therefore yield the same outcome. 

2. The agreed payoff pair should always be individually rational (see Def. 4.2) 
and Pareto-efficient (see Def. 4.3) 

3. The outcome should be independent of irrelevant alternatives . Stated oth­
erwise, if the players sometimes agree on the utility pair s when t is also a 
feasible agreement , they never agree on t when s is a feasible agreement. 

4. In symmetric situations, both players get the same. 

The solut ion which satisfies these four properties is characterised by the payoff pair 
s = (x1,x2) which maximises the so-called Nash product (x1 - d1)(x2 - d2), where 
d1 and d2 are player l 's and player 2's outcomes in case of a disagreement. Nash 
proved that this is the only solution which satisfies all four axioms [82]. Given a Nash 
bargaining problem where the set of individually rational agreements is not empty, 
the Nash bargaining solution then leads to a unique outcome. Figure 2.1 illustrates 
how to construct the Nash bargaining solution for a given bargaining problem. 

Due to the fourth axiom, both players are treated symmetrically if the bargaining 

problem is symmetric as well. In other words, if the players' labels are reversed, each 
one will still receive the same payoff. A more general solution attributes so-called 
bargaining powers a and f3 to player 1 and player 2, respectively. In this generalised 

or asymmetric Nash bargaining solut ion, the fourth axiom is abandoned and the 
bargaining solution comes to depend on the bargaining powers of the two players. 7 

The generalised Nash bargaining solution corresponding to the bargaining powers 

a and f3 can be characterised as above as the pair s which maximises the product 

(x1 - d1)°'(x2 - d2)!3 [11 , p. 189]. 

7What these bargaining powers represent depends on the actual (non-cooperative) game played. 
For example, in case of negotiating companies the bargaining powers could be determined by the 

strength of their respective market positions. It should be clear however , that the bargaining 
powers have nothing to do with t he bargaining skills of the players, since perfect rationality is 

assumed . 
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Figure 2.1: Construction of the Nash bargaining solution. This figure shows the 
Pareto-efficient frontier (denoted by the solid line, see also Def. 4.3) and the Nash 
bargaining solution for a specific bargaining problem. The bargaining problem is 
defined by the set of feasible utility pairs (denoted by the grey area) and the dis­
agreement point d which specifies the players' payoffs in case of a disagreement. To 
find the (symmetric) Nash bargaining solution, one needs to find a supporting line 
on the Pareto-efficient frontier which is bounded by lines r and t such that the Nash 
bargaining solution is exactly halfway between these lines. The lines r and t are 
respectively the horizontal and the vertical lines drawn from the disagreement point 
d. 

The Kalai-Smorodinsky bargaining solution 

The third of the Nash axioms (independence of irrelevant alternatives) has been the 
source of great controversy (follow the discussion in [69]). Kalai and Smorodinsky 
therefore proposed an alternative to this axiom, which they refer to as the axiom 
of monotonicity [57][72, p . 844]. For a set S of individually-rational and Pareto­
efficient points, let m;(S) = max{ s; I s E S} be the maximum utility value that 
player i could attain (for i = 1, 2), given that the players are individually rational. 
The Kalai-Smorodinsky solution then selects the maximum element in S on the 
line that joins the disagreement point (d1, d2 ) with the point (m1 (S),m2 (S)). An 
example is given in figure 2.2. 

Utilitarianism 

A utilitarian policy in philosophy is one which prefers an outcome which maximises 
the total welfare of the individuals in a society [80]. Any bargaining solution which 
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Figure 2.2: Construction of the Kalai-Smorodinsky solution . m 1 and m 2 are the 

maximum utilities for players 1 and 2 respectively, given that the players are in­

dividually rational. Point k is t he unique solution which satisfies the four axioms 

proposed by Kalai and Smorodinsky [57]. 

maximises the sum of utilities is therefore called a utilitarian solution concept. 

Stated less formally, the utilitarian principle asserts that "you should do something 

for me if it will hurt you less than it will help me". Clearly, a utilitarian solu­

t ion concept assumes that interpersonal utility comparisons are possible. Therefore, 

Nash 's first axiom (independence of utility calibrations) no longer holds in utilitarian 

models. 8 

Concluding remarks 

Apparently, many different types of solutions to the bargaining problem exist in 

cooperative game theory. The choice of a specific solution is of course based on 

norms existing in a society, or, more specifically, on which axioms seem to be "rea­

sonable" in a specific bargaining context. Certain outcomes might be for instance 

be considered as "unfair". An example is given in [101, pp. 235- 250]. 

Additionally, it is important to consider for which classes of non-cooperative 

games the solution concepts from cooperative game theory are appropriate. For 

instance, if no non-cooperative game can be found which results in a solut ion spec­

ified by cooperative game theory, then the results from cooperative game theory 

have little bearing. Fortunately, such a connection between cooperative and non-

8Note that the Pareto-efficiency axiom still holds. The other axioms depend on the specific 

solut ion concept. 



2.3 Game-theoretic approaches to bargaining 23 

cooperative game theory has been observed under special circumstances [12]. More 
details are given in the next section. 

2.3.2 Bargaining over a single issu e 

Four different negotiation games or protocols (see Def. 4.1) are described in this 
section. These protocols can be used by two bargainers to divide a given bargaining 
surplus (see Section 1.1.2) , that is, the mutual benefit resulting when the players 
reach an agreement. Without loss of generality, we assume that the bargaining 
surplus is of size unity in the following. 

The following protocols are considered below: (1) the Nash demand game, (2) the 
ult imatum game, (3) the alternating-offers game and (4) the monotonic concession 
protocol. The first three games are well-known and widely-used. The fourth game is 
described in [105] and is an attempt to model a more realistic negotiation scenario. 
However, in all games described here analytical solut ions are obtained using the 
strong assumption of common knowledge. The extrapolation of results obtained 
here to real-world cases is therefore a non-trivial step. 

The protocols described in this section have been applied mainly to evaluate 
negotiations over a single issue. In real life , this issue is often the price of a good to 
be negotiated. Although this keeps matters simple, important value-added services 
such as delivery time, warranty or service are left out. Both the supplier and the 
consumer could for instance benefit if negotiations involve multiple issues. Moreover, 
multiple-issue negotiations can be less competitive because solutions can be sought 
which satisfy both parties. Multiple-issue negotiations are studied in more detail in 
Section 2.3.3. 

The Nash demand game 

Both players simultaneously demand a certain fraction of the bargaining surplus 
in this game, without any knowledge of the other player 's demand [11, pp. 299-
304]. In case the sum of demands exceeds the surplus, both players only receive 
their disagreement payoff. Otherwise, the demands are said to be compatible, and 
both players get what they requested. This game has an infinite number of Nash 
equilibria: all deals which are Pareto-efficient , but also deals where both players 
receive their disagreement payoff. For example, if both players ask more than the 
ent ire surplus, no player could ever gain by unilaterally changing his strategy. 

The concept of a Nash equilibrium thus places few restrictions on the nature 
of the outcome. Nash therefore suggested a refinement for this game which does 
result in a unique solution. This refinement of the demand game is called the per­
turbed demand game [89 , pp. 77-81]. In this perturbed game the players are not 
completely certain about which outcomes are within the bargaining set (i.e., the set 
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of compatible demands) and which outcomes are not. When the degree of uncer­

tainty approaches zero, the Nash equilibrium of the perturbed game approaches the 

Nash bargaining solution of the regular demand game (without uncertainty).9 The 

reader is referred to [131] for technical details on this subject. A more introductory 

overview is given by Binmore [ll] . 

The ultimatum game 

Playing Nash 's demand game, both players could easily receive nothing, or it could 

occur that some of the surplus is "thrown away". Players would do better by 

choosing a somewhat less competitive game. If they are unable to reach an agreement 

using this alternative game, the demand game still remains an option. 

A very simple alternative is the so-called ultimatum game. In this game, one of 

the players proposes a split of the surplus and the other player has only two options: 

accept or refuse. In case of a refusal, both players get nothing (or the demand game 

is played). Although the game again has an infinite number of Nash equilibria, it 

has only one subgame perfect equilibrium (in case the bargaining surplus can be 

divided with arbitrary precision) where the first player demands the whole surplus 

and the second player accepts this deal [ll, pp. 197-200]. 

The alternating-offers game 

Basically a multiple-stage extension of the ultimatum game, the alternating-offers 

game is probably the most elegant bargaining model. As in the ultimatum game, 

player 1 starts by offering a fraction x of the surplus to player 2. If player 2 accepts 

player l's offer , he receives x and player 1receives1 - x . Otherwise, player 2 needs 

to make a counter offer in the next round , which player 1 then accepts or rejects 

(sending the game to the next round). This process is repeated until one of the 

players agrees or until a finite deadline is reached. 

Bargaining over a single issue in an alternating fashion has been pioneered by 

Ingolf Stahl [121]. A taxonomy and survey of economic literature on bargaining 

before 1972 is given in this reference. Stahl analyzes bargaining games with a fi­

nite number of alternatives. Both games of finite and of infinite length are studied, 

but he primarily evaluates games of a finite length. Stahl uses an assumption of 

"good-faith bargaining" to simplify the theoretical analysis. Good-faith bargain­

ing prevents players from increasing their demands during play. He then identifies 

optimal strategies for rational players with perfect information by starting at the 

last stage of the game and then inductively working backwards until the beginning 

of play. This procedure yields those equilibria which can be found with dynamic 

programming methods. 

9 Note that only the Nash equilibria which result in solutions within the bargaining set are 

considered. Nash equilibria in which no agreement is reached still remain [89, p.79] . 
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A straightforward dynamic programming approach can fail in case of imperfect 
information [131, Ch. 1]. Sensible strategies can then be found by requiring that 
each player's optimal strategy for the entire game also prescribes an optimal strategy 
in every subgame. As mentioned before, this concept of a subgame-perfect equilib­
rium (SPE, see Def. 18.3) is due to Selten [116, 117]. Rubinstein [110] successfully 
applied this equilibrium concept to identify a unique solution in his variant of the 
alternating-offers game. Rubinstein's game [110] has an infinite length and there 
is a continuum of alternatives. To simplify the analysis, Rubinstein made several 
assumptions with regard to the players ' preferences. An important difference with 
Stahl's model is that time preferences are assumed to be stationary (this means that 
the preferences of getting a part x of the surplus at time t over getting y at t + 1 is 
independent of t). 

Rubinstein analyses two specific stationary models: one in which each player has 
a fixed bargaining cost for each period (c1 and c2 ) and one in which each player has 
fixed discount factors ( <51 and <52 ). Discount factors are used to relate the utility 
of future consumption to the utility of consuming immediately. In other words, 
discount factors model how impatient the player is [11 , p. 202]. We provide a 
formal definition of a discount factor. 

Definition 25.1 Discount Factor The discount factor is used to translate ex­
pected utility or costs in any given future into present value terms. 

Player i's utility for getting a fraction x of the surplus at time t is equal to x(<5;) 1
. If 

the discount factor is smaller than 1, a deal is therefore worth less if the agreement 
is reached in the future than if a deal is reached immediately. 

Using stationarity and other assumptions, Rubinstein first demonstrated that 
the Nash equilibrium concept is too weak to identify a unique solution by proving 
that every partitioning of the surplus can be supported as the outcome of Nash 
equilibrium play. To overcome this difficulty, Rubinstein then applied the concept of 
a SPE and proved that there exists a unique SPE in the alternating-offers bargaining 
model. For example, if both players have a fixed discounting factor (<51 and <52 ) 

the only SPE is one in which player 1 gets (1 - <52 )/(1 - <51 <52 ) and player 2 the 
remainder (of a surplus of size 1). Furthermore, if both players use their SPE 
strategy, agreement will be reached in the first round of the game. Notice that 
Rubinstein's proof assumes that both players have perfect information about the 
other player's preferences (i.e., their bargaining cost or discount factor). Bargaining 
with imperfect information (i.e., where uncertainty plays a crucial role) is discussed 
further in Section 2.3.4. 

Rubinstein's paper has been very influential in bargaining theory. At the mo­
ment, a vast body of literature exists on infinite-horizon games. An overview is 
given in [79, 89] . Many pointers to the literature are given in these references. We 
will conclude this section by discussing a few key papers in this field. 
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An particularly important paper is [12]. In this paper a relation between the SPE 
outcome of the alternating-offers game and the Nash bargaining solut ion is identified 
in case of weak player preferences (e.g., discount factors close to unity or small time 
intervals between rounds). This establishes a link between non-cooperative and 
cooperative bargaining theory and justifies the use of the Nash bargaining solut ion 

to resolve negotiation problems (at least in case of complete information). 
Van Damme et al. [132] have investigated the role of a smallest monetary unit 

(i. e., a finite number of alternatives) in the alternating-offers game with payoff dis­
counting. They show that in case of a finite number of alternatives , any partition 

of the surplus can be supported as the result of a subgame-perfect equilibrium if 

the time interval between successive rounds becomes very small. This means that 
Rubinstein 's assumpt ion of a continuous spectrum of bids is essent ial in deriving a 
unique solution of the alternating-offers game under these conditions. 

Monotonic concession protocol 

A more restricted protocol, compared to the alternating-offers game, is described 
in [105]. In this monotonic concession protocol the two players announce their 
proposals simultaneously. If the offers of both agents match or exceed the other 
agent 's demand, an agreement is reached . A coin is tossed to choose one of the 
offers in case they are dissimilar . 

If no agreement is reached, t he players need to make new offers in the next round. 
The offers need to be monotonic, that is , the players are not allowed to make offers 
which have a lower utility for their counter player compared to the last offer. Hence, 
a player can either make the same offer (to stand firm) or concede. Negotiations end 
if both agents stand firm in the same round. The players receive their disagreement 

payoffs in t his case. Because each round at least one of the players has to make a 
concession (or a disagreement occurs) , the protocol has a fini te execut ion t ime if the 
minimum concession p er round is fixed and larger than zero. 

Note that in order to make a (monotonic) concession possible, a player needs 
to have some knowledge about the other players ' preferences. This knowledge is 
crucial when several issues are negotiated at the same t ime. In this case not only 
the sign of the ut ility function, but also the relative importance of the issues becomes 
important. 

Rosenschein and Zlotkin discuss which kinds of strategies are stable and efficient 

when using this protocol (in negotiations over a single issue). A strategy pair is 
efficient in this case if an agreement is always reached . S tability is defined using the 
notion of symmetric Nash equilibrium: A strategy s constitutes a symmetric Nash 
equilibrium (and is stable) if player 1 can do no better than playing s, given that 
player 2 also uses s. Note that a strategy s in which both players make a concession 
in t he same round is not stable: one of the players could do better by standing firm . 
On the other hand, a strategy where a player tosses a coin to determine whether to 
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bargaining procedures 

~ 
global separate sequential 

---------------simultaneous implementation independent implementation 

Figure 2.3: Four different bargaining procedures used in multiple-issue bargaining 
[97]. 

concede or stand still is not efficient (nor stable): a disagreement will occur with a 
probability of one fourth. The interested reader is referred to [105] for more details 
on the characteristics of this mechanism. 

2.3.3 Bargaining over multiple issues 

The above situations can be described as negotiations about how to divide a surplus. 
This means that the negotiations are distributive: a gain for one player always 
creates a loss for the other player. These kinds of negotiations are also referred to 
as competitive [48] . When more than a single issue is involved , and players attach 
different importance to these issues, tradeoffs become an option and negotiations 
may become integrative. The latter kind of negotiations is the main topic of this 
section. Results from cooperative game theory are discussed first, followed by a 
overview of results from non-cooperative game theory. 

Cooperative game theory 

An additive scoring system or an additive multi-a ttribute utility function (see Def. 3.1) 
can be used to represent the relationships or trade-offs between the issues if several 
issues are involvedw However , these methods are appropriate only if the issues are 
preferentially independent , that is, if the contribution of one issue is independent of 
the values of the other issues. 

Once the preferences are mapped , for instance onto an additive multi-attribute 
utili ty function, the bargaining set can be determined. The main goal is again 
to reach a Pareto-efficient outcome (see Def. 4.3). Previously introduced solution 
concepts such as the Nash bargaining solution or the Kalai-Smorodinsky solution can 
be used for this purpose. Several practical considerations (concerning for example 
fairness of the outcome) and some instructive real-world examples are given by Raiffa 
in [101]. 

10See [101 , pp.154-155] for a discussion of the differences between these methods. 
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Non-cooperative game theory 

Four different bargaining procedures can be distinguished for multiple-issue bargain­

ing [97] (see figure 2.3). In case of global or simultaneous bargaining all issues are 

negotiated at once. The second procedure is called separate bargaining. In this pro­

tocol the issues are negotiated independently. The final two procedures fall under 

the header of sequential bargaining and are distinguished by their rules of imple­

mentation. These rules specify when the players can start enjoying the benefits of 

the issues which have been agreed on. 11 Three possibilities are considered in [35]. 

Here, however, we will only mention the most important two. Using the so-called 

independent implementation rule, an agreement on an individual issue takes effect 

immediately, that is, the agreed upon issues are no longer discounted. In the simul­

taneous implementation on the other hand, the players have to wait until agreement 

is reached on all issues before they can enjoy the benefits of it. The time it takes 

to agree on the remaining issues also influences the profits gained on the already 

agreed upon issues. 
When bargaining is sequential an agenda needs to be determined to set the order 

in which the issues will be negotiated. Agenda setting is of course only relevant 

if the issues are of different importance. Another concern is whether the players 

attach the same importance to each issue or whether different players have different 

evaluations regarding the importance of the issues. The latter is the most interesting 

case since this allows for integrative negotiations. Unfortunately, however, only a 

limited literature exists on this topic in game theory. Usually, either the issues are of 

equal importance (as in [6]) or the players have identical preferences (as in [19]). In 

[97] the assumption is made that preferences are additive over issues, implying that 

the multi-issue bargaining problem is equal to the sum of the bargaining problems 

over the separate issues. 
One of the few papers in game theory on integrative bargaining is [35] . Fersht­

man considers sequential bargaining over two issues. He states that , when using 

Rubinstein's alternating-offers protocol for each issue in a sequential order, each 

player prefers an agenda in which the first issue to bargain on is the one which is 

the least important for him but the most important for his opponent. Notably, it is 

shown in [35] that the subgame-perfect equilibrium outcome for this problem does 

not need to be Pareto-efficient. 

2.3.4 Bargaining with private information 

Private information such as reservation values (i.e., limit values on what the players 

find acceptable) , preferences amongst issues , attitudes towards risk or time prefer­

ences are often hidden from the opponent in real-life negotiations. In bargaining it 

11 This is relevant in case the payoff is discounted in the course of t ime. 
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might for example be beneficial to be dishonest about one's attitudes towards risk 
in order to get a great er share of t he surplus (as would be the case in Rubinstein's 
alternating-offers game). Sometimes, however , a mechanism (see Def. 5. 1) can be 
designed which gives agents a compelling incent ive to be honest to t he opponent . 
Such mechanisms are called incentive compatible (see Section 1.1.2, p. 6). 

The Vickrey auction [136] is an example of such an incent ive-compatible mech­
anism (this auction and other incent ive-compatible mechanisms are discussed in 
Section 2.3.5). Unfortunately, however , a suitable mechanism does not always exist . 
Moreover , such mechanisms are static and mediated (e.g. by an auctioneer) [5]. In 
practice, bargaining is often dynamic and involves a sequence of offers and counter 
offers between two or more players. Therefore, it is necessary to analyse dynamic 
or extensive-form bargaining games wit h incomplete information. As mentioned 
in Section 2.2, game theory frequently assumes that the players have complete in­
formation. However, in order to analyse situations in which players are unsure of 
the opponent 's type, the notion of imperfect information needs to be applied (see 
Section 2.2). 

Imperfect information enables us to address important issues as reputation build­
ing, signalling and self-selection mechanisms [111]. For example, the fact that players 
are unsure of the other player 's type might explain the occurrence of (inefficient) 
delays in reaching an agreement [89, Ch. 5] . Using such inefficient strategies may 
be the only way to signal for instance one's strength (an example is the outbreak of 
strikes during wage bargaining situations) . Any ut terance which is not backed up by 
actions can be considered as being cheap talk. 12 Delays may therefore be required 
to convey private information credible [58] . 

In a wage negotiation problem, for example, the union is often unsure about the 
actual value of its workers for a firm . If this value is high, the firm will be more 
eager to sign an agreement. In case of a low value however , the firm will behave 
credible by bearing t he costs of a strike [58]. A firm could t ry to "bluff'' by ignoring 
a strike even in case of a high valuation, and use this strategy to signal a lower 
valuation of the union workers than actually is the case. However , such a st rategy 
can potentially be very harmful. 

An overview of bargaining with incomplete information is given in [5]. More 
int roductory texts on bargaining with private information can be found in [58] and 
[11 , Ch. 11]. 

12In non-cooperative games, nothing anyone says constrains its future behaviour. If a player 
chooses to honour an agreement or threat that has been made, this will only be because it is 
opt imal to do so. 
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2.3.5 One-to-many bargaining 

In a one-to-many bargaining setting, one player negotiates contractual agreements 

with two or more opponents. A typical example is when a seller has one or more 

items for sale, and several buyers wish to purchase an item (or a bundle of items). 

Auctions are the most common m echanism (see Def. 5.1) to solve the one-to-many 

bargaining problem. An alternative approach, using bilateral bargaining, is dis­

cussed in Chapters 6 and 7. This section explains the most common auctions or 

mechanisms and discusses optimal bidding behaviour in these auctions. 

We focus here on sealed-bid auctions, where buyers submit positive bids to an 

auctioneer and the auctioneer selects the winners and the amount that they have to 

pay. 13 Note that the amount that the winners pay in such auctions does not always 

correspond to the actual bid, which will become clear below. The auction is called 

sealed because a buyer 's bid is hidden from the other buyers and is only revealed to 

the auctioneer. Often, the role of the auctioneer is taken by the seller . 

Auctions for a single good are discussed first , followed by auctions for more 

complex cases. We assume in the following that buyers have independent valuations. 

In this context, a the buyer's valuation is the highest price that she14 is willing to 

pay, such that she is indifferent between paying the highest price and not obtaining 

the good(s) at all (i .e., both options have equal utility) . A player's valuation is 

independent if it does not depend on information available about the preferences of 

other players, nor on the allocation of the goods to other players. 

Single unit 

Perhaps the most common sealed-bid auction for selling a single item is the first­

price auction. In this auction, the item is awarded to the highest bidder, and she 

pays the price equal to the submitted bid. We can use game theory to derive optimal 

strategies for the buyers in this auction. Take for example the case where two buyers 

compete for the good and have different valuations for the good. If a buyer knows 

the valuation of the other buyer, it is optimal to bid slightly above the valuation of 

the other buyer if she has the highest valuation, and to bid her valuation otherwise. 

This strategy constitutes a Nash equilibrium. In case the other buyer's valuation is 

not known , but is independently drawn from a distribution, the optimal response 

can again be calculated (we refer the interested reader to [72, p.865] for details). 

Clearly, the buyer's bid depends on a buyer's speculation about the valuations of 

other bidders. In general, the buyer will then bid below her valuation. 

An interesting alternative auction is the aforementioned Vickrey or second-price 

auction [136] . In this auction the highest bidder wins as before, but pays the price 

13Note that such auct ions can be considered direct mechanisms (see Section 1.1.2, page 5) , in 

which the players are asked to submit their preferences directly. 
14 ln the following, we use she for a buyer and he to refer to a seller. 
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bid by the second-highest bidder. 15 In contrast to the previous auction, the optimal 
strategy in this case is to bid the true valuation for the good, irrespective of the 
valuations and bids of the other buyers [27, 136]. 16 This is in fact a dominant strategy 
(see Def. 18.1). This auction is also called incentive compatible (see Section 1.1.2, 
p.6) because it provides the players with the incentive to reveal their preferences 
truthfully. Intuitively, this is because a buyer 's payment is independent from her 
bid, and therefore she does not benefi t by bidding lower than her valuation. Bidding 
a higher value is also not beneficial since it can result in paying more than the 
valuation. In fact, it appears that an auction is incentive compatible if and only 
if the auction is bid-independent [44], i. e., if the bid value of a bidder i does not 
determine bidder i 's payment (but only determines if she wins or not) . 

The Vickrey or second-price auction has several advantages compared to the first­
price auction. First of all, since the second-price auction is incentive compatible, 
calculating the optimal strategy for the buyers is straightforward. The auction is 
also robust, since the choices of buyers do not depend on the behaviour of others. 
Another advantage is that the second-price auction is an efficient auction; efficient 
auctions put goods into the hands of the buyers who value them the most [27]. 
Efficiency is a very desirable property, as it maximises the total gains of trade (i.e., 
the bargaining surplus). In [27] it is shown that any incentive compatible auction is 
efficient. By contrast, the first-price is not , in general, efficient. In case of uncertainty 
about other buyers' valuations and thus speculating buyers, inefficient outcomes can 
occur (see [27] for an example). Below, we consider incentive compatible (and thus 
efficient) auctions for the more general case of multiple units. 

Multiple units 

In case multiple goods are traded, the Generalised Vickrey Auction (GVA) [133] can 
be used to allocate the goods efficiently. Like the Vickrey auction, the GVA is also 
incentive-compatible, that is, truth-telling is a dominant strategy. In this section, 
we apply the GVA in case multiple (homogeneous) units of the same good are sold 
(for other applications , see e.g. [133]). The GVA then works as follows . 

In the initial stage, each buyer i reports a utility function u;(x) to the auctioneer , 
which may or may not be the true utility function. The vector x specifies the 
number of uni ts allocated to each buyer i. 17 For this application, the utility function 
expresses the amount of money a buyer is willing to spend for a given allocation i'. 
The auctioneer then calculates the allocation of units X* that maximises the sum of 

15In case of a single bidder , this bidder gets the good for free . 
16This holds assuming independent valuations, as stated before. 
17For the case described here, we assume that buyers only care about the units they receive, and 

not about the units received by others (which is part of the valuation independence assumption 
described earlier), i.e., u;(x) = u;(xi ); t here are no so-called allocative externalities (55] . We note, 
however, that the GVA can also be applied to the case of a lloca tive externalities, see e.g. [134]. 
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utilit ies, under the constraint that the number of allocated units equals the number 

of available units. The auctioneer also calculates the allocation that maximises the 

sum of utilities other than that of buyer i. This allocation is denoted by X:i· Each 

buyer i then receives the bundle according to the allocation X* and has to pay the 

following amount to the auctioneer: L,#i ui(x::_;) - L,#i u1(x*) . In words , a buyer 

pays the other buyers' "losses" as a consequence of obtaining the bundle. Note that 

since the payment of a buyer i does not depend on the utility reported by buyer i, 

but only on the utilities reported by the other buyers , it follows that this mechanism 

is incentive compatible. Below we show the application of this mechanism for two 

examples. 
Example 1 In case of a single unit , this mechanism is equivalent to the second­

price auction. We show this in the following. We assume (without loss of generality) 

that a buyer 's utility equals zero if no units are allocated to this player. In case 

buyer i is not the highest bidder (i.e. , does not report the highest utility value for 

the good) , the allocation is not affected by buyer i (i.e., X:; = X*), and the payment 

L,#i u1(X:i) - L,#i u1(X*) = 0. On the other hand, if buyer i is the highest bidder, 

then the second part of the equation [L,#i u1(X*)] equals zero, since nobody else 

gets anything. The first part [L,#i u1(X:;)J, however, equals the reported valuation 

(i .e., bid) of the second-highest bidder , since this would be the (reported) valuation 

of the winner if buyer i would not participate. The payment therefore equals the 

reported valuation (i.e. , bid) of the second-highest bidder. 

Example 2 In case of N units, and if each bidder is allocated up to one unit , 

the GVA mechanism reduces to an (N + I)-price auction, i.e., where each winner 

pays the price of the ( N + I )-highest bidder. 18 To see this , consider first the case 

where buyer i is not a winner. As before, buyer i does not affect the allocation, 

and therefore pays zero. In the other case, i.e. , when buyer i is one of the winners, 

then L,#i X* equals the total bids (reported valuations) of the remaining winners. 

Furthermore, since the unit would go to the (N + I)-highest bidder if buyer i would 

not participate (assuming there are at least N + I participants) , L,#i X:; equals the 

total valuation of the remaining winners of the actual allocation, plus the valuation 

of the (N + I)-highest bidder. The payment is then exactly the valuation (or bid) of 

the (N + I)-highest bidder. This holds for each winner, assuming there are at least 

N + I bidders. Note that if there are less than N + 1 bidders , all bidders receive the 

good for free. 

2.4 Com putational approaches to bargaining 

Simplifying assumptions frequently made in game-theoretical analyses, such as as­

sumptions of perfect rationality and common knowledge, do not need to be made 

18T his auction is applied in Chapter 5. 
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if the behaviour of boundedly-rational negotiating agents is modelled directly, for 
instance using techniques from the field of artificial intelligence (AI). This section 
provides an overview of the key research related to this thesis , where AI techniques 
such as evolut ionary algorithms, reinforcement learning (specifically Q-learning) 
and Bayesian beliefs are applied to develop a negotiation environment consisting 
of intelligent agents. In addition, we shortly review the relatively new field of 
argumentation-based negotiation. Note that the evolutionary approach is the main 
focus of this thesis, and therefore the most relevant . The other techniques mentioned 
are intended for the interested reader. 

Using the above-mentioned techniques, agents are able to learn from experience 
and adapt to changing environments. This learning aspect is essential for automated 
negotiation settings (where software agents, see Section 1.1.3, bargain on behalf of 
their owners), especially when the behaviour of competitors and the payoffs are 
not known in advance. Several aspects of learning are potentially important during 
the negotiation processes. First , a bargaining agent needs to have a strategy which 
specifies his actions during the course of play. On the basis of the agent 's experiences 
in previous bargaining games, he can learn that it might be profitable to adjust his 
strategy in order to achieve better deals. Second , it might even be useful to update 
a strategy during play. This may be the case if the agent is initially unsure about 
the type of his opponent. After playing a bargaining game for a number of rounds, 
the agent may form a belief about his opponent 's type and fine-tune his behaviour 
accordingly. Third, an agent might need to learn the preferences of his owner first. 
Here, attention is focussed on the first two kinds of learning. 

This section is organised as follows. Section 2.4.1 discusses the main related 
research where bargaining agents adapt using evolutionary algorithms (EAs). Q­
learning and an application hereof for bargaining is described in Section 2.4.2. Sec­
tion 2.4.3 approaches learning during the negotiation process using Bayesian beliefs. 
Section 2.4.4 considers an alternative approach where negotiation is viewed as a 
dialogue game, and the parties attempt to reach consensus using argumentation. 

2.4.1 The evolutionary approach 

Oliver [88] was the first to demonstrate that a system of adaptive agents can learn 
effective negotiation strategies using evolutionary algorithms. Computer simula­
tions of both distributive (i.e., single issue) and integrative (i.e., multiple issue) 
alternating-offers negotiations are presented in [88]. Binary coded strings represent 
the agents' strategies. Two parameters are encoded for each negotiation round: 
a threshold which determines whether an offer should be accepted or not and a 
counter offer in case the opponent 's offer is rejected (and the deadline has not yet 
been reached). These elementary strategies were then updated in successive gen­
erations by a genetic algorithm (GA). Similar models are also investigated in this 
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thesis. 

In [126], a related model was investigated. Here, a systematic comparison be­

tween game-theoretic and evolutionary bargaining models is also made, in case ne­

gotiations concern a single issue. Chapters 3 and 4 of this thesis extend similar 

negotiation models even further by considering multiple issues and cases that are 

unwieldy to analyse mathematically. 

More elaborate strategy representations are proposed in [73]. Offers and counter 

offers are generated in this model by a linear combination of simple bargaining tactics 

(time-dependent, resource-dependent , or behaviour-dependent tactics). As in [88], 

the parameters of these different negotiation tactics and their relative importance 

weight ings are encoded in a string of numbers. Competitions were then held between 

two separate populations of agents , which were simultaneously evolved by a GA. T he 

t ime-dependent tactics are fur ther investigated in [34] using GAs, for the case that 

negotiating agents have different t ime preferences. 

Dworman et. al [31] studied negotiations between three players. If two players 

decide to form a coalition , a surplus is created which needs to be divided among 

them. T he third party gets nothing. Of course, all three players want to be part of 

the coali tion in this case. Moreover, they also want to receive t he largest share of 

the bargaining surplus. Genetic programming was used in this paper to adapt the 

offers and to decide whether to form a coalition or not . A comparison with game 

theoretic predictions and human experiments was made. 

Evolutionary algorithms have recently been used not only to generate strategies 

but also to design auction mechanisms (see Def. 5. 1 and Section 2.3.5), notably by 

Cliff [24] and Phelps et al. [96]. Especially for double auctions, where analytical 

solutions are typically intractable, the evolutionary approach has been successfully 

applied . Double auctions allow for many buyers and many sellers to exchange goods 

or services. In this type of auction, sellers and buyers submit bids (offered quantity 

and price) and asks (demanded quantity and price) respectively, which are then 

matched by the auctioneer. The auctioneer also determines the trading price for 

each match. In [96] genetic programming (GP ) is used to evolve both the strategies 

of the traders and the auction mechanism. In this first endeavour towards automated 

design of auction mechanisms from scratch, GP is used to determine the rule for 

setting the trading price, while having a fixed matching algorithm. The goal is to 

optimise market efficiency, that is the total profits of both buyers and sellers as a 

fraction of the theoretical maximum, given that buyers and sellers are only concerned 

about maximising their individual profits. In a related approach by Cliff [24], a 

genetic algorithm is used to evolve both the traders and an additional parameter 

that selects between a continuum of auctions. 
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2.4.2 Using Q-Learning 

Many learning techniques require feedback each time an action is performed. How­
ever, in many practical cases feedback is only received at the end of a (long) sequence 
of actions. A good example is a game like chess: only at the end of play the players 
know with certainty how well their strategy performs. In learning models like Q­
learning, agents also try to evaluate the effect of intermediate actions. Q-learning 
is a reinforcement learning algorithm [113, p. 528] which learns an action-value 
function yielding the expected utili ty (see Section 1.1.1) of a given action in a given 
state [113, p. 599]. 

This algorithm maintains a list of so-called Q-values Q(a , i) , which denote the 
expected utility of performing an action a at state i . The action which maximises 
the expected utility is selected , and the system moves to a new state j. The Q-value 
is then updated depending on the Q-value of the new state and the received reward 
(if available). The following equation can be used [113, p. 613] for updating the 
Q-value in case of a transition from state i to j by taking action a: 

Q(a , i) +- Q(a, i) + a(R(i) + maxQ(a' , j) - Q(a , i)), 
a' 

(2.1) 

where R( i) is the actual reward received in state i and a is the learning rate. The 
value maxa' Q( a', j) represents the expected utili ty of state j. For example, if the 
current state i has a relatively low expected ut ility and the next state j has a high 
expected utility, the Q-value Q(a , i) is updated in such a way that the difference 
between these states is reduced. In this way rewards which are given at the terminal 
state are passed to the other states in the sequence. 

As we mentioned before, selecting an action in the current state depends on 
the expected utili ty of each action. Hence, a trade-off needs to be made between 
"exploitation" and "exploration". In other words, should an action be chosen which 
has already proven itself or do we prefer to try out new actions which might produce 
even better results? This question of finding an optimal exploration policy has been 
studied extensively in the subfield of statistical theory that deals with so-called 
"bandit" problems [113, pp. 610-611]. 

The Q-learning approach was applied by Oliveira and Rocha [87] for the for­
mation of virtual organisations in an e-commerce environment. The idea is that in 
order to satisfy some user 's need, often a combination of services is needed, which is 
provided by different companies. T he agent representing the user (called the "mar­
ket agent") negotiates with several organisat ion agents, after which a selection of 
these organisations is made and a virtual organisation is created. The protocol used 
during the negotiation phase is as follows. First, each participating organisation 
generates a bid, based on previous experience, and sends this bid to the market 
agent. A Q-learning technique is then used to determine which bid to make. The 
actions (i.e., the bids) made are then evaluated using the feedback given by the 
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market agent. The market agent compares the bids using a multi-cri teria evalua­

tion method based on qualitative measures (in which only the preference ordering 

is assumed to be important) . The market agent selects the organisation which ei­

ther proposes a satisfactory evaluation, or he chooses the highest evaluation when 

a deadline is reached. Organisations not selected are given feedback as to which 

attributes were not satisfactory. Negotiations take several rounds , and each round 

an organisation is selected. 

2.4.3 Using Bayesian beliefs 

Bayesian beliefs are used to model an agent 's (probabilistic) knowledge of an un­

certain environment. Suppose the agent has some a priori knowledge about the 

likelihood of a set of hypotheses H;, with i = 1, .. ., n. Furthermore, the agent has 

some condit ional knowledge about the probability that an event e will occur , given 

that one of the hypotheses is true. If event e then occurs, the beliefs about the 

hypotheses are updated using the Bayesian update rule [148]: 

(2.2) 

where P (H;le) is the a posteriori probability of H; and P(H;) the a priori probability. 

P(elH;) is the conditional probability that event e occurs given hypothesis H;. 

When agents have incomplete information about one another, it becomes impor­

tant to learn about the other agent by observing his behaviour during the negotiation 

process. Bayesian beliefs are often used to make assumptions about the opponent 

such as his type [64] or his reservation price [147],[148] (where the reservation price is 

defined here as an agent 's threshold of offer acceptability). These beliefs are updated 

depending on the opponent 's moves. 
However , once both agents use beliefs to determine their strategies, they also 

need beliefs about their opponent 's beliefs , and so on. This is known as the problem 

of outguessing regress [148]. In game theory this problem is solved by having a 

limited number of different types of players. The beliefs and preferences of each 

type are common knowledge, but there is uncertainty about which player is of which 

type. This theory, suggested by Harsanyi, is a technique for transforming a game 

of incomplete information into a game of imperfect (but complete) information (see 

also Section 2.2). In reality however , the number of different types is usually very 

large, and, moreover , it is not always realistic to assume that the preferences and 

beliefs of the different types are common knowledge. In more practical applications 

(such as [64] and [147]) , the problem of outguessing regress is circumvented by 

assuming limited reasoning capabilities. In [1 47], for instance, a player has beliefs 

about e.g. the payoff function and reservation price of the other player , but not 

about the beliefs of the other player. 



2.4 Computational approaches to bargaining 37 

2.4.4 Argumentation-based negotiation 

An alternative approach to automated negotiation is the use of dialogues or ar­
gumentation to resolve conflicts. In recent years, this field has received increasing 
interest within the agent community [71 , 74, 94, 99, 100] . We therefore relate some of 
the main concepts and highlight some of the research in this field. A more extensive 
overview of the state-of-the-art on argumentation-based negotiation can be found 
in [99] . 

Argumentation can be useful when, for example, negotiations involve several 
issues and a mutually beneficially situation can be achieved (as described in Sec­
tion 2.3.3). When agents have incomplete information about each others' preferences 
negotiations , inefficient deals are often obtained (see Section 2.3.4). T his problem 
can be resolved using argumentation. The idea is that the agents are able to provide 
meta-information on why they have a particular objection to a proposal. This way, 
information is exchanged, but without fully disclosing each others' preferences. 

A negotiation architecture using this kind of meta-information is described in 
[94] . This approach was also used in MIT's Tete-a-Tete system, a bilateral inte­
grative negotiation system for online shopping [71]. Agents within this framework 
can: (1) make a new proposal, (2) accept the proposal of the counter agent, (3) 
criticise a proposal or ( 4) withdraw from the negotiations. This system uses the 
notion of a critique to enable agents to criticise a particular proposal. A critique 
is a comment of an agent specifying which part of the proposal he dislikes. In case 
of a new proposal or critique, the agent can also send additional information. For 
instance, a proposal may include conditions under which it holds (e.g. , I will provide 
you with X if you provide me with Y). 

Argumentation can also be used to influence the preferences, beliefs and/or goals 
of other players. In general, preferences are assumed to be fixed. In reality, how­
ever, it is often true that a player 's preferences are not completely formed or that 
uncertainty exists about the environment. In that case, a player's preferences and 
beliefs can be influenced upon receipt of new information. The negotiation process 
then not only consists of dividing the surplus , but also of gathering information. An 
interesting approach is described in [100], where one player may influence another 
player's preferences by discussing the underlying motivations and interests behind 
adopting certain (sub)goals. For example, a buyer may want to negotiate a flight 
ticket with a travel agent for the more fundamental goal of travelling to Paris. If 
the fundamental goal is known to the travel agent , she can suggest a train ticket 
as an alternative means to satisfy the same goal. Another way of influencing a 
player's behaviour is by means of persuasion, for example by using threats , rewards 
or appeals [102]. 
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2.5 Discussion 

The first part of this chapter reviews, in broad lines , li terature on bargaining from the 
field of game theory. This overview shows that game theory is a very useful tool to 

analyse bargaining situations in a mathematical fashion. Such a rigorous analysis is 
only tractable, however , if many details of human interaction, for instance emotions 
or irrational behaviour , are abstracted away. This may undermine the capability of 
game-theoretical models to explain or predict human behaviour. 

This aspect may be less problematic when we consider systems in which artificial 

agents interact with each other , because these agents are often designed to behave 

(in good approximation) in a rational fashion. Game theory may therefore yield 
fundamental insights in the design of efficient negotiation protocols for automated 
trading. Furthermore, given a negotiation protocol and under certain assumptions, 

optimal strategies can sometimes be derived. 
Nevertheless, game-theoretical assumptions like common knowledge and perfect 

rationality often appear to be too strong in modelling practical situations. The issue 
of common knowledge has been solved only partially in game theory by introducing 
a theory for players with imperfect information. The development of game-theoretic 
models for boundedly-rational players is a relatively young research direction. Our 
survey shows that techniques from the field of artificial intelligence are potentially 

very powerful in situations of incomplete information and boundedly-rational play­
ers . Learning techniques developed within the AI community can for instance be 
used to adapt the agents' behaviour in complex environments and to construct ac­
curate models of the other agents ' preferences. 
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Chapter 3 

Multi-issue bargaining by 
alternating offers 

Automated negotiations have received increasing attention in the last years, es­
pecially from the field of electronic trading [14, 56,65, 71 , 73,88, 128]. In the near 
future, an increasing use of bargaining agents in electronic market places is expected. 
Ideally, these agents should not only bargain over the price of a product , but also 
take into account aspects like the delivery time, quality, payment methods, return 
policies, or specific product properties. In such multi-issue negotiations, the agents 
should be able to negotiate outcomes that are beneficial for both parties. The com­
plexity of the bargaining problem increases rapidly, however, if the number of issues 
becomes larger than one. This explains the need for "intelligent" agents, which 
should be capable of negotiating successfully over multiple issues at the same time. 

In this chapter,1 we consider negotiations that are governed by a finite-stage 
version of the Rubinstein-Stahl multi-round bargaining game with alternating offers 
(see Section 2.3.2 and [110, 121]). We investigate the computation of strategies of the 
agents by evolut ionary algorithms (EAs) in case negotiations involve multiple issues. 
We first assess the efficiency of the agreements reached by the evolutionary agents 
(see Section 1.1.3). We then analyse to what extent the evolutionary outcomes 
match with game-theoretic results. We study models in which time plays no role 
and models in which there is a pressure to reach agreements early (because a risk 
of breakdown in negotiations exists after each round). 

Furthermore, we present and study a more realistic negotiation model, where 
agents take into account the fairness of the obtained payoff. This use of fairness 
is based on the following observation. When no t ime pressure is present , extreme 
divisions of the payoff occur in the computational experiments , due to a powerful 

1The results in this chapter have are published as [42]: E .H. Gerding, D.D .B. van Bragt, and 
J.A. La Poutre. Multi-issue negotiation processes by evolutionary simulation: Validation and 
social extensions. Computational Economics, 22:39- 63, 2003. 
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'take-it-or-leave-it' position for one of the negotiating agents in the last round of the 
negotiation. Although such extreme outcomes are in agreement with game-theoretic 
results , they are usually not observed in real-life situations, where social norms such 
as fairness play an important role [13, 67, 107, 141]. We therefore introduce a fairness 
norm and incorporate this in the agents ' behaviour. We perform computational 
experiments with various fairness settings, and show that, depending on the actual 
settings, "fair" deals indeed evolve. 

A number of related paper demonstrate that , using an EA, art ificial agents can 
learn effective negotiation strategies [34 , 73, 88, 126] (see also Section 2.4.1). In [126], 
a systematic comparison between game-theoretic and evolutionary bargaining mod­
els is made, in case negotiations concern a single issue. In [34] single-issue negotia­
tions are also studied using a genetic algorithm, when agents can select between a 
number of pre-specified strategies. The multi-issue problem is considered in [73, 88]. 
The main contribution in this chapter lies in the validation of the evolutionary 
model for multi-issue negotiations with possible breakdown, using game-theoretic 
subgame-perfect equilibrium (see Def. 18.3) , and the introduction of a fairness norm 
in such negotiations. Especially the latter is a first attempt to study complex bar­
gaining situations which are more likely to occur in practical settings. A rigorous 
game-theoretic analysis is typically much more involved or may even be intractable 
under these conditions . 

The chapter is organised as follows. The alternating-offers negotiation protocol 
for multiple issues is described in Section 3.1. Section 3.2 gives an outline of the 
evolutionary simulation environment and how the strategies of the agents are rep­
resented. A comparison of the computational results with game-theoretic results is 
presented in Section 3.3. The extension with fairness is the topic of Section 3.4. 
Section 3.5 summarises the main results and concludes. 

3.1 Description of the bargaining game 

We consider negotiations that are governed by a finite-stage version of the Rubinstein­
Stahl multi-round bargaining game with alternating offers (see Section 2.3.2 for 
details). During the negotiation process, the agents exchange offers and counter 
offers in an alternating fashion at discrete t ime steps (rounds). In the following , the 
agent star ting the negotiations is called "agent 1", whereas his opponent is called 
"agent 2". 

Bargaining takes place over m issues simultaneously, where m is the total number 
of issues. We assume that mutual gains are possible for each issue by reaching an 
agreement, i.e., that a positive bargaining surplus is available (see also Section 1.1.2) 
for each issue. We further assume (without loss of generali ty) that the total bar­
gaining surplus available per issue is equal to unity. We express an offer as a vector 
o, where the i-th component oi specifies the share that agent 1 receives of the bar-
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gaining surplus for issue i if the offer is accepted. Agent 2 then receives 1 - oi for 
issue i. The index i ranges from 1 to m . Note that an offer always specifies the 
share obtained by agent 1. 

The agents evaluate multi-issue offers using an additive multi-attribute utility 
function (see Def. 3.1 and [73,88, 101]). Agent l 's utility function is w1 · 0(r) = 
I:~ 1 wj · o;(r) , where j = 1 if the offer is proposed by agent 1 and j = 2 otherwise. 

Agent 2's utility function is w2 · [f - 0(r)]. Here, wj is a vector containing agent 
j 's weights wj for each issue i. The weights are normalised and larger than zero , 
i.e., I:;::;,1 wj = 1 and wj 2: 0. Because we assume that 0 ::::; oj(r) ::::; 1 for all i, the 
utilities are real numbers in [O, 1]. 

As stated above, agent 1 makes the init ial offer . If agent 2 accepts this offer , 
an agreement is reached and the negotiations stop. Otherwise, play continues to 
the next round with a certain continuation probability p (0 ::::; p::::; 1). When a 
negotiation is broken off prematurely, both agents receive a utility of zero. 

If negotiations proceed to the next round , agent 2 needs to propose a counter 
offer , which agent 1 can then either accept or refuse. This process of alternating 
bidding continues for a limited number of n rounds. When this deadline is reached 
without an agreement , the negotiations end in a disagreement, and both players 
receive nothing. 

3.2 The evolutionary system 

We use an EA to evolve the negotiation strategies of the agents. Implementation 
details of the EA are discussed in Section 1.2.3. Each strategy in the EA is associated 
with either an agent of type 1 (i.e., init iating the negotiation) or of type 2. The 
strategies of competing agents evolve in separate populations2

: the strategies of the 
agents of type 1 evolve in population 1, and of type 2 in population 2. This way, 
the EA populations co-evolve since the performance of a strategy depends on the 
strategies in the opponent 's population. An overview of the evolutionary system 
with separate populations for the strategies of the two agent types is depicted in 
Figure 3.1. 

The fitness of the parents is determined by negotiation between the agents in 
the two parental populations (as shown in Fig. 3.1). Each agent negotiates with all 
agents in the population of the opponent. The utility functions are the same for 
agents within the same population (i.e., the weight settings are equal). The average 
utility obtained in all negotiations is an agent 's fitness value. The fitness of the 

2It is also possible to use a single population wit h strategies for both agent types on a single 
chromosome. The outcomes, however , are then affected by so-called hitchhiking [75], where rela­
t ively poor genes are selected because other genes on the chromosome yield a good performance. 
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Figure 3.1: Iteration loop of t he evolutionary algorithm where strategies for com­
peting agents evolve in separate populations. 

EA Parental population size (µ) 
Parameters Offspring population size (A) 

Selection scheme 
Mutation model 
Initial standard deviations (cr;(O)) 
Minimum standard deviation ( E<7) 

Negotiation Number of issues (m) 
parameters Number of rounds (n) 

Weights of agents in population 1 ( w1 ) 

Weights of agents in population 2 ( w2) 

25 
25 
(µ+.\)-ES 
self-adaptive 
0.1 
0.025 
2 
10 
(0.7, 0.3f 
(0.3 , 0.7f 

Table 3.1: Default settings of the evolutionary system. 

new offspring is evaluated by negotiation with the parental agents.3 A social or 
economic interpretation of this parent-offspring interaction is t hat new agents can 
only be evaluated by competing against existing or "proven" strategies. 

3.2.1 Representation of the strategies 

An agent's strategy specifies the offers and counter offers proposed during the process 
of negotiation. In a game-theoretic context, a strategy is a plan which specifies an 
action for each history [11] . In our model, the agent's strategy specifies the offers 
~(r) and thresholds ti(r) for each round r in the negotiation process for agents 
j E {1 ,2}. 

The threshold determines whether an offer of the other party is accepted or 

3In an alternative model, not only the parental agents are used as opponents, but also the 
newly-formed offspring. Similar dynamics have been observed in this alternative model. 
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Agent 1 I 01(1) I t1(2) I 01(3) I t1(4) I 

Agent 2 I t2(1) I 02(2) I t2(3) I 02(4) I 
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Figure 3.2: The strategies for agent j E {1 , 2} specify a sequence of offers O;(r) and 
thresholds ti (r) for rounds r E { 1, 2, ... , n} of the negotiation. 

rejected: If the value of the offer (see below) falls below the threshold the offer is 
refused; otherwise an agreement is reached. 4 This strategy representation is depicted 
in Fig. 3.2. Notice that in each round , the strategy of an agent specifies either an 
offer or a threshold, depending on whether the agent proposes or receives an offer 
in that round. Note that in odd rounds, agent 1 makes an offer and agent 2 either 
accepts or rejects, and visa versa in even rounds. 

The strategy, consisting of offers and thresholds, is encoded on the chromosome 
using real values in the unit interval (one offer or threshold for each negotiation 
round). We use x; to denote the (real) value at location i of the chromosome. The 
agents' strategies are initialised at the beginning of each EA run by drawing random 
numbers in the unit interval (from a flat distribution). 

3.3 Validation and interpretation of the evolu­
tionary experiments 

Experimental results obtained with the evolutionary system are presented in this 
section. All relevant settings of the evolutionary system are listed in Table 3.1 
(further explanation is provided in Section 1.2.3) . A comparison with game-theoretic 
results is made to validate the evolutionary approach. Section 3.3.1 addresses the 
evolution of efficient negotiation results . Section 3.3.2 further analyses the results 
and compares the experimental results with predictions from game theory. In the 
following, we refer to the agents in the evolutionary system as evolutionary agents 
(see Section 1.1.3) . 

3.3.1 Efficiency 

First, we investigate the experimental results w.r.t. disagreements. Without break­
down (p = 1) , disagreements can only occur when the deadline is reached. The 
experiments show that the percentage of disagreements is then very small (around 
0.13 after 1000 generations if n = 10). With a risk of breakdown of 303 (p = 0.7) , 

4 A similar approach was used in [88, 126]. 
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Figure 3.3: Agreements reached by the evolutionary agents at (a) the start of a 
typical EA run and (b) after 100 generations. The negotiation settings are p = 0. 7 
and n = 10. Each agreement is indicated by a point in these two-dimensional spaces. 
The Pareto-efficient frontier is indicated with a solid line. In point S [at (0.7, 0.7) ] 
both agents obtain the maximum share for their most important issue, and receive 
nothing for the other issue. 
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this percentage is between 1 % and 10%. T iming is now important for efficiency. 
The evolutionary agents avoid disagreements by reaching agreements early: after 
1000 generations, approximately 75% is reached in the first round. 

Next, we study the efficiency of the agreements reached in the experiments. The 
agreements are depicted in Fig. 3.3. This figure shows the utilities for both agents 
of the deals reached . Also depicted in Fig. 3.3 is the so-called "Pareto-efficient 
front ier". An agreement is located on the Pareto-efficient front ier when an increase 
of utility for one agent necessarily resul ts in a decrease of utility for the other agent . 
Agreements can therefore never be located above the Pareto-effi cient frontier. A 
special point is the symmetric point S [at (0 .7, 0.7)], where both agents obtain the 
maximum share of the issue they value the most, and receive nothing of the less 
important issue. 

Figure 3.3 shows that initially, many agreements are located far from the Pareto­
efficient frontier. After 100 generations, however , the agreements are chiefly Pareto­
efficient . We note that , even in the long run , the agents keep exploring the search 
space, resulting in a continuing moving "cloud" of agreements along the frontier. 

Conclusion. Results in this section thus show that the evolutionary agents reach 
efficient agreements, viz. on the Pareto-efficient frontier , and that disagreements are 
avoided. The next section studies the actual outcomes more closely, using results 
from game theory as a benchmark. 

3.3.2 Further Analysis 

The computational results are analysed in more detail in this section and compared 
with game-theoretic results , and in particular the subgame perfect equilibrium (SPE) 
predictions (see Def. 18.3). Rubinstein and (much earlier) Stahl applied this notion 
to the alternating-offers bargaining game [110, 121]. Our experimental setup differs 
in two respects from their model, however. First , the agents bargain over multiple 
issues instead of a single issue. Second, the evolutionary agents are "myopic": they 
do not apply any explicit rationality principles in the negotiation process, nor do they 
maintain any history. Actually, they only experience the profit of their interactions 
with other agents. The SPE behaviour of rational agents with complete information 
will nevertheless serve as a useful theoretical benchmark. The equations for deriving 
the SPE outcomes in case of multiple issues are presented in Appendix 1. 

We distinguish between three classes of experiments w.r. t. the breakdown prob­
ability: (1) no risk of breakdown (p = 1) , (2) a low breakdown probability (0.8 ::;: 
p < 1.0) and (3) a high breakdown probabili ty (p < 0.8). For each of these classes 
we consider the role of n on the outcomes. 

We found that in our experiments, when p = 1, in the long run almost all 
agreements are delayed unt il the last round (about 80% after 1000 generations). 
Furthermore, the last offering agent makes a take-it-or-leave-it deal and demands 



48 Multi-issue bargaining by alternating offers 

almost the entire surplus (on each issue) , which is accepted by the opponent. This 
extreme division of the surplus agrees with game-theory (see Appendix 1.1) ; it is 
rational for the responder to accept any positive amount in the last round. Note, 
however , that rational agents are indifferent about the actual round in which the 
agreement is reached. The deadline-approaching behaviour in our experiments cor­
responds better to "real-world" behaviour [108], however. 

The EA results and SPE outcomes for different values of n (game length) are 
compared in Fig 3.4a. To guide the eye, the SPE outcomes for successive values of n 

are connected. Notice that the fitness of agents in population 1 converges to unity if 
n is odd, and to zero if n is even (the opposite holds for the agents in population 2). 
Figure 3.4b shows the results for p = 0.95. Note that the partitioning becomes less 
extreme with a low breakdown probability compared to no breakdown. This holds 
for both SPE outcomes and EA results, although the effect is much stronger in 
the evolutionary system (see Fig. 3.4b). These differences with SPE are due to the 
myopic properties of the agents in the EA. The evolutionary agents do not reason 
backwards from the deadline (as in SPE) , since most agreements are reached in the 
first few rounds (if p < 1). As a result , the deadline is not perceived accurately by the 
evolving agents. In fact, the game length is strongly overestimated. Furthermore, 
in SPE all agreements are reached without delay (see [126]). The EA, on the other 
hand, also continues to explore other strategies, which results in a remaining small 
number of disagreements (see Section 3.3.1). 

Asp becomes smaller , the influence of the game length on the SPE outcome also 
decreases (see [126]). Instead, the first-mover advantage becomes more important. 
Therefore, if p becomes sufficiently small (e.g., p < 0.8) , the computational results 
automatically show a much better match with SPE outcomes than if p is large: the 
match is almost perfect, although a small number of disagreements occur due to a 
continuing exploration of new strategies. This is clearly visible in Figure 3.5, which 
shows long-term results for n = 5 and different breakdown settings p. 

Interestingly, in the limit of n --> oo, game theory predicts that the agents in 
population 1 have a fitness of>:::; 0.71 when p = 0.95, whereas the agents in popu­
lation 2 have a fitness of>:::; 0.68. This corresponds to a point in the vicinity of the 

symmetric point S, indicated in Fig. 3.3. The results reported in Fig. 3.4b show that 
the behaviour of the agents corresponds much better to an infinite-horizon model 
than the finite-horizon model for n :'.:'. 5 (see Fig. 3.4b). The same behaviour was 
observed for other EA settings (e.g. , larger population size) and other negotiation 
situations (e.g. , other weight settings). 

We also studied the performance of the EA in case the number of issues m is 
increased to 8. 5 We observe that , for p = 1, the long-term outcomes of the EA 

5The 8-dimensional weight vector for agents in population 1 is set to 

3
1
9 (0. 7, 0.3, 0.5, 0.2 , 0.3 , 0.4, 0.5 , 1.0)T and equal to 

3
1
9 

(0.3, 0. 7, 0.5 , 1.0, 0.5 , 0.5 , 0.2 , 0.2)T for 
agents in population 2. These settings are such that they contain both "competitive" issues (e.g. , 
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Figure 3.4: Comparison of t he long-term evolut ionary results with SPE results for 
(a) p = 1 (time indifference) and (b) p = 0.95. The error bars indicate t he standard 
deviations across 25 runs. 
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Figure 3.5: Average long-term results using 2 issues for different values of p , where 

n = 5. 

are unstable and do not converge to the extreme partitioning. When we increase 
the population size for the EA from 25 to 100 agents ,6 the extreme partitioning 
reappears. Results are shown in Figure 3.6. Thus, for more complicated bargaining 

problems, the EA parameters must be adjusted. For m = 8 and p < 1, similar 
observations are found as reported in Section 3.3.2 (like Fig. 3.4) when using the 
adjusted population size. 

Conclusion. Game-theoretic (SPE) results appear to be a very useful benchmark 
to investigate the results of the evolutionary simulations. In computational simula­
tions without a risk of breakdown (case 1) , agreements are predominantly reached 
in the final round. This deadline effect is consistent with human behaviour [108]. 
Furthermore, t he last agent in turn successfully exploits his advantage and claims 

a take-it-or-leave-it deal (as in SPE). In case of a small risk of breakdown (case 2), 
the deadline is not accurately perceived by the evolving agents, and the last-mover 
advantage is smaller than predicted by game theory. In fact , if the finite game be­
comes long enough, results match the SPE outcomes for the infinite-horizon game. 

With a high risk of breakdown (case 3), however , this deviation from SPE becomes 
negligible. Finally, it appears to be important to adjust the EA parameter settings 
(e.g. , by increasing population sizes) for more complex bargaining problems. 

issue 3) and issues where compromises can be made (e.g. , issue 8) . 
6To avoid a (quadrat ic) increase in the number of fi tness evaluations, each agent negotiates 

with 25 (random) opponents. 
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Figure 3.6: Average long-term results using 8 issues for different values of p , where 
n = 5. These results are obtained using a population size of 100. 

3.4 Social extension: fairness 

We extend the agent model within our evolutionary system in this section to study 
the influence of "fairness", an important aspect of real-life bargaining situations. 
The motivation and description of this fairness model is given in Section 3.4.1. In 
the fairness model studied in Section 3.4.2 the evolving agents only take the fairness 
of a proposed deal into account when the deadline is reached. Section 3.4.3 presents 
results obtained when agents perform a "fairness check" in each round. Section 3.4.4 
fur ther analyses the model in Section 3.4.3 for a simple case. 

3.4.1 Motivation and description: the fairness model 

Game-theoretic models for rational agents often predict the occurrence of very asym­
metric outcomes for the two parties. We showed in Section 3.3.2 (see Fig. 3.4a) that 
such "unfair" behaviour can also emerge in a system of evolving agents , in partic­
ular when p = 1 or n is small (see Fig. 3.4). Large discrepancies between human 
behaviour in laboratory experiments and game-theoretic outcomes are found , how­
ever, both for ultimatum (a single round) and multi-stage (several rounds) games 
[13 , 25 , 67, 107, 109, 141]. A possible explanation for the occurrence of these discrep­
ancies between theory and practice is the strong influence of social or cultural norms 
on the individual decision-making process. In [107, p. 264] and [50], for example, it 
is argued that responders tend to reject unfair or "insultingly low" proposals. There-
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Figure 3.7: Fairness functions used by the agents in the EA. 

fore, an anticipating agent should lower his demand in order to avoid a disagreement , 

this way taking into account the expectations about his opponent's behaviour. 

In [67] a model is proposed in line with this hypothesis. In their model, the prob­

ability of acceptance of an offer increases with the amount offered to the responder. 

Such a model, making more realistic assumptions about the agents ' behaviour, ap­

pears to organise the data from experiments with humans better than the SPE 

model [67]. 
Following [67], we introduce a fairness model in our evolutionary system. The 

agent model is extended as follows. If the value of an offer exceeds the responder's 

threshold, the agent has the opportunity to re-evaluate his decision. The probabil­

ity that he finally accepts the agreement is then a function of the acquired utility. 

This so-called "fairness function" is assumed to be piece-wise linear (with up to 

three segments).7 The instances that we use are shown in Fig. 3.7.8 We now fur­

ther distinguish between two different extended agent models. In the first model, 

the fairness function is used at the deadline only. This situation is studied in Sec­

tion 3.4.2. In the second model, the fairness function is effective at any moment. 

This case is studied in Section 3.4.3. The first case is motivated by the deadline­

effect observed in the experiments without a risk of breakdown (see Section 3.3.2) , 

where most agreements are reached in the last round. The second case, however , is 

more likely to be an appropriate model of human behaviour. 

3.4.2 Fairness check at the deadline 

In this section, fairness is applied in the last round. We study the case in which p = 1 

and n = 3. Figure 3.8 shows that if the evolving agents in population 2 use fairness 

function 1 (i.e., a "weak" fairness model) , the partitioning is much less extreme than 

7 Piece-wise linear functions nicely fit the experimental data reported in [67, 109] . 
8We want to remark here that , although the fairness function is the same for a ll agents, t he 

actual fairness function can depend on cultural norms in the real world [67]. 
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Figure 3.8: Mean fitness when fairness functions 0-5 are applied at the deadline. 

in case of no fairness check (function 0) . However , t he agents in population 1 still 
reach a relatively high fit ness (utility) level. Fair agreements evolve, on the other 
hand, when the agents in population 2 use function 2 (a case with average fairness). 
In this case the mean long-term fitness is approximately equal to 0.7 for all agents 
(most agreements are thus located close to the symmetric point S in Fig. 3.3). 

When stronger fairness functions (e.g. , functions 3 through 5) are used by the 
agents the roles reverse, and the agents in population 2 reach a higher fitness level 
than their opponents in population 1 (see Fig. 3.8) . Because of the strong fairness 
check, many last-round agreements are rejected in this case and agents in popula­
tion 2 can demand a larger share of the surplus in the round before last . As a result , 
the deadline is effectively reached one round earlier. This effect indeed occurs in our 
experiments. 

Conclusion. Our results show that fair outcomes can evolve in an evolutionary 
system with a fairness model in the last round. However, there is a rather large 
sensitivity to the actual fairness function that is used by the evolved agents; an 
"average" fairness function yields symmetric results, whereas more extreme fairness 
functions yield more asymmetric outcomes. 

3.4.3 Fairness check in each round 

This section studies the second fairness model, in which the responding agent re­
evaluates all potential agreements. The EA settings are the same as in the previous 
section. 

The results in Fig. 3.9 for fairness functions 1 are similar to the previous case 
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Figure 3.9: Mean fitness when fairness functions 0-5 are applied each round. 

(see Fig. 3.8). However, when fairness functions 2 through 5 are used , the agents in 

both populations reach almost identical fitness levels. Most agreements now occur 

in the vicinity of point Sin Fig. 3.3. Note that the agents have no explicit knowledge 

about the location of this point , and that this knowledge is also not incorporated 

within the fairness functions. We also observe that agreements are now reached in 

different rounds, whereas in earlier experiments without fairness most agreements 

occur at the very end of the game. 
Fig. 3.9 thus shows that the agents ' long-term behaviour is much less sensitive 

to the shape of the fairness function: the various "stronger" fairness functions all 

yield similar results. Figure 3.9 however indicates that when the agents use fairness 

function 5, the mean fitness of both agents decreases. This is due to the increasing 

number of disagreements which are a result of the strong fairness check. 

We furthermore studied a 2-issue negotiation problem with an asymmetric Pareto­

efficient frontier, as shown in Fig. 3.10. In this case, agent 1 values both issues equally 

important , whereas agent 2 has different valuations for each issue (his weights are 

0.2 and 0.8 for issues 1 and 2 respectively). If each agent obtains the whole surplus 

on his most important issue, agent 1 obtains 0.5 , whereas agent 2 gets 0.8. This 

outcome corresponds to the Nash bargaining solut ion (NBS) , see Section 2.3.1. The 

symmetric point (S) , on the other hand, is located at ( f:J , f:J). 9 

Both solutions can be considered to be fair outcomes in different ways: the first 

solution maximises the product of the agents ' utilities and also splits the surplus 

equally, whereas in the second case equal utility levels are obtained for both agents 

9This outcome corresponds to the Kalai-Smorodinsky solution, see Section 2.3.1. 
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(see [101 , Ch. 16] for a related discussion) . In the computational results, we observe 
that, when fairness functions 2-5 are applied, the agreements are divided and are 
usually concentrated in two separate clusters ("clouds"), see Fig. 3.10. The issue 
of the choice of and distribution over multiple "fair" agreement points seems an 
important issue for further research, both in a computational setting as well as in 
experimental economics. 

We also experimented with different weight vectors and with m > 2. A general 
finding is that extreme outcomes do not occur in the evolutionary process if the 
agents apply a fairness check. 

Conclusion. We have shown that fair agreements can evolve if fairness is evalu­
ated each round, even with strong fairness norms: the fairness of the deals is much 
more stable w.r.t. the actual choice of the fairness function . Of course, the number 
of actual agreements drops if a very strong fairness function is used, resulting in a 
lower fitness for both parties. In case of two-issue negotiations with a symmetric 
Pareto-efficient frontier , most agreements are reached in the vicinity of the symmet­
ric point. In the asymmetric case, fair solutions can also be obtained. The solutions 
are then distributed over various possible outcomes, which can all be considered fair 
in different ways. 

In the following , we first derive the game-theoretic subgame-perfect equilibrium 
for a relatively simple game (with only a single issue and using fairness function 4), 
and then compare the results with evolutionary outcomes for this game. 
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Payoff agent 1 Payoff agent 2 
SPE 0.419 0.391 
EA 0.391 (±0.022) 0.412 (±0.014) 

Table 3.2: Comparison of the agents' payoffs in the EA with SPE results. 

Round Offer Offer Threshold Threshold 
(SPE) (EA) (SPE) (EA) 

1 0.609 0.58 ± 0.06 0.391 0.23 ± 0.21 
2 0.375 0.39 ± 0.07 0.250 0.14 ± 0.13 
3 0.500 0.48 ± 0.09 0.000 0.13 ± 0.13 

Table 3.3: Comparison of the evolved strategies with game-theoretic (SPE) results 
for each round. 

3 .4.4 Validation and strategy analysis 

Although our incorporation of fairness aspects makes a game-theoretic analysis much 
more complicated, SPE strategies can again be derived for a very simple version: the 
game with only a single issue (m = 1) and fairness function 4. These settings were 
chosen because of mathematical feasibility. The general equations are presented in 
Appendix 2.1. A derivation form= 1, n = 3, p = 1, and fairness function 4 is given 
in Appendix 2.2. 

Table 3.2 shows both the SPE results and the payoffs obtained by the evolving 
agents (in the long run) in the a with m = 1, n = 3, p = 1, and with the (rather 
strong) fairness function 4. Note that since m = 1, an agent's payoff equals the share 
obtained for issue 1. Results for the EA are obtained after 300 generations (averaged 
over 25 runs). Notice that the SPE payoffs are in good agreement with the outcome 
of the evolutionary experiments. However, in SPE agent l's payoff is slightly larger 
than agent 2's payoff. In the EA this is reversed, although Table 3.2 shows that 
differences between theory and experiment are very small. We will further analyse 
the evolving strategies below. 

Table 3.3 compares the offers of the evolving agents (for each round) with SPE 
results, showing a good match. From Table 3.3, it can be derived that agreements 
are reached in all rounds , with some emphasis on the first round. 10 

Table 3.3 also shows the acceptance thresholds (the thresholds are calculated 
based on the payoff which an agent expects to receive if he rejects the current offer, 
see Appendix 2) . Because the thresholds in rounds 2 and 3 are much lower than the 
obtained utility, the thresholds in these rounds are not really relevant in SPE. This 
explains the large variance of the thresholds in the EA and why these thresholds can 

10 Acceptance rates are approximately 39%, 22%, 20% in SPE in rounds 1-3, and 36±4%, 25±3%, 
20 ± 2% for the EA in rounds 1-3. 
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Figure 3.11: Average threshold values of the agent strategies in the EA in the first 
round. 

deviate from SPE predictions in these rounds. In round 1, the t hreshold is important 
in SPE and influences the offer made. The experiments show a much lower average 
threshold value than the SPE (see Table 3.3) . Nevertheless , the thresholds influences 
the offers made in the EA due to a high variance of the threshold values. We analyse 
this more closely. 

Figure 3.11 shows the evolution of the threshold value for the first round for a 
single experiment. The indicate the variance in the population. Notice that this 
variance and the volatility of the mean threshold is rather high. This forces the 
offers in population 1 to be similar as in SPE. 

In order to obtain an even better match with SPE results, we reduced the occur­
rence of frequent peaks by using a decreasing mutation step-size in the EA (instead 
of self-adapt ive mutation step-sizes, see Section 1.2.3). With this approach, the 
mutation step sizes <7; are gradually decreased in the course of evolution. 11 

At the beginning of each EA run, <7; is set to 0.1 for all i (as before, see Table 3.1) 
and then exponentially decrease until <7; = 0.01 after 1000 generations. This pro­
cedure indeed reduces the fluctuations in the threshold values and the offers in the 
long run. Results for experiments with this EA setting appear to be in excellent 
agreement with SPE results, see Table 3.4. We found no significant effect of the new 
mutation scheme on the evolutionary outcomes form= 2, however. We suspect that 
this is due to the integrative nature of the negotiation problem, where the results 
obtained are already beneficial for both parties. 

Conclusion. This relatively simple bargaining situation shows a good match 

11 A similar approach was applied in [3] for a genetic algorithm. 
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Payoff agent 1 P ayoff agent 2 

SPE 0.419 0.391 

EA with decreasing O'; 0.416 ± 0.012 0.395 ± 0.009 

Table 3.4: Comparison of the evolutionary agents' payoffs after 1000 generations 

(using exponentially decreasing mutation step-sizes) with SPE results 

between theoretical (SPE) and experimental results. Furthermore, when fairness 

norms are applied , the outcome of the negotiation process comes to depend on the 

actual round in which an agreement is finally reached , while thresholds play an 

important role in some of the rounds. We also showed that EA parameters can be 

fine-tuned for a more stable situation if needed . This rendered an excellent match 

with the SPE form = 1. 

3.5 Concluding remarks 

We have investigated a system for negotiations, in which agents learn effective nego­

tiation strategies using evolutionary algorithms (EAs) . Negotiations are governed by 

a finite-horizon version of the alternating-offers game. Several issues are negotiated 

simultaneously. Both negotiations with and without a risk of breakdown have been 

studied. Our approach facilitates the study of cases for which a rigorous mathemat­

ical approach is unwieldy or even intractable. We presented computational results 

for several difficult bargaining problems in this chapter. 

We first validated the long-term evolutionary behaviour using the game-theoretic 

concept of subgame-perfect equilibrium (SPE). When no risk of breakdown exists , 

the last agent in turn proposes a take-it-or-leave-it deal in the last round and de­

mands most of the surplus for each issue. This extreme division is consistent with 

SPE predictions. When a risk of breakdown exists, most agreements in the EA are 

reached in the first round. If the finite game becomes long enough, the deadline is 

therefore no longer perceived by the evolutionary agents and results actually match 

SPE predictions for the infinite-horizon game. 

We also modelled and studied the concept of "fairness", where a responding agent 

carries out a fairness check before an agreement is definitely accepted. This fairness 

check was modelled in two ways: a responding agent considers fairness only at the 

deadline or all the time, for any potential agreement. In both cases, fair outcomes 

can be obtained but the outcomes in the second case are much less sensitive to 

the actual choice of the fairness function. In case of an asymmetric bargaining 

situation (where the players have asymmetric preferences) , mult iple outcomes then 

exist which can be considered "fair" in different ways. We also found a good match 

between the EA results and game-theoretic SPE predictions for a simple bargaining 

game (concerning a single issue). 
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An interesting line of research is to further explore the notion of fairness and to 
compare the computational outcomes with results from experimental studies with 
human subjects. Of particular interest is the study of asymmetric multi-issue bar­
gaining situations, where more than one outcome can be considered "fair" . This 
raises several new research questions for experimental economics as well as compu­
tational sciences. 





Chapter 4 

Bargaining with multiple 
opportunities 

In the advent of ubiquitous application of agent technology, bargaining agents are 
expected to play an essential role in electronic market places. The agents in a 
competitive market are self-interested and can be equipped with the ability to au­
tonomously search for products and services and negotiate the terms of an agree­
ment. In this chapter ,1 we focus on strategic aspects of bilateral bargaining within 
a market-like setting. 

We use the one-shot ultimatum game as the basic bargaining procedure for our 
model, a well-known approach within the field of game theory. In this game (see 
also Section 2.3.2), two players, a proposer and a responder , negotiate about the 
division of a bargaining surplus (see Section 1.1.2) . The proposer makes an offer 
and the responder can only choose to accept or reject this offer. The ultimatum 
game has been extensively researched , both theoretically and by experiments using 
human subjects [67, 90, 107]. 

The ultimatum game models a negotiation between an isolated pair of players. In 
a market setting, however , an agent's behaviour can change if future opportunities 
are taken into account. This chapter introduces a natural extension of the basic 
ultimatum game in which fall-back opportunities are explicitly modelled. Both the 
proposing and the responding agents have several bargaining opportunities with 
different opponents before their final payoff is determined . In this way a market 
place is modelled where several sellers and buyers are available. 

The game is further extended to allow several issues to be negotiated simulta­
neously, as in the previous chapter; not only t he price, but also other important 

1This chapter is based on [38]: E .H. Gerding and J.A. La Pout re. Bargaining with posterior 
opportunities: An evolutionary social simulation. In M. Gallegati , A. Kirman, and M. Marsili , 
editors, The Complex Dynamics of Economic Interaction, Springer Lecture Notes in Economics 
and Mathematical Systems (LNEMS), Vol. 531, pages 241- 256. Springer-Verlag, 2004. 
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attributes such as delivery t ime, package deals, warranty, and other product-related 
aspects can be taken into account . This can reduce the competitive nature of the 

game since t rade-offs can be made to obtain win-win solutions. Furthermore, we 
study the impact of search costs if an offer is refused and a new opponent needs to 
be found . In addit ion, we consider the case where uncertainty exists about fu ture 
opportunities and a new opponent cannot always be found . 

An important aspect within this setting is the information available to the agents 
about their opponents. We distinguish between the complete information case, 
where an agent's current number of future bargaining opportunities is common 
knowledge, and the incomplete information case, where this information is known 

to the protagonist but hidden from the opponent. The complete information case 
can be approached theoretically using game theoretic subgame-perfect equilibrium 
(see Def. 18.3) given reasonable assumptions. The subgame-perfect results show an 
extreme split of the surplus, similar to the ultimatum game: the proposer claims 
the ent ire surplus, and the responder accepts this deal. 

The incomplete information case, on the other hand, seems much more difficult 
to analyse theoretically. We therefore apply an evolut ionary simulation as described 
in Section 1.2 to investigate this setting. We also compare the evolutionary and 

the theoretical approach in the complete information case. The evolutionary out­
comes show a good match with the game-theoretic results. Moreover , the simulation 
shows that results differ significant ly if information about the opponent 's fu ture bar­
gaining opportunities is not available: if the number of bargaining opportuni t ies is 

sufficiently high, the responder now obtains the largest share. 

The outcomes in the incomplete information case, however, also depend on the 
existence of posit ive search costs. Search costs stimulate agents to reach agreements 

early and discourage both players to exploit the additional opport unities . In the 
evolutionary simulation, the agreements are then similar to the one-shot ult imatum 
game. A similar effect is observed if bargaining is terminated with a small probability 
because no new opponent can be found . 

This chapter is organised as follows. In Section 4. 1 the bargaining game with 
mult iple bargaining opport uni ties is described. Section 4. 2 provides a game-theoretic 

analysis of the game in case of complete information. Section 4.3 out lines t he evolu­
tionary simulation and Section 4.4 discusses the obtained results from the simulation . 

Lastly, Section 4. 5 concludes. 

4.1 Description of the bargaining game 

The modelled market consists of buyers and sellers who exchange a single good 
through bilateral negotiations. At each bargaining opportunity, an ult imatum-like 

game is played, where the proposer makes an offer and t he responder can reject or 
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Figure 4.1: A two-issue negotiation example in a market where each agent has two 
initial bargaining opportunities (n = 2). 

accept this offer. 2 If an agreement is reached, both agents obtain a payoff equal 
to their utility of the offer. For convenience, we use seller and buyer to denote a 
proposer and responder respectively in the following (although we previously used 
the terms agent 1 and agent 2, this is not suitable here since several buyers and 
sellers can participate in a single "market" game). 

In our model an offer consists of one or more issues. The utility is calculated as 
in Chapter 3 (cf. Section 3.1): the seller 's utili ty U s for an offer o can be written 
as w-: · o = 2:~ 1 w! · d, where w-: is a vector containing the seller's weights for 
each issue and m is the number of issues. Similarly, the buyer 's utility function 
ub = w/, · [f -OJ , where Wb represents the buyer 's weights. The utilities of the agents 
are normalised between 0 and 1. The differences in weights of the two players 
determine the degree of competitiveness of the negotiations (i.e. , to what extend 
trade-offs can be beneficial). We formalise the notion of competitiveness and address 
this issue further in Section 4.4.3. 

Each buyer and seller initially has up to n bargaining opportunities to reach an 
agreement . In case of a disagreement the agents are newly matched with randomly 
selected opponents, until no more bargaining opportunities remain. The number 
of remaining bargaining opportunities we call an agent 's bargaining state, denoted 
by Is E {O, 1, .. . , n} for a seller and lb E {O, 1, ... , n} for a buyer. If an agent 's 
bargaining state reaches zero, the agent obtains a disagreement payoff which is set 
to zero. 

An example for a two-issue negotiation is shown in Figure 4.1 from a buyer's 
perspective. The buyer, whose initial bargaining state is lb = 2, first encounters 
a seller, seller 1, with bargaining state Is = 1. The seller proposes an offer o = 
(0.5 , 0.5) and the buyer refuses this offer. Because the seller has no more bargaining 

2 Alternatively, t he multi-round alternating-offers game (e.g. see chapter 3) can be used. As 
shown in chapter 3, however, outcomes are equivalent to the ultimatum game, if no time pressure 
exists; agreements are delayed unt il in the final round a take-it-or-leave-it offer is made. 
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opportunities his bargaining game ends and he obtains the disagreement payoff. 

The buyer, on the other hand, can continue bargaining when matched with another 

opponent, seller 2. In the example this opponent with 'Ys = 2 offers (0.6 , 0.6). The 

buyer now accepts and the bargaining game ends for both agents. 

Note that even though the agents initially have equal bargaining opportunities , 

the matched agents can have different bargaining states. Having agents with dif­

ferent states is an important aspect of the market game, particularly when agents 

are unaware of their opponent's remaining opportunities. We assume that, once an 

offer is rejected, agents cannot go back on a previous offer. 3 We also assume that 

there are an equal number of buyers and sellers in the market. This in contrast to 

the work in e.g. [89], where markets are studied with unequal number of buyers and 

sellers. 

4.2 Game-theoretical approach 

This section considers the game-theoretic subgame-perfect equilibrium (SPE) of the 

above game where the agents' bargaining states are common knowledge. A game­

theoretical analysis seems to be very difficult if the agents have incomplete infor­

mation of their opponent 's bargaining state. We will , however, drop the complete 

information assumption in the evolutionary approach (Section 4.3). In the follow­

ing analysis we assume all agents of a specific type (i .e. , buyer or seller) apply the 

same negotiation strategy. This assumption is reasonable since the preferences are 

identical for a given type. 
In case of a single opportunity, the bargaining game is reduced to the ultimatum 

game. The ultimatum game has a unique SPE where the seller (here the proposer) 

claims the total share for each issue, and the buyer (the responder) accepts this take­

it-or-leave-it deal [90]. This result can be obtained by applying backward induction. 

Intuitively, a rational buyer will accept any positive amount, which is always better 

than obtaining the zero payoff in case of a disagreement. The SPE is precisely the 

point where the buyer is indifferent between accepting and refusing. 

We argue that the game with multiple bargaining opportunities and complete 

information has an SPE with the same outcome as the ultimatum game: the seller 

obtains the entire share, and the buyer receives the disagreement payoff, which is 

set to zero.4 Consider a buyer with 'Yb = 1, i.e. with a final bargaining opportunity 

remaining. The buyer will then accept any positive amount offered by the seller. 

An anticipating seller will then claim the entire share, as in the ultimatum game, 

independent of 'Ys- In SPE, the buyer's payoff for 'Yb = 1 therefore equals zero. Note 

that this only holds if the seller is informed about the buyer's bargaining state. 

3 Agents are said to have no recall [149]. 
4This holds for continuous divisions of the surplus. 
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If /b = 2, the buyer has two bargaining opportunities. Using the above, we can 
replace the payoff for refusing the seller's offer when /b = 2 by the disagreement 
payoff. The situation for /b = 2 is now equal to /b = 1: the buyer is indifferent 
between accepting and refusing a value of zero and in SPE the buyer accepts this 
deal, independent of Is· By backward induction the same holds for /b = n. 

We note that, because the agents are indifferent to the bargaining state in which 
the agreement is reached, actually several subgame-perfect equilibria can exist. In 
all cases , however , the divisions are the same. Note furthermore that the above 
argument only holds if the seller is informed about the buyer's number of remain­
ing bargaining opportunities. If this information is not available, a game-theoretic 
analysis seems much more difficult. An evolutionary simulation, however, is very 
apt to analyse the case of incomplete information. We analyse both the completely 
informed and the uninformed case in Section 4.4. First, the evolutionary system is 
described in detail. 

4.3 Evolutionary approach 

We use an evolutionary algorithm to evolve the strategies of the agents. The evolu­
tionary simulation is depicted in Figure 4.2. The evolutionary algorithm is based on 
the implementation described in Section 1.2.3. As in Chapter 3, each strategy in the 
EA corresponds to an agent of a certain type (buyer or seller) , and we use separate 
populations to evolve the strategies of the two types of agents. The way in which 
the fitness of the agents is determined, however, differs from the approach described 
in Chapter 3. In the previous model, each agent was evaluated against all agents in 
the opponent's population. In this case , however , all agents together constitute a 
market-like setting, where buyers and sellers can bargain several times with differ­
ent opponents before their final fitness is determined. Also because the interactions 
determine the bargaining states of the agents , another approach is required here. 

The fitness of the agents is determined as follows. The parental and offspring 
populations are first combined to form a group of sellers and a group of buyers. The 
agents are then evaluated by a sequence of pair-wise matches . For each match, two 
agents are randomly selected (with replacement) and play the one-shot game. An 
agent obtains a payoff in case an agreement is reached or the disagreement payoff 
(which is zero) if no more opportunities are available for this agent. If an agent still 
has opportunities remaining, his fitness remains undetermined. Note that, since both 
agents can be in different bargaining states, the consequences of a disagreement may 
be different for the individual agents. Because an outcome depends on many random 
factors , each strategy is evaluated a number of times and the fitness is the average 
of r payoff values. The parameter r is called the evaluation frequency. This way the 
fitness becomes a more accurate measure of the expected payoff. The bargaining 
games continue until all agents have obtained at least r payoff values. 
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Figure 4.2: Iteration loop of the evolutionary algorithm. 

Since both buyers and sellers start with the same bargaining state, in the first 

periods the opponent 's bargaining states do not represent an ongoing bargaining 

society. To prevent so-called initiatory effects and to model an on-going bargaining 

society, a strategy's fitness is only measured after the first payoff is determined. A 

strategy is thus evaluated at least r + 1 times. Furthermore, we model a market 

situation where the number of agents remains constant over time, also called a 

steady-state market in [89]. Therefore, once the fitness of a strategy has been 

established, the strategy can still be selected to play again but its fitness is no longer 

affected by the outcome. The bargaining games are continued until the fitness for 

each strategy has been established. 

4.3.1 Strategy Encoding 

The strategy, encoded on the chromosome, specifies either an offer or a threshold 

for each bargaining state, depending on the type of the agent (i.e., sellers only have 

offers and buyers only have thresholds). The threshold determines whether an offer 

of the opponent is accepted or rejected: if the utility falls below the threshold the 

offer is refused; otherwise an agreement is reached. A similar representation was used 

in Chapter 3 for the alternating-offers game, although in that game all strategies 

contain both offers and thresholds . 
We distinguish between the complete information setting and the incomplete 

information setting (see Section 4.1). The strategy representation depends on this 

setting and is schematically depicted in Figures 4.3 and 4.4 for the complete and 

incomplete information case respectively. In the incomplete information case (Fig­

ure 4.4) , an offer or threshold is specified for each bargaining states of the agent. In 

case of complete information (Figure 4.3), an offer or threshold is also conditional 

on the opponent 's bargaining state. 
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Seller 5(111) 5(211) . . . 5(nll) 
Strategy 5(112) 5(212) . .. 5(nl2) 

. . . . . . .. . . . . 
5(lln) 5(2ln) . . . 5(nln) 

Buyer t(lll) t(2ll) . . . t(nl 1) 
Strategy t(ll2) t(212) ... t( nl2) 

. . . . . . . . . . .. 
t(lln) t(2ln) ... t(nln) 

Figure 4.3: The strategies of a seller and a buyer for the market game with com­
plete information about the opponent's bargaining state. The offers 5(1'.bb) and 
thresholds t(l'bbs) are conditional on the bargaining state of the opponent , where 

'Y" 'Yb E { 1, .. . , n}. 

Seller Strategy I 5(1) I 5(2) I ... I 5(n) I 

Buyer Strategy I t(l) I t(2) I ... I t(n) I 

Figure 4.4: The strategies of a seller and a buyer for the market game, where the 
players are uninformed about the opponent's bargaining state. An offer 5(1'.) or 
threshold t(l'b) is only determined by an agent 's own bargaining state, since more 
information is not available. 

4.3.2 Mutation Operator 

Although several mutation models were tried , the mutation model with exponential 
decay showed a closest match with game-theoretic benchmark cases. We therefore 
only report the results using the exponential decay model. This mutation operator 
is explained in Section 1.2.3. 

4.4 Evolutionary simulation results 

The results are organised as follows. First, the game with complete information 
is studied in Subsection 4.4.1 and the results are compared to the game-theoretic 
(SPE) predictions. Subsection 4.4.2 studies the incomplete information case. Sub­
section 4.4.3 introduces a measure of competitiveness for multi-issue negotiations 
and compares results for different levels of integrative negotiations. Finally, in Sub­
section 4.4.4 considers the effects of fixed search costs in the market game and 
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Parental population size (µ) 
Offspring population size ( >. ) 
Initial st andard deviations ( (]' ) 
Mutation model 
Standard deviation half-life (t) 
Number of generations 
Number of runs per experiment 
Strategy evaluation frequency (r) 

30 
30 
0.1 
exponent ial decay 
400 
4000 
30 
20 

Table 4. 1: Defaul t settings of the evolut ionary simulation. 

uncertainty about future opportunities . 

4.4.1 Game-Theoretic Validation 

This section considers a competit ive (i.e., single-issue) scenario with complete in­
formation of the agents ' bargaining opportuni t ies and compares the evolutionary 
algorithm (EA) outcomes to SPE predictions. Default parameter settings for the 
EA are shown in Table 4.1. Note that because of random fluctuations, the EA 
results are averaged over 30 runs using the same settings. 

In SPE t he share of the buyers is zero and the sellers obtain the whole surplus 
in case the initial number of bargaining opportunit ies of t he players is fini te, and 
the bargaining state of the opponent is common knowledge (see also Section 4.2). 
Figure 4.5 shows t he EA outcomes for different values of n (initial bargaining op­
portunities) . The results indicate an almost perfect match between evolut ionary 

outcomes after 4000 generations and game-theoretic outcomes, part icularly when n 

is small. 

For larger values of n we find that , using the same EA parameter settings, the 
evolut ionary outcomes become somewhat less extreme. See also Figure 4.6 , which 
shows the long-term EA outcomes (after 4000 generations) for n up to 10. This 

is because as n becomes larger , the complexity of the problem increases due to a 
larger search space, making learning by an EA more difficult. However, a better 
match for larger values of n also appears by adjusting EA parameters, such as the 

evaluation frequency and the population size, to handle the increased complexity. 
Details on tuning the EA are not t reated here. Instead , we refer the interested reader 

t o previous research [126], in which different EA settings are syst ematically studied 
for an alternating-offers bargaining game. Henceforth , we present only experiments 
using uniform EA settings here. 
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Figure 4.5: Development of the mean fitness (averaged over 30 runs) for complete 
information setting with varying initial number of bargaining opportunities. 
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information. 
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Figure 4.7: Results after 4000 generations (averaged over 30 runs) for incomplete 

information settings with various n. The error bars indicate the standard deviation 

of the averaged results. 

4.4.2 Incomplete Information 

We now examine the results when the agents do not know their opponent's bargain­

ing states; the agents only know their own bargaining states. Although no explicit 

information is available, the agents implicit ly learn the distribution of the bargaining 

states in the opponent 's population. This distribution is endogenously determined 

by the strategies of the agents. The strategies, in turn, adapt to the distribution 

of the bargaining states. This complex interaction is one reason why theoretical 

analysis is difficult. An EA, on the other hand, is well suited to find outcomes that 

emerge from such local interactions. 

Results produced after 4000 generations of the EA for the incomplete information 

case are shown in Figure 4. 7, for different values of n (the init ial number of bargaining 

opportunities). These results are averaged over 30 runs. The error bars indicate 

the standard deviation . Whereas in the complete information case the seller obtains 

almost the ent ire surplus, the responder (i.e., buyer) has the best bargaining posit ion 

in the incomplete information case (see Figure 4.7). This holds as long as the init ial 

number of bargaining opportunit ies are sufficiently large (i.e ., ~ 5). Note that these 

results are obtained even though the buyers' and sellers ' initial settings are equal. 

The results can be explained as follows. If the buyer is in her final state, she will 

accept any deal (as in the ultimatum game). In other states, however, the buyer 

can try to find a better deal elsewhere. Consider a seller in his last bargaining 
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state. Because he does not know the buyer's bargaining state, he can no longer 

anticipate the buyer's behaviour. In order to prevent a disagreement, the sellers 

will then concede in the last bargaining state. The expected payoff in case of a 

disagreement and the offers in earlier bargaining states will then also decrease. After 

many generations , the simulation converges to an outcome where the seller concedes 

almost his ent ire surplus in each bargaining state. We also observe that the seller 

concedes slight ly less if he has more bargaining opportunit ies remaining, resulting 

in less extreme deals if n becomes large, as shown in Figure 4.7. 

In the incomplete information setting the first-mover (here the seller), has no 

information about his opponent . T he responder , on the other hand, can make a 

relatively more informative decision based on the seller 's offer. Whereas in the ul­

timatum game the proposer seems to dominate the outcome, a more competitive 

setting allows the responder to obtain a considerable advantage. This result , how­

ever, holds only if the number of bargaining opportunities is finite and equal for 

both players. Furthermore, the players incur no costs for refusing a deal. As we will 

show in Section 4.4.4, even slight costs completely change these results. 

When the number of initial bargaining opportuni ties is set higher than three, a 

sudden transition in the long-term outcomes can be observed in Figure 4.7: up to 

n = 3, the seller obtains almost all, whereas the buyer obtains the largest share if 

n > 3. By increasing n, the number of possible states increases, making the buyer's 

behaviour less predictable for the seller. The value for which the transit ion occurs 

depends on game parameters such as r and the competit iveness of the negotiation. 

The latter will be discussed further in the next section. 

4.4.3 Integrative Negotiations 

An advantage of bilateral negotiation is the ability to negotiate complex contracts 

with several issues. When mutually beneficial solut ions are available, negotiations 

are called integrative (see Section 2.3.3). We consider integrative two-issue negoti­

ations in this section and introduce the notion of competitiveness. We show that 

the information in the integrative case has a very similar impact as in the compet­

itive case. Due to increased complexity, however, the evolutionary results are less 

extreme when the number of bargaining opportunities is large. 

The utility of an offer is an addit ive, weighted function of the share obtained 

for each issue (see also Section 4.1). The weights for sellers and buyers for the two 

issues are w-: = (0.5 - a, 0.5 +a) and wb = (0. 5 +a, 0.5 - af respectively, where 

a E [0.0, 0.5] is the so-called degree of competitiveness. When the parameter a is set 

equal to 0, negotiations are purely competi tive; if a = 0.5 there is no competition 

at all. Note that the maximum social welfare, i. e. the maximum total utility that a 

seller and a buyer can achieve together equals 2 · (0.5 +a), where each agent obtains 

(0 .5 +a) . 
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Figure 4.8: Mean long-term outcomes for two-issue negotiations and a= 0.2 . 

Results for a= 0.2 are visualised in Figure 4.8. The results show that, as in the 
competitive case, a transition occurs to a buyer-dominated outcome for sufficiently 
large n and incomplete information. We find , however , that this transition already 
occurs when n = 2 (see Figure 4.8). Only two bargaining opportunities are needed 
to obtain an advantage for the responder, as supposed to four in the single-issue 
game (Figure 4.7). 

Figure 4.8 also shows a less extreme split compared to competitive negotiations, 
particularly for large n. This occurs firstly since the strategy search space is in­
creased (a value for each issue needs to be learned) , making learning more difficult . 
Moreover, the win-win possibilities are fully exploited: if one of the agents slightly 
concedes, the other agent can obtain a relatively large gain by negotiating a Pareto­
efficient deal. As shown in Figure 4.9, this effect becomes stronger as a increases. 
In the extreme case, where a= 0.5, both agents can obtain the full surplus without 
any concession. 

Note that the EA parameters are fixed for the various game settings. As we 
mentioned in Section 4.4.1 we can adjust the parameters to handle more complex 
bargaining settings as a result of a larger n and an increased number of issues. By 
increasing the population size and adjusting other parameters of the EA, we obtain 
results which are closer to game-theoretic predictions. 
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Figure 4.9: Mean long-term outcomes for n = 5 and different values for the com­

petit iveness (a) . 

4 .4 .4 Search Cost s and Premature Termination 

We fur ther ext end the bargaining game in two ways . First , we introduce search or 

negotiation costs each time an offer is refused and agents engage in a new negotiation. 
Subsequent ly, we consider the case where there exists uncertainty about whether a 

new bargaining opponent can be found . Whereas we have assumed unt il now that 
the number of bargaining opportunit ies remains fixed, there can be external factors 
which influence the number of opportunities (e.g. , if a seller has in the meanwhile 
sold the good to another buyer). This is modelled as a probability that negotiations 

terminate prematurely, i.e., before the final number of bargaining opportunit ies is 
completely exhausted. 

Search costs can represent the amount of money, t ime, or effor t that an agent 
may incur for finding a new opponent . It is shown theoretically that if buyers have 
search costs, the sellers charge monopolistic prices in equilibrium [22 , Ch.7]. We 
consider the impact of search costs on the bargaining game where both buyers and 
sellers have equal search costs /3. The final utility is reduced by fixed search costs f3 
for each new bargaining opportunity. Only the fi rst bargaining opportunity has no 

costs. 
Evolutionary outcomes for the complete and incomplete information settings 

with different search costs are depicted in Fig 4. 10. Negotiations are competitive 
and buyers and sellers each have 5 initial bargaining opportunities. Search costs seem 
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Figure 4.10: Mean long-term results as a function of the search costs ((3) for n = 5. 

to have little impact on the fitness in the complete information case; variations are 
not statistically relevant. Although the fitness does not change, the actual behaviour 
of the agents does: most agreements are now reached immediately. Without search 
costs, agreements reached are distributed over the various bargaining states. 

In the incomplete information case, on the other hand, even small search costs 
have a drastic impact on the fitness of the agents, see Figure 4.10. The sellers claim 
almost the entire share even if search costs are very small (e.g. 0.01) and equal for 
both agents. Results are robust for different settings of the EA. These outcomes are 
consistent with economic theory, which states that prices become monopolistic even 
if search costs are infinitely small. 

As in the complete information case, both buyers and sellers are stimulated to 
reach agreements early in case of search costs. The final opportunity of the seller 
is therefore almost never reached , removing the advantage for the buyer. The game 
changes from a game with incomplete information, to a game where almost all 
players complete a deal in their first bargaining opportunity. Now the seller can 
again claim the entire surplus as in the one-shot game. 

Similar outcomes are observed when bargaining for a buyer and/or a seller is 
discontinued with a certain probability after each disagreement .5 Figure 4.11 shows 
the long-term outcomes for different probabili ties of premature termination after 
each bargaining opportunity. The probability is set equal for buyers and sellers, and 

5 T his is analogous to discount factors or a probability of break down in case of multi-round 
bargaining, as used in e.g. Chapter 3. 
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Figure 4.11 : Long-term fi tness values for n = 5 and incomplete information , when 

negotiations are discont inued with a certain probabili ty after each disagreement. 

for each bargaining opportunity, but drawn independently. As with search costs, 

the seller obtains the largest share if the probability is sufficient ly high. 

Note that the effect of premature termination is less ext reme, however. This 

is because search costs a lso affect the ut ility if an agreement is not reached , pro­

viding an addi tional incent ive to reach agreements (otherwise, a negative ut ility is 

obtained) . In case of premature termination , on the other hand , an agent is indiffer­

ent between termination after the first bargaining oppor tunity and a disagreement 

in the last bargaining opportunity. 

4.5 Concluding remarks 

We study the evolutionary dynamics of a market-like game in this chapter , where a 

seller sells a single good and has several opportunit ies to do so. At the same time, 

a buyer wishes to buy an item by t rying several sellers. T he terms of an agreement 

are negotiated using an ult imatum-like game, where the seller proposes an offer and 

the buyer can choose to accept or reject the offer . The game is extended to allow 

for mult iple opportunit ies for both the seller and the buyer if the deal is rejected. 

This way a competit ive market is modelled. We fur thermore investigate mult i-issue 

integrative negotiations and the effects of search costs and premature termination if 

a disagreement occurs. 

The game-t heoretic outcome using subgame-perfect equilibrium (SPE) for the 
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one-shot ultimatum game predicts an extreme split of the surplus: the seller obtains 
the whole surplus whereas the buyer obtains her disagreement payoff. We extend 
the analysis for multiple bargaining opportunities with complete information of the 
opponent's bargaining state and find an equivalent outcome. A theoretical analysis 
seems to be very difficult, however , if the bargaining states of the agents are not 
common knowledge. An evolutionary simulation, on the other hand, is very well 
suited to investigate such games with incomplete information. 

We first compare the evolutionary results with the game-theoretical outcomes for 
the game with complete information to validate the evolutionary approach. If the 
initial number of bargaining opportunities is small , a very good match is found. In 
larger games or when the negotiations become less competitive, the EA shows some­
what deviating outcomes due to larger search space and the limited computational 
capacity of the EA. We note that we mainly report experiments using uniform EA 
settings in this paper. However , adjusting EA settings appear to improve results 
even further for more complex games. 

The evolutionary simulation shows a large impact of the additional bargaining 
opportunities if the agents have no information on their opponent 's number of future 
opportunities. Whereas in the complete information game the seller dominates the 
market, the buyer is better off in the incomplete information setting, as long as the 
number of bargaining opportunities is sufficient ly high. By increasing the initial 
number of bargaining opportunities a sudden transition is observed where the buyer 
obtains the largest share instead of the seller. This occurs because the seller can 
then no longer anticipate the buyer 's response and gives in to avoid a disagreement. 

Similar outcomes are found for two-issue integrative negotiations. At the same 
time, integrative negotiations produce less extreme evolutionary outcomes, both in 
the game with complete and incomplete information, part icularly if the number 
of initial bargaining opportunities is large. This mainly occurs since the space of 
possible deals increases. Moreover , t he agents find win~win situations which benefit 
one agent without affecting the payoff obtained by the opponent. 

An integrative setting also already affects small games with incomplete informa­
tion: we find that for certain settings, a transition from a seller to a buyer dominated 
payoff occurs even in case both agents merely have two initial bargaining opportu­
nities, whereas in the competitive case more bargaining opportunities are needed to 
achieve the same result. 

We also study the effect of search or negotiation costs in case a negotiation fails 
and the agent needs to find a new opponent. Search costs induce players to reach an 
agreement in the very first bargaining opportunity. This changes an incomplete in­
formation game into an ultimatum-like game with only a single bargaining opportu­
nity. Even very small search costs result in an extreme split where the seller obtains 
almost the entire share, similar to the ultimatum game outcome. This is consistent 
with economic theory which states that even infinitely small search costs produce 
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monopolistic prices. The outcomes are similar but less extreme if search costs are 

replaced by a probability that bargaining is discontinued after a disagreement. This 

models the situation where uncertainty exists about future opportunities. 

In this chapter we have shown that evolutionary simulations are extremely use­

ful to investigate negotiations with incomplete information, which are unwieldy to 

analyse theoretically. Using evolutionary algorithms, we can simulate complex in­

teractions involving a large number of agents , as is the case in bargaining with 

multiple opportunities. It is interesting to further refine the model to specific real­

world settings, where for instance agents have incomplete information about their 

own future number of bargaining opportunities. Another interesting extension is 

allowing agents to return to previously encountered opponents. 
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Chapter 5 

Competitive market-based 
allocation of consumer attention 
space 

In this chapter,1 we consider an e-business application of automated negotiation 
using software agents. We present a framework for a distributed Competitive 
Attention-space System, CASy, to allocate the scarce resource that is consumer 
attention via the techniques of dynamic market-based control [20, 23, 43] and adap­
tive software agents (see see Section 1.1.3 and [47, 60, 144]). In the example of 
an electronic shopping mall , CASy recommends shops to a consumer: the task of 
matching a consumer to a set of suitable shops is delegated to the individual shops, 
each of which evaluates the information that is available about the consumer and 
his or her interests (the consumer's interests and other information which the con­
sumer is willing to provide; e.g. keywords , product queries, and available parts of a 
profile). Based on this information and on their domain knowledge, shops can make 
a monetary bid in an auction where a limited amount of consumer attention space, 
or banners , for the particular consumer is sold. 

To facilitate CASy, the system is designed as a multi-agent system (see Sec­
tion 1.1.3) where each shop is represented by a software agent that executes the 
task of bidding for the attention of each individual consumer. The use of learning 
software agents allows shops to rapidly adapt their bidding strategy such that they 
only bid for consumers that are likely to be interested in their offerings. Further-

1The results of this chapter have been published in [17]: S.M. Bohte, E.H. Gerding, and J.A. La 
Poutre. Market-based recommendation: Agents that compete for consumer attention. ACM 
Transactions on Internet Technology, Special Issue on Machine Learning in the Internet , August 
2004 (to appear). A shorter version appeared as [16]: S. M. Bohte, E. H. Gerding, and H. La Poutre. 
Competitive market-based allocation of consumer attention space. In M. Wellman, editor, Pro­
ceedings of the 3rd ACM Conference on Electronic Commerce (EC-01), pages 202- 206. The ACM 
Press, 2001. 
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more, efficient bidding for each customer is only feasible when automated: hence 

the use of software agents. These agents allow a shop to process a large number of 

small transactions , and enable them to make a deliberated bid for every customer 

entering the shopping mall. 

In CASy, shops react to consumer behaviour and to behaviours of other shops, 

yielding various interdependencies in the commercial effects related to being dis­

played together with competitors. For various basic and simple models for on-line 

consumers, shops , and profiles, we demonstrate the feasibility of our system, i.e., 

that proper matchings of consumers with shops are achieved, and that shops can 

learn their niche in the market , even in the case of such interdependencies. Es­

pecially, to validate the economical concept of the market mechanism underlying 

CASy, we develop an evolut ionary system for bidding supplier agents. In this ap­

proach , the agent system is investigated like an (adaptive) economic market, as in 

agent-based computational economics (ACE) (see also Section 1.2, and Chapters 3 

and 4). 

Furthermore, in this chapter we reflect on the merits of the system , and assess 

the advantages and issues that need further attention, from both the technological 

and the economical point of view. In [17] we extend this work and also develop 

adaptive software agents that learn bidding strategies based on neural networks and 

strategy exploration heuristics. 

We note that the mechanism we describe is not limited to the example of the 

electronic shopping mall , but can easily be extended to other domains where (pre) 

selection of possibilities has to be guided, like banners on more general websites, 

attention spaces on mobile devices, or other types of marketplaces . 

This chapter is organised as follows. First, Section 5. 1 motivates the decen­

tralised, agent-based approach for allocating attention space, and discusses related 

approaches. In Section 5.2, the design of CASy is presented. The evolut ionary 

simulation is explained in Section 5.3, whereas Section 5.4 contains the results. 

Section 5.5 reflects on practical implementation issues such as privacy and the com­

munication overhead of the mechanism. Finally, Section 5.6 concludes. 

5.1 Motivation and related research 

Before describing CASy in more detail, we first elaborate on the merits of such a 

system, and the motivation for using software agents. Also, we discuss related work. 

In Section 5.1. l we compare the decentralised approach with the more commonly 

used centralised approach. In Section 5.1.2 we comment on the use of software 

agents. Section 5.1.3 gives an overview of related work. 
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5.1.1 Centralised vs. decentralised recommendation 

With the advent of electronic marketplaces, scale limitations as encountered in the 
brick-and-mortar world no longer apply: the supply side of the market is no longer 
restricted by geographical considerations or lack of physical (shelf) space. At the 
same time, novel problems are encountered, like how consumers can find their way 
in a large marketplace where very many suppliers offer their products. 

To this end, a mechanism provided by a trusted third party is desired to propose 
relevant shops and products to a consumer in e.g. a virtual shopping mall. A central 
filtering scheme is a feasible solution for several different business areas. For such 
an approach, knowledge on both the user and of the shops, as well as knowledge on 
the product domain needs to be stored in a central location in order to determine 
appropriate matches. This approach is used in recommender systems like Amazon 
and eBay [114] to recommend goods on specific domains such as books and CD's, 
and in shopbots or pricebots [46], as for instance BargainFinder [66]. Keyword 
profiling is also a popular method for ranking online sites in search engines. This 
amounts to contracts for charging monetary amounts for increased visibility, given 
specific keyword entries , e.g. [52- 54]. 

A central or personal filtering system works well in the case of suitable and well­
demarcated domains, as for instance for a book and music store. However, for a large 
heterogeneous marketplace with many participating shops and consumers, several 
complexity difficulties arise. This is due to the amount of relevant information that 
has to be tracked and processed by the filtering mechanism in the form of relevant up­
to-date knowledge of e.g.: the consumer 's interest in different product domains and 
shop categories; the shops' products, ways of doing business , and business interest ; 
and ontologies and domain knowledge for various product categories. Also, the 
weighing of multiple issues like service, quality, price, and product diversity (add­
ons and customisation of products) can be important. 

Besides the computational complexity problems for information processing, this 
requires the transfer of business information of shops towards the central system as a 
trusted third party. Such a practice encounters many objections by businesses, even 
if only product catalogues are concerned [78, 135]. In addition, a central mechanism 
still needs to make decisions about what to display in which order to a consumer, in 
a way that is reasonable to all parties: all the suppliers and consumers. A fair and 
general ' of interests (utilities) of different market parties is usually not possible, 
however , and concepts like Pareto-efficiency (see Def. 4.3) are used instead. 

Thus, central filtering mechanisms may suffer from increasing (computational) 
complexity as well as serious objections and obstructions from commercial parties 
in various sorts of business areas . 
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5 .1.2 Use of adaptive software agents 

We believe that the system as presented is the natural evolution of auction-based 

allocation systems like those currently employed by internet companies like Google 

(for sponsored keywords, [52]) and Overture (for banner targeting, [53]). Whereas 

these pre-cursor systems rely on the human factor to set essentially static prices 

for particular goods, the use of software agents in our system in principle allows a 

market-party to assess the value of each individual prospect, if desired at a very 

detailed level, as well as take into account real-time business-related domain knowl­

edge and strategies. The implementation of adaptivity into the software agents 

allows the "market" for consumer attention to function more efficient ly, where the 

targeting of potential prospects can be more precise, and changing buyer behaviour 

can be tracked and followed. As such, agent-assisted recommendation in compet­

itive markets represents the next logical step for current auction-based allocation 

systems. 

5. 1.3 R elated research 

Our work relates to the large body of research concerning market-based control [20, 

23, 43]. This paradigm is essentially about controlling complex systems using a 

(distributed) market mechanisms for allocating scarce resources. A large number 

of applications exist such as the allocation of computational resources [23, 43], load 

balancing and climate control [145]. Our work applies the paradigm of market­

based control to generating recommendations in a distributed fashion using software 

agents. 
Related to our approach for generating recommendations is a prototype called 

MATE [91] (Multi-Agent Trading Environment) that performs market-matching us­

ing agent technology. In [91], merchant agents receive the profile of the consumer, 

and each suggests one or more products to a personal consumer agent . The per­

sonal consumer agent then filters the appropriate products and ranks the remaining 

products according to the customer 's preferences. In this approach, selection is 

done on the consumer side, and significant knowledge on a product domain should 

be incorporated in the personal consumer agent , being a task of a central party to 

provide. 
A more recent approach by Wei et al. [142, 143] has a number of characteristics 

similar to CASy; they also apply a central auctioneer to shortlist the recommenda­

tions based on bids made by information providers (called recommending agents). 

In their approach, a reward agent determines the reward or feedback for the rec­

ommending agents based on the quality of the recommendations as perceived by 

the user. The rule used to calculate the reward is shown to be Pareto-efficient (i.e., 

maximise the social welfare) [142] . Based on this feedback, the bidding (recom­

mending) agents update their strategy using heuristic rules . The bidding strategy 
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proposed here, on the other hand, is more general and adapted by machine learning 
algorithms. 2 Also, the feedback is directly obtained via the consumers, and it is up 
to the supplier agent to determine the value of this feedback. 

5.2 The design of CASy 

In this section, we present the framework of CASy (Competitive Attention-space 
System) for matching consumers with relevant suppliers in the case of an electronic 
shopping mall. We note that the framework we describe is not limited to the ex­
ample of the electronic shopping mall, but can easily be extended to other domains 
where (pre) selection of possibilities has to be guided, like banners on more general 
websites, attention spaces on mobile devices, or other types of marketplaces. Instead 
of addressing to the case of "shops" only, we henceforth mainly use the more general 
term "supplier" to refer to the suppliers of goods or services. 

( SAKS ) ( GAP ) 
(REPLAY) ( Levi's ) 
(ARMAN! JEANS) ( macys ) 

Banner list 1 Banner list 2 

Figure 5.1: Advertisements are shown in the form of banners. The banner list is 
tailored towards a consumer's characteristics. 

When a consumer enters a shopping mall, he3 expresses his interest for certain 
products and selects the business sector of his interest. The information about 
his interest, possibly augmented by additional knowledge, is passed on to potential 
suppliers in the sector. The suppliers subsequently compete against each other in 
an auction by placing bids to "purchase" one of a limited number of entries of 
attention space for this specific consumer. Finally, the consumer is shown the list of 
winning suppliers, using for instance banner advertisements. An example is depicted 
in figure 5.1. 

Software agents (see Section 1.1.3)) are used to facilitate the fine grain of inter­
action, bidding, and selection in CASy. For our mechanism, we have software agents 
for the suppliers and for the enabling intermediary: the mall manager. The model 

2 We discuss results using evolutionary algorithms in this chapter. For an approach using neural 
networks, see [17]. 

3 "he" stands for "he or she." 
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Figure 5.2: Components of the shopping mall and their interactions. 

of the electronic shopping mall is depicted in figure 5.2, showing both the software 
agents and the actual economic players in the shopping mall : the consumers and the 
suppliers . The participants within the shopping mall and their roles are discussed 
in more detail in the sections that follow. 

5.2.1 Mall manager agent 

The Mall Manager Agent (MMA) acts as an intermediary between consumers and 
supplier agents. The task of the MMA is to facilitate bidding and information dis­
semination processes by providing the auctions and addi tional customer profiling 

services to the suppliers. Given privacy concerns, t he consumer profile will not 
automatically be communicated in full to the suppliers, as e.g. described in Sub­
section 5.2 .2. Information on the consumers could be stored within the MMA for 

revisiting consumers, leaving open consumers who wish to remain anonymous. T he 
MMA applies the auction: it collects the bids of the supplier agents, selects the 
winners, charges the selected suppliers , and enables their display. In Section 5.2.4 
we address the auction in more detail. 

5.2.2 Consumers 

In t he model of figure 5.2, the consumer directly communicates its interest and 
preferences to the MMA, e.g. via a web page. Note, however, that the assistance 
of a personal software agent for the consumer is conceivable. Preferences include 
the product that is being searched after and various values for the attributes of the 
product . The MMA can also consider information on a consumer 's profile. The 
consumer profile consists of more generic information on t he consumer. This could 
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include regular personal information like general interests , previous acquisitions, as 
well as age or zip code; but also general sales-related information like style or the 
interest in issues as price, quality, and service. The consumer can either be queried 
directly for this information, or the MMA can derive the information from previous 
interactions. The consumer can restrict or disable the dissemination of his profile 
information. E.g., distribution of such information can be limited to for specific or 
anonymised parts, or to general sales-related information that is derived from the 
private profile. 

5.2.3 Suppliers and supplier agents 

Each supplier "owns" an agent that acts on the supplier's behalf, called a supplier 
agent. The main task of a supplier agent is to effectively purchase attention space. 
The agent will do this by bidding on attention spaces that are to be displayed to 
consumers it deems interesting, thus maximizing the supplier's profits . To this end, 
it has to evaluate (information about) consumers. The valuation of a consumer by a 
supplier agent is closely linked to its bidding strategy: the bid should not outweigh 
the expected profit (if the supplier is to break even) or percentage thereof. This task 
can be complicated: the variety of consumers can be great , and the competitive 
environment can change rapidly. Also, the supplier 's conception of the targeted 
audience may deviate from its actual audience. 

The agent can learn this targeting by for instance using the push-back informa­
tion from individual customers, e.g. the knowledge whether or not its advertisement 
was selected by the customer (click-through), subsequent buying actions, or, to be 
provided by the mall manager , (selected) click-stream information (e.g. time spent 
on pages, mouse actions). Additionally, the agent can use supplier-specific knowl­
edge and (adaptive) rules for accurate targeting. 

Along with a strategy for bidding on customers , a supplier agent is also equipped 
with knowledge about the supplier. Such knowledge can contain amongst others 
relevant business information on the supplier that is needed for the matching process. 
This information should determine the supplier's conception of its "niche" in the 
market, and hence the type of preferred consumer. Typical business information 
could be the products carried and the intended audience. Furthermore, the goals 
and limitations of the supplier can be taken into account, such as the current quantity 
of a certain product in stock or the service level. 

5.2.4 Auctions 

In this Section we address the auctions protocol and the payment procedure of the 
MMA. A payment procedure specifies what should be charged and when. See also 
Section 2.3.5, where various auction mechanisms are discussed. 
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Auction protocol 

The actual choice of the auction protocol can depend on many factors. We focus 

on the single-bid sealed auction, being a communication-efficient auction. With this 

procedure, each supplier submits a single sealed bid for a particular consumer. The 

MMA allocates the available positions to the highest bidders, where the first position 

is allocated to the highest bidder, the second position to the second highest bidder, 

and so on. In some environments the ranking is not important, whereas in other 

cases the profits for the supplier depend on the position obtained. For this reason, 

the choice of payment scheme matters, and is discussed below. Note that , since the 

MMA executes the auction for each arriving consumer, suppliers losing an auction 

could increase their bid in the next auction for a similar consumer. 

Payment procedure 

Several different payment schemes are possible for various auction procedures. In 

the Vickrey auction, the winner pays the price of the second-highest bid (see also 

Section 2.3.5). This is a prominent and widely-used auction type, which has been 

shown to be efficient for independent valuations of the item [27, 133, 136]. The 

auction is also robust, since revealing ones true preferences is the dominant strategy 

in case of independent valuations. 

For the case where multiple banners are shown concurrently, we apply an ex­

tension of the Vickrey auction where winners pay the (N+l} price, where N is the 

number of items (here banners) . This is an instance of the generalised Vickrey 

auction, which has the same auction characteristics as above (see Section 2.3.5 for 

details). 

Note that in such a setup, the same price is charged to the winners of a banner 

placement. The auction is only theoretically guaranteed to work well if the sold 

goods (the attention spaces) are assumed to be identical, an assumption that is 

dependent on the way a customer chooses from a list of alternative offerings. In the 

simulations, we investigate models of customer behaviour where this assumption 

is valid, as well as a model where it does not hold. In the latter case, we also 

investigate another payment scheme, the so-called next-price auction. Here, each 

winner pays the price of the next-highest bidder. Such more complicated auctions 

are notoriously hard to theoretically demonstrate optimal behaviour for , and we use 
the ACE methods (as discussed later) to show that in the simulations this auction 

does work efficiently in the case where the valuation of an attention space depends 

on the position it has on the list and when the highest position is the most valuable 

(and the second-highest position is the next most valuable etc .. ). 
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5.2.5 Effectiveness and feasibility 

Although the typical business information for the supplier agent can contain many 
variables that relate to those in a consumer profile, these cannot be matched directly. 
Rather, the supplier must find and improve its actual niche in the market, especially 
in the fine-grained advertisement mechanism of CASy. Similar observations hold 
even more for the valuation of a consumer. 

The need for accurate valuation and targeting is especially pronounced when 
consumers are significantly contested by competing suppliers. We illustrate this 
by the case of a very expensive department store: consumers arriving in a fancy 
car are a priori as likely to buy at the store as consumers arriving in a middle­
class car. However, when a cheaper department store exists across the street, this 
competition changes the behaviour of the latter consumers much more than of the 
former. Similarly, in CASy the valuation of an advertisement space depends on the 
selection of and competition between suppliers. 

An N + 1 auction mechanism is theoretically efficient in case of fully rational 
agents and independent valuation of the items. However, if consumer purchases are 
like consumer models 2 and 3 (see also Section 5.3.2) , the valuation of advertisement 
space also depends on the selection and competition between various suppliers. It is 
then unclear whether an efficient allocation of the attention space will emerge, i.e. , a 
correct match between consumers and suppliers with the largest appearing interests 
for being displayed together. 

In the following , we will show via evolutionary simulation as in the field of agent­
based computational economics (ACE, [123]) that the market mechanism is indeed 
effective and results in an efficient allocation. Furthermore, supplier agents learn to 
properly evaluate their environment and thereby locate their niche in the market. 

5.3 Evolutionary simulation model of CASy 

In this section, we model the electronic shopping mall for an evolutionary simulation 
as in ACE, based on Section 5.2. The goal of the simulation is to assess the feasibility 
of the market mechanism of CASy (see Section 5.2.5). To this end, we will make some 
additional assumptions and simplifications, which enables us to study, measure, and 
visualise the emerging behaviour of CASy (results are given in Section 5.4). 

5.3.1 Mall manager agent 

The MMA has in the simulation 3 banner advertisements to dispatch (see also 
figure 5.1), and executes the auction as described before. 
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5.3.2 Consumer models 

We abstract away from any interpretation of the profiles. Profiles are represented 

by a vector of real values. In the simulations , the consumers are classified by a one 

or two dimensional vector with entries in a [O .. . l ] range. The profile can reflect a 

consumer 's interests such as price segment, taste, or quality, or any combination of 

characteristics projected on 1 or 2 dimensions. We thus model a class of consumers 

for some given category of products. In the simulation of CASy, several consumers 

with different profiles arrive and are contested by the suppliers in CASy. 

The "buying" behaviour or feedback of the consumers is also simulated. This 

enables the supplier agents to learn the proper bidding strategy. We first model 

the purchasing behaviour of a single consumer for one isolated supplier, and then 

extend the buyer behaviour to models with several displayed suppliers. 

Buying behaviour model for one consumer and one supplier 

For each supplier i , the expected gross monopolistic profits E ( rri ( c)) is its average 

gross profits for a possible purchase following the observation of a consumer of its 

advertisement, while no other supplier is shown. We take 

E (rri(c)) = µiPi(c), 

where Pi(c) denotes the monopolistic purchase probability for consumer profile c 

and µi is a constant value related to the supplier 's average profit when a purchase 

is made. Note that both µi and Pi(c) are taken as an externally imposed model for 

interaction and are initially not known or available to the supplier. 

In the simulation each supplier is given a centre of attraction a; , where Pi(c) is 

maximised. We used two types of purchase probability functions Pi in the experi­

ments: (1) linear functions, where the P; is proportional to the Euclidean distance 

d(c, a;) in the following way: 

P;(c) = 1 - Jd(c, a;), 

and (2) Gaussian functions with the highest point corresponding to the centre of 

attraction. The width of the Gaussian curve is then set by parameter O"i· For 

simplicity the maximal monopolistic purchase probability is set constant to 1. This 

value can be chosen lower , but is chosen for maximal discrimination between various 

advanced behaviour models (see Subsection 5.3.2). 

Buying behaviour models for several displayed suppliers 

As the consumer is presented with a selection of winning " Consumer Attention 

Spaces", we assume that with some probability p he or she will buy a product. In 
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effect , this stochastic behaviour can be modelled as meaning that a single presen­
tation of banners results in an amount p of products being sold: how much and at 
which recommended supplier (the buying behaviour) is formalised in the Customer 
Buying Behaviour Models. Here, we present several Customer Buying Behaviour 
Models, as the behaviour of consumers shopping for a specific product may be dif­
ferent for different product areas or different consumer populations. 

We modelled three classes of consumer behaviour: 

1. Independent visits with several purchases. In this model (see figure 5.3), the 
consumer visits all displayed suppliers , and can buy products at several sup­
pliers (e.g. CDs). 

2. Independent visits with one expected purchase. In this model (see figure 5.4) , a 
consumer visits all displayed suppliers and then buys on average one product 
in total (e.g. a computer). 

3. Search-till-found behaviour. In this model (see figure 5.5) , the consumer visits 
the suppliers in sequential order from top to bottom, until he finds a supplier 
with the proper product , which he buys (e.g. a raisin bread). 

The consumer behaviour in these models is stochastic: whether a product is 
purchased by consumer cat a certain supplier j depends on a probability value Qj(c) . 
The monopolistic purchase probabilities P;(c) are the basic parameters , determining 
these probability values Qj(c) as shown in figures 5.3 to 5.5. The expected gross 
profits E (Pi ( c)) for supplier j is then given by 

Notice that in the models of figure 5.4 and 5.5, the probability that an item is sold 
at one supplier depends on the monopolistic purchase probabilities of its competitors 
within the list . Importantly, for the third model, the actual position of a supplier 
on the list influences the expected average proceeds, meaning that the individual 
banners are no longer identical. We will address this issue, and a solution, in detail 
in Section 5.4.5. 

5.3.3 Supplier models 

We will denote by gross profit the profit that a supplier earns on a product, before the 
cost of advertisement is taken into account (but after accounting for all other costs) , 
and by net profit the profit after deduction of all costs, including advertisement cost . 

The goal of a supplier is to maximise net profits , and therefore a supplier tries 
to sell as many items as possible at the lowest possible advertising costs. The net 
profit of a supplier is also referred to as the supplier 's payoff. The supplier agents in 
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Figure 5.3: Consumer model of independent visits with several purchases, where Pi = 
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Figure 5.5: Consumer model with search-till-found behaviour, where Pi= Pi(c). 
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the simulation have no initial knowledge of their own actual niche or payoff function 
in the market (see Section 5.2.5). 

A bidding strategy specifies the monetary bid for each possible consumer profile. 
Given the feedback in the form of actual payoff from visiting consumers, a supplier 
agent adapts its bidding strategy and thereby indirectly learns the consumer be­
haviour and its competitive environment determined by other supplier agents. Note 
that these two factors are interrelated (see also Section 5.3.2) . The strategy of the 
agent is learned using an evolutionary algorithm (EA). The EA is explained below. 

5.3.4 Evolutionary simulation of supplier agents 

We simulate the adaptive behaviour of the supplier agents using an evolutionary 
simulation like in the field of agent-based computational economics (ACE) [1 , 42, 123, 
127, 130, 138] and similar to the implementation used in previous chapters. Unlike 
the previous implementations, however, the strategies of each supplier agent evolves 
independently in a separate population. This is because each supplier agent is of a 
different type (i .e., has a different centre of attraction) and therefore targets different 
consumers. 

We proceed as follows. Each supplier agent is represented by an evolving pop­
ulation of strategies. These strategies are evaluated and evolved according to the 
amount of profit they earn in a CASy simulation. In such a CASy simulation, a 
number of consumers arrive, supplier strategies bid for each of these, and the win­
ners get the expected payoffs as described in Section 5.3.2. The strategies that are 
evolved after repeating this process many times, show the emerging behaviour of 
the suppliers. Hence, the process of evolution finds effective strategies for a CASy 
simulation. 

An evolutionary algorithm (EA) as described in Section 1.2 is used to adapt the 
strategies of the supplier agents. The fitness function and the strategy representation 
are explained below. For further implementation details, see Section 1.2.3. 

Fitness evaluation 

The fitness of a strategy is equal to the average profits obtained. The actual profit 
naturally depends on the context , i.e. the profiles of the visiting consumers and 
the bidding strategies used by the opponents (viz. the competing shops). The 
populations therefore co-evolve. In order to obtain an adequate indication of the 
performance, the fitness measure is based on several trials with different opponent 
strategies. The fitness of the opponent strategies is determined concurrently. 

We now give a more detailed description of the steps used to determine the fitness 
of the suppliers' bidding strategies. 
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1. For each of the suppliers combine the offspring and parent population into a 

single larger population. We now have m populations, one for each supplier. 

2. Reset all previously made profits. 

3. Select randomly a single strategy from each population. These bidding strate­

gies are used by the suppliers in the competition. If the competitor is set to 

random (as in Section 5.4.2), however , the strategies are evaluated against 

random bidding strategies. 

4. Let a number of consumers with different profiles visit the shopping mall in a 

sequential order. We use a fixed set of consumers that are evenly distributed 

over the profile space (this reduces stochastic variation in measuring the per­

formance of the strat egies) . 

5. For each consumer the supplier obtains feedback on the obtained profits. When 

a consumer visits the mall the following steps determine the profits: 

(a) Each supplier bids on the consumer using the selected strategy and given 

the consumer 's profile. The strategy is basically a function which maps 

the consumer profile to a bid. Below, the details on the strategy repre­

sentation are described. 

(b) The mall manager agent (MMA) selects the winners and determines the 

advertising costs, as described in Section 5.2.4. Only suppliers who bid 

higher than zero will participate in the negotiation. 

(c) The MMA shows the list of selected suppliers to the consumer , who de­

cides how much to buy. The purchase amount is determined by the con­

sumer profile and consumer behaviour models described in Sections 5.3.2. 

6. The total profits (purchases minus advertising costs) for each strategy are then 

stored for later reference. 

7. If the profits of a strategy have been determined a pre-set, fixed number of 

trials (and the strategy has thus been tested against different opponent strate­

gies), this strategy is removed from the population. 

8. The process is repeated from step 2 until all the populations are empty. 

9. The fitness for each strategy then equals the average profit obtained in each 

of the trials. 
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Figure 5.6: Examples of two bidding strategies as learned by co-evolution. The 
bidding strategy determines the bid value for any consumer profile. The top figure 
shows a strategy for a one-dimensional consumer profile , whereas the bottom figure 
shows a strategy for a two-dimensional consumer profile 

Bidding Strategy Representation 

In general terms, a supplier's bidding strategy is a function which returns a bid value 
given the consumer profile. Within the set-up of the simulation the profile has either 
one or two dimensions. In case of a single dimension, the strategy is represented using 
a piece-wise linear function that returns the bid given a value along the consumer­
profile axis. For a two-dimensional consumer profile, the strategy is represented 
by triangular planes. Examples of a bidding strategy for a one-dimensional and 
two-dimensional consumer profile are given in Fig. 5.6 The piece-wise linear bidding 
strategies are encoded on the chromosome as follows. In case of a one-dimensional 
profile, the chromosome contains ( x, y) coordinates for each of the defining points 
(the number of defining points is a parameter in the simulation), where x is the 
consumer profile and y the bidding value. The bidding values for the edges of the 
consumer profile are always specified within the chromosome. The bidding value 
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for a given consumer profile is t hen calculated by interpolation between two points 

neighbouring of the consumer profile on each side. 
For a two-dimensional consumer profile, the strategy is represented by triangular 

planes. The strategy is constructed using Delaunay t riangulation of the (three­

dimensional) defining points. The bidding value is then determined by interpolation 

between the three vertexes of the triangle containing t he given consumer profile. 

5.3.5 Measure for proper selection of suppliers 

The selection procedure in an auction should ultimately lead to an appropriate 

selection of suppliers for consumers. We start from the economic point of view of 

optimizing the revenue of t he collection of shops in the shopping mall as a whole. 

Consider the n suppliers wit h the largest expected payoffs for a given consumer. 

We measure the proportion of properly selected n suppliers as t he fraction of t hese 

n suppliers that are present in the actual list of 3 displays shown to the consumer. 

From the consumer point of view, we can interpret t he expenditures of a con­

sumer at a supplier as a measure for his interest in the supplier. In case that t he 

ratio between expenditures and payoff wit hin a certain business sector is similar 

for the suppliers in that sector , the above measure is related to both the consumer 

interests as well as t he supplier interests. 

5.4 Results 

We performed a number of experiments in thee-shopping-mall simulation outlined 

in Section 5.3. The results are given and discussed in this Section. 

5.4.1 Simulation settings 

Table 5. 1 shows t he parameters and their values which are varied for different sim­

ulation runs. For a descript ion of the mall parameters refer to Section 5.3. For 

a descript ion EA parameters , see Section 1.2. Two of the parameters are fur ther 

explained below. 

• Expected gross monopolistic profit func tions (E(7r)). The E (7r)-functions are 

explained in Section 5.3.2. The applied settings are specified in table 5.2. 

Figure 5. 7 shows the functions "set2" for 8 different suppliers and a one­

dimensional consumer profile. The functions defined in "set3" have different 

µ; and b combinations for each supplier ; µ; varies between 0.5 and 1.0, and b 
between 1.0 and 2.0. 

• Number of defining points. A supplier has to obtain a bidding function on the 

space of consumer profiles. The function that is learned is an interpolation 
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Parameter Value 
EA Parental population size (µ) 25 
Parameters Offspring population size (>.) 25 

Selection scheme (µ+>.)-ES 
Mutation model self-adaptive 
Initial standard deviations (O";(O)) 0.1 
Minimum standard deviation ( f.u) 0.025 

Mall Number of suppliers 8 
Parameters Number of banner spaces (N) 3 

Maximum bid value 1.5 
Consumer behaviour model 1 ; 2 ; 3 
Expected gross monopolistic profit (E(rr)) setl / set2/ set3 
Profile dimensionality 1 or 2 
Number of defining points 8 (1-D,), 16 (2-D) 
Number of consumers 50 (1-D), 100 (2-D) 

Table 5.1: Default settings of the simulations. 

E(rr) function name Type µ; 8 (} 

Setl Linear 1.0 2.0 -

Set2 Gaussian 1.0 - 0.2 
Set3 Linear variable variable -

Table 5.2: Consumer purchase functions and their general settings. 

function , based on a number of defining points. For t he one-dimensional case, 
this results in a piecewise linear function; for the two-dimensional case, we 
obtain the function values by triangularisation of the profile surface. 

5.4.2 Single advertisement model 

In this subsection, we illustrate the use and evolution of the bidding function for a 
supplier for a very simple setting, where the optimal bidding strategy is known from 
auction theory. 

The setting contains a single store competing against a random opponent for the 
case of one banner. The random player bids any random value between 0 and 1.5. 
Since a Vickrey (second-price) auction is used , it is a well-known dominant strategy 
for the supplier to bid its t rue valuation (i.e. the expected gross profit) [136] ; any 
lower bid risks a missed profit-opportunity, whereas a higher bid might result in 
direct loss. The dominant strategy maximises the supplier's net profit , regardless 
of the opponent 's behaviour. Thus, the store should learn the profit function as 
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consumer profile 

Store 1 
Stcre 
Store 3 
Store 4 

Store 6 
Store 7 
Store 8 

Figure 5.7: Expected gross monopolistic profits at the different stores for "set2" 

function settings. 

the bidding function. The results for experiments on this setting show that this 

happens indeed. Typical, good results are shown in figure 5.8, where E('rr) is a 

Gaussian (recall that piecewise linear functions are used). 

5.4.3 Consumer model 1: independent visits with several 

purchases 

This consumer model assumes that expected purchases at each supplier can be 

modelled by the same function as in the single banner case (see Subsection 5.3.2). 

The results are shown in figure 5.9. Matching accuracy is measured in several 

ways. We display the proportion of properly selected n suppliers for 3 banners and 

n = 3, 2, 1 (see Subsection 5.3.5). The reason for including n = 2, 1 as well is 

that the evolutionary system has some degree of stochasticity, and thus small errors 

occurring frequently can have larger influence on individual outcomes (although 

relatively li ttle impact on the payoff obtained) . Results using these two measures 

show an almost perfect match. The results after 500 generations of the EA are 

summarised in table 5.3. 

5.4.4 Consumer model 2: one expected purchase 

It is more difficult to get a stable system in this situation, since the expected amount 

purchased at a supplier (and therefore the valuation of a banner space) depends on 

which other stores are selected as well. Nevertheless, the simulation does stabilise, 

and the results are comparable to the previous consumer model. See table 5.3. 
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Figure 5.8: Example of a bidding strategy as employed by the supplier after co­
evolution no longer increased the profits obtained. Results are shown for a single 
supplier competing against random supplier. Also shown is the dominant bidding 
strategy. 

Consumer model I E (7r) I n = 3 In= 1 
Regular a u ction settings 
1 setl 0.95 ± 0.01 0.99 ± 0.00 0.99 ± 0.00 

set2 0.96 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 
set3 0.92 ± 0.01 0.98 ± 0.00 0.99 ± 0.00 

2 setl 0.94 ± 0.01 0.99 ± 0.00 0.99 ± 0.00 
set2 0.95 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 
set3 0.90 ± 0.01 0.97 ± 0.01 0.99 ± 0.00 

3 set l 0.73 ± 0.03 0.76 ± 0.07 0.79 ± 0.09 
set2 0.83 ± 0.05 0.89 ± 0.06 0.92 ± 0.05 
set3 0.75 ± 0.02 0.89 ± 0.02 0.97 ± 0.01 

Next-price auction 
3 setl 0.79 ± 0.03 0.92 ± 0.03 0.97 ± 0.02 

set2 0.75 ± 0.03 0.92 ± 0.02 0.98 ± 0.01 
set3 0.83 ± 0.02 0.95 ± 0.02 0.99 ± 0.00 

Table 5.3: Matching results for consumer models 1 through 3. Results denote pro­
portions of properly selected n suppliers for 3 banners and n = 3, 2, 1. Averages 
over 10 runs of the simulation are shown with the standard deviations. 
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Figure 5.9: Matching results for consumers with independent purchases and E(7r) 

is set to "set2" . 

5.4.5 Consumer model 3: search-till-found 

In this model, it is not only important for t he stores to be in the list , but also to take 

into account the position on the list (and the other stores above him). Table 5.3 

shows that it is indeed more difficult for the stores to find a good matching, in 

particular when using "setl". This occurs since all relevant suppliers prefer the very 

top advertisement space and are willing to bid above their valuation (because of the 

N + 1-price auction their payment remains relatively low) . As a result , the bids 

reach their limit value (even when this is set to 2.5). 

Therefore, we have applied another auction payment procedure as well: each 

of the winning stores pays the price offered by the next following highest bidder, 

the so-called next-price auction. This procedure appears to improve the matching, 

giving comparable results to other consumer models (see table 5.3) . Note that a 

store who obtains the first banner position now pays more than the other stores. 

This is also reasonable, since the first position is actually more valuable. 

We want to remark that we have chosen the maximal purchase probability to 1 

(see Subsection 5.3.2) to have maximum difference between this consumer model and 

the previous ones. When this value is lower, results will become more comparable 

to the other models also for the regular auction setting. 

5.4.6 Two-dimensional profile 

We now consider the two-dimensional case, where each consumer profile corresponds 

to a position within a square. The types of profit functions are similar to the previous 
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Consumer model E (7r) n=3 n=2 n=l 
1 setl 0.95 ± 0.01 0.99 ± 0.00 1.00 ± 0.00 

set2 0.90 ± 0.02 0.97 ± 0.01 0.99 ± 0.01 
set3 0.93 ± 0.01 0.98 ± 0.00 0.99 ± 0.00 

2 setl 0.94 ± 0.01 0.98 ± 0.00 0.99 ± 0.00 
set2 0.92 ± 0.01 0.98 ± 0.00 1.00 ± 0.00 
set3 0.93 ± 0.01 0.98 ± 0.00 0.99 ± 0.00 

3 setl 0.85 ± 0.01 0.93 ± 0.01 0.97 ± 0.01 
set2 0.75 ± 0.02 0.89 ± 0.02 0.97 ± 0.01 
set3 0.82 ± 0.02 0.91±0.02 0.94 ± 0.02 

Table 5.4: Matching results for consumers with two-dimensional profiles. See also 
table 5.3 for comparison. 

1 

.$ 
t+= e o.s 
c.. 

Figure 5.10: Expected gross monopolistic profits E(7r) for "set2" function settings 
and a 2-dimensional consumer profile. 

case, extended for two dimensions. An example is shown in figure 5.10. 
The matching results are comparable, but slightly less accurate than for one 

dimension, see table 5.4. These can be explained through the more difficult learning 
problem (more defining points are needed for the search function) , and thus the 
settings of the evolutionary algorithms could be further optimised for more accurate 
learning results in this case. 

Specialisation 

Interestingly, the suppliers indeed find a niche in the market in case of competition. 
This becomes clear in figure 5.11 , which shows the intersection of a supplier 's bidding 
strategy for two different consumer models , viz . 1 and 2. For consumer model 1, 
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Figure 5.11: Contours of the average evolved strategy at level 0.5 of a supplier 1 a t 

generation 500 for consumer models 1 (left ) and 2 (right) using "set2". The points 

indicate the centres of attraction of the suppliers' Gaussian curves. 

a supplier 's payoff is independent of the other suppliers displayed. In the second 

consumer model, however , the payoff is shared amongst the displayed suppliers. In 

the latter model the payoff thus depends on the competi tion. We find that this gives 

supplier an incentive to locate niches in the market , and bid more in places where 

less competition is present. In figure 5.11 , the depicted supplier clearly expands 

its market to the upper right , and reduces its bids in the lower left region, where 

competition is relatively greater. 

Supplier payoff 

The above results mainly focus on the proportion of proper selection. We now 

briefly discuss the supplier payoffs, i.e. the net profits (see Section 5.3.3) . Firstly, 

we find that in all experiments suppliers obtain positive accumulative payoff in 

the long run. The strategies emerged are thus individually rational (see Def. 4.2) . 

Secondly, a supplier's payoff depends both on its function settings E (7r) and on 

the amount of competition. The latter is shown in figure 5. 12, which displays the 

accumulated payoff of the suppliers for consumer model 2 and "set2". The more 

isolated suppliers, in particular suppliers 4, 6, and 7, obtain a larger payoff than 

those with much competition (see also figure 5.11). This is due to the difference in 

advertisement costs. Note that this is in accordance with economics theory: in case 

of large competition, the net profit of competing suppliers is close to zero. 

5.4. 7 Conclusions 

The experiments show that a proper selection of suppliers emerges with very good 

to perfect matches. In case consumer model 3 is applicable, a next-price auction 

mechanism further improves the results. Furthermore, we find that all experiments 

show positive supplier payoffs. Finally, we observe that shops find their customers 
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Figure 5.12: The average accumulated payoff for each supplier using "set2" and 
consumer model 2. 

and their niche in the market via CASy. 

5.5 Evaluation and further research 

5.5.1 R eflections 

We can identify a number of commercial and technological advantages of CASy. In 
CASy, proper matching does not have to be performed or enabled by a third party. 
This significantly reduces the combinatorial complexity as compared to centrally 
processing all product ontologies and information about consumers and shops. Fur­
thermore, shops have substantial autonomy and can thus incorporate local domain 
knowledge and momentary business considerat ions in their bidding strategies and 
thus in the ultimate matching process. Especially, they do not have to reveal sen­
sit ive business information to a third party, and can take more sales aspects into 
account: not only product pricing, but also service level, quality, product diver­
sity, or customisation of products. The system also enables them to quickly adapt 
to market dynamics or their own internal situation (out-of-stock, discount periods , 
promotion). Note that the relevance of the shop for the consumer is still expressed 
via the monetary bidding procedure. The mechanism is also a form of dynamic 
pricing of at tent ion space. 

There is much debate about whether or not advances in Information Technology 
(IT) will increasingly make intermediaries within markets redundant ( disintermedia­
t ion) [37], or whether such advanced IT will help re-establish intermediaries because 
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of new value-added services that become possible (reintermediation) [21]). The re­

sults in this chapter can be taken either way: on the one hand, we can conceive the 

basic auction functionality performed by the MMA to be part of the customer agent, 

replacing the matching function previously performed by central filtering mecha­

nisms. Alternatively, we noted that there are many possible value-added services 

regarding user-profile enhancement that could be performed by a central shopping 

mall intermediary. This conclusion is in line with recent arguments regarding the 

effects of current agent technology on the disintermediation/ reintermedation debate 

[86] . 
The proceeds the electronic shopping mall can derive from the matching mech­

anism (through the auctions) can be used to facilitate additional intermediation 

services to both customers and shops (e.g. micro payments , 24x7 intermediation). 

Offering an effective matching mechanism adds considerable value to the customer 

experience, and can thus be expected to be an important selling point for the elec­

tronic shopping mall, and entice suppliers to participate in the mechanism. It will 

be interesting to investigate the exact economic conditions - such as at which price 

the suppliers are no longer prepared to follow the customers - for this to be relevant , 

but we leave that for future research here. 

Some points need attention when further implementing CASy. In CASy, infor­

mation about a consumer is (partially) communicated to suppliers. At the same 

time however , the consumer's privacy requirements must be respected. We will not 

extensively address this here, but just mention some approaches: having the con­

sumer decide what information he allows to be communicated, restricting the types 

of communicated information in general, or conversion of personal information to 

more sales-related properties. The latter could include restricting the profile to at­

tributes of the desired product (instead of the customer), like "expensive vs. cheap", 

"ultra trendy vs. conservative" etc. . . . Such attributes could in principle even be 

queried from the customer. As argued in [63], no uniform solution for privacy de­

mands exist , rather "privacy will have to be dynamically tailored to each individual 

user 's needs" and requirements. 

There remains the issue whether a central entity like the shopping mall would 

be willing to convey individual user related profile informat ion. Google for instance 

currently considers its click stream information a business secret. In the setup 

we introduced here, however , the proceeds that the intermediary obtains from the 

ongoing auctions, and possibly for additional advanced IT services, will be a strong 

incentive for the intermediary to consider what parts of the profile information are 

allowed to be disseminated by its clients (here, the suppliers). Note that when the 

intermediary charges a (fixed) price for customer profile information services, such 

information would constit ute a sunk cost for each seller , and reduce t he available 

funds for placing advertisements, resulting in lower bids. Since such cost will reduce 

all bids from all agents , the relative ordering of the bids remains intact and the 
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market-based selection mechanism itself is not affected by such addi tional cost. 
We remark that once individual shops receive customer (related) profiles, they 

have the tools developed in information intensive personalised marketing research at 
their disposal for determining how interested they are in each individual customer: 
i.e. interactive marketing, database marketing, micromarketing and one-to-one mar­
keting [15, 49, 76, 77, 95] ; in [118] these slight ly different approaches are considered 
in more detail. T he information fil tering mechanism we describe here is then t he 
gate controlling the flood of finely targeted business interests. 

Another point concerns the communication between suppliers and shopping mall, 
which is increased because of t he bidding process and the communication of con­
sumer profiles to the suppliers. However , t he communication in the mall is linear 
in t he number of customers, and also in the number of participating shops, and the 
size of the consumer profile. The latter is also typically very small, e.g. up to 100 
bytes. In a prototype implementation on a single P C, a single market comprising of 
100 learning shop-agents was easily able to sustain 100 customers per second, and 
still cont inuously update the internal state of the agents (the learning mechanism) 
[122]. 

To scale to even larger settings , the market can be divided into a number of 
segments, with each market handled by different agents. The profile then only 
needs to be transmitted to agents wit hin a part icular market segments , reducing the 
overall communication. We pursued this approach in a distributed prototype of the 
electronic shopping mall ([122]). In the extended agent architecture of the prototype 
different market segments are handled by sub agents (which can run on different 
machines) . In all , we do not perceive the somewhat increased communication as 
a significant problem , but rather as an issue that can easily be addressed in the 
process of framework-engineering if necessary. 

5.5.2 Open problems and future research 

We investigated the concept of CASy for several basic models. The results we de­
scribe here show that the market-based approach yields excellent buyer-seller match­
ing given adaptation of the bids made by the sellers. The ACE simulations have 
been carried out to demonstrate feasibility and learnability of the concept, as these 
simulations showed effective matching for different auction types and consumer be­
haviour models. It is also interesting to investigate how software agents can be 
developed for more advanced settings: one such example would be the extension 
of the simulations to a dynamical market, with sellers changing their profiles , or 
sellers entering and leaving t he market . For ACE feasibility and learnability stud­
ies, methods that can deal with such dynamic environments are only just starting 
to emerge. As we demonstrated that the steady state version of the problem per­
se is both effective and learnable, we would expect that dynamic versions of the 



106 Competitive market-based allocation of consumer attention space 

problem would also be learnable, but the effectiveness is then rather dependent on 

the speed and quality of the machine learning techniques employed by the shop 

agents as well as the actually chosen models for the dynamic environment . E .g., 

for methods such as neural networks (see [17]), the introduction of dynamics into 

the market will mean t hat additional complexity in terms of effective (commercial) 

exploration/exploitat ion strategies has to be int roduced. At this point we leave the 

investigation of dynamisation of the system as an interesting problem for fu ture 

research. 
Other points that need to be addressed in fu ture work should be concerned 

with taking account of the role of (local) ontologies , of marketing and data-mining 

techniques, and of partial consumer information. Furthermore, in this work , we 

placed an emphasis on the N + 1-price auction with single sealed bids. Other types of 

auctions could be furt her investigated , for example addressing the possible feedback 

given on bids of other part icipants (e.g. mult i-round auctions) or to address the 

revenue of the mall manager. 
From the consumer's point of view, we have interpreted the expenditures of a 

consumer at a shop as a measure for his interest in the shop . CASy gives priori ty to 

suppliers with the largest expected payoffs for a given consumer. T his thus leads to 

opt imisation of the revenue of the collection of shops in the shopping mall as a whole. 

In the case that within a certain business sector, the ratio between expenditures and 

payoff is similar for the suppliers in the sector , this means that CASy completely 

reacts on the interest of an individual consumer . However, across different sectors, 

there may be differences or anomalies, leaving the extension of CASy with addi t ional 

(monetary) correction mechanisms to avoid such anomalies as an interesting open 

problem. T his is part of our fu ture work. 

Finally, our system CASy is complementary to existing recommendation systems. 

It is important to know in what way these together could be used as part of a broader 

system. Also, which application areas are more sui ted for the existing recommender 

systems, and which for the CASy system. 

5.6 Concluding remarks 

In this chapter , we present a competi tive distributed system , CASy, for allocating 

consumer attention space (Sect ion 5.2). By evolutionary simulation as in agent­

based computational economics (ACE), we show the conceptual feasibili ty of the 

system (Sections 5.3 and 5.4). We modelled the various parts in the system in a 

basic and simple way suitable for analysis, visualisation, and comparison, and show 

that proper matchings emerged while suppliers can learn their niche in the market. 

Finally, we reflect on the advantages, opportunities, and further open problems 

concerning the proposed system (Section 5.5). 



Chapter 6 

Automated bargaining and 
bundling of information goods 

Personalisation of information goods becomes more and more a key component of a 
successful electronic business strategy [2]. The challenge is to develop systems that 
can deliver a high level of personalisation combined with, whenever possible, a high 
adaptability to changing circumstances. In this chapter , 1 we introduce a system 
which can attain these properties through the manner in which it sells information 
goods. 

We consider a novel approach in this chapter, where bundles of information 
goods, such as news articles, stock quotes, music, and video clips are sold through 
automated negotiation. Bundling of information goods has many potential benefits 
including complementarities among the bundle components, and sorting consumers 
according to their valuation (see [9] and the references therein). The advantage of the 
developed system is that it allows for a high degree of flexibility in the price, quality, 
and content of the offered bundles. The price, quality, and content of the delivered 
goods may, for example, differ based on daily dynamics and personal interest of 
buyers of information goods. 

The system as developed is also capable of taking into account business related 
constraints. More specifically, it tries to ensure that customers perceive the bar­
gaining outcomes as being "fair" by having customers end up with equivalent offers 
whenever that seems fair. This is important for customer satisfaction and acceptance 
of the system by customers. Partly because of this fairness constraint the actual 
bargaining process is not really one-to-one bargaining between seller and customer 
but instead is one-to-many (i.e., between seller and customers). 

In the developed system, autonomous "software agents" perform (part of) the 

1This chapter is based on [120]: K. Somefun , E.H. Gerding, S. Bohte, and J.A . La Poutre. Au­
tomated negotiation and bundling of information goods. In Agent-Mediated Electronic Commerce 
V, Springer Lecture Notes in Artificial Intelligence (LNAI). Springer-Verlag, Berlin, to appear. 
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negotiation on behalf of the users of t he system. A seller (or information provider) 

agent negotiates with several buyer (or customer) agents simultaneously in a bilateral 

fashion, using an alternating offers protocol like in Chapter 3. The agents are capable 

of negotiating about several issues simultaneously, such as t he price and the quality 

of the offered goods. Chapter 3 showed that , using such a bilateral negotiation 

protocol, efficient outcomes can be achieved after a process of learning from several 

negotiations. In this chapter, we introduce strategies that are capable of finding 

efficient solutions within a single negotiation (i.e., real-time) . 

To enable efficient and real- t ime mult i-issue bargaining outcomes, we decompose 

the bargaining strategies into concession strategies and Pareto-search strategies. 

The concession strategy determines the desired utility level during the bargaining 

process, whereas the Pareto search strategy looks for Pareto-efficient (see Def. 4.3) 

outcomes that maximise win-win opportunities for a given a desired utility level. 

Together these strategies produce offers and counter offers for the agents. An im­

portant cont ribut ion of this chapter lies in the actual development of Pareto search 

methods that result in efficient solutions while, at the same time, bargainers make 

concessions using a variety of concession strategies. To that end, we int roduce 

the orthogonal and orthogonal-DF method: two Pareto search methods. We show 

through computer exp eriments that the respective use of these two Pareto search 

methods by the two bargainers, combined with various concession strategies, re­

sults in very efficient bargaining outcomes (i .e., these outcomes closely approximate 

Pareto-efficient bargaining solut ions). We obtain these results without assuming any 

a priori knowledge of other player , nor experience from previous bargaining games. 

The remainder of t his chapter is organised as follows. First , we introduce a 

system for selling bundles of news art icles through bargaining in Section 6.1. Section 

6.2 discusses the buyer and seller agent in more detail and presents bargaining 

strategies for multi-issue negotiations. In Section 6.3 we investigate the Pareto­

efficiency of the int roduced bargaining approach through computer experiments. As 

we only consider the P areto-efficiency of the deals reached in this chapter, we do not 

simulate the entire system as developed, but rather restrict attent ion to bargaining 

with a single buyer. Experiments using one-to-many bargaining are investigated in 

the next chapter . Related approaches such as auctions are discussed in Section 6.4. 

In Section 6.5 we revisit our approach and conclusions follow in Section 6.6. 

6.1 A system for selling information goods 

The goal is to develop a system for the sales of bundles of news items where buyers 

bargain over t he pricing, quali ty, and content of t he bundles. The negotiated con­

tract applies to a fixed time interval, which is typically a short period of time, e.g. 

a single day. The bundle content defines which news categories the bundle contains. 

The system distinguishes between k categories. We fur thermore distinguish between 
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low and high quality-of-service categories. If a category with low quality of service 
is selected , a buyer receives only the news headlines for this category. A buyer can, 
however , after reading the headline, decide to purchase the entire article. In that 
case, a variable price is paid. Alternatively, the buyer can opt for a high quality of 
service category, in which case the buyer obtains all the articles without additional 
(variable) costs. In the following, we simply use quality to refer to the quality of 
service. 

The buyer negotiates about the variable price, the content , and the quality of 
the categories in the bundle. At the same t ime, a buyer negotiates a fixed price 
which is an upfront payment for the bundle as selected. Clearly, a high quality 
category is likely to result in a higher fixed price than a low quality category. Both 
buyer and seller have private preferences regarding such trade-offs between issues. 
Differences in preferences allows for the possibility of win-win outcomes (see also 
Chapter 3). The agents in the system can find these win-win outcomes using Pareto­
search strategies, without having to fully disclose their preferences. 

The value customers attach to news items may fluctuate heavily due to daily dy­
namics. Moreover, there may be wide differences in personal interests of customers. 
The advantage of the developed system is that it allows for a high degree of flexibil­
ity in the price, quality, and content of the offered bundles. The price, quality and 
content of the delivered goods may, for example, differ based on daily dynamics and 
personal interest of customers. 

The system as developed is also capable of taking into account business related 
constraints. More specifically, it tries to ensure that buyers perceive the bargaining 
outcomes as being "fair" by having buyers end up with equivalent deals whenever 
that seems fair . Due to the notion of fairness , negotiations are no longer independent 
and bilateral, but are in fact one-to-many from the perspective of the seller. Fairness 
and the way in which it affects the seller 's bargaining strategy is discussed in more 
detail in Section 6.1.2. We firs t continue, however , by describing the bargaining 
aspect of the system in Section 6.1.1. The bargaining protocol used is explained in 
Section 6.1.3. 

6.1.1 Bargaining using software agents 

Wit hin the system, autonomous software agents (see Section 1.1.3) perform (part 
of) the negotiation on behalf of the seller and the buyers. A buyer agent is a software 
agent owned by the buyer, and a seller agent is owned by the seller . Buyers and 
seller instruct their agent through a user interface (UI) . Figure 6.1 depicts, at a 
high abstraction level, the bargaining process between a buyer and the seller. There 
are roughly three possibilit ies for implementing the starting time of the negotiation 
process: buyers can negotiate a contract before, after, or during the t ime that the 
news becomes available. The system is set up in such a way that all three possibilities 
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Figure 6.1: The bilateral bargaining process between a seller and a buyer using 

software agents. 

can be implemented. 
Given a desired bundle content , a buyer agent can negotiate with the seller 

agent about the fixed price, variable price, and the quality for each category. The 

negotiated contracts apply to bundles of news items which become available during 

a predefined and fixed time interval (e.g., a day) . The value buyers attach to news 

items may fluctuate heavily due to daily dynamics. Moreover , there may be wide 

differences in personal interests of buyers . The advantage of the developed system 

is that it allows for a high degree of flexibili ty. The price, quality, and content of 

the delivered goods may, for example, differ based on daily dynamics and personal 

interest of buyers. 

6.1.2 Fairness and one-to-ma ny bargaining 

Potentially, bargaining can lead to unsatisfied buyers if buyers perceive the outcomes 

of the negotiations as unfair. This can occur when, for instance, two buyers obtain 

similar goods at the same t ime but end up paying very different amounts. Fairness 

of negotiation outcomes is important for customer satisfaction, which in turn may 

be important for a business ' long term profitability. The seller agent can prevent 

unfair outcomes by incorporating a notion of fairness , whereby buyers are treated 

in a similar fashion. This notion of fairness also implies that any information that 

is revealed about buyers during negotiation or by using the system in general, is not 

used to their disadvantage in relation to other buyers. This is also essential in order 

for buyers to accept the system and delegate responsibilities to software agents. 

In the system, the following not ion of fairness is incorporated into the bargaining 

strategy of the seller agent: within a limited t ime frame, the seller agent maintains 

an equal expected utility level with buyers who are interested in an ident ical bundle 
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content. To define fairness more formally, suppose a buyer reaches a deal at time td. 
We say that this deal is fair, rela tive to a fixed interval 6. > 0, whenever there exist 
a start time t. , with td E [t., t . + 6.], such that the seller2 is indifferent between any 
other deal reached within the interval [t., t. + 6.]. 

Whenever price is the only negotiable issue, the notion of fairness simply implies 
that all buyers interested in the ident ical bundle content end up paying the same 
price for this bundle, given that the deals are reached within a given time frame. 
This notion of fairness corresponds to the notion of envy-freeness in auctions [44], 
adapted to the more continuous setting of bilateral bargaining. In our case, however, 
negotiations concern several issues, in which case the expected utili ty level is used 
rather than the price. Note that the values for the various issues, such as fixed 
and variable price, can still vary for different buyers, since buyers can have diverse 
interests. This is an essential aspect of personalisation which needs to be preserved. 
Fairness , however, ensures that the seller 's expected utility for these different deals 
is identical. 

Because of the fairness imposed on the seller strategy, the bargaining process 
between the seller and an individual buyer can also affect other negotiations which 
occur concurrently. Fairness limits the bargaining options of the seller. Therefore , 
bargaining between a seller and a buyer is not really bilateral, but is in fact one­
to-many. Note that this holds only from the perspective of the seller. The buyers 
can normally not observe the negotiation processes with other buyers , and therefore 
perceive the negotiations to be bilateral. 

We note that besides fairness , also other business side-constraints may be imple­
mented . The actual way in which side-constraints, such as fairness , are implemented 
may be important because it can alter the strategic behaviour of buyers as well as 
the seller. 

6.1.3 Bargaining protocol 

The seller agent negotiates with many buyer agents simultaneously by alternating 
offers and counter offers. An offer specifies the fixed price, the variable price (uniform 
for all low quality categories), the bundle content, and the desired quality for each 
category separately. Formally, an offer is described by the tuple < PJ ,Pv, b, if >, 
where PJ is the fixed price , Pv is the variable price. Furthermore, b E {O, 1 Y is a 
binary array describing the bundle content , where bi = 1 if category 1 :::; i :::; k is 
selected , and bi = 0 otherwise, and if E {O, 1 }k describes the quality settings for each 
category, where qi = 0 if a selected category is of low quali ty, and qi = 1 if category 
i if of high quality. 

2 Note that since the preferences of the buyers are hidden, fairness is defined from the perspective 
of the seller agent . 
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Attached to an offer are also preconditions which specify until when the offer 

is valid. If the offer is accepted within that time, the proposing agent is bound to 

the conditions specified in the offer. Otherwise, the offer expires. We call the offer 

combined with the preconditions a proposal. A bargainer can accept, reject , or place 

a counter proposal. The bargaining process continues until an agreement is reached 

or one of the bargainers terminates the process. Figure 6.2 depicts the alternating 

offer bargaining protocol. 

3:abort-bargainin 

Reseonder =Buyer or Seller 
I 

Figure 6.2: The bilateral bargaining protocol. 

To accelerate the negotiation process, we allow concurrent negotiation threads 

for the same bundle content with different quality settings. The buyer can therefore 

submit several offers at the same time. In order to discern between threads , each 

thread must have a different combination of quality settings for the selected cate­

gories. The seller can only respond by varying the fixed and variable price. The 

thread in which the agreement is reached first determines the prices and quality 

settings for the desired categories. Figure 6.3 depicts the one-to-many bargaining 

process and the possibility of parallel negotiation threads between a buyer and the 

seller. 
Using the above protocol, offers submitted by the buyers could violate the notion 

of fairness if these offers are immediately accepted by the seller. To provide a seller 

with the opportunity to ensure fairness (as defined in Section 6.1.2) , the bargaining 

protocol allows for post-agreement negotiation: the bargainer who accepted the 

offer can propose a post-agreement offer which the other party either accepts or 

rejects. 3 In case of an acceptance, the original offer is replaced by the post-agreement 

offer. The process terminates after the post-agreement offer is proposed and is then 

either accepted or rejected. Post-agreement negotiation can be used by the seller 

to adjust the offers in favour of the buyers, such that fairness is ensured within the 

3Post-agreement negotiation is a common approach in the single negotiation text literature [32] . 
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Figure 6.3: One-to-many bargaining with parallel threads. 

defined time interval. Note that , in case of multiple issues, the seller can produce 
a more favourable offer by conceding on one or more issues. Although the buyer 's 
preferences are private and unknown to the seller , this approach assumes that a 
buyer always prefers a lower (fixed or variable) price or a better quality. 

6.2 Agents and bargaining strategies 

In this Section we discuss the seller agent and buyer agent in greater detail. Addi­
tionally, we int roduce bargaining strategies that generate good (i .e. , closely approx­
imate Pareto-efficient) multi-issue bargaining outcomes. 

6. 2 .1 Seller agent 

The seller agent 's bargaining behaviour is based on the agent 's so-called aspiration 
level, which we define as follows: 

D efinition 113.1 Aspiration Level An aspiration level of an agent refers to an 
agent's desired expected ut ility level. 

Unlike common usage in the li terature (where aspiration level is used as a point 
of reference), the aspiration level is used here as the minimum expected ut ility the 
agent is willing to accept at a certain point in time. If the expected utility of an offer 
received by the buyer exceeds the aspiration level, the offer is accepted , otherwise the 
offer is rejected. Whenever the seller agent makes a (counter) proposal, the offer 's 
expected utility is set in a way as to match the aspiration level. The aspiration 
level can change during the process of negotiation. The aspiration is adjusted using 
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the concession strategy, whereas t he generation of an offer (given a fixed aspiration 

levels) is achieved by the Pareto-search strategy. These strategies are considered 

more closely in Section 6.2.3. In this Section, we specify the seller agent's measure 

of expected utility. The seller 's expected utility u 5 for an offer < PJ,Pv,b,ij > is 

defined as follows: 

k 

u.( < PJ , Pv.b, if > ) = PJ + Pv L e~ bi (l - qi), (6.1) 
i=l 

where the components e~ of vector e-; denote the seller agent 's expectation about 

the number of articles an average buyer will read for the duration of the contract, 

specified for each category 1 :S i :S k. Note that bi( l - qi) equals 1 if category i is 

selected and is of low quality, and 0 otherwise. Therefore, I::~= l e~ bi (l - qi) indicates 

the expected total number of articles an average buyer will read in the selected low­

quality categories (and for which the buyer pays an additional Pv per article) . The 

seller agent can estimate e-; based on, for example, aggregate sales data. 

Due to t he notion of fairness, the seller agent cannot apply different aspiration 

levels for different buyers in case of identical bundles (within the defined t ime inter­

val). Consequently, t he seller agent must use the same measure of expected utility 

in different (simultaneous) negotiations. A seller agent is therefore not allowed to 

use knowledge of individual buyers, such as their past reading behaviour, to directly 

discriminate between buyer agents in the negotiations. In other words , the seller 

agent must use the same values for e-; in negotiations with different buyers (within 

the defined t ime interval). We note, however , that the components e~ of e-; need 

not be constants, but can be functions as well. In the experiments described in Sec­

tion 6.3, for example, the expected number of articles read is a declining function 

of the variable price Pv· This incorporates the likely assumption that buyers who 

prefer a high variable price, will purchase less additional articles on average than 

buyers with a low variable price. This can be used to indirectly discriminate between 

buyers, without violating the notion of fairness. We defer fur ther discussion on the 

topic of price discrimination unt il Section 6.5. 

6.2 .2 Buyer agent 

The buyer agent acts on behalf of the buyer. The buyer can indicate her preferences 

by specifying, for each information category she is interested in, the amount of 

articles she expects to read . The buyer can furthermore select between several 

negotiation strategies to be used by the agent and specify a maximum budget bmax 

for the given bundle content and number of articles. The budget provides the agent 

with a mandate for t he negotiation; the total expected costs for t he selected bundle 

should not exceed bmax· The value bmax can also be interpreted as the buyer's worth 

for the bundle content and the number of articles specified by her preferences. 
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Similar to the seller agent, the buyer agent 's bargaining behaviour is based on a 
desired level of expected utility or aspiration level. Given an offer < PJ, Pv, b, if >, 
the buyer agent's expected utility ub in case of an agreement is defined as follows: 

k 

ub( < PJ , pv, b, if >) = bmax - [pf + Pv I>~bi( l - qi)], (6.2) 
i= l 

where the components et of the vector el, describe the buyer's expectations regarding 
the number of articles she will read , specified for each category. In case of a dis­
agreement , the buyer agent 's utility equals zero. Note that the part of Equation 6.2 
in squared brackets is identical to seller 's expected utility (see Equation 6.1), except 
that e~ is replaced by e1. 

As mentioned Section 6.1.3, the negotiation protocol allows for multiple negotia­
tion threads for the same bundle content. Given a bundle content with k categories, 
in principle 2k threads are possible (by varying the selected quality of each category). 
The buyer agent , however, selects only a limited number of combinations based on 
the buyer 's preferences, to reduce the amount of communication. In the current 
system the buyer agent initiates k + 1 threads. In the first thread the quality for all 
categories is set to low. In the second thread, only the quality for the category with 
the highest expected articles read is set to high. In the third thread , this is done for 
the two categories with the first and second highest exp ected articles read, and so 
on. Within a thread , a fixed price and a variable price are negotiated. 

6.2.3 Decomposing the bargaining strategy 

The buyer agents and seller agent are endowed with various bargaining strategies 
that can bargain over multiple issues. We decompose bargaining strategies into 
concession strategies and Pareto search strategies. Concession strategies determine 
what the aspiration level of an offer will be at any decision point . Pareto search 
strategies determine, given the current aspiration level, and given a particular history 
of offers and counter offers, the actual (multi-dimensional) offer, i.e., the fixed price 
PJ and the variable price Pv· Note that the quality settings are fixed for a particular 
negotiation thread. As a result, the Pareto-search strategy in this case is only 
concerned with continuous issues. In terms of a multi-dimensional utility function, 
a (counter) offer entails both a movement of the so-called iso-utility curve and a 
movement along the iso-utility curve. Given a specified utility level, an iso-utility 
curve connects all (PJ ,Pv) points which generate that utility (see Figure 6.4 for an 
example). Concession strategies determine the movement of an iso-utility curve; 
Pareto search strategies determine the movement along an iso-utility curve. 

Pareto search strategies aim at reaching agreement as soon as the respective 
concession strategy allows it. Therefore , it may be good for both parties to use such 
an approach. The result ing agreements are then also Pareto efficient (see Def. 4.3). 
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From a system design perspective, Pareto efficiency of the negotiated bundle is 

desirable since it maximises win-win opportunities. 

In Section 6.2.4 we introduce a particular class of Pareto search stra tegies. The 

experiments in Section 6.3 show that if the seller agent uses this Pareto search algo­

rithm and buyer agents use a similar Pareto search algorithm, then the bargaining 

outcome will closely approximate a Pareto-efficient solution given a wide variety of 

concession strategies . 
In the system the seller agent uses an instance of the Pareto search algorithms 

combined with a concession strategy. Although a buyer is free to select other bar­

gaining strategies, the system is set up such that it is actually in the best interest of 

buyers to have their agents use Pareto search strategies combined with a concession 

strategy. We elaborate on this issue in the discussion in Section 6.5. 

6.2.4 Orthogonal strategy and D F 

Both buyer agent and seller agent may use what we call an orthogonal strategy as 

the Pareto-search strategy. This strategy is probably best explained through an 

example. Suppose, the buyer (with whom the seller bargains over the combination 

of PJ and Pv) places the tth offer < P1(t) ,Pv(t) > (since the remaining attributes b 
and qremain fixed, we omit these attributes in the following). Moreover , the seller's 

concession strategy dictates an aspiration level of u~(t + 1) : i.e., the (counter) offer 

should have an expected utility of u~(t + 1). Based on this information, the seller 's 

orthogonal strategy determines a counter offer < P1 (t + 1) ,Pv(t + 1) >, such that 

u. ( < P1(t + 1) , Pv(t + 1) > ) = u~(t + 1) and the point (P1(t + 1) , Pv(t + 1)) lies closest , 

measured in Euclidean distance, to the point (P1(t),Pv(t)). Figure 6.4 provides a 

graphical example of the orthogonal strategy. In this Figure, function f s denotes 

the seller's iso-utility curve at time t + 1, containing all points (p1,pv) such that 

Us(< PJ,Pv > ) = u~(t + 1). 
The use of the orthogonal strategy by both parties results in a mapping f from 

a bargainer 's aspiration level at t to the aspiration level at t + 2. Given convex 

preferences ( cf. [72]) and fixed aspiration levels the mapping f can be shown to 

satisfy the Lipschitz condition llf(x)- f(y)i l:::; llx-yll for all x and yin the domain 

of f .4 Thus, given fixed aspiration levels and convex preferences, the orthogonal 

strategy does imply that consecutive offers do not diverge. Figure 6.5 illustrates 

the use of the orthogonal strategy by both parties for the case of tangent iso-utility 

curves. It draws a sequence of two offers and counter offers with convex preferences 

and a fixed aspiration level. The figure illustrates, for instance, how the buyer's 

offer at time t = 1 is transformed into an offer at time t = 3 (where the aspiration 

4T he proof is a straightforward application of convex analysis (cf. [140]) given that without loss 

of generality we can assume that the preferences are bounded . That is, negative and extremely 

high < p1(t),Pv(t) >combinations can be discarded, without loss of generality. 



6.2 Agents and bargaining strategies 

p (t+l) 
f 

p (t) 
f 

/ 

. ." 

p (t) 
v 

p (t+I) 
v 

' 

-p 
v 

117 

Figure 6.4: Example of the orthogonal strategy, where ls denotes the seller agent's 
iso-utility curve. 

p* -p 
v v 

Figure 6.5: Sequence of two offers and counter offers with fixed aspiration levels and 
convex preferences, where < pj, p~ > denotes a Pareto-efficient offer. Here, ls and 
fb denote the iso-utility of the seller and buyer agent respectively. 

level remains constant , i.e., u~(l) = u~(3)). 
The use of just the orthogonal strategy by both parties may lead to very slow 

convergence to Pareto-efficient bargaining outcomes. To speed up the convergence 
process we can add an amplifying mechanism to the orthogonal strategy. As the 
amplifying mechanism we use the derivative follower with adaptive step-size (ADF) . 
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Henceforth, we will call this strategy the orthogonal-D F. 

The derivat ive follower (DF) is a local search algorithm ( cf. [61]). It adjust the 

variable price Pv returned by the orthogonal strategy by either subtracting or adding 

8 to it depending on t he result of the previous two adjustments, where 8 is called 

the step-size of the DF. Consequent ly, also the fixed price PJ changes because the 

adjusted offer still needs to generate the same expected utility level (specified by the 

concession strategy) . The difference between ADF and DF is that the step-size 8 

becomes adaptive [26, 129]. We use the ADF proposed by [129] . Intuit ively, the idea 

is to increment the step-size relatively far away from a Pareto-effici ent solut ion and 

decrement it in the vicinity of a Pareto-efficient solution. Consequently, a quicker 

and more accurate search of the solution space becomes possible. Algorithm 1 (on 

page 119) specifies the orthogonal-DF in greater detail and fi gure 6.6 illustra tes the 

use of the orthogonal-DF by the seller (where the buyer uses the orthogonal strategy 

only). 

p' p'+op * 
v v v 

-p 
v 

Figure 6.6: Sequence of two offers and counter offers with fixed aspirat ion levels 

where the seller uses the orthogonal-DF and the buyer only uses the orthogonal 

strategy. 

6.3 Experimental setup and results 

The previous sections outlined t he general system for selling bundles of news items 

to several buyers through negotiation. As discussed in Section 6.2.3, negotiation 

essent ially consists of two st rategic aspects: the concession of the agents and the 

Pareto search method . In this section we focus on the latter aspect of the nego­

t iations. By means of computer experiments we investigate the effectiveness and 
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Algorithm 1 The or thogonal-DF strategy 
The following is given: (a) the opponent 's last and before-last offer : 0 1 = < 
PJ(t) ,Pv(t) > and 0 2 =< PJ(t - 2) ,Pv(t - 2) > respect ively, (b) an agent 's ut ili ty 
funct ion u( < p f, Pv >) and aspiration level u' ( t + 1) at t ime t + 1, ( c) t he step-size 5, 
and (d) the search direction sdr E {- 1, +l}. Based on this information the agent's 
orthogonal-DF computes the next counter offer 0 =< p1(t + l ),Pv(t + 1) > by 
execut ing the following procedure: 

1. Use the ort hogonal strategy to compute O~ =< pj(t) , p~(t) > and O~ = < 
pj(t - 2) , p~ (t - 2) >, i.e. , the points on t he iso-ut ility curve with expected 
ut ility u'(t + 1) that lie closest to 0 1 and 0 2 , respectively. 

2. Compute d1 and d2 , the distance of the opponent 's last two offers, i.e. , d1 = 
1101 - O~l l and d2 = 1102 - O~ l l, where 11 ·I I denotes Euclidian distance. 

3. Update sdr: whenever d1 > d2 the orthogonal-DF "turns" , i.e., sdr = - 1 · sdr , 

otherwise Sdr = Sdr · 

4. Update 5: decrease 5 whenever the orthogonal-DF turns. For a nurtiber of 
periods directly after a turn 5 is not increased, and otherwise 5 is increased 
(cf. [129] for the details). 

5. Compute the counter offer 0 = < PJ(t + l ),Pv(t + 1) > : set Pv(t + 1) = 
p~(t ) + 5 · sdr · Next , calculate PJ(t + 1) such that (P1(t + l) ,Pv(t + 1)) lies on 
the iso-utility curve, i.e., u( < PJ(t + l ),Pv(t + 1) > ) = u'(t + 1). 
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robustness of the orthogonal and orthogonal-DF approach, to find Pareto-efficient 

solutions for a wide variety of settings. We evaluate t he robustness of the search 

strategy by experimenting with various concession strategies on the buyer side. 

Although the system enables buyers to initiate several concurrent negotiation 

threads, within a thread the Pareto search strategy operates independently from 

the other threads. For researching the efficiency and robustness of Pareto search 

strategies it therefore suffices to consider only a single negotiation thread in the 

experiments. Furthermore, the bundle content in the experimental setup consists of 

a single category wit h a low quality of service. The experimental results generalise 

to negotiations involving multiple categories: only the shape of the iso-utility curves 

is affected by the number of categories. In the experiments the shape is varied using 

different parameter settings. 

A general specification of the buyer agents and the seller agent was provided in 

Section 6.2. Sections 6.3.1 and 6.3.2 describe the agent settings which are specifi­

cally used within the experimental setup. In particular the agents' preferences and 

concession strategies are specified in detail in Sections 6.3.1 and 6.3.2 respectively. 

The experimental results are discussed in Section 6.3.3. 

6.3.1 Agent preference settings 

We simulate the negotiation with a variety of buyer and seller preferences, expressed 

by the agents' expected utility functions (see also Sections 6.2.2 and 6.2.1). In the 

experiments we consider only a single low-quality category. The number of articles 

eb (we omit the index for clarity in the following) the buyer expects to read is 

assumed to be a constant, set randomly between 1 and 20 at the beginning of an 

experiment. The buyer agent's expected utility therefore reduces to ub( < (p f , Pv) > 

) = bmax - (PJ + Pv · eb) . Note that t his results in a linear iso-utility curve in the 

(PJ,Pv) plane (see e.g. Fig. 6.5). Furthermore, since the purpose is to demonstrate 

the efficiency of the final deals reached, we set the buyer agent's mandate bmax for 

the bundle such that an agreement is always reached. 

The expected utility for the seller agent is based on e., the expected number 

of articles that the buyers will read on average in the (low-quality) category. In 

contrast to the buyer agent, the expectation is not a constant but a function of the 

variable price Pv. It is assumed that buyers who are willing to pay a high variable 

price are expected to read less than buyers with a low variable price (i.e. we assume 

the law of demand holds cf. [72]) . In the experiments we use the linear function 

e.(Pv) = b - a · Pv with b = 20 and a set randomly between 0.03 and 0.07 at the 

beginning of an experiment. Note that the seller agent's iso-utility curve is now 

convex (towards the origin). 
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6.3.2 Concession strategies 

The buyers and the seller can each select their own concession strategies. Although 
a seller agent 's concession in the main system can depend on the behaviour of all 
buyers (i.e. , one-to-many) , in the experiments the seller agent's strategy is simply to 
decrease the desired utility level or aspiration level with a fixed amount each round 
(more advanced strategies are considered in Chapter 7). The initial aspiration level 
is randomly varied. Note that the number of buyers and their behaviour does not 
affect the seller's concession when this strategy is used. 

On the buyer side, on the other hand, we implemented four classes of concession 
strategies to investigate the robustness of the Pareto search strategy: 

1. Hardhead. The buyer agent does not concede when this strategy is used; the 
aspiration level remains the same during the negotiations. 

2. Fixed. A fixed amount c in utility is conceded each round. 

3. Fraction. The buyer agent concedes the fraction ry of the difference between the 
current desired expected utility level and the expected utility of the opponent 's 
last offer . 

4. Tit-for-tat. This strategy mimics the concession behaviour of the opponent, 
based on subjective (expected) utility improvement. If the expected utility of 
the seller agent's offers increases, the same amount is conceded by the buyer 
agent . Note that the concession is based on an increment in expected utility 
perceived by the buyer agent. The seller agent's actual concession is shielded 
from the buyer agent , as an improvement could also occur when the seller 
agent moves along his iso-utility curve. Furthermore, note that the perceived 
expected utility improvement could also be negative. To make the concession 
behaviour less chaotic , however , no negative concessions are made by the buyer 
agent. 

6.3.3 Results 

The seller agent and the buyer agent in the experiments negotiate in an alternating 
fashion until an agreement is reached. The efficiency of the agreement is then 
evaluated based on the distance of the final offer from a Pareto-efficient solution. We 
measure an offer's distance from a Pareto-efficient solution as the maximum possible 
expected utility improvement for the buyer if a Pareto-efficient offer was made, all 
else remaining equal. This is achieved by moving the buyer's iso-utility curve until 
the obtained deal is Pareto-efficient. 

To evaluate the quality of the results we compare the outcomes using various 
search strategies and concession strategies of the buyer agent. Table 6.1 provides 
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Concession strategy 
hardhead 
fixed ( c = 20) 
fixed ( c = 40) 
fixed (c = 80) 
fraction (r = 0.025) 
fract ion (r = 0.05) 
fraction (r = 0.1) 
tit-for-tat 

Automated bargaining and bundling of information goods 

Pareto-search strategy 
Random Orthogonal/ DF 
18.92 (±23.56) 8.03 (±11.44) 
26.52 (±34.49) 10.43 (±17.34) 
38.91 (±49.72) 16.21 (±23.84) 
42.12 (±56.88) 25.61 (±38.72) 
30.26 (±38.37) 10.07 (±15.03) 
31.53 (±40.00) 11.52 (± 16.16) 
37.81 (±48.82) 16.91 (±30.80) 
72.78 (±121.35) 59.60 (±113.27) 

DF/ DF 
18.63 (±32.81) 
28.82 (±46.71) 
44.29 (±69.76) 
48.84 (±72.12) 
32.25 (±52.81) 
28.52 (± 52.13) 
26.28 (±42.20) 
56.64 (±116.82) 

Table 6.1: Average distance from Pareto-efficient solut ion for various buyer con­
cession strategies (rows) and buyer / seller search strategies (columns) . Results are 
averaged over 500 experiments with random parameter settings. Standard devia­
tions are indicated between brackets. Best results (see column Orthogonal / DF) are 

obtained if the buyer and seller agents use orthogonal search , and the seller agent 's 
search is amplified wit h a derivative follower. 

an overview of the results . The row labelled Random contains the outcomes when 
both seller and buyer agents use a random search strat egy. This strategy selects 
a random point on the iso-utility curve. 5 The distance of the final offer (from the 
closest Pareto-efficient solution), when random search is used, lies between 1 and 3 
percent of the t otal costs. 

Although the inefficiency with random search is only small compared to the to­
tal costs, even better results are obtained when one bargainer (typically the buyer 
agent) uses orthogonal search and the other (the seller agent) uses orthogonal-DF 
(i .e. , orthogonal search combined with a derivative follower). The results are shown 
in the column labelled Orthogonal/ DF of Table 6. 1. The improvements are con­
siderable. The distance of the final offer as a percentage of total costs lies then , for 
almost all concession st rategies , between 0 and 1. Only for the t it -for-tat strategy 

the distance lies around 1.8 percent. Notice that the Orthogonal/ Orthogonal-DF 
st rategy combination is also robust , as best results are obtained using this st rategy, 
relatively independent of the concession strategy selected by the buyer agent . 

Table 6.1 also shows the results if both buyer and seller agents use orthogonal­
DF search (column D F / D F). These results are very similar to random, however. 
The derivative follower relies on a consistent response from the opponent to signal 
the right direction. If both use a derivative follower, this signal is distorted. 

Notice that the average distance depends on the concession strategy used by the 
buyer. Although in individual cases Pareto-efficient agreements (with zero distance) 
are reached using the orthogonal/ DF search, the average dist ance consistently shows 

5 0 nly the downward sloping part of the seller agent 's iso-utility curve is used. 
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some (usually slight) inefficiencies, even when the buyer makes no concessions (i.e., 
the hardhead strategy). The reason for this is twofold. Firstly, the DF accelerates 
finding the efficient solution by making, at times, large steps on the iso-utility curve. 
At a certain point the algorithm passed the Pareto-efficient point, and then turns. 
This way the offers keep oscillating around the optimal point. If the concessions are 
sufficiently large, an agreement can be reached at a point which is less than optimal. 

Secondly, the direction and step-size of the DF are based on changes in the 
Euclidean distance between the seller and buyer offers through time. The distance 
can be influenced by both concessions and movements along the iso-utility curve. 
As the opponent 's iso-utility curve is unknown, the agents are unable to distinguish 
between the two. This can mislead the DF whenever concessions are very large. 
Two possible solutions are to make either small concessions, or have intervals with 
no concessions allowing the search algorithm to find the best deal. 

Particularly tit-for-tat results in a relatively high inefficiency, because of the 
reasons described above. Recall that tit-for-tat uses a subjective measure of the 
opponent's concessions. In practice, the perceived utility increments are sometimes 
quite large, resulting in bursts of very large concessions. If this occurs near the 
agreement point this can result in inefficient outcomes. 

To conclude, the orthogonal/ DP strategy clearly outperforms other combinations 
of search strategies in the experiments. Inefficiencies still occur, especially if the 
concessions are large. A trade-off therefore exists between reaching an agreement fast 
(by making large concessions) and reaching an efficient agreement. Since concessions 
appear to influence the Pareto-efficiency of the outcomes, it is essential that a Pareto­
search strategy is evaluated together with a concession strategy. 

6.4 R elated approaches 

In this section some related approaches for multi-issue negotiations are discussed. 

6.4 .1 Fuzzy sim ilarity criteria 

Related to our work , in [33] a heuristic approach for finding win-win trade-offs 
between issues is introduced. Contracts which are similar to the opponent's offer 
are selected based on fuzzy similarity criteria, and given a desired utility level. 
They use fuzzy similarity criteria because most of the considered issues take on very 
limited discrete values . Based on these similarity criteria, an iterative hill-climbing 
algorithm is used to find the most similar offer. This hill-climbing algorithm is 
limited, however, to linearly additive utility functions. 

By contrast , we consider negotiation over continuous issues (or issues that can 
take on many values). For this problem domain , Euclidean distance is a more natural 
choice than the similarity criterion. With Euclidean distance standard mathematical 
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techniques (from fields such as convex analysis) are immediately at our disposal. 
Moreover , implementing the similarity criterion entails a straightforward application 
of standard techniques from numerical analysis. The orthogonal search method 
finds, from the collection of offers that have the desired utility level, the offer closest 
to the opponents last offer , measured in Euclidean distance. Unlike the heuristics 

developed in [33], our approach is not restricted to linearly addit ive ut ility functions. 

A possible limitation of any search method using only a distance method to 

determine the counter offer , such as the orthogonal search method and the fuzzy 
similarity criteria described in [33], is that the rate of convergence depends to a large 
extent on the bargainers' preferences. As we found in our experiments, convergence 

rate is indeed often very slow (i.e., when both agents use t he ort hogonal strategy). 
Therefore, we amplified the search using a derivative follower , which can converge 
quickly to a Pareto-efficient solut ion. Slow rate of convergence is especially a problem 
whenever software agents are not a priori restricted but can search for clever t rade­

offs and at the same t ime make concessions (as is the case in our experiments) . If the 
search method is too slow, very little improvement in the efficiency can be realised 
before a deal is closed. The developed orthogonal-DP, however , is sufficiently fast 
and consequently can also work very well in conjunction with concessions. 

6.4.2 Intermediaries 

In the literat ure the difficult ies with bargainers simultaneously making concessions 
and searching for clever trade offs is generally avoided by assuming an intermedi­

ary [32, 62, 68, 101]. The mediator is inspired by the idea of a single negotiation text 
(SNT). SNT is a mediation device suggested by Roger Fisher [36]. During negotia­
tion , the mediator first devises and proposes a deal (SNT-1) for t he two bargainers 
to consider . The mediator is not trying to promote the first proposal, rat her , it is 

meant to serve as an init ial, single negotiation text ; a version to be criticised by both 
parties and then modified in an iterative manner. Modifications to the SNT-1 will 

be made by the mediator based on the crit icisms from t he two sides. Thus, both 
part ies need to reveal (aspects of) their preferences to the mediator , hence t rust 

becomes an important issue. Furt hermore, addit ional costs are often involved with 
a mediator . 

The orthogonal-DP method is somewhat related to the work of Ehtamo et al. [32]. 

They develop the method of improving directions which is a mathematical formali­
sation of the SNT method (with a mediator). In essence it is a mult i-criteria decision 

making gradient search method. Given a SNT, bargainers give their most preferred 
direction of the next SNT which is just the gradient. The mediator then uses some 

relat ively straightforward procedure to determine the jointly improving direction 
which is then used to determine the next SNT. The orthogonal-DP also searches for 
such a jointly improving direction, but without the use of a mediator , however . 
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6.4.3 Auctions 

Another approach increasingly used to automate one-to-many negotiations is through 
auctions. Although our system has characteristics similar to those of auctions, 
bundling and negotiation of information goods have distinct properties which im­
pede the use of current available auction designs. Mainly, information goods have 
negligible incremental reproduction and distribution costs [18] . The supply of goods 
can therefore be virtually unlimited. Auctions, however, are more suitable when 
resources are scarce. 

Furthermore, information goods can be easily packaged in a wide variety of 
configurations, resulting in multi-dimensional products and pricing schemes. Per­
sonalisation of information goods then becomes a key component of a successful 
electronic business strategy [2]. As illustrated in this chapter, and in Chapters 3 
and 4, a bilateral approach can be naturally used to perform multi-issue negotia­
tions. Traditionally, auctions have focused on price as the single dimension of the 
negotiation. Although multi-attribute auctions have recently received increasing at­
tention [28, 93], the agents are usually required to reveal their complete preferences. 
Moreover, the focus is on obtaining Pareto-efficient outcomes and profits are usually 
not considered. In case of unlimited supply, however, such auctions may fail to pro­
vide sufficient profit for the seller. Because of the disentanglement of the concession 
and Pareto-search strategies, the profits can be regulated by the concession strategy 
(this issue will be further addressed in the next chapter) . 

A seller may also have business-related considerations for preferring a bilateral 
bargaining approach. For example, the bilateral bargaining protocol allows for much 
flexibility and can be easily applied in case of continuous sales. Using bargaining, 
new buyers can enter the negotiation at any given time, and buyers can obtain the 
good at any time by simply accepting a seller's counter offer. 

6 .5 D iscussion 

6.5 .1 The system revisited 

Although the focus of this chapter is the problem of selling bundles of news items, 
other types of (information) goods can also be sold through the developed system. 
A key question for extending the use of the system to other application areas is, 
however, if buyers and (to a lesser degree) sellers are willing to have software agents 
automate the actual bargaining. A prerequisite would be that the traded goods have 
a relatively low value and transactions are conducted frequently. Consequently, the 
risks are low and an agent has many opportunities to learn from past experience 
and gradually improve performance. Note that the negotiation procedure of the 
system does not require both seller and buyer to use the same level of automation. 
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Depending on the particular application of the system, it may be desirable for the 
buyer to rely more or less on the assistant of the software agent. 

An additional important aspect of the relevance to other application areas is the 
potential benefit of using such a system. The developed system appears particular 

suitable for selling complex goods with a high degree of personalisation and relatively 
rapidly changing preferences (as is the case with the news items) . More specifically, 
within the system personalisation entails discriminating between buyers based on 
the bundle price and the quality of service. Second-degree price discrimination is 
the economic term for this type of personalisation. 

In second-degree price discrimination the price depends on the quantity and/ or 

quality of the purchased good. The distinguishing aspect of second-degree price 
discrimination is that buyers can self-select the best purchase. Traditionally, buyers 
are offered a menu of price combinations. The work of [18, 59] discusses algorithms 
which , given a particular pricing scheme, learn the best price combinations on-line. 
They conclude that (especially in a dynamic environment) complex schemes are 
generally not the most profitable due to the need of more learning. 

The distinguishing aspect of the developed system is that instead of having ex­
plicit pricing schemes, buyers can bargain for the most appropriate bundle/price 
combination. This can result in a similar (or even higher) degree of discrimina­
tion between buyers as with explicit complex pricing schemes. In the absence of 
an explicit structure the seller is, however, more flexible in the degree to which she 
discriminates. The seller does not have to a priori limit the complexity of the pricing 
scheme. Whenever bundles of (information) goods are being offered, an additional 
advantage is that, by initiating the negotiation process, buyers can explicitly ex­
press their interest in a particular bundle of goods. This may facilitate the process 
of offering buyers the appropriate bundles (and consequently it may facilitate the 
indirect discrimination between buyers). 

6.5.2 Bargaining and Pareto efficiency 

In the system the seller agent uses the orthogonal-DF as the Pareto search strat­
egy combined with a concession strategy. The concession strategy determines the 
next concession relatively independently of the ongoing bargaining process with a 
particular buyer. The idea is that , on the one hand, bargaining with a particular 
buyer should lead to finding the best possible deal for both parties , given the seller 's 
desired expected ut ility level. That is, the bargaining outcome should closely ap­
proximate a Pareto-efficient solution. On the other hand, the one-to-many aspect 
of the bargaining process (i.e., bargaining with more than one buyer) should guide 
the updating of the concession strategy. Thus the seller uses the disentanglement 

of the bargaining strategy (in a concession and Pareto search strategy) to distin­
guish explicitly between the one-to-many and one-to-one aspects of the bargaining 
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process. 
The experiments in Section 6.3 show that if a buyer agent uses an orthogonal 

strategy as the Pareto-efficient search strategy then the bargaining outcomes will 
closely approximate a Pareto-efficient solution. The experiments are conducted for 
a variety of (buyer) concession strategies, buyer preferences, and seller preferences. 
Based on the experimental results we can conclude that any other strategy choice 
of a buyer will probably result in less efficient outcomes. Moreover, such a strategy 
will not influence the concession strategy of the seller (due to the independence 
of the concession strategy). Consequently, any alternative bargaining strategy of 
the buyer is probably at most as good as the orthogonal strategy combined with a 
concession strategy that mimics the concessions of the alternative strategy. Thus, 
given the seller 's choice of the orthogonal-DF combined with a relatively independent 
concession strategy, it is in a buyer 's best interest to choose the orthogonal search 
strategy combined with a concession strategy. Moreover, this choice results in (a 
close approximation of) a Pareto-efficient solution. 

6.6 Concluding remarks 

We introduce a novel system for selling bundles of news items in this chapter. 
Through the system, buyers bargain over the price and quality of the delivered 
goods with the seller . The advantage of the developed system is that it allows for 
a high degree of flexibility in the price, quality, and content of the offered bundles . 
The price, quality, and content of the delivered goods may, for example, differ based 
on daily dynamics and personal interest of buyers. 

The system as developed here can take into account business related side-constraints, 
such as "fairness" of the bargaining outcomes. Fairness ensures that buyers with 
similar preferences are treated in the same fashion. Because of fairness , the actual 
bargaining process between seller and buyers is not really bilateral, but is in fact 
one-to-many since the bargaining process with one buyer can have an impact on a 
simultaneous bargaining process with another buyer. 

Autonomous software agents perform (part of) the negotiation on behalf of the 
users of the system. To enable efficient negotiation through these agents we decom­
pose the bargaining strategies into concession strategies and Pareto-search strategies. 
Moreover, we introduce the orthogonal and orthogonal-DF strategy: two Pareto 
search strategies. We show through computer experiments that the respective use 
of these two Pareto search strategies by the two bargainers will result in very efficient 
bargaining outcomes. Furthermore, the system is set up such that it is actually in the 
best interest of the buyer to have their agent adhere to this approach of decomposing 
the bargaining strategy into a concession strategy and Pareto search strategy. 





Chapter 7 

Bargaining strategies for 
one-to-many bargaining 

Through the use of autonomous agents a business can obtain flexibility in prices and 
goods , and distinguish between different groups of buyers based on their preferences. 
The previous chapter showed how personalisation of goods in the context of infor­
mation goods can be achieved using automated negotiation. In this chapter ,1 we 
focus on the (expected) utility obtained by a seller agent and how different groups 
of buyers can be targeted having different valuations for obtaining the goods. We 
consider agent strategies for a one-to-many bargaining setting, where a seller agent 
negotiates, as before, with many buyer agents simultaneously in a bilateral fashion . 
We focus on domains where the supply of goods is flexible and new goods can be 
reproduced quickly, at rela tively low costs. Such characteristics apply not only to 
information goods, but may also apply to other retail markets . As in the previous 
chapter, the strategies also take into account a notion fairness that is important 
for maintaining customer satisfaction and acceptance of the system by customers. 
Fairness ensures that buyers are treated in a similar fashion and is comparable to 
the notion of envy-freeness in auctions [44] (see Section 6.1.2 for further details). 

In many cases, auctions can be used to effectively organise one-to-many bar­
gaining. Depending on the setting, auctions can provide buyers with the incentive 
to reveal their preferences truthfully, and to allocate the goods efficiently (see also 
Section 2.3.5). For various situations, however, auctions may not be the preferred 
protocol for bargainers. In situations of, for example, virtually unlimited supply, 
multiple issues , and/ or continuous sale the appropriate auction protocol becomes, 

1This chapter is based on [40]: E.H. Gerding, K. Somefun, and J.A . La Poutre. Bilateral 
bargaining in a one-to-many bargaining setting. Technical Report, CWI, Amsterdam, to appear. 
A shorter version has been accepted for publication as (39]: E.H. Gerding, K. Somefun, and J.A. La 
Poutre. Bilateral bargaining in a one-to-many bargaining setting. In Proceedings of the 3rd 
International Joint Conference on Autonomous Agents and Multi Agent Systems (AAMAS2004 ), 
New York City, New York. IEEE Computer Society Press, 2004. 
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at best, much more complex. Consequently, businesses may opt for the intuitive 

and flexible bilateral bargaining protocol, where the seller agent negotiates bilater­

ally with one or more buyers simultaneously by exchanging offers and counter offers. 

These motivations are more closely considered in Section 6.4.3 of the previous chap­

ter. 
Only little work has been done to study actual strategies for one-to-many bar­

gaining. A few related papers study concurrent bilateral negotiations within a one­

to-many setting [85 , 98]. In these papers, a framework is described where a buyer 

negotiates with several sellers simultaneously to find a single best deal. This differs 

from our setting, however, since the seller in our system can come to an agreement 

with many buyers as we assume that supply is flexible. The various negotiations in 

our case are nevertheless related mainly through the notion of fairness . 

For the case of virtually unlimited supply, as for information goods, we present 

a number of one-to-many bargaining strategies for the seller in this chapter, that 

take into consideration the not ion of fairness. In part icular , we introduce auction­

inspired strategies that achieve good results. We compare the performance of the 

bargaining strategies using an evolut ionary simulation, especially for the case of 

impatient buyers. These experiments show that the auction-inspired strategies are 

able to extract almost all the bargaining surplus, given sufficient time pressure of 

the buyers. The auction-inspired strategies benefit from the fact that the setting is 

one-to-many, even though bargaining occurs in a bilateral fashion. 

T his chapter is organised as follows. In Section 7.1 we discusses the bargain­

ing setup and the strategies used by the seller agent. In Section 7.2 we introduce 

the simulation environment used for testing the performance of the strategies. We 

present the simulation results of the conducted computer experiments in Section 7.3. 

Conclusions follow in Section 7.4. 

7.1 One-to-many bargaining 

Bargaining is performed using the bilateral bargaining protocol described previously 

in Section 6.1.3. Although the protocol allows for multiple issues to be negotiated 

simultaneously, we concentrate on single-issue bargaining (e.g. the price) in this 

chapter and consider the (expected) utility obtained by the agents in the system. 

The multi-issue aspect is addressed in Chapter 6. We assume here that buyers 

are impatient and have an incentive to reach agreements early. The buyers' time 

pressure is further discussed in Section 7.1.1. 
An agent representing a business can be endowed with various bargaining strate­

gies. We present a number of strategies for the seller agent in Section 7.1.2. These 

bargaining strategies take into account a notion of fairness, such that different buy­

ers are treated equally whenever that seems fair. For a detailed description of the 

fairness concept applied by the seller agent, we refer to Section 6.1.2. 
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We note that the reader is assumed to be familiar with the contents of Sec­
tions 6.1.2 and 6.1.3 of the previous chapter in the following. 

7 .1.1 Time pressure 

An important assumption is that buyers are impatient and prefer an early agreement. 
Time pressure or time impatience is a common assumption in bargaining, e.g. [110] 
(see also Section 2.3.2). The seller is simultaneously and continuously negotiating 
with many buyers and is therefore less concerned with immediately reaching an 
agreement for a particular bargaining outcome, i.e. , he is relatively patient. Fur­
thermore, we assumed earlier that the seller can reproduce the offered goods quickly 
and at low costs. Therefore, a seller can respond timely to the demand and with lit­
tle additional costs for matters such as storage of the goods. We model this relative 
time patience by assuming t hat the seller , unlike the buyers, has no time pressure. 

At least in theory, the seller can benefit from buyers' time-pressure by introduc­
ing a delay before submitting a counter offer. An important question is t hen which 
bargaining strategies can most effectively utilise these potential benefits . Experi­
mental results discussed in Section 7.3 show t hat auction-inspired strategies, which 
we will present in the next Section, are very effective: depending on the t ime pres­
sure, they are capable of extracting very large shares of the bargaining surplus (see 
Section 1.1.2) for the seller. 

7.1.2 Bargaining strategies 

The challenge is to develop bargaining strategies for the seller that maximise ex­
pected utility by uti lising differences in buyers' willingness to pay without violating 
the fairness constraint . Instead , these strategies make use of differences indirectly 
through buyers' time pressure. In order to benefit from time pressure all the strate­
gies discussed below introduce a (fixed) delay before the seller agent submits a 
counter offer. 

Fixed and time-dependent threshold strategies 

For purpose of comparison we introduce a fixed threshold strategy, where the the 
seller 's desired expected utility level or aspiration level (see Def. 113.1) remains 
constant through t ime. The seller only accepts offers above the aspirat ion level and 
counter offers always have an expected ut ility level equal to the aspiration level. 
Whenever the seller agent accepts two different offers within a certain time interval, 
the bargaining outcome may be unfair. To rule out an unfair outcome, the seller 
agent immediately engages in post-agreement negotiation with all buyers from which 
it accepted an offer. During these negotiations the seller agent offers a buyer agent 
an improved offer where the expected utility corresponds with the seller agent 's 
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aspirat ion level. In case of mult iple issues, the seller will concede on one or more 

issues, and not change the value of the remaining issues.2 

Clearly, the fixed threshold strategy is not capable of utilising buyers' time pres­

sure. The purpose of the st rategy is to provide some insights in t he minimal ex­

tractable profit , given strategic behaviour of the buyers. 

The second strategy we consider is a t ime-dependent threshold strategy: the 

current aspiration level depends on time. The aspiration level only changes from 

one period to the next . Again, the seller only accepts offers above a (time-period 

dependent) aspiration level and counter offers are always equal to the current as­

piration level. As before, the seller agent immediately engages in post-agreement 

negotiation in case the seller accepts a buyer 's offer to ensure fairness . 

Unlike the fixed-threshold strategy the t ime-dependent strategy is capable of 

ut ilising buyers ' time pressure. Its success, however, depends on how much it knows 

about buyers' preferences, or how easily buyer preferences can be learned, in relation 

to time-based pricing stra tegies . 

A uction-inspired strategies 

We introduce a bargaining st rategy which is inspired by t he first-price auction. The 

auction-inspired strategy operates as follows. The seller agent collects all offers 

submitted within a certain fixed t ime interval, after his last offer. T hen it sets t he 

aspiration level to the current highest utility level, which is equal to the best offer 

from the collection of offers. It accepts all offers equal to the current aspirat ion level 

and counters t he unaccepted offers by setting the counter offer 's expected utility 

equal to the current aspiration level. T he strategy int roduces a fixed time delay 

before countering the unaccepted offers. Note that because the auction-inspired 

strategy only accepts offers with the same expected ut ility within a certain time 

interval, post-agreement negot iation is not necessary to ensure fairness. 

The success of the auction-inspired negotiating strategy does not depend on 

some (a priori) knowledge of buyer preferences, unlike the fixed and t ime-dependent 

st rategies. Intuit ively, buyers who, due to t ime pressure, suffer more from delay 

are inclined to bargain less "hard-headed" than other buyers. Consequently, these 

buyers may reach a deal sooner and pay more. Thus, at least potent ially, the 

st rategy is capable of ut ilising buyers ' t ime pressure without requiring (a priori) 

knowledge of buyer preferences. Unlike auctions, actual bargaining occurs in an 

alternating exchange of offers and counter offers, typically init iated by a buyer. 

Even though the seller 's strategy can be auction-inspired , buyers will be unaware of 

this fact. They do not know the opponent's bargaining st rategy on forehand; t hey 

2Note t hat this approach assumes t hat the agents have conflict ing interests on individual issues 

and nonsatiation of buyers (i.e., buyers always prefer more than less) . If this is not necessarily the 

case, a weaker form of fairness can be used instead, where the seller t ries to improve the offer to 

the best of his knowledge. 



7.2 Bargaining simulation environment 133 

perceive t he bargaining process to be bilateral. Buyers may of course suspect some 
relationship with other ongoing negotiations. The point is t hat unlike a t rue auction 
the relationship with other simultaneously submitted offers is not specified up front , 
through a set of rules. 

Reservation value 

A drawback of the auction-inspired strategy is that it becomes vulnerable whenever 
groups of buyers experience very litt le time pressure. Without time pressure, buyers 
have no incentive to buy soon and could independently decide to initially submit very 
low offers; consequently profits will be very low. To circumvent this we also consider 
auction-inspired strategies with a reservation value (i.e., a lowest acceptable utility 
level) . A seller agent is never willing to sell below the reservation value. This means 
we alter the earlier definition of the current highest utility level. It now becomes the 
maximum of the reservation value and the ut ility of the best offer from the offers 
collected within a certain time interval. An interesting advantages of introducing a 
reservation value occurs when some but not all buyers experience very little t ime­
pressure. The auction-inspired strategy can then still utilise the time-pressure of 
the other buyers. 

We consider two approaches for determining the reservation value. Either the 
reservation value is fixed, like the fixed-threshold strategy, or it is time dependent, 
like the time-dependent threshold strategy. Thus t he auction-inspired strategy with 
a reservation value is actually a combination of the auction-inspired strategy (with­
out reservation value) and either the fixed or time-dependent threshold strategies. 

7.2 Bargaining simulation environment 

We apply a simulation environment in order to evaluate the performance and robust­
ness of the above negotiation strategies against many learning buyers. The agents 
in the simulation are assumed to be boundedly rational: t hey can learn and adapt 
their strategies by a process of trial and error, and they do not know the seller 's 
strategy. The bargaining process is repeated many t imes, enabling buyers and the 
seller to learn from past interactions. An evolutionary algorithm is used to model 
the learning aspect of the agents. A similar approach was used in previous chapters 
(Chapters 3-5). 

7.2.1 The bargaining game 

The seller agent negotiates with many buyer agents simultaneously by alternating 
offers and counter offers, where the buyer agents initiate the negotiations. For 
our simulations we set a maximum number of r rounds , where r is set sufficiently 
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large such t hat it has no significant impact on the results . At the star t of the 

negotiation , buyer agents submit their offers to the seller agent , which responds by 

either accept ing an offer or sending a counter offer in the next round. Offers consist 

of a single issue, viz. t he price of the negotiable good. Negotiation continues after 

all buyer agents have reached an agreement or the maximum number of rounds is 

reached , which concludes a so-called bargaining game. We note t hat buyer agents 

in the simulation do not leave the negotiations or enter later. 

We assume that , since buyers are impatient , buyer agents in the simulation will 

respond to the seller agent's counter offer without delay. This is modelled by having 

the buyer 's counter offer occur in the same round as the seller 's counter offer. 

7.2.2 Buyers and their agents 

Buyers are interested in buying at most one unit of the offered good in each bar­

gaining game. They can have different preferences regarding their time pressure and 

valuation of the good, which together characterise the buyer type. For the analysis 

we assume buyers can be grouped into a fini te number of k types. T he number of 

buyer agents of each type participating in a negotiation game varies randomly and is 

unknown to the seller agent. The seller agent is also uninformed about the ident ity 

or type of a specific buyer agent. The actual number of part icipants of each type is 

determined independently by a Poisson distribut ion with average ,\ . 

A buyer agent t ries to maximise a given ut ility function for buyer type i , u;, 

which is defined as follows: 

u; = (v; - p)of , (7.1) 

where v; is the buyer 's valuation of t he good, p is t he negotiated price, O; is the 

discount factor used to model the t ime pressure, and t is the negotiation t ime. In 

the simulation negotiation occurs at fixed t ime intervals. Therefore, o is the discrete 

representation of t ime pressure and t t herefore also indicates t he negotiation round . 

Note that discount factors are commonly used for modelling t ime pressure, e.g. in 

the Rubinstein-Stahl alternating-offers model (see Section 2.3.2). The agents are 

fur thermore assumed to be individually rational (see Def. 4.2): they will not bid nor 

accept offers with a negative ut ility. 

Within the simulation, buyer agents are endowed with adaptive t ime-based 

strategies to produce offers and evaluate the seller 's offers. Although this is a rel­

atively simple st rategy, the adaptive nature of the strategies provides buyer agents 

with sufficient flexibility to bid effectively in the long run. A strategy consists of 

a piece-wise linear function, which determines the price level of new offers and is 

also used as threshold to accept or reject the seller 's offers: if the seller 's offered 

price is above the threshold , the offer is accepted, otherwise t he offer is rejected. A 

post-agreement offer is automatically accepted if this is beneficial for the buyer. 
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Figure 7.1: The EA cycle for negotiations with two buyer types and an adaptive 
seller 

We also applied an extended strategy in our experiments, where the threshold 
and offers are determined by separate piece-wise linear functions. The separation of 
the two functions enhances t he bargaining capabilities of the buyer agent. Results 
using the two representations are very similar. The outcomes presented in this 
chapter are obtained using the extended strategy. 

7.2.3 Seller agent 

The seller agent bargains with a number of buyers simultaneously, without knowing 
the type of these buyers. The seller agent 's utility is equal to the total utility or 
profit obtained over all buyers (recall from Section 7.1.2 that the we can assume the 
seller has no t ime pressure). Production costs are set to zero. 

We consider five strategies for the seller agent : fixed threshold , t ime-based 
threshold, auction-inspired strategies and two combined strategies. The first two 
strategies and the combined strategies are adaptive: strategies that maximise total 
utility are learned using an EA. The t ime-based threshold strategy is similar to the 
strategy used by the buyer. 

7.2.4 The evolutionary system 

Evolutionary algorithms (EAs) are used to produce effective bargaining strategies 
for the buyer agents and seller agent. The implementation used is described in detail 
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in Section 1.2. The strategies for buyer agents of each type are produced by separate 
EAs, which operate in parallel. Furthermore, a separate EA can also be used to 
produce strategies for the seller agent, in case the seller uses an adaptive strategy. 
An example of the evolutionary system with two buyer agents and an adaptive 
seller agent is depicted in Figure 7.1. Note that, whereas in previous chapters a 
single EA was used with several evolving populations, the current implementation 
applies several (independent) EAs. This enables for instance the seller agent to use 
a different strategy representation than a buyer agent. 

The fitness of the strategies is determined by the average utility obtained in a 
number of bargaining games, which go as follows. At the start of each bargaining 
game, the number of participating buyer agents of each type is determined randomly 

using a Poisson distribution as described above. Buyer agents are then assigned a 
randomly selected strategy from either the parent or offspring population of the 
corresponding type. Similarly, a strategy is selected randomly for the seller agent 
(in case of an adaptive seller). The bargaining game is played for a fixed number of 
times, re-establishing the number of buyer agents and assigning new strategies at 
the start of each game. 

Strategy encoding 

As mentioned in Section 7.2.2, the buyer agent's strategy consists of two piece-wise 
linear functions: an offer and a threshold function. The functions are encoded using 
real values, where each bending point of a function is encoded by two real values. 
Additionally, two end points mark the values for the first and last rounds. For 
example, 8 real values are needed to encode a pair of functions with two line pieces 
each. 

The same representation is used for the seller agent if he uses a time-based 
threshold strategy. If a fixed threshold is used, only a single real value is needed to 
encode this. Note that the seller agent uses the same function for both the threshold 
and for producing offers. 

7.3 Experimental results 

This section reports on computational experiments using the bargaining simulation 

environment. 

7.3.1 Settings 

The following settings are used for the experiments reported in this chapter. Buy­
ers are grouped into three types, each type having adaptive bargaining strategies 
evolving in separate populations. The time pressure (discount factor) for each type 
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is set as a control parameter. A type's valuation , on t he other hand, is randomly 
selected from a uniform distribution at the beginning of each experiment . In order 
to make sure that all types have different valuations, t he valuation of type 1 is se­
lected between 0 and 1000, type 2 between 1000 and 2000, and type 3 between 2000 
and 3000. 

T he piece-wise linear functions of the buyer agents, and of the seller agent in case 
of time-based threshold st rategy consist of two line pieces. The number of buyers of 
each type participating in a bargaining game is determined randomly by a Poisson 
distribution with the average A = 10. The length of a bargaining game is set to 40 
rounds . 

The EA settings are chosen such that results are robust and t he EAs are able 
to find good solutions. All buyer types use equal settings, with 20 strategies in 
the parent populations and 20 offspring strategies. An exponential decay model 
is selected to determine the mutation standard deviation (see Section 1.2.3). The 
mutation standard deviation is init ially set to 0.2 , and decays with a half-life value of 
50 generations. T he EA settings for the seller are the same, except that each seller 
population only contains 10 strategies . Buyers have larger populations because 
more buyers than sellers participate each game, and because in case of the extended 
buyer strategy (with two functions) the search space for the buyer is larger (a higher 
population size is often recommended for larger search spaces) . T he fi tness of the 
strategies for a single generation is determined by 200 bargaining games. The EAs 
using these settings are able to find almost optimal solutions for simple test cases. 

7.3 .2 R esults 

The reported results are obtained after a process of learning, when the strategies 
have converged . It is important to note that during learning, the preferences of the 
buyers remain unchanged , although the number and composit ion (i .e., number of 
each type) of buyers can differ in each bargaining game. Experiments are run for 
100000 bargaining games (500 generations) . Resul ts are averaged over the last 1000 
bargaining games of an experiment, and over 30 experiments, accounting for random 
settings such as the number of part icipating buyers and the buyer valuations. 

T he performance of the st rategies is evaluated by comparing the fraction of bar­
gaining surplus or just surplus (see Section 1.1.2) obtained by the seller agent . Since 
the seller benefits from any posit ive agreement (there are no costs for the seller , see 
Section 6.2. 1), t he bargaining surplus in this case is equal to the buyer 's valuation of 
the good. Figure 7. 2a compares the seller 's obtained fraction of surplus for different 
seller strategies and buyer discount fac tors, where the buyer types have equal dis­
count factors. The average round an agreement is reached is shown in Fig. 7.2b. The 
results when buyers have different discount factors are shown in Table 7.1, where c5; 
denotes the discount factor for buyer type i and the strategy numbers correspond to 
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Fig. 7.2. As shown in Fig. 7.2a and Table 7.1, a fixed threshold strategy (1) is able 
to extract around 65% of the surplus. Note that the outcomes are independent of 
the discount factor. Clearly, the fixed threshold strategy is unable to benefit from 
the buyers' time pressure. 

The time-based threshold strategy (2) , on the other hand, shows that higher 
profits can be obtained if the threshold changes in time, see Fig. 7.2a and Table 7.1. 
Buyers with a high valuation will settle for an agreement relatively early, since 
waiting for a better deal does not compensate the loss due to time discounting. 
Buyers with a low valuation, on the other hand, have the incentive to reach an 
agreement in a later stage if they can get a better price for it. This way the seller can 
indirectly discriminate between buyers with different valuations and time pressures. 
A disadvantage, however , is that this leads to much efficiency loss due to delayed 
agreements. Figure 7.2b and Table 7.1 show that the average round in which an 
agreement is reached is relatively high when a time-based strategy is used , resulting 
in a lower final expected utility for the buyers. 

Note that with no time discounting (i.e. , when the discount factor is 1) the 
fixed threshold strategy performs better. This is due to the difference in strategy 
complexity: only a single value needs to be optimised in case of a fixed threshold , 
whereas an entire function (encoded by 4 values) needs to be learned in case of the 
time-based threshold. This is clearly more difficult , especially within a dynamic 
environment with learning buyers. 

Outcomes using the auction-inspired bargaining strategies (see Fig. 7.2a and 
Table 7.1 , strategies (3),(4) and (5)) show an impressive increase in the fraction of 
surplus when buyers are impatient. If the time pressure becomes sufficiently high, 
the seller obtains almost the entire surplus. Even for lower time pressure, results are 
much better for the seller compared to the fixed and time-based threshold strategies. 
For the case of no or very low time pressure, the results also show that simple 
auction-like mechanisms are not sufficient in case of unlimited supply. Without 
competition between buyers , the market price goes to cost level, resulting in a zero 
profit for the seller. This problem can be resolved in bargaining by combining the 
auction-inspired strategy with an adaptive reservation value. As shown in Fig. 7.2a, 
this results in very good outcomes, even if buyers are very patient. This makes the 
combined strategy very versatile. We note that these outcomes also generalise to 
settings where different buyer types have different time preferences , assuming that 
buyers with higher valuation have a higher time pressure, as indicated by Table 7.1. 

7 .3.3 B argaining revisited 

An important aspect of the bargaining protocol is the ability of the seller to produce 
counter offers in the next round of bargaining. The auction-inspired strategy only 
accepts the highest offers in each round. Usually, only a single bid will be accepted 
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strategy b1 b2 b3 round fraction 
1 1.0 0.95 0.90 0.88 ± 3.28 0.65 ± 0.09 
2 1.0 0.95 0.90 23.94 ± 3.92 0.82 ± 0.08 
3 1.0 0.95 0.90 5.75 ± 0.93 0.74 ± 0.08 
4 1.0 0.95 0.90 11.88 ± 5.63 0.90 ± 0.06 
5 1.0 0.95 0.90 18.05 ± 7.28 0.91±0.03 
1 0.95 0.90 0.85 0.00 ± 0.01 0.65 ± 0.08 
2 0.95 0.90 0.85 22.44 ± 5.07 0.82 ± 0.05 
3 0.95 0.90 0.85 6.29 ± 0.86 0.91 ± 0.04 
4 0.95 0.90 0.85 6.75 ± 2.36 0.93 ± 0.03 
5 0.95 0.90 0.85 17.02 ± 5.90 0.95 ± 0.03 

Table 7.1: Average round an agreement is reached (column "round" ) and seller 's 
fraction of surplus (column "fraction") when different buyer types have different 
discount factors and for different seller strategies (the strategy numbers correspond 
to the strategies of Fig. 7.2). 

due to differences in the buyer agents ' strategies. Even if buyers are of the same 
type , small differences remain because of mutations. The outcome where all buyers 
make the same offer is therefore unstable (this can be compared to e.g. "trembling 
hand" in game theory, where players are assumed to make small mistakes when 
executing their strategies). This would result in large inefficiencies because of delays. 
The counter bid in the next round, however , enables remaining buyers with similar 
valuations (i.e. , of the same type) to accept the seller 's bid (albeit with a certain 
t ime delay) . This way, all remaining buyers of the same type can reach an agreement 
within a single round. Results (see Fig 7.2b and Table 7.1) show that , in fact , buyers 
reach agreements on average in the 6th negotiation round when the auction-inspired 
strategy is used, even though on average 30 buyers participate in each negotiation. 
This is much more efficient than e.g. t he time-based threshold strategy. 

A possible disadvantage of producing counter offers by the seller is that buyers 
could bid very low, and then accept the counter offer of the seller. Such a strategy 
could be beneficial in case the seller's counter offer is influenced by the buyers ' offers, 
as with the auction-inspired strategies. This could then result in low profits for the 
seller. To see if indeed buyers profit by using such a strategy, the strategy repre­
sentation for buyers was extended by separating the functions for producing offers 
and determining the threshold (see Section 7.2.2). Even with separated function, 
however, the auction-inspired strategy performs very much in favour of the seller (as 
shown by the results). This occurs because the counter offer is delayed by the seller, 
although agreements occur without delay, providing the buyers with an incentive to 
try and get an agreement immediately. 
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7.4 Concluding remarks 

In this chapter, we consider strategies for a seller agent who negotiates with many 
buyers simultaneously in a bilateral fashion . These strategies respect a notion of fair­
ness such that buyers are treated similarly. An important assumption is that buyers 
are impatient and prefer early agreements. Furthermore, buyers can have different 
valuations and time preferences. A buyer's actual valuation and time preference is 
only known to himself (i.e. , a buyer's type constitutes private information) . 

We investigate several seller strategies for bilateral bargaining in a one-to-many 
setting, and introduce several auction-inspired strategies. Five different seller strate­
gies are evaluated and compared: (1) fixed threshold, (2) time-dependent threshold 
strategies, (3) auction-inspired, (4) auction-inspired with fixed reservation value, and 
(5) auction-inspired with time-dependent reservation value. The last two strategies 
are actually a combination of the auction-inspired strategy with the first two strate­
gies. 

We use an evolutionary simulation to analyse the performance of the different 
strategies. The buyers ' bargaining strategies adapt and learn through the use of 
an evolutionary algorithm (EA). The seller's strategies (1) and (2) , and the com­
bined strategies (4) and (5) also adapt and learn using an EA. The auction-inspired 
strategy (3) , on the other hand, determines the threshold value based on the offers 
received by the buyers, and does not require any learning. 

The auction-inspired strategies appear to be very successful in utilising the time 
pressure and consequently extract a very high share of the surplus. For sufficiently 
high time pressure, the seller obtains approximately the entire surplus, indicating 
that buyers almost bid their valuations. This is achieved without much delay. Thus 
buyers self-select to pay their valuation, while the bargaining outcomes respect our 
notion of fairness. The results also show superior performance of the combined 
strategies (4 and 5) compared to the auction-inspired strategy (3) , in case some or 
all buyers have very little time pressure. In other words , the combined strategy is 
very versatile. 





Chapter 8 

Discussion and conclusion 

We investigated both fundamental aspects of bargaining and introduced real-world 
business applications of bargaining using autonomous agents in this thesis. We 
applied computational simulations to analyse various situations of bargaining that 
are difficult to approach mathematically, and demonstrated the feasibili ty of the 
suggested applications. T he agents in these simulations are not assumed to be com­
pletely rational, but rather they learn by doing, and adjust their bargaining policies 
based on feedback from interactions with other agents. Complete rationality is usu­
ally not realistic for actual multi-agent systems, mainly for two reasons. Firstly, 
agents may not have sufficient time and/or computational power t o find opt imal 
or rational outcomes. Secondly, in a multi-agent system with different agents pro­
grammed by different part ies, one cannot rely on the other agents to act rationally. 
Nevertheless, game-theoretic or "rational" outcomes serve as a useful benchmark to 
validate our computational approach. 

Evolutionary algorit hms (EAs) are used in this thesis to govern t he adaptive 
behaviour of the agents in the computational experiments . EAs are increasingly 
being used to model societies of learning computat ional agents and humans, espe­
cially within the field of agent-based computational economics. As shown in this 
thesis, EAs can be used effectively for bargaining both in case of population learn­
ing, where several agents select their strategies from a common strat egy pool, and 
individual learning, where genetic material is not exchanged between agents. A 
possible drawback for using EAs in practice is that off-the-shelf implementations of 
EAs may require many fi tness evaluations before converging to good solut ions. If 
such evaluations are expensive or limited , e.g. when each bargaining game involves 
large sums of money, a more specialised approach may be required. The applications 
discussed here, however , mainly involve relatively small-risk transactions that are 
repeated frequently. Nevertheless, many solutions for learning using limited evalu­
ations already exist in t he literature which can be used for high-risk applications. 
However , it is beyond the scope of this thesis to discuss such approaches in detail. 
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In order to validate our evolutionary approach, we first compared experimental 

results to game-theoretic outcomes for relatively simple cases. In Chapters 3 and 4 

we considered the game-theoretic subgame-perfect equilibrium as the benchmark for 

the bilateral bargaining game. Interestingly, in many cases the emerging behaviour 

of the evolutionary system did coincide with "rational" or game-theoretic behaviour 

in the long run. In Chapter 5, a validation was carried out for market setting 

where evolving agents learn to bid in a second-price auction. The second-price 

auction provides bidders with the incentive to bid truthfully in case of independent 

valuations. This outcome was indeed found in the evolutionary simulation. 

After validating our experimental approach, we applied the evolutionary simu­

lation to analyse situations which are hard or unwieldy to analyse theoretically. In 

Chapter 3 the agent model was extended with a fairness norm for multi-issue nego­

tiations. The evolutionary outcomes showed that the surplus is more evenly divided 

when the fairness norm is applied , and that these outcomes are relatively insensi­

tive to the fairness curve if the norms are consequently applied in each negotiation 

round. If the Pareto-efficient frontier is asymmetric , different types of agreements 

are reached in the various rounds. Chapter 4 considered a different extension, where 

agents can have additional opportunities if negotiations fail. Each agent is charac­

terised by her state, denoting the number of opportunities remaining. If the agent's 

state is common knowledge, the number of opportunities only has a slight impact 

on the division of the surplus in the simulation. If this information is only privately 

known, however, the division of surplus reverses if the number of opportunities is 

sufficiently large and equal for both players. Further extensions, such as the in­

fluence search costs and uncertainty about future opportunities were also analysed 

using the evolutionary framework. 

The power of evolutionary algorithms for analysing complex behaviour was also 

demonstrated in Chapter 5 in a market setting. A framework was presented for sell­

ing consumer attention space or "banner space" to the highest bidders (suppliers) 

in an auction. The value of the attention space is not a-priori known to the bidders 

and can only be learned with consumer feedback. This value depends on the pro­

file of the consumer, but may also be influenced by other banners which are shown 

concurrently. Such a setting involving multiple goods, complex interdependencies, 

and uncertainty in the valuation of the goods is difficult to analyse theoretically. 

A computational simulation with evolving bidding agents was therefore applied to 

demonstrate the feasibility of the approach and to compare the effectiveness of 

various auction designs. With no interdependencies, the adaptive suppliers could 

accurately learn the profile of the consumers. In case of interdependencies, however, 

the suppliers also need to take into account the effect of competitive banners. In­

terestingly, the agents in the framework then learn to target specific niches in the 

market . The performance of the system, i.e., if a good match between consumers 

and suppliers is found, appeared to depend on the auction rules in case of interde-
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pendencies. Results indicated that the so-called next-price auction (where goods are 
sold at the price of the next-highest bidder) performed well in general. 

An important advantage of bargaining is that not only the price, but other prod­
uct and service related issues can be taken into considerat ion as well. This can reduce 
the competit iveness of negotiations if agents have different preferences regarding the 
rela tive importance of t he issues. The mult i-issue aspect has therefore been given 
much consideration throughout this thesis, especially in Chapters 3, 4 and 6. The 
main objective of such negotiations is to obtain Pareto-efficiency by finding opt imal 
trade-offs between issues. Chapter 3 showed that the evolut ionary agents agree on 
Pareto-efficient outcomes after a relatively short learning period . Chapter 4 intro­
duced a parameter to tune the competitiveness of two-issue negotiations. Using 
the evolutionary simulation , the impact of competit iveness in the game with mul­
tiple opportunities was investigated. Chapter 6 introduced advanced strategies for 
autonomous agents that are capable of approximating Pareto-efficiency within a 
single alternating-offers bargaining game. These strategies require no learning or 
knowledge of the opponent 's preferences. In the example of information goods, we 
demonstrated that these strategies work well even for non-linear preferences. 

In Chapters 6 and 7 bilateral bargaining was applied to the case of virtually 
unlimited supply as wit h information goods. Using an alternating-offers protocol 
as in Chapter 3, a seller negot iates with many buyers simultaneously and aims at 
reaching as many agreements as possible, and at the same time obtain a large share 
of the surplus. Chapter 6 focused on the multi-issue problem within the domain of 
information goods, whereas Chapter 7 considered the profits gained by the agents. 
For the latter we introduced a number of seller strategies that also take into account 
a fairness const raint ; a negot iation between a buyer and a seller should be fair 
relative to other concurrent negotiations. One of the introduced strategies is able 
to extract almost the entire surplus, provided that buyers are sufficiently impatient 
and prefer to reach agreements early in the negotiation process. This strategy is 
inspired by the first-price auction, and simply accepts the highest offer received in 
each period. As before, we carried out evolut ionary experiments to compare the 
performance of the seller st rategies. The results showed that , in the absence of t ime 
pressure, there is no real competition and prices using the auction-based strategy 
dropped to cost level. We prevented such low prices by incorporating either a fixed or 
time-dependent reservation price into the seller 's strategy. This combined strategy 
indeed showed superior performance in the evolutionary experiments. 

To conclude, we considered both bilateral bargaining and auction approaches in 
t his t hesis, and successfully applied these approaches to several practical settings. 
An evolut ionary framework was developed to investigate various bargaining settings 
and business applications. The outcomes of the computational experiments resulted 
in insights that go beyond current game-theoretic findings and demonstrated the 
effectiveness of automated bargaining for the application to real-world domains. 





Appendix 

Game-theoretic analysis 

In this Appendix we derive subgame perfect equilibrium (see Def. 18.3) strategies 
for multiple-stage games from Chapter 3 using a backward induction approach. We 
follow the same approach as in [126] , but extend the analysis to multi-issue nego­
tiations and the extended model where the agents perform an additional fairness 
check. Appendix 1 studies the mult i-issue models and is related to Section 3.3.2. 
In Appendix 2 we analyse the extended model with fairness and is related to Sec­
tion 3.4.4. 

1 Multi-issue bargaining 

In Appendix 1.1 , we study a model for multi-issue bargaining without a risk of break­
down. The more general model (with a risk of breakdown) is then investigated in 
Appendix 1.2. Furthermore, Appendix 1.3 presents equations for calculating Pareto­
efficient (see Def. 4.3) utility pairs for additive multi-attribute ut ility functions (see 
Def. 3. 1), given any number of issues and weight settings of the agents. 

1.1 Model without a risk of breakdown (p = 1) 
Because time plays no role in the model without a risk of breakdown, the last agent 
in turn has the opportunity to reject all proposals from his opponent and demand 
the entire surplus (for each issue) in the last round. In subgame perfect equilibrium 
(SPE), the other agent accepts this proposal (see also the discussion in [11 , pp. 200-
201]). If the maximum number of rounds n is odd, agent 1 will therefore receive the 
entire surplus, whereas agent 2 receives all in case n is even. Due to the absence of 
t ime pressure, multiple subgame perfect equilibria exist in this case. Although t hese 
equilibria differ in the timing of the agreements, all result in the same outcome (i.e. , 
the agent in turn at t = n - 1 always receives the entire surplus for all issues). It is 
for instance subgame perfect for the last responder to concede the ent ire surplus (for 
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all issues) to his opponent before the deadline is actually reached or , alternatively, 

to accept a take-it-or-leave-it deal from the opponent at any point in t ime. 

1.2 Model with a risk of breakdown (p < 1) 

We calculate the SPE for the model with a risk of breakdown in this Section. We first 

show that in Nash equilibrium (see Def. 18.2) the deals are always weakly Pareto­

efficient (and therefore also in subgame perfect equilibrium). A deal is called weakly 

Pareto-efficient if there exists no other deal that both agents prefer. We assume in 

the following that the agents' decision to accept or reject an offer is determined by 

a threshold value T: the offer is accepted if the utility level is above the threshold, 

and rejected otherwise. Consider a proposing agent i making an offer o;(t) to his 

opponent, agent j, in round t of the negotiations (t < n) . Assume that agent i 

knows that agent j's threshold is equal to Tj(t). It is then a best response for agent 

i to propose a weakly Pareto-efficient deal to agent j. 

We show this by contradiction. Suppose agent i proposes an offer O;(t) to agent j 

which is not Pareto-efficient and agent j accepts this offer . Since the offer is Pareto­

inefficient, there exists an offer O:(t) which results in a higher utility for agent i and 

the same utility or higher for agent j. Since agent j is either indifferent between o;(t) 

and O:(t) or prefers O:(t), agent i would do better by offering O:(t) instead (which 

agent j will also accept) . 
The SPE partitioning can now be calculated as follows. If the maximum number 

of rounds n is even, agent 2 will be the proposer in the last round (i.e., at t = n- 1). 

Agent 2 will then demand the whole surplus for each issue and agent 1 will receive 

nothing. This division of the surplus would yield agent 2 a pa yo ff (expected utility) 

of 7r2 (t = n - 1) = pn- 1 , where 7r;(t) denotes agent i's payoff in the bargaining game 

starting at time t. We now analyse the previous round (t = n - 2). Suppose agent 

l 's offer to agent 2 is o1 (t = n - 2). Agent 2's payoff 7r2 (t = n - 2) would then be 

pn- 2u2 [o1 (t = n - 2)]. In equilibrium, at t = n - 2 agent 1 should propose agent 

2 a payoff-equivalent deal [i.e., 7r2 (t = n - 2) = 7r2 (t = n - 1)], . This implies 

that u2 [o1 (t = n - 2)] should be equal to p. Agent l 's payoff 7r1 (t = n - 2) is 

then pn- 2 Ji (p), where Ji ( u 2 ) describes the location of the Pareto-efficient frontier. 

This function returns the utility of agent 1 when agent 2's utility is equal to u2 

and the agreement is Pareto-efficient. 1 At t = n - 3, agent 2 can, in a similar 

fashion, propose an equivalent offer (in terms of payoff) and receive a payoff of 

7r2 (t = n-3) = pn- 3 f 2 [p fi (p)]. (The f2( u1 ) function is the inverse of the Ji function .) 

This procedure is then repeated until the beginning of the game is reached (at 

t = 0). The same line of reasoning holds if the number of rounds is odd (simply 

switch the roles of agent 1 and agent 2). As in the infinite-horizon game [110], 

1For the bargaining problem studied in this paper (depicted in Fig. 3.3) , the Pareto-efficient 

frontier is described by t he equation .3 in Appendix 1.3. 
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the agents agree immediately on a deal. Table .1 shows the SPE partitionings for 
different game lengths. 

n Payoff agent 1 [7r1 (t = O)] (SPE) Payoff agent 2 [7r2 (t = O)] (SPE) 
1 1 0 
2 Ji (p) p 
3 fi(ph(p)) Pf2(P) 
4 Ji (ph(pfi (p))) Pf2(Pfi(p)) 
5 !1 (ph(pfi (ph(p)))) Ph(pfi (pf2(p)))) 
6 Ji (ph(pfi (ph(pfi (p))))) Ph(pfi (pf2(pfi (p))))) 

. . . . . . . .. 

Table .1: Payoffs for agent 1 and agent 2 for different lengths n of the alternating-offers 
game, assuming that both agents use SPE strategies. 

1.3 Calculating the Pareto-efficient frontier 

We now show how Pareto-efficient values can be calculated if the agents use an addi­
tive multi-attribute utility function. The functions Ji and h are used to determine 
the Pareto-efficient utility of agent 1 and 2 respectively, given the utility received 
by the opponent. We will first give a recursive formula for Ji and h which can be 
used for any number of issues , and then present an example for two issues. As was 
described in section 3.1, each issue i is associated with a weight wj for agent j . We 
assume that , without loss of generality, the issues are sorted such that 

wi wi+l 
ViE{l,2, ... ,m- 1}:_!~ 1+1 . 

w2 w2 

We begin by deriving h , the maximum utility which agent 2 can obtain , given 
that agent 1 receives a utility u. Starting with demanding the full dollar on each 
issue, agent 2 needs to concede on zero or more issues such that a utility level u for 
agent 1 is reached. Agent 2 will first concede on issues with a relatively low loss in 
utility for agent 2 (i.e. with a low weight for agent 2) and a relatively high gain for 
agent 1. The issues are now sorted in such a way that agent 2 will first concede on 
issue 1, then on issue 2, etc. , until the desired utility level for agent 1 is reached. 
This is reflected in the following formula, given agent I 's utility u: h(u) = l-rHu) 
where r 2 is a recursively defined function: 

r;(u) = { 
ifu > wL 
otherwise. ( .1) 
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Similarly, agent 1 will start conceding on the last issue. The function for agent 1 

is defined as fi = 1 - ri(u) where m is the number of issues, and r 1 is a recursively 

defined function : 

i . { ri- 1(u-w2)+wf ifu > w;, 
r1(u i) = w ' ' :::+u otherwise. 

W 2 

( .2) 

For any number of issues m 2'. 1 and any weights, given that 2::~ 1 wf = L:;~ 1 w; = 
1 and wj > 0 for all i E {1, . .. , m},j E {1 , 2}, the following properties hold: fi(l) = 
fz(l) = 0, fi(O) = fz(O) = 1 and fi(fz(u)) = f2(fi(u)) = u for all u: 0 :Su :S 1. 

The next equation is an example of a two-issue bargaining situation with weight 

vectors w1 = (0.7, 0.3)T and w2 = (0.3, 0.7f for agents 1 and 2 respectively: 

f i(u) = J2(u) = { ~:~( 1 - u) if u > ~.7. 
1 - 0·3 u otherwise 0.7 , 

(.3) 

This function yields the Pareto-efficient frontier depicted in figure 3.3. Note 

that when the weights are diametrically opposed, the same function applies to both 

agents, i. e. f 1(u) = fz(u) for all u: 0 :Su :S 1. 

2 Extended model: Fairness 

The fairness models evaluated in Section 3.4.2 (i.e., with a fairness check at the 

deadline only) and in Section 3.4.3 (i .e., with a fairness check in each round) are 

analysed in this appendix. As in Appendix 1.2, we apply backward induction to 

deduce the SPE partitioning. 

2.1 General analysis 

The fairness function is now formally denoted as 9r(u). This (real-valued) function 

returns the probability of acceptance of a proposal in round r in case the responding 

agent 's utility is equal to u. If a fairness check is performed only in the last round , 

9r(u) = 1 for all r < n (where n is the number of rounds). In case the same fairness 

check is performed each round, 9r(u) is independent of r. We assume that the fairness 

function is a monotonic non-decreasing function of u and that 9r ( u = 1) = 1. Let 

agent j be the agent proposing a deal at round r and agent - j the responder. We 

then abbreviate 9r[u- j(Oj(r))] (the probability of acceptance of agent j's offer o in 

round r) as p~cc(O'j. 
If n is even, agent 2 will propose an offer in the last round (at r = n). Agent 

2 will then propose an offer o2 (r = n) which, in SPE, maximises his payoff, i.e., 

his expected utility. The payoff 7r2 received by Agent 2 if his offer is accepted 

equals pnu2[o2(r = n)], where u2 is agent 2's utility function (see Section 3.1). The 
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acceptance probability is equal to p~cc [<%(r = n)]. Agent 2's payoff in round r = n 
is therefore: 

(.4) 

where P c [O, 1 ]m is the set containing all Pareto-efficient offers. Analogously, the 
payoff 7r1 for agent 1 in round r = n is equal to: 

( .5) 

where u 1 is agent l 's utility function. 
It is again straightforward to show that it is optimal to propose a Pareto-efficient 

deal. Assume for instance, that a Pareto-inefficient offer is made. The proposer of 
this offer can then improve his payoff by selecting an offer on the Pareto-frontier 
which yields his opponent the same payoff. Because the probabili ty of acceptance 
only depends on the responder 's utility of this offer, this will not affect the fairness 
evaluation. 

We now analyse the previous round (r = n - 1). In SPE, at r = n - 1 agent 2 
only accepts a deal which is at least equal to the payoff 7f2 ( r = n) that he receives in 
the next round (in SPE). Therefore, 7r2(r = n - 1) ::::: 7r2(r = n) in SPE. Effectively, 
7r2(r = n) acts as a threshold used by agent 2 to determine the minimal acceptable 
offer at r = n - 1. Some elementary manipulations then show that in SPE agent 1 
should make an offer 51 ( r = n - 1) such that 

( .6) 

otherwise, agent 2 rejects the proposal at r = n - 1 to earn 7r2(r = n) in the last 
round. We now define R C [O, l]m to be the set of offers for which Eq .. 6 is not 
violated . In SPE, agent l 's payoff in round r = n - 1 then equals 

7r1(r=n- l) = _ max pn- 1ui[o1 (r =n- l)]p~':~\[o1 (r=n-l)] 01 (r = n- l )EP n 'R. 

+ {1 - p~~~\ [o1 (r = n - l)]}7r1 (r = n). (.7) 

In a similar fashion , we can calculate agent 2's payoff at r = n - 1 in SPE: 

7r2(r = n - 1) = pn- 1u2[01(r = n - l) ]p~':\[01 (r = n - 1)] 
+ {l - p~~1 [01(r = n - l )]}7r2(r = n). (.8) 

For r = n - 2 expressions very similar to Eqs. . 7 and .8 can be derived (but the 
roles of the two agents switch). This procedure is then repeated until the beginning 
of the game is reached (at r = 1). The same line of reasoning holds if the number 
of rounds is odd (simply switch the roles of agent 1 and agent 2). 
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In the basic model without fairness all agreements occur in the first round in 

SPE (for p < 1). When the agents apply a fairness check in each round, however, 

even in SPE a significant number of agreements occurs after the first round. In this 

case, the strategy followed in all rounds comes to play a role in determining the 

outcome of the game. 

We also remark that , although a responder 's fairness considerations determines 

for a large part the offers made by a proposing agent , this does not make the respon­

der 's thresholds superfluous in SPE. Recall that the role of the threshold is reflected 

in Eq . . 6. 

2.2 Application to a simple case 

We will now apply the general approach presented above to a relatively simple 

example with m = 1 (a single issue), n = 3 (3 rounds) and p = 1 (no time pressure). 

Because m = 1, the offer vector o(t) has only a single component. We denote he value 

of this component as x(t) in the remainder of this appendix. It is obvious (because 

the agents are assumed to be risk neutral, see Section 3.1) that u1 [x(t)] = x(t), and 

u2 [x(t)] = l-x(t) for 0 ::; t ::; n- l. In this example, the agents evaluate the fairness 

of the offers (in each round) using fairness function 4 in Figure 3.7 [i.e., gt(u) = u]. 

Furthermore, we taken= 3 and p = 1. Notice that, because the number of rounds 

n is odd in this example, we need to switch the roles of agent 1 and agent 2 when 

we apply Eqs . .4-.8 in the following. 

Agent 1 makes an offer to agent 2 in the final round (at t = 2). In SPE, agent 

1 applies Eq . .4 to maximise his payoff tr1 ( t = 2). Substituting parameters for this 

problem, the product term on the RHS of Eq . .4 becomes u1 [x(t = 2)]g2 [u2 (x(t = 2)], 

which can be simplified further to x(t = 2)[1 - x (t = 2)] . This term is maximised 

for x(t = 2) = 0.5, which results in tr1 (t = 2) = 0.25. Using Eq .. 5, the payoff of 

agent 2, tr2 (t = 2), is then also equal to [l - x(t = 2))x(t = 2) = 0.25. 

Agent 2 makes a move at t = 1. We initially assume that the condition stated 

in Eq . . 6 is not violated by agent 2's offer. Agent 2's payoff is then determined by 

applying Eq . . 7. Substituting the parameters of this problem and simplifying, the 

term that should be maximised in Eq . . 7 becomes equal to [l - x(t)]x(t) + [l -

x(t)]0.25. This term is maximised for x(t = 1) = 0.375. The condition stated in 

Eq . . 6 is not violated because u 1 (0.375) = 0.375 :'.:'. 0.25. Our initial assumption 

therefore turns out to be valid. We can now apply Eqs .. 7 and .8 to derive that 

tr1 (t = 1) ~ 0.297 and tr2 (t = 1) ~ 0.391. 

Agent 1 proposes an offer in the first round (at t = 0) . Again, we initially 

ignore Eq .. 6. Using Eq .. 7, agent 1 then maximises his payoff tr1 (t = 0) . This 

results in x(t = 0) ~ 0.648. However, this offer violates the condition in Eq .. 6, 

since u2 (0.648) = 0.352 < tr2 (t = 1) . Agent 1 should therefore propose a payoff­

equivalent deal to agent 2 [i.e., tr2 (t = 0) = tr2 (t = 1)]. For x ~ 0.609 this condition 
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is satisfied and agent 2 becomes indifferent between accepting or refusing this deal. 
Subgame perfection then predicts that agent 2 accepts this proposal, yielding agent 
1 a payoff of ~ 0.419. Tables 3.2 and 3.3 in Chapter 3 summarise these theoretical 
results. Notice that, in this example, Eq . . 6 (i.e. , the responder 's threshold) indeed 
plays a role in round 1, whereas in the rounds 2 and 3 the equation does not influence 
the proposals made in SPE. 
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Samenvatting (Dutch) 

Onderhandelen speelt een steeds grotere rol door de ontwikkelingen binnen de elek­
tronische handel, met name door de ontwikkeling van autonome software agenten. 
Dit zijn programma's die, geinstrueerd door een gebruiker, in staat zijn zelfstandig 
en op een intelligente wijze een gegeven opdracht te verwezenlijken. Door middel 
van autonome software agenten kan het onderhandelingsproces worden geautoma­
t iseerd , waarmee goederen en diensten met de daarbij horende voorwaarden, zoals 
garantie en leveringstijd, flexibel kunnen worden afgestemd op de individuele wensen 
van de betrokkenen . In dit proefschrift wordt aandacht besteed aan zowel funda­
mentele aspecten van onderhandelen als bedrijfstoepassingen van geautomatiseerd 
onderhandelen dmv software agenten. 

Het fundamentele deel houdt zich bezig met de vraag wat de uitkomst van on­
derhandelende agenten zal zijn in een gestileerde wereld en hoe deze uitkomst wordt 
belnvloed. Hierdoor kunnen inzichten worden verkregen voor het produceren van 
agenten, strategieen en het opstellen van onderhandelingsregels voor prakt ijksitu­
aties. Wij bestuderen deze aspecten aan de hand van computer simulaties van 
onderhandelende agenten. Hierbij wordt gekeken naar adaptieve systemen, dwz 
waarbij agenten leren hun onderhandelingsstrategie aan te passen aan de hand van 
ervaringen uit het verleden. Het leergedrag wordt gesimuleerd door evolutionaire 
algoritmen. Deze algoritmen komen voort ui t de kunstmatige intelligent ie en zijn 
geinspireerd door de evolutie theorie uit de biologie. Oorspronkelijk zijn de evoluti­
onaire algoritmen ontwikkeld om optimalisatieproblemen op te lossen, maar binnen 
de economie wordt deze methode steeds vaker toegepast om leergedrag van mensen 
te modelleren. Naast computer simulaties bestuderen wij voor relatief eenvoudige 
gevallen wiskundige oplossingen uit de zogenaamde spel theorie. De spel theorie 
houdt zich met name bezig met de "rationele mens" , dwz met opt imale oplossing in 
een geabstraheerde situatie (of spel), gegeven dat iedereen zich rationeel gedraagt. 
De spel- theoretische uitkomsten worden gebruikt om de computer experimenten te 
valideren. Het voordeel van de computer simulaties is dat minder stricte assump­
ties nodig zijn en dat complexere interacties die dichter bij de werkelijkheid staan 
kunnen worden bestudeerd . 
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Allereerst wordt een onderhandelingssituatie onderzocht waarbij twee spelers bo­
den en tegen boden tegen elkaar uitwisselen, het zogenaamde alternerende boden 
spel. Dit spel wordt vaak gebruikt als model voor onderhandelen over bijvoorbeeld 
de prijs van een product of dienst. Het is echter belangrijk om ook andere product 

of dienst gerelateerde aspecten in beschouwing te nemen zoals de kwaliteit , leve­
ringstijd en garantieperiode. Dit geeft namelijk de mogelijkheid om compromissen 
te sluiten door toe te geven op minder belangrijke aspecten en meer te vragen voor 
belangrijke aspecten. Hierdoor zijn onderhandelingen minder competitief en kunnen 
uitkomsten ontstaan die voor beide partijen aantrekkelijk zijn. Derhalve onderzoe­
ken wij middels computer simulaties een variant op het alternerende boden spel, 

waarbij meerdere aspecten gelijkt ijdig worden onderhandeld. Daarnaast gebruiken 
wij de speltheorie om resultaten van de simulatie te valideren. De simulatie laat 
zien dat lerende agenten in korte tijd tot optimale compromissen komen, ook we! 

Pareto efficiente oplossingen genoemd. Vervolgens bestuderen wij het effect van 
tijdsdruk die ontstaat als onderhandelingen met een kleine kans worden afgebroken, 
bijvoorbeeld als gevolg van externe factoren. Bij het ontbreken van tijdsdruk en 
een maximum aantal rondes , zijn de uitkomsten zeer onevenwichtig: de speler die 
als laatste de kans krijgt om een bod uit te brengen doet een "alles of niets" bod 
in de laatste ronde, wat voor de andere speler slechts een fractie beter is dan hele­
maal geen overeenkomst. Bij een relatief hoge t ijdsdruk, is juist het eerste bod het 
belangrijkste, en worden bijna alle overeenkomsten in de eerste ronde afgesloten. 
Een andere interessante uitkomst is dat de simulatie resultaten na een lange leer­
periode in grote lijnen overeenkomen met oplossingen uit de speltheorie, ondanks 
dat de lerende agenten niet "rationeel" zijn . In de werkelijkheid is niet alleen de 
uitkomst belangrijk, maar spelen ook andere factoren mee, zoals de eerlijkheid van 

de uitkomst. Middels de simulatie wordt gekeken naar de invloed op de onderhande­
lingsuitkomsten als door de agent met dergelijke normen rekening wordt gehouden. 
Door deze normen zijn de uitkomsten veel evenwicht iger, ook bij het ontbreken van 
tijdsdruk , en lijken meer overeen te komen met de werkelijkheid. 

Onderhandelingen staan vaak niet op zichzelf, maar worden bepaald door externe 
factoren zoals addi t ionele onderhandelingsmogelijkheden. Naast het gelsoleerde on­
derhandelingsspel, bestuderen wij daarom ook onderhandelingen binnen een markt­
acht ige omgeving, waarbij zowel kopers als verkopers meerdere keren kunnen onder­
handelen met verschillende spelers om tot een overeenkomst te komen. Deze onder­
handelingen worden opeenvolgend uitgevoerd totdat een overeenkomst is gesloten 
of totdat er geen onderhandelingsmogelijkheden meer zijn. Elk onderhandelingsspel 

tussen twee spelers wordt hier beperkt tot een ronde, waarbij speler 1 een bod doet , 
en speler 2 kan dit bod weigeren of accepteren. Met een evolut ionaire simulatie 

onderzoeken wij verscheidene eigenschappen van het markt spel. Het blijkt dat de 
uitkomsten erg afhangen van de informatie die beschikbaar is binnen het spel. Als 
de spelers op de hoogte zijn van elkaars onderhandelingsmogelijkheden, dan doet 
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de biedende speler telkens een alles of niets bod en krijgt het grootste voordeel. 
Dit komt overeen met speltheoretische uitkomsten die wij tevens presenteren in <lit 
proefschrift. Als deze informatie niet bekend is, wordt een theoretische analyse heel 
moeilijk. De evolutionaire simulatie laat dan echter zien dat de tweede speler, dwz 
de speler die het bod weigert of accepteert , de beste onderhandelingspositie bezit. 
Dit komt omdat de eerste speler niet kan inschatten wat de reactie zal zijn van de 
tweede speler, en hierdoor lager inzet. In het proefschrift wordt verder ook gekeken 
naar andere factoren die de uitkomsten belnvloeden, zoals het onderhandelen over 
meerdere aspecten tegelijkertijd , zoekkosten en afbreekkansen. 

Naast de aandacht voor fundamentele vraagstukken worden in dit proefschrift 
een aantal bedrijfsgerelateerde toepassingen van geautomatiseerd onderhandelen ge­
presenteerd alsmede generieke onderhandelingsstrategieen voor de agenten die in 
gerelateerde applicaties kunnen worden ingezet. Als eerste toepassing introduceren 
wij een raamwerk waarbij onderhandelen wordt gebruikt voor het aanbevelen van 
winkels aan klanten, bijvoorbeeld op een webpagina van een elektronisch winkel­
centrum. Middels de marktwerking van een veiling wordt op een gedistribueerde 
wijze een relevante selectie van winkels voor de klant bepaald. Hiertoe worden een 
beperkt aantal advertentieplaatsen in een elektronische veiling aangeboden. Voor 
elke individuele bezoeker van de pagina kunnen winkels via hun winkel agent ge­
automatiseerd bieden voor deze "aandachtsspanne" van de klant. Het bieden door 
deze software agent geschiedt op basis van een klantenprofiel, wat persoonlijke ge­
gevens bevat van de bezoeker, zoals zijn/haar interessen, leeftijd , en/of opgegeven 
zoekwoorden. De winkel agenten zijn adaptief en leren, gegeven terugkoppeling van 
de klant , op welke profielen ze zich moeten richten en hoe hoog ze moeten bieden. 
De hoogste bieders worden vervolgens aan de klant getoond. De werking van het 
op deze wijze gedistribueerd bepalen van relevante winkels is aangetoond middels 
een evolutionaire simulatie. Wij onderzoeken verschillende modellen van klanten en 
veilingmechanismen, en laten zien dat het veilingsysteem resulteert in een passende 
selectie van winkels voor de klant . 

Onderhandelen kan vooral van belang zijn als niet alleen de prijs , maar ook an­
dere aspecten een rol spelen. Hierdoor kunnen bijvoorbeeld goederen en diensten 
beter worden afgestemd op individuele wensen van de gebruiker. Dit aspect wordt 
benut in een systeem wat wij hebben ontwikkeld voor de verkoop en personalisa­
tie van zogenaamde informatiegoederen, zoals nieuws artikelen, software en muziek. 
Middels het alternerende boden protocol kan een verkopende software agent met 
meerdere kopende software agenten tegelijkertijd automatisch onderhandelen over 
een vaste prijs, een "stukprijs", en de kwaliteit van een bundel informatiegoederen. 
Het systeem houdt ook rekening met belangrijke bedrijfsgerelateerde voorwaarden 
zoals de eerlijkheid van de onderhandeling. De agenten gebruiken een combinatie 
van een concessiestrategie en een zoekstrategie om een onderhandelingsbod te gene­
reren. De concessiestrategie bepaalt hoeveel elke ronde wordt toegegeven, terwijl de 
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zoekstrategie zorgt voor gepersonaliseerde boden. In dit proefschrift introduceren 
wij een tweetal zoekstrategieen, en wij laten middels computer simulaties zien dat 
bij gezamenlijk gebruik door een kopende agent en een verkopende agent deze stra­
tegieen leiden tot gepersonaliseerde oplossingen, ook in combinatie met verschillende 
concessiestrategieen. Deze zoekstrategieen kunnen ook gemakkelijk worden toepast 
bij andere onderhandelingssituaties waarbij personalisatie een rol speelt. 

Naast bovenstaande zoekstrategieen hebben wij ook een aantal concessiestra­
tegieen ontwikkeld voor een verkopende agent die met meerdere kopende agenten 
tegelijkertijd onderhandelt. Ook al is het onderhandelingsproces op zich bilateraal 
(dwz tussen twee partijen) , kan de verkopende agent gebruik maken van het feit 
dat meerdere onderhandelingen tegelijkertijd plaatsvinden. De ontwikkelde onder­
handelingsstrategieen zijn gericht op situaties waarbij het aanbod flexibel is en kan 
worden afgestemd op de vraag, zoals bij informatie goederen. Wij bestuderen hier­
bij vaste strategieen, tijdsafhankelijke strategieen, en introduceren tevens een aantal 
strategieen die ge"inspireerd zijn door veilingen. Veilingen worden vaak gebruikt in 
situaties waarbij een partij onderhandelt met meerdere part ijen tegelijkert ijd . Hoe­
wel deze laatste strategie de voordelen heeft van een veiling, blijft de onderhandeling 
zelf bilateraal en bestaat uit het uitwisselen van boden en tegen boden. Een evo­
lutionaire simulatie omgeving is ontwikkeld om de strategieen van de verkoper te 
evalueren. Hierbij wordt voornamelijk gekeken naar de situatie waarbij de kopers 

tijdsdruk ondervinden en onder druk staat om snel tot een overeenkomst te komen. 
Uit de simulatie blijkt dat de op veiling ge"inspireerde strategieen van de verkopende 
agent in staat zijn bijna de maximale winst uit de onderhandelingen te halen bij 
voldoende tijdsdruk van de kopers. 
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Summary {English) 

Bargaining is becoming increasingly important due to developments within the field 
of electronic commerce, especially the development of autonomous software agents. 
Software agents are programs which, given instructions from a user , are capable of 
autonomously and intelligently realise a given task. By means of such agents, the 
bargaining process can be automated, allowing products and services together with 
related conditions, such as warranty and delivery time, to be flexible and tuned to 
the individual preferences of the people concerned . In this theses we concentrate on 
both fundamental aspects of bargaining as well as business-related applications of 
automated bargaining using software agents. 

The fundamental part investigates bargaining outcomes within a stylised world, 
and the factors that influence these outcomes. This can provide insights for the pro­
duction of software agents, strategies, and setting up bargaining rules for practical 
situations. We study these aspects using computational simulations of bargaining 
agents. Hereby we consider adaptive systems, i.e., where agents learn to adjust 
their bargaining strategy given past experience. This learning behaviour is simu­
lated using evolut ionary algorithms. These algorithms originate from the field of 
artificial intelligence, and are inspired by the biological theory of evolution. Origi­
nally, evolut ionary algorithms were designed for solving optimisation problems, but 
they are now increasingly being used within economics for modelling human learn­
ing behaviour. Besides computational simulations, we also consider mathematical 
solutions from game theory for relatively simple cases. Game theory is mainly con­
cerned with the "rational man", that is, with optimal outcomes within an stylised 
setting (or game) where people act rationally. We use the game-theoretic outcomes 
to validate the computational experiments. The advantage of computer simulations 
is that less strict assumptions are necessary, and that more complex interactions 
that are closer to real-world settings can be investigated. 

First of all, we study a bargaining setting where two players exchange offers and 
counter offers , the so-called alternating-offers game. This game is frequent ly used for 
modelling bargaining about for instance the price of a product or service. It is also 
important, however, to allow other product- and service-related aspects to be nego-
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tiated , such as quality, delivery t ime, and warranty. This enables compromises by 
conceding on less important issues and demanding a higher value for relatively im­
portant aspects. This way, bargaining is less competitive and the resulting outcome 
can be mutually beneficial. Therefore, we investigate using computational simula­
tions an extended version of the alternating-offers game, where mult iple aspects are 
negotiated concurrently. Moreover, we apply game theory to validate the results of 
the computational experiments. The simulation shows that learning agents are ca­
pable of quickly finding optimal compromises, also called Pareto-efficient outcomes. 
In addition , we study the effects of time pressure that arise if negotiations are broken 
off with a small probability, for example due to external eventualit ies. In absence 

of time pressure and a maximum number of negotiation rounds, outcomes are very 
unbalanced: the player that has the opportunity to make a final offer proposes a 
take-it-or-leave-it offer in the last round, which leaves the other player with a deal 

that is only slightly better than no deal a t all. With relatively high time pressure, 
on the other hand, the first offer is most important and almost all agreements are 
reached in the fi rst round. Another interesting result is that the simulation out­
comes after a long period of learning in general coincide with the results from game 
theory, in spite of the fact that the learning agents are not "rational". In reality, 

not only the final outcome is important , but also other factors play a role, such as 
the fairness of an offer. Using the simulation we study the influence of such fairness 
norms on the bargaining outcomes. The fairness norms result in much more bal­
anced outcomes, even with no t ime pressure, and seem to be closer outcomes in the 

real world . 

Negotiations are rarely isolated , but can also be influenced by external factors 
such as additional bargaining opportunities. We therefore also consider bargaining 

within a market-like setting, where both buyers and sellers can bargain with several 
opponents before reaching an agreement . The negotiations are executed consecu­
tively until an agreement is reached or no more opportunities are available. Each 
bargaining game is reduced to a single round , where player 1 makes an offer and 
player 2 can only respond by rejecting or accepting this offer. Using an evolutionary 
simulation we study several properties of this market game. It appears that the 
outcomes depend on the information that is available to the players. If players are 

informed about the bargaining opportunities of their opponents , the first player in 
turn has the advantage and always proposes a take-it-or-leave-it deal that leaves 

the other player with a relatively poor outcome. This outcome is consistent with 
a game-theoretic analysis which we also present in this thesis. If this information 
is not available, a theoretical analysis is very hard . The evolut ionary simulation, 
however , shows that in this case the responder obtains a better deal. This occurs 

because the first player can no longer anticipate the response of the other player , and 
therefore bids lower to avoid a disagreement. In this thesis, we additionally consider 
other factors t hat influence the outcomes of the market game, such as negotiation 
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over multiple issues simultaneously, search costs, and break off probabilities. 

Besides fundamental issues, this thesis presents a number of business-related 
applications of automated bargaining, as well as generic bargaining strategies for 
agents that can be employed in related areas. As a first application, we introduce 
a framework where negotiation is used for recommending shops to customers , for 
example on a web page of an electronic shopping mall. Through a market-driven 
auction a relevant selection of shops is determined in a distributed fashion. This 
is achieved by selling a limited number of banner spaces in an electronic auction. 
For each arriving customer on the web page, shops can automatically place bids for 
this "customer attention space" through their shop agents. These software agents 
bid based on a customer profile, containing personal data of the customer, such as 
age, interests , and/ or keywords in a search query. The shop agents are adaptive 
and learn, given feedback from the customers, which profiles to target and how 
much to bid in the auction. The highest bidders are then selected and displayed 
to the customer. The feasibility of this distributed approach for matching shops 
to customers is demonstrated using an evolutionary simulation. Several customer 
models and auction mechanisms are studied, and we show that the market-based 
approach results in a proper selection of shops for the customers. 

Bargaining can be especially beneficial if not only the price, but other aspects 
are considered as well. This allows for example to customise products and services 
to the personal preferences of a user. We developed a system makes use of these 
properties for selling and personalising so-called information goods , such as news 
articles, software, and music. Using the alternating-offers protocol, a seller agent 
negotiates with several buyers simultaneously about a fixed price, a per-item price , 
and the quality of a bundle of information goods. The system is capable of taking 
into account important business-related conditions such as the fairness of the nego­
tiation. The agents combine a search strategy and a concession strategy to generate 
offers in the negotiations. The concession strategy determines the amount the agent 
will concede each round, whereas the search strategy takes care of the personalisa­
tion of the offer. We introduce two search strategies in this thesis, and show through 
computer experiments that the use of these strategies by a buyer and seller agent, 
result in personalised outcomes, also when combined with various concession strate­
gies. The search strategies presented here can be easily applied to other domains 
where personalisation is important. 

In addition, we also developed concession strategies for the seller agent that can 
be used in settings where a single seller agent bargains with several buyer agents 
simultaneously. Even if bargaining itself is bilateral (i.e. , between two parties), a 
seller agent can actually benefit from the fact that several such negotiations occur 
concurrently. The developed strategies are focussed on domains where supply is 
flexible and can be adjusted to meet demand, like for information goods. We study 
fixed strategies, time-dependent strategies and introduce several auction-inspired 
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strategies. Auctions are often used when one party negotiates with several oppo­

nents simultaneously. Although the latter strategies benefit from the advantages of 

auctions, the actual negotiation remains bilateral and consists of exchanging offers 

and counter offers. We developed an evolutionary simulation environment to eval­

uate the seller agent 's strategies. We especially consider the case where buyers are 

time-impatient and under pressure to reach agreements early. The simulations show 

that the auction-inspired strategies are able to obtain almost maximum profits from 

the negotiations, given sufficient time pressure of the buyers. 
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