5,495 research outputs found

    Agent Teams and Evolutionary Computation: Optimizing Semi- Parametric Spatial Autoregressive Models

    Get PDF
    Classical spatial autoregressive models share the same weakness as the classical linear regression models, namely it is not possible to estimate non-linear relationships between the dependent and independent variables. In the case of classical linear regression a semi-parametric approach can be used to address this issue. Therefore an advanced semi- parametric modelling approach for spatial autoregressive models is introduced. Advanced semi-parametric modelling requires determining the best configuration of independent variable vectors, number of spline-knots and their positions. To solve this combinatorial optimization problem an asynchronous multi-agent system based on genetic-algorithms is utilized. Three teams of agents work each on a subset of the problem and cooperate through sharing their most optimal solutions. Through this system more complex relationships between the dependent and independent variables can be derived. These could be better suited for the possibly non-linear real-world problems faced by applied spatial econometricians.

    Multiagent cooperation for solving global optimization problems: an extendible framework with example cooperation strategies

    Get PDF
    This paper proposes the use of multiagent cooperation for solving global optimization problems through the introduction of a new multiagent environment, MANGO. The strength of the environment lays in itsflexible structure based on communicating software agents that attempt to solve a problem cooperatively. This structure allows the execution of a wide range of global optimization algorithms described as a set of interacting operations. At one extreme, MANGO welcomes an individual non-cooperating agent, which is basically the traditional way of solving a global optimization problem. At the other extreme, autonomous agents existing in the environment cooperate as they see fit during run time. We explain the development and communication tools provided in the environment as well as examples of agent realizations and cooperation scenarios. We also show how the multiagent structure is more effective than having a single nonlinear optimization algorithm with randomly selected initial points

    Embodied Evolution in Collective Robotics: A Review

    Full text link
    This paper provides an overview of evolutionary robotics techniques applied to on-line distributed evolution for robot collectives -- namely, embodied evolution. It provides a definition of embodied evolution as well as a thorough description of the underlying concepts and mechanisms. The paper also presents a comprehensive summary of research published in the field since its inception (1999-2017), providing various perspectives to identify the major trends. In particular, we identify a shift from considering embodied evolution as a parallel search method within small robot collectives (fewer than 10 robots) to embodied evolution as an on-line distributed learning method for designing collective behaviours in swarm-like collectives. The paper concludes with a discussion of applications and open questions, providing a milestone for past and an inspiration for future research.Comment: 23 pages, 1 figure, 1 tabl
    corecore