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Abstract

Cooperative search provides a class of strategies to design more effective search method-
ologies through combining (meta-) heuristics for solving combinatorial optimisation prob-
lems. This area has been little explored in operational research. In this study, we pro-
pose a general agent-based distributed framework where each agent implements a (meta-)
heuristic. An agent continuously adapts itself during the search process using a coop-
eration protocol based on reinforcement learning and pattern matching. Good patterns
which make up improving solutions are identified and shared by the agents. This agent-
based system aims to raise the level of generality by providing a flexible framework to
deal with a variety of different problem domains.The proposed framework has been so far
tested on Permutation Flow-shop Scheduling and Travelling Salesman Problem instances
yielding promising results.

Keywords: combinatorial optimization, multi-agent systems, scheduling,
(meta-)heuristics, cooperative search, reinforcement learning.

1. Introduction

Heuristics (meta-heuristics) have been successfully used to solve a wide range of com-
binatorial optimisation problems. In the recent years, however, it has become evident
that different (meta-)heuristics working on the same problem can produce different re-
sults. Moreover, most of the (meta-)heuristics developed for a specific problem domain
cannot be used to solve instances from another problem domain. This frequently requires
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either parameter tuning and/or design of new neighbourhood operators for the new prob-
lem domain. There is almost no guidance available to choose the best (meta-)heuristic
for solving a problem in hand. For these reasons, the use of a sole (meta-)heuristic can
be rather restrictive when dealing with real-world problems. On the other hand, using
a framework enabling the use of different (meta-)heuristics could result in an improved
search methodology and increase the level of generality. The key idea behind cooperative
search is to combine the strengths of different (meta-)heuristics to balance intensification
and diversification and direct the search towards promising regions of the search space
(Ouelhadj and Petrovic, 2010).

The interest in cooperative search has risen due to successes in combining novel search
algorithms (Clearwater et al., 1992; Hogg and Williams, 1993; Talbi and Bachelet, 2006).
Blum and Roli (2003); Clearwater et al. (1992); Hogg and Williams (1993); Toulouse et al.
(1999); Crainic and Toulouse (2008) describe how cooperative search can be performed by
the exchange of states, solutions, sub-problems, models or search space characteristics.
Several frameworks have been proposed recently, including (Talbi and Bachelet, 2006;
Milano and Roli, 2004; Meignan et al., 2008, 2010; Ouelhadj and Petrovic, 2010). Each
of these frameworks incorporates either meta-heuristics (Talbi and Bachelet, 2006; Milano
and Roli, 2004) or hyper-heuristics (Ouelhadj and Petrovic, 2010).

This study investigates into an agent-based (multi-agent) distributed search method-
ology performing cooperative search. The main goal of the study is to design a frame-
work achieving generality, flexibility and scalability. The framework should be general
enough to solve a variety of combinatorial optimisation problems, flexible enough to en-
able adding/ removing (meta-)heuristics as agents easily, and scalable enough to obtain
better quality solutions as the number of (meta-)heuristic agents increases within the sys-
tem. A framework carrying these characteristics is implemented using open standards.
Additionally, different (meta-)heuristic agents are implemented for two problem domains
as case studies: the symmetrical travelling salesman problem (STSP) and permutation
flow-shop scheduling (PFSP). The computational experiments are performed on the stan-
dard benchmark problems from each domain to test the framework showing that it is
in fact general, flexible and scalable, and to observe the influence of cooperation, rather
than outperforming the state-of-the-art methodologies which are particularly tailored for
these problem domains.

Cooperative search, its difference from the other parallel processing techniques and
our motivation to develop an agent-based framework are introduced in section 2. Section
3 describes the proposed multi-agent framework for cooperative search. Section 4.1
discusses the specifics of ontologies and communication protocol used within the proposed
framework. Section 5 describes how the system is implemented. Section 6 provides an
overview of the STSP and PFSP problem domains. In section 7, the results of our
computational experiments for solving STSP and PFSP as case studies are presented.
Finally, section 8 presents conclusions and suggestions for future work.

2. Cooperative (meta-)heuristic Search

2.1. Literature Overview

Research into parallel cooperative optimisation has grown significantly in the last 10
to 15 years. Most of this work has been focussed on parallel (meta-)heuristics, including
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tabu search, genetic algorithms and simulated annealing (Crainic and Laporte, 1998;
Crainic and Toulouse, 2010; Alba, 2005; Aydin, 2007). This research has concentrated on
speed-up and robustness. Speed-up aims to decrease the overall processing time of (meta-
)heuristics by implementing them in parallel rather than a single process implementation.
This can be achieved by processing computationally expensive or time consuming routines
in parallel. Robustness is where the overall search is widened covering more of the search
space by starting different processes with different instances of the same problem without
the need for parameter tuning.

Crainic and Toulouse (2010) proposed three basic strategies for implementing parallel
meta-heuristics:

• Type 1 - low level parallelism, where a meta-heuristic is implemented on a mas-
ter process which distributes difficult or time consuming computations to slave
processes. At each iteration, the slave processes evaluate new moves in a neigh-
bourhood for the master to generate a new best-so-far solution;

• Type 2 - domain decomposition, where the search space is partitioned into different
instances of a problem that are processed by slave heuristics. Each of these will
communicate solutions to a master process. The master then determines the best
solution;

• Type 3 - multi-threaded strategies, where different threads run multiple versions of
the same meta-heuristics that may start from the same or different places within
the search space. The threads may communicate during or at the end of execution.

On the face of it, the type of agent-based approach described in this paper is just
an example of a type 3 parallel system as defined in the taxonomy above. However, it
is important to realise that an agent-based system is not just a collection of distributed
processes or threads working together to solve a problem. Each agent in an agent-based
system is an autonomous program in its own right. It can perform its allotted task
without recourse to a governing process. This means that the multi-agent will have an
internal representation of its environment and will respond to other agents accordingly.
Another feature of such systems is that they communicate by passing messages as opposed
to function calls to other processes. In a message passing system, the agent has to
translate a message from its own internal representation into a text message that can
be transmitted to another agent. A receiving agent must de-parse the message into its
own internal representation. For this reason agent systems are often, but not always,
distributed over many machines or even the internet.

This means that an agent is not some kind of homunculus performing a task or subtask
for some other controlling process. However in the literature, the term agent, is often
used, as above, to describe distributed sub-processes. In this paper a multi-agent system
(or agent-based system, the terms will be used interchangeably) is a system where the
agents are autonomous programs communicating by message passing.

Wooldridge (2009) defines an agent-based system as

... a computer system that is situated in some environment, and that is
capable of autonomous action in this environment in order to meet its design
objectives.
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Aydin (2007) has pointed out that multi-agent systems offer a natural way to imple-
ment cooperative search. Furthermore, he described meta-heuristic agents as having the
potential to carry out cooperative search where each agent implements either different
or the same algorithms while exchanging useful information about the search between
them.

The main challenge for cooperative search is designing cooperative mechanisms that
enable the useful exchange of information between agents. This cooperation may be per-
formed synchronously or asynchronously, or directly or indirectly (Crainic and Toulouse,
2008). An example of direct cooperation is the island model of evolutionary algorithms,
where a population is divided into subsets, each is assigned to a different processor and
a genetic algorithm runs on each island. The islands may communicate with each other.
This normally takes the form of the islands sending good solutions to a pool of solu-
tions. Solutions are then retrieved from the pool for further search. This model has
been successfully applied to a number of combinatorial optimisation problems such as
multi-commodity location with balancing requirements (Crainic et al., 1995), capacitated
network design (Crainic et al., 2006) and quadratic assignments (James et al., 2009).

Comparative literature studies conducted by Crainic et al. (1997) have compared
distributed synchronous and asynchronous cooperative search with sequential search.
They have found the solutions obtained to be superior. Furthermore they concluded
that, of the methods they discussed, asynchronous cooperative search was the most
effective.

From the literature it is clear that cooperation leads to better solutions. It is also
robust, covering more of the search space and often leads to better performance, or
speed-up (Alba, 2005).

2.2. Motivation

In the literature so far most cooperation mechanisms are described as taking place
through some pool or adaptive memory which is different to a message passing multi-
agent system (Talbi and Bachelet, 2006; Milano and Roli, 2004; Meignan et al., 2008).
It can also take the form of swapping whole solutions or possibly the rating of differ-
ent moves (Meignan et al., 2010). To the best of our knowledge direct asynchronous
cooperation has not been researched much at all.

The only exceptions are (Vallada and Ruiz, 2009) and Ouelhadj and Petrovic (2010)
where whole solutions are passed from one process to another in an island model execut-
ing a genetic algorithm (Vallada and Ruiz) or hyper-heuristic (Ouelhadj and Petrovic) to
solve the permutation flow-shop scheduling problem. Also Xie and Liu (2009) propose an
evolutionary system to solve the Travelling Salesman Problem. However, all three sys-
tems are designed for specific problem domains and use the best known (meta-)heuristics
for these domains.

Malek (2010) proposed a multi-agent framework able to work on different problem
domains, but the system seems to pass whole solutions through a solution pool. It is not
clear whether this is type 3 system in the taxonomy of Crainic and Toulouse (2010) or a
full message passing agent system.

Little work has been done on direct cooperation where partial solutions are rated
and their parameters are communicated between agents. Furthermore no direct coop-
eration strategy has been applied to more than one problem domain in combinatorial

4



optimisation. There is a gap in the literature regarding to agents cooperating directly
and asynchronously where the communication is used to tune parameters of algorithms
and the adaptive selection of moves with parameters.

In this paper, the authors propose a generic framework of cooperating agents using
pattern matching and reinforcement learning. As such an island model is proposed where
each agent is autonomous and is capable of executing different (meta-)heuristic and local
search combinations with different parameter settings. They cooperate by asynchronous
message passing to converge towards good quality solutions. The focus of this research
is to develop a framework for automatic heuristic selection and parameter setting to
support cooperating (meta-)heuristic agents, but not on speed-up. A further contribu-
tion of this research is to show that direct asynchronous cooperation using autonomous
multi-agents can be used to great affect achieving acceptable results in different prob-
lem domains; namely permutation flow-shop scheduling and the symmetric travelling
salesman problem.

Finally, this framework will be published as an open source project so that other
(meta-)heuristics and cooperation protocols can be added and tested by other researchers.
The project is called MACS (Multi-agent Cooperative Search) and will published at the
following link http://www.port.ac.uk/maths.

3. A generic multi-agent framework for cooperative search

The proposed generic multi-agent framework for cooperative search makes use of two
types of agent: launcher and (meta-)heuristic agents (Figure 1).

• The launcher agent is responsible for queueing the problem instances to be solved
for a given domain, configuring the (meta-)heuristic agents, passing a given problem
instance to the (meta-)heuristic agents and gathering the solutions from the (meta-
)heuristic agents for a given problem instance. It reads the problem data files as
input for a given problem domain and sends each instance successively to the
(meta-)heuristic agents to improve upon.

• A (meta-)heuristic agent executes one of the (meta-)heuristics or combinations of
local search heuristics that are available in the system for the problem in hand.
The combinations of heuristics and meta-heuristics and their parameter settings
are all defined in a configuration file the agent reads on launching. In this way,
while conducting a search, the agents can each execute different meta-heuristic and
heuristic combinations with different parameter settings.

A search becomes a series of messages passed between the agents. Each message is
sent as a consequence of internal processing conducted by an agent. This sequence of
processing and message passing conducted by the agents amounts to what is in effect a
distributed algorithm. This process will be called a conversation throughout this paper.
The (meta-)heuristic agents do not include the launcher agent in their conversations.
Only when they have finished their conversations do they then send their best solutions
back to the launcher. The launcher chooses the best answer and writes it to an output
file. The launcher then moves on to the next problem.
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Figure 1: The generic multi-agent framework

Looking at Figure 2, irrespective of whether they are a launcher or (meta-)heuristic
agent,it can be seen that an agent works by reading in a configuration file when it
launches. It then executes a conversation which will continue until the agent has per-
formed a given number of conversations. The number of conversations is provided in
the launcher agent’s configuration file and communicated to the (meta-)heuristic agents
when initially it sends the problem to the (meta-)heuristic agents.
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Figure 2: A (meta-)heuristic agent from the framework

4. Cooperation by pattern matching and reinforcement learning

As the framework is designed to work on many different problem types, a novel
cooperation strategy has been proposed that does not just include the passing of whole
solutions between agents, as this has limited success. This strategy has been devised
where agents cooperate by looking for patterns that are the constituent parts of a good
solution. These are shared amongst the agents which then build new solutions based on
these patterns.

Most of the combinatorial optimisation problems basically consist of permutations, or
solutions, these terms will be used interchangeably, that must be re-arranged according
to constraints that define the problem. Good solutions are those permutations that give
a better value with respect to an objective function on than that of a previous one. New
permutations can be generated by perturbation or greedy heuristics.

For example, in the PFSP the jobs form such a permutation, while with STSP, it is
the list of cities themselves. Given such a permutation, it is always possible to generate
n pairs from it. For example, take the permutation where n = 10: <2,4,7,6,5,8,9,0,1,3>,
the following n pairs can be generated:

(2, 4), (4, 7), (7, 6), (6, 5), (5, 8), (8, 9), (9, 0), (0, 1), (1, 3), (3, 2)

.
This is done as a way of breaking down a permutation into patterns that are of the

same length while retaining the basic order of the permutation. The agents can then
each compare pairs generated from their own solutions with pairs generated by the other
agents.
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The idea behind the cooperation protocol is that given an optimising search scenario,
each agent takes its current best permutation or solution and generates n pairs from
it. All the pairs from each agent are pooled and scored based on how frequently they
appear in the pool. Only those pairs that have the highest frequency score are shared out
amongst the agents. The agents then use these pairs to generate a new solution using a
greedy heuristic. This process is achieved through a conversation.

In this way good patterns are retained from one conversation to another. This means
that as the search progresses more patterns are retained and the agents converge to good
solutions. It can be seen that this pattern matching algorithm makes use of a distributed
form of reinforcement learning.

4.1. Ontologies

Before proceeding to the description of a conservation, it is important to discuss
the role ontologies play within the framework. Ontologies are important because they
raise the generality of the conversations. They are not domain specific, but define a
set of general representational primitives to model some domain (Gruber et al., 1993)
and as such are semantic. The idea is that because agents are autonomous and operate
asynchronously, they have to cooperate with other agents on other platforms in different
locations. By using ontologies they can communicate content and the means to act upon
it all within the same message. This makes agents very flexible: an important property
for a framework that aims to solve many problems in combinatorial optimisation.

The ontology currently used by the framework generalises the notions of: permu-
tations, pairs, and individual elements. In the ontology these are called SolutionData,
HeuristicData and NodeData objects respectively.

NodeData object: A NodeData object is the basic object in the ontology. It represents the individual
elements of a permutation. For example, in the PFSP domain, a NodeData object
represents a job, while in TSP domain it represents a city.

HeuristicData: A HeuristicData object is more complex in that it contains two NodeData objects.
It represents a pair of elements in a permutation and is fundamental in the pattern
matching algorithm. Also it stores other information about the pair. These include
the distance between the two nodes and also the frequency score.

SolutionData: A SolutionData represents a permutation that is being optimised. It holds the
current value of permutation with respect to the objective function being used.
SolutionData objects also contain lists of HeuristicData and NodeData objects.

These are the only objects used in a conversation. In this way the framework is very
generic and flexible because the system uses the same objects no matter what problem
type it is trying to solve.

4.2. Conversation

Figure 3 shows the pattern matching protocol used by the (meta-)heuristic agents.
One complete execution of the algorithm illustrated is a conversation. In any conver-
sation,there will be a (meta-)heuristic agent that takes on the role of an initiator and
the others are responders. Any (meta-)heuristic agent can be the initiator, but it is
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determined in the previous conversation which agent will be the initiator for the current
conversation.

Figure 3: The Cooperation Protocol

An agent taking on the role of initiator starts a conversation. It takes a new permu-
tation either generated from a previous conversation or supplied by the launcher agent.
The new permutation or solution is then improved by the chosen (meta-)heuristic for that
agent. When an improved solution is generated, it is sent to the other (meta-)heuristic
agents.

The other (meta-)heuristic agents have also generated their best-so-far permutations
using their designated (meta-)heuristics. They each receive the solution from the initiator
and break it up into edges or pairs, as explained above in section 4, and do the same
to their own best solution. The pairs are then compared and only those that are the
common to both permutations are kept.

HeuristicData objects are created from these pairs storing the first and second ele-
ments of the pair. These are then sent by the receiving (meta-)heuristic agents to the
initiator. The receiving (meta-)heuristic agents also send the value of their best-so-far
solution. This will be used by the initiator to determine which (meta-)heuristic agent
will be the new initiator in the next conversation.
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The initiator receives the HeuristicData objects from the responding agents and pools
them. Each HeuristicData object is scored by counting how frequently it occurs in the
pool. Tests show that it is best to only accept HeuristicData objects with a frequency
score of one less than the number of (meta-)heuristic agents (algorithm 1).

Input: List of HeuristicData Objects
Output: Set of HeuristicData Objects
foreach HeuristicData object in List do

score = frequency object in List;
if score >= number of agents −1 then

Object.setScore(score);
output.add(object);

end

end
Algorithm 1: getScore: an algorithm for scoring patterns

The initiator then tries to build a linked list from these high scoring HeuristicData
objects. For example, if the pool contains the following HeuristicData objects with first
and second elements expressed here as pairs (4,7) (6,1) (7,2) (2,6) (5,9) (3,8), the linked
list generated from the HeuristicData objects will have the following order (4,7) (7,2)
(2,6) (6,1). Any HeuristicData objects not linked in this way are stored in an unlinked
list (5,9) (3,8).

The initiator also determines which (meta-)heuristic agent is going to be the initiator
in the next conversation. This is done by pooling all the values the best-so-far solutions
sent by each (meta-)heuristic agent and then identifying which (meta-)heuristic agent
has the best objective function value. The (meta-)heuristic agent with the best value
will be the new initiator in the next conversation. The initiator then sends these lists of
linked and unlinked of HeuristicData objects to the receiving (meta-)heuristic agents. In
the same message it also indicates which (meta-)heuristic agent will be the new initiator
in the next conversation.

The other (meta-)heuristic agents receive the list of HeuristicData objects. Both
initator and receiver (meta-)heuristic agents then create a new solution using both the
linked list and the unlinked list, as well as their current best solution (algorithm 2).
The new solution is created by trying to build first a list of numbers from the linked
HeuristicData objects. The unlinked Heuristic Data objects are used next to supply
more numbers. Finally the (meta-)heuristic agent’s best-so-far solution provides any
missing numbers. In this way a new unique permutation is generated and the objective
function value is calculated.
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Input: Set of scored HeuristicData Objects
Output: Set of linked HeuristicData Objects
copy the scored list;
while copy is not empty and output is not unchanged do

foreach HeuristicData object in scored set do
if output set is empty then

output.add(object);
copy.remove(object);

end
if the first element of the object equals last element of the last object in the
output then

add object to the back of the output set;
copy.remove(object);

end
else if the second element of the object equals the first element of the first
object in the output then

add object to the back of the output set;
copy.remove(object);

end

end

end
Algorithm 2: createHeuristicLinkedList: an algorithm creating a linked list of Heuris-
ticData objects

Whichever (meta-)heuristic agent was deemed to be the initiator from the current
conversation will be the new initiator for the next conversation. The process repeats and
continues until the number of conversations set from the launcher agent is completed.

5. Implementation of the agent-based distributed framework for cooperative
search

The agent-based distributed framework for cooperative search is implemented on the
open source FIPA compliant development platform JADE (Bellifemine et al., 2007). The
environment also comes with two important predefined agents. The Agent Management
System (AMS); it is the main authority for the platform and is the only agent that
can create and kill agents and shut down the platform. The Directory Facilitator (DF)
advertises the services of agents on the platform so that other agents can find them. The
platform also comes with a GUI facility and facilities to log and view the messages passed
between agents.

Developers can use the platform to build and test new agents that exhibit new be-
haviours and perform new tasks and services. This means the developer is only concerned
with developing new agent behaviours and what they will communicate rather than with
the problems of how to build agents.

Developing new agents requires a number of different techniques. A JADE agent is a
programme that schedules behaviours. A behaviour is a task that an agent executes. It is
possible to schedule when and in what order these behaviours are executed. A behaviour
will often involve an agent communicating with other agents. To this end JADE has
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number of standard communication types implemented as behaviours or groups of be-
haviours. These standard communication types have been codified by FIPA into a num-
ber of protocols which a FIPA compliant platform must implement Specification. The
FIPA list of protocols is by no means exhaustive but contains ready-made communication
protocols characterising common human communication activities. Agents communicate
using FIPA-ACL FIPA (2000) which defines a number of conversation primitives deemed
to be common to all human speech acts Searle (1970). The primitives, called by FIPA
performatives, include requesting, querying and informing.

The system is designed to be generic and very flexible. This means that all the in-
formation needed to apply the system to different problem domains is given either in
problem data files or in the launcher and (meta-)heuristic agent configuration files. All
problem data are parsed by the launcher agent into SolutionData HeuristicData and
NodeData objects. Then, through the use of the ontology, these objects are translated
seamlessly to XML which JADE uses as its messaging protocol. The (meta-)heuristic
agents then de-parse these messages back into SolutionData, HeuristicData and Node-
Data objects. These are then kept in memory in a singleton object which is done for
efficiency purposes. The (meta-)heuristic agents then just manipulate pointers to the
objects held in the singleton for data information. For example, if the system wants to
calculate the objective function, the data necessary is held in the singleton. As far as the
system is concerned, it only deals with these objects held in memory or pointers to them.
This means that to run a different problem type there is no problem specific reprogram-
ming required. All that needs to be changed are the choices made in the configuration
files for the launcher and (meta-)heuristic agents.

Logging facilities can be specified in the configuration files. The system is able to
print out the progress of the search to the screen or write it to a log file. One interesting
facility is the ability for each (meta-)heuristic agent to log the progress of the search and
then have it written to the main log file.

A launcher agent configuration has the following information:

• Name of the file of the problem to solve.

• Number of (meta-)heuristic agents to be used.

• Number of conversations to be conducted.

A typical (meta-)heuristic agent configuration file has the following information:

• Meta-heuristic: tabu search (Glover, 1990) or simulated annealing (Bertsimas and
Tsitsiklis, 1993). These are very basic implementations of these algorithms.

• Number of iterations the meta-heuristic will perform

• Size of the tabu list.

• Temperature function for simulated annealing: geometric or logarithmic.

• Local search heuristic: 2-opt or hill climber with the following moves: swap, insert,
reverse and shift.

• Screen debug information and search progress printed to file.
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6. Case Studies

6.1. Travelling salesman problem

Given an n by n symmetric matrix of distances between n cities, the task for the
symmetric travelling salesman problem (TSP) is finding the minimum length tour of
all the cities, visiting them only once.A tour, or Hamilton cycle is an undirected graph
G(V,E) where V is a set of vertices and E is set of edges. |V | = n is the number of
vertices and σi is just a vertex in the ith position in V σi ∈ V . (Reinelt, 1994)

An edge is just two vertices paired together (σi, σi+1) ∈ E the scripts are taken to be
modulo n so (σn ≡ σ0).

A tour of unique list of cities is S = (σ1, σ2, ..., σi, ...σn). The objective function value
Z(S) is the sum of all the lengths of its edges, therefore is just:

Z(S) =

n∑

i=1

d(σi, σi+1) (1)

6.2. Permutation flow-shop scheduling

The permutation flow-shop scheduling problem is a well known combinatorial opti-
misation problem which can be defined as follows. Given a set of n jobs, J = {1, ..., n}
to be processed on m machines, M = {1, ...,m}, where a job j ∈ J requires a fixed
non-negative processing time, denoted as pj,i on each machine i ∈ M , the objective is to
minimise the makespan, F |prmu|Cmax or Cmax (the completion time of the last job on
the last machine) (Pinedo).

The completion time Cj,i of job j on machine i is calculated using the following
formulae:

C1,1 = p1,1 (2)

C1,i = C1,i−1 + p1,i, where i = 2, ...,m (3)

Cj,i = max(Cj,i−1, Cj−1,i) + pj,i,

where i = 2, ...,m, and j = 2, ..., n (4)

Cmax = Cn,m (5)

There are n! possible sequences and therefore the problem is known to be NP-
complete (?). Many exact methods, heuristic and meta-heuristic approaches ranging
from simulated annealing to genetic programming have been proposed for solving the
permutation flow shop scheduling problem (Nawaz et al., 1983; Ruiz and Maroto, 2005;
Vallada and Ruiz, 2009; Vázquez-Rodŕıguez and Ochoa, 2011).

7. Computational experiments

7.1. Experimental settings

To evaluate the performance of the framework, we conducted several experiments us-
ing the symmetric Travelling Salesman Problem (STSP) and the Permutation Flow-shop
Scheduling Problem (PFSP). Each case study was tested using well known benchmark
problems.

The objectives of the experiments conducted were as follows:
13



1. Test if the system is flexible enough to work on different types of problem domains;

2. Test if cooperation produced better results than no cooperation;

3. Test if increasing the number of agents cooperating produced better result

Vallada and Ruiz (2009) argued that it is impossible to compare their cooperative
algorithms with comparable parallel algorithms because they are implemented on parallel
processing machines purely for the benefits of speed-up. For the same reasons the authors
in this paper adopt a similar testing regime for testing the cooperative pattern matching
used by the framework.

To facilitate testing the cooperation protocol some simple (meta-)heuristics have been
developed. It should be noted that the overall solution quality will be only as good as the
(meta-)heuristics used. Success will be measured in the difference between performance
between the same algorithms with or without cooperation.

For the experiments, we have considered the following scenarios:

• 1 agent in stand alone mode;

• 5 agents, 1 launcher and 4 (meta-)heuristic agents;

• 9 agents, 1 launcher and 8 (meta-)heuristic agents;

• 13 agents, 1 launcher and 12 (meta-)heuristic agents;

To evaluate the performance of the proposed framework, the average percentage in-
crease of the objective function value of the solution (Methodsol)produced by the coop-
erative search was calculated and compared with the known upper bound or optimum
(Bestsol). An upper bound is the best known solution to a problem, however it has not
been proved to be the optimum (equation 6). With the PFSP the objective was the
minimisation of the total makespan, while with STSP it was the minimisation of the
distances between the all the cities to produce the shortest possible tour of all the cities.

Methodsol −Bestsol

Bestsol
(6)

The testing was conducted on the university network running a windows xp network
with Novell NetObjects running on top using 13 student work stations. Each machine
was a Dell 755 with an Intel dual core processor with 2 GB of RAM. The framework is
coded in JAVA with 1 GB of RAM available to each agent.

The tests were conducted first, with (meta-)heuristic agents cooperating and then
with (meta-)heuristic agents in stand alone mode. Each problem instance was tested
five times, first with cooperation and then without cooperation. In cooperation mode
half of the (meta-)heuristic agents ran simulated annealing with a geometric temperature
function, and the other half ran tabu search with a tabu tenure of 7. In each case, the
meta-heuristic conducted a maximum of 500 iterations. There were no differences in each
of the cooperation scenarios of 12, 8 and 4 (meta-)heuristic agents cooperating.

The authors found thorough testing that for PFSP agents needed 3000 conversations.
It was found that agents needed this many conversations to converge to a good solution.
As well as this, extra starting and conversations were needed where the (meta-)heuristic
receives and send data from and to the launcher. This is because a conversation is made
up of three FIPA standard protocols.
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A starting conversation is where a (meta-)heuristic agent receives data from the
launcher and uses an ending conversation is where the (meta-)heuristic agent sends data
back to the launcher. In both cases a FIPA Request protocol was used. The main body
of the conversation was conducted 3000 times using the FIPA Contract Net Protocol. In
total therefore, the (meta-)heuristic agents conducted 3002 conversations.

In the case of STSP it was found through testing that 5002 conversations were required
including the usual starting and ending conversations. All conversations work the same
way so the same FIPA protocols were use as those described above. However more
conversations were needed for the system to converge to a solution.

In standalone mode, the (meta-)heuristic agents ran for as many iterations as all
the (meta-)heuristic agents collectively in cooperation mode. This means that if a sys-
tem of 12 (meta-)heuristic agents had 3002 conversations where each (meta-)heuristic
agent ran its (meta-)heuristic for 500 iteration, then the equivalent standalone (meta-
)heuristic agent would evaluate its (meta-)heuristic 3002× 12 × 500 = 18012000 times.
The standalone (meta-)heuristic agents always executed the same number of iterations
as 12 (meta-)heuristic agents cooperating scenario. This was done even when they were
being compared with the 8 or 4 (meta-)heuristic agents scenarios. This gave the stan-
dalone (meta-)heuristic agents the best chance to produce a good result as it produced
the most iterations for the stand alone scenario to compare with the cooperating scenar-
ios. Also the stand alone (meta-)heuristic agents were run against each problem instance
twice; once, with the (meta-)heuristic agent running simulated annealing and once with
tabu search. In this way, a fair comparison could be made between cooperation and no
cooperation.

7.2. The travelling salesman problem

Reinelt (1991) has produced a set of benchmark problems for all the different types
travelling salesman problem including a set of problems for the STSP.

There are at least 50 problems in just the STSP library alone and there are different
types of problems with the STSP set according to the coordinates provided for the
position of a city. These coordinates can be given in 2 dimensions or 3 dimensions.
Furthermore, the distance between cites can be calculated in different ways, such as, the
euclidean distance, the manhattan distance, the maximum distance, the geographical
and the pseudo-euclidean distance.

The authors chose 5 STSP problems, all using the euclidean distance for 2 dimensions.
The instances chosen are: eil101 (101 cities), a280 (280 cities) gil262(262 cities), pr209
(209 cities)and rat575 (575 cites).

The local search algorithm used for these tests was a version of the 2-opt algorithm
proposed by Beullens et al. (2003) with active marking and neighbour lists. A 2-opt
algorithm was chosen for STSP because it is a well known local search heuristic for this
problem.

Each problem was run 5 times for groups of 12,8 and 4 cooperating agents and 1
non cooperating agent. As before each problem result was averaged and the average
percentage increase from the known optimum was calculated. Therefore, Table 1 shows
the average percentage increase above the known optima for these problems.

It can be seen clearly that there is a quite a difference between agents cooperating
and stand alone agents. The results show that cooperation outperforms no cooperation.
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Although, the results of cooperative search cannot compete with the state-of-the-art
heuristics that have been taillored to solve these benchmark problems to optimality, it
can still with relatively simple (meta-)heuristics significantly improve the results.The aim
of the framework is to build general domain-independent search methodologies that are
capable of performing well across a wide range of optimisation problems and it is not
expected to outperform meta-heuristics which are tailored for specific problems. .

Table 1: The average percentage increase above optimum/upper bound for each problem
type

12 Agents 8 Agents 4 Agents 1 Agent SA 1 Agent Tabu
eil101 3.6884 2.7027 4.1335 10.0159 10.0159
a280 13.5712 14.1683 13.0593 15.8201 15.8201
gil262 14.8276 14.8528 15.2902 15.4331 15.4331
pr299 15.7976 16.2873 17.3252 18.0615 18.0615
rat575 18.1810 18.4393 18.6476 18.8100 18.8100

Figure 4 is a graph of boxplots showing the analysis of spread of variance from the
optima using ANOVA. It shows that again cooperation is slightly better than no coop-
eration. However, there is a clear overlap of all the box-plots showing that difference
between cooperating and standalone agents is not very significant. There is a small
improvement if the number of agents is increased.

Figure 4: Cooperating agents versus no cooperation

7.3. Permutation flow-shop scheduling

Taillard (1993) has produced a set of 120 benchmark problems for PFSP which are
known to be very hard to solve. Indeed, the optimum value has not been found for 33
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of these problems. The problems are in various sizes 20, 50, 100, 200 and 500 jobs and
5, 10, 20 machines. There are 10 problems inside every set and in total there are 12
sets. These are 20x5, 20x10, 20x20, 50x5, 50x10, 50x20, 100x5, 100x10, 100x20, 200x10,
200x20, 500x20.

The tests were conducted using all of Taillard’s problem instances where each one
was executed 5 times. The local search algorithm used by all the (meta-)heuristic agents
is a simple hill climber swapping two jobs. The jobs were chosen at random using a
random number generator modulo the number of jobs. Each time this was done a pool
of solutions was created which was half the length of the number of jobs. The best
solution was chosen from this pool.

As has been explained, each problem instance was tested 5 times where each instance
was tested with the system running 12, 8 and 4 agent scenarios. This was also applied
to each stand alone scenario of simulated annealing and tabu search.

To compare these results with the best known upper bound or optimum, the 5 runs for
each scenario, for each problem instance were averaged. The average percentage increase
makespan over the upper bound was found according to the equations 5 above using the
average for each problem instance.

Next the average percentage increase for each problem type was calculated. This was
done by taking the average of the average percentage increases found for all 10 instances
of a problem size.

Table 2 shows this average percentage increase for each problem size for each agent
grouping. The “1 agent” values are given for when the agent ran simulated annealing
and when it ran tabu search as its (meta-)heuristic.

Table 2: The average percentage increase above optimum/upper bound for each problem
type

12 Agents 8 Agents 4 Agents 1 Agent SA 1 Agent Tabu
20x5 0.1228 0.1614 0.3048 20.0642 10.2630
20x10 0.8090 1.0016 1.0682 22.4359 12.8168
20x20 0.9041 0.9226 1.1304 17.0299 9.1332
50x5 0.0856 0.1205 0.1636 13.9210 5.3682
50x10 1.3764 1.4393 1.5416 22.7952 10.9588
50x20 3.3205 3.3880 3.4661 24.9155 13.0121
100x5 0.1383 0.1763 0.1763 10.8396 2.9393
100x10 0.6674 0.7599 0.7744 18.1045 6.5690
100x20 2.5287 2.6282 2.6777 23.0414 11.6709
200x10 0.4786 0.6071 0.6611 23.0414 4.3780
200x20 2.2395 2.3043 2.3181 21.6359 9.5804
500x20 1.5552 1.5640 1.6147 13.5150 4.9162

Table 2 shows clearly that there is a big difference between cooperating and non
cooperating agents. It is significant that as the number of agents increases, the results
get better.

It is worth noting that 50x20 and 100x20 problems are especially hard where the
optimum is not known. This can be seen especially in the results from 50x20 problem,
the cooperating agents are between 3 and 3.5 percent above the upper bound while the
stand alone agents range from just over 13 percent to near 25 percent above the upper
bound. But even here the benefits of cooperation and compared to no cooperation are
clear.
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The spread of these results can be analysed more clearly using ANOVA. In figure 5 it
can be seen that the cooperating agents have a clear difference in their performance from
the stand alone agents. This can be seen as there is no overlap between the box-plots of
the cooperating and stand alone agents.

Figure 5: Cooperating agents versus no cooperation

The second test objective mentioned in section 5.2 above was to see if more agents
cooperating produced better results than fewer agents cooperating. Figure 6 shows that
while there is an overlap between the box plots of 12,8 and 4 agents cooperating, it is
clear the 12 agents perform better than 8 and 8 agents are better than 4. There is a
clear pattern emerging showing that more cooperating agents are better than fewer.
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Figure 6: Comparison between 12,8 and 4 agents

It can also be seen from figure 7 that the best results for the cooperating agents are
when the system tries to solve 5 machine problems such as 20x5,50x5,100x5. But as the
number of machines increases such as 20x10, 20x20, the system performs less well. This
is phenomenon is also happens elsewhere in the literature. For example this can been
seen in the results of Vallada and Ruiz (2009).
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(a) 5 machine problems

(b) 10 machine problems
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This phenomenon could be due to the fact that as the number of machines increases so
does the possibility of longer times between the end of one job and the start of another or
lag time. This could be due to in the calculation of the makespan (equation 5)which takes
the maximum between two jobs in different rows of the matrix of job times. Therefore
as the number of machines increase the number of rows in the job times matrix increases
and therefore the number of maximum functions increases. This in turn would lead to
the possibility of greater lag times between the end of one job and the start of another.
This would then make it harder to solve these types of problem as more possibilities have
to be explored to find a good permutation with a good minimum makespan.

7.4. Diversification of the search by exchanging patterns

The system has a mechanism for recording how much of the search space was covered
by the agents. This is helpful in understanding how much the search is diversified by
exchanging patterns. This was achieved by getting each (meta-)heuristic agent to record
the best value it achieved every time an agent’s (meta-)heuristic was run. Each agent’s
the meta-heuristic was run 500 times as set in the configuration file. However, the meta-
heuristic agent has a mechanism to detect when a local minimum has been reached.
To this end, the value recorded was either the detected local minimum or the best
value calculated by the meta-heuristic after 500 iterations. Also depending whether the
problem domain was PFSP or STSP the agents participated in 3002 or 5002 conversations
respectively. Therefore t mechanism recorded the same number values for each agent.

Figure 8 is a line graph of a 4 agent scenario working on the first of Taillard’s 20x5
PFSP problems. As this is a PFSP problem the values recorded on the Y-axis are the
minimum makespan for each permutation of jobs found by each agent. The X-axis records
the conversation number between 1 and 3002 conducted by the meta-heuristic agents.
The different coloured lines represent the values recorded for each agent. In this was it
is possible to compare the search path of each agent.

It it worth noting that while figure 8 charts path of the search of a 4 agent scenario for
a PFSP, this system can just as easily for a STSP search. This mechanism is completely
generic and works on any problem type and with any conversation scenario.
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Figure 8: A graph of all the local minima or best results achieved by each agent

What is clear from figure 8 is that while the agents do traverse different parts of the
search space at the start of the search, they quickly converge to a good solution which
is also a local minimum ( in this case 1297). Meta-heuristic agent 1 is the only agent
that reaches the optimum 1278, which it does twice in the course of the search. Meta-
heuristic agents 2 and 3 achieve good solutions early on, but then get pulled back to the
1297 local minimum. Meta-heuristic agent 4 starts from the worst solution of all and
only gets down as far as 1297.

One inference that can be drawn from this is that while pattern matching enabled
meta-heuristic agents 1,2,3 to get into a position to achieve the good solutions early on
in the search. Meta-heuristic agent 4 which started off worse than the others seems have
converged to the local minimum 1297. And from there it seems to have influenced the
search of the other meta-heuristic agents by sharing patterns that lead it to converge
to 1297, holding back the other meta-heuristic agents from achieving better solutions.
However, the reinforcement mechanism ensured that the meta-heuristic agents were never
pulled to far away from the optimum.

This is a very valuable information when designing heuristics. For example, it can
be concluded that the system works well enough allowing new solutions to be built from
finding good patterns. However, it can been that one agent (agent 4) seems to be holding
back the search by contributing bad patterns. This information has been instrumental
leading to new work on finding ways to recognise and penalise bad patterns.

8. Conclusions

The goal of the research presented in this paper is to propose a novel generic frame-
work for cooperative search. The idea is to find cooperative protocols incorporating
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pattern matching and reinforcement learning.
By conducting successful tests on benchmark problems on both PFSP and STSP, the

results have showed that the framework is able to solve problems in different domains.
This was achieved by the use of ontologies which enables the framework to be generic
and be applied to different problem domains. These ontologies ensure that the meta-
heuristic agents use and communicate the same objects when solving problems from
different domains. Furthermore, the results show that cooperative search outperforms
equivalent standalone (meta-)heuristics.

The results have also shown that cooperation with pattern matching only works well
when there is a reinforcement learning facility included. This allows agents to exchange
good patterns and to converge to good solutions. Without this feature, cooperation
would diversify but would not necessarily converge.

The framework has a mechanism for charting diversification (section ??, which so
far has been used in an offline manner. Used this way it can aid parameter tuning and
heuristic selection. In the future it is hoped it will be used online manner automatic
heuristic selection and parameter tuning. This means the focus of this research and in
the future is to develop a framework for automatic heuristic and parameter selection.

Finally, to try and meet the overall objective of developing a framework for automatic
heuristic and parameter selection the authors have proposed an agent-based framework.
There are many advantages to this. The agents are autonomous programs with their own
internal representations of the problem they are trying to solve. Autonomy, means that
the agents are flexible: they can use ontologies. As a consequence, they can run in many
different configurations and work on many different problem types. It also means that
they can be tailored to the computing resources available. It is easy to add or remove
agents from the framework this can be done at run time. Autonomy also means that
agents are able to alter their behaviour. This is feature the authors plan to develop with
the robustness measure.

The work presented in this paper marks only the beginning what is a rich seam
for research. Future research directions will include mechanisms to automatically tune
parameters. With this in mind, it is intended that the ontology is extended to include
parameter concepts. This will not only increase system flexibility but also enable us to
start to automate parameter tuning allowing the (meta-)heuristic agents to detect and
share good parameter settings. As a consequence a forecasting statistic will be developed
which will be based on robustness data already collected by the agents. This will play a
strong part in this work enabling the (meta-)heuristic agents to monitor the progress of
the search (online) and offer suggestions to improve it.

There is an obvious limitation to the cooperation protocol. These are that bad pat-
terns can occur just as frequently as good ones. This effect is ameliorated by using
(meta-)heuristics to search further a new solution generated by the pattern exchange
protocol. However this does not completely stop this drawback as an (meta-)heuristic
agent starting from a worse position than the others can hold back others from converging
to near optimal solutions.

One way to remedy this is to improve the pattern matching protocol is by enhancing
the frequency scoring system. It is intended that an accumulated score will be added to
each pair found in the frequency scoring process. In this way a value can be added to
patterns that occur across conversations. Also bad patterns can be identified and marked
making them tabu for a given number of conversations.
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As the framework is completely generic, it intended to test the system further with
algorithms written by third parties. In this way it will be possible to test current coop-
eration strategies on a number of new problems types. It is also planned to implement
more cooperation strategies.

Finally, for the next body of work, the system will be applied to nurse rostering. The
authors think this is an appropriate area of study because, not only can the platform
be made more flexible, but also further use the agent property of autonomy. To this
end an agent will be used to model groups of nurses either on a ward by ward basis or
by requirements basis (part-time worker v full time works). One agent could represent
the interests of each group and the system by negotiation and cooperation will find an
optimal nurse rosters for these different interest groups. Also this project will also benefit
from the improvements suggested above.
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