18 research outputs found

    Generic decoupled image-based visual servoing for cameras obeying the unified projection model

    Get PDF
    In this paper a generic decoupled imaged-based control scheme for calibrated cameras obeying the unified projection model is proposed. The proposed decoupled scheme is based on the surface of object projections onto the unit sphere. Such features are invariant to rotational motions. This allows the control of translational motion independently from the rotational motion. Finally, the proposed results are validated with experiments using a classical perspective camera as well as a fisheye camera mounted on a 6 dofs robot platform

    Rotation Free Active Vision

    Get PDF
    International audience— Incremental Structure from Motion (SfM) algorithms require, in general, precise knowledge of the camera linear and angular velocities in the camera frame for estimating the 3D structure of the scene. Since an accurate measurement of the camera own motion may be a non-trivial task in several robotics applications (for instance when the camera is onboard a UAV), we propose in this paper an active SfM scheme fully independent from the camera angular velocity. This is achieved by considering, as visual features, some rotational invariants obtained from the projection of the perceived 3D points onto a virtual unitary sphere (unified camera model). This feature set is then exploited for designing a rotation-free active SfM algorithm able to optimize online the direction of the camera linear velocity for improving the convergence of the structure estimation task. As case study, we apply our framework to the depth estimation of a set of 3D points and discuss several simulations and experimental results for illustrating the approach

    Visual servoing of mobile robots using non-central catadioptric cameras

    Get PDF
    This paper presents novel contributions on image-based control of a mobile robot using a general catadioptric camera model. A catadioptric camera is usually made up by a combination of a conventional camera and a curved mirror resulting in an omnidirectional sensor capable of providing 360° panoramic views of a scene. Modeling such cameras has been the subject of significant research interest in the computer vision community leading to a deeper understanding of the image properties and also to different models for different types of configurations. Visual servoing applications using catadioptric cameras have essentially been using central cameras and the corresponding unified projection model. So far only in a few cases more general models have been used. In this paper we address the problem of visual servoing using the so-called radial model. The radial model can be applied to many camera configurations and in particular to non-central catadioptric systems with mirrors that are symmetric around an axis coinciding with the optical axis. In this case, we show that the radial model can be used with a non-central catadioptric camera to allow effective image-based visual servoing (IBVS) of a mobile robot. Using this model, which is valid for a large set of catadioptric cameras (central or non-central), new visual features are proposed to control the degrees of freedom of a mobile robot moving on a plane. In addition to several simulation results, a set of experiments was carried out on Robot Operating System (ROS)-based platform which validates the applicability, effectiveness and robustness of the proposed method for image-based control of a non-holonomic robot

    Photometric visual servoing for omnidirectional cameras

    Get PDF
    International audience2D visual servoing consists in using data provided by a vision sensor for controlling the motions of a dynamic system. Most of visual servoing approaches has relied on the geometric features that have to be tracked and matched in the image acquired by the camera. Recent works have highlighted the interest of taking into account the photometric information of the entire image. This approach was tackled with images of perspective cameras. We propose, in this paper, to extend this technique to central cameras. This generalization allows to apply this kind of method to catadioptric cameras and wide field of view cameras. Several experiments have been successfully done with a fisheye camera in order to control a 6 degrees of freedom (dof) robot and with a catadioptric camera for a mobile robot navigation task

    Robust image-based visual servoing using invariant visual information

    Get PDF
    This paper deals with the use of invariant visual features for visual servoing. New features are proposed to control the 6 degrees of freedom of a robotic system with better linearizing properties and robustness to noise than the state of the art in image-based visual servoing. We show in this paper that by using these features the behavior of image-based visual servoing in task space can be significantly improved. Several experimental results are provided and validate our proposal

    Visual servoing from three points using a spherical projection model

    Get PDF
    International audienceThis paper deals with visual servoing from three points. Using the geometric properties of the spherical projection of points, a new decoupled set of six visual features is proposed. The main originality lies in the use of the distances between spherical projection of points to define three features that are invariant to camera rotations. The three other features present a linear link with respect to camera rotations. In comparison with the classical perspective coordinates of points, the new decoupled set does not present more singularities. In addition, using the new set in its non-singular domain, a classical control law is proven to be ideal for rotational motions. These theoretical results as well as the robustness to errors of the new decoupled control scheme are illustrated through simulation results

    Visual servo control on a humanoid robot

    Get PDF
    Includes bibliographical referencesThis thesis deals with the control of a humanoid robot based on visual servoing. It seeks to confer a degree of autonomy to the robot in the achievement of tasks such as reaching a desired position, tracking or/and grasping an object. The autonomy of humanoid robots is considered as crucial for the success of the numerous services that this kind of robots can render with their ability to associate dexterity and mobility in structured, unstructured or even hazardous environments. To achieve this objective, a humanoid robot is fully modeled and the control of its locomotion, conditioned by postural balance and gait stability, is studied. The presented approach is formulated to account for all the joints of the biped robot. As a way to conform the reference commands from visual servoing to the discrete locomotion mode of the robot, this study exploits a reactive omnidirectional walking pattern generator and a visual task Jacobian redefined with respect to a floating base on the humanoid robot, instead of the stance foot. The redundancy problem stemming from the high number of degrees of freedom coupled with the omnidirectional mobility of the robot is handled within the task priority framework, allowing thus to achieve con- figuration dependent sub-objectives such as improving the reachability, the manipulability and avoiding joint limits. Beyond a kinematic formulation of visual servoing, this thesis explores a dynamic visual approach and proposes two new visual servoing laws. Lyapunov theory is used first to prove the stability and convergence of the visual closed loop, then to derive a robust adaptive controller for the combined robot-vision dynamics, yielding thus an ultimate uniform bounded solution. Finally, all proposed schemes are validated in simulation and experimentally on the humanoid robot NAO

    Visual Servoing in Robotics

    Get PDF
    Visual servoing is a well-known approach to guide robots using visual information. Image processing, robotics, and control theory are combined in order to control the motion of a robot depending on the visual information extracted from the images captured by one or several cameras. With respect to vision issues, a number of issues are currently being addressed by ongoing research, such as the use of different types of image features (or different types of cameras such as RGBD cameras), image processing at high velocity, and convergence properties. As shown in this book, the use of new control schemes allows the system to behave more robustly, efficiently, or compliantly, with fewer delays. Related issues such as optimal and robust approaches, direct control, path tracking, or sensor fusion are also addressed. Additionally, we can currently find visual servoing systems being applied in a number of different domains. This book considers various aspects of visual servoing systems, such as the design of new strategies for their application to parallel robots, mobile manipulators, teleoperation, and the application of this type of control system in new areas

    Commande référencée vision pour drones à décollages et atterrissages verticaux

    Get PDF
    La miniaturisation des calculateurs a permis le développement des drones, engins volants capable de se déplacer de façon autonome et de rendre des services, comme se rendre clans des lieux peu accessibles ou remplacer l'homme dans des missions pénibles. Un enjeu essentiel dans ce cadre est celui de l'information qu'ils doivent utiliser pour se déplacer, et donc des capteurs à exploiter pour obtenir cette information. Or nombre de ces capteurs présentent des inconvénients (risques de brouillage ou de masquage en particulier). L'utilisation d'une caméra vidéo dans ce contexte offre une perspective intéressante. L'objet de cette thèse était l'étude de l'utilisation d'une telle caméra dans un contexte capteur minimaliste: essentiellement l'utilisation des données visuelles et inertielles. Elle a porté sur le développement de lois de commande offrant au système ainsi bouclé des propriétés de stabilité et de robustesse. En particulier, une des difficultés majeures abordées vient de la connaissance très limitée de l'environnement dans lequel le drone évolue. La thèse a tout d'abord étudié le problème de stabilisation du drone sous l'hypothèse de petits déplacements (hypothèse de linéarité). Dans un second temps, on a montré comment relâcher l'hypothèse de petits déplacements via la synthèse de commandes non linéaires. Le cas du suivi de trajectoire a ensuite été considéré, en s'appuyant sur la définition d'un cadre générique de mesure d'erreur de position par rapport à un point de référence inconnu. Enfin, la validation expérimentale de ces résultats a été entamée pendant la thèse, et a permis de valider bon nombre d'étapes et de défis associés à leur mise en œuvre en conditions réelles. La thèse se conclut par des perspectives pour poursuivre les travaux.The computers miniaturization has paved the way for the conception of Unmanned Aerial vehicles - "UAVs"- that is: flying vehicles embedding computers to make them partially or fully automated for such missions as e.g. cluttered environments exploration or replacement of humanly piloted vehicles for hazardous or painful missions. A key challenge for the design of such vehicles is that of the information they need to find in order to move, and, thus, the sensors to be used in order to get such information. A number of such sensors have flaws (e.g. the risk of being jammed). In this context, the use of a videocamera offers interesting prospectives. The goal of this PhD work was to study the use of such a videocamera in a minimal sensors setting: essentially the use of visual and inertial data. The work has been focused on the development of control laws offering the closed loop system stability and robustness properties. In particular, one of the major difficulties we faced came from the limited knowledge of the UAV environment. First we have studied this question under a small displacements assumption (linearity assumption). A control law has been defined, which took performance criteria into account. Second, we have showed how the small displacements assumption could be given up through nonlinear control design. The case of a trajectory following has then been considered, with the use of a generic error vector modelling with respect to an unknown reference point. Finally, an experimental validation of this work has been started and helped validate a number of steps and challenges associated to real conditions experiments. The work was concluded with prospectives for future work.TOULOUSE-ISAE (315552318) / SudocSudocFranceF
    corecore