14 research outputs found

    Informative sample generation using class aware generative adversarial networks for classification of chest Xrays

    Full text link
    Training robust deep learning (DL) systems for disease detection from medical images is challenging due to limited images covering different disease types and severity. The problem is especially acute, where there is a severe class imbalance. We propose an active learning (AL) framework to select most informative samples for training our model using a Bayesian neural network. Informative samples are then used within a novel class aware generative adversarial network (CAGAN) to generate realistic chest xray images for data augmentation by transferring characteristics from one class label to another. Experiments show our proposed AL framework is able to achieve state-of-the-art performance by using about 35%35\% of the full dataset, thus saving significant time and effort over conventional methods

    Proposal of Image generation model using cGANs for sketching faces

    Get PDF
    The transition from sketches to realistic images of human faces has an important application in criminal investigation science to find criminals as depicted by witnesses. However, due to the difference between the sketch image and the real face image in terms of image detail and color, it is challenging and takes time to transform from hand-drawn sketches to actual faces. To solve this problem, we propose an image generation model using the conditional generative adversarial network with autoencoder (cGANs-AE) model to generate synthetic samples for variable length and multi-feature sequence datasets. The goal of the model is to learn how to encode a dataset that reduces its vector size. Using a vector with reducing the dimension, the autoencoder will have to recreate the image similar to the original image. The autoencoder aims to produce output as input and focus only on the essential features. Raw sketches over the cGANS create realistic images that quickly and easily make the sketch images raw images. The results show that the model achieves high accuracy of up to 75%, and PSNR is 25.5 dB that is potentially applicable for practice with only 606 face images. The performance of our proposed architecture is compared with other solutions, and the results show that our proposal obtains competitive performance in terms of output quality (25.5 dB) and efficiency (above 75%)

    Context-Aware Design of Cyber-Physical Human Systems (CPHS)

    Get PDF
    Recently, it has been widely accepted by the research community that interactions between humans and cyber-physical infrastructures have played a significant role in determining the performance of the latter. The existing paradigm for designing cyber-physical systems for optimal performance focuses on developing models based on historical data. The impacts of context factors driving human system interaction are challenging and are difficult to capture and replicate in existing design models. As a result, many existing models do not or only partially address those context factors of a new design owing to the lack of capabilities to capture the context factors. This limitation in many existing models often causes performance gaps between predicted and measured results. We envision a new design environment, a cyber-physical human system (CPHS) where decision-making processes for physical infrastructures under design are intelligently connected to distributed resources over cyberinfrastructure such as experiments on design features and empirical evidence from operations of existing instances. The framework combines existing design models with context-aware design-specific data involving human-infrastructure interactions in new designs, using a machine learning approach to create augmented design models with improved predictive powers.Comment: Paper was accepted at the 12th International Conference on Communication Systems and Networks (COMSNETS 2020

    AGE ESTIMATION UNTUK INTELLIGENT ADVERTISING PADA POSTER DIGITAL MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK

    Get PDF
    Sebagai bagian dari intelligent advertising, age estimation digunakan untuk menyesuaikan iklan dari hasil estimasi usia audience. Age estimation (AE) dapat dibangun menggunakan deep learning menggunakan ConvNet dengan kendala seperti data training wajah usia tua yang sedikit, ketidak seimbangan dataset di dalamnya, serta membutuhkan jumlah data yang besar. Salah satu solusi dari permasalahan ini adalah melakukan data augmentasi menggunakan model generatif ACGAN untuk melakukan generate gambar sesuai dengan kelas. Intelligent advertising pada poster digital hanya disimulasikan pada komputer. Simulasi intelligent advertising berfungsi dengan baik terlepas dari terbatasnya iklan dan tidak konsistennya hasil estimasi usia. Hasil dari penggunaan model generatifACGAN untuk data augmentation berhasil meningkatkan performa hasil pada model AE terlepas dari rendahnya skor IS dan FID serta kualitas gambar yang dihasilkan. Hasil data augmentation lebih terlihat pada model B dengan peningkatan akurasi cumulative score sebesar 4,8% dan skor MAE sebesar 1,297

    Joint Energy-based Model for Remote Sensing Image Processing

    Get PDF
    The peta-scale, continuously increasing amount of publicly available remote sensing information forms an unprecedented archive of Earth observation data. Although advances in deep learning provide tools to exploit big amounts of digital information, most supervised methods rely on accurately annotated sets to train models. Access to large amounts of high-quality annotations proves costly due to the human labor involved. Such limitations have been studied in semi-supervised learning where unlabeled samples aid the generalization of models trained with limited amounts of labeled data. The Joint Energy-based Model (JEM) is a recent, physics-inspired approach simultaneously optimizing a supervised task along with a generative process to train a sampler approximating a data distribution. Although a promising formulation of such models, current JEM implementations are predominantly applied to classification tasks. Their potential improving semantic segmentation tasks remains locked. Our work investigates JEM training behavior from a conceptual perspective, studying mechanisms of loss function divergences that numerically destabilizes the model optimization. We explore three regularization terms imposed on energy values and optimization gradients to alleviate the training complexity. Our experiments indicate that the proposed regularization mitigates loss function divergences for remote sensing imagery classification. Regularization on energy values of real samples performed the best. Additionally, we present an extended definition of JEM for image segmentation, sJEM. In our experiments, the generation branch did not perform as expected. sJEM was unable to generate realistic remote-sensing-like samples. Correspondingly performance is biased for the sJEM segmentation branch. Initial model optimization runs demand additional research to stabilize the methodology given spatial auto-correlations in remote sensing multi-spectral imagery. Our insights pave the way for the design of follow-up research to advance sJEM for Earth observation

    Deep learning for facial emotion recognition

    Get PDF
    The ability to perceive and interpret human emotions is an essential as-pect of daily life. The recent success of deep learning (DL) has resulted in the ability to utilize automated emotion recognition by classifying af-fective modalities into a given emotional state. Accordingly, DL has set several state-of-the-art benchmarks on static affective corpora collected in controlled environments. Yet, one of the main limitations of DL based intelligent systems is their inability to generalize on data with nonuniform conditions. For instance, when dealing with images in a real life scenario, where extraneous variables such as natural or artificial lighting are sub-ject to constant change, the resulting changes in the data distribution commonly lead to poor classification performance. These and other con-straints, such as: lack of realistic data, changes in facial pose, and high data complexity and dimensionality increase the difficulty of designing DL models for emotion recognition in unconstrained environments. This thesis investigates the development of deep artificial neural net-work learning algorithms for emotion recognition with specific attention to illumination and facial pose invariance. Moreover, this research looks at the development of illumination and rotation invariant face detection architectures based on deep reinforcement learning. The contributions and novelty of this thesis are presented in the form of several deep learning pose and illumination invariant architectures that offer state-of-the-art classification performance on data with nonuniform conditions. Furthermore, a novel deep reinforcement learning architecture for illumination and rotation invariant face detection is also presented. The originality of this work is derived from a variety of novel deep learning paradigms designed for the training of such architectures
    corecore