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Abstract

The rapid development of remote sensing technologies in recent years is creating an
unprecedented amount of Earth Observation (EO) data. Although advances in deep
learning are creating opportunities to exploit big amounts of data, most methods rely
on densely accurately annotated sets to produce well-fit models. However, having
large-amount and high-quality labeled data is impractical for modern problems mostly
because of the excessive cost involved. Such limitations have been studied in the scope
of Semi-supervised Learnings (SSLs), resulting in more cost-effective approaches where
unlabeled samples are included to aid the generalization of models trained with limited
labeled data. To this end, Joint Energy-based Models (JEM) is a novel approach that
simultaneously optimizes a discriminative process and a generative process, where
additional unlabeled samples can be incorporated in the generation branch to support
the model training. Although the promising formulation of such models, the high
complexity of its training and the sensibility to divergence are open challenges to
consider. Also, current JEM methods are mainly applied for classification tasks, so their
potential for improving segmentation tasks is still under discovery.

To solve the problems mentioned above, this thesis first investigates JEM training
behavior from a theoretical perspective, finding in its definition the influential factors for
divergence. Based on these observations, three regularization terms imposed on energy
values and gradients are designed to constrain and alleviate the training complexity.
Their effectiveness was tested in the experiments, indicating that all of them alleviate
the divergence for remote sensing image classification tasks to some extent, yet the
regularization on energy values of real samples performed the best. After that, we
extended the JEM definition to segmentation tasks by means of certain assumptions on
pixel independence. However, it didn’t perform as well as expected, partly due to lack
of spatial autocorrelation among pixels. Still, this work gives some valuable insights for
future methodology design.
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1. Introduction

"The future of remote sensing is unlimited in its possibilities for understanding our
planet."

-Steve Wofsy-

1.1. Background and motivation

EO is of great importance for the monitoring and understanding of the Earth’s changing
systems. The interest in using satellites and other technologies in EO has been increasing
over the years, leading to unprecedented variety in the goals and methods for mapping
the Earth. Thus, a large amount of EO data is being generated every second, providing
the assets to our society to make more sustainable and equitable decisions in the
use of resources and management of ecosystems. To cope with the large amount of
information available, the use of Deep Learning (DL) is allowing researchers to create
agile pipelines and multi-domain frameworks to rapidly exploit most of the accessible
information. Spanning over a wide range of applications including -but not limited to-
disaster management and response [2], land use and land cover [70], soil moisture for
agriculture [40], urban planning [13], effects of climate change [61], oceanography [52],
and geology [48].

The majority of methods developed to this date, especially DL models with millions
of parameters, rely on densely accurately annotated data since it ensures well-fit
models with high accuracy and reduced need for expertise in data augmentation or
transformations. Unfortunately, completely labeled sets come with high costs (for
sophisticated labeling equipment and/or domain-specific human expertise) and require
a long time to update. More cost-effective and common sets contain a large number of
low-quality labels or a small number of high-quality labels, so research in the area of
training models with weakly supervised information has gained attention [62].
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CHAPTER 1. INTRODUCTION

Weakly-supervised Learning (WSL) is a paradigm that explores methods to overcome
problems where the available data is incomplete, inexact, inaccurate, or a combination
of those [80]. Inexact and inaccurate usually refer to a lack of quality in the labels,
whereas incomplete refers to a small number of accurate labels. From the three types,
incomplete data is of special interest for situations where the cost of a complete set of
labels is enormous or can’t be realized due to privacy and security reasons, especially
in EO data where the high variability, in terms of viewing conditions and states of
the dynamic systems being modeled, intrinsically limits the size of the labeled sets
[66]. Researchers have developed a series of methods in the field of SSL to solve
a such challenge, leveraging the capabilities of DL state-of-the-art, functional Deep
Neural Networks (DNNs) architectures have been defined to gain knowledge from the
unlabeled samples and thus assist the target parametric model with the complete set of
information.

The existing SSL methods are mainly designed from two perspectives: discrimi-
native and generative. Discriminative models are designed for learning a mapping
that can accurately distinguish between categories or classes in the provided feature
space, usually known for their simplicity and efficiency but incapable of modeling the
feature space distribution [7]. Generative models discover patterns and the underlying
structure of the feature space to learn its distribution, usually known for their capacity
to generate realistic new samples but are computationally expensive [14]. It’s clear that
each approach is suited for a different disposition in the data distribution and labeling,
thus the potential in the connection of both configurations leads to research in hybrid
discriminative-generative models where generative models can assist the learning of
supervised discriminative models. Following this idea, JEM, originated from statistical
physics, presents a novel re-interpretation of the discriminative classifier where a gener-
ator process is hidden; it simultaneously optimizes the two processes and constructs
a hybrid model capable of finding powerful class-distinctive criterion, estimation of
distributions, and generation of congruent samples [18]. Such characteristics can be
applied to robust scene classification and segmentation, and so its study is of most
interest to overcome current challenges in SSL using EO data. Therefore, in this work,
we focus on the implementation of JEM for image classification, investigate the inherent
training instabilities, and ultimately extend the formulation and architecture to image
segmentation.
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1.2. THESIS OVERVIEW

1.2. Thesis overview

This thesis is focused on the study of JEM for image processing of remote sensing data.
More specifically, our major contributions can be summarized into three aspects:

• Starting with state-of-the-art implementations of JEM for image classification, we
study the reasons behind the training instability challenge.

• We present three regularization terms to relieve the training instability.

• We extend the definition and architecture to segmentation and explore the impli-
cations of our assumptions using different DNNs architectures.

Structured as follows:

• In chapter 1 we introduce the background and motivations of remote sensing
applications for earth observation.

• In chapter 2 we conduct a literature review of machine learning paradigms, and
modeling approaches. Narrowing to methods with potential for SSL, like JEM.

• In chapter 3 we follow the works of JEM on image classification and extend on
details of the training process related to model divergence along with solutions
to alleviate it.

• In chapter 4 we describe the derivations and changes in the JEM architecture
needed to extend the problem to image segmentation and test the performance of
such adaptations. Also, we present experimental results on the performance of
the individual branches.

• In chapter 5 we summarize our findings and comment on possible future lines to
continue our work.
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2. Related works

"All models are wrong, but some are useful." 1

-George E. P. Box-

In this chapter, we present fundamental concepts and frameworks developed over the
years by various researchers in the fields of remote sensing, computer vision, and deep
learning. We introduce learning paradigms and how they are related and relevant to
models like joint energy-based that are the foundation of our work.

2.1. Learning paradigms

2.1.1. Supervised learning

Supervised learning is a paradigm that, as its name indicates, is driven by a "supervisor"
or "teacher" that advises the learning system. Given a set with pairs of samples and
labels S = {(x1, y1), ..., (xn, yn)}, the system is said to be "taught" or trained with
a portion of the set St = {(x1, y1), ..., (xm, ym)}, m ≤ n so it can learn the mapping
between input and output and accurately predict the labels ŷ of a new given set x′

such as the training error and learner complexity are minimized [38, 45]. Common
algorithms that uses this principle are Support Vector Machines (SVMs) [50] and nearest
neighbor [4].

2.1.2. Unsupervised learning

Unsupervised learning is a paradigm where the only asset available for the system to
learn from are the observation input samples χ = {x1, ..., xn}. It focuses on finding

1Originally used in the scope of statistics, we emphasize in this chapter that all learning concepts,
algorithms and models are useful under certain conditions.
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CHAPTER 2. RELATED WORKS

patterns and building meaningful representations of the observed distribution [16, 10],
with methods like principal components analysis (PCA) used in feature extraction [19],
hidden Markov model [59] and K-means clustering [63].

2.1.3. Weakly-supervised learning

WSL is a paradigm that deals with "weak" labeled data, commonly placed in between
supervised and unsupervised learning in the sense that in supervised learning exists a
complete set of labels, whilst unsupervised has none. The term "weak" refers to the
level of quality or preciseness in the labels, usually, it’s categorized into three types (see
Fig. 2.1): inexact when the labels are coarse-grained (low-resolution or low-detailed),
inaccurate -also known as noisy- when the labeling process is unreliable and incomplete
when only a subset -usually small- of the samples are labeled. It’s worth noticing that,
despite the difference between the categories, a combination of them is usually present
in real-world applications [80, 42].

Figure 2.1. Weakly-supervised learning types.

6



2.2. SEMI-SUPERVISED LEARNING

Inexact-supervised learning is suited for problems where the dataset can be described
in multiple levels of abstraction but its corresponding labels are incomplete and/or
limited to some aggregations. Multi-instance learning [15, 82] is a technique that defines
arrangement sets (named "bags") as a group of instances, where the label is associated
with the entire bag; in cases like semantic segmentation, "bags" can be regarded as
patch-wise or object-wise labels when no pixel-wise labels are available. Experiments
such as molecules classification [49] and web mining [5] demonstrate the applicability
of this technique.

Inaccurate-supervised learning concerns cases where the label’s validity is in doubt.
Faulty labels can be produced by errors in the labeling process such as instrument
uncertainty, lack of expertise, environment noise, fuzzy domains, and others. One
possibility to address this problem is to identify and correct the erroneous labels
as demonstrated in a study of cancer diagnosis [22]. Also by including the thrust-
worthiness of the label in the features, a binary classifier can be trained to detect fake
news on social media [25]. Another approach is to mitigate the effects of noisy labels
with the use of the unlabeled data to estimate its underlying distribution [78], following
this concept Generative Adversarial Networks (GANs) can be used to aid the classifier
with information to distinguish between noisy samples and real samples [77].

Incomplete-supervised learning focuses on techniques to exploit the limited -but
regarded as ground-truth- labeled samples. If there’s an entity (e.g. human expert or
knowledge base) that could aid the prediction of the unlabeled samples, active learning
approaches can be used to find the balance between prediction accuracy and the cost
of querying this entity. For instance, transfer learning [55] where the entity is derived
from a different dataset but with a related domain is being applied in language models
(e.g. chatbots [73]) and computer vision [47]. When the problem lacks such an entity,
then approaches mentioned in the following section 2.2 can be considered.

2.2. Semi-supervised learning

SSL is a paradigm that deals with learning problems where the data is partially labeled
[83]. It can be applied as an extension to classification problems, given that the model
is trained with both unlabeled samples U = {(xi)|xi ∈ χd, i = 1, ..., u} and labeled
samples L = {(xk, yk)|xk ∈ χd, yk ∈ Ω, k = 1, ..., l} where usually u >> l [21].

In recent years, the development of DNNs introduced new possibilities and strategies

7



CHAPTER 2. RELATED WORKS

to address these problems [41, 3, 71]. For instance, autoencoders [57] are a type of
neural network that consists of an encoder and a decoder, the relation of the encoder
design -finding a meaningful representation of the feature vector latent space- and
the SSL manifold assumption -ensuring that the elements belonging to the same
low-dimensional structure share the same label- enables this architecture to be used
for feature extraction [14] with potential applications for image reconstruction [30],
resolution enhancing [26] and audio source separation [64]

One of the biggest challenges of SSL relies on the uncertainty of up to which extent
the unlabeled data result useful. Discriminative and generative models offer promising
approaches suited to overcome these difficulties. To choose which method to use one
should study the assumptions of the given problem and characteristics of the methods
[21]. In the following section, we present the principles of the discriminative, generative,
and hybrid discriminative-generative models and how these approaches can be applied
to SSL.

2.2.1. Discriminative models

Discriminative models refer to those approaches that intend to produce and compute
the optimal direct mapping f : χ 7→ Y between input χ = {X1, ..., Xn} and output Y =

{Y1, ..., Ym} [32]. Common machine learning algorithms widely used for classification
construct decision boundaries, such as SVMs that define a hyperplane and decision
trees that generate rules [7].

Some discriminative deep learning methods directly optimize for a loss function
by using Convolutional Neural Networks (CNNs) or attention mechanisms [58]. The
advantage of these approaches relies on the ability of the neural networks to identify
the relevant features in several levels of abstraction, without the need for specific
domain knowledge and despite the nature of the data. CNNs consists of convolutional
layers, pooling layers, and fully connected layers allowing a hierarchical extraction of
features [7]. Commonly used architectures like LeNet[39], AlexNet[36], GoogLeNet[68],
ResNet[23] and DenseNet[29] are broadly applied in object tracking[9] and image
segmentation[51], among others.

In the context of SSL, discriminative models exploit the unlabeled data with methods
like SVMs [50] trained from labeled samples which kernel function is derived from
unlabeled samples [33], committees where several models are generated using the
labeled samples and uses the disagreement of the models with the unlabeled samples

8



2.2. SEMI-SUPERVISED LEARNING

to select the one with higher confidence [81], Pseudo-Label assigns labels to the un-
labeled samples by selecting the one with the highest belonging probability allowing
the training process to conduct simultaneously this assignment of labels and other
supervised-fashion optimization [41] showing to be beneficial for hyperspectral classifi-
cation [74] and automatic speech recognition [27].

2.2.2. Generative models

Generative models enclose the approaches that intend to produce a probability density
model P(Ω) of all system variables (input and output) Ω = {X1, ..., Xn, Y1, ..., Ym}
and employ it in the optimization criteria. Given this density model and its full
joint distribution p(x, y), inferences and predictions can be made by mathematical
manipulations (like conditioning or marginalizing) [32] and also to draw samples {x̂, ŷ}
[14]. Generative models in principle calculate P(Y|X) using Bayes’ rule by estimating
the distributions P(X|Y) and P(Y) [17]. For instance, Gaussian mixture models estimate
the probability density function by assuming that the samples are generated from a
mixture of Gaussian distributions thus widely used for clustering [60].

The fundamental concept of SSL establishes the condition that information of the
posterior distribution p(y|x) is present in the marginal data distribution p(x). And
so by using the unlabeled instances of the dataset to gain information of the p(x),
also information of the p(y|x) is revealed and used to assist the learning [14]. The
development of deep learning generative models produced some methods designed
to solve SSL problems, for instance, Variational Autoencoders (VAEs) are based on
autoencoders, where the encoder is trained to map the input data p(x) into a latent
space p(z) while at the same time, the decoder converts the latent space p(z) into a
distribution p(z|x) from where sampling can be done [14, 17]. This model has been
used for speech emotion classification [37] and molecule design [46], among others.

GANs are another typical kind of generation models, but composed of two networks
trained simultaneously as a minimax optimization problem formulated as:

min
G

max
D
LGAN(D, G) = Ex∼px(x)[log D(x)] + Ez∼pz(z)[log(1− D(G(z)))]

The generator network G, designed to generate samples as close as possible to the
original distribution by its parameters θG, minimizes the objective function LGAN .
And the discriminator network D, trained to distinguish between "real" (i.e. original
distribution) and "fake" (i.e. synthetically generated) samples by its parameters θD,

9



CHAPTER 2. RELATED WORKS

maximizes the objective function LGAN [14, 51, 17]. Some adaptation to GANs [20]
enable its use in tasks such as classification [31], small object detection [43] and language
generation [44].

Both discriminative and generative models have their own advantages and chal-
lenges, recently hybrid discriminative-generative models have been studied to present
a complementary approach [11]. For instance, JEM is a novel approach of this kind
that applies simultaneous optimization to a discriminative classifier and a generative
process, showing promising results for semi-supervised classification [18, 79]. In the
following sections, we present the details of Energy-based Models (EBM) and JEM.

2.3. Energy-based models

EBM belongs to the deep generative branch and it originates from statistical physics,
the main idea is to define a probability density to embody the states’ distribution of
a system by mapping any datapoint, x ∈ χ, to a scalar value with an energy function
E(x) : χ 7→ R [53]. Thus, to parametrize an EBM, the chosen energy function should
map realistic instances of x to low values, and unrealistic ones to high values. Moreover,
the energy function also defines a probability distribution, through a Boltzmann
distribution, to express the probability density p(x) as

p(x) =
exp(−E(x))

Z
, (2.1)

where Z =
∫

χ exp(−E(x)) (2.2) is the normalizing constant (also known as the partition
function) [18, 12]. Unfortunately, estimating normalized densities is often intractable,
so computing Z represents a challenge [18].

2.3.1. EBM for generation tasks

To dismiss the explicit use of the Z constant, one can rely on the potential of the energy
function for sampling. In this view, let θ ∈ Θ be a set of parameters such that the
parametric model pθ(x) is a good approximation of the data distribution p(x) [53].
Then, training of EBM can be accomplished by maximizing the expected log-likelihood
function L(θ|x).

With the formulation of the log-likelihood derivative, expressed as

∂L(θ|x)
∂θ

=
∂logpθ(x)

∂θ
= Epθ(x′)

[
∂Eθ(x′)

∂θ

]
− ∂Eθ(x)

∂θ
, (2.3)

10



2.3. ENERGY-BASED MODELS

there is no simple solution for sampling from pθ(x). In order to estimate the first
term, Markov chain Monte Carlo (MCMC) [8] algorithms have been implemented
for samplers. For instance, the Gibbs sampler was used with Restricted Boltzmann
Machines [28], and more recent approaches use neural networks and a Stochastic
Gradient Langevin Dynamics (SGLD) [72] sampler that reduces the sampling procedure
time [12]. The SGLD sampler is formulated as follows

x0 ∼ U (−1, 1)

xt+1 = xt −
α

2
∂Eθ(xt)

∂xt
+ ϵ, ϵ ∼ N (0, α),

(2.4)

where x0 is the initial sample, t represents the iteration, α is the step-size and ϵ is
Gaussian noise. Samples then will be generated from the energy function distribution
as t→ ∞ and α→ ∞ [72, 12] as shown in Fig 2.2.

Figure 2.2. Generation of samples using SGLD.

The flexibility of EBM have been exploited in generation tasks (images [12] and
scene graphs [67]), hybrid generation-classification [18, 75] and out-of-distribution
classification [18], among others. However, training EBM is a challenging task because
of the SGLD hyper-parameters effect in high computational complexity and poor
training stability [53, 18, 12].

11



CHAPTER 2. RELATED WORKS

2.3.2. Joint energy-based models

JEM re-interprets the standard modern classifier as a EBM [18]. In classification
problems a parametric function fθ : RD → RK, with D input dimensions and K classes,
maps every point x ∈ RD to real-valued numbers known as logits, where a single logit
that corresponds to the yth, y ≤ K class can be represented as fθ(x)[y]. Usually, logits
are used to parameterize a categorical distribution pθ(y|x) in a discriminative way with
the Softmax transfer function:

pθ(y|x) =
exp( fθ(x)[y])

∑y′ exp( fθ(x)[y′])
, (2.5)

JEM re-interprets the logits to define the energy-based model of the joint distribution
pθ(x, y) as:

pθ(x, y) =
exp( fθ(x)[y])

Z(θ)
, (2.6)

with Z(θ) being the unknown normalizing constant. By marginalizing out y with

∑y pθ(x, y), the unnormalized density p(x) is as:

pθ(x) =
∑y exp( fθ(x)[y])

Z(θ)
. (2.7)

Moreover, comparing (2.7) with (2.1), the logits can be re-used to define the energy
function as follows:

Eθ(x) = −log ∑
y

exp( fθ(x)[y]). (2.8)

To benefit from the generative characteristics of EBM and retain the classifier per-
formance, the training of the fθ is proposed to find the appropriate optimization of
the involved distributions by maximizing the likelihood of the joint discriminative-
generative model:

log pθ(x, y) = log pθ(x) + log pθ(y|x), (2.9)

where the term log pθ(y|x) can be optimized using cross-entropy the same as traditional
supervised classification tasks, and log pθ(x) using SGLD (2.4) with (2.8) as the energy
function to draw samples. Since the second term doesn’t require labels, JEM has the
potential to explore information from unlabeled data for semi-supervised learning
purposes. So, two simultaneous processes can be distinguished in the JEM configuration,
a discriminative one that learns from the samples x and labels y, and the generative
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2.3. ENERGY-BASED MODELS

one that learns from the entire distribution of samples x using the encoded information
of the classifier in the energy function.

Tested with natural images it shows comparable performance in semi-supervised
classification compared against Virtual Adversarial Training and outperforms it in
other data domains, proving that JEM requires much less domain-specific knowledge
for SSL [79]. Further work tested JEM on EO datasets, reaching the same level of
performance as other classification-only and generation-only architectures, showing
tangible improvement for semi-supervised classification and model calibration when
trained with ≤ 1% of labeled samples, also proved the robustness of JEM, especially
with datasets that have significant differences between the training and test sets and
investigated the potential for applications like land cover mapping where the unnor-
malized log-likelihood value serves as a proxy of confidence in the predictions [6].
Although, instability was also faced during training in all mentioned experiments;
also, the difficulty to apprehend some classes from the data distribution and the linear
relationship between sampling time and image size, makes applications like remote
sensing an open challenge for JEM [79, 6].

The potential of JEM has been tested with natural and real-world imagery achieving
competitive performance against other standalone models and outperforming other
hybrid models. Except for solving the problem of lack of labeled data, it also shows
the additional advantages of improved model calibration characteristics, and out-of-
distribution detection, among others, [6]. Nevertheless, the model still faces the training
instability of EBM, so it requires human intervention and thorough tuning of the hyper-
parameters with unclear effect of those in the model [18]. So in this work, we study
the factors in the formulation of JEM to determine how its behavior and definition
contribute to the stability or instability of the general training process from a theoretical
perspective. Based on that, we also formulate potential techniques and architectures
specially designed for JEM model training in different tasks.
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3. Joint Energy-based Models for Image
Classification

"Innovation thrives on experimentation and exploration."
-Elon Musk-

In this chapter, we explore the behavior of JEM training by doing a deep study of the
reasons behind divergence and evaluate the effectiveness of possible solutions using
three regularization terms. We study the influence of hyper-parameters and use a
pre-emptive approach to contribute to the divergence problem of JEM. Also, we test the
adaptable and versatile capabilities of JEM on semi-supervised remote sensing image
classification.

3.1. Methodology

3.1.1. JEM architecture

As stated in the previous chapter, JEM model training simultaneously optimizes the
classification and generation branches. As shown in Fig. 3.1, the classification branch
uses an encoder to extract the relevant features from the training samples and computes
the Cross-Entropy with the provided labels as the branch loss. Whereas the generation
branch uses the energy function defined in (2.8) and SGLD in an iterative process
to generate samples that follow the gradient of the energy, then uses the difference
between the energy values of training samples and generated samples as the branch loss.
The weights of the model are then adjusted using back-propagation of the combined
losses as follows:

LTOTAL = LCLA + LGEN , (3.1)

with classification loss as LCLA and generation loss as LGEN .
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Such architecture has the potential for semi-supervised classification just by adapting
the use of the samples. Let xU be the unlabeled samples and xL the set of labeled
samples, then only labeled data in xL go through the classification branch, while all the
data from both xL and xU can be fed into the generation branch. Thus, those samples
without a label can also make a difference in model training.

Figure 3.1. JEM for semi-supervised learning overview [6].

However, known characteristics of JEM are the instability of the training process and
the sensibility of the model to divergence. In this work, we analyze in a dedicated
section this challenge and present relevant aspects for the reduction of optimization
complexity and reliable training.

3.1.2. Divergence

The training loss is a measure that indicates how well the model is able to fit the training
data. Generally, the optimization process is designed to minimize the training loss
defined by a distance-like form between predictions and training samples/labels. With
such formulation the loss is bounded, since it’s expected to decrease until the value gets
as close as possible to the minimum value of 0, so preventing it to continue decreasing
until −∞ . However, there is no such constraint in the generation loss of JEM since
it’s designed as a proxy of the realisticity of the samples, for the case of both realistic
and unrealistic samples the loss is likely to contain negative/positive values which are
extremely large in quantity. In such cases, the model training falls into a local minimum
and can learn no more useful features or even fallacious features from the data. This is
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the so-called divergence problem in JEM model training. Correspondingly, we force
the interruption of training when the absolute loss value is higher than 1 × 108 in the
experiments. We found that model training encounters the divergence problem very
often, especially when using JEM for remote sensing data. Therefore, to get well-trained
models and further expand the potential of JEM for EO, it is of big importance to
analyze the behavior of the loss and explore potential solutions for the divergence. In
the following, we first investigate this problem from a theoretical perspective and then
formulate intuitive interpretations of it.

Let us examine in detail the individual loss functions for each of the two branches:

LCLA = CrossEntropy(y, ŷ) = −∑
k

y[k] · log ŷ[k], (3.2)

LGEN = Eθ(x)− Eθ(x′), (3.3)

where Eθ(·) is the energy function defined in (2.8), x is a (real) training sample, x′ is a
generated sample by SGLD, y is the corresponding one-hot label of the training sample
and ŷ is the predicted label probabilities derived from the logits fθ(x) by applying the
softmax function as follows:

ŷ[k] = so f tmax( fθ(x)[k]) =
e fθ(x)[k]

∑k′ e fθ(x)[k′]
(3.4)

with fθ(x) ranging between [−∞, ∞] and ŷ[k] normalized to the range [0, 1].

In the classification branch, since the logarithmic function −log(·) is monotonously
decreasing, then the expression −log ŷ[k] in (3.2) will have 0 as the lower limit at
ŷ[k] = 1. The one-hot label y[k] can only have two values: 0 or 1. Thus, (3.2) is overall
bounded above 0, consequently, its minimization won’t result in values reaching −∞.

Whereas in the generation branch, the logits are transformed to a single unbounded
scalar value using the log ∑ exp operator in the energy function definition (2.8). Thus,
the energy values don’t have a theoretical numerical boundary (i.e., in the range of
[−∞, ∞]). As mentioned in 2.3, the energy function maps realistic samples to low values
and unrealistic ones to high values. To do so, (3.3) minimizes the energy values of real
samples and simultaneously maximizes those of fake samples by directly subtracting
two unbounded energy values. This would result in the unbounded definition of the
generation loss where the minimization can lead to values reaching −∞. Therefore,
(3.3) can easily cause divergence during training.

Based on Fig. 3.2, we present an intuitive explanation of the reasons behind diver-
gence. Generation tasks are mainly composed of two processes, that is, a generative
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process to produce fake samples and a discriminative process to distinguish real sam-
ples from fake ones. The novelty of JEM is the re-interpretation of the classifier where
the energy function of a generative model can also exploit the logits by mapping
high/low energy values to fake/real samples, thus instinctively acting as a discrimi-
native process (I. Discriminative process in Fig. 3.2). Also, the iterative SGLD process
uses the gradient of the energy function to generate new samples that are close to
the distribution of the real ones, thus instinctively acting as a generative process (II.
Generative process in Fig. 3.2).

Figure 3.2. Landscape of energy values.

To conclude, this interpretation presents a dual process of optimization that in our
judgment shows a competing behavior in the energy landscape. In the discriminative
process, the model attempts to optimize its capability to separate the generated samples
from the ones included in the training set by assigning low values to training samples
and high values to generated samples, as a way to correctly classify the data. While at
the same time in another generative process, the optimization is such that the generated
samples distribution gets as close as possible to those of the samples from the latent
space in the training set, so forcing the energy function to assign lower values to
generated samples (which counteracts with the other optimization process), in order to
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contribute to the generative facet of the model. We consider this competing behavior
in the unbounded landscape as a possible explanation for the sensibility of the model
to divergence. By regulating one of the optimization processes we expect the overall
complexity will reduce and so divergence could be intuitively alleviated to some extent.

In the following, we introduce regularization as a way of imposing boundaries to the
divergence problem and present new formulations for the generation loss of JEM. Also,
we explore the influence of hyper-parameters in the training process stability and how
they impact the model divergence.

3.1.3. Regularization

An intuitive way of constraining the values of (3.3) is to apply the absolute operator
on it. However, by disregarding the sign in the difference, the discriminative process
is omitted since the capability to assign positive values to fake samples and negative
values to real samples are removed with the absolute value operator. This alteration to
the formulation breaks the design of the dual optimization problem so it’s not a valid
approach.

Instead, we resort to constraining the values generated by the energy function,
since its contribution produces the unbounded values in the total loss. Moreover, if
boundaries are applied to (3.3) it can help constrain the landscape of energy values,
thus potentially improving the stability of JEM model training. To do so, we utilize
regularization, a technique that adds a penalty term to the objective function of an
optimization problem, imposing the model to change its behavior and complexity [69].
In JEM, this could be applied in the LGEN to constrain the values as follows:

LGEN_REG = LGEN + α · REG, (3.5)

where α is a hyper-parameter that regulates the strength of the regularization term
REG.

There are many types of regularization, in our work we utilize the L2 regularization
that is based on the L2-norm (also known as Euclidean norm). We stated in the previous
section the unbounded characteristic of the energy function, so first, we can impose the
regularization directly on the energy values. Specifically, for the training/real samples
x:

REGr = ∑ Eθ(x)2, (3.6)
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and to the energy values of the generated/unreal samples x′:

REGu = ∑ Eθ(x′)2, (3.7)

the effectiveness of the regularization terms is then linked with the behavior itself of
the energy values. We expect the term REGr to be more stable as the training samples
remain constant during training.

Another possibility is to impose the regularization to the gradients of the energy
function, although the computation of gradients is a complex operation so it must be
assessed the implications on training time. During training the values of the generated
samples are expected to have high variations because the constant improvement of the
model’s generation ability will consequently modify frequently the quality of generated
samples, and also due to the generation process random initialization and added
randomness in the SGLD iterations; whereas the training samples aren’t modified and
so have stable values. Based on that, in our work, we apply L2 regularization to the
gradients of the training samples x and it’s defined as:

REGg = ∑∇Eθ(x)(x)2, (3.8)

Using regularization, the optimizer aims to minimize not only the difference between
energy values but also the regularization term. Thus, it can be interpreted, in the view
of the dual optimization and the energy landscape, that the discriminative process will
be partially fixed and close to a maximum/minimum in one of the vertical directions.
In the case of the L2 for energy values of training samples (left diagram in Fig. 3.3)
it will be fixed to a maximum and L2 for energy values of generated samples (right
diagram in Fig. 3.3) to a minimum, both tho the value of 0. Whereas in the case
of the L2 for energy gradients of training samples, it will be fixed similarly to the
L2 for energy values of training samples but with respect to an arbitrary value, not
necessarily 0. As a consequence, these regularization terms can help to abate the
overall optimization complexity, eventually constraining the energy function values and
alleviating the divergence. Nevertheless, as mentioned above, compared to generated
samples, training samples are supposed to keep unchanged all the time. So do the
corresponding energy values. Thus, the two regularization terms imposed on training
samples are expected to show more effectiveness.
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Figure 3.3. Constrained landscape of energy values with regularization.

3.1.4. Hyper-parameters

As we already stated, there are many processes involved in the JEM training, so it
contains many hyper-parameters that regulate and influence the general learning
process. We study their impact on the overall training and how they relate to the
divergence. Specifically, we identify two hyper-parameters that affect the training
behavior with direct influence on the divergence in this section, namely: learning rate
and SGLD. The need of fine-tuning these parameters adds complexity to the model
and reflects the lack of generalization in the model since each application will have
different values that stabilize the training.

Learning rate. It determines the rate at which the weights of the network are adjusted
to optimize the model [65]. A larger learning rate means that the model will make
more drastic adjustments to the weights, usually, it leads to faster convergence but it
also poses the risk of missing the absolute optimum. Whereas, with a smaller learning
rate the adjustments will be more gradual, leading to slower convergence and so
increasing the training time but can’t ensure finding the optimal weights. When close
to divergence, there are drastic changes in energy values in a few iterations, changing
the learning rate will influence how controlled is the optimization and so modify the
fluctuation of the energy function, but with drastic consequences on the training time.
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SGLD. It’s a stochastic algorithm used in machine learning and artificial intelligence
optimization, implemented in the deterministic function of the generation branch that
produces new samples from the latent space in the training set [72]. The goal of the
generative function is to produce samples as close as the ones from the training data,
the number of steps in the SGLD algorithm affects the quality of the generated samples.
It’s expected that a higher number leads to more accurate estimates of the distribution
in the latent space, producing improved generated samples, with the energy values
being closer to the observed samples, and so potentially reducing the overall complexity
of the dual optimization problem by improving the generation process, but with the
drawback of increasing the training time.

3.2. Experiments

Datasets. The training of the model uses two publicly available datasets: the CIFAR-10
Dataset [35] and the EuroSAT Dataset [24]. For both Datasets, only the RGB channels
are used. The CIFAR-10 Dataset consists of 60,000 labeled color natural images of size
32x32 pixels, it’s divided into 10 mutually exclusive classes (e.g. airplane, dog, frog,
etc.). For the experiments, we used a split of 80% for training, 15% for test, and 5%
for validation with a well-balanced distribution of classes. This dataset is used as a
demonstration by official JEM codes. We include some reproduced results on it only
for comparison purposes with EO data. The EuroSat is an EO Dataset and consists of
27,000 labeled multi-spectral (13 bands) satellite images of size 64x64 pixels, it’s divided
into 10 land use and land cover classes (e.g. annual crop, highway, river, etc.). For the
experiments, we used a split of 80% for training and 20% for test and validation with a
well-balanced distribution of classes.

Implementation specifics. As presented in [18] we use the Wide-ResNet-28-10
architecture, with the following common main parameters in the experiments: 200
epochs, Adam optimizer [34] and no batch normalization. All the remaining values of
the parameters used in the default configuration of the model can be found in Table
3.1. The Pytorch [56] open-source framework is used for all implementations.

In the following, we present the results of the JEM implementation based on [18]
and our adaptations for an EO dataset. We encounter divergence in the very first
experiments, so we start with a section dedicated to the study of its behavior to get
an understanding of the reasons and implications for the model training. Later, we
experiment with regularization and hyper-parameters to find a suitable configuration
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Parameter Value

Learning rate 1× 10−5

Batch size 64
Number of channels 3
Decay epochs 160, 180
Decay rate 0.3
Sigma 0.03
Buffer size 10000
Reinit frequency 0.05
SGLD number of steps 40
SGLD learning rate 1.0
SGLD std 0.01

Table 3.1. Common hyper-parameters used for JEM classification experiments.

that constrains and regulates the divergence. At the end, we present the potential of
JEM for the task of semi-supervised classification.

3.2.1. Divergence

As shown in Table 3.2, divergence was found using the default configuration of the
model with both datasets. For the EuroSAT dataset, it happens very early in training,
whilst CIFAR-10 completes around five times more epochs. We believe the complexity
of remote sensing data accentuates the sensibility of the model to diverge because it has
more varied and abstract features as compared to natural images that are object-centric
and contain more regular shapes and patterns. Since the focus of our work is in EO, in
the following experiments we mainly present the results on the EuroSAT dataset.

Dataset Completed epochs Completed epochs (%)

CIFAR-10 51 25.5%
EuroSat 10 5%

Table 3.2. Completed epochs for JEM classification with different datasets.

When inspecting the values of the total loss and the individual contribution of its

23



CHAPTER 3. JOINT ENERGY-BASED MODELS FOR IMAGE CLASSIFICATION

two terms across training time, we corroborated that it’s the unbounded formulation
of the generation loss term the one that causes the divergence, as can be seen in Fig.
3.4 where its contribution corresponds to at least five orders of magnitude of the total
loss in the last iteration. Also, when the behavior in the generation process causes
the divergence it can be seen how also the classification process starts to get affected,
eventually, both process collapses so the complete training process fails.

Figure 3.4. Loss contributions across training in JEM for classification. 1

Investigating the role of the energy function and its behavior during training, we
noticed that three types of trend in the energy values can be observed (Fig. 3.5): jitter in
the beginning, stability for some time, and an abrupt growth towards the end. The first
behavior can be interpreted as the model beginning to learn features and adapting its
weights, the stability occurs when the model has found some major set of parameters
to optimize, and the sudden rise when the model falls into a local minimum and causes
the divergence.

Analyzing the divergence behavior, intuitively one could formulate that it’s possible
to avoid the divergence by detection during training of those occasions where the
model might be heading towards divergence and before that happens, load a previous

1We use the function symlog from the Python matplotlib library for representation purposes. It’s designed
for plots to create a logarithmic scale that is symmetrical around zero.
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Figure 3.5. Energy values across training in JEM for classification. 1

state of the model and restart the training from that point with different random
settings in order to elude the bad local minimum. In the following subsection, we test a
pre-emptive approach that explores this idea with the goal of alleviating the need for
human intervention to resume training once the model diverges.

3.2.1.1. Detection and restart

Detection. In the training process we use two statistical measures as indicators of the
propensity of the model to divergence: rolling standard deviation and the number
of Interquartile Range (IQR) outliers. The rolling standard deviation of the absolute
energy value differences between training and generated samples can detect short-term
variations, thus coping for the volatile characteristic of the divergence. On the other
hand, since the training samples won’t change during training, we expected their
energy values will remain constant. So an outlier in the energy values of training
samples means the optimization of the generative process is starting to deviate from
the constant range and assigning values out of the expected proportion. The energy
value of training samples is directly related to the generation branch loss. Once it starts
to exponentially increase, so does the loss until the model diverge.

We then oversee the training using thresholds, one for the rolling standard deviation
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αRSD and the other for the number of outliers αOTL. We found empirical values based on
detailed observation of divergence cases, specifically the behavior in the corresponding
statistical measures. The thresholds are set by finding inflection points over the trends,
as shown in Fig. 3.6, 3.7 we see for both the rolling standard deviation and outliers this
happens around iteration 35.

Figure 3.6. Rolling standard deviation of energy values difference in training iterations
close to divergence.

Since the goal of detection is to anticipate the divergence, we set the thresholds
according to the values in a few iterations before the inflection points. A characteristic
of the divergence is how instantaneously it happens, thus to set the thresholds is a
critical step since the difference of energy values between contiguous iterations can be
immense (e.g. the last two iterations in Fig. 3.5 have energy values with a difference in
nine orders of magnitude).The finally chosen thresholds are listed in Table 3.3.

Threshold Value

Rolling standard deviation αRSD 0.3
Number of outliers αOTL 15

Table 3.3. Thresholds for divergence detection.
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Figure 3.7. Number of Interquartile Range outliers for training samples in training
iterations close to divergence.

Restart. We identified three factors that influence the viability of the method to find
and load a model from a previous state that is capable of continuing with the training,
namely: the size of the jump, replay buffer, and random seed.

The replay buffer and random seed are related to the behavior in the sample genera-
tion process. We found that by loading the saved replay buffer from the same previous
iteration as the model results more beneficial than restarting the training with an empty
buffer. Also, since the generation process includes some stochastic steps, we found that
is more beneficial to set a new random seed when restarting the training.

The main idea of this step is to restart training with a saved model. For this,
it’s imperative to save several states of the model during training. A checkpoint
encapsulates the state of a system at a given time. The system we refer to in this section
consists of the learning model that consists of the implemented Wide-ResNet object,
the optimizer that is the implemented Adaptive Moment Estimation (Adam) object,
and the replay buffer which is an array that contains the generated samples. To save a
checkpoint we use a state-dictionary PyTorch object.

The frequency of saving and amount of checkpoints depends mainly on the available
memory resources. Let γ be the size of training data and η the batch size, an epoch
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is completed when the model has been trained with the complete training set and
the number of iterations needed is determined by γ/η. If the amount of memory is
unlimited or vast, a checkpoint could be saved every iteration, a more realistic scenario
is to save a fixed amount of l checkpoints every k iterations so balancing the usage of
memory and having enough dispersed checkpoints. An idea for better administration
of memory resources is to overwrite the saved checkpoints once a limit is reached. In
our experimental settings, we have training size γ = 21, 600 and batch size η = 64,
thus approximately 340 iterations in one epoch; we consider that with l = 10 saved
checkpoints every k = 20 iterations, two-thirds of an epoch will be covered and won’t
represent a burden to the memory capacity. By testing different jump size values (see
Table 3.4) we found that loading a model with a minimum of 30 iterations back is
needed to enable the training to restart and continue for more epochs.

Jump size
Completed epochs

after training restarted
Replay buffer

30
> 10 Previous state
< 1 Random initialized

50
> 10 Previous state
< 1 Random initialized

70
< 1 Previous state
< 1 Random initialized

100
> 10 Previous state
< 1 Random initialized

Table 3.4. Number of completed epochs after restart of training with different jump
sizes and replay buffers.

This whole process is summarized in Algorithm 1.

Altogether we demonstrated that real-time tracking and pre-emptive detection of
divergence is possible. However, restarting training with a state from previous iterations
doesn’t produce any improvements in the accuracy of the model, specifically, we
corroborated that it remained roughly constant in later epochs (see Fig. 3.8, 3.9). It
might be the case that by the moment the first divergence warning is activated the
model is already biased and headed toward a local minimum in the energy function and
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Algorithm 1 Pre-emptive detection of divergence and restart of training

αRSD ← 0.3
αOTL ← 15
jump_size← 30
ω ← 10 ▷ window size for the rolling standard deviation

current_rstd← RollingStd(|x− x′|, ω)

num_outliers← ∑x IQR_Outlier(x)
if (current_rstd ≥ αRSD) & (num_outliers ≥ αOTL) then

Divergence warning!
previous_replay_bu f f er ← LoadBu f f er(jump_size)
previous_optimizer ← LoadOptimizer(jump_size)
previous_model ← LoadModel(jump_size)
RestartTraining(previous_replay_bu f f er, previous_optimizer, previous_model)

end if

frequent divergence happens in the consequent epochs after this, for this reason, the
majority of experiments couldn’t complete more than 1 epoch after restart of training
(see Table 3.4). So, adding a gradient threshold to detect the possible divergence earlier
in training, when the model isn’t biased yet, could be a potential improvement to the
method. Nevertheless, repeatedly loading previous models with adjustment to random
factors isn’t a reliable approach to handle the divergence, thus the need to address it
from the theoretical perspective with regularization.
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Figure 3.8. Classification accuracy across training for divergence detection and restart.

Figure 3.9. Total loss across training for divergence detection and restart.

3.2.2. Regularization

In this section, we test three regularization terms via experiments. Overall the regular-
ization proved to be effective in enabling the model to train for more epochs compared
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to the experiment without regularization (see Table 3.5). By setting the constraint to
the energy values of samples used for training, the results show improvement in the
number of completed epochs, whereas when the constraint is applied to the generated
samples the divergence still occurs before reaching the 200 epochs set. The range of
energy values for the generated samples is expected to fluctuate over time since the
weights of the model will also be changing over time, hence trying to apply a boundary,
to this range already unbounded by essence, won’t result in the desired adjustment of
the total loss. The contrary happens for the samples used in training, since these all
belong to real images from satellites, it’s expected that despite the difference between
classes, the energy values assigned to them will be bounded by the reality or the
physical characteristics of its top-level category. Also, the regularization for energy
gradients of training samples enabled the model to be trained more epochs but didn’t
completely avoid the divergence in the 200 epochs set. We see in Fig. 3.5 that divergence
happens rapidly during very few iterations, at some point the value in the gradients
might be already too high such that its norm surpasses the threshold and thus fail to
fully prevent the divergence.

Regularization
Completed

epochs Best classification
accuracy (validation)

Weight Type # %

0.2
Energy of training samples REGr 200 100% 95.16%
Energy of generated samples REGu 155 77.5% 63.42%
∇Energy of training samples REGg 188 59% 89.82%

Table 3.5. L2 regularization on energy values of training and generated samples and on
energy gradients of training samples.

From the regularization types we tested, we found that all of them successfully allows
the model to train more epochs but with different implications. We see in Table 3.6 that
regularization on energy gradients is computationally more expensive as the estimation
alone of gradients represents an increase of 110 seconds in training time.

Furthermore, we faced the importance of constraining the loss function but keeping
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Regularization
type

Enables more
training epochs

Complete
training

Average time
per epoch (seconds)

Energy of training samples REGr

✓

✓ 288
Energy of generated samples REGu

✗
289

∇Energy of training samples REGg 398

Table 3.6. Regularization types implications.

the original formulation. In early attempts to solve the divergence, we disregarded the
double optimization problem and formulated intuitively an approach to impose the
absolute value operator to the energy values difference in (3.3) so the generation branch
could be optimized by minimizing the difference itself to values close to zero and
thus ignoring the sign. With this approach, we managed to train the model for more
epochs (see Table 3.7), however, the similarity of generated samples to training samples
got severely affected (see Fig. 3.10), so we manually interrupted the training as we
detected this isn’t a reliable approach. Actually, in this case, the discriminative process
in the generation branch is removed to some extent. So only the classification branch
is trained. That’s why we can achieve higher classification accuracy yet very badly
generated samples. Proving that the formulation of the dual optimization problem
must be preserved, so reliable approaches are like the regularization that just adds a
penalty term to the original loss formulation.

Trained epochs
(before manual interruption)

Best classification
accuracy (validation)

45 94.84%

Table 3.7. Classification accuracy with absolute value operator in generation branch
loss.

3.2.3. Hyper-parameters

In this section we investigate the impacts of hyper-parameters in experiments. Table 3.8
shows the amount of completed training epochs for different learning rate values using
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Figure 3.10. Generated samples with absolute value operator in generation branch loss.

the same model and parameters. It can be seen that a smaller learning rate resulted in
an increase in epochs that led to better classification accuracy in the evaluation set. So,
proving to produce a more controlled optimization that can be beneficial to stabilize
the training but not enough to solve the divergence completely and complete the 200
epochs set.

Learning rate
Completed

epochs
Completed
epochs (%)

Best classification
accuracy (validation)

1× 10−4 10 5% 84%
1× 10−5 86 43% 88.6%

Table 3.8. Completed epochs for different learning rates.

We discovered that increasing the number of SGLD steps won’t produce remarkably
distinct results in the number of completed epochs, while taking considerably more
time to train (see Table 3.9). Also, the quality of the generated samples also doesn’t
differ much (see Fig. 3.11). Though, this value becomes relevant when testing the
capabilities of generating new samples of a trained model.

From the regularization types and hyper-parameters previously explained in detail,
we found that the best configuration and combination to successfully address the
divergence is: the learning rate of 1× 10−5, 40 SGLD steps and regularization on energy
values of training samples with 0.2 weight. A summary of the consolidated results is
presented in table 3.10.
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Number of
SGLD steps

Average time
per epoch (seconds)

Completed
epochs

Completed
epochs (%)

40 2310 10 5%
100 5080 9 4.5%

Table 3.9. Completed epochs and average time per epoch for different number of SGLD
steps.

Figure 3.11. Generated samples for different number of SGLD steps.

3.2.4. Semi-supervised classification

The work presented in [79] explores the characteristics of JEM using datasets of natural
images. We reproduced the published code with the specified configurations and the
same dataset (CIFAR-10). We got comparable results with those in [79] for the task of
image classification on natural images. After the model converged to acceptable results,
the training was halted as the model diverged in the 51st epoch (as shown in Table 3.11).
Since our focus was on remote sensing data, we considered this experiment as just a
learning opportunity to get used to the implementation and characteristics of the model.

Complementary results can be found in appendix A, including classification accuracy
across training A.1, total loss across training A.2 and generated samples across training
A.3.

34



3.2. EXPERIMENTS

Learning
rate

Regularization
Completed

epochs Best classification
accuracy (validation)

Type Weight # %

1× 10−4 Energy of training samples
0 10 5% 84%
0.5 7 3.5% 54%
1 6 3% 40%

1× 10−5

Energy of training samples

0 86 43% 88.6%
0.2 200 100% 95.16%
0.5 31 15.5% 66.8%
0.75 30 15% 63%

Energy of generated samples 0.2 155 77.5% 63.42%
∇Energy of training samples 0.2 118 59% 89.82%

Table 3.10. Completed epochs for different hyper-parameters and regularizations.

Completed epochs Mean accuracy

51 90.3%

Table 3.11. CIFAR-10 classification accuracy.

After some adjustments of the existing implementation to match the specifications
of the remote sensing dataset and finding a configuration for stable training, we
got comparable results to those in [6] for the task of image classification. For our
experiments, we used the image size of 32 pixels, we consider that by using half of
the size with respect to [6] part of the information is lost, therefore some difference
in the results is expected. Moreover, this adds to the mentioned challenge of JEM
where the time of the sampling method is directly related to the image size [6], a
possible investigation in the ratio between information loss and training time could be
conducted to find an optimal configuration.

Completed epochs Mean accuracy

200 95.16%

Table 3.12. EuroSat classification accuracy.
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Complementary results can be found in appendix A, including classification accuracy
across training A.4, total loss across training A.5, generated samples across training A.6
and classification confusion matrix A.7.

Also, we tested the performance of JEM in the view of its potential for semi-
supervised learning by comparing the uncertainty associated with the predictions
of different experiments: 100% of labeled data, 80% of labeled data, and 20% of labeled
data. For this we used model calibration, which is a figure of merit of a model apart
from classification scores, it indicates how informative a model can be regarding the
uncertainty associated with the predictions. A perfectly calibrated model matches
exactly the confidence of its output with the expected accuracy (represented by dashed
lines in Fig. 3.12). The Expected Calibration Error (ECE) [54] is a metric that allows us
to quantify this calibration information and compare different models, defined as:

ECE = ∑
n
N
∗ |acc(e)− con f (e)|, (3.9)

where for a given bin e, n is the number of samples in e, N is the total number of
samples, acc(e) is the accuracy of the model on the samples in e and con f (e) is the
average confidence of the model on the samples in e.

The lower the ECE the better calibration is, meaning that the confidence of the
model output is closer to the expected accuracy. We can see in Fig. 3.12 that JEM
semi-supervised models are robust since the calibration is close to the ideal case, even
accentuated with fewer available labels in the experiments having lower ECE values
while still being able to support the classification process (see Table 3.13). Although, the
JEM semi-supervised models didn’t reach the classification accuracy of the supervised
models, we consider the truly potential can be exploited in extreme labeling scenarios
(<5% labels). Nevertheless, in Table 3.13 and Fig. 3.12 we can also see how the definition
of JEM and the relation between its two branches results in better-calibrated models
in comparison with supervised classifier models, proving the benefit of JEM for semi-
supervised classification.
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Figure 3.12. EuroSat supervised and semi-supervised classification models calibration.

Mode (% labels) Configuration Mean accuracy ECE

Supervised (100% labels)
JEM 95.16% 1.08%
Classification 94.86% 3.37%

Semi-supervised (80% labels)
JEM 94.06% 0.71%
Classification 94.42% 4.10%

Semi-supervised (20% labels)
JEM 80.76% 0.91%
Classification 81.02% 15.05%

Table 3.13. EuroSat supervised vs semi-supervised classification accuracy and ECE.





4. Joint Energy-based Models for Image
Segmentation

"Without assumptions, there can be no progress."
-Stephen Hawking-

In this chapter, we present the assumptions and formulation of the image segmentation
problem, also the derivations and changes in the architecture needed to extend from
image classification. We test the design with different architectures and comment on
the effects on model training and results.

4.1. Methodology

4.1.1. Differences between segmentation and classification

Image segmentation corresponds to the task of assigning a semantic label to each pixel
in an image [76] fθ : RW×H×D → RW×H, with D input dimensions, W pixels width, H
pixels height. Different from classification where a single label is assigned to the whole
image fθ : RW×H×D → R. As shown in Fig. 4.1 and Fig. 4.2.

For the task of classification, the proposed architecture in [18] is a Wide-ResNet-28-10,
which is a wide deep residual network mainly consisting of a residual block that acts
as an encoder where the networks learn the most important input information in the
so-called residual functions.

Neural networks designed for segmentation essentially follow an encoder-decoder
architecture, where the decoder transforms the latent representation (formed by the
encoder) back into the original input space. This process of reconstruction usually
depends on a gradual increase in dimensions. In our work, we used U-Net, which
is a convolutional network architecture designed specifically for image segmentation
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Figure 4.1. Encoder architecture for classification.

tasks. The extension of the architecture and its composition can be seen in the following
figure.

Figure 4.2. Encoder-decoder architecture for segmentation.

In JEM the formulation of the energy function is set for classification problems, where
the logits are 1-dimensional because of the encoder architecture it uses. As we stated at
the beginning of this section, in segmentation problems we have 2 more dimensions, so
we can’t use directly the formulation of JEM for it. In the following section, we present
then the needed assumptions and derivations to adapt JEM for segmentation.

4.1.2. JEM for segmentation

In the classification architecture mentioned above, the encoder produces a 1×K-
dimensional output z⃗ = fθ(x) = [z1, ..., zk], commonly called logits, that represents
the unnormalized predicted values (that after normalization results in probabilities)
of the input image for each class ki. The formulation of the energy function in JEM
(2.5) uses the Softmax function on the logits to transform the joint distribution pθ(x, y)
to the unmoralized density pθ(x) by marginalizing out y, in all these formulations
the dimension of the logits RK enables the energy function to produce a single scalar
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value for the entire input x as its definition states. The encoder-decoder adaption for
segmentation produces logits as a W × H × K-dimensional vector:

z⃗ = fθ(x) =


{w1, h1, z1} ... {wi, h1, z1}

... ... ...
{w1, hj, z1} ... {wi, hj, z1}

 , ...,

{w1, h1, zk} ... {wi, h1, zk}
... ... ...

{w1, hj, zk} ... {wi, hj, zk}


 ,

(4.1)
so the formulation of the energy function needs to be adapted to handle the extra
dimensions. First, for simplicity in the equations, let N be the dimension that represents
the entire pixel space (W × H) of a single input x and fθ(x)n[yn] the single logit that
corresponds to the yth, y ≤ K class and nth, n ≤ N pixel. In order to congregate the
information of each pixel to represent the whole image, we rely on the assumption
that pixels are independent of each other and so the probabilities can be multiplied,
subsequently, the formulation of the categorical distribution pθ(y|x) results in:

pθ(Y|X) = ∏
n

pθ(Yn|X) = ∏
n

exp( fθ(X)n[Yn])

∑Y′ exp( fθ(X)n[Y′])
=

exp(∑n fθ(X)n[Yn])

∏n ∑Y′ exp( fθ(X)n[Y′])
. (4.2)

Then the proposed energy based model of the joint distribution pθ(X, Y) can be
expressed as:

pθ(X, Y) = ∏n exp( fθ(X)n[Yn])

Z(θ)
=

exp(∑n fθ(X)n[Yn])

Z(θ)
, (4.3)

and by marginalizing out Y with ∑Y pθ(X, Y), the unnormalized density p(X) as:

pθ(X) =
∏n ∑Y exp( fθ(X)n[Y])

Z(θ)
, (4.4)

where Z(θ) is the normalizing constant as in (2.2).

Moreover, resulting in the re-use of the logits in the energy function definition for
segmentation:

Eθ(X) = −log ∏
n

∑
Y

exp( fθ(X)n[Y]), (4.5)

from where samples are generated.

Similar to the classification task in JEM, the training of the fθ is proposed to find the
appropriate optimization of the involved distributions by maximizing the likelihood of
the joint distribution log pθ(X, Y) = log pθ(X) + log pθ(Y|X), where the term log pθ(X)

can be optimized using SGLD (2.4) enabling the generation of fake samples. In the
classification task the term log pθ(Y|X) is usually optimized using cross-entropy, in our
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work we present the results of adding dice loss to it. For segmentation tasks, where the
predictions are dense label maps at pixel level, the dice coefficient is defined as:

Dice(Y, Ŷ) = 2 · ∑(Ŷ ·Y)
∑ Ŷ2 + ∑ Y2 + ϵ

, (4.6)

measures the overlap between predicted Ŷ and ground truth Y label maps and thus
motivates the model to produce segmentation maps with high similarity. Here, ϵ is a
small constant value that ensures numerical stability by avoiding division by zero.

Extending the definition of (3.2) to:

LCLA = CrossEntropy(Y, Ŷ) + Dice(Y, Ŷ) (4.7)

Resulting in the following proposed architecture of JEM for segmentation:

Figure 4.3. JEM for segmentation overview.

4.2. Experiments

Datasets. The AutoGeoLabel NYC Dataset [1] consists of 7,140 color images of size
256x256 pixels and pixel-labeled maps with values divided into 3 classes (vegetation,
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buildings, and bare land) belonging to New York City. For the experiments, we used a
split of 85% for training and 15% for test and validation.

Implementation specifics. Mainly based in [18] and other published architectures
[23], with the following common main parameters in the experiments: 200 epochs,
Adam optimizer [34] and no batch normalization, and using pixel-wise accuracy as
evaluation metric. All the remaining values of the parameters used in the default
configuration of the model can be found in Table 4.1. The Pytorch [56] open-source
framework is used for all implementations.

Parameter Value

Learning rate 1× 10−4

Batch size 16
Number of channels 3
Number of classes 3
Decay epochs 160, 180
Decay rate 0.3
Sigma 0.03
Buffer size 3000
Reinit frequency 0.05
SGLD number of steps 20
SGLD learning rate 1.0
SGLD std 0.01

Table 4.1. Common hyper-parameters used for JEM segmentation experiments.

In the following, we present the results of the JEM adaptation to segmentation. In
the first experiments, we detected some limitations in the performance of the model, so
in the second section, we analyze the individual behavior of the two branches and find
a configuration that boosts the learning to some extent. We also encounter divergence,
so at the end, we present the differences in the behavior of the energy values compared
with the classification task and how this affects our attempts of regularization.

Following the encoder presented in [18] and extending the architecture by adding a
decoder, in our work we used a Wide-ResNet (encoder) + U-Net (decoder) and Vanilla
U-Net (encoder-decoder). From the changes in architecture and implementation with
respect to the classification experiments, we identify two main differences: the addition
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of a decoder to the architecture and the 8 times increase in image size in the training
samples.

To test the implementation of the needed adaptations for segmentation, we set an
experiment using all the training samples with the original size of the images and the
Vanilla U-Net architecture, after several epochs we stopped the training as we noticed
the training loss was constantly increasing over time, the validation accuracy was
considerably low and fluctuating, and the quality of generated samples was far from
looking alike remote sensing images. We decreased the complexity of the experiment
and set the image size to half of the original (128x128 pixels) and one-quarter of it (64x64
pixels), unfortunately, the training behavior didn’t improve much in these experiments
(see Fig 4.4).

Architecture
Training size

(samples)
Validation size

(samples)
Sample size

(pixels)
Best segmentation

accuracy (validation)

Vanilla U-Net 6,000 1,140
256x256 29.67%
128x128 55.94%
64x64 56.62%

Table 4.2. Segmentation results with U-Net and different sample sizes.

Figure 4.4. Vanilla U-Net segmentation experiment with 128x128 pixels image size.

In order to determine what is causing the undesired training behavior, we analyzed
in detail the behavior of the segmentation and generation branch when operating
individually, and present the results in the following section.
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4.2.1. Individual branches analysis

Segmentation branch. The U-Net is widely used in segmentation and proven to
work with various datasets. In order to check the performance of each branch, here
we set experiments with JEM but only using the segmentation branch with 6,000
training samples and 1,140 validation samples. We corroborated that the used network
predicts segmentation maps with acceptable accuracy and similarity (see Fig. 4.5), so
the segmentation branch alone performs well with the adaptations and our dataset.
Moreover, to determine a balance between information loss and reduced training time,
in Table 4.3 we see that the decrease in sample size by a factor of 4 reduces the time
by 43 seconds and the accuracy by 4.84% and a factor or 2 reduces the time by 33
seconds and the accuracy by 1.76%, so we consider that the image size of 128x128
pixels produces enough reduction in the training time while having a considerably
small decrement in accuracy, being the best balance for this reduced experiment and
can serve as an indicator for the general behavior of the segmentation branch. Then,
for the following experiments we used 128x128 pixels as the minimum image size to
reduce the complexity of the training while preserving enough spatial information.

Sample size (pixels)
Average time

per epoch (seconds)
Best segmentation

accuracy (validation)

64x64 11 83.83%
128x128 21 86.91%
256x256 54 88.67%

Table 4.3. Segmentation branch results with Vanilla U-Net and different sample sizes.

Also, with the preliminary segmentation maps results in the experiments with the
segmentation branch alone, we noticed that the predicted maps were accurate in
establishing the structures and shapes of the input, but need some improvement to
assign correctly the class to the objects. Thus, we added to the segmentation loss the
Dice metric and got a slight improvement in the average accuracy (see Table 4.4) and
more similarity in the produced segmentation maps as seen in Fig. 4.6.

Generation branch. To test the implications of the network adaptations in the energy
function and the generative process, we set experiments with JEM but only using
the generation branch. We noticed that Vanilla U-Net for the segmentation task has
limitations in the generation process as the quality of the generated samples was far
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Figure 4.5. Segmentation prediction maps with different sample sizes.

Sample size (pixels) Segmentation Loss
Best segmentation

accuracy (validation)

64x64
Cross-Entropy 83.83%
Cross-Entropy + Dice 84.40%

128x128
Cross-Entropy 86.91%
Cross-Entropy + Dice 87.05%

256x256
Cross-Entropy 88.67%
Cross-Entropy + Dice 88.72%

Table 4.4. Segmentation branch results with different loss metrics.

from optimal. The generated samples didn’t look like remote sensing images but like
random noise instead (see 4.4). As we already mentioned, the architecture for the
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Figure 4.6. Segmentation prediction maps with different loss metrics.

segmentation task is composed of an encoder and a decoder, where the extraction of
features is carried out by the encoder. So first, we tested the capability of the different
encoders in Table 4.5 for the generative process to assess the capabilities of the networks
to extract meaningful features from our dataset. Notice that here we test all encoders
in a classification fashion, that is, no decoder is used. All encoders are based on CNNs
architecture. Wide-ResNet is an extension of the ResNet architecture where the encoder
consists of multiple Residual Blocks, the difference being Wide-ResNet uses more filters
in each block. Whereas the U-Net encoder consists of a series of convolutional and
max-pooling layers.

Encoder

U-Net
Wide-ResNet
ResNet18
ResNet34
ResNet50

Table 4.5. Encoders for image segmentation.
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We set experiments with the minimum complexity, using only 1 training sample to
identify the effectiveness in recovering relevant information and producing high-quality
samples that look close to the input, the results are presented in 4.6. We determined
that the Wide-ResNet encoder was the best architecture for the generation branch alone.
The U-Net and ResNet encoders perform a few more down-sampling operations in
comparison to Wide-ResNet, so more spatial information is lost which is harmful for
image reconstruction, thus Wide-ResNet has an advantage in this sense. Also, we found
that the fine-tuning of the learning rate hyper-parameter is of great importance for this
branch since it directly affects the convergence of the model and varies for each of the
tested architectures.

Training
sample

Encoder
Learning

rate
Generated

sample

ResNet18/34/50

1× 10−2

1× 10−3

1× 10−4

1× 10−5

U-Net

1× 10−3

1× 10−4

1× 10−5

Wide-ResNet

1× 10−3

1× 10−4

Table 4.6. Generation branch results with different encoders and learning rates.
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As the focus of this chapter is on the task of image segmentation, with the observa-
tions from the encoder experiments, we tested again the performance of the generative
process using the segmentation architecture Wide-ResNet (encoder) + U-Net (decoder).
We see in Fig. 4.7 that the capabilities of the generative branch are still limited, as the
appearance of the generated samples is not yet close to the expected remote sensing
look. Although this architecture shows some improvement in the generation capabilities
compared with the Vanilla U-Net, we consider that this branch limitation influences the
overall performance of the model in the image segmentation task. In the derivations to
adapt from classification to segmentation we part from the given assumption that there
is no spatial autocorrelation between the pixels, with our experiments we consider this
assumption might be too strong for EO data where neighboring pixels definitely show
to be autocorrelated.

Figure 4.7. Generated samples with Wide-ResNet + U-Net.

4.2.2. Hyper-parameters

After the experiments from the individual operation of the branches and given the
unstable character of the first experiments with the combined branches, we experi-
mented with fine-tuning the hyper-parameters. Specifically: the learning rate and
buffer size, for these experiments we used the best configuration from the individual
branch experiments: Wide-ResNet (encoder) with a sample size of 128x128 pixels, 10
samples for training and 5 samples for validation, and adding the Dice metric to the
segmentation branch loss.

In the experiments with the generation branch alone, we found that the network
architecture is sensible to the learning rate, for the Wide-ResNet using 1× 10−4 got
the best results, so it became the default value of our experiments. In the classification
experiments (Table 3.8 decreasing the value to 1× 10−5 resulted in a more controlled
learning process and thus an increase in the accuracy; in the segmentation experiments
decreasing the learning rate also resulted in a more controlled learning process but,

49



CHAPTER 4. JOINT ENERGY-BASED MODELS FOR IMAGE SEGMENTATION

even with several more epochs, it never reached neither surpassed the results of the
experiment that uses the default learning rate value. We consider that in a more
complex task, such as segmentation, inspecting the individual behavior of the branches
is key to finding the best learning rate value for the architecture in use.

The iterative process of SGLD uses a buffer to store the generated samples, and in its
initialization, random samples are produced using a uniform distribution with values
between [−1, 1] and samples from the buffer. The lower the buffer size, the higher the
probability of using generated samples from recent SGLD iterations in the random
initialization, we can see in Table 4.7 that -independent of the learning rate- the minor
buffer sizes have the highest accuracy, as the iterative generation process benefits when
it’s initialized with the uniform distribution and more realistic samples. In addition,
this hyper-parameter depends also on the size of the training set, so it is important
to experiment and inspect the generation branch to find the value that produces the
best results. From the hyper-parameters experiments, we found the best combination
for our experimental configuration is to use a learning rate of 1× 10−4 and buffer size
3,000 for more stable training but without improvement in the average accuracy.

Learning rate Buffer size
Best segmentation

accuracy (validation)

1× 10−4

3,000 67.88%
6,000 59.48%
9,000 39.25%
30,000 38.26%
60,000 38.37%

1× 10−5 3,000 39.02%
6,000 38.86%

Table 4.7. Segmentation results with Wide-ResNet + U-Net, different learning rates,
and buffer sizes.

Once we found a stable combination of architecture and hyper-parameters, we
tested the learning capabilities of the model considering different levels of information
complexity. For this, we performed a new series of experiments using the complete
JEM (both branches in operation) with different sizes for training and validation sets.
Despite the average improvement of 10% in the best validation accuracy compared
with the initial experiment where Vanilla U-Net was used (Table 4.2), the model didn’t
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reach satisfactory results, as it can be seen in Fig. 4.8 the predictions represent some
of the big features but the model clearly needs further training especially for the finer
spatial features. In general, we observed that the dual optimization process might
carry enough complexity in the training, as the complete configuration (both branches)
couldn’t match the individual branch performance. More robust pixels aggregations
for the energy function formulation are needed to improve the model and amplify the
capabilities of JEM for segmentation.

Architecture
Sample size

(pixels)
Training size

(samples)
Validation size

(samples)
Best segmentation

accuracy (validation)

Wide-ResNet
+
U-Net

128x128
10 5 67.88%
80 20 62.43%
2,000 20 47.50%

Table 4.8. Segmentation results with Wide-ResNet + U-Net and different sizes for
training and validation sets.

Figure 4.8. Segmentation prediction maps with Wide-ResNet + U-Net.

51



CHAPTER 4. JOINT ENERGY-BASED MODELS FOR IMAGE SEGMENTATION

4.2.3. Divergence

In the segmentation experiments, we also faced divergence, unfortunately, the regular-
ization techniques we used in the classification experiments to alleviate the complexity
of the dual optimization problem didn’t work for the given configuration. Inspecting
the formulation of the energy function and compared with the one in classification,
the 2 additional dimensions in the logits impose a substantial increase in the whole
magnitude of the energy values. Consider now that every pixel in the image is aggre-
gated to have a single scalar energy value for the entire sample, thus for the 128x128
image size, we have around 16,000 values to aggregate and so the energy values of
segmentation images are in general 4 orders of magnitude bigger than the energy values
of classification, as we can see in Fig. 4.9. When applying the L2 regularization, the
energy value is squared, so the order of magnitude is consequently quadratic increased
which leads to immediately surprising the divergence threshold. In this case, more
powerful regularization is required.

Figure 4.9. Energy values for segmentation and classification. 1

1We use the function symlog from the Python matplotlib library for representation purposes. It’s designed
for plots to create a logarithmic scale that is symmetrical around zero.
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"...Success is not final, failure is not fatal: It is the courage to continue that
counts."

-Winston Churchill-

5.1. Conclusions

In this work, we focus on the behavior of JEM and specifically on applications to EO
data. From the formulation of the loss optimization and energy function in JEM, we
established that the generation process represents the most significant contributor to
the instability of the training. The unbounded contribution of the generation loss
skews the model towards divergence where no more meaningful learning is possible.
Although some works [18, 79] mention the empirical adjustment of hyper-parameters to
postpone the divergence, we present in our work the connection between the definition
of learning rate and the number of SGLD steps and the concept of divergence to
demonstrate such approaches don’t offer a reliable procedure to avoid divergence,
since it is not based on the theory of it but depends on experimental experience. A
known drawback of the divergence is the need for human intervention to reinstate
the training. Following it, we utilize an empirical method for pre-emptive detection
of divergence and conclude that restarting the training with a previous state of the
model isn’t enough to avoid the divergence. So knowing the rationale behind the
divergence, we formulate regularization terms as naturally suited approaches to bound
the generation loss that successfully regulates the training behavior while keeping
the basis of the JEM formulation. From the point of view of the energy function
landscape, we found an intuitive explanation for the potential of regularization is the
easement of the competition in the dual optimization problem. We discovered that
applying the regularization to the energy values of training samples is a more beneficial
approach, as the sample generation process induces many stochastic steps so the
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energy values would be naturally volatile across training. We found a configuration of
regularization and hyper-parameters that are suited for the classification task on remote
sensing images, reaching comparable results with works [6] on the EuroSAT dataset
and confirming the big potential for WSL as JEM models trained in a semi-supervised
fashion resulted better calibrated than a full supervised model.

When transitioning from an image classification task to an image segmentation one
we found hindrances in the model, mainly related to the complexity added by the
additional two dimensions in the feature space and the assumption to aggregate the
pixels. In the implications analysis of adapting a deep neural network classification
architecture to a segmentation one, we discovered the segmentation branch alone with
the Vanilla U-Net architecture performs adequately, also we increased the average
accuracy and similarity of predicted segmentation maps by extending the formulation
of the segmentation loss with the Dice term; whereas the generation branch is restricted
in the quality of fake samples with closest remote-sensing-like aspect using a Wide-
ResNet encoder. We sum up the model’s limitations to the validity of the assumption
we did in the theoretical derivations from classification to segmentation where we
assumed the pixels to be independent, especially in remote sensing images where
spatial autocorrelation is a common characteristic.

With this work, we contribute to the understanding of JEM giving insights into the
divergence problem. Also, we continue the work in the open research questions of
reliable training for EBM and opportunities of JEM for segmentation. We consider this
work to be relevant as advances in image processing of remote sensing data are of big
importance in the field of EO.

5.2. Future lines

One of the biggest open challenges in JEM is the instability of the training, so explo-
ration in further regularization terms can be beneficial to increase the effectiveness
in alleviating the divergence. Another implication of the training instability is the
constant need for human intervention. Thus, further investigation into methods like
the detection and restart we present, can provide robust ways to detect divergence in
advance and avoid it. Especially, big improvements can be done in the restart of the
training, where studies from a theoretical perspective of model training can establish a
robust technique to load a model that isn’t yet biased and can continue learning.
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While JEM have been proven to work for classification on different remote sensing
datasets, more comprehensive approaches to extend for segmentation are of interest for
applications like detailed land cover and land use and change detection. Specifically, a
potential way is to investigate statistically robust definitions to aggregate the energy
values of all pixels into a single representative singular value of the image, for instance
including measures of spatial autocorrelation like imposing Markov Random Field
(MRF) on the energy value aggregation process. Also, improvements in the generation
process to control the feedback sensibility in the network to bad-looking samples are
an interesting area to explore because of the potential to regulate the general learning
process and prevent divergence.
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Acronyms

CNNs Convolutional Neural Networks.

DL Deep Learning.

DNNs Deep Neural Networks.

EBM Energy-based Models.

EO Earth Observation.

GANs Generative Adversarial Networks.

JEM Joint Energy-based Models.

MCMC Markov chain Monte Carlo.

SGLD Stochastic Gradient Langevin Dynamics.

SSL Semi-supervised Learning.

SVMs Support Vector Machines.

VAEs Variational Autoencoders.

WSL Weakly-supervised Learning.
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A. Appendix

JEM for classification complementary results

Figure A.1. CIFAR-10 classification accuracy across training.
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Figure A.2. CIFAR-10 total classification loss across training.

Figure A.3. CIFAR-10 generated samples across training.



Figure A.4. EuroSat classification accuracy across training.

Figure A.5. EuroSat total classification loss across training.



Figure A.6. EuroSat generated samples across training.

Figure A.7. EuroSat classification confusion matrix.
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