589 research outputs found

    Test signal generation for analog circuits

    Get PDF
    In this paper a new test signal generation approach for general analog circuits based on the variational calculus and modern control theory methods is presented. The computed transient test signals also called test stimuli are optimal with respect to the detection of a given fault set by means of a predefined merit functional representing a fault detection criterion. The test signal generation problem of finding optimal test stimuli detecting all faults form the fault set is formulated as an optimal control problem. The solution of the optimal control problem representing the test stimuli is computed using an optimization procedure. The optimization procedure is based on the necessary conditions for optimality like the maximum principle of Pontryagin and adjoint circuit equations

    Modelling methods for testability analysis of analog integrated circuits based on pole-zero analysis

    Get PDF
    Testability analysis for analog circuits provides valuable information for designers and test engineers. Such information includes a number of testable and nontestable elements of a circuit, ambiguity groups, and nodes to be tested. This information is useful for solving the fault diagnosis problem. In order to verify the functionality of analog circuits, a large number of specifications have to be checked. However, checking all circuit specifications can result in prohibitive testing times on expensive automated test equipment. Therefore, the test engineer has to select a finite subset of specifications to be measured. This subset of specifications must result in reducing the test time and guaranteeing that no faulty chips are shipped. This research develops a novel methodology for testability analysis of linear analog circuits based on pole-zero analysis and on pole-zero sensitivity analysis. Based on this methodology, a new interpretation of ambiguity groups is provided relying on the circuit theory. The testability analysis methodology can be employed as a guideline for constructing fault diagnosis equations and for selecting the test nodes. We have also proposed an algorithm for selecting specifications that need to be measured. The element testability concept will be introduced. This concept provides the degree of difficulty in testing circuit elements. The value of the element testability can easily be obtained using the pole sensitivities. Then, specifications which need to be measured can be selected based on this concept. Consequently, the selected measurements can be utilized for reducing the test time without sacrificing the fault coverage and maximizing the information for fault diagnosis

    Remote Sensing of Cell-Culture Assays

    Get PDF
    This chapter describes a full system developed to perform the remote sensing of cell-culture experiments from any access point with internet connection. The proposed system allows the real-time monitoring of cell assays thanks to bioimpedance measurement circuits developed to count the number of cell present in a culture. Cell-culture characterization is performed through the measurement of the increasing bioimpedance parameter over time. The circuit implementation is based on the oscillation-based test (OBT) methodology. Bioimpedance of cell cultures is measured in terms of the oscillation parameters (frequency, amplitude, phase, etc.) and used as empirical markers to carry out an appropriate interpretation in terms of cell size identification, cell counting, cell growth, growth rhythm, etc. The device is capable of managing the whole sensing task and performs wireless communication through a Bluetooth module. Data are interpreted and displayed on a computer or a mobile phone through a web application. The system has its practical application in drug development processes, offering a label-free, high-throughput, and high-content screening method for cellular research, avoiding the classical end-point techniques and a significant workload and cost material reduction

    Methods for testing of analog circuits

    Get PDF
    Práce se zabývá metodami pro testování lineárních analogových obvodů v kmitočtové oblasti. Cílem je navrhnout efektivní metody pro automatické generování testovacího plánu. Snížením počtu měření a výpočetní náročnosti lze výrazně snížit náklady za testování. Práce se zabývá multifrekveční parametrickou poruchovou analýzou, která byla plně implementována do programu Matlab. Vhodnou volbou testovacích kmitočtů lze potlačit chyby měření a chyby způsobené výrobními tolerancemi obvodových prvků. Navržené metody pro optimální volbu kmitočtů byly statisticky ověřeny metodou MonteCarlo. Pro zvýšení přesnosti a snížení výpočetní náročnosti poruchové analýzy byly vyvinuty postupy založené na metodě nejmenších čtverců a přibližné symbolické analýze.The thesis deals with methods for testing of linear analog circuits in the frequency domain. The goal is to develop new efficient methods for automatic test plan generation. To reduce test costs a minimum number of measurements as well as less computational demands are the fundamental aims. The thesis is focused on the multi-frequency parametric fault diagnosis which was fully implemented in the Matlab program. The fundamental problem consists in selection of test frequencies which can reduce the influences of measurement errors and errors caused by tolerances of well-working components. The proposed methods for test frequency selection were statistically verified by the MonteCarlo method. To improve the accuracy and reduce the computational complexity of fault diagnosis, the methods based on least-square techniques and approximate symbolic analysis were presented.

    Circuit Design

    Get PDF
    Circuit Design = Science + Art! Designers need a skilled "gut feeling" about circuits and related analytical techniques, plus creativity, to solve all problems and to adhere to the specifications, the written and the unwritten ones. You must anticipate a large number of influences, like temperature effects, supply voltages changes, offset voltages, layout parasitics, and numerous kinds of technology variations to end up with a circuit that works. This is challenging for analog, custom-digital, mixed-signal or RF circuits, and often researching new design methods in relevant journals, conference proceedings and design tools unfortunately gives the impression that just a "wild bunch" of "advanced techniques" exist. On the other hand, state-of-the-art tools nowadays indeed offer a good cockpit to steer the design flow, which include clever statistical methods and optimization techniques.Actually, this almost presents a second breakthrough, like the introduction of circuit simulators 40 years ago! Users can now conveniently analyse all the problems (discover, quantify, verify), and even exploit them, for example for optimization purposes. Most designers are caught up on everyday problems, so we fit that "wild bunch" into a systematic approach for variation-aware design, a designer's field guide and more. That is where this book can help! Circuit Design: Anticipate, Analyze, Exploit Variations starts with best-practise manual methods and links them tightly to up-to-date automation algorithms. We provide many tractable examples and explain key techniques you have to know. We then enable you to select and setup suitable methods for each design task - knowing their prerequisites, advantages and, as too often overlooked, their limitations as well. The good thing with computers is that you yourself can often verify amazing things with little effort, and you can use software not only to your direct advantage in solving a specific problem, but also for becoming a better skilled, more experienced engineer. Unfortunately, EDA design environments are not good at all to learn about advanced numerics. So with this book we also provide two apps for learning about statistic and optimization directly with circuit-related examples, and in real-time so without the long simulation times. This helps to develop a healthy statistical gut feeling for circuit design. The book is written for engineers, students in engineering and CAD / methodology experts. Readers should have some background in standard design techniques like entering a design in a schematic capture and simulating it, and also know about major technology aspects

    Circuit Design

    Get PDF
    Circuit Design = Science + Art! Designers need a skilled "gut feeling" about circuits and related analytical techniques, plus creativity, to solve all problems and to adhere to the specifications, the written and the unwritten ones. You must anticipate a large number of influences, like temperature effects, supply voltages changes, offset voltages, layout parasitics, and numerous kinds of technology variations to end up with a circuit that works. This is challenging for analog, custom-digital, mixed-signal or RF circuits, and often researching new design methods in relevant journals, conference proceedings and design tools unfortunately gives the impression that just a "wild bunch" of "advanced techniques" exist. On the other hand, state-of-the-art tools nowadays indeed offer a good cockpit to steer the design flow, which include clever statistical methods and optimization techniques.Actually, this almost presents a second breakthrough, like the introduction of circuit simulators 40 years ago! Users can now conveniently analyse all the problems (discover, quantify, verify), and even exploit them, for example for optimization purposes. Most designers are caught up on everyday problems, so we fit that "wild bunch" into a systematic approach for variation-aware design, a designer's field guide and more. That is where this book can help! Circuit Design: Anticipate, Analyze, Exploit Variations starts with best-practise manual methods and links them tightly to up-to-date automation algorithms. We provide many tractable examples and explain key techniques you have to know. We then enable you to select and setup suitable methods for each design task - knowing their prerequisites, advantages and, as too often overlooked, their limitations as well. The good thing with computers is that you yourself can often verify amazing things with little effort, and you can use software not only to your direct advantage in solving a specific problem, but also for becoming a better skilled, more experienced engineer. Unfortunately, EDA design environments are not good at all to learn about advanced numerics. So with this book we also provide two apps for learning about statistic and optimization directly with circuit-related examples, and in real-time so without the long simulation times. This helps to develop a healthy statistical gut feeling for circuit design. The book is written for engineers, students in engineering and CAD / methodology experts. Readers should have some background in standard design techniques like entering a design in a schematic capture and simulating it, and also know about major technology aspects

    OSCILLATION-BASED TESTING METHOD FOR DETECTING SWITCH FAULTS IN HIGH-Q SC BIQUAD FILTERS

    Get PDF
    Testing switched capacitor circuits is a challenge due to the diversity of the possible faults. A special problem encountered is the synthesis of the test signal that will control and will make the fault-effect observable at the test point. The oscillation based method which was adopted for testing in these proceedings resolves that important issue by his nature. Here we discuss the properties of the method and the conditions to be fulfilled in order to implement it in the right way. To achieve that we resolved the problem of synthesis of the positive feed-back circuit and the choice of a proper model of the operational amplifier. In that way a realistic foundation to the testing process was generated. A second order notch cell was chosen as a case-study. Fault dictionaries were developed related to the catastrophic faults of the switches used within the cell. The results reported here are a continuation of our previous work and are complimentary to some other already published

    Formale Verifikationsmethodiken für nichtlineare analoge Schaltungen

    Get PDF
    The objective of this thesis is to develop new methodologies for formal verification of nonlinear analog circuits. Therefore, new approaches to discrete modeling of analog circuits, specification of analog circuit properties and formal verification algorithms are introduced. Formal approaches to verification of analog circuits are not yet introduced into industrial design flows and still subject to research. Formal verification proves specification conformance for all possible input conditions and all possible internal states of a circuit. Automatically proving that a model of the circuit satisfies a declarative machine-readable property specification is referred to as model checking. Equivalence checking proves the equivalence of two circuit implementations. Starting from the state of the art in modeling analog circuits for simulation-based verification, discrete modeling of analog circuits for state space-based formal verification methodologies is motivated in this thesis. In order to improve the discrete modeling of analog circuits, a new trajectory-directed partitioning algorithm was developed in the scope of this thesis. This new approach determines the partitioning of the state space parallel or orthogonal to the trajectories of the state space dynamics. Therewith, a high accuracy of the successor relation is achieved in combination with a lower number of states necessary for a discrete model of equal accuracy compared to the state-of-the-art hyperbox-approach. The mapping of the partitioning to a discrete analog transition structure (DATS) enables the application of formal verification algorithms. By analyzing digital specification concepts and the existing approaches to analog property specification, the requirements for a new specification language for analog properties have been discussed in this thesis. On the one hand, it shall meet the requirements for formal specification of verification approaches applied to DATS models. On the other hand, the language syntax shall be oriented on natural language phrases. By synthesis of these requirements, the analog specification language (ASL) was developed in the scope of this thesis. The verification algorithms for model checking, that were developed in combination with ASL for application to DATS models generated with the new trajectory-directed approach, offer a significant enhancement compared to the state of the art. In order to prepare a transition of signal-based to state space-based verification methodologies, an approach to transfer transient simulation results from non-formal test bench simulation flows into a partial state space representation in form of a DATS has been developed in the scope of this thesis. As has been demonstrated by examples, the same ASL specification that was developed for formal model checking on complete discrete models could be evaluated without modifications on transient simulation waveforms. An approach to counterexample generation for the formal ASL model checking methodology offers to generate transition sequences from a defined starting state to a specification-violating state for inspection in transient simulation environments. Based on this counterexample generation, a new formal verification methodology using complete state space-covering input stimuli was developed. By conducting a transient simulation with these complete state space-covering input stimuli, the circuit adopts every state and transition that were visited during stimulus generation. An alternative formal verification methodology is given by retransferring the transient simulation responses to a DATS model and by applying the ASL verification algorithms in combination with an ASL property specification. Moreover, the complete state space-covering input stimuli can be applied to develop a formal equivalence checking methodology. Therewith, the equivalence of two implementations can be proven for every inner state of both systems by comparing the transient simulation responses to the complete-coverage stimuli of both circuits. In order to visually inspect the results of the newly introduced verification methodologies, an approach to dynamic state space visualization using multi-parallel particle simulation was developed. Due to the particles being randomly distributed over the complete state space and moving corresponding to the state space dynamics, another perspective to the system's behavior is provided that covers the state space and hence offers formal results. The prototypic implementations of the formal verification methodologies developed in the scope of this thesis have been applied to several example circuits. The acquired results for the new approaches to discrete modeling, specification and verification algorithms all demonstrate the capability of the new verification methodologies to be applied to complex circuit blocks and their properties.Gegenstand dieser Dissertation ist die Entwicklung neuer Methodiken zur formalen Verifikation nichtlinearer analoger elektronischer Schaltungen. Dazu werden im Rahmen dieser Arbeit entstandene neue Ansätze in den Bereichen verifikationsgerechte diskrete Modellierung analoger Schaltungen, Spezifikation analoger Schaltungseigenschaften und formale Verifikationsalgorithmen vorgestellt. Ausgehend vom Stand der Technik der Modellierung analoger Schaltungen für die simulationsbasierte Verifikation wird im Rahmen dieser Arbeit die diskrete Modellierung analoger Schaltungen für zustandsraumbasierte formale Verifikationsverfahren betrachtet. Dazu wurde ein neuer Ansatz zur diskreten Modellierung entwickelt, der die Aufteilungsstruktur anhand der Trajektorien der Vektorfelddynamik bestimmt. So wird eine hohe Genauigkeit der Nachfolgerrelation ermöglicht, woraus eine niedrigere Zahl an Zuständen für ein diskretes Modell gleicher Genauigkeit im Vergleich mit dem bisherigen Stand der Technik folgt. Die Abbildung der Trajektorien-gesteuerten Partitionierung auf eine diskrete analoge Transitionsstruktur (DATS) erlaubt die Anwendung von formalen Verifikationsalgorithmen. Die formale Spezifikation von Eigenschaften in ersten Ansätzen zum Model Checking analoger Schaltungen hat sich stark an den bestehenden temporallogischen Verfahren aus dem Bereich digitaler Hardware orientiert. Ausgehend von einer Analyse digitaler Spezifikationskonzepte und der bestehenden Ansätze für analoge Eigenschaften wurden Anforderungen an eine neue Spezifikationssprache in dieser Arbeit abgeleitet. Die aus diesen Anforderungen im Rahmen dieser Arbeit entwickelte analoge Spezifikationssprache "Analog Specification Language" (ASL) basiert auf einer natürlichsprachlichen Kapselung temporallogischer Operationen, die mit erweiterten Algorithmen zur Transitionspfadbestimmung, Durchführung von Berechnungen auf Zustandsparametern und Oszillationsbestimmung eine hohe Ausdrucksstärke analoger Eigenschaften mit einer anwenderfreundlichen Syntax kombinieren konnte. Die zusammen mit ASL entwickelten Model Checking-Verifikationsalgorithmen zur Auswertung von ASL-Spezifikationen auf einem mit dem Trajektorien-gesteuerten Diskretisierungsverfahren erzeugten DATS-Modell bilden eine wesentliche Erweiterung zum Stand der Technik. Um einen Übergang der Verifikation von signalbasierten zu zustandsraumbasierten Methodiken zu ermöglichen, wurde im Rahmen dieser Arbeit ein Ansatz entwickelt, der die Übertragung von transienten Simulationsergebnissen aus nicht-formalen Testbench-Simulationsumgebungen in eine partielle DATS-Zustandsraumdarstellung ermöglicht. Damit kann, wie anhand von Beispielen gezeigt werden konnte, die gleiche ASL-Spezifikation für Eigenschaften eines vollständigen diskreten Modells ohne Modifikation auch auf Simulationsergebnissen ausgewertet werden. Ein für das formale ASL-basierte Model Checking entwickelter Ansatz zur Erzeugung von Gegenbeispielen für als spezifikationsverletzend identifizierte Zustandsraumgebiete erlaubt es, Transitionsfolgen von einem definierten Startzustand zu einem spezifikationsverletzenden Zustand zu ermitteln. Auf Basis dieses Gegenbeispiel-Verfahrens wurde eine neue formale Eigenschaftsverifikationsmethodik mittels vollständig den Zustandsraum einer Schaltung abdeckenden Eingangsstimuli entwickelt. Die vollständig den Zustandsraum abdeckenden Eingangsstimuli bieten noch eine weitere Anwendungsmöglichkeit im Bereich des Äquivalenzvergleichs. Die im Rahmen dieser Arbeit entwickelte Methodik zum formalen Äquivalenzvergleich auf Basis der vollständig den Zustandsraum abdeckenden Eingangsstimuli ersetzt die anwenderdefinierten Eingangsstimuli durch die vollständig den Zustandsraum abdeckenden. So kann die Äquivalenz für jeden möglichen Zustand der zu vergleichenden Implementierungen anhand eines automatisierten Vergleichs der Simulationsergebnisse beider Implementierungen gezeigt werden. Um die Ergebnisse der neu eingeführten formalen Verifikationsmethodiken visuell zu untersuchen wurde ein Verfahren entwickelt, das den Zustandsraum und seine Dynamik mittels eines Partikel-Simulationsansatzes visualisiert. Da die Partikel über den gesamten Zustandsraum randomisiert verteilt werden und sich dann gemäß der Vektorfelddynamik fortbewegen, kann auch hier ein Einblick in das Systemverhalten gewonnen werden, der eine weitestgehend vollständige und somit formale Repräsentation des Zustandsraums bietet. Die prototypische Implementierung der im Rahmen dieser Arbeit entwickelten formalen Verifikationsmethodiken wurde auf zahlreiche Beispielschaltungen angewendet. Die Ergebnisse für die neuen Ansätze zur diskreten Modellierung, zur Spezifikation und zu Verifikationsalgorithmen analoger Schaltungen zeigen, dass die aus diesen Ansätzen erzeugten Verifikationsmethodiken erfolgreich auf komplexe Zustandsraumstrukturen angewendet werden können

    Space Communications: Theory and Applications. Volume 3: Information Processing and Advanced Techniques. A Bibliography, 1958 - 1963

    Get PDF
    Annotated bibliography on information processing and advanced communication techniques - theory and applications of space communication
    corecore