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Abstract. In this paper a new test signal generation approach
for general analog circuits based on the variational calculus
and modern control theory methods is presented. The com-
puted transient test signals also called test stimuli are optimal
with respect to the detection of a given fault set by means of a
predefined merit functional representing a fault detection cri-
terion. The test signal generation problem of finding optimal
test stimuli detecting all faults form the fault set is formulated
as an optimal control problem. The solution of the optimal
control problem representing the test stimuli is computed us-
ing an optimization procedure. The optimization procedure
is based on the necessary conditions for optimality like the
maximum principle of Pontryagin and adjoint circuit equa-
tions.

1 Introduction

Advances in EDA technology have increased the size and
complexity of integrated circuits. As a result the test costs
have become a key part of the overall manufacturing costs.
Although the area of the analog part of a mixed-signal IC is
much smaller than the digital one, the test costs are domi-
nated by the analog part because of its more complex specifi-
cations. For this reason tools and efficient techniques for the
generation of specific tests, which have the ability to reduce
the test time and thus the test costs, are needed.

In transient testing (Gomes and Chatterjee, 1999; Variyam
et al., 1999; Burdiek, 2001), the circuit under test (CUT) is
excited with a transient test stimulus and the circuit response
is sampled at specified time points for fault detection. In
this paper a new test signal generation method based on con-
trol theory techniques like Pontryagin’s maximum principle
is presented. It should be noted that optimal control the-
ory methods such as the maximum principle are based on
the variational calculus. The proposed test generation ap-
proach formulated as an optimal control problem generates
optimum transient test stimuli for a general analog circuit. A
Lagrangian merit functional required for the optimal control

Correspondence to:B. Burdiek
(burdiek@tet.uni-hannover.de)

problem serves as the fault detection criterion. The func-
tional, which indirectly depends on the controls of the circuit
representing the test stimuli, is based on the difference be-
tween the good test response and all faulty test responses.
The solution of the control problem given by the optimal
controls, is computed using an optimization procedure. The
optimization procedure maximizes the merit functional with
respect to the controls and thus enhances the fault detection
capability. Since the procedure takes advantage from neces-
sary optimality conditions such as the maximum principle,
it does not need the gradient of the merit functional with re-
spect to the controls. The solution of the optimal control
problem must satisfy the necessary conditions for optimal-
ity like the maximum principle. Thus, all test stimuli, which
do not satisfy Pontryagin’s maximum principle, are not op-
timal and thus do not maximize the fault detection criterion.
Therefore, they cannot be solutions of the optimal control
problem.

In the next section the test generation problem is formu-
lated as an optimal control problem. The optimization proce-
dure and the necessary conditions for optimality, which have
to be fulfilled by the optimal controls representing the test
stimuli, are described in Sect. 3. Experimental results are
presented in Sect. 4. A conclusion of the paper is given in
Sect. 5.

2 Problem formulation

Let F(ż(x), x, u, t) = 0 be the differential algebraic equa-
tions (DAE’s) of the circuit under test (CUT). The DAE sys-
tem, which models the circuit correctly, arises from the mod-
ified nodal analysis (MNA). The control vectoru(t), with
u∈ U ⊂ Rp, represents the controls of all independent volt-
age and current sources of the circuit. The state vectorx, with
x∈ Rn, represents the node potentialsvn and the branch cur-
rentsib of the modified nodal description. The vector func-
tion z(x) describes the charges of the voltage controlled ca-
pacitors and the fluxes of the current controlled inductors of
the circuit. The variable vector of the adjoint network of the
circuit (Director and Rohrer, 1969) is called the costate vec-
tor denoted byψ .
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The given fault list of the CUT containing k paramet-
ric and catastrophic faults is termed by the fault setSf =

{f1, · · · , fk}. Throughout the paper good device is denoted
with index g and the faulty devices with index f. Vectors
and terms referring to the good and all faulty circuits are de-
noted with index a. All types of vectors used in this paper are
shown in Eq. (1).

Ja(xa) = −J̄a(xa)
!
= min (2)

J̄a(xa(t)) =

∫ tf

t0

f̄a
(
xg, xf1, · · · , xfk

)
dt (3)

mj ≤ uj (t) ≤ Mj , j = 1, . . . , p , t ∈ [t0, tf ] (4)

Fa(ża, xa, u, t) =

 Fg(żg, xg,u, t)
...

Ffk (żfk , xfk , u, t)

 = 0 (5)

In Eqs. (2)–(5) the test generation problem is formulated
as an optimal control problem. Without loss of generality
we can describe the fault detection criterionJ̄a(xa(t)) of the
test generation problem by a Lagrangian merit functional.
This is possible, since other types of functionals represent-
ing a fault detection criterion can be transformed into a La-
grangian functional. The argument of the merit functional is
the state vectorxa containing the state vectors of the good
and all faulty circuitsxta = (xg, · · · , xfk )

t . The functional
J̄a(xa(t)), which only depends on the circuits statesxa , is is
based on the difference between the good test response and
all faulty test responses. The functionalJ̄a cannot depend
on the controlsu, since only test response measurements can
be used for fault detection. The optimal control problem de-
fined in Eqs. (2)–(5) is to find a control vectoru∗(t) form
the set of admissible controls Eq. (4) which causes the DAE
system Eq. (5) to follow an admissible trajectoryx∗

a(t) that
minimizes the merit functionalJa(x∗

a(t)) in Eq. (2) and thus
maximizes the fault detection criterion. Thus the solution of
our problem is given by the optimal control vectoru∗

a(t) and
the optimal state vectorx∗

a(t).
For a fixedu(t) the computation of the solution of the DAE

system in Eq. (5) and the computation of the merit functional
Ja(xa(t)) is performed by a fault simulation, simulating each
fault of the fault setSf sequentially. This can be done, since
the DAE systems of the good and all faulty circuits are not
coupled with each other.

3 Optimization procedure

In this section we describe the optimization procedure, which
is used to solve the general test signal generation problem
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Fig. 1. Biquad filter (resonance frequencyfr = 10 kHz).

defined in Sect. 2–5. We first formulate the necessary con-
ditions for the optimal controlsu required for the optimiza-
tion process. To minimize the merit functionalJa(xa) from
Eq. (2) under the constrains given by Eq. (4) and Eq. (5), we
form an augmented merit functionalLa including the con-
straints. Using the concept of Lagrange multipliers we in-
clude the DAE systems of the good and all faulty circuits
into an augmented merit functionalLa(xa, ψa,u, t) Eq. (6).
The Hamiltonian functionHa resulting fromLa is given by
Eq. (7).

La =

∫ tf

t0

−Ha(xa, ψa, u, t)dt
!
= min (6)

Ha(xa, ψa, u, t) = f̄a(xg, xf1, . . . , xfk )+

ψ tgFg
(
żg, xg, u, t

)
+

k∑
i=1

ψ tfiFfi
(
żfi , xfi ,u, t

)
(7)

The costate vectorψa is composed of the costate vector
ψg of the adjoint network of the good circuit and all costate
vectorsψfi of the faulty circuits. From the first variation of
La we obtain the adjoint DAE system in Eq. (8) including
the adjoint systems of the good and all faulty circuits.

Sg

0
. . .

Sfk


t ˙
ψg...
ψfk

−

Gg

0
. . .

Gfk


tψg...
ψfk

=


∂f̄a
∂xg
...
∂f̄a
∂xfk

 (8)

The matricesS andG are abbreviations for time dependent
Jacobian matrices and arise from the storage and resistive
elements of the circuit.

S(t) =
∂F
∂ ż
∂z
∂x

∣∣∣∣
x(t)

G(t) =
∂F
∂x

∣∣∣∣
x(t)

(9)
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Fig. 2. (a)Test responses before optimization(b) Test responses after optimization(c) Test responseVout of the good device, optimal test
stimulusVin and its corresponding waveformψsin (d) Frequency response of the biquad filter.

The classical methods of the variational calculus cannot
be applied to problems with a closed setU as control region.
For problems with bounded controlsu a method known as
Pontryagin’s maximum principle (Pontrjagin et al., 1964) is
used. In situations with constraints on the control variables
the necessary condition for optimal control Eq. (10) is re-
placed with Eq. (11), which states the maximum principle.

∇u Ja = −
∂Ha

∂u
= 0 (10)

max
u∈U

Ha(xa(t), ψa(t), u(t), t) = Ha(xa, ψa, û, t) (11)

Supposeû is an optimal control, which minimizes the
merit functional of the control problem. Than Pontrya-
gin’s maximum principle Eq. (11) says, thatû and its corre-
sponding pair(xa, ψa)maximizes the HamiltonianHa for all
t ∈ [t0, tf ] and for all admissible controlsu ∈ U . The max-
imum principle is a necessary condition for optimal control
and is used as a calculation base for the optimal controls. In
case of a free end pointx(tf ) given with the test generation
problem the optimal solution of the control problemu∗(t),
x∗
a(t) must satisfy the system of the circuit equations (5) and

their initial valuesxa(t0), the adjoint equations (8) and their
final valuesψa(tf ) = 0 and the maximum principle of Pon-
tryagin. Since modified nodal equations are used for circuit
description and these are linear inu, the application of the

maximum principle lead to the qualitative form of optimal
test signals (Burdiek, 2002), given by Eq. (12). Only test
signals of this form are possible candidates for optimal con-
trols.

uj (t) =

{
Mj , bt (ψg + · · · + ψfk ) ≥ 0
mj , bt (ψg + · · · + ψfk ) < 0

, 1 ≤ j ≤ p (12)

Since the circuit equations (5) are coupled with the ad-
joint equations (8) an optimization procedure is needed for
the calculation of the optimal controls. In the following the
essential steps of the optimization procedure are explained.
Starting with an initial control vectoru0(t) the solutionx0

a(t)

of the DAE system in Eq. (5) is computed in the first step.
The evaluation of the merit functionalJ 0

a is performed dur-
ing the simulation of Eq. (5). Using the state vectorx0

a(t) for
the computation of the matricesS andG the solution vec-
tor ψ0

a (t) of the adjoint DAE system Eq. (8) is calculated in
the next step. In the last step Pontriyagin’s maximum princi-
ple is applied using Eq. (12) to obtain the control vectorû0.
The next iterateu1

a(t) is calculated with the aid of Eq. (13),
whereby the stepsizeαl is optimal withαl = 1. The opti-
mization procedure terminates when the minimal sequence
J 0
a > J 1

a > ... aborts.

ul+1
= (1 − αl)ul + ûl l = 0, 1... (13)
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4 Experimental results

In this section the test generation method is applied to a bi-
quad filter shown in Fig. 1. To demonstrate the approach
the test generation procedure is applied to a small fault set
of eight hard to detect parametric faults. For the fault detec-
tion criterionJ̄a we use the functional described by Eq. (14).
The weighting factorswfi used to distinguish faults in̄Ja are
determined from an initial fault simulation.

J̄a(xa(t)) =

k∑
i=1

wfiφfi (Voutg , Voutf i ) (14)

φfi =

∫ tf

t0

∣∣Voutg (t)− Voutf i (t)
∣∣ dt , φa =

k∑
i=1

φfi (15)

The unit step function 1(t) is used as initial test stimulus
for the procedure denoted byu0. The optimal test stimulus
uopt (V optin ) shown in Fig. 2c was generated within 2 itera-
tions. The simulation results and the parameters of the test
generation procedure are listed in Table 1. The test responses
Vout before and after the optimization of the CUT are shown
in Fig. 2a and Figure 2b. As one can see form the simula-
tion results the generated test stimulusuopt (t) significantly
enhances the fault detection capability. The switching points
(SP’s) of the test stimulus computed with Eq. (12) are given
by the isolated zeros of the waveformψsin shown in Fig. 2c.
Obviously, it is good a strategy to test the filter in the near
of its resonance frequencyfr = 10 kHz, which is shown in
Fig. 2d. For this reason suitable test signals for the biquad fil-
ter have to contain a first harmonic, which is approximately
fr . This is the case for our generated test signal.

After the test generation process a fault simulation of 150
faults was carried out to determine the performance of the
generated test stimulus. This resulted in a fault coverage
of 97 percent. The test generation approach proposed in
this paper has been implemented in a C++ program named
TORAD (Test Generator for AnalogDevices). The simula-
tor TORAD supports several circuit analyses, like transient
analysis and transient sensitivity analysis. The last one in-
cludes the ability to simulate the transient behaviour of ad-
joint networks.

5 Conclusion

In this paper a new test signal generation approach based on
modern control theory methods such as the maximum prin-
ciple of Pontryagin was presented. The proposed method,
which was formulated as an optimal control problem, gen-
erates optimum transient test signals for general analog cir-
cuits. An optimization procedure was used for the compu-
tation of the solution of the control problem. The procedure
takes advantage from necessary optimality conditions such
as the maximum principle, so that it does not need the gradi-
ent of the merit functional with respect to the controls. Since
the procedure generates optimal test signals, it is best suited
for the detection of hard to detect faults in analog circuits.

Table 1. Results and parameters of the optimization procedure
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