2,617 research outputs found

    White Light Interferometry for Quantitative Surface Characterization in Ion Sputtering Experiments

    Full text link
    White light interferometry (WLI) can be used to obtain surface morphology information on dimensional scale of millimeters with lateral resolution as good as ~1 {\mu}m and depth resolution down to 1 nm. By performing true three-dimensional imaging of sample surfaces, the WLI technique enables accurate quantitative characterization of the geometry of surface features and compares favorably to scanning electron and atomic force microscopies by avoiding some of their drawbacks. In this paper, results of using the WLI imaging technique to characterize the products of ion sputtering experiments are reported. With a few figures, several example applications of the WLI method are illustrated when used for (i) sputtering yield measurements and time-to-depth conversion, (ii) optimizing ion beam current density profiles, the shapes of sputtered craters, and multiple ion beam superposition and (iii) quantitative characterization of surfaces processed with ions. In particular, for sputter depth profiling experiments of 25Mg, 44Ca and 53Cr ion implants in Si (implantation energy of 1 keV per nucleon), the depth calibration of the measured depth profile curves determined by the WLI method appeared to be self-consistent with TRIM simulations for such projectile-matrix systems. In addition, high depth resolution of the WLI method is demonstrated for a case of a Genesis solar wind Si collector surface processed by gas cluster ion beam: a 12.5 nm layer was removed from the processed surface, while the transition length between the processed and untreated areas was 150 {\mu}m.Comment: Applied Surface Science, accepted: 7 pages and 8 figure

    Algorithmic approaches to high speed atomic force microscopy

    Full text link
    Thesis (Ph.D.)--Boston UniversityThe atomic force microscope (AFM) has a unique set of capabilities for investigating biological systems, including sub-nanometer spatial resolution and the ability to image in liquid and to measure mechanical properties. Acquiring a high quality image, however, can take from minutes to hours. Despite this limited frame rate, researchers use the instrument to investigate dynamics via time-lapse imaging, driven by the need to understand biomolecular activities at the molecular level. Studies of processes such as DNA digestion with DNase, DNA-RNA polymerase binding and RNA transcription from DNA by RNA polymerase redefined the potential of AFM in biology. As a result of the need for better temporal resolution, advanced AFMs have been developed. The current state of the art in high-speed AFM (HS-AFM) for biological studies is an instrument developed by Toshio Ando at Kanazawa University in Japan. This instrument can achieve 12 frames/sec and has successfully visualized the motion of protein motors at the molecular level. This impressive instrument as well as other advanced AFMs, however, comes with tradeoffs that include a small scan size, limited imaging modes and very high cost. As a result, most AFM users still rely on standard commercial AFMs. The work in this thesis develops algorithmic approaches that can be implemented on existing instruments, from standard commercial systems to cutting edge HS-AFM units, to enhance their capabilities. There are four primary contributions in this thesis. The first is an analysis of the signals available in an AFM with respect to the information they carry and their suitability for imaging at different scan speeds. The next two are algorithmic approaches to HS-AFM that take advantage of these signals in different ways. The first algorithm involves a new sample profile estimator that yields accurate topology at speeds beyond the bandwidth of the limiting actuator. The second involves more efficient sampling, using the data in real time to steer the tip. Both algorithms yield at least an order of magnitude improvement in imaging rate but with different tradeoffs. The first operates beyond the bandwidth of the controller managing the tip-sample interaction and therefore the applied force is not well-regulated. The second keeps this control intact but is effective only on a limited set of samples, namely biopolymers or other string-like samples. Experiments on calibration samples and λ-DNA show that both of the algorithms improve the imaging rate by an order of magnitude. In the fourth contribution, extended applications of AFMs equipped with the algorithmic approaches are the tracking of a macromolecule moving along a string-like sample and a time optimal path for repetitive non-raster scans along string-like samples

    An adaptive non-raster scanning method in atomic force microscopy for simple sample shapes

    Get PDF
    It is a significant challenge to reduce the scanning time in atomic force microscopy while retaining imaging quality. In this paper, a novel non-raster scanning method for high-speed imaging is presented. The method proposed here is developed for a specimen with the simple shape of a cell. The image is obtained by scanning the boundary of the specimen at successively increasing heights, creating a set of contours. The scanning speed is increased by employing a combined prediction algorithm, using a weighted prediction from the contours scanned earlier, and from the currently scanned contour. In addition, an adaptive change in the height step after each contour scan is suggested. A rigorous simulation test bed recreates the x-y specimen stage dynamics and the cantilever height control dynamics, so that a detailed parametric comparison of the scanning algorithms is possible. The data from different scanning algorithms are compared after the application of an image interpolation algorithm (the Delaunay interpolation algorithm), which can also run on-line.We would like to acknowledge the support of the Engineering and Physical Sciences Research Council (EPSRC) (grant nos. EP/I034882/1 & EP/I034831/1)

    High-speed spiral imaging technique for an atomic force microscope using a linear quadratic Gaussian controller

    Get PDF
    This paper demonstrates a high-speed spiral imaging technique for an atomic force microscope (AFM). As an alternative to traditional raster scanning, an approach of gradient pulsing using a spiral line is implemented and spirals are generated by applying single-frequency cosine and sine waves of slowly varying amplitudes to the X and Y-axes of the AFM's piezoelectric tube scanner (PTS). Due to these single-frequency sinusoidal input signals, the scanning process can be faster than that of conventional raster scanning. A linear quadratic Gaussian controller is designed to track the reference sinusoid and a vibration compensator is combined to damp the resonant mode of the PTS. An internal model of the reference sinusoidal signal is included in the plant model and an integrator for the system error is introduced in the proposed control scheme. As a result, the phase error between the input and output sinusoids from the X and Y-PTSs is reduced. The spirals produced have particularly narrow-band frequency measures which change slowly over time, thereby making it possible for the scanner to achieve improved tracking and continuous high-speed scanning rather than being restricted to the back and forth motion of raster scanning. As part of the post-processing of the experimental data, a fifth-order Butterworth filter is used to filter noises in the signals emanating from the position sensors and a Gaussian image filter is used to filter the images. A comparison of images scanned using the proposed controller (spiral) and the AFM PI controller (raster) shows improvement in the scanning rate using the proposed method

    Image processing techniques for high-speed atomic force microscopy

    Full text link
    Atomic force microscopy (AFM) is a powerful tool for imaging topography or other characteristics of sample surfaces at nanometer-scale spatial resolution by recording the interaction of a sharp probe with the surface. Dispute its excellent spatial resolution, one of the enduring challenges in AFM imaging is its poor temporal resolution relative to the rate of dynamics in many systems of interest. This has led to a large research effort on the development of high-speed AFM (HS-AFM). Most of these efforts focus on mechanical improvement and control algorithm design. This dissertation investigates a complementary HS-AFM approach based on the idea of undersampling which aims at increasing the imaging rate of the instrument by reducing the number of pixels in the sample surface that need to be acquired to create a high-quality image. The first part of this work focuses on the reconstruction of images sub-sampled according to a scheme known as μ path patterns. These patterns consist of randomly placed short and disjoint scans and are designed specifically for fast, efficient, and consistent data acquisition in AFM. We compare compressive sensing (CS) reconstruction methods with inpainting methods on recovering μ-path undersampled images. The results illustrate that the reconstruction quality depends on the choice of reconstruction methods and the sample under study, with CS generally producing a superior result for samples with sparse frequency content and inpainting performing better for samples with information limited to low frequencies. Motivated by the comparison, a basis pursuit vertical variation (BPVV) method, combing CS and inpainting, is proposed. Based on single image reconstruction results, we also extend our analysis to the problem of multiple AFM frames, in which higher overall video reconstruction quality is achieved by pixel sharing among different frames. The second part of the thesis considers patterns for sub-sampling in AFM. The allocation of measurements plays an important role in producing accurate reconstructions of the sample surface. We analyze the expected image reconstruction error using a greedy CS algorithm of our design, termed simplified matching pursuit (SMP), and propose a Monte Carlo-based strategy to create μ-path patterns that minimize the expected error. Because these μ path patterns involve a collection of disjoint scan paths, they require the tip of the instrument to be repeatedly lifted from and re-engaged to the surface. In many cases, the re-engagements make up a significant portion of the total data acquisition time. We therefore extend our Monte Carlo design strategy to find continuous scan patterns that minimize the reconstruction error without requiring the tip to be lifted from the surface. For the final part of the work, we provide a hardware demonstration on a commercial AFM. We describe hardware implementation details and image a calibration grating using the proposed μ-path and continuous scan patterns. The sample surface is reconstructed from acquired data using CS and inpainting methods. The recovered image quality and achievable imaging rate are compared to full raster-scans of the sample. The experimental results show that the proposed scanning combining with reconstruction methods can produce higher image quality with less imaging time

    Discovery of Stable and Selective Antibody Mimetics from Combinatorial Libraries of Polyvalent, Loop-Functionalized Peptoid Nanosheets.

    Get PDF
    The ability of antibodies to bind a wide variety of analytes with high specificity and high affinity makes them ideal candidates for therapeutic and diagnostic applications. However, the poor stability and high production cost of antibodies have prompted exploration of a variety of synthetic materials capable of specific molecular recognition. Unfortunately, it remains a fundamental challenge to create a chemically diverse population of protein-like, folded synthetic nanostructures with defined molecular conformations in water. Here we report the synthesis and screening of combinatorial libraries of sequence-defined peptoid polymers engineered to fold into ordered, supramolecular nanosheets displaying a high spatial density of diverse, conformationally constrained peptoid loops on their surface. These polyvalent, loop-functionalized nanosheets were screened using a homogeneous Förster resonance energy transfer (FRET) assay for binding to a variety of protein targets. Peptoid sequences were identified that bound to the heptameric protein, anthrax protective antigen, with high avidity and selectivity. These nanosheets were shown to be resistant to proteolytic degradation, and the binding was shown to be dependent on the loop display density. This work demonstrates that key aspects of antibody structure and function-the creation of multivalent, combinatorial chemical diversity within a well-defined folded structure-can be realized with completely synthetic materials. This approach enables the rapid discovery of biomimetic affinity reagents that combine the durability of synthetic materials with the specificity of biomolecular materials

    Laser-assisted scanning probe alloying nanolithography (LASPAN) and its application in gold-silicon system

    Get PDF
    Nanoscale science and technology demand novel approaches and new knowledge to further advance. Nanoscale fabrication has been widely employed in both modern science and engineering. Micro/nano lithography is the most common technique to deposit nanostructures. Fundamental research is also being conducted to investigate structural, physical and chemical properties of the nanostructures. This research contributes fundamental understanding in surface science through development of a new methodology. Doing so, experimental approaches combined with energy analysis were carried out. A delicate hardware system was designed and constructed to realize the nanometer scale lithography. We developed a complete process, namely laser-assisted scanning probe alloying nanolithography (LASPAN), to fabricate well-defined nanostructures in gold-silicon (Au-Si) system. As a result, four aspects of nanostructures were made through different experimental trials. A non-equilibrium phase (AuSi3) was discovered, along with a non-equilibrium phase diagram. Energy dissipation and mechanism of nanocrystalization in the process have been extensively discussed. The mechanical energy input and laser radiation induced thermal energy input were estimated. An energy model was derived to represent the whole process of LASPAN

    Method and apparatus for chemical and topographical microanalysis

    Get PDF
    A scanning probe microscope is combined with a laser induced breakdown spectrometer to provide spatially resolved chemical analysis of the surface correlated with the surface topography. Topographical analysis is achieved by scanning a sharp probe across the sample at constant distance from the surface. Chemical analysis is achieved by the means of laser induced breakdown spectroscopy by delivering pulsed laser radiation to the sample surface through the same sharp probe, and consequent collection and analysis of emission spectra from plasma generated on the sample by the laser radiation. The method comprises performing microtopographical analysis of the sample with a scanning probe, selecting a scanned topological site on the sample, generating a plasma plume at the selected scanned topological site, and measuring a spectrum of optical emission from the plasma at the selected scanned topological site. The apparatus comprises a scanning probe, a pulsed laser optically coupled to the probe, an optical spectrometer, and a controller coupled to the scanner, laser and spectrometer for controlling the operation of the scanner, laser and spectrometer. The probe and scanner are used for topographical profiling the sample. The probe is also used for laser radiation delivery to the sample for generating a plasma plume from the sample. Optical emission from the plasma plume is collected and delivered to the optical spectrometer so that analysis of emission spectrum by the optical spectrometer allows for identification of chemical composition of the sample at user selected sites
    corecore