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1.  Introduction

In atomic force microscopy (AFM), the interaction force is an 
important measure of the distance between a sharp tip-canti-
lever and the sample profile [7]. This facilitates the control of 
the cantilever height so that the cantilever remains above the 
specimen. Generally, the tip is controlled to follow a rectan-
gular scanning raster in the x–y plane to cover the substrate. 
In this way, the topography of the scanned specimen-substrate 
is constructed along the raster. The use of a raster scan-
ning approach has been a general feature of many recently 

developed high-speed force microscopy systems as outlined in 
[4, 9], pushing the speed of some of the most advanced force 
microscopes well above the level of 10 frames per second: 
e.g. a set-up providing 1000 frames per second, exploiting as 
much as possible the mechanical stability and linearity of the 
design, and avoiding any closed loop control, is described in 
[9] (and the references therein). Nevertheless, many AFMs 
focus on closed-loop control, for example to minimize forces 
associated with the specimen-cantilever interaction [28].

AFMs have been widely used in practical material studies 
and biological research (e.g. [21, 31]). This has also led to 
detailed theoretical and numerical analysis of the relative 
effect of the tip/sample shape on imaging quality, for instance 
tip-dilation/radius [12, 22, 30], and relevant algorithms for 
sample image recovery [30]. The analysis and simulation 
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results for the measurement algorithms proposed originally in 
[12] were subsequently practically verified in [13]. Despite 
these advances, the imaging time using a raster scanning 
method, in particular in commercial AFMs, can often take 
several seconds. Real-time dynamic changes in the specimen 
cannot necessarily be observed within extended scanning 
time intervals. As an alternative to raster scanning, optimal 
tip trajectory approaches have been suggested, which are sim-
ilar to, but more efficient than, typical raster scanning, e.g. 
[33]. Moreover, novel control methods for the tip-cantilever 
interaction have been developed: for example, for the vibra-
tion control of the tip-cantilever to be tested in simulation 
[32]. However, these scanning approaches require accuracy 
and high bandwidth in the vertical tip-cantilever control loop, 
while driving the tip along the sample surface at high-speed 
[1]. Furthermore, unavoidable excitations of the tip-cantilever 
dynamics introduce noise into the imaging data and the sharp 
tip may damage the sample.

In general, scanning algorithms in AFM applications 
‘explore’ a fixed scanning area while ignoring local informa-
tion from the collected data. Hence, scanning may involve 
significant ‘wasted’ time while the tip travels the entire 
substrate—including possibly specimen-irrelevant areas. In 
contrast, some of the first ideas for non-raster scans were sug-
gested by Marinello et al [19], where simple specimens were 
scanned along free paths or contours on the specimen. An 
alternative non-raster scanning algorithm was developed by 
Andersson [3, 10, 11, 15] utilizing a feedback methodology, 
which considers collected information and relevant path pre-
diction during the scanning. However, for the work in [3, 
10, 11, 15], the non-raster scanning algorithm, also called 
local raster scanning, is mainly designed for string-like sam-
ples, e.g. DNA. Thus, the scanning path tends to cross the 
sample to follow the topology of the sample. This may not be 
always desirable, as the cantilever may damage in particular 
biological specimens [20], or else the cantilever specimen 
interaction can introduce undesirable dynamics which will 
invalidate the scanning results [2, 20]. One solution is a 
lower Q-factor to reduce dynamic effects [2]. However, this 
will certainly slow down the scanning speed [4] and may 
increase the necessary force interaction [2]. Thus, minimal 
interaction of the cantilever with the specimen is a highly 
desirable target.

Considering the initial ideas of [19] and the above limitations 
of the predictive feedback based algorithms by Andersson [3, 
10, 11, 15], we suggest in this paper a novel scanning approach 
for specimens of fairly simple structure, e.g. cells, which are 
smooth and have neither links nor cross points on their con-
tours. The topography of such a sample can be constructed 
from surface contours at different heights, i.e. we can image a 
simple object sample by scanning its smooth contours, which 
are closed curves in the plane. This is inspired and similar to 
methods such as [19] or [6],4 but in contrast to such methods, 

here we seek minimal interaction with the specimen, and in 
particular we wish to avoid crossing the specimen. Considering 
these ideas, the contributions in this paper are

	 (a)	Extending Andersson’s non-raster scanning for string-
like samples [11], whereby the original sinusoid-based 
tip trajectory is modified so that the trajectory does not 
cross the specimen, creating a piece-wise sine/cosine tra-
jectory (section 2) designed to remain within the sample 
vicinity.

	(b)	The direction of motion of the new sine/cosine trajectory 
is determined by a combined prediction method (section 
3). It uses an estimated curve model of the currently 
scanned contour for one part of the combined estimation. 
In addition, it develops an alternative model by exploiting 
the similarity of nearby boundary contours at different 
heights. Hence, we consider a weighted average of these 
two models. With the proposed curve model prediction, 
the tip can be controlled to remain in the vicinity of the 
specimen avoiding the scanning of areas of less interest. 
Most importantly, the cantilever tip height remains fixed 
while scanning for one boundary contour, i.e. the tip 
height changes only when scanning for a higher boundary 
contour. Hence, the complexity of the controller reduces, 
relying on a high speed x–y-specimen stage control.

	 (c)	The trajectory prediction model is, in addition, used to 
adaptively decrease the amplitude of the piece-wise sine/
cosine trajectory once the prediction model shows greater 
reliability (section 3). An argument for stability of the 
overall algorithm is also given.

	(d)	Another novel element is a new predictive mechanism 
for the cantilever height controller, which facilitates 
increasing the cantilever height step between boundary 
scans, in the situation in which the specimen shows a 
steep slope (section 4).

	 (e)	A detailed simulation environment for the cantilever 
height control and the x–y stage positioning has been 
developed to allow a realistic comparison of the raster 
scanning and the different non-raster scanning algorithms 
(section 6).

	 (f)	Inspired by the ideas in [15], a fast, real-time imple-
mentable Delaunay interpolation algorithm is introduced 
to reconstruct the image using samples from the non-raster 
algorithm, and a direct error with respect to the original 
specimen can be computed (section 5), which permits a 
detailed parametric comparison between the algorithms.

In this sense, here we advance our previous work in [34] to a 
more practically relevant setting (item (e), above), by utilizing 
the image interpolation algorithm (item (f)), by providing a 
detailed practical parameter study, and by introducing addi-
tional ideas (item (d), above), which enhance the scanning in 
areas where the specimen has only a moderate slope.

2.  Andersson’s non-raster scanning method and a 
trajectory for object samples

In this work, we focus on simple specimens, like cells. For 
such a sample, the contour can be modelled as a solid, smooth 

4 Note that the robotics inspired work of [6] can be powerful as it can pro-
duce good contour scanning results once the correct control gains are found, 
exploiting some sufficient conditions. However, the contour scans may cause 
cantilever specimen interaction, as there is no direct guarantee that the canti-
lever tip crosses the specimen: this contrasts with the work presented here.
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boundary at one height. Therefore, we consider the basic idea 
and the curve estimation schemes of Andersson’s non-raster 
scanning method in [3, 10, 11, 15] as the starting point for our 
proposed algorithm.

At any fixed height, the contour for a string-like, continuous 
specimen (e.g. DNA) or the continuous, smooth boundary of a 
specimen can be modelled as a curve in a plane. Thus, the spa-
tial evolution of the contour can be given in the Frenet–Serret 
frame [3] by

� =r s

s
q s

d ( )

d
  ( ) ,1

(1a)

� κ= 
q s

s
s q s

d ( )

d
( ) ( ),1

2
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q s
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s q s

d ( )

d
( ) ( ),2
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where r(s) stands for the position vector in the fixed frame 
with arclength s on the curve, q1(s) is the tangent vector at the 
point, q2(s) is the normal vector with respect to point r(s) and 
κ(s) is the curvature at point r(s). The arclength variable s is a 
function of time t. The function s(t) is defined for the scanning 
process through a desired scan velocity.

In recent non-raster scanning methods, the tip motion tra-
jectory is determined by a prediction using data associated 
with the current contour scan. Practically, the tip is moved 
along smooth sine segments around the estimated curve (see 
figure 1). During one boundary scan, the estimation of the cur-
vature and the tangent of the curve is updated with each triple 
of newly obtained points rk, rk − 1, and rk − 2 on the curve in real-
time. Here rk stands for the kth measured point on the curve 
in the Cartesian coordinates frame. Assuming a very small 
arclength difference in s between each two adjacent points on 
the boundary, the curvature and tangent at point rk is approxi-
mated from rk, rk  −  1, and rk  −  2. Therefore, the k+1th curve 
‘states’ can be estimated from the data at the kth step. For the 
heading direction of the current tip motion, the tangent vector 
q1,k+1 and normal vector q2,k+1 approximately satisfy [3]
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Here the Euclidean distances, ⋅ ⋅d( , ), between each of the 
two points selected from rk − 2, rk − 1, and rk are = − −a d r r( , )k k2 1 ,  

= −b d r r( , )k k1  and = −c d r r( , )k k2  (see figure  1). Based on 
Heron’s formula [3], the curvature estimation for the k+1th 
sample is given by
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where κk+1 is the k+1th curvature estimation. When the cosine of 
the angle between the vector (rk − 1, rk) and the normal vector is 
positive, the κk+1 takes positive sign. Otherwise, κk+1 is negative.5

Building on Andersson’s smooth trajectory [11], a novel 
trajectory is introduced in figure  2, which is constructed in 
two parts: (a) a sine-curve to send the tip towards the sample 
contour to allow the measuring of points on the contour; (b) a 
cosine-curve to move away from the contour, thus, avoiding 
the crossing of the sample when a point on the contour is 
measured. For any instant s1, s2, …, where rd(si) describes a 
point on the contour, the tip trajectory is defined by
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for s − si ≥ 0. Here, the parameter, A, denotes the amplitude 
of the scanning trajectory, ω is the spatial frequency of the 

5 Measurement noise might be amplified: Here a Kalman filter is recom-
mended to reduce the noise influence (see Andersson [7]).

Figure 1.  An illustration of Andersson’s non-raster scanning algorithm with smooth trajectory and contour prediction.
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trajectory, and q2 is the normal vector to the contour. The 
symbol rd indicates the estimated contour position and rt is 
the demanded cantilever tip position as a function of arclength 
s. Thus, the two parts of the trajectory are smooth and con-
tinuously joined at the point π ω− =s s  / 2i . Moreover, the 
tangent of the scanning trajectory coincides with the contour 
tangent for s → si+, which avoids crossing into the specimen 
and introduces the least possible change in tangent at s = si.

The performance of the proposed scanning trajectory is 
influenced by the amplitude A and the spatial frequency ω. 
This is similar to Chang and Andersson [10, 11], who point 
out, that A determines the search region of the trajectory, and 
the trajectory is guaranteed to measure a point on the contour 
for large enough A. Moreover, a large value for ω implies a 
high density of points along the contour in the current scan.

Practically, the tip needs to be controlled with respect to time 
t. To derive a function s(t), we propose a constant tip velocity 

=v r td / dtip tip  to ensure the trajectory is as smooth as possible, 
thus avoiding the excitation of the dynamics in the cantilever-tip 
system and the actuators. Considering the time derivative of the 
tip position in the Frenet–Serret frame and the requirement for a 
constant tip velocity ∥ ∥ =v consttip , we compute from (4) and (1)
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so that ∥ ∥ =v t f s sd ( ) dtip . Under the assumption of constant 
tip velocity, the relationship between s and t is calculated  

by an integral operation according to ∫ ρ ρ∥ ∥ =v t f  ( )d

s

tip

0

. 

This permits the calculation of arclength s as a function of 

time t. For real time AFM imaging, the function s(t) has to be 
calculated offline a priori. Specifically, the function t(s) can 
be approximated by curve-fitting and then the inverse of the 
function t(s) is the function of s with respect to time t.

3.  Weighted prediction algorithm

3.1.  A recursive least square prediction method

When scanning simple object samples, nearby contours are 
similar to each other and it can be assumed that there is some 
projection (translation, scaling and rotation) which relates 
these close contours. Therefore, a currently partially scanned 
contour can be estimated using information from previously 
scanned contours. Here, we propose a least squares approxi-
mation of the currently scanned contour depending on previ-
ously scanned data.

In practice, the suggestion is to scan the target sample 
starting with contours at a lower height, advancing to the top 
point of the specimen: this is sensible as the uncertainty at the 
very top contour is the most significant due to noise. The cur-
rent scanning contour is always higher and in diameter/area 
smaller than previously scanned contours. Thus, the currently 
scanned contour may be called the inner contour, Y, and the 
previously scanned contour is the outer contour, X.

Suppose the measured points from the previous scan are 
= …X X X X X  [ ,  ,  , , .. ]k N1 2 , where each point ⎡⎣ ⎤⎦=X X Xk kx ky

T
 

is represented in Cartesian coordinates. Due to the small dis-
tances between the points in X, the centre (the mean) of Xk, 
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k
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T

, can be used as a ref-

erence point for a map between a point on the outer contour X to 
a point on the inner contour Y; N denotes the number of points 
in X. The normalized vector from one point Xk on the outer 
contour to the centre C is defined as = − ∥ − ∥V X C X C  /k k k . 
To find a relationship between the inner and outer contours, 
suppose one point Yk on the inner contour is obtained from the 
point Xk on the outer contour along the vector Vk. In this way, 
Yk, can be mapped from Xk by a transformation given by

�
⎡
⎣⎢

⎤
⎦⎥A B AB= + = |Y X Y

X
, or [ ]

1
,k k k

k (6)

Figure 2.  Example of the proposed trajectory. Here the curvature of the target contour is constant, while A = 0.2, and ω = 0.1.
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where A   is a two-by-two matrix and B   is a vector with two 
elements. Here matrix A can represent a rotation or a contrac-
tion towards the centre point C, while B represents a simple 
translation. As a result, the currently scanned inner contour 
can be estimated from the previous outer contour and an 
appropriate transformation map.

However, an accurate approximation of the map AB|  [ ]  is 
not available a priori. Here, a recursive least squares (RLS) 
approach is proposed to estimate the map, which allows an 
incremental improvement. Thus, it is necessary for the con-
tour Y to obtain some initial measurement values  ⌣Y1 , 

⌣
Y2 ,…, 

within the current inner contour scan without the use of the 
map AB|[ ]. This creates a growing sequence of discrete points ⌣
Y  measured on the inner contour: 

⌣ = ⌣  ⌣  … ⌣
Y Y Y Y[ , , , ]n1 2 , where ⌣

Yi  represents the measured points on the (partially) measured 
inner contour and n is the number of obtained points on the 
currently scanned contour (figure 3). In the current inner con-
tour scan, Yk represents the closest crossing point of Vk on the 
contour line created by 

⌣
Y . The point Xk is the starting point of 

the vector Vk to provide Yk. Thus, when the tip measures a new 
point on the inner contour, the points ⎡⎣ ⎤⎦  =Y Y Yk kx ky

T
 on the 

currently scanned contour and ⎡⎣ ⎤⎦  =X X Xk kx ky
T
 on the outer 

contour are obtained. The transfer map can be rewritten as

�
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where wx and wy are the two vectors defining the map AB|[ ], 
where Yk,x and Yk,y denote the x and y values of Yk. Therefore 
the RLS updating equations [14] at step k are given by
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where m = x or y indicates the index in terms of the relevant 
Cartesian coordinate elements. The scalar λ is a constant, 
positive parameter, which is set to be equal to or smaller 
than 1. Often it is set slightly less than 1 to allow for expo-
nential weighting of the error θk,m and subsequent forget-
ting of earlier data Xk. For initialization, all elements in wk 
equal 0 and Hk is an identity matrix. Thus, with the RLS 
filter, the map is estimated online for the current contour 
scan by

� A B = w w[ ] [ ] .x y T (9)

In the RLS filtering process, the most recently updated 
information influences the results more than old data [14], 
depending on the choice of λ. Therefore, the estimated map 
will adapt with respect to the changing inner contour. The next 
section will suggest a suitably weighted combination of this 
RLS-based algorithm with the contour prediction algorithm of 
Andersson from section 2 (see [10]).

Figure 3.  Demonstration of a prediction using the RLS filter.
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3.2.  Combined prediction via adaptive weighting

Andersson’s prediction algorithm in section  2 provides 
a contour estimate from three new scanned points on the 
current contour (2)–(3). Here we name this as the current-
prediction, because such a prediction of the curve states 
is only based on information from the currently scanned 
contour. The estimated heading direction and curvature are 
introduced as θcur and κcur. On the other hand, the RLS-
prediction, described in section 3.1, predicts the next points 
based on both the currently scanned inner and the recently 
scanned outer contours. With these estimated points, the 
curve states representing heading angle θRLS and curvature 
κRLS can be calculated.

In this work, we propose a prediction algorithm, which 
combines the current-prediction and the RLS-prediction to 
achieve increased accuracy. In practice, two estimated con-
tour states, which are given by θ κ[ ]Tcur cur and θ κ[ ]TRLS RLS ,  
are weighted to provide the prediction of the contour model 
for driving the tip. A simple weighting law is

�
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The errors from the two predictions are introduced as the 
variables to be used for evaluating the weights. Using the esti-
mation method introduced in [3], the estimated position of a 
point on the curve can be calculated from the update law using 
the curve states via
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where ⎜ ⎟
⎛
⎝

⎞
⎠α α α

α α
=  −

−M ( ) sin 0 1 cos
0 sin 0

0
1 cos

.

Here Pk represents the predicted point at arclength s when 
the (k  −  1)th point −Pk 1 is measured. Here, κk, q1k, and q2k 
represent the estimates of the kth curve states (see (2) and 
(3) in section 2). Thus, the current-prediction and the RLS-
prediction give two estimates of the position of the point as 
Pcur,k and PRLS,k at arclength s. With a new measured point 
Pk on the contour, the Euclidean distances from Pk to Pcur,k 
and PRLS,k are introduced as the errors in the two prediction 
methods. Here the Euclidean distances are used as the evalu-
ation variables for the following reasons: (a) low computa-
tional complexity, (b) ease of evaluation compared to the 
errors of estimated contour states, (c) simplicity of use as a 
1D value. Thus, the errors in the current-prediction and the 
RLS-prediction are defined by

� = ∥ − ∥ = ∥ − ∥e P P e P P  ,   .k k k k k kcur. cur. 2 RLS. RLS. 2 (12)

To avoid the effect of considerable noise in the errors, 
the weights from the two predictions are obtained by (sta-
tistically) averaging the errors of both predictions over 
time. Additionally, the current estimation performance is 
more important than old data for accurate contour tracking. 
Therefore an update algorithm, using a filter approach, was 
utilized to assess the errors of the two predictions:

� α= +̂ ̂ −W e W ,k k kcur. cur. cur. 1 (13a)

� α= +̂ ̂ −W e W. . ,k k kRLS RLS RLS. 1 (13b)

where ̂Wcur and ̂WRLS are the filter variables for the current-data-
prediction and the RLS-prediction, and α is a forgetting factor 
to consider the history of the errors. Then the weights Wcur 
and WRLS are obtained by normalizing the updates ̂Wcur and 
̂WRLS as

� = 
+

  = 
+

̂
̂ ̂

̂
̂ ̂W

W

W W
W

W

W W
, .cur

RLS

RLS cur
RLS

cur

RLS cur
(14)

At the beginning of the scanning of one contour, Wcur is 
initialized as 0 and WRLS is 1, while ̂Wcur and ̂WRLS are set to 
0 since there is no efficient estimation from the current-pre-
diction methods until three points on the contour have been 
obtained. They will be calculated after the first three points 
on the contour have been measured. In addition, the forget-
ting parameter α is a positive constant smaller than 1. Note 
that when α equals 1, all historical errors can influence the 
weighted prediction.

As more points are measured, the overall performance of 
the weighted prediction improves, and the curve is estimated 
with an increasing accuracy. Furthermore, there is no need for 
driving the tip with a very large searching region to ensure 
an efficient error-free scan, and the tip can be kept in a very 
small neighbourhood of the sample contours. Therefore, the 
parameter A, which determines the tip searching range, can 
be adjusted to the prediction accuracy. One possible choice is

�

⎧
⎨
⎪

⎩
⎪

=
      ≥
      ≤

 

̂ ̂
̂ ̂

̂ ̂
A

A W W A

A W W A

W W

if max [ , ]

if max [ , ]

max [ , ] , elsewhere

.
max cur RLS max

min cur RLS min

cur RLS

(15)

Here, the parameter Amin is set as the smallest amplitude 
of the tip trajectory, and parameter Amax is set as the maximal 
scanning amplitude. As a consequence, the tip can move away 
from or closer to the contour boundary for measuring the next 
point on the curve. In this way, the impact of (considerable) 
noise in the error can be eliminated to some extent.

A guarantee that the algorithm can scan a set of closed 
contours is easily obtained using arguments from Chang and 
Andersson [10] and general ideas on RLS-algorithms [14].

Remark 1: The adaptive non-raster algorithm is guaran-
teed to provide a scan of a finite set of smooth closed contours 
(starting at a bottom contour) provided each inner contour can 
be described via a linear map (6) resulting from an outer, lower 
contour, and the parameters Amin (15) and ω satisfy: [10]

�
κ κ

π
ω

> − −A
1 1 9

4
,min

max max
2

2

2 (16)

where κmax is the largest contour curvature. In addition, it is 
required that the forgetting factor λ in the RLS algorithm satis-
fies 0 < λ < 1 and that in the error update algorithm (13), the 
parameter α satisfies 0 < α < 1.

An argument to show validity of the statement above is 
provided in the appendix.

Meas. Sci. Technol. 26 (2015) 035401



K Zhang et al

7

Remark 2: In a noise free environment, when all the 
assumptions of Remark 1 are satisfied, the two predictions 
using the current and previous contour information should be 
identical. The advantage of this combined algorithm is when 
it is used in a practical environment where noise and specimen 
inaccuracies are observed.

Remark 3: The proposed non-raster algorithm is capable 
of scanning a specimen with a single maximum (or a single 
minimum). It is designed to speed up the scanning of a spec-
imen and to permit repeated scans of the same specimen area 
to investigate dynamic changes. In the case of several extrema 
in the specimen area of interest, it would be sensible to intro-
duce at the beginning of a scan, information about the local 
minima and maxima within the area of interest, allowing the 
subsequent local use of the non-raster scanning approach. It is 
expected that such local extrema do not significantly change 
position despite the dynamic changes of the specimen. Initial 
information about local extrema can be achieved via a global 
raster scan of the area of interest. An alternative is to use a 
local search algorithm for some extrema to provide reasonable 
information before the start of the non-raster scan, e.g. [26] 
or [6]. This could also be complemented by area partitioning 
methods known from reconnaissance techniques [5].

4.  Default Z-positioning scheme and adaptive 
gradient based Z-positioning improved scanning

For successive contour scans, a constant height step for the can-
tilever tip is simple and fairly effective, as demonstrated later. 
It is best to start from the bottom to allow the first contour to be 
collected and to use the combined trajectory prediction algo-
rithm. One issue is that the tip may fail to properly scan the top 
of the sample, because the upper-most contours are usually of 
very small scale. To scan the sample profile, the decision about 
the z-axis step size, i.e. the vertical changes between contours, 
influences the imaging quality. However, if the sample is like 
a cell or a bacterium, the surface topography might be very 
steep at the bottom, while a flattened profile is observed at the 
top. Hence, there is no need to measure similar contours at the 
bottom for topography imaging and it is better to measure the 
contours at the heights where the contours change most. This 
is in particular where the slope of the specimen is low (often 
at the top of the specimen). Thus, an adaptive z-positioning 
method is introduced to avoid small steps for consistently steep 
parts of the specimen, where there is little change in contour.

To achieve adaptive z-positioning, the average topography 
gradient across a contour in the vertical direction, and the 
change in gradient, needs to be predicted. Knowing the cur-
rent vertical step size, the average distance in the x–y plane 
from the current scanning contour and the next contour is 
calculated initially. Hence, at the ith step, during one contour 

scan, the new measured point on the contour is 
⌣ = ⌣ ⌣Y Y Y[ ]i ix iy

T
 

and the matching point on the previous contour can be found 

as 
⌣ = ⌣ ⌣X X X[ ]i ix iy

T
. The ith distance can be calculated as 

= ∥ − ∥d Y Xk i i i, 2 . The additional index k indicates here that the 
data 

⌣
Yi  is taken from the currently scanned kth contour. At the end 

of the kth contour scan, the distance from the kth scanned con-

tour to the (k − 1)th contour is on average ∑=
=

d d N/k
i

N

k i
1

, ,  

where N is the number of measured points during the kth 

contour scan. The displacement of z-axis (height) from the  
(k − 1)th contour to the kth contour is Δzk. Thus, the gradient 
of the sample profile changes is defined as

� Δ=g z d/ .k k k (17)

At the kth contour scan, the ratio of the changing gradients 
is estimated as

� =  − − −r g g g( ) / .k k k k1 1 (18)

Then, the ratio is used for estimating the step height zk+1 
to obtain the next z-axis value (scanning height) for the k+1th 
contour given an expected distance Ed in the x–y plane:

�

⎧
⎨
⎪

⎩⎪
= + =

<
>+ +

+

+

+

g g r g z

z E g z

z E g z

E g
,

 , 

, 

 , elsewhere
.k k k k k

k

k

k

1 1

min d 1 min

max  d 1 max

d 1

(19)

Here gk+1 is the estimated gradient of the k+1th contour 
with respect to the kth contour. To eliminate the effects of 
noise, the displacement step of the z-position is restricted to 
an interval: i.e. ∈z z z[ , ]k min max , where zmin and zmax are the 
minimal and maximal values of z-displacements. Hence, the 
adaptive z-positioning scheme provides a step function zk+1 to 
ignore similar contour scans, which may lead to greater scan-
ning efficiency.

5.  Delaunay triangular interpolation for imaging

To obtain an image from the scanning results, it is neces-
sary to introduce an image interpolation algorithm to turn 
non-raster scanned data into (comparable) rastered-images. 
Recent image interpolation methods assume for the Kriging 
interpolation [15] that the specimen is string-like. In contrast, 
a Delaunay triangular interpolation [15] algorithm is used 
here to achieve fast, online-imaging from non-raster scanned 
data. The Delaunay triangulation sorts the scanned image into 
a unique set of triples of points [18], which is achieved by 
maximizing the smallest angle of every triangle formed by 
a triple of points. For instance, consider a triple constructed 
from three points: O, P, and Q. At these three positions, the 
measured profile height values are VO, VP, and VQ. The inter-
polated height value VI at any point I is approximated as

� =
+ +

V
S V S V S V

S
,I

IPQ A OIQ P OPI Q

OPQ
(20)

where S denotes the area of the triangle constructed by the 
points, IPQ, OIQ, OPI or OPQ. Thus, the height data can be 
computed at each pixel point I. It is evident that this interpola-
tion algorithm is fast due to its local character.

In contrast, there are many global algorithms [8, 23, 24], 
which can compute, within several iterations from existing 
incomplete image data, a global image model, allowing for 
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highly effective interpolation. These algorithms are very 
powerful and they can predict topology curvature and other 
topology derivatives at a high order. They can potentially 
produce excellent results, but are not suited yet for real-time 
implementation. Hence, the Delaunay approach is preferred 
here, since an interpolated image can be obtained from the 
Delaunay triangulation with one single computational itera-
tion: i.e. it can be (in principle) easily implemented online, 
resulting in a fast stream of continuous rastered images.

6.  Simulation results

6.1.  Setup for practically relevant evaluation

Several tests were conducted in order to investigate the perfor-
mance of the non-raster scanning method. To create a realistic 
simulation, dynamic models of a piezo-actuated x–y hori-
zontal stage and the vertical z-motion for the piezo-actuated 
tip-cantilever control are included. The x–y stage dynamics 
are assumed to have a resonance frequency at 870.6 Hz with 
a damping ratio of 0.1282 [16]. The Q-factor of the z-canti-
lever actuation dynamics is 210 with a resonance frequency 
at 7.45 kHz [17]. Using a mixed sensitivity H-infinity control 
design [25], the controller bandwidth for the x–y actuator is 
1.59 kHz and the bandwidth for the tip-cantilever is 7.33 kHz 
for a fast robust response (see figure 4).

The specimen in our simulation is chosen as an upper half 
ellipsoid, similar to a real cell 3D image from an AFM given 
in [27]. However, here we scale the specimen to be smaller 
with a typical height value of 250 nm to represent bacteria 
in air [29]. The ellipsoid radii of the target specimen in the 
simulations are 300 nm along the x-axis, and 400 nm along the 
y-axis. Thus, for raster scanning, the substrate is best scanned 

for a frame of 800 nm along the x-axis and of 1000 nm along 
the y-axis. The imaging resolution is set to achieve a pixel size 
of (10 nm)2 per pixel. Thus, the Delaunay triangular interpola-
tion algorithm will be used to approximate images with pixels 
of that size for the suggested non-raster scanning algorithms. 
Following the dynamics of the horizontal control, the scanning 
speed is set to 10 mm s−1 for accurate control performance.

6.2.  Results and discussions

Scanning approaches in AFM are often evaluated by scanning 
time and imaging quality. In particular, imaging quality is 
evaluated here in the form of an error per-pixel:

�
∑

 =
−

e
V O

N

( )
,

i j
i j i j

PP
,

, ,
2

(21)

where Vi,j indicates the imaged height at the (i, j) pixel and 
Oi,j stands for the ideal height at position (i, j) derived from 
the original 80-by-100 pixel data. The total number of pixels 
is N = 8000.

The raster scan takes 8.0118 s and the error per pixel is ePP 
= 2.6626 nm (see figure 5). The largest imaging errors can be 
found at the edge of the specimen due to the bandwidth limits 
of the z-control loop.

For the non-raster scanning method, the scan starts at the 
bottom and scans at a height of 5 nm. The chosen sample has 
a curvature radius between 225 nm for contours close to the 
sample top at a height of 248.4 nm, and 534 nm for the bottom 
contour at a height of 5 nm. Considering the relationship 
between ω, A and the curvature of target contours in [10], the 
scanning parameters are set as ω = 0.3, Amin = 3 nm, Ainitial = 
Amax = 8 nm to be able to scan curves with a minimal curvature 

Figure 4.  Closed loop sensitivity response of x-, y- and z-control.
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radius as small as 43 nm (as in Remark 1 and equation (16)). 
This robustly permits the scanning trajectory to achieve suc-
cessful scans until a height of 248.4 nm.

For constant height step z-positioning of the non-raster 
scanning approach, the step size is set as 10 nm. The scanning 
time and ePP with respect to α (13) and λ (8) are demonstrated 
in figure 6.

From figure 6, it is clear that the scanning time is higher 
with higher α. The scanning time drops significantly when α is 
smaller than 0.9. However, α has little influence on the error–
per-pixel evaluation when α is less than 1. Thus, α is sug-
gested to be around 0.8 to permit a fast scan with a small ePP. 

In general, a range between α = 0.9 to α = 0.6 appears to be 
the most suitable. The forgetting factor λ affects the scanning 
time and the error–per-pixel measure ePP to a small extent; to 
ensure a stable predictable imaging quality, λ is suggested as 
0.9. In the proposed method, the setup is suggested as α ≈ 0.8 
and λ = 0.9. For α = 0.8 and λ = 0.9, the results for the con-
stant-step z-positioning non-raster scan are given in figure 7.

With the same parameter (ω, Amin, Ainitial, and Amax) setup, 
simulations have been conducted for the non-raster scanning 
method employing the adaptive z-positioning scheme. In prac-
tice, the expected distance between two nearby contour scans 
relates to the resolution requirements, i.e. if the distance is 

Figure 5.  3D image (color) using raster scan; tip trajectory (black) in (a); the absolute errors for each pixel (b).

Figure 6.  Scanning time (a) and ePP (b) as a function of parameters λ and α for non-raster scanning with constant z-step.

Figure 7.  Non-raster scan with constant z-step; tip trajectory (black) in (a); the absolute errors for each pixel (b).
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set as 10 nm, the final image will have pixel sizes of (10 nm)2 
per pixel. The limits for the z-positioning step are set as zmin =  
6 nm and zmax = 26 nm. This implies scanning contours of at 
least 9 and less than 50 for this sample. The ideal number 
of scanned contours should be around 30 in our simulation 
due to the sample size and the required resolution. The adap-
tive z-positioning scheme works well in all simulated circum-
stances. The scanning performance is illustrated in figure 8.

Similar to the results using the constant z-positioning step, 
the parameter choice of α ≈ 0.8 and λ = 0.9 provides a robust 
and most promising parameter choice considering both scan-
ning speed and imaging quality. The 3D image is shown in 
figure 9. It is evident that the adaptive z-positioning scheme 
introduces robustness to noise. This has also been confirmed 
in simulation following the addition of Gaussian sensor noise 
with a standard deviation of 0.2 nm, which is a practical 
choice considering the accuracy of the available sensors in 
force microscopy. Interestingly, there is only a minor increase 
(less than 2%) in the scanning time and the scanning error so 
that any extra representation of the results is avoided here.

From these results it is evident that the non-raster scanning 
approaches provide at least a 26.7% faster scan and a much 
more accurate imaging quality than a classical raster scan, as 
the error per pixel measure improves from 2.6626 nm to less 
than 0.8 nm. Clearly, this is avoided by the less stringent need 
for a high controller bandwidth in the z-direction.

The advantage of the adaptive z-step approach is not neces-
sarily a significantly improved scanning quality, but a higher 
flexibility and a greater robustness of the set-up of the z-height 
steps. It should also be noted that for the two non-raster scan-
ning schemes, the tip will reach neither the very top of the 
target specimen nor the very bottom contours. The errors in 
the proposed non-raster scanning method mainly come from 
the top and the bottom but this can be improved by the adap-
tive z-stepping scheme. Another positive effect of the adaptive 
z-stepping scheme is the greater density of scanning contours 
at the usually less steep top of the specimen (see figure 7(a) 
for the constant z-step scheme versus figure 9(a)). The ‘jump’ 
effects caused by the vertical dynamics are avoided and the 
possible imaging error can be reduced to some extent.

7.  Conclusions

In this paper, we have proposed a novel non-raster scan-
ning method which achieves high accuracy and high speed 
scanning for simple object samples compared with raster 
scans. A new scanning trajectory is introduced to avoid 
damage to the specimen, as the trajectory will not cross into 
the specimen. Moreover, the trajectory permits a dynami-
cally adjusted amplitude, while a prediction algorithm 
fuses information from the currently scanned and the most 

Figure 8.  Scanning time (a) and ePP (b) as a function of parameters λ and α for non-raster scanning with adaptive z-step.

Figure 9.  Non-raster scan with adaptive z-step; tip trajectory (black) in (a); the absolute errors for each pixel (b).
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recently scanned contours. The scanning trajectory is adap-
tive to the sample surface profile. The use of the Delaunay 
Triangular interpolation provides an efficient way to turn 
raw data into images.

Practically relevant simulations have introduced realistic 
dynamics of the actuation and position control mechanism in 
the x–y and z-height direction. The simulation results show 
overall that this provides faster and much more accurate non-
raster scanning than typical raster scanning approaches under 
the same conditions.

Acknowledgments

We would like to acknowledge the support of the Engineering 
and Physical Sciences Research Council (EPSRC) (grant nos. 
EP/I034882/1 & EP/I034831/1).

Appendix. Remark 1—stability of the non-raster 
scanning algorithm

The argument for stability is split into three steps. In the 
first step, it is argued that the new trajectory rt (4) follows 
the basic principles of Chang and Andersson [10], i.e. the 
novel trajectory guarantees specimen scanning even for an 
adapted amplitude. In the second step, it will be argued that 
the RLS-algorithm (7)–(8) is stable. The final, third step will 
demonstrate that the overall combined algorithm is stable and 
converging:

Step 1: Consider the new trajectory rt from (4) and the tra-
jectory designed by Chang and Andersson [10 equation (2)],

ω= + r s r s A s q s( ) ( ) sin ( ( ) ) ( ) .A d 2

The trajectory of Chang and Andersson is identical to the 
new trajectory rt (4)

π
ω

=  ≤ −r s r s s s( ) ( ) , for
2

,iA t

where si is a crossing point of the trajectory rA(s) or rt (s) on 
the contour. Once the arc variable satisfies π ω ≤ −s s/ 2 i, 
the trajectory approaches the contour. Chang and Andersson 
[10] provide, for that reason, a minimal (possibly conser-
vative) value (16) for the amplitude A. It is evident that an 
increase of this amplitude improves the chance of the trajec-
tory rt(s) intersecting the specimen contour. Thus, consid-
ering Chang and Andersson [10], the suggested trajectory 
resulting from (2)–(4) is guaranteed to successfully scan a 
closed contour for a given worst case contour value κmax and 
amplitude constraint (16).

Step 2: The linear map (7) allowing for rotation, translation 
and contraction, has 2  ×  3 parameters to be estimated, where 
three parameters are used for the map of Ykx and another three 
for the map of Yky. The RLS-algorithm in (7)–(8) is only used 
once the second contour is scanned and at least three distinct 
points     …Y Y Y Y, , , , k1 2 3  are measured, as a map from points 

    …X X X X, , , , k1 2 3  on the previous contour. In this case, the 
RLS-algorithm converges after the first three distinct points 
Y1, Y2, Y3 are measured.

Step 3: In a noise free, ideal environment, the two predictions 
of the curvature and gradient using the current and previous 

contour should be identical so that 
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

θ
κ

θ
κ

θ
κ≈ ≈

 
e

e

cur

cur

RLS

RLS
.  

This leads to a successful scan of the set of contours for given 
largest curvature κmax.

References

	 [1]	 Abramovitch D Y, Andersson S B and Pao L Y 2007 A tutorial 
on the mechanisms, dynamics, and control of atomic force 
microscopy American Control Conf. (New York, 9–13 July)  
pp 3488–502

	 [2]	 Anczykowski B, Cleveland J P, Krüger D, Elings V and 
Fuchs H 1998 Analysis of the interaction mechanisms in 
dynamic mode SFM by means of experimental data and 
computer simulation Appl. Phys. A 66 885–9

	 [3]	 Andersson S B 2007 Curve tracking for rapid imaging in AFM 
IEEE Trans. Nanobiosci. 6 354–61

	 [4]	 Ando T 2012 High-speed atomic force microscopy coming of 
age Nanotechnology 23 062001

	 [5]	 Baillieul J and Baronov D 2010 Information acquisition in the 
exploration of random fields Three Decades of Progress in 
Control Sciences (Berlin: Springer) pp 1–17

	 [6]	 Baronov D and Baillieul J 2011 A motion description language 
for robotic reconnaissance of unknown fields Eur. J. Control 
17 512–25

	 [7]	 Binnig G, Quate C F and Gerber C 1986 Atomic force 
microscope Phys. Rev. Lett. 56 930–3

	 [8]	 Burger M, He L and Schönlieb C-B2009 Cahn–Hilliard 
inpainting and a generalization for grayvalue images SIAM 
J. Imaging Sci. 2 1129–67

	 [9]	 Brown B P, Picco L, Miles M J and Faul C F J2013 
Opportunities in high-speed atomic force microscopy Small 
9 3201–11

	[10]	 Chang P I and Andersson S B 2009 Theoretical bounds on 
a non-raster scan method for tracking string-like samples 
American Control Conf. (St. Louis, MO, 10–12 June)  
pp 2266–71

	[11]	 Chang P I , Huang P, Maeng J and Andersson S B 2011 Local 
raster scanning for high-speed imaging of biopolymers in 
atomic force microscopy Rev. Sci. Instrum. 82 063603

	[12]	 Chen Y and Huang W 2004 Numerical simulation of 
the geometrical factors affecting surface roughness 
measurements by AFM Meas. Sci. Technol. 15 2005–10

	[13]	 Chen Y and Huang W 2007 Some issues on atomic force 
microscopy based surface characterization Optoelectron. 
Lett. 3 129–32

	[14]	 Haykin S O 2001 Adaptive Filter Theory 4th edn (Upper 
Saddle River: Prentice-Hall) chapter 9

	[15]	 Huang P and Andersson S B 2011 Generating images from 
non-raster data in AFM 2011 American Control Conf.  
(San Francisco, CA, 29 June–1 July) pp 2246–51

	[16]	 Huang P and Andersson S B 2012 Fast scanning in AFM using 
non-raster sampling and time-optimal trajectories 51st IEEE 
Conf. on Decision and Control (Hawaii, 10–13 December) 
pp 5073–8

	[17]	 Huang P and Andersson S B 2013 Experimental Verification 
of High Speed AFM Through Local Raster Scanning 
(Washington, DC, 17–19 June) pp 6063–8

	[18]	 Lee D T and Schachter B J 1980 Two algorithms for 
constructing a Delaunay triangulation Int. J. Comput. Inf. 
Sci. 9 219–42

	[19]	 Marinello F, Savio E, Bariani P and Carmignato S 2009 
Coordinate metrology using scanning probe microscopes 
Meas. Sci. Technol. 20 084002

Meas. Sci. Technol. 26 (2015) 035401

http://dx.doi.org/10.1109/TNB.2007.909014
http://dx.doi.org/10.1109/TNB.2007.909014
http://dx.doi.org/10.1109/TNB.2007.909014
http://dx.doi.org/10.1088/0957-4484/23/6/062001
http://dx.doi.org/10.1088/0957-4484/23/6/062001
http://dx.doi.org/10.3166/ejc.17.512-525
http://dx.doi.org/10.3166/ejc.17.512-525
http://dx.doi.org/10.3166/ejc.17.512-525
http://dx.doi.org/10.1103/PhysRevLett.56.930
http://dx.doi.org/10.1103/PhysRevLett.56.930
http://dx.doi.org/10.1103/PhysRevLett.56.930
http://dx.doi.org/10.1137/080728548
http://dx.doi.org/10.1137/080728548
http://dx.doi.org/10.1137/080728548
http://dx.doi.org/10.1007/s11801-007-7017-z
http://dx.doi.org/10.1007/s11801-007-7017-z
http://dx.doi.org/10.1007/s11801-007-7017-z
http://dx.doi.org/10.1007/BF00977785
http://dx.doi.org/10.1007/BF00977785
http://dx.doi.org/10.1007/BF00977785
http://dx.doi.org/10.1088/0957-0233/20/8/084002
http://dx.doi.org/10.1088/0957-0233/20/8/084002


K Zhang et al

12

	[20]	 Miles M, Antognozzi M, Haschke H, Hobbs J, Humphris A 
and McMaster T 2003 Tour de force microscopy Mater. 
Today 6 30–7

	[21]	 Müller D J and Dufrêne Y F 2011 Atomic force microscopy: a 
nanoscopic window on the cell surface Trends Cell Biol.  
21 461–9

	[22]	 Seah M P 2014 Measurement of the roughness of  
nano-scale surfaces, both unannealed and with limited 
anneal, by atomic force microscopy Meas. Sci. Technol.  
25 105001

	[23]	 Schönlieb C-B and Bertozzi A 2011 Unconditionally stable 
schemes for higher order inpainting Commun. Math. Sci.  
9 413–57

	[24]	 Schönlieb C-B 2011 Higher-order total variation inpainting 
(www.mathworks.com/matlabcentral/fileexchange/ 
34356-higher-order-total-variation-inpainting/content/
HigherOrderTVinpainting.zip), MATLAB Central File 
Exchange, Updated 7 August 2012

	[25]	 Skogestad S and Postlethwaite I 2007 Multivariable Feedback 
Control: Analysis and Design 2nd edn (New York: Wiley)

	[26]	 Snyman J A2005 Practical Mathematical Optimization: An 
Introduction to Basic Optimization Theory and Classical 
and New Gradient-Based Algorithms (Berlin: Springer)

	[27]	 Tamayo J, Humphris A D L, Owen R J and Miles M J 
2001 High-Q dynamic force microscopy in liquid and its 
application to living cells Biophys. J. 81 526–37

	[28]	 Uchihashi T, Kodera N and Ando T 2012 Guide to video 
recording of structure dynamics and dynamic processes 
of proteins by high-speed atomic force microscopy Nat. 
Protocols 7 1193–206

	[29]	 Velegol S B, Pardi S, Li X, Velegol D and Logan B E 2003 
AFM imaging artifacts due to bacterial cell height and AFM 
tip geometry Langmuir 19 851–7

	[30]	 Wang C and Itoh H 2013 A simulation study for evaluating 
and improving the accuracy of surface roughness measured 
by atomic force microscopy Meas. Sci. Technol.  
24 035401

	[31]	 Yacoot A and Koenders L 2011 Recent developments in 
dimensional nanometrology using AFMs Meas. Sci. 
Technol. 22 122001

	[32]	 Yagasaki K 2010 New control methodology of 
microcantilevers in atomic force microscopy Phys. Lett. A 
375 23–8

	[33]	 Yong Y K, Moheimani S O O and Petersen I R 2010 
High-speed cycloid-scan atomic force microscopy 
Nanotechnology 21 365503

	[34]	 Zhang K, Herrmann G, Edwards C, Burgess S C and Miles M J  
2014 A non-raster scanning approach in atomic force 
microscopy using a combined contour prediction algorithm 
Proc. 19th World Congress of the Int. Federation of 
Automatic Control (Cape Town, 24–29 August)  
vol 19 pp 5908–13

Meas. Sci. Technol. 26 (2015) 035401

http://dx.doi.org/10.1016/j.tcb.2011.04.008
http://dx.doi.org/10.1016/j.tcb.2011.04.008
http://dx.doi.org/10.1016/j.tcb.2011.04.008
http://dx.doi.org/10.1016/j.tcb.2011.04.008
http://dx.doi.org/10.1088/0957-0233/25/10/105001
http://dx.doi.org/10.1088/0957-0233/25/10/105001
http://dx.doi.org/10.1088/0957-0233/25/10/105001
http://dx.doi.org/10.4310/CMS.2011.v9.n2.a4
http://dx.doi.org/10.4310/CMS.2011.v9.n2.a4
http://dx.doi.org/10.4310/CMS.2011.v9.n2.a4
http://dx.doi.org/10.4310/CMS.2011.v9.n2.a4
www.mathworks.com/matlabcentral/fileexchange/ 34356-higher-order-total-variation-inpainting/content/HigherOrderTVinpainting.zip
www.mathworks.com/matlabcentral/fileexchange/ 34356-higher-order-total-variation-inpainting/content/HigherOrderTVinpainting.zip
www.mathworks.com/matlabcentral/fileexchange/ 34356-higher-order-total-variation-inpainting/content/HigherOrderTVinpainting.zip
http://dx.doi.org/10.1016/S0006-3495(01)75719-0
http://dx.doi.org/10.1016/S0006-3495(01)75719-0
http://dx.doi.org/10.1016/S0006-3495(01)75719-0
http://dx.doi.org/10.1038/nprot.2012.047
http://dx.doi.org/10.1038/nprot.2012.047
http://dx.doi.org/10.1038/nprot.2012.047
http://dx.doi.org/10.1021/la026440g
http://dx.doi.org/10.1021/la026440g
http://dx.doi.org/10.1021/la026440g
http://dx.doi.org/10.1088/0957-0233/24/3/035401
http://dx.doi.org/10.1088/0957-0233/24/3/035401
http://dx.doi.org/10.1088/0957-0233/24/3/035401
http://dx.doi.org/10.1088/0957-0233/22/12/122001
http://dx.doi.org/10.1088/0957-0233/22/12/122001
http://dx.doi.org/10.1016/j.physleta.2010.10.021
http://dx.doi.org/10.1016/j.physleta.2010.10.021
http://dx.doi.org/10.1016/j.physleta.2010.10.021
http://dx.doi.org/10.1088/0957-4484/21/36/365503
http://dx.doi.org/10.1088/0957-4484/21/36/365503

