1,178 research outputs found

    Generating global products of LAI and FPAR from SNPP-VIIRS data: theoretical background and implementation

    Full text link
    Leaf area index (LAI) and fraction of photosynthetically active radiation (FPAR) absorbed by vegetation have been successfully generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) data since early 2000. As the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard, the Suomi National Polar-orbiting Partnership (SNPP) has inherited the scientific role of MODIS, and the development of a continuous, consistent, and well-characterized VIIRS LAI/FPAR data set is critical to continue the MODIS time series. In this paper, we build the radiative transfer-based VIIRS-specific lookup tables by achieving minimal difference with the MODIS data set and maximal spatial coverage of retrievals from the main algorithm. The theory of spectral invariants provides the configurable physical parameters, i.e., single scattering albedos (SSAs) that are optimized for VIIRS-specific characteristics. The effort finds a set of smaller red-band SSA and larger near-infraredband SSA for VIIRS compared with the MODIS heritage. The VIIRS LAI/FPAR is evaluated through comparisons with one year of MODIS product in terms of both spatial and temporal patterns. Further validation efforts are still necessary to ensure the product quality. Current results, however, imbue confidence in the VIIRS data set and suggest that the efforts described here meet the goal of achieving the operationally consistent multisensor LAI/FPAR data sets. Moreover, the strategies of parametric adjustment and LAI/FPAR evaluation applied to SNPP-VIIRS can also be employed to the subsequent Joint Polar Satellite System VIIRS or other instruments.Accepted manuscrip

    A New Data Processing System for Generating Sea Ice Surface Roughness and Cloud Mask Data Products from the Multi-Angle Imaging SpectroRadiometer (MISR)

    Get PDF
    This study describes two novel data products derived from Multi-angle Imaging SpectroRadiometer (MISR) imagery: Arctic-wide maps of sea ice roughness and a binary cloud detection algorithm. The sea ice roughness maps were generated using a data processing system that matched MISR pixels with co-located and concurrent lidar-derived roughness measurements from Airborne Topographic Mapper (ATM), calibrated the multi- angle data to values of surface roughness using a K-Nearest Neighbor (KNN) algorithm, and then applied the algorithm to Arctic-wide MISR data for two 16-day periods in April and July 2016. The resulting maps show good agreement with independent ATM roughness data and enable characterization of the roughness of different ice types. The binary cloud detection algorithm was developed using a neural network approach and a training dataset constructed from Top-of-Atmosphere red band values from all MISR’s nine different viewing cameras for the same two months in various regions of the Arctic. The algorithm showed good performance in classifying pixels into cloudy and clear categories in MISR images, with better performance for clear pixels in April 2016 and better performance for cloudy pixels in July 2016. The algorithm also provides a significant advantage over existing MISR cloud mask products SDCM and ASCM in terms of accuracy and spatial resolution, with a resolution of 275 meters. The data products presented here can be used to gain insights into the seasonal and interannual changes in sea ice roughness and cloud cover over the Arctic and to develop and improve more accurate classification algorithms in the field of remote sensing

    Evaluation of MODIS LAI/FPAR product Collection 6. Part 1: consistency and improvements

    Get PDF
    As the latest version of Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation (FPAR) products, Collection 6 (C6) has been distributed since August 2015. This collection is evaluated in this two-part series with the goal of assessing product accuracy, uncertainty and consistency with the previous version. In this first paper, we compare C6 (MOD15A2H) with Collection 5 (C5) to check for consistency and discuss the scale effects associated with changing spatial resolution between the two collections and benefits from improvements to algorithm inputs. Compared with C5, C6 benefits from two improved inputs: (1) L2G–lite surface reflectance at 500 m resolution in place of reflectance at 1 km resolution; and (2) new multi-year land-cover product at 500 m resolution in place of the 1 km static land-cover product. Global and seasonal comparison between C5 and C6 indicates good continuity and consistency for all biome types. Moreover, inter-annual LAI anomalies at the regional scale from C5 and C6 agree well. The proportion of main radiative transfer algorithm retrievals in C6 increased slightly in most biome types, notably including a 17% improvement in evergreen broadleaf forests. With same biome input, the mean RMSE of LAI and FPAR between C5 and C6 at global scale are 0.29 and 0.091, respectively, but biome type disagreement worsens the consistency (LAI: 0.39, FPAR: 0.102). By quantifying the impact of input changes, we find that the improvements of both land-cover and reflectance products improve LAI/FPAR products. Moreover, we find that spatial scale effects due to a resolution change from 1 km to 500 m do not cause any significant differences.Help from MODIS & VIIRS Science team members is gratefully acknowledged. This work is supported by the MODIS program of NASA and partially funded by the National Basic Research Program of China (Grant No. 2013CB733402), the key program of NSFC (Grant No. 41331171) and Chinese Scholarship Council. (MODIS program of NASA; 2013CB733402 - National Basic Research Program of China; 41331171 - NSFC; Chinese Scholarship Council

    Evaluation of Detector-to-Detector and Mirror Side Differences for Terra MODIS Reflective Solar Bands Using Simultaneous MISR Observations

    Get PDF
    The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the five Earth-observing instruments on-board the National Aeronautics and Space Administration (NASA) Earth-Observing System(EOS) Terra spacecraft, launched in December 1999. It has 36 spectral bands with wavelengths ranging from 0.41 to 14.4 mm and collects data at three nadir spatial resolutions: 0.25 km for 2 bands with 40 detectors each, 0.5 km for 5 bands with 20 detectors each and 1 km for the remaining 29 bands with 10 detectors each. MODIS bands are located on four separate focal plane assemblies (FPAs) according to their spectral wavelengths and aligned in the cross-track direction. Detectors of each spectral band are aligned in the along-track direction. MODIS makes observations using a two-sided paddle-wheel scan mirror. Its on-board calibrators (OBCs) for the reflective solar bands (RSBs) include a solar diffuser (SD), a solar diffuser stability monitor (SDSM) and a spectral-radiometric calibration assembly (SRCA). Calibration is performed for each band, detector, sub-sample (for sub-kilometer resolution bands) and mirror side. In this study, a ratio approach is applied to MODIS observed Earth scene reflectances to track the detector-to-detector and mirror side differences. Simultaneous observed reflectances from the Multi-angle Imaging Spectroradiometer (MISR), also onboard the Terra spacecraft, are used with MODIS observed reflectances in this ratio approach for four closely matched spectral bands. Results show that the detector-to-detector difference between two adjacent detectors within each spectral band is typically less than 0.2% and, depending on the wavelengths, the maximum difference among all detectors varies from 0.5% to 0.8%. The mirror side differences are found to be very small for all bands except for band 3 at 0.44 mm. This is the band with the shortest wavelength among the selected matching bands, showing a time-dependent increase for the mirror side difference. This study is part of the effort by the MODIS Characterization Support Team (MCST) in order to track the RSB on-orbit performance for MODIS collection 5 data products. To support MCST efforts for future data re-processing, this analysis will be extended to include more spectral bands and temporal coverage

    Earth observations from DSCOVR EPIC instrument

    Full text link
    The National Oceanic and Atmospheric Administration (NOAA) Deep Space Climate Observatory (DSCOVR) spacecraft was launched on 11 February 2015 and in June 2015 achieved its orbit at the first Lagrange point (L1), 1.5 million km from Earth toward the sun. There are two National Aeronautics and Space Administration (NASA) Earth-observing instruments on board: the Earth Polychromatic Imaging Camera (EPIC) and the National Institute of Standards and Technology Advanced Radiometer (NISTAR). The purpose of this paper is to describe various capabilities of the DSCOVR EPIC instrument. EPIC views the entire sunlit Earth from sunrise to sunset at the backscattering direction (scattering angles between 168.5° and 175.5°) with 10 narrowband filters: 317, 325, 340, 388, 443, 552, 680, 688, 764, and 779 nm. We discuss a number of preprocessing steps necessary for EPIC calibration including the geolocation algorithm and the radiometric calibration for each wavelength channel in terms of EPIC counts per second for conversion to reflectance units. The principal EPIC products are total ozone (O3) amount, scene reflectivity, erythemal irradiance, ultraviolet (UV) aerosol properties, sulfur dioxide (SO2) for volcanic eruptions, surface spectral reflectance, vegetation properties, and cloud products including cloud height. Finally, we describe the observation of horizontally oriented ice crystals in clouds and the unexpected use of the O2 B-band absorption for vegetation properties.The NASA GSFC DSCOVR project is funded by NASA Earth Science Division. We gratefully acknowledge the work by S. Taylor and B. Fisher for help with the SO2 retrievals and Marshall Sutton, Carl Hostetter, and the EPIC NISTAR project for help with EPIC data. We also would like to thank the EPIC Cloud Algorithm team, especially Dr. Gala Wind, for the contribution to the EPIC cloud products. (NASA Earth Science Division)Accepted manuscrip

    Simulating arbitrary hyperspectral bandsets from multispectral observations via a generic Earth Observation-Land Data Assimilation System (EO-LDAS)

    Get PDF
    This paper presents results of using multi-sensor and multi-angular constraints in the generic Earth Observation-Land Data Assimilation System (EO-LDAS) for reproducing arbitrary bandsets of hyperspectral reflectance at the top-of-canopy (TOC) level by merging observations from multispectral sensors with different spectral characteristics. This is demonstrated by combining Multi-angle Imaging Spectroradiometer (MISR) and Landsat Enhanced Thematic Mapper Plus (ETM+) data to simulate the Compact High Resolution Imaging Spectrometer CHRIS/PROBA hyperspectral signal over an agricultural test site, in Barrax, Spain. However, the method can be more generally applied to any combination of spectral data, providing a tool for merging EO data to any arbitrary hyperspectral bandset. Comparisons are presented using both synthetic and observed MISR and Landsat data, and retrieving surface biophysical properties. We find that when using simulated MISR and Landsat data, the CHRIS/PROBA hyperspectral signal is reproduced with RMSE 0.0001– 0.04. LAI is retrieved with r2 from 0.97 to 0.99 and RMSE of from 0.21 to 0.38. The results based on observed MISR and Landsat data have lower performances, with RMSE for the reproduced CHRIS/PROBA hyperspectral signal varying from 0.007 to 0.2. LAI is retrievedwith r2 from 0.7 to 0.9 and RMSE from 0.7 to 1.4. We found that for the data considered here the main spectral variations in the visible and near infrared regions can be described by a limited number of parameters (3–4) that can be estimated from multispectral information. Results show that the method can be used to simulate arbitrary bandsets, which will be of importance to any application which requires combining new and existing streams of new EO data in the optical domain, particularly intercalibration of EO satellites in order to get continuous time series of surface reflectance, across programmes and sensors of different designs

    Forest structure and aboveground biomass in the southwestern United States from MODIS and MISR

    Get PDF
    Red band bidirectional reflectance factor data from the NASA MODerate resolution Imaging Spectroradiometer (MODIS) acquired over the southwestern United States were interpreted through a simple geometric–optical (GO) canopy reflectance model to provide maps of fractional crown cover (dimensionless), mean canopy height (m), and aboveground woody biomass (Mg ha−1) on a 250 m grid. Model adjustment was performed after dynamic injection of a background contribution predicted via the kernel weights of a bidirectional reflectance distribution function (BRDF) model. Accuracy was assessed with respect to similar maps obtained with data from the NASA Multiangle Imaging Spectroradiometer (MISR) and to contemporaneous US Forest Service (USFS) maps based partly on Forest Inventory and Analysis (FIA) data. MODIS and MISR retrievals of forest fractional cover and mean height both showed compatibility with the USFS maps, with MODIS mean absolute errors (MAE) of 0.09 and 8.4 m respectively, compared with MISR MAE of 0.10 and 2.2 m, respectively. The respective MAE for aboveground woody biomass was ~10 Mg ha−1, the same as that from MISR, although the MODIS retrievals showed a much weaker correlation, noting that these statistics do not represent evaluation with respect to ground survey data. Good height retrieval accuracies with respect to averages from high resolution discrete return lidar data and matches between mean crown aspect ratio and mean crown radius maps and known vegetation type distributions both support the contention that the GO model results are not spurious when adjusted against MISR bidirectional reflectance factor data. These results highlight an alternative to empirical methods for the exploitation of moderate resolution remote sensing data in the mapping of woody plant canopies and assessment of woody biomass loss and recovery from disturbance in the southwestern United States and in parts of the world where similar environmental conditions prevail

    Contribution of leaf specular reflection to canopy reflectance under black soil case using stochastic radiative transfer model

    Full text link
    Numerous canopy radiative transfer models have been proposed based on the assumption of “ideal bi-Lambertian leaves” with the aim of simplifying the interactions between photons and vegetation canopies. This assumption may cause discrepancy between the simulated and measured canopy bidirectional reflectance factor (BRF). Few studies have been devoted to evaluate the impacts of such assumption on simulation of canopy BRF at a high-to-medium spatial resolution (∼30 m). This paper focuses on quantifying the contribution of leaf specular reflection on the estimation of canopy BRF under a black soil case using one of the most efficient radiative transfer models, the stochastic radiative transfer model. Analyses of field and satellite data collected over the boreal Hyytiälä forest in Finland show that leaf specular reflection may lead to errors of up to 33.1% at 550 nm and 32.8% at 650 nm in terms of relative root mean square error. The results suggest that, in order to minimize these errors, leaf specular reflection should be accounted for in modeling BRF.This research was supported by the Fundamental Research Funds for the Central Universities under Grant No. 531107051063 and Guangxi Natural Science Foundation under Grant No. 2016JJD110017. We would like to thank Dr. Rautiainen Miina and Mottus Matti for sharing the field data and the USGS for making the EO-1 Hyperion hyperspectral data publically available. (531107051063 - Fundamental Research Funds for the Central Universities; 2016JJD110017 - Guangxi Natural Science Foundation)Accepted manuscrip

    Intercomparison of MODIS Albedo Retrievals and In Situ Measurements Across the Global FLUXNET Network

    Get PDF
    Surface albedo is a key parameter in the Earth's energy balance since it affects the amount of solar radiation directly absorbed at the planet surface. Its variability in time and space can be globally retrieved through the use of remote sensing products. To evaluate and improve the quality of satellite retrievals, careful intercomparisons with in situ measurements of surface albedo are crucial. For this purpose we compared MODIS albedo retrievals with surface measurements taken at 53 FLUXNET sites that met strict conditions of land cover homogeneity. A good agreement between mean yearly values of satellite retrievals and in situ measurements was found (R(exp 2)= 0.82). The mismatch is correlated to the spatial heterogeneity of surface albedo, stressing the relevance of land cover homogeneity when comparing point to pixel data. When the seasonal patterns of MODIS albedo is considered for different plant functional types, the match with surface observation is extremely good at all forest sites. On the contrary, in non-forest sites satellite retrievals underestimate in situ measurements across the seasonal cycle. The mismatch observed at grasslands and croplands sites is likely due to the extreme fragmentation of these landscapes, as confirmed by geostatistical attributes derived from high resolution scenes
    corecore