20 research outputs found

    Invexity and Optimization

    Full text link

    Sum Throughput Maximization in Multi-Tag Backscattering to Multiantenna Reader

    Full text link
    Backscatter communication (BSC) is being realized as the core technology for pervasive sustainable Internet-of-Things applications. However, owing to the resource-limitations of passive tags, the efficient usage of multiple antennas at the reader is essential for both downlink excitation and uplink detection. This work targets at maximizing the achievable sum-backscattered-throughput by jointly optimizing the transceiver (TRX) design at the reader and backscattering coefficients (BC) at the tags. Since, this joint problem is nonconvex, we first present individually-optimal designs for the TRX and BC. We show that with precoder and {combiner} designs at the reader respectively targeting downlink energy beamforming and uplink Wiener filtering operations, the BC optimization at tags can be reduced to a binary power control problem. Next, the asymptotically-optimal joint-TRX-BC designs are proposed for both low and high signal-to-noise-ratio regimes. Based on these developments, an iterative low-complexity algorithm is proposed to yield an efficient jointly-suboptimal design. Thereafter, we discuss the practical utility of the proposed designs to other application settings like wireless powered communication networks and BSC with imperfect channel state information. Lastly, selected numerical results, validating the analysis and shedding novel insights, demonstrate that the proposed designs can yield significant enhancement in the sum-backscattered throughput over existing benchmarks.Comment: 17 pages, 5 figures, accepted for publication in IEEE Transactions on Communication

    Local maximizers of generalized convex vector-valued functions

    Get PDF
    Any local maximizer of an explicitly quasiconvex real-valued function is actually a global minimizer, if it belongs to the intrinsic core of the function's domain. In this paper we show that similar properties hold for componentwise explicitly quasiconvex vector-valued functions, with respect to the concepts of ideal, strong and weak optimality. We illustrate these results in the particular framework of linear fractional multicriteria optimization problems.Any local maximizer of an explicitly quasiconvex real-valued function is actually a global minimizer, if it belongs to the intrinsic core of the function's domain. In this paper we show that similar properties hold for componentwise explicitly quasiconvex vector-valued functions, with respect to the concepts of ideal, strong and weak optimality. We illustrate these results in the particular framework of linear fractional multicriteria optimization problems

    On Geometric Drawings of Graphs

    Get PDF
    This thesis is about geometric drawings of graphs and their topological generalizations. First, we study pseudolinear drawings of graphs in the plane. A pseudolinear drawing is one in which every edge can be extended into an infinite simple arc in the plane, homeomorphic to R\mathbb{R}, and such that every two extending arcs cross exactly once. This is a natural generalization of the well-studied class of rectilinear drawings, where edges are straight-line segments. Although, the problem of deciding whether a drawing is homeomorphic to a rectilinear drawing is NP-hard, in this work we characterize the minimal forbidden subdrawings for pseudolinear drawings and we also provide a polynomial-time algorithm for recognizing this family of drawings. Second, we consider the problem of transforming a topological drawing into a similar rectilinear drawing preserving the set of crossing pairs of edges. We show that, under some circumstances, pseudolinearity is a necessary and sufficient condition for the existence of such transformation. For this, we prove a generalization of Tutte's Spring Theorem for drawings with crossings placed in a particular way. Lastly, we study drawings of KnK_n in the sphere whose edges can be extended to an arrangement of pseudocircles. An arrangement of pseudocircles is a set of simple closed curves in the sphere such that every two intersect at most twice. We show that (i) there is drawing of K10K_{10} that cannot be extended into an arrangement of pseudocircles; and (ii) there is a drawing of K9K_9 that can be extended to an arrangement of pseudocircles, but no extension satisfies that every two pseudocircles intersects exactly twice. We also introduce the notion pseudospherical drawings of KnK_n, a generalization of spherical drawings in which each edge is a minor arc of a great circle. We show that these drawings are characterized by a simple local property. We also show that every pseudospherical drawing has an extension into an arrangement of pseudocircles where the ``at most twice'' condition is replaced by ``exactly twice''

    Characterizations of the solution sets of pseudoinvex programs and variational inequalities

    Get PDF
    Author name used in this publication: Heungwing Lee2011-2012 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    A kvázi-Hesse-mátrix

    Get PDF

    A Pseudo-Analyzer Approach to Formal Group Laws Not of Operad Type

    Get PDF
    AbstractFormal group schemes, associated to affine group schemes or Lie groups by completion, can be described by classical formal group laws. More generally, cogroup objects in categories of complete algebras (e.g., associative) are described by group laws for operads or analyzers. M. Lazard has introduced analyzers to study formal group laws and group law chunks (truncated formal power series). A main example of a type of generalized formal group laws not given by an operad or analyzer are group laws corresponding to noncommutative complete Hopf algebras. To cover this case and other types of group laws, pseudo-analyzers are introduced. We point out differences to the (quadratic) operad case; e.g., there is no classification of group laws by Koszul duality. On the other hand we show how pseudo-analyzer cohomology can be used to describe extension of group law chunks
    corecore