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Formal group schemes, associated to affine group schemes or Lie groups by
completion, can be described by classical formal group laws. More generally,

Ž .cogroup objects in categories of complete algebras e.g., associative are described
by group laws for operads or analyzers. M. Lazard has introduced analyzers to

Ž .study formal group laws and group law chunks truncated formal power series . A
main example of a type of generalized formal group laws not given by an operad
or analyzer are group laws corresponding to noncommutative complete Hopf
algebras. To cover this case and other types of group laws, pseudo-analyzers are

Ž .introduced. We point out differences to the quadratic operad case; e.g., there is
no classification of group laws by Koszul duality. On the other hand we show how
pseudo-analyzer cohomology can be used to describe extension of group law
chunks. � 2001 Academic Press

Ž .Monomials, polynomials, and power series with variables from a finite
� 4set X � x , . . . , x are defined after fixing a ‘‘type’’ or operad, e.g.,1 m

Ž .associative commutative type � or � om, the classical case , associative
Ž . Ž .noncommutative type � , or nonassociative noncommutative type � .

We will be mostly interested in these, but we will also mention other
examples.

ŽFormal group laws over these operads were introduced as group laws in
. Ž � �.analyzers by Lazard cf. La1, La2 . They correspond to cogroup objects

in the corresponding categories of complete algebras. Over a field K of
characteristic 0, they are classified by Lazard�Lie theory, which can be

Ž � �.described in terms of Koszul duality for operads cf. GK, Fr1 .

1 I thank the DFG for financial support. Research at MSRI is supported in part by NSF
Grant DMS-9701755.
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Group laws corresponding to Hopf algebra structures on the free
ˆ²² :: Ž .associative power series algebra K X �-cogroup structures , see

� �Ho1, Ho2 , are not group laws in an operad or analyzer. Hopf algebras are
Ž � �.not algebras over an operad; they are given by PROPs cf. ML1, FM .

Here types � and � are mixed in a certain way. The same is true for
ˆ Žgroup laws corresponding to �-cogroup structures and �-cogroup struc-ˆ

.tures on free nonassociative power series algebras.
To cover these mixed types, we will give a modification of Lazard’s

theory. We introduce pseudo-analyzers and prove that the mixed types
indicated above provide examples of pseudo-analyzers that are not analyz-
ers. A main point is that Lazard’s concept of describing extension of group
law chunks by analyzer cohomology also applies to group laws over
pseudo-analyzers. We show that the torsion theorem, the key to the

Ž .classification of group laws over analyzers in the rational case is not true
for pseudo-analyzers, and we describe some cohomology modules in the
case corresponding to noncommutative complete Hopf algebras. We will
then review the classification of group laws over analyzers in the rational
case and show that structure constants providing formal group laws of two
Ž . Ž .operad types, e.g., � and � , also provide a non-trivial formal group law
of the corresponding mixed type.

In Section 1 we recall the definition of an operad and define monomials
and power series. Besides the ‘‘usual’’ power series, we will include ‘‘mixed

�̂pŽ ²² ::.types’’ like elements of K X , p � 2.
The definitions of pseudo-analyzers and analyzers together with first

examples of analyzers are given in Section 2. Lazard’s cohomology mod-
ules are introduced for pseudo-analyzers.

In Section 3 we give examples for pseudo-analyzers that are not analyz-
ers.

Section 4 contains the definition of group laws in pseudo-analyzers and
the generalization of Lazard’s criterion for extension of group law chunks.

ŽWe also look at the type corresponding to complete in general noncom-
.mutative Hopf algebras.

Over a ground field of characteristic 0, we show that every finitely
generated complete associative algebra with Hopf algebra structure is

²² ::isomorphic to a free complete algebra K X modulo an ideal I that is
contained in the ideal generated by all commutators. For i � 0 such
structures are nothing else but formal group laws in the corresponding
pseudo-analyzer.

In Section 5 we prove that Lazard’s torsion theorem does not hold for
pseudo-analyzers. We describe cohomology modules in the analyzer and
pseudo-analyzers cases.

The last section relates results from Section 5 to the concept of Koszul
duality for operads and shows how the classification of group laws in
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rational analyzers provides examples for formal group laws not of operad
type.

1. POWER SERIES OF DIFFERENT TYPES

We fix m � �� . For all p � �, let X � p be the set
� Ž1. Ž1. Ž p. Ž p.4 Ž1. Ž1.x , . . . , x , . . . , x , . . . , x of variables, ordered by x � . . . � x1 m 1 m 1 m

Ž p. Ž p. �1 � 4� . . . � x � . . . � x . X is identified with X � x , . . . , x . K1 m 1 m
Žwill denote a field of coefficients. Later we will allow K to be a unitary

.commutative associative ring.
Over X we will form monomials of the following types. The first case

Ž .classical case , type � , is the case of associative commutative variables.
Type � will denote the associative noncommutative case, type � the
nonassociative commutative case, and � the nonassociative noncommuta-
tive case.

DEFINITION 1.1. For n � �� let S be the symmetric group andn
Ž Ž ..S-Vect be the following category: Objects � are sequences � nK n� �

Ž .of vector spaces � n with S -action. Morphisms are given by homomor-n
phisms compatible with the S -action.n

To every S-vector space � there is associated an endofunctor on Vect K
Ž . � Ž . �n Ž �ngiven by F V � Ý � n � V where S acts on V by place� n�0 S nn
.permutation . S-Vect can be identified with the full subcategory ofK

Ž .End Vect consisting of functors of the form F . We note that Id isK � Vect K
Ž . Ž .given by the S-vector space � with � 1 � K , � n � 0 for n � 1.

Ž . ŽThen a K-linear operad � is a monoid F , � : F � F � F , 1 : Id� � � �
. Ž� F with respect to the composition of functors in this subcategory i.e.,�

� �. � �a monad, cf. ML2, Chap. VI , cf. Fr1 . Clearly the unit is given by a
Ž . Žhomomorphism K � � 1 . If we don’t require operad-associativity i.e.,

.the associativity of � : F � F � F , we get the notion of a pseudo-� � �
� �operad, cf. HL .

Ž .For any operad � , F V is called the free �-algebra generated by the�

space V.

Ž . � Ž �n. ŽEXAMPLE 1.2. The functor F V � Ý V non-unitary sym-� om n�1 Sn
. Ž . Ž1.metric algebra defines the operad � om given by � om n � K � x � . . . �

Žn. Ž . Ž . � �nx � K all n � 1 ; this is the classical case. F V � Ý V defines	 s n�1
Ž .an operad where 	 s n is the n!-dimensional K-space generated by the

Ž . Ž� Ž1.. Ž� Žn..type � -monomials x � . . . � x , � � S .n
Ž .
 ie is an operad given by the n 	 1 !-dimensional K-spaces generated
Ž .by multilinear bracket monomials with respect to e.g. the Jacobi identity ;

� �cf. GK . Types � and � correspond to free quadratic operads generated
Ž . Ž .by one resp. two quadratic monomial s and the obvious S -actions;n
� �compare GK .
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Remark 1.3. We can regard free �-algebras with 1 generated by the
vector space V, where V has X as basis. Clearly they are polynomial rings

� � ² : Ž . Ž .K X , K X , if the operads are � om type � , 	 s type � . A K-basis is
Žgiven in each case by the monomials of the corresponding type together

.with 1 .

² � p: Žn. ² :We remark that K X together with the p injections i : K X �
² � p: Žn. Ž � �.K X , x � x is the coproduct or copower, cf. ML2, p. 64i i

Ž ² :.� p ² : ² :K X � K X � . . . � K X in the category of unitary associa-� �

tive K-algebras. The coproduct � of commutative unitary K-algebras is�

the tensor product �� � . The commutative associative polynomialK
� � p � Ž � �.�p � � � �algebra K X corresponds to K X � K X � . . . � K X via� �

Žn. Ž .x � 1 � . . . � 1 � x � 1 � . . . � 1 x in the nth place .i i i

Similar assertions hold for types � and �. We denote the associated
coproducts by � and � . For all these copowers we can use monomials� �

with variables from X � p, p � 2, as a K-basis.
Now the coproduct-functors may have extensions to bigger categories.

Ž . ² :For example, one can consider the non-free associative algebra K X
² : � 4 � 4� . . . � K X or form K X � K X for the free nonassociative K-K K K

� 4algebra K X .
This is the reason why we will make further distinctions when we speak

� p Žof monomials with variables from X , p � 2. We may allow relations of
. Žn. Žn� . �commutativity or associativity between variables x , x , n � n , i, ji j

Ž .arbitrary, by specifying the type of categorical coproduct, that induces the
type of monomials over X � p.

DEFINITION 1.4. Let 	 be one of the types � , � , � , � defined above
� 4 � 4and let either � � � , � in case 	 � � , or � � � , � , � , � in case

� 4	 � � , or � � � , � in case 	 � �. Let A be the free algebra of type
Ž .	 with variables from X. There is a canonical K-module basis consisting

of homogeneous elements of

A � . . . � A .� �� � �
p

Ž . m Ž p.We call the basis elements � 1 � 	 	 -monomials.�

We will sometimes abbreviate � 	m � by m �.�

We count for every n � 1, . . . , p, how many variables x Žn. occur in thei
Ž . pmonomial. This gives us a degree-tuple � � � , . . . , � � � . Then1 p

� � p� � Ý � is the total degree of the given monomial, while � is then�1 n n

degree with respect to the variables x Žn., . . . , x Žn.. By � 	m 	 Ž p.-1 m � �
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monomials we mean � 	m 	 Ž p.-monomials with multidegree � ��
Ž .� , . . . , � .1 p

� � p Ž p.Let 	 be the K-module freely generated by all 	 -monomials.� �
p p p p ˆ p� � � � � � � � � ��Let 	 � 
 	 , 	 � 
 	 , and 	 �pr � r�� � � : � � ��r4 r � �

p ˆ p p� � � � � ��Ł 	 . Here 	 is considered as the completion of 	 withrr � �

Ž � � p. �respect to the topology given by the basis 
 	 of 0-neighbor-r R � �r � R
hoods.

Ž .If � � � reverse lexicographically, i.e., if � , . . . , � is lexicographi-p 1
Ž . Ž .cally smaller than � , . . . , � , all monomials with multidegree � , . . . , �p 1 1 p

Ž .are smaller than any monomial of multidegree � , . . . , � . Representa-1 p
tives of monomials of the same multidegree are compared reverse lexico-

Ž .graphically starting on the right with respect to submonomials, where
Ž . Ž .especially w � w if deg w � deg w . Monomials will be written as1 2 1 2

Ž .concatenation of increasing submonomials recursively .

ŽEXAMPLE 1.5. In the classical case commutative associative, � as
.coproduct , we write the monomials as concatenation of increasing vari-

ables from X � p.
Each � Ž p.-monomial is of the form x Ž1. . . . x Ž1. . . . x Ž p. . . . x Ž p., where� i i i i1 � r	� �1 r1 p

� �r � � , with 1 � i � . . . � i � m, . . . , 1 � i � . . . � i � m.1 � r	� �1 r1 p

Any � -m 	 Ž p.-monomial can be viewed as a product w Ž1. � . . . � w Ž p., ofK
Ž . Žn. Žp separated possibly empty monomials w , each in m variables for
. Žn. Žn. m Ž p. Žn � 1, . . . , p x , . . . , x . In the � - � -case, every monomial with1 m K

. Žn1. Žn1. Žnr . Žnr .given degree-tuple � is of the form x . . . x � . . . � x . . . x ,i i i i1 � r	� �1 r1 p
1 � n � . . . � n � p.1 r

To combine � with � we proceed similarly and get expressions�

w Žn1. � . . . � w Žnr ., n � n . The representatives for the other types are1 r i i�1
chosen similarly.

Remark 1.6. In general the semigroup structure of the set of 	 Ž p.-
� � pmonomials induces the structure of a K-algebra with 1 on K 
 	 ,

� � pwithout 1 on 	 .
Ž ² :.� p � m � p Ž ² :.�p �K X is identified with K 
 �- � , K X with K 
 � -

m � p Ž � �.�p �m � p� and K X with K 
 � .

ˆIf � and � denote the appropriate completions, we can identify K 
�̂ � �
m p m p m p� � � � � � Ž .�- � , K 
 �- � , and K 
 � with the complete power series

ˆ ˆ� p� p �p � p²² :: Ž ²² ::. Ž ²² ::. �� ��algebras K X � K X , K X , and K X �
�̂pŽ �� ��.K X , respectively. More generally, we have a structure of a topolog-

ˆ p� �ical K-algebra with 1 on K 
 	 . There exist surjective continuous� � � �
m p m p m p m p� � � � � � � �K-linear maps �- � � �- � and �- � � � induced by the

projections of the corresponding semigroups. In the nonassociative cases
one has to regard magmas instead of semigroups.
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For � , � , � , � , we recover the usual notion of power series over the
given operads, defined as follows.

Ž . Ž .DEFINITION 1.7. If � 0 � 0, � 1 � K , the free complete �-algebra�
� �nŽ . Ž . Ž .without 1 generated by V is defined by F V � Ł � n � V . If� n�0 Sn

² Ž1. Žn.: Ž1. Žn.V � x , . . . , x is the vector space with basis x , . . . , x , then the�
Ž . � �elements of F V are called �-power series, cf. Fr1, GK .�

Ž .For A an algebra of any type with an augmentation � : A � K , A its
lim Ž .augmentation ideal, we say that A is complete iff A � � A�J , J an n n� �

sequence of ideals s.t. all A�J are nilpotent.n

2. ANALYZERS AND PSEUDO-ANALYZERS

The modern notion of an operad has Lazard’s notion of an analyzer, see
� �La2 , as a precursor. In our setting, this concept has some advantages. We

Ž .want to modify the definition of complete or incomplete analyzers over K
replacing two axioms by weaker axioms.

From now on, K denotes a commutative associative ring with 1.
Ž n. nLet 	 be a sequence of K-modules, where in each 	 there aren� �

n distinct elements e , . . . , e selected. For every p, q � � and alln, 1 n, n
g , . . . , g � 	 q, let a K-linear map 	 p, q : 	 p � 	 q, called a composi-1 p g , . . . , g1 p

Ž .tion map or insertion map , be given.
If f � 	 p, we say that f has p arguments. For 1 � i � p, we say f is

p, q Ž .neutral with respect to the ith argument, iff 	 f �g , . . . , g , . . . , g1 i pp, q Ž . � Ž .�	 f for all g , . . . , g , g . We denote by supp f the setg , . . . , g , . . . , g 1 p i �1, . . . , p41 i p
� 4 � 41, . . . , p 	 i : f is neutral w.r.t. ith argument . Two elements f and g of

p Ž . Ž .	 are said to be pairwise compatible if supp f  supp g�1, . . . , p4 �1, . . . , p4
� �.

Ž n. p, qDEFINITION 2.1. Let 	 , e , 	 be given as above andn� � n, i g , . . . , g1 p

assume

Ž . p p, p Ž .C1 For all p � �, f � 	 : 	 f � f.e ep, 1, . . . , p, p

q p, q Ž .For all p, q, i � � with 1 � i � p and all f , . . . , f � 	 : 	 e1 p f , . . . , f p, i1 p

� f .i

Ž . nC2a For all n, p, q � �, all f � 	 , all pairwise compatible
g , . . . , g � 	 p, and all pairwise compatible h , . . . , h � 	 q it holds that1 n 1 p

p, q Ž n, p Ž .. n, q Ž . p, q Ž . q Ž .	 	 f � 	 f , where l � 	 g � 	 all i .h , . . . , h g , . . . , g l , . . . , l i h , . . . , h i1 p 1 n 1 n 1 p

Ž . n n nD1 	 is a multigraded K-module for every n: 	 � 
 	 rr � �
n n � � � �with 	 � 
 	 , where � � � � . . . �� . As in La1 wenr � 1 n�� � � : � � ��r4

n Ž .furthermore assume 	 � 0 all n .0
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Ž . Ž .D2 The e all n, i are multihomogeneous of multidegreen, i
Ž . Ž .0, . . . , 0, 1, 0, . . . , 0 1 at the ith position .

Ž . p p q p, q Ž .D3 For all f � 	 , � � � , g � 	 , 
 � K : 	 f �� i i 
 g , . . . , 
 g1 1 n n
�1 �n n, p Ž . 0
 � . . . � 
 � 	 f , where 0 � 1.1 n g , . . . , g1 n

Ž . n Ž . pD4 If f � 	 and for all i � 1, . . . , n g � 	Ž� , . . . , � . i Ž � .1 n i, 1, . . . , � i, pn, p Ž . p n Ž .then 	 f � 	 with � � Ý � � all j � 1, . . . , p .g , . . . , g Ž� , . . . , � . j i�1 i i, j1 n 1 n

Ž . n n nD5a If, for � � � , P denotes the projection 	 � 	 onto the� �

homogeneous component of multidegree � , we require for every f � 	 p,�

Ž p, p�1 Ž ..P 	 f � 0, if � � � � � or � � � for� Ž e �e ., e , . . . , e 1 2 1 i i	1p� 1, 1 p�1, 2 p�1, 3 p�1, p�1

any i � 3, . . . , p � 1.

Then 	 will be called an incomplete pseudo-analyzer over K. The incom-
plete pseudo-analyzer 	 is called an incomplete analyzer over K , if

Ž . Ž .furthermore C2b and D5b hold:

Ž . Ž .C2b Axiom C2 holds without the assumptions on compatibility.
Ž .D5b In case � � � � � and � � � one has1 2 1 i i	1

� !1p�1, p p , p�1	 P 	 f � f .Ž .ž /e , e , e , . . . , e � Ž e �e . , e , . . . , ež /p ,1 p , 1 p , 2 p , p p�1 , 1 p�1 , 2 p�1 , 3 p�1 , p�1 � !� !1 2

ˆ n ˆ n nŽ . Ž . �Let 	 be a sequence of multi graded K-modules 	 � Ł 	n� � r � � r
with 	 n � 
 	 n . Assume 	 � � 	 n with 	 n �nr � n� ��� � � : � � ��r4

n Ž .
 	 is an incomplete pseudo- analyzer and that the compositionrr � �
ˆ ˆ nmaps of 	 are continuously extended to 	 � � 	 with respect ton� �

Ž p. �the topology given by the basis 
 	 of 0-neighborhoods.r R � �r � R
ˆ Ž . Ž .Then 	 together with these maps is called a complete pseudo-

analyzer.
A morphism 	 � 	� of pseudo-analyzers is a sequence � of K-linear

n Ž �.n Ž .maps � : 	 � 	 that respects the structure: We require � e �n n n, i
� Ž n . Ž �.n 	 � , n, p Ž � . Ž 	 , n, p Ž ..� �e , � 	 � 	 , and 	 f � � 	 f for every f , gn, i n � � g , . . . , g p g , . . . , g i1 n 1 n

Ž . � Ž . �with � f � f , � g � g .n p i i

Ž1 n. Ž � Ž1.
�EXAMPLE 2.2. The sequence � of K-modules K x ,n� �

Žn.�. Ž � � n.� �. . . , x , i.e., the sequence � for m � 1 of Section 1,n� � n� �

together with the elements e � x Ž i., defines an incomplete analyzer,n, i
Ž .where the composition maps are canonically defined by insertion of

polynomials. This analyzer 1 � � � 1 � n is called the classical ana-n� �
1 ˆ� �lyzer; see La1, p. 332, Example c . � given by the sequence

Ž �� Ž1. Žn.��. �K x , . . . , x is the associated complete analyzer. The composi-n� �

tion maps are given by insertion of power series without constant term.
1 Ž �Similarly defined are analyzers � occurring in La1, p. 332, Example

�. 1 1 � �b , � , � La1, Example a and the corresponding complete analyzers.
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1 � �� is called Kurosch’s analyzer; cf. also La1, p. 391 . There is an inclusion
� �morphism from the Lie-analyzer La1, p. 333, Example d into the analyzer

1 �.
We are going to look at pseudo-analyzers that are not analyzers in the

next section.
�

Ž1.Ž Ž²Remark 2.3. For every operad � , the sequence F x , . . . ,�
Žn.:.. � �x forms an analyzer over K , cf. Fr1 , and we can get the operadn� �

Žback as a subspace generated in each component by the multilinear
.monomials, i.e., the monomials having degree 1 in each variable . The

1 ˆcorresponding analyzer of the � om-power series is � , the analyzer of the
1 ˆ	 s-power series is � , and so on.

� �There are analyzers that do not correspond to operads; cf. La1, p. 333 .
Note that, while associativity of composition is not required for pseudo-

Ž .operads, we do require a partial associativity for pseudo-analyzers C2a .
� �We will finish this section with some results from La1 which hold for

pseudo-analyzers.

DEFINITION 2.4. Let 	 be a pseudo-analyzer.
For R � �� we will say that elements f , g from 	 p, are equivalent

up to degree R, write f � g mod J R�1, if ÝR P f � ÝR P g, wherer�1 r r�1 r
P denotes the projection onto the homogeneous component of totalr
degree r.

� � p R pWe can identify the elements of 	 R � 
 	 with elements fromrr�1
	 p mod J R�1.

� � � �nRemark 2.5. It is easy to see that 	 R � � 	 R is also an� �

� �pseudo-analyzer if 	 is. 	 R is both incomplete and complete. There is a
� �canonically defined projection morphism from 	 onto 	 R .

Ž � �.LEMMA 2.6 ‘‘Composition Lemma’’ of La2 . Let 	 be a pseudo-
analyzer, n � �� , r � �, and F � 	 n with F � 0 mod J r�1 be gi�en.

Ž1. Žn. ˆ p � n, pŽ . Ž .Ž1. Žn.We regard, for G , . . . , G � 	 p � � , the element 	 FG , . . . , G
ˆ p� 	 .

Ž i. Ž i. s�1 Ž .Then, gi�en L � G mod J s � � , all i � 1, . . . , n, we ha�e

	 n , p
Ž1. Žn. F � 	 n , p

Ž1. Žn. F mod J r�s�1.Ž . Ž .G , . . . , G L , . . . , L

� �Proof. The proof is given in La1 for analyzers. We note that we can
Ž . Ž . Ž . Ž .replace in this proof the assumptions C2 and D5 by C2a and D5a .

Thus the same proof fits for pseudo-analyzers.

DEFINITION 2.7. Let 	 be a pseudo-analyzer, n, i � �� , i � n.
We define the map  : 	 n � 	 n�1 by 	 	 , n, n�1

Ž1. Ž i	1. Ž i. Ž i�1. Ž i�2. Žn�1.i e , . . . , e , Ž e �e ., e , . . . , e
	 	 	 , n, n�1

Ž1. Ž i. Ž i�2. Žn�1. 	 	 	 , n, n�1
Ž1. Ž i	1. Ž i�1. Žn�1. where e is de-e , . . . , e , e , . . . , e e , . . . , e , e , . . . , e n�1, i

noted by eŽ i. for short.
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A differential � � � : 	 n � 	 n�1 is defined byn

n
i

� � 	1 Ž .Ýn i
i�1

n
i	 , n , n�1 	 , n , n�1

Ž2. Žn�1. Ž1. Ž i. Ž i�1. Žn�1.� 	 � 	1 	Ž .Ýe , . . . , e e , . . . , Že �e . , . . . , e
i�1

n�1 	 , n , n�1
Ž1. Žn.� 	1 	 .Ž . e , . . . , e

� �Remark 2.8. The same formula is given for analyzers in La1, Sect. 8 .
Ž .One checks � �� � 0 all n for pseudo-analyzers by the same directn�1 n

computation as for analyzers, because all inserted elements are compati-
ble.

Let us call f � 	 n pseudolinear with respect to the ith argument, if
 f � 0. f is called pseudolinear, if f is pseudolinear with respect to alli

Ž .arguments. f is called multilinear if f is homogeneous of degree 1, . . . , 1 ,
especially any such f is pseudolinear and no argument is neutral. Note
that f � 	 n is neutral with respect to the ith argument iff

n, n Ž .	 f � f.e , . . . , e , 0, e , . . . , en, 1 n, i	1 n, i�1 n , n

f � 	 n is called symmetric if � f � f for all � � S , where � f �n
n, n Ž . Ž .	 f . f is called anti-symmetric if � f � sign� f , all � .e , . . . , en, � Ž1. n, � Žn.

Ž n. n�1 n
�LEMMA 2.9. It holds that � 	 � 	 . Thus 	 � 
 	 �n r r n� �

n Ž .�
 	 together with � is a co complex of K-modules and there arern, r � �
nŽ . nŽ . nŽ . Ž�cohomology modules H 	 � 
 H 	 , where H 	 � ker � �r r nr � �

n. Ž n	1.	 �im � � 	 .r n	1 r
H is functorial on pseudo-analyzers.

Proof. To verify the last assertion, let � be a morphism 	 � 	�. Then
� n Ž Ž . �we have � �� � � �� , because for all f � 	 with � e � en n n�1 n n n, i n, i

Ž . �.and denoting � f by f ,n

� n�1 �� � �	 , n , n�1 	 , n , n�1
� � � �� � f � 	 f � ��� � 	1 	 fŽ . Ž . Ž . Ž .Ž .n n e , . . . , e e , . . . , en� 1 , 2 n�1 , n�1 n�1 , 1 n�1 , n

� � � f .Ž .Ž .n�1 n

3. EXAMPLES OF PSEUDO-ANALYZERS

� p Ž p. Ž .Let p, r � � and � � � , let 	 be one of the types defined in 1.4 ,
�m m m m m m m m m 4i.e., 	 � � , �- � , � , �- � , � , �- � , �- � , � - � , � . For�

Ž .many K-module V, we denote by V the K-module of m-tuples with
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Ž .entries from M often written as column vectors . If � is a homomorphism
Ž .m Ž . Ž .mV � V, then � denotes the induced homomorphism �, . . . , � : V

Ž .m� V .
p p m p p m p p ˆ pŽ � � . Ž � � . �Let 	 � 	 , 	 � 	 , and 	 � 
 	 , 	 �� r� r rr � �

Ł � 	 p.r � � r
n ˆ 0 0 	 Ž .Let 	 � � 	 , where 	 � 	 � 0. By e � e 1 � i � p wen� � p, i p, i
Ž Ž i. Ž i.. p Ž .denote the elements x , . . . , x � 	 1 in the ith place .1 m Ž0, . . . , 0, 1, 0, . . . , 0.

1 ˆ 1 ˆ 1 ˆŽ � �.Forming direct products see La1, p. 323 of the analyzers � , � , � ,
1 ˆ Ž .and � given in 2.2 we can show that the analyzers we get as mth power

m m ˆ m ˆ m ˆ m ˆŁ are given by � , � , � , and �. Such a construction does not work
for the ‘‘mixed’’ cases like �-m � , as, for example, �-1 � �1 �. Moreover,

Ž . 2, 1 ² :there is an algebra homomorphism ‘‘multiplication’’ , e.g. � : K X
² : ² : Žn.� K X � K X , defined by x � x , while it is well known that in� i i

Žthe ‘‘mixed cases’’ we get only K-module homomorphisms not algebra
. ² : ² : ² :homomorphisms like the map K X � K X � K X .�

�m m m m 4 ŽDEFINITION 3.1. For 	 � � , � , � , � , we define a unique,�
p�s s� 	, p�s, s ˆ ˆ. � � � �continuous K-linear map � : 	 � 	 by

�
� �	 , p�s , s Žn. Žn. � 4� x � x , where n � 1, . . . , s with n mod s � n mod sŽ .i i

� � �
� � � � � �	 , p�s , s 	 , p�s , s 	 , p�s , s� w � � � � � � if w � � � � .Ž . Ž . Ž .1 2 1 2

Ž .Using the unique representatives as indicated in 1.5 and by inserting
Ž Ž . . Ž .brackets as in � � � . . . . . . on the right if necessary , we define1 2 3ˆ m m m m m� � � , p�s, s ˆ ˆ ˆ ˆ ˆ� also if � is �- � , �- � , �- � , � - � , all m, or �- � ,�

m � 2.
Here a �-m � Ž p�s.-monomial w Ž1. . . . w Ž p�s. will be identified with the

corresponding �-m � Ž p�s.-monomial and we make a similar identification in
ˆ� 	 � , p�s, sthe nonassociative cases before applying one of the � defined

above. The last step is to re-order the letters to get the correct representa-
tive.

� Ž .LEMMA 3.2. Let p, q � � and 	 be as in 1.4 .

Ž .i For s, q � �, q � p � s, there is an algebra homomorphism
ˆ� 	 � , p, q Žk . Žk�s. Ž .� mapping x to x all i, k .s i i

� Žk . Žk . Žk . ˆ sŽ . Ž .ii Let s � � and G � G , . . . , G � 	 for k � 1, . . . , p be1 m
gi�en.

ˆ ˆ	 , p, p�s � 	 � , p, p�s m pˆŽ .Ž1. Ž p. Ž1. Ž p.There exists a unique K-linear map � � � : 	 �G , . . . , G G , . . . , Gˆ p p�sp�s � 	 � , p, p�sˆ ˆ ˆ� � � �Ž1. Ž p.	 , where � : 	 � 	 is the algebra homomorphism gi�enG , . . . , G
by

ˆŽk . � 	 � , s , p�s Žk .x � � G for i � 1, . . . , m and k � 1, . . . , p.Ž .i Žk	1. s i
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	̂ , p, p
pEspecially, � � id , and for 1 � k � p, e is mapped onˆe , . . . , e 	 p, k1, 1 1, 1ˆ� 	 � , s, p�s m Žk .Ž . Ž .� G .Žk	1. s

Ž1. Ž p. ˆ qDEFINITION 3.3. For 	 , p, q as above and G , . . . , G � 	 , let
ˆ p q� 	 � , p, q ˆ ˆ� � � � Ž .Ž1. Ž p.	 : 	 � 	 be the continuous K-linear map given byG , . . . , Gˆ ˆ� 	 � , p�q, q � 	 � , p, p�q

Ž1. Ž p.� �� .G , . . . , Gˆ ˆ	 , p, q � 	 � , p, q m p qˆ ˆŽ .Ž1. Ž p. Ž1. Ž p.Let 	 � 	 : 	 � 	 . Similarly defined are mapsG , . . . , G G , . . . , G
	 	 , p, q

Ž1. Ž p. for the polynomial cases.G , . . . , G

EXAMPLE 3.4. Let m � 3, 	 as above, and let LŽ1. � e , LŽ2. � LŽ3. �2, 2
2 � 	 � , 3, 2 Ž Ž1.Ž Ž2. Ž3... � 	 � , 6, 2Ž Ž2.Ž Ž3. Ž5...Ž1. Ž2. Ž3.e � 	 . Then 	 x x x � � x x x is given2, 1 L , L , L 1 2 3 1 2 3

Ž2.Ž Ž1. Ž1.. � 4 Ž1. Ž1. Ž2. �by x x x if 	 � � , � , �-� , and x x x if 	 � � , � , � -1 2 3 2 3 1
4� , � -� , � -� .

Ž Ž i. Ž i..THEOREM 3.5. Together with the selected elements e � x , . . . , xn, i 1 m
m ˆ m ˆ m ˆ m ˆŽ .and the composition maps from 3.3 , �- � , �- � , �- � , � - � , all m,�

m ˆ Ž .and �- � m � 2 are complete pseudo-analyzers o�er K that are not
analyzers.

Ž .Proof. Let 	 be as above or, more generally, as in 1.4 . We are going
Žto show that all 	 are incomplete pseudo-analyzers. Then using Lemma

ˆ.2.6 it is clear that all 	 are complete pseudo-analyzers.

Ž . Ž . 	 , p, p Ž . Ž i.
Ž1. Ž p.1 From Lemma 3.2 one gets all 1 � i � p 	 e � GG , . . . , G p, iˆ 2	 , p, p 	 , p, p Ž .p 2and 	 � id , as � e � e . For 
 , . . . , 
e , . . . , e 	 e , . . . , e p, k p , Žk	1. p�k 1 pp, 1 p, p p, 1 p, p

ˆp � 	 � , p, p � �1 pˆ Ž .� K and F � 	 , � � � , . . . , � , � � 
 � . . . � 
 F, where� 1 p 
 e , . . . , 
 e 1 p1 1, 1 p 1, 10 	 , p, p Ž . �1 �p 	 , p, p Ž .0 � 1. Similarly, 	 F � 
 � . . . � 
 	 F for allŽ1. Ž p. Ž1. Ž p.1 p
 G , . . . , 
 G G , . . . , G1 p

GŽ i. � 	 q. For homogeneous GŽk ., k � 1, . . . , p, GŽk . � 	 q , itŽ � , . . . , � .k , 1 k , q
	̂ , p, p�q p p�qˆ ˆŽ .holds � 	 � 	 . HenceŽ1. Ž p. Ž� , . . . , � . Ž� � , . . . , � � , . . . , � , � , . . . , � � .G , . . . , G 1 p 1 1, 1 1 1, q p p, 1 p p, q

	 , p, q Ž p . q p	 	 � 	 , where � � Ý � � . We con-Ž1. Ž p. Ž� , . . . , � . Ž� , . . . , � . j k�1 k k , jG , . . . , G 1 p 1 q

Ž . Ž . Ž .clude that the conditions C1 , D1 � D4 are fulfilled.
Ž . Ž1. Žn. p Ž1. Ž p. q Ž i.2 Assume L , . . . , L � 	 , M , . . . , M � 	 , G �

	 , p, q Ž Ž i.. �m m m m 4	 L . For 	 � � , � , � , � assume furthermore thatŽ1. Ž p.M , . . . , M
LŽ1., . . . , LŽn. are pairwise compatible and also that M Ž1., . . . , M Ž p. are

	 , n, q Ž 	 , p, q . Ž 	 , n, p .pairwise compatible. Then 	 � 	 � 	 . In fact,Ž1. Žn. Ž1. Ž p. Ž1. Žn.G , . . . , G M , . . . , M L , . . . , L
as all maps are algebra homomorphisms if the assumptions on compatibil-
ity are fulfilled, it suffices to apply both sides to the e and the equationn, i

Ž .is trivially fulfilled. Thus C2a holds for all 	 and furthermore
Ž . �m m m m 4 pC2b holds for 	 � � , � , � , � . Let F � 	 and let G ��

p, p�1 Ž . Ž1. Ž Ž1. Ž2.	 F , where L � e � e � x � x , . . . ,Ž1. p�1, 1 p�1, 2 1 1L , e , . . . , ep� 1, 3 p�1, p�1
Ž1. Ž2.. p�1x � x . Then in fact G � 
 	m m � , � , � , . . . , �� � , � � � : � �� �� 4 1 2 2 p1 2 1 2 1

Ž . Ž .direct sum of � � 1 submodules , which shows D5a for all 	.1

Ž . Ž .3 For a counterexample to C2b for 	 � �-� , m � 2, let p � 2
and LŽ1. � e , LŽ2. � e � 	 2, M Ž1. � M Ž2. � e � 	1. Then2, 2 2, 1 1, 1
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� 	 � , 2, 2 Ž Ž1. Ž2.. Ž1. Ž2. � 	 � , 2, 1 Ž1. Ž1.
Ž1. Ž2.	 x x � x x , which is mapped by 	 onto x x .Ž1. Ž2.L , L 1 2 2 1 2 1M , M

Ž i. 	 , 2, 1 Ž Ž i.. � 	 � , 2, 1Ž Ž1. Ž2..Ž1. Ž2.Now G � 	 L � e for i � 1, 2, and 	 x x �M , M 1, 1 e , e 1 21, 1 1, 1
Ž1. Ž1. Ž1. Ž1. � m m m 4x x � x x . For 	 � �- � , �- � , �- � , m � 1, similarly1 2 2 1
� 	 � , 2, 1 Ž � 	 � , 3, 2 Ž Ž1. Ž2. Ž3. Ž3. .. Ž Ž1. Ž1. .Ž Ž1. Ž1. . � 	 � , 3, 1	 	 x x x x � x x x x � 	e , e e , e , e 1 1 1 1 1 1 1 1 e , e , e1, 1 1, 1 2, 1 2, 1 2, 2 1, 1 1, 1 1, 1

Ž Ž1. Ž2. Ž3. Ž3.. Ž .x x x x , compare 3.1 . If the representatives are chosen as indi-1 1 1 1
Ž .cated in 1.5 and � � w are monomials of type � over X, we use counter

� 	 � , 2, 1Ž � 	 � , 2, 2 Ž Ž1. Ž2... � 	 � , 2, 1Ž Ž1. Ž2..examples of the form 	 	 � w � w� � 	 � w fore , e e , e e , e1, 1 1, 1 2, 2 2, 1 1, 1 1, 1m� - �.�

� Ž .COROLLARY 3.6. For R � � , the assertions of 3.5 remain true for the
� �corresponding truncations 	 R .

m ˆRemark 3.7. From the proof above we can get a direct proof that � ,
m ˆ m ˆ m ˆ Ž .� , � , � are analyzers. We still have to verify that D5b holds. The

Ž .main reason for this is that for the operad types � , � , � , � a simple
Ž .support argument shows that we only have to check D5b in the case

Ž . Ž .where f � F�see part 2 of the proof�is a single normed monomial.
�1Ž . Ž . Ž .Then F, the right-hand side of D5b in 2.1 , is obtained similarly to�1

ŽŽ Ž1. Ž2..�1. Ž�1.the fact that P x � x is given by Ý x� , � 	� j j I��i , . . . , i 4� �1, 2, . . . , � 4 j1 1 1 1 � 11
� . . . � x Ž��1

., � replaced by 1 if s � I and by 2 if s � I.j s

²² Žn.:: �� Žn.��Remark 3.8. The projection K X � K S induces a surjec-
ˆ ˆ �nŽ ²² ::tive morphism of analyzers � � �. The projection K X �

Žn. ˆ ˆ�� ��K S induces a surjective morphism of pseudo-analyzers �-� � �.
Ž Žn. ²² Žn.:: Ž ²² ::�n.The projection � � � : K X � K X does not in-n� �

duce a morphism of pseudo-analyzers: For g � g � e and f � x Ž2.x Ž1.
1 2 1, 1 2 1

� Ž1.Ž . � Ž2.Ž . Ž1. Ž2. � , 2, 1Ž . Ž1. Ž1.we have g � � g � g , f � � f � x x , 	 f � x x ,i i i 1 2 g , g 2 11 2�- � , 2, 1Ž �. Ž1. Ž1. Ž1.Ž � , 2, 1Ž ..� �and 	 f � x x is not given by � 	 f .g , g 1 2 g , g1 2 1 2

4. GROUP LAWS

Cogroups in categories of complete algebras can be described by formal
Ž .group laws for analyzers or operads . If we replace in the definition of a

Ž .cogroup object in a category of algebras of a given operad type 	 , see
� � Ž .ML2, BH , the categorical coproduct � by some � as in 1.4 , we get	 �

the notion of a � -cogroup in the category of algebras of type 	. This can�

be done similarly for complete augmented algebras, where we require the
counit to be the augmentation map � . Instead of elaborating the full
definition, we define formal group laws in pseudo-analyzers and describe�
then how they are connected to � -cogroups.�

DEFINITION 4.1. Let 	 be a complete pseudo-analyzer over the ring K
2 � 	 , 2, 3 Ž . 	 	 , 2, 3 Ž .and F � 	 . We define F � 	 F , F � 	 F , and �F �e , e e , e3, 1 3, 2 3, 2 3, 3
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	 , 2, 3 Ž . 	 , 2, 3 Ž . 	 , 2, 3Ž . 	 , 2, 3 Ž . 3
� 		 F 	 	 F � � F 	 � F � 	 . F is called groupF , e e , F F , e e , F3, 3 3, 1 1, 1 1, 1

law in 	 , iff

Ž . 	 , 2, 1Ž . 	 , 2, 1Ž .a 	 F � e � 	 Fe , 0 1, 1 0, e1, 1 1, 1

Ž .b �F � 0.

� � ŽGroup laws in 	 R are considered as R-chunks F determined mod
R�1.J in 	 by identifying an R-chunk with its canonical representative

Ž .having zero degree � R � 1 -components.
ˆThe group laws in � are also called classical formal group laws.

Ž .Homomorphisms of group laws or chunks are defined as for classical
� � 1group laws, cf. Ha, La1 : � � 	 is a homomorphism F � G if �� �

	 , 1, 2Ž . 	 , 2, 2 Ž . 2 � 	 , 1, 2Ž . 	
� 		 � 	 	 G � 0 in 	 , where � � 	 � , � �F � , � e2, 1

	 , 1, 2Ž .	 � .e2, 2

Such a homomorphism � is called a strict isomorphism, if � � e mod1, 1
J 2.

EXAMPLE 4.2. For every pseudo-analyzer, e � e is a group law and2, 1 2, 2
it is clearly the only possible 1-chunk.

1Ž1. Ž2. Ž1. Ž2.� �The Campbell�Hausdorff series x � x � x , x � . . . is a2
1 ˆgroup law in �. It is also a formal group law over 
 ie. For operads � ,

Ž .see 1.1 , group laws over � are defined as group laws in the associated
� �analyzer; cf. Fr1, GK .

2 � 4EXAMPLE 4.3. Let m � n and write X � x : 1 � i, j � n . Then thei j
Ž . Ž1. Ž2. n Ž1. Ž2.m-tuple F with entries F � x � x � Ý x x defines a groupi j i j i j i j l�1 i l l j

ˆ � �law in the pseudo-analyzer �-�; cf. Ho2 . The algebra homomorphism
ˆ Žgiven by x � F defines a �-cogroup structure i.e., structure of ai j i j

. ²² ::complete Hopf algebra on K X . It is the completion of the well-known
bialgebra-structure on the coordinate ring on n 
 n-matrices, or its Hopf
envelope, which is also called the general linear quantum group.

We remark that the existence of the antipode is always given for
complete bialgebras. It is known for complete �-algebras, � an operad
over a field K of characteristic 0, that they are isomorphic to a free
complete �-algebra if they are endowed with a cogroup structure; see
� �Fr2 .

ˆThe analogous result for �-� is the following:

THEOREM 4.4. Let A be a complete associati�e algebra, finitely generated,
o�er a field K of characteristic 0. If A is a complete Hopf algebra, then A is as
complete algebra isomorphic to the quotient of a free complete algebra
²² ::K x , . . . , x modulo a closed ideal I that is contained in the ideal1 m

� �generated by all commutators x , x .i j

� �Proof. Since the ideal A, A of all commutators in A is a Hopf ideal,
� �A� A, A is a complete commutative Hopf algebra or cogroup object,
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�� ��which is isomorphic to some K X by the classical result for � � � om.
²² ::For A we can obtain the form K x , . . . , x �I, I a closed ideal, for1 m

some m and we assume that m is minimal. I cannot contain elements of
lower than quadratic order, because relations involving linear terms would
allow the cancellation of a variable in contradiction to the minimality of

� � � � �� ��m; see GH, Sect. 6 . Thus A� A, A � K x , . . . , x for the same m,1 m
and I must be contained in the ideal generated by the commutators.

EXAMPLE 4.5. For every Hopf algebra, its completion with respect to
� �the augmentation ideal ker � is a complete Hopf algebra; see Ho2 . In the

case where I � 0, the Hopf algebra structures are exactly described by
ˆformal group laws of type �-�.

For the coordinate algebras of quantum groups defined by R-matrices,
� � �cf. CP , like GL or O for 1 � q � K , the theorem shows that theirq q

relations must induce commutator relations in the completion. The rela-
Ž .tions, written in variables x � ker � , are for example q 1 � x x �i j 11 12

Ž . Ž .x 1 � x . Since q 	 1 x occurs as a linear term, x will be zero in12 11 12 12
the completion. Carrying this out one shows that the completions of all

Ž � �.these Hopf algebras are commutative see Ho1 . This also holds for
� �multi-parameter quantum deformations like the ones defined in AST .

� � �2 Ž .Remark 4.6. Let R � � . Every F � � R that fulfills condition a
R Ž r . r�1of Definition 4.1 is given by Ý 2 	 2 m coefficients from K. Simi-r�1

� � �2 Ž .4 R Žlarly, F � �-� R : F fulfills a is a free K-module of rank Ý r 	r�1
r�1 R 2m 	 1 � r. ŽŽ .1 m . In the classical case this number is Ý m � 	r�1 2m 	 1

m 	 1 � r 2 m � R m � RŽ .. ŽŽ . Ž . . Ž .2 � m 	 2 � 1 . Let c denote the recursivelyr rm 	 1 2 m m
r	1 Ždefined sequence with c � 1, c � Ý c c for r 	 1 Catalan num-1 r s�1 s r	s

.bers for binary trees . Then the corresponding number of coefficients in
� �2 R Ž r . r�1the noncommutative nonassociative case � R is Ý 2 	 2 m c .r�1 r

Ž .Condition b determines a system of equations for the coefficients,
Ž .defining varieties universal formal group law chunks associated to the

given type.

For a given F mod J r�s, s � 2, which is mod J r�1 an r-chunk, �F is of
Ž .ord � r � 1 and we denote by � F the degree r � 1 -component ofr�1

�F. Similarly, for a given homomorphism of r-chunks that actually are
Ž .s-chunks with s 	 r, we denote by � � the degree r � 1 -componentr�1

of ��.
The following proposition, proven by Lazard for analyzers, also holds for

pseudo-analyzers.

PROPOSITION 4.7. Let F be a group law r-chunk in a pseudo-analyzer 	.

Ž . 3i � F � ker � . Thus � F defines an element of H , calledr�1 3 r�1 r�1
the obstruction of F.
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Ž . � Žii Let F be a group law r-chunk and F � F � L for a homoge-
. 2 Ž �. Ž .neous L � 	 . Then � F 	 � F � � L . Thus there exists ar�1 r�1 r�1 2

Ž . 2 Ž .homogeneous L � 	 such that F � L is an r � 1 -chunk, if and onlyr�1
if the obstruction of F is 0. In this case, L is unique up to addition with an

Ž .element of ker � .2

Ž . Ž .iii If F and G are r � 1 -chunks and � : F � G is a homomor-
Ž .phism of the corresponding r-chunks, then � � � ker � . The residuer�1 2

class of � � in H 2 is called the obstruction of �.r�1 r�1

Ž . Ž . � Živ Let �, F, and G be as in iii and � � � � � for a homoge-
. 1 Ž �. Ž .neous � � 	 . Then � � 	 � � � � � . Thus there exists ar�1 r�1 r�1 1

Ž . 1 Ž .homogeneous � � 	 such that � � � is a homomorphism of r � 1 -r�1
chunks, if and only if the obstruction of � is 0. In this case, � is unique up to

Ž .addition with an element of ker � .1

Ž . Ž .Proof. Since all inserted elements are compatible, the proofs of i � iv
� �are the same for pseudo-analyzers as for analyzers; thus compare La1 for

Ž .the proofs. We give the proof of iv , the other proofs are longer but
similar. We use the composition lemma. B� � G 	 e 	 e is � 0 mod2, 1 2, 2

2 � r�1 	 , 2, 2 Ž . 	 , 1, 2Ž . 	 , 1, 2Ž .� � � 	J . � � � mod J . Thus 	 G � 	 � � 	 � �� , � e e2, 1 2, 1
	 , 1, 2Ž . 	 , 1, 2Ž . 	 , 2, 2 Ž . 	 , 1, 2Ž . 	 , 1, 2Ž . 	 , 2, 2 Ž .� � � 	 � 	� �	 � �	 B� �	 � �	 � �	 Ge e � , � e e � , �2, 2 2, 2 2, 1 2, 2

r�2 	 , 1, 2Ž �. 	 , 1, 2Ž . 	 , 1, 2Ž . 	 , 1, 2Ž .mod J . Similarly 	 � � 	 � � 	 � � 	 � �F F F F
	 , 1, 2 r�2Ž . Ž .	 � mod J . Subtraction yields assertion iv .e �e2, 1 2, 2

5. A SPECTRAL SEQUENCE

Ž �. � � nŽ .The torsion theorem 10.1 of La1 says that H 	 � 0 for all n � rr
and all analyzers 	 that are rational defined as follows:

DEFINITION 5.1. For r � N� , let � � M	1�, where M is the multi-r
� � 4plicative system n � � : if p prime with p � n then p � r . Then a

complete or incomplete pseudo-analyzer over K is called rational, if 	 n isr
a � -module for all r � ��.r

˜For 	 a pseudo-analyzer, denote by 	 the subcomplex of elements
n n, n Ž .f � 	 with 	 f � 0 for all i.e , . . . , e , 0, e , . . . , en, 1 n , i	1 n, i�1 n , n

Remark 5.2. To compute cohomology in the analyzer case, we can
˜replace 	 by 	. Also in the pseudo-analyzer case, we will only be

˜interested in the cohomology of 	.
n ˜Ž . ŽIt is clear that H 	 � 0 for all n 	 r for all not necessarily rationalr

.pseudo-analyzers .
� �In La1, p. 356 it is shown for analyzers 	 that there is a canonical map

˜ r r r ˜� 4 Ž .� from the submodule f � 	 : f anti-symmetric of 	 to H 	 ,r r r r
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� ˜ r Ž . Ž .r � � . If f � 	 is an element of im � then Ý sign � � f � 0.r r	1 � � Sr

Therefore any anti-symmetric F is in the kernel of � iff r! f � 0.r
ŽThe cokernel of � is similarly described as additive torsion group 0 inr

r ˜. � � Ž Ž .the rational case ; see La1, Sect. 9 . Even if g � H 	 is not repre-r
.sented by an anti-symmetric cocycle, the cohomology class of r!g is.

˜ 3� 4PROPOSITION 5.3. Let 	 � � , � , � , F � 	 .3
Ž . Ž . � 4For 
 � 
 , 
 , 
 a permutation of 1, 2, 3 , i , i , i , n � 1, . . . , m , we1 2 3 1 2 3

Ž
1.Ž Ž
2 . Ž
3.. Ž 4denote the coefficient of x x x in F by a n; 
 , 
 , 
 ; i , i , i ,i i i n 1 2 3 1 2 31 2 3

where we furthermore assume 
 � 
 for 	 � �. The coefficient of2 3
Ž Ž
1. Ž
2 .. Ž
3. �Ž .x x x in F for 	 � � is denoted by a n; 
 , 
 , 
 ; i , i , i .i i i n 1 2 3 1 2 31 2 3

� 4 Ž .For 	 � � , � , F is a coboundary iff for all n, all � � � , � , � �1 2 3
� 431, . . . , m

sign 
 a n; 
; � � 0,Ž . Ž .Ý



and for 	 � � ,

sign 
 a� n; 
; � � 0.Ž . Ž .Ý



For 	 � � , the condition for F to be a coboundary is

sign 
 a n; 
; � 	 a n; 
; � , � , � � 0,Ž . Ž . Ž .Ž .Ý 1 3 2

�S : 
 �
3 2 3

all n , � � � � .Ž .2 3

Ž . Ž 	 , 2, 3
Ž1. Ž2. Ž3.Proof. We have to show that F is of the form � L � 	 	2 e , Ž e �e .

	 , 2, 3 	 , 2, 3 . Ž 	 , 2, 3 	 , 2, 3 	 , 2, 3 .Ž1. Ž2. Ž1. Ž3. Ž1. Ž2. Ž3. Ž2. Ž3. Ž1. Ž3.	 	 	 	 	 	 	 	 	 iff the assertede , e e , e Ž e �e ., e e , e e , e
equations hold.

˜ 2 4 �Ž . Ž .Here L � 	 is given by 12m coefficients � n; 
; � , � n; 
; � in case3
	 � � , 6m4 in case 	 � � , and 3m4 � m3 in case 	 � �; as in all cases
we can assume 1 � 
 , 
 , 
 � 2, not all equal, and for � furthermore1 2 3

 � 
 and i � i if 
 � 
 .2 3 2 3 2 3

Ž .Now F � � L is equivalent to the system of equations2

a n; 
; � � � n; � 
; � 	 � n; � 
; � ,Ž . Ž . Ž .

and for � ,

a� n; 
; � � �
� n; � 
; � 	 �

� n; � 
; � ,Ž . Ž . Ž .

� 43 � 43where � : 1, 2, 3 � 1, 2 fixes 1 and 2 and replaces 3 by 2, whereas �
Ž . Ž .fixes 1 and replaces 2 by 1 and 3 by 2. Thus for example � 3, 1, 2 � 2, 1, 2

Ž . Ž . Ž . Ž .and � 3, 1, 2 � 2, 1, 1 . For 	 � � , when 1, 2, 2 or 2, 1, 1 occur, we
Ž .have to replace � by � , � , � if � 	 � .1 3 2 2 3
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The only-if direction of the assertion�already noted above�follows.
4 Ž .To complete the proof we regard the 2m coefficients a n; 132; � and

�Ž . Ž . 4 Ž .a n; 132; � all n, � for � , m coefficients a n; 123; � for � and the
1 4 3Ž . Ž . Žm 	 m coefficients a n; 123; � with � 	 � for � as determined via2 32

Ž .. �the system of equations of 5.3 by the other coefficients a, a , which we
assume to be freely chosen.

Ž� .Ž . 4 4 4If we set all � n; 122; � � 0 and thus only use 10m , 5m , or 3m
1 4 3Ž .	 m 	 m coefficients describing L for � , � , � , respectively, it is2

Ž .easy to determine the coefficients of L such that � L � F. In fact, for � ,
Ž� .Ž . Ž� .Ž . Ž� .Ž .� we start with 	a n; 123; � � � n; 112; � and use a n; 
; � �

Ž� .Ž . Ž� .Ž . Ž� .Ž .� n; � 
; � 	 � n; � 
; � successively except for a n; 132; � . For
� we use the same equations, but first for � � � , then for � 	 � . For � ,2 3 2 3

3we note also that the m equations with � � � give empty conditions.2 3

Remark 5.4. Let us look at the proof for the torsion theorem given in
� �La1, Sect. 10 .

The induction hypothesis is the following: For r � 2 and all rational
n ˜Ž .analyzers, H 	 � 0 holds for all n � r. To get this, it is essential to user

Ž . Ž .D5b , and D5b is not fulfilled for general pseudo-analyzers.
After fixing the total degree r, we are able to define an exhausting

˜ nregular filtration 0 � A � . . . � A of A � 
 	 for pseudo-analyzers1 r r rn
as Lazard did for analyzers. For f � 	 n, f is an element of A iff thei

Ž .degree � with respect to the last argument e is � i for everyn n, n
nonzero component of f.

Ž p, n . p, n n n ŽWe get a spectral sequence E , d with E � A �A zero if not0 p p	1
� .p � n 	 1 � r, n, p � � and d induced by � as in Lazard’s proof.

We note that A1 � 0 if p � r and that E p, 1 � A1 � E p, 1. For n � 2p 0 p 1
Ž p, n p, n p, n�1.and all p, the complex E , d : E � E and its cohomology0 0 0 0

E p, n is determined by the complex for total degree r 	 p and n 	 11
Ž .arguments: d fixes all variables with superindex n and acts as � with0 n	1

respect to the other n 	 1 arguments.
Let us look at the case 	 � �-m � for small total degrees r. The case

r � 1 is trivial. Here E1, 1 � A1 � H 1 is given by all m-tuples with entries0 1 1
from V, where V is the vector space generated by X.

By definition H 1 � ker � � 	1 is given by the pseudolinear elements ofr 1 r
degree r. Since pseudolinearity can be checked componentwise, let us call

ˆ 1� � Ž .f � 	 pseudolinear, iff f , 0, . . . , 0 is.
�

m 1� � ŽLEMMA 5.5. For �- � , the following elements and their K-linear
.combinations are pseudolinear:

Ž .i �ariables x � Xi

Ž . � �ii the commutators g, h � gh 	 hg of pseudolinear g and h.
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Proof. We can restrict to the case where f is homogeneous of degree r.
Ž .Ž1. Ž2.To be pseudolinear, f has to fulfill P 	 f � 0 for all 0 � sŽ s, r	s. e �e

r � 1 Ž . Ž . Ž .� this is equivalent to the definition . Part i is clear. For ii , by2

assumption we only have to look at the case where s is the degree of g
Ž . Ž1. Ž2.and r 	 s is the degree of h and 	 is applied to the factor g, 	 toe e

� Ž . Ž .�Ž1. Ž2.the factor h. Now clearly 	 g , 	 h � 0.e e

Ž �. � �COROLLARY 5.6. The torsion theorem 10.1 of La1 is not true for
rational pseudo-analyzers.

m 1 ˜Ž .Proof. For 	 � �- � , m 	 1, r 	 1, H 	 contains m-tuples ofr
Ž .commutators given by 5.5 .

� 4THEOREM 5.7. For r � 2, 3 and the rational pseudo-analyzer gi�en by
	 � �-m � , the nonzero modules of the cohomology in total degree r,

n ˜Ž .H 	 , are gi�en by:r

Ž .i For r � 2, n � 1, all m-tuples of linear combinations of
�� Ž1. Ž1.� 4x , x : h � i ;h i

�� Ž1. Ž2.� 4for n � 2, all m-tuples of linear combinations of x , x : h � i .h i

Ž .ii For r � 3, n � 1, spanned by all m-tuples with entries
� Ž1. � Ž1. Ž1.��x , x , x ;h i j

�� Ž1. Ž1.� Ž2. 4 ŽFor n � 2, all m-tuples of linear combinations of x , x x : h � i orh i j
� Ž1.� Ž2. Ž2.� 4.equi�alently x x , x : i � j ;h i j

˜ 3for n � 3, all anti-symmetric elements of � .3

Ž . Ž . �Ž . Ž .4Proof. 1 We saw above that, for r � 2, only p, n � 2, 1 , 1, 2
Ž .have to be considered where p is the filtration degree . The only nontriv-

ial map is d : A1 � E 2, 1 � E1, 2 � A2. Its kernel E 2, 1 � E 2, 1 is given by1 2 1 1 1 2 �

the pseudolinear elements of degree 2, i.e., tuples of commutators and
their linear combinations. Since all elements of H 1 have degree 2 with2

Ž . 2, 1 1respect to their last and only argument, E � H . Similarly the coker-� 2
1, 2 ˜ 2 1nel E of this map, spanned by anti-symmetric f � 	 , is H .2 2 2

Ž . p, n2 Let now r � 3. For n � 2 the modules E are determined by1
Ž . 2, 2the results for lower total degrees see above . Nonzero are E , spanned1

by the tuples with entries x Ž1.x Ž2.x Ž2., E1, 2, spanned by tuples with entriesh i j 1
Ž1.� Ž2. Ž2.� 1, 3x x , x and E , given by multilinear elements with entriesh i j 1

� Ž1. Ž2.� Ž3. 3, 1 1x , x x . For n � 1, only E � A occurs.h i j 1 3

Ž . 3, 1 1 2 2
Ž1. Ž2.3 On E , d is the map P 	 : A � A �A . Thus its1 1 Ž1, 2. e �e 3 2 1

kernel E3, 1 is given by the pseudolinear elements of degree 3. We claim2
� m �1 Ž .that for � - � the elements given in 5.5 are the only pseudolinear3

elements. Assume that f is pseudolinear and not a linear combination of
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� Ž1. � Ž1. Ž1.��elements x , x , x . Since there are no pseudolinear elements ofh i j

degree 3 for type � , f is contained in the ideal generated by commutators.
� Ž1. Ž1. Ž1.� Ž1.� Ž1. Ž1.�It suffices to look at linear combinations of x x , x , x x , x ,h i j h i j

� Ž1. Ž1.� Ž1.and x , x x . Aside from forming the commutator, we cannot com-i j h

bine the last two to have zero image under P 	 Ž1. Ž2., as their imagesŽ1, 2. e �e
Ž1.� Ž2. Ž2. � � Ž1. Ž1. Ž1.� Ž1.� Ž2. Ž2. �are x x , x . The image of x x , x is x x , x �h i j h i j h i j

Ž1.� Ž2. Ž2.�x x , x and the only way to cancel this out is to form a combinationi h j
� Ž1. Ž1. Ž1.� Ž1.� Ž1. Ž1.� Ž1.� Ž1. Ž1.� � Ž1. � Ž1. Ž1.��like x x , x 	 x x , x 	 x x , x which is x , x , x .h i j h i j i h j i j h

Ž . 2, 2 1, 3 Ž4 The map d : E � E induced by � i.e., induced by1 1 1 2
. 1, 3 1, 3 3 �Ž1. Ž2. Ž3.	 has the cokernel E � E � H � anti-symmetric ele-e , e �e 2 � 3
˜ 34ments of � , because the quotient in question is the same quotient that3

occurs for type �. Note that x Ž1.x Ž2.x Ž2. and x Ž1.x Ž2.x Ž2. have the sameh i j h j i

image. Analogously, we get that E 2, 2 � 0: In comparison to the type �2
Ž 2, 2 . 2, 2case where E � 0 the only new cocycles in E are given by tuples2 1

Ž1.� Ž2. Ž2.� Ž1. Ž2.with entries x x , x , which are in the image of P 	 .h i j Ž1, 2. e �e

Ž . 3, 1 1, 25 At last we look at the only possibly nonzero map d : E � E .2 2 2
Since E3, 1 consists of pseudolinear elements, this is also zero. Thus2

E3, 1 � E3, 1 gives H 1 and E1, 2 � E1, 2 gives the elements of H 2 with2 � 3 2 � 3

degree 1 with respect to the second argument. Since E 2, 2 � 0, they2
2represent all elements of H .3

Ž .Remark 5.8. There is no reason why the case r � 3 of Theorem 5.7 ii
should not be typical. By Friedrich’s Theorem, the description of pseudo-
linear elements is as simple for higher r as it is for r � 3.

m ˜ nWe remark that for all n one can find cocycles L � �- � that are
Ž1. Žn	1.Ž Žn. Žn.not coboundaries, like the one given by L � x � . . . � x x x 	1 1 1 2 1

Žn. Žn.. Ž .x x and L � 0 i � 2 .1 2 i
Ž .We noted in part 4 of the proof above that the computation of

r m ˜Ž .H � - � is exactly the same as in type � , because we look atr �

multilinear elements and multilinear elements obey the relations of �. It
Ž .is easy to see that a similar result holds for the other mixed types of 3.5 ,

and for all r. Thus we get:

m Ž .PROPOSITION 5.9. For the pseudo-analyzers � - 	 gi�en in 3.5 in the�

Ž .rational case, it holds for all r

r m ˜ r m m ˜ rH � - 	 � H � � f � � : f anti-symmetric .Ž . � 4Ž .r � r r
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6. INTERACTIONS BETWEEN DIFFERENT GROUP
LAW TYPES

Our aim in this last section is to find solutions for the system of
Ž . Žequations, given in 4.6 , associated to universal formal group laws or

.chunks for a given type.
Ž .Proposition 4.7 and the torsion theorem for the cases where it holds

˜will be our main tools. We can restrict to the subcomplex 	 of 	 , as �F,
˜�� � 	.

The first nontrivial extension problem is the extension from 2-chunks to
3 ˜Ž Ž ..3-chunks here the obstructions are in H 	 . We denote the coefficient3

Ž
1. Ž
2 . Ž . � 4of x x in F by � n; 
 , 
 ; i , i with i , i , n � 1, . . . , m andi i n 1 2 1 2 1 21 2
� 4 Ž .
 � 
 � 1, 2 , where 	 is any of the pseudo-analyzers given in 3.5 .1 2

Remark 6.1. The group laws of types � , � , � , and � , are group laws
m ˆover operads. For the rational analyzer given by � it is well known that

Žthe extension of a 2-chunk to 3-chunk and group law is possible and
. Ž .unique up to strict isomorphism iff the elements � n; i , i �1 2

Ž . Ž .� n; 1, 2; i , i 	 � n; 1, 2; i , i of K are structure constants of an m-1 2 2 1
dimensional Lie algebra over K. This correspondence between classical
group laws and Lie algebras defines an equivalence of categories.

ŽThe notion structure constants means that a structure of a not neces-
.sarily unitary or associative algebra is defined on the free K-module with

m Ž .basis e , . . . , e by e e � Ý � n; i , i e .1 m i i n�1 1 2 n1 2
3 ˜ 3Ž . Ž .We have seen that H �-� � H � . This leads to the following3 3

Ž � � .proposition of Ho1 , where a direct computation is given . For the
Ž � �.nonuniqueness up to strict isomorphisms see Ho1, Sect. 6 we only refer

2 ˜Ž .to the nontriviality of H �-� .3

PROPOSITION 6.2. A 2-chunk F in �-� is nonuniquely extendable to a
Žn. Ž Ž . Ž ..3-chunk, iff the � � � n; 1, 2; h, i 	 � n; 1, 2; i, h , h � i, are struc-h, i

ture constants of a Lie algebra.

THEOREM 6.3. Let F be a group law chunk of degree 2 in � , � , or �
Ž . � 4gi�en by its coefficients � n; 
 , 
 ; i , i with i , i , n � 1, . . . , m and1 2 1 2 1 2

� 4 Ž . Ž .
 , 
 � 1, 2 , and let us denote � n; 1, 2; i , i 	 � n; 2, 1; i , i by1 2 1 2 1 2
Ž . Ž . Ž .� n; i , i , where � n; 2, 1; i , i � � n; 1, 2; i , i for 	 � �.1 2 1 2 2 1

Ž .i For 	 � � , the extension of F to a group law 3-chunk is possible
Ž .if and only if for all n, � , � , � ,1 2 3

m m

� n; l , � � l ; � , � � � n; � , l � l ; � , � .Ž . Ž . Ž . Ž .Ý Ý3 1 2 1 2 3
l�1 l�1

Ž .In the rational case the condition means that the elements � n; � , � form1 2
Ž .structure constants of an algebra without unit with associati�e multiplication.
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Ž .ii For 	 � � , the extension of F to a group law 3-chunk is possible
Ž .if and only if for all n, � , � , � both sides of the equation abo�e equal zero.1 2 3

Ž .In the rational case the condition means that the elements � n; � , � form1 2
Ž .structure constants of an algebra without unit with cube-zero multiplication,

Ž . Ž .i.e., ab c � 0 � a bc for all a, b, c.
Ž . Ž . Ž .iii For 	 � � , � n; � , � � 	� n; i , i and the condition for F2 1 1 2

to be extendable to a group law 3-chunk is gi�en by

m

0 � � n; � , l � l ; � , � � � � .Ž . Ž . Ž .Ý 1 2 3 2 3
l�1

Ž .In the rational case the condition means that the elements � n; � , � form1 2
Ž .structure constants of a 3-nilpotent Lie algebra cube-zero bracket .

Ž .Proof. We use the criterion 5.3 for � F to be a coboundary and3
Ž . Ž . Ž .collect summands associated to 1, 2, 3 , 3, 1, 2 , 2, 3, 1 on the lefthand

Ž . Ž . Ž . Žside and to 1, 3, 2 , 2, 1, 3 , 3, 2, 1 on the righthand side to omit negative
.signs . For � we get

m

	 � n; 1, 2; � , l � l ; 1, 2; � , �Ž . Ž .Ý 1 2 3
l�1

m

� � n; 2, 1; � , l � l ; 1, 2; � , � � 0Ž . Ž .Ý 1 2 3
l�1

m

� 	 � n; 1, 2; � , l � l ; 2, 1; � , � � 0Ž . Ž .Ý 1 2 3
l�1

m

� � n; 2, 1; � , l � l ; 2, 1; � , �Ž . Ž .Ý 1 2 3
l�1

and

m

� n; 1, 2; l , � � l ; 1, 2; � , � � 0Ž . Ž .Ý 3 1 2
l�1

m

	 � n; 2, 1; l , � � l ; 1, 2; � , �Ž . Ž .Ý 3 1 2
l�1

m

� 0 � � n; 1, 2; l , � � l ; 2, 1; � , �Ž . Ž .Ý 3 1 2
l�1

m

	 � n; 2, 1; l ; � � l ; 2, 1; � , � .Ž . Ž .Ý 3 1 2
l�1
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Ž .For � adding the equations we get a similar system, or equivalently the
Ž .system given in i . For � we get

m

	 � n; 1, 2; � , l � l ; 1, 2; � , � 	 � l ; 1, 2; � , �Ž . Ž . Ž .Ž .Ý 1 2 3 3 2
l�1

m

� � n; 1, 2; l , � � l ; 1, 2; � , � 	 � l ; 1, 2; � , � � 0.Ž . Ž . Ž .Ž .Ý 1 2 3 3 2
l�1

Remark 6.4. Over a field K of characteristic 0, Theorem 6.3 is a special
� �example of the Koszul duality for quadratic operads given in GK . In fact,

if we assume that the coefficients of the given 2-chunk can be divided by 2,
Ž � �.then we can restrict to 2-chunks fulfilling the canonical, cf. La1 property

Ž . Ž .� n; 2, 1; i , i � 	� n; 1, 2; i , i by applying a strict isomorphism. Now1 2 1 2
Ž . Ž . Ž .we can replace the � n; i , i by 2� n; 1, 2; i , i or just by � n; 1, 2; i , i1 2 1 2 1 2

m ˆŽ .in the equations of 6.3 . The classification of formal group laws in �
� �over a field K of characteristic 0, given in GK, Sect. 2 follows from the

Ž .torsion theorem used both for existence and uniqueness of the extensions .
m ˆ m ˆA classification of formal group laws in � and � in the rational case is

obtained similarly.

EXAMPLE 6.5. For 1 � there are no group law chunks which are not
Ž .Ž2. Ž1.abelian F is called abelian if 	 F � F .e , e

2 1Ž . Ž .Consider � over K � �, and let � 2; 1, 2; 1, 1 � 	� 2; 2, 1; 1, 1 � ,2

all other coefficients 0. It is easy to show that a solution of the system of
Ž . Ž . Ž Ž1.equations ii is given. Thus the corresponding 2-chunk F , F � x �1 2 1

1Ž2. Ž1. Ž2. Ž1. Ž2.� �.x , x � x � x , x is extendable to a 3-chunk and consequently1 2 2 1 12

to a group law. It corresponds to the 2-dimensional algebra A �
3 2� � Ž � �.xK x � x K x with basis x, x .

COROLLARY 6.6. Let K be a field of characteristic 0 and V an m-dimen-
Ž .sional �ector space. Assume that elements � n; 
 , 
 ; i , i of K for i , i , n1 2 1 2 1 2

� 4 � 4� 1, . . . , m and 
 � 
 � 1, 2 are gi�en such that1 2

Ž . Ž . Ž .i � n; 1, 2; i , i 	 � n; 2, 1; i , i are structure constants of a1 2 1 2
non-tri�ial associati�e algebra structure defined on V and

Ž . Ž . Ž . Ž .ii � n; 1, 2; i , i � � n; 2, 1; i , i 	 � n; 1, 2; i , i 	1 2 2 1 1 2
Ž .� n; 2, 1; i , i are structure constants of a nonabelian Lie algebra structure2 1

defined on V.

Then there exist formal group laws of type m � , m � , and �-m � , with 2-chunk
Ž . Ž m . Ž .defined by the coefficients � n; 
 , 
 ; i , i for � or � n; 
 , 
 ; i , i1 2 1 2 1 2 1 2

Ž . Ž m m . Ž� � n; 
 , 
 ; i , i for � and �- � . All are non-tri�ial i.e., not2 1 2 1
.isomorphic to the tri�ial group law .
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Proof. Theorem 6.3 shows that there exists the asserted formal group
m ²² Ž2.::law in �. It is given by an m-tuple F with components from K X

	 , 2, 3 Ž . 	 , 2, 3 Ž .� 	and 0 � �F � 	 F 	 	 F holds. Viewing the same m-tupleF , e e , F3, 3 3, 1

as elements of m � and �-m � , i.e., applying the module homomorphisms
Ž .of 3.8 , we get group laws, because the condition 0 � �F still holds. The

Ž . Ž .new coefficients are sums � n; i , i � � n; 
 , 
 ; i , i �1 2 1 2 1 2
Ž .� n; 
 , 
 ; i , i of the old coefficients. We have to verify the assertion2 1 2 1

on non-triviality. Since the Lie algebra associated to the group law F in m �
Ž .is nonabelian by assumption ii , F itself is not isomorphic to the trivial

Ž . mgroup law; cf. 6.1 . Now if the group law in �- � were trivial, then the
mgroup law in � would be trivial, too. Thus all are non-trivial.

EXAMPLE 6.7. The example corresponding to the completed general
Ž .linear quantum group 4.3 is of this form.
1 0 0 1Ž . Ž . � �The matrices e � and e � together with , form a 2-dimen-1 20 0 0 0

Ž .sional Lie algebra and it is closed under multiplication of matrices . The
theorem applies, and we get a non-abelian formal group law in �-2 � with

Ž . Ž .2-chunk defined by the � 1; 1, 2 � 1, � n; h, i � 0 otherwise.

Ž .Remark 6.8. It is easy to generalize 6.6 for other group laws of mixed
type. It is not clear if the group laws constructed that way are the only
examples. For R-chunks with R � �, there are much more.
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