34 research outputs found

    Power of Continuous Triangular Norms with Application to Intuitionistic Fuzzy Information Aggregation

    Full text link
    The paper aims to investigate the power operation of continuous triangular norms (t-norms) and develop some intuitionistic fuzzy information aggregation methods. It is proved that a continuous t-norm is power stable if and only if every point is a power stable point, and if and only if it is the minimum t-norm, or it is strict, or it is an ordinal sum of strict t-norms. Moreover, the representation theorem of continuous t-norms is used to obtain the computational formula for the power of continuous t-norms. Based on the power operation of t-norms, four fundamental operations induced by a continuous t-norm for the intuitionistic fuzzy (IF) sets are introduced. Furthermore, various aggregation operators, namely the IF weighted average (IFWA), IF weighted geometric (IFWG), and IF mean weighted average and geometric (IFMWAG) operators, are defined, and their properties are analyzed. Finally, a new decision-making algorithm is designed based on the IFMWAG operator, which can remove the hindrance of indiscernibility on the boundaries of some classical aggregation operators. The practical applicability, comparative analysis, and advantages of the study with other decision-making methods are furnished to ascertain the efficacy of the designed method

    Development of q-Rung Orthopair Trapezoidal Fuzzy Einstein Aggregation Operators and Their Application in MCGDM Problems

    Get PDF
    Compared to previous extensions, the q-rung orthopair fuzzy sets are superior to intuitionistic ones and Pythagorean ones because they allow decision-makers to use a more extensive domain to present judgment arguments. The purpose of this study is to explore the multicriteria group decision-making (MCGDM) problem with the q-rung orthopair trapezoidal fuzzy (q-ROTrF) context by employing Einstein t-conorms and t-norms. Firstly, some arithmetical operations for q-ROTrF numbers, such as Einstein-based sum, product, scalar multiplication, and exponentiation, are introduced based on Einstein t-conorms and t-norms. Then, Einstein operations-based averaging and geometric aggregation operators (AOs), viz., q-ROTrF Einstein weighted averaging and weighted geometric operators, are developed. Further, some prominent characteristics of the suggested operators are investigated. Then, based on defined AOs, a MCGDM model with q-ROTrF numbers is developed. In accordance with the proposed operators and the developed model, two numerical examples are illustrated. The impacts of the rung parameter on decision results are also analyzed in detail to reflect the suitability and supremacy of the developed approach

    Approaches to multi-attribute group decision-making based on picture fuzzy prioritized Aczel–Alsina aggregation information

    Get PDF
    The Aczel-Alsina t-norm and t-conorm were derived by Aczel and Alsina in 1982. They are modified forms of the algebraic t-norm and t-conorm. Furthermore, the theory of picture fuzzy values is a very valuable and appropriate technique for describing awkward and unreliable information in a real-life scenario. In this research, we analyze the theory of averaging and geometric aggregation operators (AOs) in the presence of the Aczel-Alsina operational laws and prioritization degree based on picture fuzzy (PF) information, such as the prioritized PF Aczel-Alsina average operator and prioritized PF Aczel-Alsina geometric operator. Moreover, we examine properties such as idempotency, monotonicity and boundedness for the derived operators and also evaluated some important results. Furthermore, we use the derived operators to create a system for controlling the multi-attribute decision-making problem using PF information. To show the approach's effectiveness and the developed operators' validity, a numerical example is given. Also, a comparative analysis is presented

    Hybrid-fuzzy techniques with flexibility and attitudinal parameters for supporting early product design and reliability management

    Get PDF
    The main aim of the research work presented in this thesis is to define and develop novel Hybrid Fuzzy-based techniques for supporting aspects of product development engineering, specifically product reliability at the early phase of product design under the design for reliability philosophy and concept designs assessment problems when the required information is rough and incomplete. Thus, to achieve the above-stated aim, which has been formulated in the effort to filling the identified gaps in the literature which comprise of the need for a holistic, flexible and adjustable method to facilitate and support product design concept assessment and product reliability at the early product design phase. The need for the incorporation of the attitudinal character of the DMs into the product reliability and design concept assessment and finally, the need to account for the several interrelated complex attributes in the product reliability and design concept assessment process. A combination of research methods has been employed which includes an extensive literature review, multiple case study approach, and personal interview of experts, through which data were, collected that provided information for the real-life case study. With the new Hybrid Fuzzy-based techniques (i.e. the intuitionistic fuzzy TOPSIS model which is based on an exponential-related function (IF-TOPSISEF) and the Multi-attribute group decision-making (MAGDM) method which is based on a generalized triangular intuitionistic fuzzy geometric averaging (GTIFGA) operator), a more robust method for the product reliability and design concepts assessment respectively have been achieved as displayed in the comparative analysis in the thesis. The new methods have provided a more complete and a holistic view of the assessment process, by looking at the product reliability and design concept assessment from different scenario depending on the interest of the DMs. Using the above methods, the thesis has been able to evaluated some complex mechanical systems in literature and in real-life including Crawler Crane Machine and Forklift Truck for design change with the purpose of gaining appropriate reliability knowledge and information needed at the early product design phase, and that can subsequently aid and improve the product design concepts after all such useful information have been added into the new design. With the application of the new methods, and their proven feasibility and rationality as displayed in the assessment results of the complex mechanical systems in literature and that of the real-life case studies, this thesis, therefore, can conclude that the Hybrid Fuzzy-based techniques proposed, has provided a better and a novel alternative to existing product reliability and design concepts assessment methods

    Interval-Valued Intuitionistic Fuzzy Einstein Geometric Choquet Integral Operator and Its Application to Multiattribute Group Decision-Making

    Get PDF
    With respect to the multiattribute decision-making (MADM) problem in which the attributes have interdependent or interactive phenomena under the interval-valued intuitionistic fuzzy environment, we propose a group decision-making approach based on the interval-valued intuitionistic fuzzy Einstein geometric Choquet integral operator (IVIFEGC). Firstly, the Einstein operational laws and some basic principle on interval-valued intuitionistic fuzzy sets are introduced. Then, the IVIFEGC is developed and some desirable properties of the operator are studied. Further, an approach to multiattribute group decision-making with interval-valued intuitionistic fuzzy information is developed, where the attributes have interdependent phenomena. Finally, an illustrative example is used to illustrate the developed approach

    New logarithmic operational laws and their applications to multiattribute decision making for single-valued neutrosophic numbers

    Get PDF
    Neutrosophic set, initiated by Smarandache, is a novel tool to deal with vagueness considering the truth, indeterminacy and falsity memberships satisfying the condition that their sum is less than 3. This set can be used to characterize the information more accurately than the intuitionistic fuzzy set. Under this set, the objective of this manuscript is to present some new operational laws called as logarithm operational laws with real number base k for the single-valued neutrosophic (SVN) numbers. Various desirable properties of the proposed operational laws are contemplated. Further, based on these laws, different weighted averaging and geometric aggregation operators are developed

    Neutrosophic Theory and its Applications : Collected Papers - vol. 1

    Get PDF
    Neutrosophic Theory means Neutrosophy applied in many fields in order to solve problems related to indeterminacy. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every entity together with its opposite or negation and with their spectrum of neutralities in between them (i.e. entities supporting neither nor ). The and ideas together are referred to as . Neutrosophy is a generalization of Hegel\u27s dialectics (the last one is based on and only). According to this theory every entity tends to be neutralized and balanced by and entities - as a state of equilibrium. In a classical way , , are disjoint two by two. But, since in many cases the borders between notions are vague, imprecise, Sorites, it is possible that , , (and of course) have common parts two by two, or even all three of them as well. Hence, in one hand, the Neutrosophic Theory is based on the triad , , and . In the other hand, Neutrosophic Theory studies the indeterminacy, labelled as I, with In = I for n ≥ 1, and mI + nI = (m+n)I, in neutrosophic structures developed in algebra, geometry, topology etc. The most developed fields of the Neutrosophic Theory are Neutrosophic Set, Neutrosophic Logic, Neutrosophic Probability, and Neutrosophic Statistics - that started in 1995, and recently Neutrosophic Precalculus and Neutrosophic Calculus, together with their applications in practice. Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set and respectively fuzzy logic (especially of intuitionistic fuzzy set and respectively intuitionistic fuzzy logic). In neutrosophic logic a proposition has a degree of truth (T), a degree of indeterminacy (I), and a degree of falsity (F), where T, I, F are standard or non-standard subsets of ]-0, 1+[. Neutrosophic Probability is a generalization of the classical probability and imprecise probability. Neutrosophic Statistics is a generalization of the classical statistics. What distinguishes the neutrosophics from other fields is the , which means neither nor . And , which of course depends on , can be indeterminacy, neutrality, tie (game), unknown, contradiction, vagueness, ignorance, incompleteness, imprecision, etc

    Fuzzy Techniques for Decision Making 2018

    Get PDF
    Zadeh's fuzzy set theory incorporates the impreciseness of data and evaluations, by imputting the degrees by which each object belongs to a set. Its success fostered theories that codify the subjectivity, uncertainty, imprecision, or roughness of the evaluations. Their rationale is to produce new flexible methodologies in order to model a variety of concrete decision problems more realistically. This Special Issue garners contributions addressing novel tools, techniques and methodologies for decision making (inclusive of both individual and group, single- or multi-criteria decision making) in the context of these theories. It contains 38 research articles that contribute to a variety of setups that combine fuzziness, hesitancy, roughness, covering sets, and linguistic approaches. Their ranges vary from fundamental or technical to applied approaches
    corecore