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INTRODUCTION TO NEUTROSOPHIC THEORY 

(Preface) 

Neutrosophic Theory means Neutrosophy applied in many fields in order to solve problems 
related to indeterminacy. 

Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of 
neutralities, as well as their interactions with different ideational spectra. 

This theory considers every entity <A> together with its opposite or negation <antiA> and with 
their spectrum of neutralities <neutA> in between them (i.e. entities supporting neither <A> nor 
<antiA>). The <neutA> and <antiA> ideas together are referred to as <nonA>. 

Neutrosophy is a generalization of Hegel's dialectics (the last one is based on <A> and <antiA> 
only). According to this theory every entity <A> tends to be neutralized and balanced by 
<antiA> and <nonA> entities - as a state of equilibrium. In a classical way <A>, <neutA>, 
<antiA> are disjoint two by two. But, since in many cases the borders between notions are 
vague, imprecise, Sorites, it is possible that <A>, <neutA>, <antiA> (and <nonA> of course) 
have common parts two by two, or even all three of them as well. 

Hence, in one hand, the Neutrosophic Theory is based on the triad <A>, <neutA>, and <antiA>. 
In the other hand, Neutrosophic Theory studies the indeterminacy, labelled as I, with In = I for
n ≥ 1, and mI + nI = (m+n)I, in neutrosophic structures developed in algebra, geometry, topology 
etc. 

The most developed fields of the Neutrosophic Theory are Neutrosophic Set, Neutrosophic 
Logic, Neutrosophic Probability, and Neutrosophic Statistics - that started in 1995, and recently 
Neutrosophic Precalculus and Neutrosophic Calculus, together with their applications in practice. 

Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set and respectively 
fuzzy logic (especially of intuitionistic fuzzy set and respectively intuitionistic fuzzy logic). In 
neutrosophic logic a proposition has a degree of truth (T), a degree of indeterminacy (I), and a 
degree of falsity (F), where T, I, F are standard or non-standard subsets of ]-0, 1+[.  

Neutrosophic Probability is a generalization of the classical probability and imprecise 
probability.  

Neutrosophic Statistics is a generalization of the classical statistics. 

What distinguishes the neutrosophics from other fields is the <neutA>, which means neither <A> 
nor <antiA>. And <neutA>, which of course depends on <A>, can be indeterminacy, neutrality, 
tie (game), unknown, contradiction, vagueness, ignorance, incompleteness, imprecision, etc. 
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This volume contains 45 papers, written by the author alone or in collaboration with the 
following co-authors: Mumtaz Ali, Said Broumi, Sukanto Bhattacharya, Mamoni Dhar, Irfan 
Deli, Mincong Deng, Alexandru Gal, Valeri Kroumov, Pabitra Kumar Maji, Maikel Leyva-
Vazquez, Feng Liu, Pinaki Majumdar, Munazza Naz, Karina Perez-Teruel, Rıdvan Sahin, A. A. 
Salama, Muhammad Shabir, Rajshekhar Sunderraman, Luige Vladareanu, Magdalena Vladila, 
Stefan Vladutescu, Haibin Wang, Hongnian Yu, Yan-Qing Zhang, about discounting of a 
neutrosophic mass in terms of reliability and respectively the importance of the source, evolution 
of sets from fuzzy set to neutrosophic set, classes of neutrosophic norm (n-norm) and 
neutrosophic conorm (n-conorm), applications of neutrosophic logic to physics, connections 
between extension logic and refined neutrosophic logic, approaches of neutrosophic logic to 
RABOT real time control, some applications of the neutrosophic logic to robotics, correlation 
coefficients of  interval valued neutrosophic set, cosine similarity between interval valued 
neutrosophic sets, distance and similarity measures of interval neutrosophic soft sets, generalized 
interval neutrosophic soft sets and their operations, G-neutrosophic space, neutrosophic orbit, 
neutrosophic stabilizer, intuitionistic neutrosophic sets, intuitionistic neutrosophic soft sets, 
neutrosophic multi relation (NMR) defined on neutrosophic multisets, neutrosophic loops and 
biloops, neutrosophic N-loops and soft neutrosophic N-loops, operations on intuitionistic fuzzy 
soft sets, fuzzy soft matrix and new operations, such as fuzzy soft complement matrix and trace 
of fuzzy soft matrix based on reference function related properties, neutrosophic parameterized 
(NP) soft sets, NP-aggregation operator, and many more. 

References: 

Information about the Neutrosophics you get from the UNM 
website: http://fs.gallup.unm.edu/neutrosophy . 

An international journal called Neutrosophic Sets and Systems is at 
http://fs.gallup.unm.edu/NSS . 

A variety of scientific books in many languages can be 
downloaded freely from the Digital Library of Science: 
http://fs.gallup.unm.edu/eBooks-otherformats.htm 

Florentin Smarandache 

Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

12

http://fs.gallup.unm.edu/neutrosophy
http://fs.gallup.unm.edu/NSS
http://fs.gallup.unm.edu/eBooks-otherformats.htm


Reliability and Importance  Discounting 

of Neutrosophic Masses 

Florentin Smarandache 

Abstract. In this paper, we introduce for the first time the discounting of a 

neutrosophic mass in terms of reliability and respectively the importance of 

the source. 

We show that reliability and importance discounts commute when 

dealing with classical masses. 

1. Introduction. Let Φ = {Φ1, Φ2, … , Φn} be the frame of discernment,

where 𝑛 ≥ 2, and the set of focal elements:

𝐹 = {𝐴1, 𝐴2, … , 𝐴𝑚}, for 𝑚 ≥ 1, 𝐹 ⊂ 𝐺𝛷. (1)

Let 𝐺𝛷 = (𝛷,∪,∩, 𝒞) be the fusion space. 

A neutrosophic mass is defined as follows: 

𝑚𝑛: 𝐺 → [0, 1]3

for any 𝑥 ∈ 𝐺, 𝑚𝑛(𝑥) = (𝑡(𝑥), 𝑖(𝑥), 𝑓(𝑥)), (2) 

where 𝑡(𝑥) = believe that 𝑥 will occur (truth); 

𝑖(𝑥) = indeterminacy about occurence; 

and 𝑓(𝑥) = believe that 𝑥 will not occur (falsity). 
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Simply, we say in neutrosophic logic: 

𝑡(𝑥) = believe in 𝑥; 

𝑖(𝑥) = believe in neut(𝑥) 

[the neutral of 𝑥, i.e. neither 𝑥 nor anti(𝑥)]; 

and 𝑓(𝑥) = believe in anti(𝑥) [the opposite of 𝑥]. 

Of course, 𝑡(𝑥), 𝑖(𝑥), 𝑓(𝑥) ∈ [0, 1], and 

∑ [𝑡(𝑥) + 𝑖(𝑥) + 𝑓(𝑥)] = 1,𝑥∈𝐺  (3) 

while 

𝑚𝑛(ф) = (0, 0, 0).  (4) 

It is possible that according to some parameters (or data) a source is 

able to predict the believe in a hypothesis 𝑥 to occur, while according to other 

parameters (or other data) the same source may be able to find the believe 

in 𝑥 not occuring, and upon a third category of parameters (or data) the 

source may find some indeterminacy (ambiguity) about hypothesis 

occurence. 

An element 𝑥 ∈ 𝐺 is called focal if 

𝑛𝑚(𝑥) ≠ (0, 0, 0), (5) 

i.e. 𝑡(𝑥) > 0 or 𝑖(𝑥) > 0 or 𝑓(𝑥) > 0.  

Any classical mass: 

𝑚 ∶ 𝐺ф → [0, 1] (6) 

can be simply written as a neutrosophic mass as: 

𝑚(𝐴) = (𝑚(𝐴), 0, 0). (7) 

Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I
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2. Discounting a Neutrosophic Mass due to Reliability of the

Source.

Let 𝛼 = (𝛼1, 𝛼2, 𝛼3) be the reliability coefficient of the source, 𝛼 ∈

[0,1]3. 

Then, for any 𝑥 ∈ 𝐺𝜃 ∖ {𝜃, 𝐼𝑡},

where 𝜃 = the empty set 

and 𝐼𝑡 = total ignorance, 

𝑚𝑛(𝑥)𝑎 = (𝛼1𝑡(𝑥), 𝛼2𝑖(𝑥), 𝛼3𝑓(𝑥)),  (8) 

and 

𝑚𝑛(𝐼𝑡)𝛼 = (𝑡(𝐼𝑡) + (1 − 𝛼1) ∑ 𝑡(𝑥)

𝑥∈𝐺𝜃∖{𝜙,𝐼𝑡}

,

𝑖(𝐼𝑡) + (1 − 𝛼2) ∑ 𝑖(𝑥), 𝑓(𝐼𝑡) + (1 − 𝛼3) ∑ 𝑓(𝑥)

𝑥∈𝐺𝜃∖{𝜙,𝐼𝑡}𝑥∈𝐺𝜃∖{𝜙,𝐼𝑡}

) 

(9), 

and, of course, 

𝑚𝑛(𝜙)𝛼 = (0, 0, 0). 

The missing mass of each element 𝑥, for 𝑥 ≠ 𝜙, 𝑥 ≠ 𝐼𝑡 , is transferred to 

the mass of the total ignorance in the following way: 

𝑡(𝑥) − 𝛼1𝑡(𝑥) = (1 − 𝛼1) ∙ 𝑡(𝑥) is transferred to 𝑡(𝐼𝑡),  (10) 

𝑖(𝑥) − 𝛼2𝑖(𝑥) = (1 − 𝛼2) ∙ 𝑖(𝑥) is transferred to 𝑖(𝐼𝑡), (11) 
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and 𝑓(𝑥) − 𝛼3𝑓(𝑥) = (1 − 𝛼3) ∙ 𝑓(𝑥) is transferred to 𝑓(𝐼𝑡).  (12) 

3. Discounting a Neutrosophic Mass due to the Importance of the

Source.

Let 𝛽 ∈ [0, 1] be the importance coefficient of the source. This discounting 

can be done in several ways. 

a. For any 𝑥 ∈ 𝐺𝜃 ∖ {𝜙},

𝑚𝑛(𝑥)𝛽1
= (𝛽 ∙ 𝑡(𝑥), 𝑖(𝑥), 𝑓(𝑥) + (1 − 𝛽) ∙ 𝑡(𝑥)), (13)

which means that 𝑡(𝑥), the believe in 𝑥, is diminished to 𝛽 ∙ 𝑡(𝑥), and the 

missing mass, 𝑡(𝑥) − 𝛽 ∙ 𝑡(𝑥) = (1 − 𝛽) ∙ 𝑡(𝑥), is transferred to the believe in 

𝑎𝑛𝑡𝑖(𝑥). 

b. Another way:

For any 𝑥 ∈ 𝐺𝜃 ∖ {𝜙}, 

𝑚𝑛(𝑥)𝛽2
= (𝛽 ∙ 𝑡(𝑥), 𝑖(𝑥) + (1 − 𝛽) ∙ 𝑡(𝑥), 𝑓(𝑥)), (14)

which means that 𝑡(𝑥), the believe in 𝑥, is similarly diminished to 𝛽 ∙ 𝑡(𝑥), 

and the missing mass (1 − 𝛽) ∙ 𝑡(𝑥) is now transferred to the believe in 

𝑛𝑒𝑢𝑡(𝑥). 

c. The third way is the most general, putting together the first and second

ways.

For any 𝑥 ∈ 𝐺𝜃 ∖ {𝜙}, 

𝑚𝑛(𝑥)𝛽3
= (𝛽 ∙ 𝑡(𝑥), 𝑖(𝑥) + (1 − 𝛽) ∙ 𝑡(𝑥) ∙ 𝛾, 𝑓(𝑥) + (1 − 𝛽) ∙ 𝑡(𝑥) ∙

(1 − 𝛾)), (15) 
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where 𝛾 ∈ [0, 1] is a parameter that splits the missing mass (1 − 𝛽) ∙ 𝑡(𝑥) a 

part to  𝑖(𝑥) and the other part to 𝑓(𝑥). 

For 𝛾 = 0, one gets the first way of distribution, and when 𝛾 = 1, one 

gets the second way of distribution. 

4. Discounting of Reliability and Importance of Sources in General

Do Not Commute.

a. Reliability first, Importance second.

For any 𝑥 ∈ 𝐺𝜃 ∖ {𝜙, 𝐼𝑡}, one has after reliability α discounting, where

𝛼 = (𝛼1, 𝛼2, 𝛼3): 

𝑚𝑛(𝑥)𝛼 = (𝛼1 ∙ 𝑡(𝑥), 𝛼2 ∙ 𝑡(𝑥), 𝛼3 ∙ 𝑓(𝑥)), (16) 

and 

𝑚𝑛(𝐼𝑡)𝛼 = (𝑡(𝐼𝑡) + (1 − 𝛼1) ∙ ∑ 𝑡(𝑥)

𝑥∈𝐺𝜃∖{𝜙,𝐼𝑡}

, 𝑖(𝐼𝑡) + (1 − 𝛼2)

∙ ∑ 𝑖(𝑥)

𝑥∈𝐺𝜃∖{𝜙,𝐼𝑡}

, 𝑓(𝐼𝑡) + (1 − 𝛼3) ∙ ∑ 𝑓(𝑥)

𝑥∈𝐺𝜃∖{𝜙,𝐼𝑡}

)

≝ (𝑇𝐼𝑡
, 𝐼𝐼𝑡

, 𝐹𝐼𝑡
 ).

(17) 

Now we do the importance β discounting method, the third importance 

discounting way which is the most general: 

𝑚𝑛(𝑥)𝛼𝛽3
= (𝛽𝛼1𝑡(𝑥), 𝛼2𝑖(𝑥) + (1 − 𝛽)𝛼1𝑡(𝑥)𝛾, 𝛼3𝑓(𝑥)

+ (1 − 𝛽)𝛼1𝑡(𝑥)(1 − 𝛾)) 

Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

17



(18) 

and 

𝑚𝑛(𝐼𝑡)𝛼𝛽3
= (𝛽 ∙ 𝑇𝐼𝑡

, 𝐼𝐼𝑡
+ (1 − 𝛽)𝑇𝐼𝑡

∙ 𝛾, 𝐹𝐼𝑡
+ (1 − 𝛽)𝑇𝐼𝑡

(1 − 𝛾)). (19)

b. Importance first, Reliability second.

For any 𝑥 ∈ 𝐺𝜃 ∖ {𝜙, 𝐼𝑡}, one has after importance β discounting (third

way): 

𝑚𝑛(𝑥)𝛽3
= (𝛽 ∙ 𝑡(𝑥), 𝑖(𝑥) + (1 − 𝛽)𝑡(𝑥)𝛾, 𝑓(𝑥) + (1 − 𝛽)𝑡(𝑥)(1 − 𝛾))  (20)

and 

𝑚𝑛(𝐼𝑡)𝛽3
= (𝛽 ∙ 𝑡(𝐼𝐼𝑡

), 𝑖(𝐼𝐼𝑡
) + (1 − 𝛽)𝑡(𝐼𝑡)𝛾, 𝑓(𝐼𝑡) + (1 − 𝛽)𝑡(𝐼𝑡)(1 − 𝛾)).

(21) 

Now we do the reliability 𝛼 = (𝛼1, 𝛼2, 𝛼3) discounting, and one gets: 

𝑚𝑛(𝑥)𝛽3𝛼 = (𝛼1 ∙ 𝛽 ∙ 𝑡(𝑥), 𝛼2 ∙ 𝑖(𝑥) + 𝛼2(1 − 𝛽)𝑡(𝑥)𝛾, 𝛼3 ∙ 𝑓(𝑥) + 𝛼3 ∙

(1 − 𝛽)𝑡(𝑥)(1 − 𝛾)) (22) 

and 

𝑚𝑛(𝐼𝑡)𝛽3𝛼 = (𝛼1 ∙ 𝛽 ∙ 𝑡(𝐼𝑡), 𝛼2 ∙ 𝑖(𝐼𝑡) + 𝛼2(1 − 𝛽)𝑡(𝐼𝑡)𝛾, 𝛼3 ∙ 𝑓(𝐼𝑡) +

𝛼3(1 − 𝛽)𝑡(𝐼𝑡)(1 − 𝛾)). (23) 

Remark. 

We see that (a) and (b) are in general different, so reliability of sources 

does not commute with the importance of sources. 
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5. Particular Case when Reliability and Importance Discounting of

Masses Commute.

Let’s consider a classical mass 

𝑚: 𝐺𝜃 → [0, 1] (24) 

and the focal set 𝐹 ⊂ 𝐺𝜃 , 

𝐹 = {𝐴1, 𝐴2, … , 𝐴𝑚}, 𝑚 ≥ 1, (25) 

and of course 𝑚(𝐴𝑖) > 0, for 1 ≤ 𝑖 ≤ 𝑚. 

Suppose 𝑚(𝐴𝑖) = 𝑎𝑖 ∈ (0,1]. (26) 

a. Reliability first, Importance second.

Let 𝛼 ∈ [0, 1] be the reliability coefficient of 𝑚 (∙). 

For 𝑥 ∈ 𝐺𝜃 ∖ {𝜙, 𝐼𝑡}, one has

𝑚(𝑥)𝛼 = 𝛼 ∙ 𝑚(𝑥), (27) 

and 𝑚(𝐼𝑡) = 𝛼 ∙ 𝑚(𝐼𝑡) + 1 − 𝛼. (28) 

Let 𝛽 ∈ [0, 1] be the importance coefficient of 𝑚 (∙). 

Then, for 𝑥 ∈ 𝐺𝜃 ∖ {𝜙, 𝐼𝑡},

𝑚(𝑥)𝛼𝛽 = (𝛽𝛼𝑚(𝑥), 𝛼𝑚(𝑥) − 𝛽𝛼𝑚(𝑥)) = 𝛼 ∙ 𝑚(𝑥) ∙ (𝛽, 1 − 𝛽), (29) 

considering only two components: believe that 𝑥 occurs and, respectively, 

believe that 𝑥 does not occur. 

Further on, 
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𝑚(𝐼𝑡)𝛼𝛽 = (𝛽𝛼𝑚(𝐼𝑡) + 𝛽 − 𝛽𝛼, 𝛼𝑚(𝐼𝑡) + 1 − 𝛼 − 𝛽𝛼𝑚(𝐼𝑡) − 𝛽 + 𝛽𝛼) =

[𝛼𝑚(𝐼𝑡) + 1 − 𝛼] ∙ (𝛽, 1 − 𝛽). (30) 

b. Importance first, Reliability second.

For 𝑥 ∈ 𝐺𝜃 ∖ {𝜙, 𝐼𝑡}, one has

𝑚(𝑥)𝛽 = (𝛽 ∙ 𝑚(𝑥), 𝑚(𝑥) − 𝛽 ∙ 𝑚(𝑥)) = 𝑚(𝑥) ∙ (𝛽, 1 − 𝛽), (31) 

and 𝑚(𝐼𝑡)𝛽 = (𝛽𝑚(𝐼𝑡), 𝑚(𝐼𝑡) − 𝛽𝑚(𝐼𝑡)) = 𝑚(𝐼𝑡) ∙ (𝛽, 1 − 𝛽). (32) 

Then, for the reliability discounting scaler α one has: 

𝑚(𝑥)𝛽𝛼 = 𝛼𝑚(𝑥)(𝛽, 1 − 𝛽) = (𝛼𝑚(𝑥)𝛽, 𝛼𝑚(𝑥) − 𝛼𝛽𝑚(𝑚)) (33) 

and 𝑚(𝐼𝑡)𝛽𝛼 = 𝛼 ∙ 𝑚(𝐼𝑡)(𝛽, 1 − 𝛽) + (1 − 𝛼)(𝛽, 1 − 𝛽) = [𝛼𝑚(𝐼𝑡) + 1 − 𝛼] ∙

(𝛽, 1 − 𝛽) = (𝛼𝑚(𝐼𝑡)𝛽, 𝛼𝑚(𝐼𝑡) − 𝛼𝑚(𝐼𝑡)𝛽) + (𝛽 − 𝛼𝛽, 1 − 𝛼 − 𝛽 + 𝛼𝛽) =

(𝛼𝛽𝑚(𝐼𝑡) + 𝛽 − 𝛼𝛽, 𝛼𝑚(𝐼𝑡) − 𝛼𝛽𝑚(𝐼𝑡) + 1 − 𝛼 − 𝛽 − 𝛼𝛽). (34) 

Hence (a) and (b) are equal in this case. 
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6. Examples.

1. Classical mass.

The following classical is given on 𝜃 = {𝐴, 𝐵} ∶ 

A B AUB 

m 0.4 0.5 0.1 

(35) 

Let 𝛼 = 0.8 be the reliability coefficient and 𝛽 = 0.7 be the importance 

coefficient. 

a. Reliability first, Importance second.

A B AUB 

𝑚𝛼 0.32 0.40 0.28 

𝑚𝛼𝛽  (0.224, 0.096) (0.280, 0.120) (0.196, 0.084) 

(36) 

We have computed in the following way: 

𝑚𝛼(𝐴) = 0.8𝑚(𝐴) = 0.8(0.4) = 0.32, (37) 

𝑚𝛼(𝐵) = 0.8𝑚(𝐵) = 0.8(0.5) = 0.40, (38) 

𝑚𝛼(𝐴𝑈𝐵) = 0.8(AUB) + 1 − 0.8 = 0.8(0.1) + 0.2 = 0.28, (39) 

and 

𝑚𝛼𝛽(𝐵) = (0.7𝑚𝛼(𝐴), 𝑚𝛼(𝐴) − 0.7𝑚𝛼(𝐴)) = (0.7(0.32), 0.32 −

0.7(0.32)) = (0.224, 0.096), (40) 
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𝑚𝛼𝛽(𝐵) = (0.7𝑚𝛼(𝐵), 𝑚𝛼(𝐵) − 0.7𝑚𝛼(𝐵)) = (0.7(0.40), 0.40 −

0.7(0.40)) = (0.280, 0.120), (41) 

𝑚𝛼𝛽(𝐴𝑈𝐵) = (0.7𝑚𝛼(𝐴𝑈𝐵), 𝑚𝛼(𝐴𝑈𝐵) − 0.7𝑚𝛼(𝐴𝑈𝐵)) =

(0.7(0.28), 0.28 − 0.7(0.28)) = (0.196, 0.084). (42) 

b. Importance first, Reliability second.

A B AUB 

m 0.4 0.5 0.1 

𝑚𝛽  (0.28, 0.12) (0.35, 0.15) (0.07, 0.03) 

𝑚𝛽𝛼  (0.224, 0.096 (0.280, 0.120) (0.196, 0.084) 

(43) 

We computed in the following way: 

𝑚𝛽(𝐴) = (𝛽𝑚(𝐴), (1 − 𝛽)𝑚(𝐴)) = (0.7(0.4), (1 − 0.7)(0.4)) =

(0.280, 0.120), (44) 

𝑚𝛽(𝐵) = (𝛽𝑚(𝐵), (1 − 𝛽)𝑚(𝐵)) = (0.7(0.5), (1 − 0.7)(0.5)) =

(0.35, 0.15), (45) 

𝑚𝛽(𝐴𝑈𝐵) = (𝛽𝑚(𝐴𝑈𝐵), (1 − 𝛽)𝑚(𝐴𝑈𝐵)) = (0.7(0.1), (1 − 0.1)(0.1)) =

(0.07, 0.03), (46) 

and 𝑚𝛽𝛼(𝐴) = 𝛼𝑚𝛽(𝐴) = 0.8(0.28, 0.12) = (0.8(0.28), 0.8(0.12)) =

(0.224, 0.096), (47) 

𝑚𝛽𝛼(𝐵) = 𝛼𝑚𝛽(𝐵) = 0.8(0.35, 0.15) = (0.8(0.35), 0.8(0.15)) =

(0.280, 0.120), (48) 
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𝑚𝛽𝛼(𝐴𝑈𝐵) = 𝛼𝑚(𝐴𝑈𝐵)(𝛽, 1 − 𝛽) + (1 − 𝛼)(𝛽, 1 − 𝛽) = 0.8(0.1)(0.7, 1 −

0.7) + (1 − 0.8)(0.7, 1 − 0.7) = 0.08(0.7, 0.3) + 0.2(0.7, 0.3) =

(0.056, 0.024) + (0.140, 0.060) = (0.056 + 0.140, 0.024 + 0.060) =

(0.196, 0.084). (49) 

Therefore reliability discount commutes with importance discount of 

sources when one has classical masses. 

The result is interpreted this way: believe in 𝐴 is 0.224 and believe in 

𝑛𝑜𝑛𝐴 is 0.096, believe in 𝐵 is 0.280 and believe in 𝑛𝑜𝑛𝐵 is 0.120, and believe 

in total ignorance 𝐴𝑈𝐵 is 0.196, and believe in non-ignorance is 0.084. 

7. Same Example with Different Redistribution of Masses Related to

Importance of Sources.

Let’s consider the third way of redistribution of masses related to 

importance coefficient of sources. 𝛽 = 0.7, but 𝛾 = 0.4, which means that 

40% of 𝛽 is redistributed to 𝑖(𝑥) and 60% of 𝛽 is redistributed to 𝑓(𝑥) for 

each 𝑥 ∈ 𝐺𝜃 ∖ {𝜙}; and 𝛼 = 0.8. 

a. Reliability first, Importance second.

A B AUB 

m 0.4 0.5 0.1 

𝑚𝛼 0.32 0.40 0.28 

𝑚𝛼𝛽  (0.2240, 0.0384, 

0.0576) 

(0.2800, 0.0480, 

0.0720) 

(0.1960, 0.0336, 

0.0504). 

(50) 
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We computed 𝑚𝛼 in the same way. 

But: 

𝑚𝛼𝛽(𝐴) = (𝛽 ∙ 𝑚𝛼(𝐴), 𝑖𝛼(𝐴) + (1 − 𝛽)𝑚𝛼(𝐴) ∙ 𝛾, 𝑓𝛼(𝐴) +

(1 − 𝛽)𝑚𝛼(𝐴)(1 − 𝛾)) = (0.7(0.32), 0 + (1 − 0.7)(0.32)(0.4), 0 +

(1 − 0.7)(0.32)(1 − 0.4)) = (0.2240, 0.0384, 0.0576). (51) 

Similarly for 𝑚𝛼𝛽(𝐵) and 𝑚𝛼𝛽(𝐴𝑈𝐵). 

b. Importance first, Reliability second.

A B AUB 

m 0.4 0.5 0.1 

𝑚𝛽  (0.280, 0.048, 

0.072) 

(0.350, 0.060, 

0.090) 

(0.070, 0.012, 

0.018) 

𝑚𝛽𝛼 (0.2240, 0.0384, 

0.0576) 

(0.2800, 0.0480, 

0.0720) 

(0.1960, 0.0336, 

0.0504). 

(52) 

We computed 𝑚𝛽(∙) in the following way: 

𝑚𝛽(𝐴) = (𝛽 ∙ 𝑡(𝐴), 𝑖(𝐴) + (1 − 𝛽)𝑡(𝐴) ∙ 𝛾, 𝑓(𝐴) + (1 − 𝛽)𝑡(𝐴)(1 −

𝛾)) = (0.7(0.4), 0 + (1 − 0.7)(0.4)(0.4), 0 + (1 − 0.7)0.4(1 − 0.4)) =

(0.280, 0.048, 0.072). (53) 

Similarly for 𝑚𝛽(𝐵) and 𝑚𝛽(𝐴𝑈𝐵). 

To compute 𝑚𝛽𝛼(∙), we take 𝛼1 = 𝛼2 = 𝛼3 = 0.8, (54) 

in formulas (8) and (9). 
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𝑚𝛽𝛼(𝐴) = 𝛼 ∙ 𝑚𝛽(𝐴) = 0.8(0.280, 0.048, 0.072)

= (0.8(0.280), 0.8(0.048), 0.8(0.072))

= (0.2240, 0.0384, 0.0576). (55) 

Similarly 𝑚𝛽𝛼(𝐵) = 0.8(0.350, 0.060, 0.090) =

(0.2800, 0.0480, 0.0720). (56) 

For 𝑚𝛽𝛼(𝐴𝑈𝐵) we use formula (9): 

𝑚𝛽𝛼(𝐴𝑈𝐵) = (𝑡𝛽(𝐴𝑈𝐵) + (1 − 𝛼)[𝑡𝛽(𝐴) + 𝑡𝛽(𝐵)],  𝑖𝛽(𝐴𝑈𝐵)

+ (1 − 𝛼)[𝑖𝛽(𝐴) + 𝑖𝛽(𝐵)],

 𝑓𝛽(𝐴𝑈𝐵) + (1 − 𝛼)[𝑓𝛽(𝐴) + 𝑓𝛽(𝐵)])

= (0.070 + (1 − 0.8)[0.280 + 0.350], 0.012

+ (1 − 0.8)[0.048 + 0.060], 0.018 + (1 − 0.8)[0.072 + 0.090])

= (0.1960, 0.0336, 0.0504). 

Again, the reliability discount and importance discount commute. 

8. Conclusion.

In this paper we have defined a new way of discounting a classical and 

neutrosophic mass with respect to its importance. We have also defined the 

discounting of a neutrosophic source with respect to its reliability. 

In general, the reliability discount and importance discount do not 

commute. But if one uses classical masses, they commute (as in Examples 1 

and 2). 

Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

25



Acknowledgement. 

The author would like to thank Dr. Jean Dezert for his opinions about 

this paper. 

References. 

1. F. Smarandache, J. Dezert, J.-M. Tacnet, Fusion of Sources of

Evidence with Different Importances and Reliabilities, Fusion 2010 

International Conference, Edinburgh, Scotland, 26-29 July, 2010. 

2. Florentin Smarandache, Neutrosophic Masses & Indeterminate

Models. Applications to Information Fusion, Proceedings of the International 

Conference on Advanced Mechatronic Systems [ICAMechS 2012], Tokyo, 

Japan, 18-21 September 2012. 

Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

26



A Geometric Interpretation of the Neutrosophic Set,  
A Generalization of the Intuitionistic Fuzzy Set 

Florentin Smarandache 

Abstract:  
In this paper we give a geometric interpretation of the Neutrosophic Set using the Neutrosophic 
Cube. Distinctions between the neutrosophic set and intuitionistic fuzzy set are also presented. 

Keywords and Phrases:  
Intuitionistic Fuzzy Set, Paraconsistent Set, Intuitionistic Set, Neutrosophic Set, Neutrosophic 
Cube, Non-standard Analysis, Dialectics 

1. Introduction:
One first presents the evolution of sets from fuzzy set to neutrosophic set. Then one introduces 
the neutrosophic components T, I, F which represent the membership, indeterminacy, and non-
membership values respectively, where ]-0, 1+[ is the non-standard unit interval, and thus one 
defines the neutrosophic set.  

2. Short History:
The fuzzy set (FS) was introduced by L. Zadeh in 1965, where each element had a degree of 
membership. 
The intuitionistic fuzzy set (IFS) on a universe X was introduced by K. Atanassov in 1983 as a 
generalization of FS, where besides the degree of membership μA(x) ϵ [0,1] of each element        
x ϵX to a set A there was considered a degree of non-membership νA(x) ϵ [0,1], but such that 
∀ x ϵX, μA(x)+ νA(x)≤1.                                                                                                         (2.1) 
According to Deschrijver & Kerre (2003) the vague set defined by Gau and Buehrer (1993) was 
proven by Bustine & Burillo (1996) to be the same as IFS. 
Goguen (1967) defined the L-fuzzy Set in X as a mapping X→L such that (L*, ≤L*) is a complete 
lattice, where L*={(x1,x2) ϵ [0,1]2, x1+x2≤1} and (x1,x2) ≤ L* (y1,y2) ⇔  x1≤ y1 and x2≥ y2. The 
interval-valued fuzzy set (IVFS) apparently first studied by Sambuc (1975), which were called by 
Deng (1989) grey sets, and IFS are specific kinds of L-fuzzy sets. 
According to Cornelis et al. (2003), Gehrke et al. (1996) stated that “Many people believe that 
assigning an exact number to an expert’s opinion is too restrictive, and the assignment of an 
interval of values is more realistic”, which is somehow similar with the imprecise probability 
theory where instead of a crisp probability one has an interval (upper and lower) probabilities as 
in Walley (1991). 
Atanassov (1999) defined the interval-valued intuitionistic fuzzy set (IVIFS) on a universe X as 
an object A such that: 
A= {(x, MA(X), NA(x)), xϵX}, (2.2) 
with MA:X→Int([0,1]) and NA:X→Int([0,1]) (2.3) 
and ∀ x ϵ X, supMA(x)+ supNA(x) ≤ 1 .                                                                                     (2.4) 
Belnap (1977) defined a four-valued logic, with truth (T), false (F), unknown (U), and 
contradiction (C). He used a billatice where the four components were inter-related. 
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In 1995, starting from philosophy (when I fretted to distinguish between absolute truth and 
relative truth or between absolute falsehood and relative falsehood in logics, and respectively 
between absolute membership and relative membership or absolute non-membership and relative 
non-membership in set theory) I began to use the non-standard analysis. Also, inspired from the 
sport games (winning, defeating, or tie scores), from votes (pro, contra, null/black votes), from 
positive/negative/zero numbers, from yes/no/NA, from decision making and control theory 
(making a decision, not making, or hesitating), from accepted/rejected/pending, etc. and guided 
by the fact that the law of excluded middle did not work any longer in the modern logics, I 
combined the non-standard analysis with a tri-component logic/set/probability theory and with 
philosophy (I was excited by paradoxism in science and arts and letters, as well as by 
paraconsistency and incompleteness in knowledge). How to deal with all of them at once, is it 
possible to unity them? 
I proposed the term "neutrosophic" because "neutrosophic" etymologically comes from 
"neutrosophy" [French neutre < Latin neuter, neutral, and Greek sophia, skill/wisdom] which 
means knowledge of neutral thought, and this third/neutral represents the main distinction 
between "fuzzy" and "intuitionistic fuzzy" logic/set, i.e. the included middle component 
(Lupasco-Nicolescu’s logic in philosophy), i.e. the neutral/indeterminate/unknown part (besides 
the "truth"/"membership" and "falsehood"/"non-membership" components that both appear in 
fuzzy logic/set). See the Proceedings of the First International Conference on Neutrosophic 
Logic, The University of New Mexico, Gallup Campus, 1-3 December 2001, 
at http://www.gallup.unm.edu/~smarandache/FirstNeutConf.htm. 

3. Definition of Neutrosophic Set:
Let T, I, F be real standard or non-standard subsets of ]-0, 1+[, 
with sup T = t_sup, inf T = t_inf, 
sup I = i_sup, inf I = i_inf, 
sup F = f_sup, inf F = f_inf, 
and n_sup = t_sup+i_sup+f_sup, 
n_inf = t_inf+i_inf+f_inf. 
T, I, F are called neutrosophic components. 
Let U be a universe of discourse, and M a set included in U. An element x from U is noted with 
respect to the set M as x(T, I, F) and belongs to M in the following way: 
it is t% true in the set, i% indeterminate (unknown if it is) in the set, and f% false, where t varies 
in T, i varies in I, f varies in F. 

4. Neutrosophic Cube as Geometric Interpretation of the Neutrosophic Set:

The most important distinction between IFS and NS is showed in the below Neutrosophic Cube 
A’B’C’D’E’F’G’H’ introduced by J. Dezert in 2002. 

Because in technical applications only the classical interval [ ]0,1  is used as range for the
neutrosophic parameters , ,t i f , we call the cube ABCDEDGH the technical neutrosophic cube 
and its extension ' ' ' ' ' ' ' 'A B C D E D G H  the neutrosophic cube (or absolute neutrosophic 
cube), used in the fields where we need to differentiate between absolute and relative (as in 
philosophy) notions. 
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             F’ E’(-0,-0,1+) 

 F E(0,0,1)   

           G’ H’

G   H 

 i 

B(1,0,0) t       A(0,0,0)  

B’(1+,-0,-0) f A’(-0,-0,-0) 

C D(0,1,0)  

C’        D’(-0,1+,-0) 

Let’s consider a 3D Cartesian system of coordinates, where t  is the truth axis with value 
range in 0,1− +⎤ ⎡⎦ ⎣  , f  is the false axis with value range in 0,1− +⎤ ⎡⎦ ⎣  , and similarly i   is the 

indeterminate axis with value range in 0,1− +⎤ ⎡⎦ ⎣ .

We now divide the technical neutrosophic cube ABCDEDGH  into three disjoint regions: 

1) The equilateral triangle BDE , whose sides are equal to 2 , which represents the
geometrical locus of the points whose sum of the coordinates is 1.

If a point Q  is situated on the sides of the triangle BDE  or inside of it, then 1Q Q Qt i f+ + =  as in 

Atanassov-intuitionistic fuzzy set ( )A IFS− .

2) The pyramid EABD  {situated in the right side of the EBD∆ , including its faces
ABD∆ (base), EBA∆ , and EDA∆  (lateral faces), but excluding its face BDE∆ } is the

locus of the points whose sum of coordinates is less than 1.

If P EABD∈  then 1P P Pt i f+ + <  as in intuitionistic set (with incomplete information). 

3) In the left side of BDE∆  in the cube there is the solid EFGCDEBD  ( excluding
BDE∆  ) which is the locus of points whose sum of their coordinates is greater than 1

as in the paraconsistent set.
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If a point R EFGCDEBD∈ , then 1R R Rt i f+ + > . 

It is possible to get the sum of coordinates strictly less than 1 or strictly greater than 1. For 
example: 

- We have a source which is capable to find only the degree of membership of an element; 
but it is unable to find the degree of non-membership; 

- Another source which is capable to find only the degree of non-membership of an 
element; 

- Or a source which only computes the indeterminacy. 
Thus, when we put the results together of these sources, it is possible that their sum is not 1, 
but smaller or greater.  

Also, in information fusion, when dealing with indeterminate models (i.e. elements of the fusion 
space which are indeterminate/unknown, such as intersections we don’t know if they are empty 
or not since we don’t have enough information, similarly for complements of indeterminate 
elements, etc.): if we compute the believe in that element (truth), the disbelieve in that element 
(falsehood), and the indeterminacy part of that element, then the sum of these three components 
is strictly less than 1 (the difference to 1 is the missing information). 

5. More distinctions between the Neutrosophic Set and Intuitionistic Fuzzy Set

a) Neutrosophic Set can distinguish between absolute membership (i.e. membership in all
possible worlds; we have extended Leibniz’s absolute truth to absolute membership) and relative 
membership (membership in at least one world but not in all), because NS(absolute membership 
element)=1+ while NS(relative membership element)=1. This has application in philosophy (see 
the neutrosophy). That’s why the unitary standard interval [0, 1] used in IFS has been extended 
to the unitary non-standard interval ]-0, 1+[ in NS. 
Similar distinctions for absolute or relative non-membership, and absolute or relative 
indeterminant appurtenance are allowed in NS. 

b) In NS there is no restriction on T, I, F other than they are subsets of ]-0, 1+[,
thus: -0 ≤ inf T + inf I + inf F ≤ sup T + sup I + sup F ≤ 3+. 
The inequalities (2.1) and (2.4) of IFS are relaxed in NS. 
This non-restriction allows paraconsistent, dialetheist, and incomplete information to be 
characterized in NS – as in above Neutrosophic Cube - {i.e. the sum of all three components if 
they are defined as points, or sum of superior limits of all three components if they are defined as 
subsets can be >1 (for paraconsistent information coming from different sources), or < 1 for 
incomplete information}, while that information cannot be described in IFS because in IFS the 
components T (membership), I (indeterminacy), F (non-membership) are restricted either to 
t+i+f=1 or to t2 + f2 ≤ 1, if T, I, F are all reduced to the points t, i, f respectively, or to sup T + 
sup I + sup F = 1 if T, I, F are subsets of [0, 1]. 
Of course, there are cases when paraconsistent and incomplete informations can be normalized 
to 1, but this procedure is not always suitable. 

c) Relation (2.3) from interval-valued intuitionistic fuzzy set is relaxed in NS, i.e. the intervals
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do not necessarily belong to Int[0,1] but to [0,1], even more general to ]-0, 1+[. 

d) In NS the components T, I, F can also be non-standard subsets included in the unitary non-
standard interval ]

-
0, 1

+
[, not only standard subsets included in the unitary standard interval

[0, 1] as in IFS.  

e) NS, like dialetheism, can describe paradoxist elements, NS(paradoxist element) = (1, I, 1),
while IFL cannot describe a paradox because the sum of components should be 1 in IFS. 

f) The connectors in IFS are defined with respect to T and F, i.e. membership and
nonmembership only (hence the Indeterminacy is what’s left from 1), while in NS they can be 
defined with respect to any of them (no restriction).  

g) Component “I”, indeterminacy, can be split into more subcomponents in order to better catch
the vague information we work with, and such, for example, one can get more accurate answers 
to the Question-Answering Systems initiated by Zadeh (2003).   

{In Belnap’s four-valued logic (1977) indeterminacy is split into Uncertainty (U) and 
Contradiction (C), but they were interrelated.} 

Even more, one can split "I" into Contradiction, Uncertainty, and Unknown, and we get a five-
valued logic. 

In a general Refined Neutrosophic Set, "T" can be split into subcomponents T1, T2, ..., Tm, and 
"I" into I1, I2, ..., In, and "F" into F1, F2, ..., Fp.   

h) NS has a better and clear terminology (name) as "neutrosophic" (which means the neutral
part: i.e. neither true/membership nor false/nonmembership), while IFS's name "intuitionistic" 
produces confusion with Intuitionistic Logic, which is something different (see the article by 
Didier Dubois et al., 2005).  

i) The Neutrosophic Numbers have been introduced by W.B. Vasantha Kandasamy and F.
Smarandache, which are numbers of the form N = a+bI, where a, b are real or complex numbers, 
while “I” is the indeterminacy part of the neutrosophic number N, such that I2 = I and αI+βI = 
(α+β)I. 
Of course, indeterminacy “I” is different from the imaginary i = 1− . 
In general one has In = I if n > 0, and is undefined if n ≤ 0. 
The algebraic structures using neutrosophic numbers gave birth to the neutrosophic algebraic 
structures [see for example “neutrosophic groups”, “neutrosophic rings”, “neutrosophic vector 
space”, “neutrosophic matrices, bimatrices, …, n-matrices”, etc.], introduced by W.B. Vasantha 
Kandasamy, F. Smarandache et al. 

Example of Neutrosophic Matrix: 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−

−+

I56I41
I3/10
5I21

. 

Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

31



Example of Neutrosophic Ring: ({a+bI, with a, b ϵ R}, +, ·), where of course (a+bI)+(c+dI) = 
(a+c)+(b+d)I, and (a+bI) · (c+dI) = (ac) + (ad+bc+bd)I. 

j) Also, “I” led to the definition of the neutrosophic graphs (graphs which have at least either
one indeterminate edge or one indeterminate node), and neutrosophic trees (trees which have at 
least either one indeterminate edge or one indeterminate node), which have many applications in 
social sciences.  
As a consequence, the neutrosophic cognitive maps and neutrosophic relational maps are 
generalizations of fuzzy cognitive maps and respectively fuzzy relational maps (W.B. Vasantha 
Kandasamy, F. Smarandache et al.). 
A Neutrosophic Cognitive Map is a neutrosophic directed graph with concepts like policies, events 
etc. as nodes and causalities or indeterminates as edges. It represents the causal relationship between 
concepts. 

An edge is said indeterminate if we don’t know if it is any relationship between the nodes it 
connects, or for a directed graph we don’t know if it is a directly or inversely proportional 
relationship. 
A node is indeterminate if we don’t know what kind of node it is since we have incomplete 
information. 

Example of Neutrosophic Graph (edges V1V3, V1V5, V2V3 are indeterminate and they are drawn 
as dotted): 

and its neutrosophic adjacency matrix is: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0110I
10100
110II
00I01
I0I10

The edges mean: 0 = no connection between nodes, 1 = connection between nodes, I = 
indeterminate connection (not known if it is or if it is not). 
Such notions are not used in the fuzzy theory. 
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Example of Neutrosophic Cognitive Map (NCM), which is a generalization of the Fuzzy 
Cognitive Maps. 
Let’s have the following nodes: 
C1 - Child Labor 
C2 - Political Leaders 
C3 - Good Teachers 
C4 - Poverty 
C5 - Industrialists 
C6 - Public practicing/encouraging Child Labor  
C7 - Good Non-Governmental Organizations (NGOs) 

The corresponding neutrosophic adjacency matrix related to this neutrosophic cognitive map is: 

The edges mean: 0 = no connection between nodes, 1 = directly proportional connection, -1 = 
inversely proportionally connection, and I = indeterminate connection (not knowing what kind of 
relationship is between the nodes the edge connects). 

k) The neutrosophics introduced (in 1995) the Neutrosophic Probability (NP), which is a
generalization of the classical and imprecise probabilities.  NP of an event E  is the chance that 
event E occurs, the chance that event E doesn’t occur, and the chance of indeterminacy (not 
knowing if the event E occurs or not). 

In classical probability nsup ≤ 1, while in neutrosophic probability nsup ≤  3+. 
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In imprecise probability: the probability of an event is a subset T in [0, 1], not a number p in [0, 
1], what’s left is supposed to be the opposite, subset F (also from the unit interval [0, 1]); there is 
no indeterminate subset I in imprecise probability. 

And consequently the Neutrosophic Statistics, which is the analysis of the neutrosophic events. 
Neutrosophic statistics deals with neutrosophic numbers, neutrosophic probability distribution, 
neutrosophic estimation, neutrosophic regression. 

The function that models the neutrosophic probability of a random variable x is called 
neutrosophic distribution: NP(x) = ( T(x), I(x), F(x) ), where T(x) represents the probability that 
value x occurs, F(x) represents the probability that value x does not occur, and I(x) represents the 
indeterminate / unknown probability of value x. 

l) Neutrosophy opened a new field in philosophy.

Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of 
neutralities, as well as their interactions with different ideational spectra. 

This theory considers every notion or idea <A> together with its opposite or negation <Anti-A> 
and the spectrum of "neutralities" <Neut-A> (i.e. notions or ideas located between the two 
extremes, supporting neither <A> nor <Anti-A>). The <Neut-A> and <Anti-A> ideas together 
are referred to as <Non-A>. 

According to this theory every idea <A> tends to be neutralized and balanced by <Anti-A> and 
<Non-A> ideas - as a state of equilibrium. 

In a classical way <A>, <Neut-A>, <Anti-A> are disjoint two by two. 

But, since in many cases the borders between notions are vague, imprecise, Sorites, it is 
possible that <A>, <Neut-A>, <Anti-A> (and <Non-A> of course) have common parts two by 
two as well. 

Neutrosophy is the base of neutrosophic logic, neutrosophic set, neutrosophic probability and 
statistics used in engineering applications (especially for software and information fusion), 
medicine, military, cybernetics, physics. 
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n-Valued Refined Neutrosophic Logic and Its Applications to Physics 

Florentin Smarandache 

Abstract. 

In this paper we present a short history of logics: from particular cases of 2-symbol or numerical 
valued logic to the general case of n-symbol or numerical valued logic. We show generalizations 
of 2-valued Boolean logic to fuzzy logic, also from the Kleene’s and Lukasiewicz’ 3-symbol 
valued logics or Belnap’s 4-symbol valued logic to the most general n-symbol or numerical 
valued refined neutrosophic logic. Two classes of neutrosophic norm (n-norm) and neutrosophic 
conorm (n-conorm) are defined. Examples of applications of neutrosophic logic to physics are 
listed in the last section. 
Similar generalizations can be done for n-Valued Refined Neutrosophic Set, and respectively n-
Valued Refined Neutrosopjhic Probability. 

1. Two-Valued Logic

a) The Two Symbol-Valued Logic.
It is the Chinese philosophy: Yin and Yang (or Femininity and Masculinity) as contraries: 

Fig 1. Ying and Yang 

It is also the Classical or Boolean Logic, which has two symbol-values: truth T and falsity F. 

b) The Two Numerical-Valued Logic.
It is also the Classical or Boolean Logic, which has two numerical-values: truth 1 and 

falsity 0. 
More general it is the Fuzzy Logic, where the truth (T) and the falsity (F) can be any 
numbers in [0,1] such that T + F = 1. 

 Even more general, T and F can be subsets of [0, 1]. 
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a) The Three Symbol-Valued Logics:
i) Łukasiewicz ’s Logic: True, False, and Possible.
ii) Kleene’s Logic: True, False, Unknown (or Undefined).
iii) Chinese philosophy extended to: Yin, Yang, and Neuter (or Femininity, Masculinity, and

Neutrality) – as in Neutrosophy. 
Neutrosophy philosophy was born from neutrality between various philosophies. 

Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of 
neutralities, as well as their interactions with different ideational spectra. 
This theory considers every notion or idea <A> together with its opposite or negation <antiA> 
and with their spectrum of neutralities <neutA> in between them (i.e. notions or ideas supporting 
neither <A> nor <antiA>).  
The <neutA> and <antiA> ideas together are referred to as <nonA>.  
Neutrosophy is a generalization of Hegel's dialectics (the last one is based on <A> and <antiA> 
only). 
According to this theory every idea <A> tends to be neutralized and balanced by <antiA> and 
<nonA> ideas - as a state of equilibrium. 
In a classical way <A>, <neutA>, <antiA> are disjoint two by two. But, since in many cases the 
borders between notions are vague, imprecise, Sorites, it is possible that <A>, <neutA>, <antiA> 
(and <nonA> of course) have common parts two by two, or even all three of them as well. Such 
contradictions involves Extenics. Neutrosophy is the base of all neutrosophics and it is used in 
engineering applications (especially for software and information fusion), medicine, military, 
airspace, cybernetics, physics. 

b) The Three Numerical-Valued Logic:
i) Kleene’s Logic: True (1), False (0), Unknown (or Undefined) (1/2),
and uses “min” for /\, “max” for \/, and “1-” for negation. 
ii) More general is the Neutrosophic Logic [Smarandache, 1995], where the truth (T) and the
falsity (F) and the indeterminacy (I) can be any numbers in [0, 1], then 0 ≤ T + I + F ≤ 3. 
More general: Truth (T), Falsity (F), and Indeterminacy (I) are standard or nonstandard subsets 
of the nonstandard interval ]-0, 1+[. 

3. Four-Valued Logic

a) The Four Symbol-Valued Logic
i) It is Belnap’s Logic: True (T), False (F), Unknown (U), and Contradiction (C),  where T, F, U,
C are symbols, not numbers. 
Below is the Belnap’s conjunction operator table: 

2. Three-Valued Logic

Table 1. 
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Restricted to T, F, U, and to T, F, C, the Belnap connectives coincide with the connectives in 
Kleene’s logic. 
ii) Let G = Ignorance. We can also propose the following two 4-Symbol Valued Logics:
(T, F, U, G), and (T, F, C, G). 
iii) Absolute-Relative 2-, 3-, 4-, 5-, or 6-Symbol Valued Logics [Smarandache, 1995].
Let TA be truth in all possible worlds (according to Leibniz’s definition); 
TR be truth in at last one world but not in all worlds; 
and similarly let IA be indeterminacy in all possible worlds; 
IR be indeterminacy in at last one world but not in all worlds; 
also let FA be falsity in all possible worlds; 
FR be falsity in at last one world but not in all worlds; 

Then we can form several Absolute-Relative 2-, 3-, 4-, 5-, or 6-Symbol Valued Logics 
just taking combinations of the symbols TA, TR, IA, IR, FA, and FR. 

As particular cases, very interesting would be to study the Absolute-Relative 4-Symbol 
Valued Logic (TA, TR, FA, FR), as well as the Absolute-Relative 6-Symbol Valued Logic (TA, TR, 
IA, IR, FA, FR). 

b) Four Numerical-Valued Neutrosophic Logic: Indeterminacy I is refined (split) as U =
Unknown, and C = contradiction.
T, F, U, C are subsets of [0, 1], instead of symbols;
This logic generalizes Belnap’s logic since one gets a degree of truth, a degree of falsity,
a degree of unknown, and a degree of contradiction.
Since C = T/\F, this logic involves the Extenics.

4. Five-Valued Logic

a) Five Symbol-Valued Neutrosophic Logic [Smarandache, 1995]:
Indeterminacy I is refined (split) as U = Unknown, C = contradiction, and G = ignorance; 
where the symbols represent:  

T = truth; 
F = falsity; 
U = neither T nor F (undefined); 
C = T/\F, which involves the Extenics; 
G = T\/F. 

b) If T, F, U, C, G are subsets of [0, 1] then we get: a Five Numerical-Valued Neutrosophic
Logic.

5. Seven-Valued Logic

a) Seven Symbol-Valued Neutrosophic Logic [Smarandache, 1995]:
I is refined (split) as U, C, G, but T also is refined as TA = absolute truth and TR = relative
truth, and F is refined as FA = absolute falsity and FR = relative falsity. Where:

U = neither (TA or TR) nor (FA or FR) (i.e. undefined); 
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C = (TA or TR) /\ (FA or FR) (i.e. Contradiction), which involves the Extenics; 
G = (TA or TR) \/ (FA or FR) (i.e. Ignorance).  
All are symbols. 

b) But if TA, TR, FA, FR, U, C, G are subsets of [0, 1], then we get a Seven Numerical-
Valued Neutrosophic Logic.

6. n-Valued Logic

a) The n-Symbol-Valued Refined Neutrosophic Logic [Smarandache, 1995].
In general:   
T can be split into many types of truths: T1, T2, ..., Tp, and I into many types of indeterminacies: 
I1, I2, ..., Ir, and F into many types of falsities: F1, F2, ..., Fs,, where all p, r, s ≥ 1 are integers, and 
p + r + s = n.  

All subcomponents Tj, Ik, Fl  are symbols for j∈{1,2,…,p},  k∈{1,2,…,r}, and  l∈{1,2,…,s}.     
If at least one Ik = Tj /\ Fl = contradiction, we get again the Extenics. 

b) The n-Numerical-Valued Refined Neutrosophic Logic.
In the same way, but all subcomponents Tj, Ik, Fl  are not symbols, but subsets of [0,1], for all 

j ∈  {1,2,…,p}, all k ∈  {1,2,…,r}, and all l ∈ {1,2,…,s}.      
If all sources of information that separately provide neutrosophic values for a specific  
subcomponent are independent sources, then in the general case we consider that each of the 
subcomponents Tj, Ik, Fl  is independent with respect to the others and it is in the non-standard set 
]-0, 1+[.  Therefore per total we have for crisp neutrosophic value subcomponents Tj, Ik, Fl  that: 

1 1 1
0

p r s

j k l
j k l

T I F n− +

= = =

≤ + + ≤   (1) 

where of course n = p + r + s as above. 

If there are some dependent sources (or respectively some dependent subcomponents), we can 
treat those dependent subcomponents together. For example, if T2 and I3 are dependent, we put 
them together as -0 ≤ T2 + I3 ≤ 1+. 
The non-standard unit interval ]-0, 1+[ , used to make a distinction between absolute and relative 
truth/indeterminacy/falsehood in philosophical applications, is replace for simplicity with the 
standard (classical) unit interval [0, 1] for technical applications.

For at least one Ik = Tj /\ Fl = contradiction, we get again the Extenics. 

7. n-Valued Neutrosophic Logic Connectors

a) n-Norm and n-Conorm defined on combinations of t-Norm and t-Conorm

Even more:  T, I, and/or F (or any of their subcomponents Tj , Ik, and/or Fl) can 
be countable or uncountable infinite sets. 
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The n-norm is actually the neutrosophic conjunction operator, NEUTROSOPHIC AND (/\n); 
while the n-conorm is the neutrosophic disjunction operator, NEUTROSOPHIC OR (\/n). 

One can use the t-norm and t-conorm operators from the fuzzy logic in order to define the 
n-norm and respectively n-conorm in neutrosophic logic: 

n-norm( (Tj)j={1,2,…,p}, (Ik)k={1,2,…,r}, (Fl)l={1,2,…,s} ) = (2) 

( [t-norm(Tj)]j={1,2,…,p}, [t-conorm(Ik)]k={1,2,…,r}, [t-conorm(Fl)]l={1,2,…,s} ) 

and 

n-conorm( (Tj)j={1,2,…,p}, (Ik)k={1,2,…,r}, (Fl)l={1,2,…,s} ) = (3) 

( [t-conorm(Tj)]j={1,2,…,p}, [t-norm(Ik)]k={1,2,…,r}, [t-norm(Fl)]l={1,2,…,s} ) 

and then one normalizes if needed. 

Since the n-norms/n-conorms, alike t-norms/t-conorms, can only approximate the inter-
connectivity between two n-Valued Neutrosophic Propositions, there are many versions of these 
approximations.  

For example, for the n-norm:   

the indeterminate (sub)components Ik alone can be combined with the t-conorm in a pessimistic 
way [i.e. lower bound], or with the t-norm in an optimistic way [upper bound]; 

while for the n-conorm: 

the indeterminate (sub)components Ik alone can be combined with the t-norm in a pessimistic 
way [i.e. lower bound], or with the t-conorm in an optimistic way [upper bound]. 

In general, if one uses in defining an n-norm/n-conorm for example the t-norm min{x, y} 
then it is indicated that the corresponding t-conorm used be max{x, y};  or if the t-norm used is 
the product x·y then the corresponding t-conorm should be x+y-x·y;  and similarly if the t-norm 
used is max{0, x+y-1} then the corresponding t-conorm should be min{x+y, 1}; and so on. 

Yet, it is still possible to define the n-norm and n-conorm using different types of t-norms and t-
conorms. 

b) N-norm and n-conorm based on priorities.
For the n-norm we can consider the priority: T < I < F, where the subcomponents are supposed to 
conform with similar priorities, i.e.  

T1 < T2 <... < Tp < I1 < I2 < ... <Ir <  F1 < F2 < ...< Fs.                                   (4) 
While for the n-conorm one has the opposite priorities: T > I > F, or for the refined case: 

T1 > T2 >... > Tp > I1 > I2 > ... >Ir >  F1 > F2 > ...> Fs.  (5) 

By definition A < B means that all products between A and B go to B (the bigger). 

Let’s say, one has two neutrosophic values in simple (non-refined case): 
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(Tx, Ix, Fx) (6) 

and  

(Ty, Iy, Fy). (7) 

Applying the n-norm to both of them, with priorities T < I < F, we get: 

(Tx, Ix, Fx) /\n (Ty, Iy, Fy) = (TxTy, TxIy + TyIx + IxIy, TxFy + TyFx + IxFy + IyFx + FxFy)      (8) 

Applying the n-conorm to both of them, with priorities T > I > F, we get: 

(Tx, Ix, Fx) \/n (Ty, Iy, Fy) = (TxTy + TxIy + TyIx + TxFy + TyFx, IxIy +IxFy + IyFx, FxFy).       (9) 

In a lower bound (pessimistic) n-norm one considers the priorities T < I < F, while in an upper 
bound (optimistic) n-norm one considers the priorities I < T < F. 

Whereas, in an upper bound (optimistic) n-conorm one considers T > I > F, while in a lower 
bound (pessimistic) n-conorm one considers the priorities T > F > I. 

Various priorities can be employed by other researchers depending on each particular 
application. 

8. Particular Cases
If in 6 a) and b) one has all Ik = 0, k = {1,2,…,r}, we get the n-Valued Refined Fuzzy Logic. 

If in 6 a) and b) one has only one type of indeterminacy, i.e. k =1, hence  I1 = I > 0, we get the 
n-Valued Refined Intuitionistic Fuzzy Logic. 

9. Distinction between Neutrosophic Physics and Paradoxist Physics
Firstly, we make a distinction between Neutrosophic Physics and Paradoxist Physics. 

a) Neutrosophic Physics.
Let <A> be a physical entity (i.e. concept, notion, object, space, field, idea, law, property, state, 
attribute, theorem, theory, etc.), <antiA> be the opposite of <A>, and <neutA> be their neutral (i.e. 
neither <A> nor <antiA>, but in between). 
Neutrosophic Physics is a mixture of two or three of these entities <A>, <antiA>, and <neutA> 
that hold together. 
Therefore, we can have neutrosophic fields, and neutrosophic objects, neutrosophic states, etc. 

b) Paradoxist Physics.
Neutrosophic Physics is an extension of Paradoxist Physics, since Paradoxist Physics is a 

combination of physical contradictories <A> and <antiA> only that hold together, without 
referring to their neutrality <neutA>.  Paradoxist Physics describes collections of objects or states 
that are individually characterized by contradictory properties, or are characterized neither by a 
property nor by the opposite of that property, or are composed of contradictory sub-elements. Such 
objects or states are called paradoxist entities. 

These domains of research were set up in the 1995 within the frame of neutrosophy, 
neutrosophic logic/set/probability/statistics. 
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10. n-Valued Refined Neutrosophic Logic Applied to Physics

There are many cases in the scientific (and also in humanistic) fields that two or three of these 
items <A>, <antiA>, and <neutA> simultaneously coexist.  

Several Examples of paradoxist and neutrosophic entities:   

- anions in two spatial dimensions are arbitrary spin particles that are neither bosons (integer spin) 
nor fermions (half integer spin);  

- among possible Dark Matter candidates there may be exotic particles that are neither Dirac nor 
Majorana fermions;  

- mercury (Hg) is a state that is neither liquid nor solid under normal conditions at room 
temperature;  

- non-magnetic materials are neither ferromagnetic nor anti-ferromagnetic;  

- quark gluon plasma (QGP) is a phase formed by quasi-free quarks and gluons that behaves neither 
like a conventional plasma nor as an ordinary liquid;  

- unmatter, which is formed by matter and antimatter that bind together (F. Smarandache, 2004); 

- neutral kaon, which is a pion & anti-pion composite (R. M. Santilli, 1978) and thus a form of 
unmatter;  

- neutrosophic methods in General Relativity (D. Rabounski, F. Smarandache, L. Borissova, 
2005);  

- neutrosophic cosmological model (D. Rabounski, L. Borissova, 2011); 

- neutrosophic gravitation (D. Rabounski);  

- qubit and generally quantum superposition of states; 

- semiconductors are neither conductors nor isolators; 

- semi-transparent optical components are neither opaque nor perfectly transparent to light; 

- quantum states are metastable (neither perfectly stable, nor unstable); 

- neutrino-photon doublet (E. Goldfain); 

- the “multiplet” of elementary particles is a kind of ‘neutrosophic field’ with two or more values 
(E. Goldfain, 2011); 

- A "neutrosophic field" can be generalized to that of operators whose action is selective. The 
effect of the neutrosophic field is somehow equivalent with the “tunneling” from the solid physics, 
or with the “spontaneous symmetry breaking" (SSB) where there is an internal symmetry which is 
broken by a particular selection of the vacuum state (E. Goldfain). 
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Conclusion 

Many types of logics have been presented above. For the most general logic, the n-valued refined 
neutrosophic logic, we presented two classes of neutrosophic operators to be used in 
combinations of neutrosophic valued propositions in physics. 

Similar generalizations are done for n-Valued Refined Neutrosophic Set, and respectively n-
Valued Refined Neutrosopjhic Probability. 
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Replacing the Conjunctive Rule and Disjunctive Rule with T-
norms and T-conorms respectively (Tchamova-Smarandache) 

A T-norm is a function Tn: [0, 1]2 → [0, 1], defined in fuzzy/neutrosophic set theory and 
fuzzy/neutrosophic logic to represent the “intersection” of two fuzzy/neutrosophic sets 
and the fuzzy/neutrosophic logical operator “and” respectively.  Extended to the fusion 
theory the T-norm will be a substitute for the conjunctive rule. 
The T-norm satisfies the conditions: 
a) Boundary Conditions:   Tn(0, 0) = 0, Tn(x, 1) = x.
b) Commutativity: Tn(x, y) = Tn(y, x).
c) Monotonicity: If  x ≤ u and y ≤ v, then Tn(x, y)≤ Tn(u, v).
d) Associativity: Tn(Tn(x, y), z ) = Tn( x, Tn(y, z) ).
There are many functions which satisfy the T-norm conditions.  We present below the 
most known ones: 
The Algebraic Product T-norm:  
   Tn-algebraic(x, y) = x@y 
The Bounded T-norm:  
   Tn-bounded(x, y) = max{0, x+y-1} 
 The Default (min) T-norm (introduced by Zadeh): 
   Tn-min(x, y) = min{x, y}. 

Min rule can be interpreted as an optimistic lower bound for combination of bba and the 
below Max rule as a prudent/pessimistic upper bound. (Jean Dezert)  

A T-conorm is a function Tc: [0, 1]2 → [0, 1], defined in fuzzy/neutrosophic set theory 
and fuzzy/neutrosophic logic to represent the “union” of two fuzzy/neutrosophic sets and 
the fuzzy/neutrosophic logical operator “or” respectively.  Extended to the fusion theory 
the T-conorm will be a substitute for the disjunctive rule. 
The T-conorm satisfies the conditions: 
a) Boundary Conditions:   Tc(1, 1) = 1, Tc(x, 0) = x.
b) Commutativity: Tc(x, y) = Tc(y, x).
c) Monotonicity: if  x ≤ u and y ≤ v, then Tc(x, y)≤ Tc(u, v).
d) Associativity: Tc(Tc(x, y), z ) = Tc( x, Tc(y, z) ).

Florentin Smarandache 
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The T-norms/conorms are commutative, associative, isotone, and have a neutral element. 

There are many functions which satisfy the T-conorm conditions.  We present below the 
most known ones: 
The Algebraic Product T-conorm:  

   Tc-algebraic(x, y) = x+y-x@y 
The Bounded T-conorm:  
   Tc-bounded(x, y) = min{1, x+y} 
 The Default (max) T-conorm (introduced by Zadeh): 
   Tc-max(x, y) = max{x, y}. 

Then, the T-norm Fusion rule is defined as follows: 

∩Y =
∈Θ

X A
X ,Y

Tn(m1(X ),m2(Ym112(A) = ∑ ))

and the T-conorm Fusion rule is defined as follows: 
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Connections between Extension Logic and Refined Neutrosophic Logic 

Florentin Smarandache 

Abstract. 

The aim of this presentation is to connect Extension Logic with new fields of research, i.e. fuzzy 
logic and neutrosophic logic. 

We show herein: 
- How Extension Logic is connected to the 3-Valued Neutrosophic Logic, 
- How Extension Logic is connected to the 4-Valued Neutrosophic Logic, 
- How Extension Logic is connected to the n-Valued Neutrosophic Logic, 

when contradictions occurs. As extension transformation one uses the normalization of the 
neutrosophic logic components. 

Introduction. 

In this paper we present a short history of logics: from particular cases of 2-symbol or 
numerical valued logic to the general case of n-symbol or numerical valued logic, and the way 
they are connected to Prof. Cai Wen’s Extension Logic Theory (1983). We show generalizations 
of 2-valued Boolean logic to fuzzy logic, also from the Kleene’s and Lukasiewicz’ 3-symbol 
valued logics or Belnap’s 4-symbol valued logic to the most general n-symbol or numerical 
valued refined neutrosophic logic. Two classes of neutrosophic norm (n-norm) and neutrosophic 
conorm (n-conorm) are defined. Examples of applications of neutrosophic logic to physics are 
listed in the last section. 
Similar generalizations can be done for n-Valued Refined Neutrosophic Set, and respectively n-
Valued Refined Neutrosopjhic Probability in connections with Extension Logic. 

The essential difference between extension logic and neutrosophic logic is that the sum of the 
components in the extension logic is greater than 1. And the relationship between extension logic 
and refined neutrosophic logic is that both of them can be normalized (by dividing each logical 
component by the sum of all components), thus using an extension transformation. 

1. Two-Valued Logic

a) The Two Symbol-Valued Logic.
It is the Chinese philosophy: Yin and Yang (or Femininity and Masculinity) as contraries: 
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Fig 1. Ying and Yang 

It is also the Classical or Boolean Logic, which has two symbol-values: truth T and falsity F. 

b) The Two Numerical-Valued Logic.
It is also the Classical or Boolean Logic, which has two numerical-values: truth 1 and 

falsity 0. 
More general it is the Fuzzy Logic, where the truth (T) and the falsity (F) can be any 
numbers in [0,1] such that T + F = 1. 

 Even more general, T and F can be subsets of [0, 1]. 

2. Three-Valued Logic

a) The Three Symbol-Valued Logics:
i) Łukasiewicz ’s Logic: True, False, and Possible.
ii) Kleene’s Logic: True, False, Unknown (or Undefined).
iii) Chinese philosophy extended to: Yin, Yang, and Neuter (or Femininity, Masculinity, and
Neutrality) – as in Neutrosophy. 
Neutrosophy philosophy was born from neutrality between various philosophies. Connected with 
Extension Logic (Prof. Cai Wen, 1983), and Paradoxism (F. Smarandache, 1980). 
Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of 
neutralities, as well as their interactions with different ideational spectra. 
This theory considers every notion or idea <A> together with its opposite or negation <antiA> 
and with their spectrum of neutralities <neutA> in between them (i.e. notions or ideas supporting 
neither <A> nor <antiA>).  
The <neutA> and <antiA> ideas together are referred to as <nonA>.  
Neutrosophy is a generalization of Hegel's dialectics (the last one is based on <A> and <antiA> 
only). 
According to this theory every idea <A> tends to be neutralized and balanced by <antiA> and 
<nonA> ideas - as a state of equilibrium. 
In a classical way <A>, <neutA>, <antiA> are disjoint two by two. But, since in many cases the 
borders between notions are vague, imprecise, Sorites, it is possible that <A>, <neutA>, <antiA> 
(and <nonA> of course) have common parts two by two, or even all three of them as well. Such 
contradictions involves Extension Logic.  
Neutrosophy is the base of all neutrosophics and it is used in engineering applications (especially 
for software and information fusion), medicine, military, airspace, cybernetics, physics. 
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b) The Three Numerical-Valued Logic:
i) Kleene’s Logic: True (1), False (0), Unknown (or Undefined) (1/2),
and uses “min” for /\, “max” for \/, and “1-” for negation. 
ii) More general is the Neutrosophic Logic [Smarandache, 1995], where the truth (T) and the
falsity (F) and the indeterminacy (I) can be any numbers in [0, 1], then 0 ≤ T + I + F ≤ 3. 
More general: Truth (T), Falsity (F), and Indeterminacy (I) are standard or nonstandard subsets 
of the nonstandard interval ]-0, 1+[. 

When t + f > 1 we have conflict, hence Extension Logic. 

3. Four-Valued Logic

a) The Four Symbol-Valued Logic
i) It is Belnap’s Logic: True (T), False (F), Unknown (U), and Contradiction (C),  where

T, F, U, C are symbols, not numbers.
Now we have Extension Logic, thanks to C = contradiction. 
Below is the Belnap’s conjunction operator table: 

Table 1. 

Restricted to T, F, U, and to T, F, C, the Belnap connectives coincide with the connectives in 
Kleene’s logic. 
ii) Let G = Ignorance. We can also propose the following two 4-Symbol Valued Logics:
(T, F, U, G), and (T, F, C, G). 
iii) Absolute-Relative 2-, 3-, 4-, 5-, or 6-Symbol Valued Logics [Smarandache, 1995].
Let TA be truth in all possible worlds (according to Leibniz’s definition); 
TR be truth in at last one world but not in all worlds; 
and similarly let IA be indeterminacy in all possible worlds; 
IR be indeterminacy in at last one world but not in all worlds; 
also let FA be falsity in all possible worlds; 
FR be falsity in at last one world but not in all worlds; 

Then we can form several Absolute-Relative 2-, 3-, 4-, 5-, or 6-Symbol Valued Logics 
just taking combinations of the symbols TA, TR, IA, IR, FA, and FR. 

As particular cases, very interesting would be to study the Absolute-Relative 4-Symbol 
Valued Logic (TA, TR, FA, FR), as well as the Absolute-Relative 6-Symbol Valued Logic (TA, TR, 
IA, IR, FA, FR). 

b) Four Numerical-Valued Neutrosophic Logic: Indeterminacy I is refined (split) as U =
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Unknown, and C = contradiction. 
T, F, U, C are subsets of [0, 1], instead of symbols; 
This logic generalizes Belnap’s logic since one gets a degree of truth, a degree of falsity, 
a degree of unknown, and a degree of contradiction. 
Since C = T/\F, this logic involves the Extension Logic. 

4. Five-Valued Logic

a) Five Symbol-Valued Neutrosophic Logic [Smarandache, 1995]:
Indeterminacy I is refined (split) as U = Unknown, C = contradiction, and G = ignorance; 
where the symbols represent:  

T = truth; 
F = falsity; 
U = neither T nor F (undefined); 
C = T/\F, which involves the Extension Logic; 
G = T\/F. 

b) If T, F, U, C, G are subsets of [0, 1] then we get: a Five Numerical-Valued Neutrosophic
Logic.

5. Seven-Valued Logic

a) Seven Symbol-Valued Neutrosophic Logic [Smarandache, 1995]:
I is refined (split) as U, C, G, but T also is refined as TA = absolute truth and TR = relative
truth, and F is refined as FA = absolute falsity and FR = relative falsity. Where:

U = neither (TA or TR) nor (FA or FR) (i.e. undefined); 
C = (TA or TR) /\ (FA or FR) (i.e. Contradiction), which involves the Extension Logic; 
G = (TA or TR) \/ (FA or FR) (i.e. Ignorance).  
All are symbols. 

b) But if TA, TR, FA, FR, U, C, G are subsets of [0, 1], then we get a Seven Numerical-
Valued Neutrosophic Logic.

6. n-Valued Logic

a) The n-Symbol-Valued Refined Neutrosophic Logic [Smarandache, 1995].
In general:   
T can be split into many types of truths: T1, T2, ..., Tp, and I into many types of indeterminacies: 
I1, I2, ..., Ir, and F into many types of falsities: F1, F2, ..., Fs,, where all p, r, s ≥ 1 are integers, and 
p + r + s = n.  

All subcomponents Tj, Ik, Fl  are symbols for j∈{1,2,…,p},  k∈{1,2,…,r}, and  l∈{1,2,…,s}.     
If at least one Ik = Tj /\ Fl = contradiction, we get again the Extension Logic. 

Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

50



b) The n-Numerical-Valued Refined Neutrosophic Logic.
In the same way, but all subcomponents Tj, Ik, Fl  are not symbols, but subsets of [0,1], for all 

j ∈  {1,2,…,p}, all k ∈  {1,2,…,r}, and all l ∈ {1,2,…,s}.      
If all sources of information that separately provide neutrosophic values for a specific  
subcomponent are independent sources, then in the general case we consider that each of the 
subcomponents Tj, Ik, Fl  is independent with respect to the others and it is in the non-standard set 
]-0, 1+[.  Therefore per total we have for crisp neutrosophic value subcomponents Tj, Ik, Fl  that: 

1 1 1
0

p r s

j k l
j k l

T I F n− +

= = =

≤ + + ≤   (1) 

where of course n = p + r + s as above. 

If there are some dependent sources (or respectively some dependent subcomponents), we can 
treat those dependent subcomponents together. For example, if T2 and I3 are dependent, we put 
them together as -0 ≤ T2 + I3 ≤ 1+. 
The non-standard unit interval ]-0, 1+[ , used to make a distinction between absolute and relative 
truth/indeterminacy/falsehood in philosophical applications, is replace for simplicity with the 
standard (classical) unit interval [0, 1] for technical applications.

For at least one Ik = Tj /\ Fl = contradiction, we get again the Extension Logic. 

7. Neutrosophic Cube and its Extension Logic Part

The most important distinction between IFS and NS is showed in the below Neutrosophic 
Cube A’B’C’D’E’F’G’H’ introduced by J. Dezert in 2002. 

Because in technical applications only the classical interval  is used as range for the 
neutrosophic parameters , we call the cube the technical neutrosophic cube and its extension 
the neutrosophic cube (or absolute neutrosophic cube), used in the fields where we need to 
differentiate between absolute and relative (as in philosophy) notions. 
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Fig. 2. Neutrosophic Cube 

Let’s consider a 3D-Cartesian system of coordinates, where t is the truth axis with value range in 

]
-
0,1

+
[, i is the false axis with value range in ]

-
0,1

+
[, and similarly f   is the indeterminate 

axis with value range in ]
-
0,1

+
[. 

We now divide the technical neutrosophic cube  ABCDEFGH into three disjoint regions: 
1) The equilateral triangle BDE, whose sides are equal to √(2)   which represents the

geometrical locus of the points whose sum of the coordinates is 1.
If a point Q is situated on the sides of the triangle  BDE or inside of it, then  tQ+iQ+fQ=1
as in Atanassov-intuitionistic fuzzy set  (A-IFS).

2) The pyramid EABD {situated in the right side of the triangle EBD, including its faces
triangle ABD(base), triangle EBA, and triangle EDA (lateral faces), but excluding its
face: triangle BDE } is the locus of the points whose sum of coordinates is less than 1
(Incomplete Logic).

3) In the left side of triangle BDE in the cube there is the solid EFGCDEBD ( excluding
triangle BDE) which is the locus of points whose sum of their coordinates is greater than
1 as in the paraconsistent logic. This is the Extension Logic part.

It is possible to get the sum of coordinates strictly less than 1 (in Incomplete information), or 
strictly greater than 1 (in contradictory Extension Logic). For example: 

We have a source which is capable to find only the degree of membership of an element; but it is 
unable to find the degree of non-membership; 
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Another source which is capable to find only the degree of non-membership of an element; 

Or a source which only computes the indeterminacy. 

Thus, when we put the results together of these sources, it is possible that their sum is not 1, but 
smaller (Incomplete) or greater (Extension Logic).  

8. Example of Extension Logic in 3-Valued Neutrosophic Logic

About a proposition P, the first source of information provides the truth-value T=0.8. 

Second source of information provides the false-value F=0.7. 

Third source of information provides the indeterminacy-value I=0.2. 

Hence NL3(P) = (0.8, 0.2, 0.7). 

Got Extension Logic, since Contradiction: T + F = 0.8 + 0.7 > 1. 

Can remove Contradiction by normalization: 

NL(P) = (0.47, 0.12, 0.41); now T+F ≤ 1. 

9. Example of Extension Logic in 4-Valued Neutrosophic Logic

About a proposition Q, the first source of information provides the truth-value T=0.4, second 
source provides the false-value F=0.3, third source provides the undefined-value U=0.1, fourth 
source provides the contradiction-value C=0.2. 

Hence NL4(Q) = (0.4, 0.1, 0.2, 0.3). 

Got Extension Logic, since Contradiction C = 0.2 > 0. 

Since C =T/\F, we can remove it by transferring its value 0.2 to T and F (since T and F were 
involved in the conflict) proportionally w.r.t. their values 0. 4,0.3: 

xT/0.4 = yF/0.3 = 0.2/(0.4+0.3), whence xT=0.11, yF=0.09. 

Thus T=0.4+0.11=0.51, F=0.3+0.09=0.39, U=0.1, C=0. 

Conclusion 

Many types of logics have been presented above related with Extension Logic. Examples of 
Neutrosophic Cube and its Extension Logic part, and Extension Logic in 3-Valued and 4-Valued 
Neutrosophic Logics are given. 
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Similar generalizations are done for n-Valued Refined Neutrosophic Set, and respectively n-
Valued Refined Neutrosopjhic Probability in connections with Extension Logic. 
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Neutrosophic Logic Approaches Applied to ”RABOT” 
Real Time Control 

Alexandru Gal 

Luige Vladareanu           Florentin Smarandache 

Hongnian Yu           Mincong Deng  

Abstract— In this paper we present a way of deciding which control law should operate at a time for a 
mobile walking robot. The proposed deciding method is based on the new research field, called 
Neutrosophic Logic. The results are presented as a simulated system for which the output is related to the 
inputs according to the Neutrosophic Logic. 

Keywords— Neutrosophic Logic, Hybrid Control, Walking Robots 

I.  Introduction
The mobile robot control represents a real interest due to 

its industry applications, but also due to its ideas of using 
robots in households. Because of its complexity, one can say 
there are three major types of robot control[9]. The first one is 
formed out of the PID (proportional – integrative – derivative) 
control or PD (proportional – derivative) control[10 - 13], in 
which the tracking errors along with their integrative and 
derivative part are amplified with certain gain values and then 
given as input values to the actuation system. The second type 
of robot control laws is formed by the adaptive control [14- 
20], in which the control law modifies its parameters 
according to the robot and environment dynamics and also to 
compensate the outside perturbations. The thirst control law 
type is represented by the iterative control laws in which the 
motors torque is computed by summing in a certain way the 
previous torques [21 - 23]. Other methods of control include 

Sliding Motion Control, Switching Control, Robust Control, 
etc. 

All these types of control mentioned, are very good for 
certain applications. This is why, if we can’t fit an application 
to a certain category for which, there are efficient control laws 
already made, then we need to design another control law for 
the robot. Another way is to use several control laws, each 
specialized for a certain task. But this is not possible unless 
you use a switching mechanism between the robot control 
laws. This is why, we need that the switching law used in 
selecting a different control law specialized for a certain task, 
and according to the wish of the designer/engineer and also 
according to different environmental factors given by sensors 
and transducers. 

In this paper, we presented a new method for deciding how 
to switch between several control laws, and in particular 
between a kinematic control law (a PID controller) and a 
dynamic control law (a Sliding Motion Control Law). These 
control laws that were used, were thought to be used for 
controlling a mobile walking robot, laws that have the 
objective of following as good as possible a given trajectory 
for the robot foot. 

This new switching method, is based on the new scientific 
area called Neutrosophy[7] and more precise on its derivate 
Neutrosophic logic. The neutrosophic logic was applied by 
using the classic Dezert-Smarandache[8] theory, but also the 
research of Smarandache and Vladareanu[6]. By making a 
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of Truth, Indeterminacy and Falsity. Because of this, we’ll 
have similar to a fuzzification graph, three signals of Low, 
Medium and High areas, which are attributed to the 
percentages of Truth, Indeterminacy and Falsity according to a 
specific statement for each sensor. 

For the proximity sensor, we have the member function in 
figure 2, in which one can see the three Low, Medium and 
High values. These three values correspond to the percentage 
values of truth, indeterminacy/unknown and falsity for the 
dynamic and kinematic control in the following manner (table 
1). 

TABLE I.  NEUTROSPHICATION CORRESPONDENCE OF FUZZY VALUES 
FOR THE PROXIMITY SENSOR 

Control 
type 

Low Medium High 

Dynamic 
Control 

Truth 
percentage 

Indeterminacy/unknown 
percentage 

Falsity 
percentage 

Kinematic 
Control 

Falsity 
percentage 

Indeterminacy/unknown 
percentage 

Truth 
percentage 

For the force sensor diagram, we’ll have a slightly 
different correspondence (table 2):  

TABLE II. NEUTROSPHICATION CORRESPONDENCE OF FUZZY VALUES 
FOR THE FORCE SENSOR 

Control 
type 

Low Medium High 

Dynamic 
Control 

Falsity 
percentage 

Indeterminacy/unknown 
percentage 

Truth 
percentage 

Kinematic 
Control 

Truth 
percentage 

Indeterminacy/unknown 
percentage 

Falsity 
percentage 

For these two member functions, one can see that in 
figures 2 and 3 we have a threshold for the sensor values 
according to which, the values of the neutrosophication are 
directly influenced. This threshold is chosen according to the 
application in which the neutrosophication logic is used and is 
also adjusted by trial and error after seeing the experimental 
data.  

Fig.2 Neutrosophication for the Proximity sensor data 

Therefore, when the robot foot is in contact with a support 
surface, it means that the proximity sensor will provide a 0 
value or one very close to it, and it also means that the force 

transducer should provide a value higher than the set 
threshold.

Fig. 3 Neutrosophication for the Force sensor data 

Knowing these facts we developed the neutrosophic 
switching block control based on the theory presented in this 
paper, and its results are discussed in the next chapter. Also, 
we used a classic fuzzy control so we can compare the results 
obtained to a very common and known switching design. 

IV. Results and Conclusion
To prove the validity of our proposed switching technique 

we developed a simulated system in Matlab Simulink, in 
which we built two loops one for the Neutrosophic logic and 
one for the Fuzzy logic so we can compare the results. Thus, 
figure 4 presents the switching system. 

In the presented diagram of figure 4, one can identify the 
block that defines the reference values, made out of the robot 
vertical position, its foot position according to the distance 
between the robot platform and foot, and the third reference 
signal is the one that defines the ground position. The second 
diagram bloc, named Sensors computes the reference data and 
provides to the decision making block the values of force and 
proximity which in a real system would be provided by two 
real sensors.  

By using the sensor data, we have defined two switching 
blocks. The first one is called Neutrosophic Decision Control 
and was made using the data presented in this paper, and the 
second one, is called Fuzzy Decision Control and was made 
using a simple fuzzy rule which was not presented because is 
not this paper objective, but was used to compare the final 
results. The output data was plotted to observe how the 
switching system behaves.  

Figure 5, presents two of the reference signals. The first 
one defines the sine signal for the foot vertical position and the 
second the ground position which was made to look like a 
descending stair. The third signal that defines the robot 
position was not presented due to the fact that it was taken of 
value 0. Thus, one can observe that the foot reference position 
does not stop at the ground level, so that we can compute the 
force parameter due to the negative value of the proximity 
computed sensor. This was done only for the reason to present 
different cases that the robot can encounter. 
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Fig. 4 The simulated switching system 
After the simulation was done, the output data provided by 

the simulated sensors is shown in figure 6, the top two 
diagrams. These signals are for proximity data and the 
computed force. The third diagram of figure 6 presents the 
switching data provided by the neutrosophic and fuzzy 
decision blocks. The full line represents the neutrosophic 
decision and the dashed line the fuzzy decision. Also, the 
decision to choose the kinematic control law is when the 
output value of the switching law is equal to 10 and for the 
dynamic control law we have chosen the 0 value. Before the 
neutrosophic decision is made, we had to compute the four 
parameters on which the neutrosophic switching is based. 
These parameters are presented in figure 7.  

One can observe that the value of the indeterminacy 
parameter is always 0 because the values provided by the 
sensors do not make our system to be in an unknown state. 

One can see how the value of truthiness, indeterminacy, 
falsity and contradiction varies according to the values of 
proximity and force sensors. Also, we have to point out that 
these values correspond to the level of truthiness, 
indeterminacy and falsity for choosing the dynamic control 
law, and the kinematic control law is chosen when the 
dynamic one fails to be selected.   

Fig. 5 The reference signals for the robot foot and ground 
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Fig. 6 The output data from sensors and the switching decisions 

After the neutrosophication phase, in which we computed 
the truthiness, indeterminacy, falsity and contradiction 
parameters, we have applied the classic Neutrosophic 
decision, described in this paper. After that, we have chosen 
the control law, by simply comparing the results of the 
truthiness, indeterminacy, falsity and contradiction parameters 
to each other, and obtained the first diagram from figure 8. 

Fig. 7 Parameters after neutrosophication (Truthiness, Indeterminacy, 
Falsity and Contradiction) 

The second diagram of figure 8, shows the output of the 
fuzzy switching block in which the decision was made with 
the help of a threshold value of 0,5for the fuzzification values. 

As one can see from figure 8, the neutrosophic based 
switching law has commuted from the kinematic control law 
to the dynamic control law when the robot foot was near and 
then in contact with the support surface.

Fig. 8 Output data of the two switching techniques 

After the contact has ended, the control law has been 
switched back from the dynamic control law to the kinematic 
control law. This was done at every step of the stairs. But, in 
comparison, the fuzzy based switching law did not behave like 
we wanted because it failed to switch to a dynamic control law 
for the first 3 steps, and after that, at the last 4 steps the robot 
has taken, it commuted the control laws too late to be efficient. 

The main conclusion that can be drawn is that the 
neutrosophic technique behaves really well in different 
conditions of uncertainties, that can occur during the robot 
motion, due to the errors form the sensors or uneven ground 
surface in the case of the force sensor. 

Further work will focus on implementing this switching 
technique on a simulation of a walking robot in which one will 
be able to see how the switching in influencing the motion of 
the walking robot. And after that, the second step will be to 
implement it on a real robot. 
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Applications of Neutrosophic Logic to Robotics 
An Introduction 

Florentin Smarandache Luige Vladareanu 

Abstract— In this paper we present the N-norms/N-
conorms in neutrosophic logic and set as extensions of T-
norms/T-conorms in fuzzy logic and set. 
Then we show some applications of the neutrosophic logic 
to robotics. 

Keywords: N-norm, N-conorm, N-pseudonorm, N-
pseudoconorm, Neutrosophic set, Neutrosophic logic, Robotics 

I.  DEFINITION OF NEUTROSOPHIC SET 
  Let T, I, F be real standard or non-standard subsets of 
]-0, 1+[,  
with sup T = t_sup, inf T = t_inf,  
sup I  = i_sup, inf I  = i_inf,  
sup F = f_sup, inf F = f_inf,  
and n_sup = t_sup+i_sup+f_sup,    
n_inf  = t_inf+i_inf+f_inf. 
  Let U be a universe of discourse, and M a set included in 
U.  An element x from U is noted with respect to the set M 
as x(T, I, F) and belongs to M in the following way: it is t% 
true in the set, i% indeterminate (unknown if it is or not) in 
the set, and f% false, where t varies in T, i varies in I, f 
varies in F ([1], [3]).  
  Statically T, I, F are subsets, but dynamically T, I, F are 
functions/operators depending on many known or unknown 
parameters. 

II. DEFINITION OF NEUTROSOPHIC LOGIC

In a similar way we define the Neutrosophic Logic: 
A logic in which each proposition x is T% true, I% 
indeterminate, and F% false, and we write it x(T,I,F), where 
T, I, F are defined above. 

III. PARTIAL ORDER

We define a partial order relationship on the 
neutrosophic set/logic in the following way: 

x(T1, I1, F1) ≤ y(T2, I2, F2) iff (if and only if) 
T1 ≤ T2, I1 ≥ I2, F1 ≥ F2 for crisp components. 

 And, in general, for subunitary set components: 
x(T1, I1, F1) ≤ y(T2, I2, F2) iff  

  inf T1 ≤ inf T2, sup T1 ≤ sup T2, 
 inf I1 ≥ inf I2, sup I1 ≥ sup I2,  
 inf F1 ≥ inf F2, sup F1 ≥ sup F2. 

      If we have mixed - crisp and subunitary - components, 
or only crisp components, we can transform any crisp 
component, say “a” with a Î  [0,1] or a Î ]-0, 1+[, into a 
subunitary set [a, a]. So, the definitions for subunitary set 
components should work in any case. 

IV. N-NORM AND N-CONORM

As a generalization of T-norm and T-conorm from the 
Fuzzy Logic and Set, we now introduce the N-norms and 
N-conorms for the Neutrosophic Logic and Set. 

A. N-norm 
Nn: ( ]-0,1+[ × ]-0,1+[ × ]-0,1+[ )2 → ]-0,1+[ × ]-0,1+[ × ]-0,1+[ 
Nn (x(T1,I1,F1), y(T2,I2,F2)) = (NnT(x,y), NnI(x,y), NnF(x,y)), 
where NnT(.,.), NnI(.,.), NnF(.,.) are the truth/membership, 
indeterminacy, and respectively falsehood/nonmembership 
components. 

Nn have to satisfy, for any x, y, z in the neutrosophic 
logic/set M of the universe of discourse U, the following 
axioms: 
a) Boundary Conditions: Nn(x, 0) = 0, Nn(x, 1) = x.
b) Commutativity: Nn(x, y) = Nn(y, x).
c) Monotonicity: If x ≤ y, then Nn(x, z) ≤ Nn(y, z).
d) Associativity: Nn(Nn (x, y), z) = Nn(x, Nn(y, z)).

There are cases when not all these axioms are satisfied, for 
example the associativity when dealing with the 
neutrosophic normalization after each neutrosophic 
operation. But, since we work with approximations, we can 
call these N-pseudo-norms, which still give good results in 
practice. 

Nn represent the and operator in neutrosophic logic, and 
respectively the intersection operator in neutrosophic set 
theory. 

Let J ∈{T, I, F} be a component. 
Most known N-norms, as in fuzzy logic and set the T-
norms, are: 
• The Algebraic Product N-norm: Nn−algebraicJ(x, y) = x · y
• The Bounded N-Norm: Nn−boundedJ(x, y) = max{0, x + y −
1} 
• The Default (min) N-norm: Nn−minJ(x, y) = min{x, y}.
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A general example of N-norm would be this. 
Let x(T1, I1, F1) and y(T2, I2, F2) be in the neutrosophic 
set/logic M.  Then: 

Nn(x, y) = (T1/\T2, I1\/I2, F1\/F2) 
where the “/\” operator, acting on two (standard or non-
standard) subunitary sets, is a N-norm (verifying the above 
N-norms axioms); while the “\/” operator, also acting on 
two (standard or non-standard) subunitary sets, is a N-
conorm (verifying the below N-conorms axioms). 
      For example, /\ can be the Algebraic Product T-norm/N-
norm, so T1/\T2 = T1·T2 (herein we have a product of two 
subunitary sets – using simplified notation); and \/ can be 
the Algebraic Product T-conorm/N-conorm, so T1\/T2 = 
T1+T2-T1·T2 (herein we have a sum, then a product, and 
afterwards a subtraction of two subunitary sets). 
      Or /\ can be any T-norm/N-norm, and \/ any T-
conorm/N-conorm from the above and below; for example 
the easiest way would be to consider the min for crisp 
components (or inf for subset components) and respectively 
max for crisp components (or sup for subset components). 
      If we have crisp numbers, we can at the end 
neutrosophically normalize. 

B. N-conorm 
Nc: ( ]-0,1+[ × ]-0,1+[ × ]-0,1+[ )2 → ]-0,1+[ × ]-0,1+[ × ]-0,1+[ 
 Nc (x(T1,I1,F1), y(T2,I2,F2)) = (NcT(x,y), NcI(x,y), NcF(x,y)), 
where NnT(.,.), NnI(.,.), NnF(.,.) are the truth/membership, 
indeterminacy, and respectively falsehood/nonmembership 
components. 

Nc have to satisfy, for any x, y, z in the neutrosophic 
logic/set M of universe of discourse U, the following 
axioms: 
a) Boundary Conditions: Nc(x, 1) = 1, Nc(x, 0) = x.
b) Commutativity: Nc (x, y) = Nc(y, x).
c) Monotonicity: if x ≤ y, then Nc(x, z) ≤ Nc(y, z).
d) Associativity: Nc (Nc(x, y), z) = Nc(x, Nc(y, z)).

There are cases when not all these axioms are satisfied, for 
example the associativity when dealing with the 
neutrosophic normalization after each neutrosophic 
operation. But, since we work with approximations, we can 
call these N-pseudo-conorms, which still give good results 
in practice. 

Nc represent the or operator in neutrosophic logic, and 
respectively the union operator in neutrosophic set theory. 

Let J ∈{T, I, F} be a component. 
Most known N-conorms, as in fuzzy logic and set the T-
conorms, are: 
• The Algebraic Product N-conorm: Nc−algebraicJ(x, y) = x + y
− x · y 
• The Bounded N-conorm: Nc−boundedJ(x, y) = min{1, x + y}
• The Default (max) N-conorm: Nc−maxJ(x, y) = max{x, y}.

A general example of N-conorm would be this. 
Let x(T1, I1, F1) and y(T2, I2, F2) be in the neutrosophic 
set/logic M.  Then: 

Nn(x, y) = (T1\/T2, I1/\I2, F1/\F2) 
Where – as above - the “/\” operator, acting on two 
(standard or non-standard) subunitary sets, is a N-norm 
(verifying the above N-norms axioms); while the “\/” 
operator, also acting on two (standard or non-standard) 
subunitary sets, is a N-conorm (verifying the above N-
conorms axioms). 
     For example, /\ can be the Algebraic Product T-norm/N-
norm, so T1/\T2 = T1·T2 (herein we have a product of two 
subunitary sets); and \/ can be the Algebraic Product T-
conorm/N-conorm, so T1\/T2 = T1+T2-T1·T2 (herein we have 
a sum, then a product, and afterwards a subtraction of two 
subunitary sets). 
     Or /\ can be any T-norm/N-norm, and \/ any T-
conorm/N-conorm from the above; for example the easiest 
way would be to consider the min for crisp components (or 
inf for subset components) and respectively max for crisp 
components (or sup for subset components). 
      If we have crisp numbers, we can at the end 
neutrosophically normalize. 

      Since the min/max (or inf/sup) operators work the best 
for subunitary set components, let’s present their definitions 
below. They are extensions from subunitary intervals 
{defined in [3]} to any subunitary sets. Analogously we can 
do for all neutrosophic operators defined in [3]. 
      Let x(T1, I1, F1) and y(T2, I2, F2) be in the neutrosophic 
set/logic M. 

C. More Neutrosophic Operators 
Neutrosophic Conjunction/Intersection: 

x/\y=(T/\,I/\,F/\), 
where inf T/\ = min{inf T1, inf T2} 

   sup T/\ = min{sup T1, sup T2} 
   inf I/\ = max{inf I1, inf I2} 
   sup I/\ = max{sup I1, sup I2} 
   inf F/\ = max{inf F1, inf F2} 
   sup F/\ = max{sup F1, sup F2} 

Neutrosophic Disjunction/Union: 
x\/y=(T\/,I\/,F\/), 
where inf T\/ = max{inf T1, inf T2} 

   sup T\/ = max{sup T1, sup T2} 
   inf I\/ = min{inf I1, inf I2} 
   sup I\/ = min{sup I1, sup I2} 
   inf F\/ = min{inf F1, inf F2} 
   sup F\/ = min{sup F1, sup F2} 

Neutrosophic Negation/Complement: 
C(x) = (TC,IC,FC),  
where TC = F1 

 inf IC = 1-sup I1 
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   sup IC = 1-inf I1 
 FC = T1 

Upon the above Neutrosophic 
Conjunction/Intersection, we can define the 

Neutrosophic Containment: 
We say that the neutrosophic set A is included in the 
neutrosophic set B of the universe of discourse U, 
 iff for any x(TA, IA, FA) Î A with x(TB, IB, FB) Î B we 
have: 
inf TA ≤ inf TB ; sup TA ≤ sup TB;  
inf IA ≥ inf IB ; sup IA ≥  sup IB;  
inf FA ≥  inf FB ; sup FA ≥  sup FB. 

D. Remarks 
a) The non-standard unit interval ]-0, 1+[ is merely

used for philosophical applications, especially
when we want to make a distinction between
relative truth (truth in at least one world) and
absolute truth (truth in all possible worlds), and
similarly for distinction between relative or
absolute falsehood, and between relative or
absolute indeterminacy.

But, for technical applications of neutrosophic logic and set, 
the domain of definition and range of the N-norm and N-
conorm can be restrained to the normal standard real unit 
interval [0, 1], which is easier to use, therefore: 

Nn: ( [0,1] × [0,1] × [0,1] )2 → [0,1] × [0,1] × [0,1] 
and 

  Nc: ( [0,1] × [0,1] × [0,1] )2 → [0,1] × [0,1] × [0,1]. 

b) Since in NL and NS the sum of the components (in
the case when T, I, F are crisp numbers, not sets) is
not necessary equal to 1 (so the normalization is
not required), we can keep the final result un-
normalized.
But, if the normalization is needed for special
applications, we can normalize at the end by
dividing each component by the sum all
components.
If we work with intuitionistic logic/set (when the
information is incomplete, i.e. the sum of the crisp
components is less than 1, i.e. sub-normalized), or
with paraconsistent logic/set (when the information
overlaps and it is contradictory, i.e. the sum of
crisp components is greater than 1, i.e. over-
normalized), we need to define the neutrosophic
measure of a proposition/set.
If x(T,I,F) is a NL/NS, and T,I,F are crisp numbers
in [0,1], then the neutrosophic vector norm of
variable/set x is the sum of its components:

   Nvector-norm(x) = T+I+F. 

Now, if we apply the Nn and Nc to two 
propositions/sets which maybe intuitionistic or 
paraconsistent or normalized (i.e. the sum of 
components less than 1, bigger than 1, or equal to 
1), x and y, what should be the neutrosophic 
measure of the results Nn(x,y) and Nc(x,y) ? 
Herein again we have more possibilities: 
- either the product of neutrosophic measures of 

x and y: 
Nvector-norm(Nn(x,y)) = Nvector-norm(x)·Nvector-

norm(y),  
- or their average: 

 Nvector-norm(Nn(x,y)) = (Nvector-norm(x) + Nvector-

norm(y))/2, 
- or other function of the initial neutrosophic 

measures: 

Nvector-norm(Nn(x,y)) = f(Nvector-norm(x), Nvector-

norm(y)), where f(.,.) is a function to be determined 
according to each application. 

Similarly for Nvector-norm(Nc(x,y)). 
Depending on the adopted neutrosophic vector 
norm, after applying each neutrosophic operator 
the result is neutrosophically normalized. We’d 
like to mention that “neutrosophically 
normalizing” doesn’t mean that the sum of the 
resulting crisp components should be 1 as in fuzzy 
logic/set or intuitionistic fuzzy logic/set, but the 
sum of the components should be as above: either 
equal to the product of neutrosophic vector norms 
of the initial propositions/sets, or equal to the 
neutrosophic average of the initial propositions/sets 
vector norms, etc. 
In conclusion, we neutrosophically normalize the 
resulting crisp components T`,I`,F` by multiplying 
each neutrosophic component T`,I`,F` with S/( 
T`+I`+F`), where  
S= Nvector-norm(Nn(x,y)) for a N-norm or S= Nvector-

norm(Nc(x,y)) for a N-conorm - as defined above. 

c) If T, I, F are subsets of [0, 1] the problem of
neutrosophic normalization is more difficult.
i) If sup(T)+sup(I)+sup(F) < 1, we have an

intuitionistic proposition/set.
ii) If inf(T)+inf(I)+inf(F) > 1, we have a

paraconsistent proposition/set.
iii) If there exist the crisp numbers t ∈T, i ∈ I,

and f ∈F such that t+i+f =1, then we can say
that we have a plausible normalized
proposition/set.
But in many such cases, besides the
normalized particular case showed herein, we
also have crisp numbers, say t1 ∈T, i1 ∈ I, and
f1 ∈ F such that t1+i1+f1 < 1 (incomplete
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information) and t2 ∈T, i2 ∈I, and f2∈F such 
that t2+i2+f2 > 1 (paraconsistent information). 

E. Examples of Neutrosophic Operators which are N-
norms or N-pseudonorms or, respectively N-conorms 
or N-pseudoconorms 

We define a binary neutrosophic conjunction 
(intersection) operator, which is a particular case of a N-
norm (neutrosophic norm, a generalization of the fuzzy T-
norm): 

[ ] [ ] [ ]( ) [ ] [ ] [ ]2
: 0,1 0,1 0,1 0,1 0,1 0,1

N

TIFc × × → × ×

( )1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1( , ) , ,
N

TIFc x y TT I I IT TI FF FI FT FT FI= + + + + + +
. 
The neutrosophic conjunction (intersection) operator 

Nx y∧  component truth, indeterminacy, and falsehood 
values result from the multiplication 

( ) ( )1 1 1 2 2 2T I F T I F+ + ⋅ + +
since we consider in a prudent way T I Fp p , where 
“p ” is a neutrosophic relationship and means “weaker”, 
i.e. the products i jT I  will go to I , i jT F  will go to F , and 

i jI F  will go to F for all i, j ∈{1,2}, i ≠ j, while of course
the product T1T2 will go to T,  I1I2 will go to I, and F1F2 will 
go to F (or reciprocally we can say that F  prevails in front
of I  which prevails in front of T , and this neutrosophic 
relationship is transitive): 

(T1        

 (T2       I2     F2) 

So, the truth value is 1 2TT , the indeterminacy value is 

1 2 1 2 1 2I I I T T I+ +  and the false value is 

1 2 1 2 1 2 2 1 2 1F F F I FT F T F I+ + + + . The norm of Nx yÙ
is ( ) ( )1 1 1 2 2 2T I F T I F+ + × + + . Thus, if x  and y  are

normalized, then Nx yÙ  is also normalized. Of course, the 

reader can redefine the neutrosophic conjunction operator, 
depending on application, in a different way, for example in 
a more optimistic way, i.e. I T Fp p  or T  prevails with 
respect to I , then we get: 

( )1 2 1 2 2 1 1 2 1 2 1 2 1 2 2 1 2 1( , ) , ,
N

ITFc x y TT TI TI I I FF FI FT FT FI= + + + + + +
Or, the reader can consider the order T F Ip p , etc. 

V. ROBOT POSITION CONTROL BASED ON 
KINEMATICS EQUATIONS 

A robot can be considered as a mathematical relation 
of actuated joints which ensures coordinate transformation 
from one axis to the other connected as a serial link 
manipulator where the links sequence exists. Considering 
the case of revolute-geometry robot all joints are rotational 
around the freedom ax [4, 5]. In general having a six 
degrees of freedom the manipulator mathematical analysis 
becomes very complicated. There are two dominant 
coordinate systems: Cartesian coordinates and joints 
coordinates. Joint coordinates represent angles between 
links and link extensions. They form the coordinates where 
the robot links are moving with direct control by the 
actuators.  

Fig.1. The robot control  through DH transformation. 

The position and orientation of each segment of the 
linkage structure can be described using Denavit-Hartenberg 
[DH] transformation [6]. To determine the D-H 
transformation matrix (Fig. 1) it is assumed that the Z-axis 
(which is the system’s axis in relation to the motion surface) 
is the axis of rotation in each frame, with the following 
notations: θj  - joint angled is the joint angle positive in the 
right hand sense  about jZ ; aj - link length is the length of 
the common normal, positive in the direction of (j+1)X  ; αj - 
twist angled is the angle between jZ  and  (j+1)Z, positive in 
the right hand sense about the common normal ;  dj   - offset 
distance is the value of  jZ  at which the common normal 
intersects jZ ; as well  if  jX  and (j+1)X are parallel and in the 

  (T1    I1  F1) 

(T2   I2  F2) 

(T1    I1      F1) 

(T2    I2      F2) 

(T1    I1           F1) 
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same direction, then  θj = 0 ; (j+1)X - is chosen to be 
collinear with the common normal between jZ  and  (j+1)Z 
[7, 8] . Figure 1 illustrates a robot position control based on 
the Denavit-Hartenberg transformation. The robot joint 
angles, θc, are transformed in Xc - Cartesian coordinates 
with D-H transformation. Considering that a point in j, 
respectively j+1 is given by: 

P
Z
Y
X

j

j

=

1

 and 1

11

j

j

X
Y

P
Z

+

+

=
' 

 (1) 

 

then jP can be determined in relation to j+1P through the 
equation :  

jP = jAj+1 ⋅   j+1P, (2) 

where the transformation matrix jAj+1  is: 
cos sin cos sin sin cos
sin cos cos cos sin sin    +1 0 sin cos
0 0 0 1

j j j j j j j

j j j j j j j

j j j

a
ajA j d

θ θ α θ α α

θ θ α θ α α

θ θ

− ⋅ + ⋅ ⋅⎡ ⎤
⎢ ⎥− ⋅ − ⋅ ⋅⎢ ⎥=⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  . 

Control through forward kinematics consists of the 
transformation of robot coordinates at any given moment, 
resulting directly from the measurement transducers of each 
axis, to Cartesian coordinates and comparing to the desired 
target’s Cartesian coordinates (reference point). The 
resulting error is the difference of position, represented in 
Cartesian coordinates, which requires changing. Using the 
inverted Jacobean matrix ensures the transformation into 
robot coordinates of the position error from Cartesian 
coordinates, which allows the generating of angle errors for 
the direct control of the actuator on each axis.  

The control using forward kinematics consists of 
transforming the actual joint coordinates, resulting from 
transducers, to Cartesian coordinates and comparing them 
with the desired Cartesian coordinates. The resulted error is 
a required position change, which must be obtained on 
every axis. Using the Jacobean matrix inverting it will 
manage to transform the change in joint coordinates that 
will generate angle errors for the motor axis control.  

Figure 2 illustrates a robot position control system 
based on the Denavit-Hartenberg transformation. The robot 
joint angles, θc, are transformed in  Xc - Cartesian 
coordinates with   D-H transformation, where a matrix 
results from (1) and (2) with θj -joint angle, dj -offset 
distance, a j - link length, αj  - twist.  

Position and orientation of the end effector with 
respect to the base coordinate frame is given by  XC  :  

XC = A1 · A2 · A3 · .........  · A6  (3) 

 Position error ∆X is obtained as a difference between 
desired and current position. There is difficulty in 
controlling robot trajectory, if the desired conditions are 

specified using position difference ∆X  with continuously 
measurement of current position θ1,2,.....6. 

X =A* ...A*
(4*4)

C 1 6

Desired 
XD (6*1)

Processing
Jacobian

Triangulate
Jacobian

ROBOT
SYSTEM

Back-
Substitution

Actual Position   i

  I (6*1)

X Actuators
Control

Sensor
Signals

J-1(θ) · δ 6X6J ( θ ) · δ θ1,2,.....6

XC = A1 · A2 ... · A6

Fig. 2. Robot position control system based on the Denavit-
Hartenberg transformation 

The relation, between given by end-effector's position and 
orientation considered in Cartesian coordinates and the 
robot joint angles θ1,2,.....6, it is : 

xi = f i (θ)   (4) 

where  θ  is vector representing the degrees of freedom of 
robot. By differentiating we will have: δ 6X6 =  J ( θ ) ·
δ θ1,2,.....6 , where δ 6X6 represents differential linear and
angular changes in the end effector at the currently values of 
X6  and δ θ1,2,.....6 represents the differential change of the set 
of joint angles.  J (θ) is the Jacobean matrix in which the 
elements aij  satisfy the relation: aij  =  δ   f i-1 /  δ  θ  j-1 , 
(x.6)  where  i, j are corresponding to the dimensions of  x 
respectively θ. The inverse Jacobian transforms the 
Cartesian position δ6X6 respectively ∆X  in joint angle error
(∆θ):  δ θ 1,2,...6  =  J-1(θ)  ·  δ  6X6 .

VI. HYBRID POSITION AND FORCE CONTROL OF
ROBOTS 

Hybrid position and force control of industrial robots 
equipped with compliant joints must take into consideration 
the passive compliance of the system. The generalized area 
where a robot works can be defined in a constraint space 
with six degrees of freedom (DOF), with position constrains 
along the normal force of this area and force constrains along 
the tangents. On the basis of these two constrains there is 
described the general scheme of hybrid position and force 
control in figure 3. Variables XC and FC represent the 
Cartesian position and the Cartesian force exerted onto the 
environment. Considering XC and FC expressed in specific 
frame of coordinates, its can be determinate selection 
matrices Sx and Sf, which are diagonal matrices with 0 and 1 
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diagonal elements, and which satisfy relation: Sx  +  Sf  = Id , 
where Sx and Sf are methodically deduced from kinematics 
constrains imposed by the working environment [9, 10].  

S X POSITION CONTROL
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Fig. 3. General structure of hybrid control. 

Mathematical equations for the hybrid position-force 
control. A system of hybrid position–force control normally 
achieves the simultaneous position–force control. In order to 
determine the control relations in this situation, ∆XP – the 
measured deviation of Cartesian coordinate command 
system is split in two sets: ∆XF corresponds to force 
controlled component and ∆XP corresponds to position 
control with axis actuating in accordance with the selected 
matrixes Sf and Sx. If there is considered only positional 
control on the directions established by the selection matrix 
Sx there can be determined the desired end - effector 
differential motions that correspond to position control in the 
relation: ∆XP  = KP ∆XP , where KP is the gain matrix, 
respectively desired motion joint on position controlled axis: 
∆θ P  =  J-1(θ)  ·  ∆XP [11, 12]. 

Now taking into consideration the force control on the 
other directions left, the relation between the desired joint 
motion of end-effector and the force error ∆XF is given by 
the relation:  ∆θ F  =  J-1(θ)  ·  ∆XF , where the position 
error due to force ∆XF  is the motion difference between 
∆XF– current position deviation measured by the control 
system that generates position deviation for force controlled 
axis and ∆XD – position deviation because of desired 
residual force. Noting the given desired residual force as FD 
and the physical rigidity KW there is obtained the relation: 
∆XD = KW

-1 · FD .   
Thus, ∆XF can be calculated from the relation: ∆XF  = 

KF (∆XF – ∆XD), where KF is the dimensionless ratio of the 
stiffness matrix. Finally, the motion variation on the robot 
axis matched to the motion variation of the end-effectors is 
obtained through the relation: ∆θ =  J-1(θ) ∆XF  +  J-1(θ) 
∆XP. Starting from this representation the architecture of the 
hybrid position – force control system was developed with 
the corresponding coordinate transformations applicable to 
systems with open architecture and a distributed and 
decentralized structure.   

For the fusion of information received from various 
sensors, information that can be conflicting in a certain 
degree, the robot uses the fuzzy and neutrosophic logic or set 
[3]. In a real time it is used a neutrosophic dynamic fusion, 
so an autonomous robot can take a decision at any moment. 

CONCLUSION

In this paper we have provided in the first part an 
introduction to the neutrosophic logic and set operators and 
in the second part a short description of mathematical 
dynamics of a robot and then a way of applying 
neutrosophic science to robotics. Further study would be 
done in this direction in order to develop a robot 
neutrosophic control. 
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Correlation Coefficient of Interval Neutrosophic Set 

Said Broumi, Florentin Smarandache

Keywords: Neutrosophic Set, Correlation Coefficient of Interval Neutrosophic Set, Weighted 
Correlation  Coefficient of Interval Neutrosophic Set. 

Abstract. In this paper we introduce for the first time the concept of correlation coefficients of  
interval valued neutrosophic set (INS for short).  Respective numerical examples are presented. 

1. Introduction

Neutrosophy was pioneered by Smarandache [1]. It is a branch of philosophy which studies the 
origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra 
[2]. Neutrosophic set theory is a powerful formal framework which generalizes the concept of the 
classic set, fuzzy set [3], interval-valued fuzzy set [4], intuitionistic fuzzy set [5], interval-valued 
intuitionistic fuzzy set [6], and so on. Neutrosophy introduces a new concept called <NeutA> which 
represents indeterminacy with respect to <A>. It can solve certain problems that cannot be solved by 
fuzzy logic. For example, a paper is sent to two reviewers, one says it is 90% acceptable and another 
says it is 90% unacceptable. But the two reviewers may have different backgrounds. One is an 
expert, and another is a new comer in this field. The impacts on the final decision of the paper by 
the two reviewers should be different, even though they give the same grade level of the acceptance. 
There are many similar problems, such as weather forecasting, stock price prediction, and political 
elections containing indeterminate conditions that fuzzy set theory does not handle well. This theory 
deals with imprecise and vague situations where exact analysis is either difficult or impossible. 
After the pioneering work of Smarandache. In 2005, Wang et al. [7] introduced the notion of 
interval neutrosophic set (INS) which is a particular case of the neutrosophic set (NS) that can be 
described by a membership interval, a non-membership interval, and an indeterminate interval, thus 
the NS is flexible and practical, and the NS provides a more reasonable mathematical framework to 
deal with indeterminate and inconsistent information. 
The theories of both neutrosophic set and interval neutrosophic set have achieved great success in 
various areas such as medical diagnosis [8], database [9,10], topology[11], image processing 
[12,13,14], and decision making problem [15]. 
Although several distance measures, similarity measures, and correlation measure of neutrosophic 
sets have been recently presented in [16, 17], there is a rare investigation on correlation of interval 
neutrosophic sets.   
It is very common in statistical analysis of data to finding the correlation between variables or 
attributes, where the correlation coefficient is defined on ordinary crisp sets, fuzzy sets [18],  
intuitionistic fuzzy sets [19,20,21], and neutrosophic set [16,17] respectively. In this paper we first 
discuss and derive a formula for the correlation coefficient defined on the domain of interval 
neutrosophic sets. The paper unfolds as follows. The next section briefly introduces some 
definitions related to the method. Section III presents the correlation and weighted correlation 
coefficient of the interval neutrosophic set. Conclusions appear in the last section. 
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2. Preliminaries

In this section, we mainly recall some notions related to neutrosophic sets, and interval neutrosophic 
sets relevant to the present work. See especially [1, 7, 17] for further details and background. 
2.1 Definition ([1]). Let U be an universe of discourse;  then the neutrosophic set A is an object 
having the form A = {< x: , , >,x ∈ U}, where the functions T,I,F : U→]−0,1+[
define respectively the degree of membership, the degree of indeterminacy, and the degree of non-
membership of the element x ∈ U to the set A with the condition: 

−0 ≤ + + ≤ 3+.   (1) 
From philosophical point of view, the neutrosophic set takes the value from real standard or non-
standard subsets of ]−0,1+[.So instead of ]−0,1+[ we need to take the interval [0,1] for technical
applications, because ]−0,1+[will be difficult to apply in the real applications  such as in scientific
and engineering problems.  
2.2 Definition ([7]). Let X be a space of points (objects) with generic elements in X denoted by x. 
An interval neutrosophic set A in X is characterized by truth-membership function , 
indeteminacy-membership function , and falsity-membership function . For each point x 
in X, we have that  , ,  [ 0 ,1] . 
Remark 1. An INS is clearly a NS. 
2.3 Definition ([7]). 

 An INS A is empty if = 0, = 1, 
= 0, for all x in A. 

 Let  = <0, 1 ,1> and  = <1, 0 ,0>

2.4 Correlation Coefficient of Neutrosophic Set ([17]). 

Let A and B be two neutrosophic sets in the universe of discourse X = { , , …, }. 

The correlation coefficient of A and B is given by

R(A,B)=     (2) 

where the correlation of two NSs A and B is given by

C (A,B)  =  (3)

And the informational energy of two NSs A and B are given by

E(A) =   (4)

E(B) =    (5) 

Respectively, the correlation coefficient of two neutrosophic sets A and B satisfies the following 
properties: 

(1)   0 R(A,B)   1   (6)      
(2)   R(A,B)= R(B,A)     (7) 
(3)    R(A,B)= 1 if A=B   (8) 
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3. Correlation of Two Interval Neutrosophic Sets
In this section, following the correlation between two neutrosophic sets defined by A. A. Salama in 
[17], we extend this definition to interval neutrosophic sets. If we have a random non-crisp set, with 
a triple membership form, for each of two interval neutrosophic sets, we get the interest in 
comparing the degree of their relationship. We check if there is any linear relationship between the 
two interval neutrosophic sets; thus we need a formula for the sample correlation coefficient of two 
interval neutrosophic sets in order to find the relationship between them. 
3.1.Definition 

Assume that two interval neutrosophic sets A and B in the universe of discourse X = {x1, x2, x3,  …, 

xn}  are denoted by 

A=  ,   X, and        (9) 

B= X, where      (10) 

≤  ,  ≤ , , ≤ 

,  ,   ≤  , and they all belong to [0, 1]; 

then we define the correlation of the interval neutrosophic sets A and  B  in X by the formula  

=

 (11)   

Let us notice that this formula coincides with that given by A. A Salama [17] when 
=  ,  = ,  =  and 

 =  ,  = ,  =
and the correlation coefficient of the interval neutrosophic sets A and B given by 

[0, 1+[   (12) 

where 

=    (13)

     (14) 

express the so-called informational energy of the interval neutrosophic sets A and  B respectively. 

Remark 2: For the sake of simplicity we shall use the symbols: 
=     , = ,      (15)
= ,   = ,              (16)
= , = ,          (17)
=   ,   = ,    (18)
= , = ,     (19)
=    ,    = ,   (20)     

For the correlation of interval neutrosophic set, the following proposition is immediate from the 
definition. 
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3.2. Proposition 

For A, B in the universe of discourse X={x1,x2,x3,…,xn} the correlation of interval 

neutrosophic set have the following properties: 

(1) = (21) 

(2) = )         (22) 

3.3. Theorem. For all INSs A, B the correlation coefficient satisfies the following properties: 

(3)   If A = B , then .             (23) 

(4)  .      (24) 

(5)  .       (25) 

Proof. Conditions (1) and (2) are evident; we shall prove condition (3).  is evident. 

We will prove that . From the Schwartz inequality, we obtain 

×     (26)    

Let us adopt the following notations: 

 (27)

 (28)

  (29)

The above inequality is equivalent to 

   (30) 

Then, since  we have 
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=1-

1.  (31) 

And thus we have    .   (32)    

Remark 3: From the following counter-example, we can easily check that 

 = 1 but A   (33) 

Remark 4: 

Let A and B be two interval neutrosophic set defined on the universe   X = {x1} 

A={ x1: < [0.5, 0.5] [0.5, 0.5] [0.5, 0.5]>} 

B={ x1: < [0.25, 0.25] [0.25, 0.25] [0.25, 0.25]>} 

 = 1 but A

3.4. Weighted Correlation Coefficient of Interval Neutrosophic Sets 

In order to investigate the difference of importance considered in the elements in the universe of 
discourse, we need to take the weights of the elements  (i = 1, 2, 3, …, n). In the following we 
develop a weighted correlation coefficient between the interval neutrosophic sets as follows: 

[0, 1+[   (34)  

If w = { }, equation (34) is reduced to the correlation coefficient (12); it is easy to check 

that the weighted correlation coefficient between INSs A and B also satisfies the 

properties:   

(1)        (35)     

(2)   =   (36) 

(3)   = 1 if A = B    (37) 

3.5. Numerical Illustration. 

In this section we present, an example to depict the method defined above, where the data is 
represented by an interval neutrosophic sets. 

Example. For a finite universal set X = {x1, x2}, if two interval neutrosophic sets are written, 
respectively 
A = { :<[0.2, 0.3] [0.4, 0.5] [0.1, 0.2]>; :<[0.3, 0.5] [0.1, 0.2] [0.4, 0.5]>} 

B = { :<[0.1, 0.2] [0.3, 0.4] [0.1, 0.3]>; :<[0.4, 0.5] [0.2, 0.3] [0.1, 0.2]>} 

Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

71



Therefore, we have 

[0, 1+[

E(A) = 1,39 

E(B) = 0,99 

It shows that the interval neutrosophic sets A and B have  a good positively correlation. 

Conclusion: 
In this paper we introduced a method to calculate the correlation coefficient of two interval 
neutrosophic sets. 
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Cosine Similarity Measure of Interval Valued Neutrosophic Sets 

Said Broumi Florentin Smarandache

Abstract. In this paper, we define a new cosine similarity 
between two interval valued neutrosophic sets based on 
Bhattacharya’s distance [19]. The notions of interval valued 
neutrosophic sets (IVNS, for short) will be used as vector 
representations in 3D-vector space. Based on the comparative 
analysis of the existing similarity measures for IVNS, we find that 
our proposed similarity measure is better and more robust. An 
illustrative example of the pattern recognition shows that the 
proposed method is simple and effective. 

Keywords: Cosine Similarity Measure; Interval Valued 
Neutrosophic Sets .

I. INTRODUCTION 
The neutrsophic sets (NS), pioneered by F. Smarandache 

[1],  has been studied and applied in different  fields, including 
decision making problems  [2, 3, 4 , 5, 23], databases [6-7], 
medical diagnosis problems [8] , topology [9], control theory 
[10], Image processing [11,12,13] and so on. The character of 
NSs is that the values of its membership  function,  non-
membership function and indeterminacy function are subsets. 
The concept of neutrosophic sets generalizes the following 
concepts: the classic set, fuzzy set, interval valued fuzzy set, 
Intuitionistic fuzzy set, and interval valued intuitionistic fuzzy 
set and so on, from a philosophical point of view. Therefore, 
Wang et al [14] introduced an instance of neutrosophic sets 
known as single valued neutrosophic sets (SVNS), which were 
motivated from the practical point of view and that can be used 
in real scientific and engineering application,  and provide the 
set theoretic operators and various properties of SVNSs. 
However, in many applications, due to lack of knowledge or 
data about the problem domains, the decision information may 
be provided with intervals, instead of real numbers. Thus, 
interval valued neutrosophic sets (IVNS), as a useful 
generation of NS, was introduced by Wang et al [15], which is 
characterized by a membership function, non-membership 
function and an indeterminacy function, whose values are 
intervals rather than real numbers. Also, the interval valued 
neutrosophic set can represent uncertain, imprecise, incomplete 
and inconsistent information which exist in the real world. As 
an important extension of NS, IVNS has many applications in 
real life [16, 17].  

Many methods have been proposed for measuring the 
degree of similarity between neutrosophic set,  S.Broumi and 
F. Smarandache [22] proposed several definitions of similarity 
measure between NS.  P.Majumdar and S.K.Samanta [21] 

suggested some new methods for measuring the similarity 
between neutrosophic set. However, there is a little 
investigation on the similarity measure of IVNS, although 
some method on measure of similarity between intervals 
valued neutrosophic sets have been presented in [5] recently.  

Pattern recognition has been one of the fastest growing 
areas during the last two decades because of its usefulness and 
fascination. In pattern recognition, on the basis of the 
knowledge of known pattern, our aim is to classify the 
unknown pattern. Because of the complex and uncertain nature 
of the problems. The problem pattern recognition is given in 
the form of interval valued neutrosophic sets. 

In this paper, motivated by the cosine similarity measure 
based on Bhattacharya’s distance [19], we propose a new 
method called “cosine similarity measure for interval valued 
neutrosophic sets. Also the proposed and existing similarity 
measures are compared to show that the proposed similarity 
measure is more reasonable than some similarity measures. 
The proposed similarity measure is applied to pattern 
recognition 

This paper is organized as follow: In section 2 some basic 
definitions of neutrosophic set, single valued neutrosophic set, 
interval valued neutrosophic set and cosine similarity measure 
are presented briefly.  In section 3, cosine similarity measure of 
interval valued neutrosophic sets and their proofs are 
introduced. In section 4, results of the proposed similarity 
measure and existing similarity measures are compared .In 
section 5, the proposed similarity measure is applied to deal 
with the problem related to medical diagnosis. Finally we 
conclude the paper. 

II. PRELIMINARIE

This section gives a brief overview of the concepts of 
neutrosophic set, single valued neutrosophic set, interval 
valued neutrosophic set and cosine similarity measure. 

A.  Neutrosophic Sets 
1) Definition [1]

Let U be an universe of discourse then the neutrosophic set 
A is an object having the form  

A = {< x: T��x�, I��x�, F��x�>, x ∈ U}, where the
functions T, I, F : U→ ]−0, 1+[  define respectively the degree 
of membership (or Truth) , the degree of indeterminacy, and 
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the degree of non-membership (or Falsehood) of the element x ∈ U to the set A with the condition.
−0 ≤T��x�+I��x�+F��x� ≤3+.            (1)

From philosophical point of view, the neutrosophic set 
takes the value from real standard or non-standard subsets of 
]−0, 1+[. So instead of] −0, 1+[ we need to take the interval [0, 
1] for technical applications, because ]−0, 1+[will be difficult to
apply in the real applications  such as in scientific and 
engineering problems.  

For two NS, 	
� = {<x,T��x�,  I��x�,  F��x�> | x ∈ X}

And �
� = {<x, T��x�,  I��x�,  F��x�> | x ∈ X} the two
relations are defined as follows: 

(1) 	
� ⊆  �
� If and only if T��x� ≤ T��x�,  I��x�
≥ I��x�,  F��x� ≥ F��x� 

(2) 	
� =  �
�   if and only if, T��x�=T��x�,  I��x� =I��x�, F��x� =F��x� 

B. Single Valued Neutrosophic Sets 
1) Definition [14]

Let X be a space of points (objects) with generic elements 
in X denoted by x. An SVNS A in X is characterized by a 
truth-membership function T��x�, an indeterminacy-
membership function I��x�, and a falsity-membership function
F��x�,  for each point x in X, T��x�, I��x�, F��x� ∈ [0, 1].  

When X is continuous, an SVNS A can be written as 

A=� �� �!�, " �!�, # �!�,$
!% , x ∈ X.  (2) 

When X is discrete, an SVNS A can be written as 

A= ∑ �� �!(�, " �!(�,# �!(�,$
!(

)* , x+ ∈ X                            (3)

For two SVNS, 	�,
� = {<x,T��x� , I��x�,  F��x�> | x ∈ X}

And ��,
� ={ <x, T��x�,  I��x�,  F��x�> | x ∈ X} the two
relations are defined as follows: 

(1) 	�,
� ⊆  ��,
� if and only if T��x� ≤ T��x�, I��x�
≥ I��x�, F��x� ≥ F��x� 

(2) 	�,
� =  ��,
�  if and only if , T��x� =T��x�,  I��x�
=I��x�, F��x� =F��x� for any x ∈ X. 

C. Interval Valued Neutrosophic Sets 
1) Definition [15]

Let X be a space of points (objects) with generic elements in 
X denoted by x. An interval valued neutrosophic set (for short 
IVNS) A in X is characterized by truth-membership function 
T��x�, indeteminacy-membership function I��x� and falsity-
membership function  F��x�. For each point x in X, we have
thatT��x�, I��x�, F��x�  [0, 1] .
For two IVNS, "-./ ={<x, [T�0�x�, T�1�x�] ,
[F�0�x� F�1�x�] [I�0�x�, I�1�x�] > | x ∈ X}
And �"-./= {<x,
[T�0�x�,T�1�x�], [F�0�x�, F�1�x�], [I�0�x�, I�1�x�]>| x ∈ X} the two
relations are defined as follows: 

(1) 	"-./ ⊆  �"-./ if and only if T�0�x� ≤ T�0�x�,T�1�x�
≤ T�1�x� , I�0�x� ≥ I�0�x�, I�1�x� ≥ I�1�x�,  F�0�x� ≥ F�0�x�
, F�1�x� ≥ F�1�x�.
(2) 	"-./ = �"-./  if and only if , T�0�x�=T�0�x�, T�1�x�
=T�1�x�, I�0�x�=I�0�x�, I�1�x� =I�1�x�, F�0�x�=F�0�x�, F�1�x�
=F�1�x� for any x ∈ X.

D. Cosine Similarity 
1) Definition

Cosine similarity is a fundamental angle-based measure of 
similarity between two vectors of n dimensions using the 
cosine of the angle between them Candan and Sapino [20]. It 
measures the similarity between two vectors based only on the 
direction, ignoring the impact of the distance between them. 
Given two vectors of attributes, X = (x*, x4, … , x)) and Y=
(y*, y4, … , y)), the cosine similarity, cosθ, is represented
using a dot product and magnitude as 

Cosθ = ∑ 56 7689:;
<∑ 56=89:;  <∑ 76=89:;

 (4) 

In vector space, a cosine similarity measure based on 
Bhattacharya’s distance [19] between two fuzzy set >?�@A�
and >B�@A� defined as follows:

CD�	, �� = ∑ EF�GH�89:;   EI�GH�
<∑ EF�GH�J89:;  <∑ EI�GH�J89:;

 (5) 

The cosine of the angle between the vectors is within the 
values between 0 and 1. 

In 2-D vector space, J. Ye [18] defines cosine similarity 
measure between IFS as follows: 

CKD��	, �� = ∑  EF�GH�89:;   EI�GH�LMF�GH�MI�GH�
<∑ EF�GH�JLMF�GH�J89:;  <∑ EI�GH�JLMI�GH�J89:;

  (6)

III . COSINE SIMILARITY MEASURE FOR INTERVAL VALUED 
NEUTROSOPHIC SETS. 

The existing cosine similarity measure is defined as the 
inner product of these two vectors divided by the product of 
their lengths. The cosine similarity measure is the cosine of the 
angle between the vector representations of the two fuzzy sets. 
The cosine similarity measure is a classic measure used in 
information retrieval and is the most widely reported measures 
of vector similarity [19]. However, to the best of our 
Knowledge, the existing cosine similarity measures does not 
deal with interval valued neutrosophic sets. Therefore, to 
overcome this limitation in this section, a new cosine similarity 
measure between interval valued neutrosophic sets is proposed 
in 3-D vector space. 

Let A be an  interval valued neutrosophic sets in a universe of 
discourse X ={x}, the interval valued neutrosophic sets is 
characterized by the interval of membership  [T�0�x�, T�1�x�]
,the interval degree of non-membership [F�0�x�, F�1�x�] and the
interval degree of indeterminacy [I�0�x�, I�1�x�]  which can be
considered as a vector representation  with the three elements. 
Therefore, a cosine similarity measure for interval neutrosophic 
sets is proposed in an analogous manner to the cosine similarity 
measure proposed by J. Ye [18]. 
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E. Definition 
Assume that there are two interval neutrosophic sets A and 

B in X  ={ @*, @4 ,…, @N} Based on the extension measure for

fuzzy sets, a cosine similarity measure between interval valued 
neutrosophic sets A and B is proposed as  follows 

C
�  	, ��= *
N  ∑ �OFP�GH� L OFQ�GH�� �OIP�GH�LOIQ�GH��L�KFP�GH� L KFQ�GH�� �KIP�GH� L KIQ�GH�� L�DFP�GH� L DFQ�GH�� �DIP�GH� L DIQ�GH�� 

<�OFP�GH� L OFQ�GH��JL�KFP�GH�LKFQ�GH��JL�DFP�GH� L DFQ�GH��J  <�OIP�GH� L OIQ�GH��JL�KIP�GH�LKIQ�GH��JL�DIP�GH� L DIQ�GH��J 
NAR*  (7) 

F. Proposition  
Let A and B be interval valued neutrosophic sets then 

i. 0 ≤ C
�	, �� ≤ 1
ii. C
�	, �� = C
��, 	�

iii. C
� 	, �� = 1  if A= B i.e
S?T�@A� =  SBT�@A�,   S?U�@A� = SBU�@A�,
V?T�@A� =  VBT�@A�,   V?U�@A�  =  VBU�@A� and
W?T�@A� =  WBT�@A� , W?U�@A�  =  WBU�@A�  for  i=1,2,…., n
Proof : (i) it is obvious that the proposition is true according 
to the cosine valued 

(ii) it is obvious that the proposition is true. 
(iii) when A =B, there are 
S?T�@A� =  SBT�@A�,   S?U�@A� = SBU�@A�,
V?T�@A� =  VBT�@A�,   V?U�@A�  =  VBU�@A� and
W?T�@A� = WBT�@A� W?U�@A�  =  WBU�@A�  for  i=1,2,…, n , So
there is C
�	, �� = 1
If we consider the weights of each element @A, a weighted
cosine similarity measure between IVNSs A and B is given as 
follows: 

CX
�	, ��= *
N  ∑ YA

�OFP�GH� L OFQ�GH�� �OIP�GH�LOIQ�GH��L�KFP�GH� L KFQ�GH�� �KIP�GH� L KIQ�GH�� L�DFP�GH� L DFQ�GH�� �DIP�GH� L DIQ�GH�� 
<�OFP�GH� L OFQ�GH��JL�KFP�GH�LKFQ�GH��JL�DFP�GH� L DFQ�GH��J  <�OIP�GH� L OIQ�GH��JL�KIP�GH�LKIQ�GH��JL�DIP�GH� L DIQ�GH��J 

NAR*  (8) 

Where YA ∈ [0.1] ,i =1,2,…,n ,and  ∑ YANAR*  =1.

If we take YA = *
N , i =1,2,…,n , then there is  CX
�	, �� =

C
�	, ��.

The weighted cosine similarity measure between two 
IVNSs A and B also satisfies the  following properties: 

i. 0 ≤ CX
�	, �� ≤ 1
ii. CX
�	, �� = CX
��, 	�

iii. CX
� 	, �� = 1  if A= B i.e
S?T�@A� =  SBT�@A�,   S?U�@A� = SBU�@A� ,  V?T�@A� =

 VBT�@A�,   V?U�@A�  =  VBU�@A� and W?T�@A� =  WBT�@A� ,    W?U�@A�  =
 WBU�@A� for  i=1,2,…, n

G. Proposition  
Let the distance measure of the angle as d(A,B)= arcos 
(\]�^, _�) then it satisfies the following properties.

i. d(A, B) ≥  0,  if  0 ≤ C`�	, �� ≤ 1
ii. d(A, B) = arcos(;) = 0,  if C
�	, �� = 1

iii. d(A, B) = d( B, A) if  C
�	, �� =  C
��, 	�
iv. d(A, C) ≤ d(A, B) + d( B, C)  if  A ⊆ B ⊆ C for any

interval valued neutrosophic sets C. 

Proof : obviously, d(A,B) satisfies the (i) – (iii). In the 
following , d(A,B) will be proved to satisfy the (iv). 

For any  C = { @A}, A ⊆ B ⊆ C since Eq ( 7) is the sum of
terms. Let us consider the distance measure of the angle 
between vectors: 

aA(A(@A), B(@A)) = arcos(\]�^�@A�, _�@A��),
aA(B(@A), C(@A)) = arcos(\]�_�@A�, \�@A��) and
aA(A(@A), C(@A)) = arcos(\]�^�@A�, \�@A��), for  i=1, 2, .., n,
where 

C
�	, ��= *
N  ∑ �OFP�GH� L OFQ�GH�� �OIP�GH�LOIQ�GH��L�KFP�GH� L KFQ�GH�� �KIP�GH� L KIQ�GH�� L�DFP�GH� L DFQ�GH�� �DIP�GH� L DIQ�GH�� 

<�OFP�GH� L OFQ�GH��JL�KFP�GH�LKFQ�GH��JL�DFP�GH� L DFQ�GH��J  <�OIP�GH� L OIQ�GH��JL�KIP�GH�LKIQ�GH��JL�DIP�GH� L DIQ�GH��J 
NAR*  (9) 

C
��, C�= *
N  ∑ �OIP�GH� L OIQ�GH�� �ObP�GH�LObQ�GH��L�KIP�GH� L KIQ�GH�� �KbP�GH� L KbQ�GH�� L�DIP�GH� L DIQ�GH�� �DbP�GH� L DbQ�GH�� 

<�OIP�GH� L OIQ�GH��JL�KIP�GH�LKIQ�GH��JL�DIP�GH� L DIQ�GH��J  <�ObP�GH� L ObQ�GH��JL�KbP�GH�LKbQ�GH��JL�DbP�GH� L DbQ�GH��J 
NAR*  (10) 

C
�	, C�= *
N  ∑ �OFP�GH� L OFQ�GH�� �ObP�GH�LObQ�GH��L�KFP�GH� L KFQ�GH�� �KbP�GH� L KbQ�GH�� L�DFP�GH� L DFQ�GH�� �DbP�GH� L DbQ�GH�� 

<�OFP�GH� L OFQ�GH��JL�KFP�GH�LKFQ�GH��JL�DFP�GH� L DFQ�GH��J  <�ObP�GH� L ObQ�GH��JL�KbP�GH�LKbQ�GH��JL�DbP�GH� L DbQ�GH��J 
NAR*  (11) 

For three vectors 

A(@A) = <@A , [ S?T�@A� , S?U�@A�], [ V?T�@A�, V?U�@A�], [W?T�@A� ,
W?U�@A�] >

B(@A) = < @A , [ SBT�@A� , SBU�@A� ],[ VBT�@A� , VBU�@A� ], [WBT�@A� ,
WBU�@A�] >

C(@A) = <@A, [  ScT�@A� , ScU�@A�], [ VcT�@A� , VcU�@A� ] ,

[WcT�@A� , WcU�@A�] >, in a plane ,
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If A (@A) ⊆ B (@A)  ⊆ C (@A) (I =1, 2,…, n), then it is obvious
that  d(A(@A), C(@A)) ≤ d( A(@A), B(@A)) + d(B(@A), C(@A)),
According to the triangle inequality. Combining  the inequality 
with Eq (7),  we can obtain  d(A, C) ≤ d(A, B) + d(B, C)

Thus, d(A,B) satisfies the property (iv). So we have finished 
the proof. 

IV. COMPARISON OF NEW  SIMILARITY MEASURE  WITH
THE EXISTING MEASURES. 
 Let A and B be two interval  neutrosophic set in the 

universe of discourse X={@*, @4,.,@N}. For the cosine similarity
and the existing similarity measures of interval valued 
neutrosophic sets introduced in [5, 21], they are listed as 
follows: 

Pinaki’s similarity I [21] 

Se"=∑ {g+){� �!(�,�h�!(�iLg+){" �!(�,"h�!(�iL g+){# �!(�,#h�!(�iijH:k
∑ {gl!{� �!(�,�h�!(�iLgl!{" �!(�,"h�!(�iL gl!{# �!(�,#h�!(�iijH:k

 (12)                           

Also ,P. Majumdar [21] proposed weighted similarity measure 
for neutrosophic set  as follows: 

Se"" = ∑ mH �jH:k � �!(�∙ �h�!(�L�" �!(�∙ "h�!(�L�# �!(�∙ #h�!(�
gl!�mH  o� �!(�JL" �!(�JL# �!(�J , mHo�h�!(�JL"h�!(�JL#h�!(�J��

(13) 
Where, Se", Se"" denotes Pinaki’s similarity I and Pinaki’s
similarity II 

     
Ye’s similarity [5] is defined as the following: 

pqr�A, B� = 1- *v ∑ w+)+R* [|infT��x+� − infT��x+�| +
|supT��x+� − supT��x+�| + |infI��x+� − infI��x+�| +|supI��x+� − supI��x+�| + |infF��x+� − infF��x+�| +|supF��x+� − supF��x+�|]                                                   �14� 
Example 1: 

Let A = {<x, (0.2, 0.2 0.3)>}    and B= {<x, (0.5, 0.2 0.5)>} 

Pinaki similarity I  = 0.58 

Pinaki similarity II (with YA =1) = 0.29

Ye similarity (with w+ =1) = 0.83

Cosine similarity ����, �) = 0.95

Example 2: 

Let  A= {<x, ([0.2, 0.3], [0.5, 0.6] ,[ 0.3, 0.5])>} and B{<x, 
([0.5, 0.6], [0.3, 0.6] ,[0.5, 0.6])>}     

Pinaki similarty I = NA 

Pinaki similarty II(With YA =1) = NA

Ye similarity (with w+ =1) =0.81

Cosine similarity ����, �) = 0.92

On the basis of computational study. J.Ye [5] have shown that 
their measure is more effective and reasonable .A similar kind 
of study with the help of the proposed new measure based on 
the cosine similarity, has been done and it is found that the 
obtained results are more refined and accurate. It may be 

observed from the example 1 and 2 that the values of similarity 
measures are more closer to 1 with ����, �� ,the proposed
similarity measure. This implies that we may be more 
deterministic for correct diagnosis and proper treatment. 

V. APPLICATION OF COSINE SIMILARITY MEASURE FOR 
INTERVAL VALUED NEUTROSOPHIC NUMBERS TO 
PATTERN RECOGNITION 

In order to demonstrate the application of the proposed cosine 
similarity measure for  interval valued  neutrosophic numbers 
to pattern recognition, we discuss the medical diagnosis 
problem as follows: 
For example the patient reported temperature claiming that the 
patient has temperature between 0.5 and 0.7  severity 
/certainty, some how it is between 0.2 and 0.4  indeterminable 
if temperature is cause or the effect of his current  disease. 
And it between 0.1 and 0.2 sure that temperature has no 
relation with his main disease. This piece of information about 
one patient  and one symptom may be written as: 
(patient , Temperature) = <[0.5, 0.7], [0.2 ,0.4], [0.1, 0.2]> 
(patient , Headache) = < [0.2, 0.3], [0.3 ,0.5], [0.3, 0.6]> 
(patient , Cough)   =  <[0.4, 0.5], [0.6 ,0.7], [0.3, 0.4]> 
Then,  P= {< @*,  [0.5, 0.7], [0.2 ,0.4], [0.1, 0.2] >, < @4, [0.2,
0.3], [0.3, 0.5], [0.3, 0.6] > ,< @�, [0.4, 0.5], [0.6 ,0.7], [0.3,
0.4]>} 

And each diagnosis 	A    ( i=1, 2, 3)   can  also be represented
by interval valued neutrosophic numbers with respect to all the 
symptoms as follows: 

	*= {< @*, [0.5, 0.6], [0.2 ,0.3], [0.4, 0.5] >, < @4 , [0.2 , 0.6 ],
[0.3 ,0.4 ], [0.6 , 0.7]>,< @�, [0.1, 0.2 ], [0.3 ,0.6 ], [0.7, 0.8]>} 

	4= {< @*, [0.4, 0.5], [0.3, 0.4], [0.5, 0.6] >, < @4 , [0.3, 0.5 ],
[0.4 ,0.6 ], [0.2, 0.4]> ,<  @� , [0.3, 0.6 ], [0.1, 0.2], [0.5, 0.6]>}

	�= {< @*, [0.6, 0.8], [0.4 ,0.5], [0.3, 0.4]>, <@4 , [0.3, 0.7 ],
[0.2, 0.3], [0.4, 0.7]> ,< @�, [0.3, 0.5 ], [0.4, 0.7 ], [0.2, 0.6]>} 

Our aim is to classify the pattern P in one of the classes 	*,
	4, � .According to the recognition principle of maximum
degree of similarity measure between interval valued 
neutrosophic numbers, the process of diagnosis  	� to patient P
is derived according to 

k =  arg Max{ \]�  	A  , ��)}

from the previous formula (7) , we can compute the cosine 
similarity between 	A  (i=1, 2, 3) and P as follows;

\]�  	* , ��=0.8988, \]�  	4 , ��=0.8560,  \]�  	� , ��
=0.9654 

Then, we can assign the patient to diagnosis  	� (Typoid)
according to recognition of principal. 

VI. Conclusions.
In this paper a cosine  similarity measure between two and 
weighted interval valued neutrosophic sets is proposed. The 
results of the proposed similarity measure and existing 
similarity measure are compared. Finally, the proposed cosine 
similarity measure is applied to pattern recognition. 

Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

77



ACKNOWLEDGMENT 
The authors are very grateful to the anonymous referees for 
their insightful and constructive comments and suggestions, 
which have been very helpful in improving the paper. 

[1] F. Smarandache, “A Unifying Field in Logics. Neutrosophy: 
Neutrosophic  Probability, Set and Logic”. Rehoboth: 
American Research Press,(1998). 

[2] A. Kharal, “A Neutrosophic Multicriteria Decision Making 
Method”,New Mathematics & Natural Computation, to appear 
in Nov 2013 

[3] S. Broumi and F. Smarandache, “Intuitionistic Neutrosophic 
Soft Set”, Journal of Information and Computing Science, 
England, UK ,ISSN 1746-7659,Vol. 8, No. 2, (2013) 130-140. 

[4] S. Broumi, “Generalized Neutrosophic Soft Set”, International 
Journal of Computer Science, Engineering and Information 
Technology (IJCSEIT), ISSN: 2231-3605, E-ISSN : 2231-
3117, Vol.3, No.2, (2013) 17-30. 

[5] J. Ye, ”Similarity measures between interval neutrosophic sets 
and their multicriteria decision-making method “Journal of 
Intelligent & Fuzzy Systems, DOI: 10.3233/IFS-120724 
,(2013),pp. 

[6] M. Arora, R. Biswas, U.S.Pandy, “Neutrosophic Relational 
Database Decomposition”, International Journal of Advanced 
Computer Science and Applications, Vol. 2, No. 8, (2011) 121-
125. 

[7] M. Arora and R. Biswas,” Deployment of Neutrosophic 
technology to retrieve answers for queries posed in natural 
language”, in 3rdInternational Conference on Computer 
Science and Information Technology ICCSIT, IEEE catalog 
Number CFP1057E-art,Vol.3, ISBN: 978-1-4244-5540-
9,(2010) 435-439. 

[8] Ansari, Biswas, Aggarwal,”Proposal for Applicability of 
Neutrosophic Set Theory in Medical AI”, International Journal 
of Computer Applications (0975 – 8887),Vo 27– No.5, (2011)  
5-11. 

[9] F.G Lupiáñez, "On neutrosophic topology", Kybernetes, Vol. 
37 Iss: 6,(2008), pp.797 - 800 
,Doi:10.1108/03684920810876990. 

[10] S. Aggarwal, R. Biswas, A.Q.Ansari, ”Neutrosophic Modeling 
and Control”,978-1-4244-9034-/10 IEEE,( 2010) 718-723. 

[11] H. D. Cheng, Y Guo. “A new neutrosophic approach to image 

thresholding”. New Mathematics and Natural Computation, 
4(3), (2008) 291–308. 

[12]  Y. Guo, H. D. Cheng “New neutrosophic approach to image 
segmentation”.Pattern Recognition, 42, (2009) 587–595. 

[13] M.Zhang, L.Zhang, and H.D.Cheng. “A neutrosophic approach 
to image segmentation based on watershed method”. Signal 
Processing 5, 90 , (2010) 1510-1517. 

[14] Wang, H, Smarandache, F, Zhang, Y. Q, Sunderraman,R, 
”Single valued neutrosophic”,sets.Multispace and 
Multistructure, 4,(2010) 410–413. 

[15] Wang, H, Smarandache, F, Zhang, Y.-Q. and Sunderraman, R, 
”Interval Neutrosophic Sets and Logic: Theory and 
Applications in Computing”, Hexis, Phoenix, AZ, (2005). 

[16] S. Broumi, F. Smarandache , “Correlation Coefficient of 
Interval Neutrosophic set”, Periodical of Applied Mechanics 
and Materials, Vol. 436, 2013, with the title Engineering 
Decisions and Scientific Research in Aerospace, Robotics, 
Biomechanics, Mechanical Engineering and Manufacturing; 
Proceedings of the International Conference ICMERA, 
Bucharest, October 2013. 

[17] L. Peide, “Some power generalized aggregation operators based 
on the interval neutrosophic numbers and their application to 
decision making”, IEEE Transactions on Cybernetics,2013,12 
page . 

[18] J. Ye.“Cosine Similarity Measures for Intuitionistic Fuzzy Sets 
and Their Applications.”Mathematical and Computer 
Modelling 53, (2011) 91–97 

[19] A. Bhattacharya, ” On a measure of divergence of two 
multinomial population”. Sanakhya Ser A 7 ,(1946) 401-406 

[20] Candan, K. S. and M. L. Sapino, “Data management for 
multimedia retrieval”, Cambridge University Press,(2010). 

[21]  P. Majumdar, S.K. Samant,” On similarity and entropy of 
neutrosophic sets”, Journal of Intelligent and Fuzzy 
Systems,1064-1246(Print)-1875-
8967(Online),(2013),DOI:10.3233/IFS-130810, IOSPress. 

[22]S, Broumi and F, Smarandache, ” Several Similarity Measures of 
Neutrosophic Sets”, Neutrosophic Sets and Systems, An 
International Journal in Information Science and Engineering, 
December (2013). 

[23] P. K. Maji, ” Neutrosophic Soft Set”, Annals of Fuzzy 
Mathematics and Informatics,Vol 5, No. 1,ISSN: 2093-9310 , 
ISSN:2287-623. 

Published in Neutrosophic Sets and Systems, Vol. 5, 15-20, 2014. 

Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

78



Distance and Similarity Measures of Interval 

Neutrosophic Soft Sets 

Said Broumi, Irfan Deli and Florentin Smarandache 

Abstract:In this paper several distance and similarity measures of interval neutrosophic soft
sets are introduced. The measures are  examined  based  on  the  geometric  model,  the  set 
theoretic  approach  and  the matching function. Finally, we have successfully shown an 
application of this similarity measure of interval neutrosophic soft sets. 

Keywords: Distance, Similarity Measure, Neutrosophic set, Interval Neutrosohic sets,
Interval Neutrosohic Soft  sets. 

1. Introduction

In 1965, fuzzy set theory was firstly given by Zadeh [2] which is applied in many real 
applications to handle uncertainty.Then,interval-valued fuzzy set [3],intuitionisticfuzzy set 
theory[4] and interval valued intuitionistic fuzzy sets[5] was introduced by Türkşen, 
Atanassov and Atanassov and Gargov, respectively. This theories can only handle incomplete 
information not the indeterminate information and inconsistent information which exists 
commonly in belief systems. So, Neutrsophic sets, founded by F.Smarandache [1], has 
capapility to deal with uncertainty, imprecise, incomplete and inconsistent information which 
exist in real world from philosophical point of view. The theory is a powerful tool formal 
framework which generalizes the concept of the classic set, fuzzy set [2], interval-valued 
fuzzy set [3], intuitionistic fuzzy set [4] interval-valued intuitionistic fuzzy set  [5], and so on. 

In the actual applications, sometimes, it is not easy to express the truth-membership, 
indeterminacy-membership and falsity-membership by crisp value, and they may be easier to 
expressed by interval numbers. The neutrosophic set and their operators need to be specified 
from scientific or engineering point of view. So, after the pioneering work  of Smarandache, 
in 2005, Wang [6] proposed the notion of  interval neutrosophic set ( INS for short) which is 
another extension of neutrosophic sets. INS can be described by a membership interval, a 
non-membership interval and indeterminate interval, thus the interval value (INS) has the 
virtue of complementing NS, which is more flexible and practical than neutrosophic set. The 
sets provides a more  reasonable mathematical framework to deal with indeterminate and 
inconsistent information.A lot of works about neutrosophic set theory have been studied by 
several researches [7,11,13,14,15,16,17,18,19,20 ].  
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In 1999, soft theory was introduced byMolodtsov[45]  as a   completely new mathematical 
toolfor modeling uncertainties. After Molodsov, based on the several operations on softsets 
introduced in [33,34,35,36,46],some more properties and algebra may be found in [32,34]. 
We can found some new conceptc ombined with fuzzy set in [28,29,37,39,42], interval-valued 
fuzzy set in [38], intuitionistic fuzzy set in [50], rough set in [43,47], interval-valued 
intuitionistic fuzzy set in [45],  neutrosophic set in [8,9,27], interval neutrosophic set [31]. 

Also in some problems it is often needed to compare two sets such as fuzzy, soft, 
neutrosophic etc. Therefore, some researchers has studied of similarity measurement between 
fuzzysets in [24,48], interval valued fuzzy in [48], neutrosophic set in [23,26], interval 
neutrosophic set in [10,12].Recently similarity measure of softsets [40,49], intuitionistic fuzzy 
soft sets [30]was studied. Similarity measure between two sets such as fuzzy, soft has been 
defined by many authors which are based on both distances and matching function. The 
significant differences between similarity measure based on matching function and similarity 
measure based on distance is that if intersection of the two sets equals empty, then between 
similarity measure based on matching function the two sets is zero in but similarity measure 
based on distance may not be equal to zero. Distance-based measures are also popular because 
it is easier to calculate the intermediate distance between two fuzzy sets or soft sets. It’s 
mentioned in [40]. In this paper several distance and similarity measures of interval 
neutrosophic soft sets are introduced. The measures are  examined  based  on  the  geometric  
model,  the  set-theoretic  approach  and  the matching function. Finally, we give an 
application for similarity measures of interval neutrosophic soft sets 

2. Prelimiairies

This section gives a brief overview of concepts of neutrosophic set [1], and interval valued 
neutrosophic set [6], soft set [41],neutrosophic soft set [27] and interval valued neutrosophic 
soft set [31]. More detailed explanations related to this subsection may be found in 
[8,9,27,31,36]. 

Definition 2.1[ 1]Neutrosophic Sets 

Let X be an universe of discourse, with a generic element in X denoted by x,  the 

neutrosophic (NS) set  is an object having the form  

A = {< x: TA(x), IA(x), FA(x)>,x ∈X}, where the functions T, I, F : X→ ]−0, 1+[  define

respectively the degree of membership (or Truth) , the degree of indeterminacy, and the 

degree of non-membership (or Falsehood) of the element x ∈X to the set A with the 

condition. 

−0 ≤ TA(x) + IA(x)+ FA(x)≤ 3+.                                (1)
From philosophical point of view, the neutrosophic set takes the value from real standard or 

non-standard subsets of ]−0, 1+[. So instead of ] −0, 1+[ we need to take the interval [0, 1] for 

technical applications, because ]−0, 1+[ will be difficult to apply in the real applications  such 

as in scientific and engineering problems.  
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For two NS ,𝐴𝑁𝑆 ={ <x , TA(x) ,  IA(x),  FA(x)> | x ∈ X }  (2)

And 𝐵𝑁𝑆={<x , TB(x) ,  IB(x),  FB(x)> | x ∈ X } the two relations are defined as follows:

(1)𝐴𝑁𝑆 ⊆  𝐵𝑁𝑆if and only if TA(x) ≤ TB(x) ,IA(x) ≥ IB(x) ,FA(x) ≥ FB(x)

(2)𝐴𝑁𝑆 =  𝐵𝑁𝑆  if and only if , TA(x) =TB(x) ,IA(x) =IB(x) ,FA(x) =FB(x)

Definition 2.2 [6] Interval Valued Neutrosophic Sets 

Let X be a universe of discourse, with generic element in X denoted by x. An interval valued 
neutrosophic set (for short IVNS) A in X is characterized by truth-membership function 
TA(x), indeteminacy-membership function IA(x) and falsity-membership function FA(x). For
each point x in X, we have that  TA(x), IA(x), FA(x) ∈  [ 0 ,1] . 

For two IVNS , 𝐴IVNS ={ <x , [TA
L(x), TA

U(x)] ,  [IA
L(x), IA

U(x)]  , [FA
L(x), FA

U(x)]> | x ∈ X } (3)

And 𝐵IVNS ={<x , [TB
L(x), TB

U(x)] , [IB
L(x), IB

U(x)] , [FB
L(x), FB

U(x)] > | x ∈ X } the two relations
are defined as follows: 

(1)𝐴IVNS ⊆  𝐵IVNSif and only if TA
L(x) ≤ TB

L(x),TA
U(x) ≤ TB

U(x) , IA
L(x) ≥ IB

L(x) ,IA
U(x) ≥

IB
U(x) , FA

L(x) ≥ FB
L(x) ,FA

U(x) ≥ FB
U(x)

(2)𝐴IVNS =  𝐵IVNS  if and only if , TA
L(xi) = TB

L(xi) ,TA
U(xi) =  TB

U(xi) ,IA
L(xi) = IB

L(xi) ,
IA

U(xi) = IB
U(xi) ,FA

L(xi) = FB
L(xi) and FA

U(xi) = FB
U(xi) for any x ∈ X.

The complement of 𝐴IVNS is denoted by 𝐴𝐼𝑉𝑁𝑆
𝑜  and is defined by 

𝐴𝐼𝑉𝑁𝑆
𝑜 ={<x , [FA

L(x), FA
U(x)]> ,  [1 − IA

U(x), 1 − IA
𝐿 (x)]  , [TA

L(x), TA
U(x)]| x ∈ X }

Definition 2.3 [41] Soft Sets 
Let U be an initial universe set and E be a set of parameters. Let P(U) denotes the power set of 
U. Consider a nonempty set A, A ⊂ E. A pair (F, A) is called a soft set over U, where F is a 
mapping given by F: A → P (U). 
It can be written a set of ordered pairs(F, A) = {(x, 𝐹 (x)): x∈A}. 

As an illustration, let us consider the following example. 
Example 1 Suppose that U is the set of houses under consideration, say U = {h1, h2, . . ., h5}.
Let E be the set of some attributes of such houses, say E = {e1, e2, . . ., e6}, where e1, e2, . . ., e6 
stand for the attributes “expensive”, “beautiful”, “wooden”, “cheap”, “modern”, and “in bad 
repair”, respectively.  
In this case, to define a soft set means to point out expensive houses, beautiful houses, and so 
on. For example, the soft set (F,A) that describes the “attractiveness of the houses” in the 
opinion of a buyer, say Thomas, may be defined like this:  
A={e1,e2,e3,e4,e5};  
F(e1) = {h2, h3, h5}, F(e2) = {h2, h4}, F(e3) = {h1}, F(e4) = U, F(e5) = {h3, h5}.  
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Definition 2.4 Neutrosophic soft Sets [27 ] 

Let U be an initial universe set and E be a set of parameters.  Consider A⊆E. LetN(U) denotes 
the set of all neutrosophic sets of U. Thecollection (F,A) is termed to be the soft neutrosophic 
set over Udenoted by N, where F is amappinggivenbyF : A→P(U). 

It can be written a set of ordered pairs 𝑁= {(x, 𝐹 (x)): x∈A}. 

Definition 2.5 Interval Valued Neutrosophic Soft Sets [31] 

Let U be an universe set, IVN(U) denotes the set of all interval valued neutrosophic sets of U 
and E be a set of parameters that are describe the elements of U. Thecollection  (K, E) is 
termed to be the interval valued neutrosophic soft sets (ivn-soft  sets)over U denoted byΥ, 
where K is a mapping given by K : E→IVN(U). 

It can be written a set of ordered pairs 

Υ= {(x, 𝐾(x)): x∈E} 

Here, 𝐾 which is interval valued neutrosophic sets, is called approximate function of the ivn-
soft  sets Υ and 𝐾(x) is called x-approximate value of x ∈E.  

Generally, K, L, M,... will be used as an approximate functions of Υ, Ψ , Ω… respectively. 

Note that the sets of all ivn-soft sets over U will be denoted by IVNS(U). 

Then a relation form of Υ is defined by RK= { (rK(e,u)/(e, u)) : u∈U, e∈E} 
where 
rK: ExU→IV NS(U) and rK (𝑒𝑖,𝑢𝑗)=𝑎𝑖𝑗for all 𝑒𝑖 ∈ E and  𝑢𝑗 ∈U. 

Here, 
1. Υ is an ivn-soft subset of Ψ, denoted by Υ ⋐ Ψ, if K(e) ⊆L(e) for alle∈E.
2. Υ is an ivn-soft equals toΨ, denoted by Υ = Ψ, if K(e)=L(e) for all e∈E.
3. The complement of Υ is denoted byΥ𝑐 , and is defined by Υ𝑐 = {(x, 𝐾𝑜 (x)): x∈E}

As an illustration for ivn-soft, let us consider the following example. 

Example 2.Suppose that U is the set of houses under consideration, say U = {h1, h2, ℎ3}. Let
E be the set of some attributes of such houses, say E = {e1, e2, 𝑒3, 𝑒4}, where e1, e2, . . ., e6 stand 
for the attributes “expensive”, “beautiful”, “wooden”, “cheap”, “modern”, and “in bad repair”, 
respectively.  
In this case we give an ivn-soft set as; 

Υ= { (𝑒1,{<ℎ1,[0.5, 0.6], [0.6 ,0.7],[0.3,0.4]> ,<ℎ2, [0.5, 0.6], [0.6 ,0.7],[0.3,0.4]> , 

<ℎ3, [0.5, 0.6], [0.6,0.7],[0.3,0.4]> }),(𝑒2,{<ℎ1,[0.2, 0.3], [0.5 ,0.6],[0.3,0.6]> , 

<ℎ2, [0.4, 0.6], [0.2 ,0.3],[0.2,0.3]> , <ℎ3, [0.5, 0.6], [0.6 ,0.7],[0.3,0.4]> }), 

 (𝑒3,{<ℎ1,[0.3, 0.4], [0.1 ,0.5],[0.2,0.4]>,<ℎ2, [0.2, 0.5], [0.3,0.4],[0.4,0.5]>, 
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<ℎ3, [0.5, 0.6], [0.6,0.7],[0.3,0.4]> }),(𝑒4,{<ℎ1,[0.4, 0.6], [0.3 ,0.5],[0.3,0.4]>, 

<ℎ2, [0.4, 0.6], [0.2 ,0.3],[0.2,0.3]>) ,<ℎ3, [0.3, 0.4], [0.2,0.7],[0.1,0.4]>}) } 

Definition 2.6 (Distance axioms) 

Let E be a set of parameters. Suppose that Υ = <K,E>, Ψ = <L,E> and Ω = <M,E>; are three 
ivn-soft sets in universe U. Assume d is a mapping,  

d :IVNS(U) x IVNS(U) ⟶ [0, 1].If d satisfies the following properties ((1)-(4)) : 

(1) d (Υ, Ψ) ≥ 0; 

(2) d (Υ, Ψ) = d (Ψ, Υ) ; 

(3) d (Υ, Ψ) = 0 iff Ψ = Υ; 

(4) d (Υ,Ψ) + d (Ψ, Ω) ≥ d (Υ,Ω) . 

Hence d(Υ,Ψ) is called a distance measure between ivn-soft sets Υ and Ψ. 

Definition 2.7(similarity axioms) 

A real function S: INS(U) x INS(U) ⟶ [0, 1] is named a similarity measure between two ivn-
soft set Υ=(K,E) and Ψ =(M,E) if S satisfies all the following properties: 

(1) S (Υ, Ψ) ∈ [0, 1]; 

(2) S(Υ, Υ)=S(Ψ, Ψ) = 1; 

(3) S(Υ, Ψ) = S(Ψ, Υ); 

(4) S (Υ, Ω) ≤ S (Υ,Ψ) and S (Υ, Ω) ≤ S (Ψ,Ω) if Υ ⊆ Ψ ⊆ Ω 

Hence S(Υ,Ψ) is called  a similarity measure between ivn-soft setsΥ and Ψ. 

For more details on the algebra and operations on  interval neutrosophic set and soft set    and 
interval neutrosophic soft set, the reader may refer to [ 5,6,8,9,12, 31,45,52].  

3. Distance Measure between Interval Valued Neutrosophic Soft Sets

In this section, we present the definitions of the Hamming and Euclidean distances between 
ivn-soft sets and the similarity measures between ivn-soft sets based on the distances, which 
can be used in real scientific and engineering  applications. 

Based on Hamming distance between two interval neutrosophic set proposed by Ye[12 ] as 
follow: 
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D (A,B)=1

6
∑ [|TA

L(xi) − TB
L(xi)| + |TA

U(xi) − TB
U(xi)| + |IA

L(xi) − IB
L(xi)| + |IA

U(xi) −𝑛
𝑖=1

IB
U(xi)| + |FA

L(xi) − FB
L| +   |FA

L(xi) − FB
U(xi)|]

We extended it to the case of ivn-soft sets as follows: 

Definition 3.1 Let Υ = (K,E) =[𝑎𝑖𝑗] 𝑚𝑥𝑛  and  Ψ = (M,E)=[𝑏𝑖𝑗] 𝑚𝑥𝑛   be two ivn-soft sets.

K(e) = {<x, [TK(e)
L (x),TK(e)

U (x)] , [IK(e)
L (x),IK(e)

U (x)] , [FK(e)
L (x),TK(e)

U (x)]>: x ∈ X}

M(e) = {<x, [TM(e)
L (x),TM(e)

U (x)] , [IM(e)
L (x),IM(e)

U (x)] , [FM(e)
L (x),FM(e)

U (x)]>: x ∈ X}

Then we define the following distances for Υ and Ψ 

(1) The Hamming distance 𝑑𝐼𝑉𝑁𝑆𝑆
𝐻 (Υ ,Ψ), 

𝑑𝐼𝑉𝑁𝑆𝑆
𝐻 (Υ ,Ψ) =∑ ∑

[|Δij
L T|+|Δij

UT|+|Δij
L I|+|Δij

UI|+|Δij
L F|+|Δij

UF|]

6

𝑚
𝑖=1

𝑛
𝑗=1

Where Δij
LT= TK(e)

L (xi) − TM(e)
L (xi) ,Δij

UT= TK(e)
U (xi) − TM(e)

U (xi) ,Δij
LI= IK(e)

L (xi) − IM(e)
L (xi)

,Δij
UI= IK(e)

U (xi) − IM(e)
U (xi) ,Δij

LF= FK(e)
L (xi) − FM(e)

L (xi) and Δij
UF= FK(e)

U (xi) − FM(e)
U (xi)

(2) The normalized Hamming distance 𝑑𝐼𝑉𝑁𝑆𝑆
𝑛𝐻 (Υ ,Ψ),

𝑑𝐼𝑉𝑁𝑆𝑆
𝑛𝐻 (Υ ,Ψ) =𝑑𝐼𝑉𝑁𝑆𝑆

𝐻 (Υ ,Ψ)

𝑚𝑛

(3)The Euclidean distance𝑑𝐼𝑉𝑁𝑆𝑆
𝐸 (Υ ,Ψ), 

𝑑𝐼𝑉𝑁𝑆𝑆
𝐸 (Υ ,Ψ)=√∑ ∑

(Δij
L T)2+(Δij

UT)2+(Δij
L I)2+(Δij

UI)2+(Δij
L F)2+(Δij

UF)2

6
𝑚
𝑖=1

𝑛
𝑗=1

Where Δij
LT= TK(e)

L (xi) − TM(e)
L (xi) ,Δij

UT= TK(e)
U (xi) − TM(e)

U (xi) ,Δij
LI= IK(e)

L (xi) − IM(e)
L (xi)

,Δij
UI= IK(e)

U (xi) − IM(e)
U (xi) ,Δij

LF= FK(e)
L (xi) − FM(e)

L (xi) and Δij
UF= FK(e)

U (xi) − FM(e)
U (xi)

(4)The normalized Euclidean distance 𝑑𝐼𝑉𝑁𝑆𝑆
𝑛𝐸 (Υ ,Ψ),

𝑑𝐼𝑉𝑁𝑆𝑆
𝑛𝐸 (Υ ,Ψ)= 𝑑𝐼𝑉𝑁𝑆𝑆

𝐸 (Υ ,Ψ)

√𝑚𝑛

Here, it is clear that the following properties hold: 

(1) 0 ≤ 𝑑𝐼𝑉𝑁𝑆𝑆
𝐻 (Υ ,Ψ) ≤ m n   and 0 ≤ 𝑑𝐼𝑉𝑁𝑆𝑆

𝑛𝐻 (Υ ,Ψ)  ≤ 1;
(2)  0 ≤ 𝑑𝐼𝑉𝑁𝑆𝑆

𝐸 (Υ ,Ψ) ≤ √𝑚𝑛   and 0 ≤ 𝑑𝐼𝑉𝑁𝑆𝑆
𝑛𝐸 (Υ ,Ψ)  ≤ 1;

Example 3.Assume that two interval neutrosophic soft sets Υ and  Ψ are defined as follows

K (e1) =(<𝑥1,[0.5, 0.6],[0.6 ,0.7],[0.3,0.4]>,<𝑥2, [0.5, 0.6], [0.6 ,0.7],[0.3,0.4]>), 
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K (e2) =(<𝑥1,[0.2, 0.3], [0.5 ,0.6],[0.3,0.6]> ,<𝑥2, [0.4, 0.6], [0.2 ,0.3],[0.2,0.3]>), 

M (e1) =(<𝑥1,[0.3, 0.4], [0.1 ,0.5],[0.2,0.4]> ,<𝑥2, [0.2, 0.5], [0.3 ,0.4],[0.4,0.5]>), 

M (e2) =(<𝑥1,[0.4, 0.6], [0.3 ,0.5],[0.3,0.4]> ,<𝑥2, [0.3, 0.4], [0.2,0.7],[0.1,0.4]>), 

𝑑𝐼𝑉𝑁𝑆𝑆
𝐻 (Υ ,Ψ) = ∑ ∑

[|Δij
L T|+|Δij

UT|+|Δij
L I|+|Δij

UI|+|Δij
L F|+|Δij

UF|]

6

2
𝑖=1

2
𝑗=1

=|0.5−0.3|+|0.6−0.4|+|0.6−0.1|+|0.7−0.5|+|0.3−0.2|+|0.4−0.4|

6

+|0.5−0.2|+|0.6−0.5|+|0.6−0.3|+|0.7−0.4|+|0.3−0.4|+|0.4−0.5|

6
+

|0.2−0.4|+|0.3−0.6|+|0.5−0.3|+|0.6−0.5|+|0.3−0.3|+|0.6−0.4|

6
+

|0.4−0.3|+|0.6−0.4|+|0.2−0.2|+|0.3−0.7|+|0.2−0.1|+|0.3−0.4|

6

𝑑𝐼𝑉𝑁𝑆𝑆
𝐻 (Υ ,Ψ) =0.71 

Theorem 3.2 The functions 𝑑𝐼𝑉𝑁𝑆𝑆
𝐻 (Υ ,Ψ) , 𝑑𝐼𝑉𝑁𝑆𝑆

𝑛𝐻 (Υ ,Ψ)  , 𝑑𝐼𝑉𝑁𝑆𝑆
𝐸 (Υ ,Ψ) , 𝑑𝐼𝑉𝑁𝑆𝑆

𝑛𝐸 (Υ ,Ψ):
IVNS(U) → 𝑅+given by Definition 3.1 respectively are metrics, where 𝑅+ is the set of all
non-negative real numbers. 

Proof. The proof is straightforward.

4. Generalized weighted distance measure between two interval valued nutrosophic
soft sets.

Let  A and B be two interval neutrosophic sets, then S.Broumi and F.Smarandache[11] 
proposed a generalized interval valued neutrosophic weighted distance measure between A 
and B as follows:  

𝑑𝜆(𝐴 , 𝐵) = {1

6
∑𝑚

𝑗=1 ∑ 𝑤𝑖[|𝑇𝐴
𝐿(𝑥𝑖) − 𝑇𝐵

𝐿(𝑥𝑖)|𝜆 + |𝑇𝐴
𝑈(𝑥𝑖) − 𝑇𝐵

𝑈(𝑥𝑖)|𝜆 + |𝐼𝐴
𝐿(𝑥𝑖) −𝑛

𝑖=1

𝐼𝐵
𝐿(𝑥𝑖)|𝜆 + |𝐼𝐴

𝑈(𝑥𝑖) − 𝐼𝐵
𝑈(𝑥𝑖)|𝜆 + |𝐹𝐴

𝐿(𝑥𝑖) − 𝐹𝐵
𝐿(𝑥𝑖)|𝜆 + |𝐹𝐴

𝑈(𝑥𝑖) − 𝐹𝐵
𝑈(𝑥𝑖)|𝜆]}

1

𝜆
 (4) 

where 

𝜆> 0and 𝑇𝐴
𝐿(𝑥𝑖) ,𝑇𝐴

𝑈(𝑥𝑖),𝐼𝐴
𝐿(𝑥𝑖) ,𝐼𝐴

𝑈(𝑥𝑖), ,𝐹𝐴
𝐿(𝑥𝑖) ,𝐹𝐴

𝑈(𝑥𝑖), 𝑇𝐵
𝐿(𝑥𝑖) ,𝑇𝐵

𝑈(𝑥𝑖), 𝐼𝐵
𝐿(𝑥𝑖) ,𝐼𝐵

𝑈(𝑥𝑖),
𝐹𝐵

𝐿(𝑥𝑖) ,𝐹𝐵
𝑈(𝑥𝑖), ∈ [ 0, 1]

,we extended the above  equation (4) distance to the case of interval valued neutrosophic soft  
set between Υ  and  Ψ as follow: 

𝑑𝜆(Υ , Ψ) = {1

6
∑𝑚

𝑗=1 ∑ 𝑤𝑖 [|Δij
L T|

𝜆
+ |Δij

UT|
𝜆

+ |Δij
L I|

𝜆
+ |Δij

UI|
𝜆

+ |Δij
L F|

𝜆
+ |Δij

UF|
𝜆

]𝑛
𝑖=1 }

1

𝜆(5) 

Where Δij
LT= TK(e)

L (xi) − TM(e)
L (xi) ,Δij

UT= TK(e)
U (xi) − TM(e)

U (xi) ,Δij
LI= IK(e)

L (xi) − IM(e)
L (xi)

,Δij
UI= IK(e)

U (xi) − IM(e)
U (xi) ,Δij

LF= FK(e)
L (xi) − FM(e)

L (xi) and Δij
UF= FK(e)

U (xi) − FM(e)
U (xi).
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Normalized generalized interval neutrosophic distance is 

𝑑𝜆
𝑛(Υ, Ψ) = { 1

6𝑛
∑𝑚

𝑗=1 ∑ 𝑤𝑖 [|Δij
L T|

𝜆
+ |Δij

UT|
𝜆

+ |Δij
L I|

𝜆
+ |Δij

UI|
𝜆

+ |Δij
L F|

𝜆
+ |Δij

UF|
𝜆

]𝑛
𝑖=1 }

1

𝜆(6) 

If w={1

𝑛
,

1

𝑛
, … ,

1

𝑛
},the Eq. (6)  is reduced to the following distances: 

𝑑𝜆(Υ ,Ψ) = {1

6
∑𝑚

𝑗=1 ∑ [|Δij
L T|

𝜆
+ |Δij

UT|
𝜆

+ |Δij
L I|

𝜆
+ |Δij

UI|
𝜆

+ |Δij
L F|

𝜆
+ |Δij

UF|
𝜆

]𝑛
𝑖=1 }

1

𝜆      (7) 

𝑑𝜆(Υ ,Ψ) = { 1

6𝑛
∑𝑚

𝑗=1 ∑ [|Δij
L T|

𝜆
+ |Δij

UT|
𝜆

+ |Δij
L I|

𝜆
+ |Δij

UI|
𝜆

+ |Δij
L F|

𝜆
+ |Δij

UF|
𝜆

]𝑛
𝑖=1 }

1

𝜆     (8) 

Particular case 

(i)  if 𝜆 =1 then the equation (7), (8) is reduced to the  following hamming distance and 
normalized hamming distance between interval valued neutrosophic soft set  

𝑑𝐼𝑉𝑁𝑆𝑆
𝐻 (Υ ,Ψ) = ∑ ∑

[|Δij
L T|+|Δij

UT|+|Δij
L I|+|Δij

UI|+|Δij
L F|+|Δij

UF|]

6

𝑚
𝑖=1

𝑛
𝑗=1      (9) 

𝑑𝐼𝑉𝑁𝑆𝑆
𝑛𝐻 (Υ ,Ψ) = 𝑑𝐼𝑉𝑁𝑆𝑆

𝐻 (Υ ,Ψ)

𝑚𝑛
     (10) 

(ii) If 𝜆 =2 then the equation (7) , (8) is reduced to the  following Euclidean distance and 
normalized Euclidean distance between interval valued neutrosophic soft set 

𝑑𝐼𝑉𝑁𝑆𝑆
𝐸 (Υ ,Ψ) = √∑ ∑

(Δij
L T)2+(Δij

UT)2+(Δij
L I)2+(Δij

UI)2+(Δij
L F)2+(Δij

UF)2

6
𝑚
𝑖=1

𝑛
𝑗=1 (11) 

𝑑𝐼𝑉𝑁𝑆𝑆
𝑁𝐸 (Υ ,Ψ)  = 𝑑𝐼𝑉𝑁𝑆𝑆

𝐸 (Υ ,Ψ)

√𝑚𝑛
(12) 

5. Similarity Measures between Interval Valued Neutrosophic Soft Sets

This section proposes several similarity measures of interval neutrosophic soft sets. 

It is well known that similarity measures can be generated from distance measures. Therefore, 
we may use the proposed distance measures to define similarity measures. Based on the 
relationship of similarity measures and distance measures, we can define some similarity 
measures between IVNSSs  Υ = (K,E) and Ψ = (M,E) as follows: 

5.1. Similarity measure based on the geometric distance model  

Now for each 𝑒𝑖 ∈E , K( 𝑒𝑖) and M( 𝑒𝑖) are interval neutrosophic set. To find similarity 
between Υ and  Ψ. We first find the similarity between K(𝑒𝑖) and M( 𝑒𝑖). 

Based on the distance measures defined above the similarity as follows: 

𝑆𝐼𝑉𝑁𝑆𝑆
𝐻 (Υ ,Ψ)= 1

1+𝑑𝐼𝑉𝑁𝑆𝑆
𝐻 (Υ ,Ψ) 

and 𝑆𝐼𝑉𝑁𝑆𝑆
𝐸 (Υ ,Ψ)= 1

1+𝑑𝐼𝑉𝑁𝑆𝑆
𝐸 (Υ ,Ψ) 
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𝑆𝐼𝑉𝑁𝑆𝑆
𝑛𝐻 (Υ ,Ψ)= 1

1+𝑑𝐼𝑉𝑁𝑆𝑆
𝑛𝐻 (Υ ,Ψ) 

and 𝑆𝐼𝑉𝑁𝑆𝑆
𝑛𝐸 (Υ ,Ψ)= 1

1+𝑑𝐼𝑉𝑁𝑆𝑆
𝑛𝐸 (Υ ,Ψ) 

Example 4 : Based on example 3,then

𝑆𝐼𝑉𝑁𝑆𝑆
𝐻 (Υ ,Ψ)= 1

1+0.71
 = 1

1.71
 = 0.58 

Based on (4), we define the similarity measure between the interval valued neutrosophic soft 
sets  Υand Ψ as follows: 

SDM(Υ , Ψ)=  1- { 1

6n
∑ [|TK(e)

L (xi) − TM(e)
L (xi)|

λ
+ |TK(e)

U (xi) − TM(e)
U (xi)|

λ
+ |IK(e)

L (xi) −n
i=1

IM(e)
L (xi)|

λ
+ |IK(e)

U (xi) − IM(e)
U (xi)|

λ
+ |FK(e)

L (xi) − FM(e)
L (xi)|

λ
+ |FK(e)

U (xi) −

FM(e)
U (xi)|

λ
]}

1

λ (13) 

Where λ > 0 𝑎𝑛𝑑 SDM(Υ , Ψ) is the degree of similarity of A and B .

If we take the weight of each element 𝑥𝑖 ∈ X into account, then 

SDM
w (Υ , Ψ)=  1- {1

6
∑ wi [[|TK(e)

L (xi) − TM(e)
L (xi)|

λ
+ |TK(e)

U (xi) − TM(e)
U (xi)|

λ
+n

i=1

|IK(e)
L (xi) − IM(e)

L (xi)|
λ

+ |IK(e)
U (xi) − IM(e)

U (xi)|
λ

+ |FK(e)
L (xi) − FM(e)

L (xi)|
λ

+ |FK(e)
U (xi) −

FM(e)
U (xi)|

λ
]]}

1

λ
(14) 

If each elements has the same importance ,i.e w ={1

𝑛
,

1

𝑛
, … ,

1

𝑛
}, then (14) reduces to  (13) 

By definition 2.7  it can easily be known that SDM(Υ , Ψ) satisfies all the properties  of 
definition.. 

[|Δij
L T| + |Δij

UT| + |Δij
L I| + |Δij

UI| + |Δij
L F| + |Δij

UF|]

Similarly  , we define another  similarity measure of Υ and Ψ  as: 

S(Υ,Ψ) = 1 –

[
∑ (|Δij

L T|
λ

+|Δij
UT|

λ
+|Δij

L I|
λ

+|Δij
UI|

λ
+|Δij

L F|
λ

+|Δij
UF|

λ
)𝑛

𝑖=1

∑ (|TK
L (xi)+TM

L (xi)|
λ

+|TK
U(xi)+TM

U (xi)|
λ

+|IK
L (xi)+IM

L (xi)|
λ

+|IK
U(xi)+IM

U (xi)|
λ

+|FK
L (xi)+FM

L (xi)|
λ

+|FK
U(xi)+FM

U (xi)|
λ

)𝑛
𝑖=1

]

1

𝜆

(15 ) 

If we take the weight of each element 𝑥𝑖 ∈ X into account, then 
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S(Υ,Ψ) = 1 – 

[
∑ wi(|Δij

LT|
λ

+|Δij
UT|

λ
+|Δij

LI|
λ

+|Δij
UI|

λ
+|Δij

L F|
λ

+|Δij
UF|

λ
)𝑛

𝑖=1

∑ wi(|TK
L (xi)+TM

L (xi)|
λ

+|TK
U(xi)+TM

U (xi)|
λ

+|IK
L (xi)+IM

L (xi)|
λ

+|IK
U(xi)+IM

U (xi)|
λ

+|FK
L (xi)+FM

L (xi)|
λ

+|FK
U(xi)+FM

U (xi)|
λ

)𝑛
𝑖=1

]

1

𝜆

 ( 16) 

This also has been proved that all the properties  of definition are satisfied, If each elements 
has the same importance, and then (16) reduces to (15) 

5.2.Similarity measure based on the interval valuedneutrosophic theoretic approach: 

In this section, following the similarity measure between two interval neutrosophic sets 
defined by S.Broumi and F.Samarandache in [11], we extend this definition to interval valued 
neutrosophic soft sets. 

Let 𝑆𝑖(Υ, Ψ) indicates the similarity between the interval neutrosophic soft sets  Υ and Ψ .To
find the similarity between Υ and Ψ  first  we  have  to  find  the  similarity  between  their  e -  
approximations.  Let 𝑆𝑖(Υ, Ψ) denote the similarity between the two 𝑒𝑖- approximations K(𝑒𝑖)
and M(𝑒𝑖). 

Let  Υ and Ψ be two interval  valued neutrosophic soft sets, then we define a similarity
measure between K(𝑒𝑖) and M(𝑒𝑖) as follows: 

𝑆𝑖(Υ, Ψ)=
∑ {min{TK(𝑒𝑖)

L (xj),TM(𝑒𝑖)
L (xj)}+min{TK(𝑒𝑖)

U (xj),TM(𝑒𝑖)
U (xj)} +min{IK(𝑒𝑖)

L (xj),IM(𝑒𝑖)
L (xj)}+min{IK(𝑒𝑖)

U (xj),IM(𝑒𝑖)
U (xj)}+ min{FK(𝑒𝑖)

L (xj),FM(𝑒𝑖)
L (xj)}+min{FK(𝑒𝑖)

U (xj),FM(𝑒𝑖)
U (xj)}𝑛

𝑖=1

∑ {max{TK(𝑒𝑖)
L (xj),TM(𝑒𝑖)

L (xj)}+max{TK(𝑒𝑖)
U (xj),TM(𝑒𝑖)

U (xj)} +max{IK(𝑒𝑖)
L (xj),IM(𝑒𝑖)

L (xj)}+max{IK(𝑒𝑖)
U (xj),IM(𝑒𝑖)

U (xj)}+ max{FK(𝑒𝑖)
L (xj),FM(𝑒𝑖)

L (xj)}+max{FK(𝑒𝑖)
U (xj),FM(𝑒𝑖)

U (xj)}𝑛
𝑖=1

(17 

)) 

Then 𝑆(Υ, Ψ) = max
𝑖

𝑆𝑖(Υ, Ψ)

The similarity measure has  the following proposition 

Proposition 4.2 

Let Υ and Ψ be interval valued neutrosophic soft sets then 

i. 0 ≤ 𝑆(Υ, Ψ) ≤ 1
ii. 𝑆(Υ, Ψ) =𝑆(Ψ, Υ)

iii. 𝑆(Υ, Ψ)  = 1  if Υ= Ψ

𝑇𝐾(𝑒)
𝐿 (𝑥𝑖) =  𝑇𝑀(𝑒)

𝐿 (𝑥𝑖),   𝑇𝐾(𝑒)
𝑈 (𝑥𝑖) = 𝑇𝑀(𝑒)

𝑈 (𝑥𝑖) ,  𝐼𝐾(𝑒)
𝐿 (𝑥𝑖) =  𝐼𝑀(𝑒)

𝐿 (𝑥𝑖),   𝐼𝐾(𝑒)
𝑈 (𝑥𝑖)  =

𝐼𝑀(𝑒)
𝑈 (𝑥𝑖) and𝐹𝐾(𝑒)

𝐿 (𝑥𝑖) =  𝐹𝑀(𝑒)
𝐿 (𝑥𝑖) ,    𝐹𝐾(𝑒)

𝑈 (𝑥𝑖)  =  𝐹𝑀(𝑒)
𝑈 (𝑥𝑖)for  i=1,2,…., n

Iv .Υ ⊆ Ψ ⊆ Ω ⇒S(Υ, Ψ) ≤ min(S(Υ,Ψ), S(Ψ,Ω) 

Proof. Properties (i) and( ii) follows from definition
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(iii) it is clearly that if Υ = Ψ ⇒ S(Υ, Ψ) =1 

⇒ ∑ {min{TK(e)
L (xi), TM(e)

L (xi)} + min{TK(e)
U (xi), TM(e)

U (xi)} +min{IK(e)
L (xi), IM(e)

L (xi)} +n
i=1

min{IK(e)
U (xi), IM(e)

U (xi)} + min{FK(e)
L (xi), FM(e)

L (xi)} + min{FK(e)
U (xi), FM(e)

U (xi)}

=∑ {max{TK(e)
L (xi), TM(e)

L (xi)} + max{TK(e)
U (xi), TM(e)

U (xi)} +max{IK(e)
L (xi), IM(e)

L (xi)} +n
i=1

max{IK(e)
U (xi), IM(e)

U (xi)} + max{FK(e)
L (xi), FM(e)

L (xi)} + max{FK(e)
U (xi), FM(e)

U (xi)}

⇒ ∑ {[min{TK(e)
L (xi), TM(e)

L (xi)} − max{TK(e)
L (xi), TM(e)

L (xi)}] +𝑛
𝑖=1

[min{TK(e)
U (xi), TM(e)

U (xi)} −max{TK(e)
U (xi), TM(e)

U (xi)}] + [min{IK(e)
L (xi), IM(e)

L (xi)} −

max{IK(e)
L (xi), IM(e)

L (xi)}] + [min{IK(e)
U (xi), IM(e)

U (xi)} −

max{IK(e)
U (xi), IM(e)

U (xi)}] + [min{FK(e)
L (xi), FM(e)

L (xi)} − max{FK(e)
L (xi), FM(e)

L (xi)}] +

[min{FK(e)
U (xi), FM(e)

U (xi)} − max{FK(e)
U (xi), FM(e)

U (xi)]} =0

Thus  for each x, 

[min{TK(e)
L (xi), TM(e)

L (xi)} − max{TK(e)
L (xi), TM(e)

L (xi)}] =0

[min{TK(e)
U (xi), TM(e)

U (xi)} − max{TK(e)
U (xi), TM(e)

U (xi)}] = 0

[min{IK(e)
L (xi), IM(e)

L (xi)} − max{IK(e)
L (xi), IM(e)

L (xi)}] =0

[min{IK(e)
U (xi), IM(e)

U (xi)} − max{IK(e)
U (xi), IM(e)

U (xi)}] =0

[min{FK(e)
L (xi), FM(e)

L (xi)} − max{FK(e)
L (xi), FM(e)

L (xi)}] =0

[min{FK(e)
U (xi), FM(e)

U (xi)} − max{FK(e)
U (xi), FM(e)

U (xi)]}=0   holds

Thus TK(e)
L (xi) = TM(e)

L (xi) ,TK(e)
U (xi) =  TM(e)

U (xi) ,IK(e)
L (xi) = IM(e)

L (xi) , IK(e)
U (xi) =

IM(e)
U (xi) ,FA

L(xi) = FB
L(xi) and FK(e)

U (xi) = FM(e)
U (xi) ⇒ Υ = Ψ

(iv) now we prove the last result. 

Let Υ ⊆ Ψ ⊆ Ω,then we have 

TK(e)
L (xi) ≤ TM(e)

L (xi) ≤ TC
L(x)  , TK(e)

U (xi) ≤ TM(e)
U (xi) ≤ TC

L(x) , IK(e)
L (x) ≥ IM(e)

L (x) ≥

IC
L(x),IA

U(x) ≥ IM(e)
U (x) ≥ IC

U(x), FK(e)
L (x) ≥ FM(e)

L (x) ≥ FC
L(x) ,FK(e)

U (x) ≥ FM(e)
U (x) ≥ FC

U(x)

for all x ∈ X  .Now 

TK
L(x) +TK

U(x) +IK
L(x) +IK

U(x) +FM
L (x)+FM

U (x) ≥ TK
L(x) +TK

U(x) +IK
L(x) +IK

U(x)+FC
L(x)+FC

U(x)

And  

TM
L (x) +TM

U(x) +IM
L (x) +IM

U (x) +FK
L(x)+FK

U(x) ≥ TC
L(x) +TC

U(x) +IC
L(x) +IC

U(x)+FK
L(x)+FK

U(x)
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S(Υ,Ψ) = TK
L (x) +TK

U(x) +IK
L (x) +IK

U(x) +FM
L (x)+FM

U (x)

TM
L (x) +TM

U (x) +IM
L (x) +IM

U (x) +FK
L (x)+FK

U(x)
≥

Tk
L(x) +TK

U(x) +IK
L (x) +IK

U(x)+FC
L(x)+FC

U(x)

TC
L(x) +TC

U(x) +IC
L(x) +IC

U(x)+FK
L (x)+FK

U(x)
 = S(Υ,Ω) 

Again similarly we have 

TM
L (x) +TM

U(x) +IM
L (x) +IM

U (x)+FC
L(x)+FC

U(x) ≥ TK
L(x) +TK

U(x) +IK
L(x) +IK

U(x)+FC
L(x)+FC

U(x)

TC
L(x) +TC

U(x) +IC
L(x) +IC

U(x)+FK
L(x)+FK

U(x) ≥ TC
L(x) +TC

U(x) +IC
L(x) +IC

U(x)+FM
L (x)+FM

U (x)

S(Ψ,Ω) =TM
L (x) +TM

U (x) +IM
L (x) +IM

U (x)+FC
L(x)+FC

U(x)

TC
L(x) +TC

U(x) +IC
L(x) +IC

U(x)+FM
L (x)+FM

U (x)
≥

TK
L (x) +TK

U(x) +IK
L (x) +IK

U(x)+FC
L(x)+FC

U(x)

TC
L(x) +TC

U(x) +IC
L(x) +IC

U(x)+FK
L (x)+FK

U(x)
 = S(Υ,Ω) 

⇒S(Υ,Ω) ≤ min (S(Υ,Ψ) , S(Ψ,Ω))

Hence the proof of this proposition 

If we take the weight of each element 𝑥𝑖 ∈ X into account, then 

𝑆(Υ, Ψ)= 
∑ 𝑤𝑖{min{TA

L (xi),TB
L (xi)}+min{TA

U(xi),TB
U(xi)} +min{IA

L (xi),IB
L (xi)}+min{IA

U(xi),IB
U(xi)}+ min{FA

L (xi),FB
L (xi)}+min{FA

U(xi),FB
U(xi)}𝑛

𝑖=1

∑ 𝑤𝑖{max{TA
L (xi),TB

L (xi)}+max{TA
U(xi),TB

U(xi)} +max{IA
L (xi),IB

L (xi)}+max{IA
U(xi),IB

U(xi)}+ max{FA
L (xi),FB

L (xi)}+max{FA
U(xi),FB

U(xi)}𝑛
𝑖=1

  (18) 

Particularly ,if  each element  has  the same importance, then (18) is reduced to  (17)  ,clearly 
this also satisfies all the properties of definition . 

Theorem Υ = <K,E>, Ψ = <L,E> and Ω = <M,E>; are three ivn-soft sets in universe U such
that Υis a ivn-soft subset of Ψ and Ψis a soft subset of Ω then, S(Υ, Ω) ≤ S(Ψ, Ω). 

Proof. The proof is straightforward.

5.3. Similarity measure based for matching function by using interval neutrosophic 
sets: 

Chen [24] and Chen et al. [25]) introduced a matching function to calculate the degree of 
similarity between fuzzy sets. In the  following, we  extend  the matching  function to deal 
with the  similarity measure of interval valued neutrosophic soft  sets. 

Let  Υ = A and Ψ=B be two interval  valued neutrosophic soft sets, then we define a 
similarity measure between Υ and Ψ as follows:  

𝑆𝑀𝐹(Υ ,Ψ)= 
∑ ((𝑇𝐴

𝐿(𝑥𝑖) ∙   𝑇𝐵
𝐿(𝑥𝑖)) + (𝑇𝐴

𝑈(𝑥𝑖) ∙   𝑇𝐵
𝑈(𝑥𝑖)) + (𝐼𝐴

𝐿(𝑥𝑖) ∙   𝐼𝐵
𝐿(𝑥𝑖)) + (𝐼𝐴

𝑈(𝑥𝑖) ∙   𝐼𝐵
𝑈(𝑥𝑖)) + (𝐹𝐴

𝐿(𝑥𝑖) ∙   𝐹𝐵
𝐿(𝑥𝑖)) + (𝐹𝐴

𝑈(𝑥𝑖) ∙   𝐹𝐵
𝑈(𝑥𝑖)))𝒏

𝒊=𝟏

max( ∑ (TA
L(xi)

2 + TA
U(xi)

2 +  IA
L(xi)

2 +𝑛
𝑖= IA

U(xi)
2 +  FA

L(xi)
2 + FA

U(xi)
2),   ∑ (TB

L(xi)
2 + TB

U(xi)
2 +  IB

L(xi)
2 +𝑛

𝑖= IB
U(xi)

2 +  FB
L(xi)

2 + FB
U(xi)

2))

𝑇𝐾(𝑒)
𝐿 (𝑥𝑖) =  𝑇𝑀(𝑒)

𝐿 (𝑥𝑖),   𝑇𝐾(𝑒)
𝑈 (𝑥𝑖) = 𝑇𝑀(𝑒)

𝑈 (𝑥𝑖) ,  𝐼𝐾(𝑒)
𝐿 (𝑥𝑖) =  𝐼𝑀(𝑒)

𝐿 (𝑥𝑖),   𝐼𝐾(𝑒)
𝑈 (𝑥𝑖)  =

𝐼𝑀(𝑒)
𝑈 (𝑥𝑖) and  𝐹𝐾(𝑒)

𝐿 (𝑥𝑖) =  𝐹𝑀(𝑒)
𝐿 (𝑥𝑖) ,    𝐹𝐾(𝑒)

𝑈 (𝑥𝑖)  =  𝐹𝑀(𝑒)
𝑈 (𝑥𝑖)

(19) 

Proof. 
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i. 0 ≤ 𝑆𝑀𝐹(Υ ,Ψ) ≤ 1

The inequality 𝑆𝑀𝐹(Υ ,Ψ) 0 is obvious. Thus, we only prove the inequality S(Υ ,Ψ)  1. 

𝑆𝑀𝐹(Υ,Ψ)=∑ ((TK(e)
L (xi) ∙   𝑇𝑀(𝑒)

𝐿 (xi)) + (TK(e)
U (xi) ∙   𝑇𝑀(𝑒)

𝑈 (xi)) + (𝐼𝐾(𝑒)
𝐿 (𝑥𝑖) ∙𝐧

𝐢=𝟏

𝐼𝑀(𝑒)
𝐿 (xi)) + (𝐼𝐾(𝑒)

𝑈 (𝑥𝑖) ∙   𝐼𝑀(𝑒)
𝑈 (xi)) + (𝐹𝐾(𝑒)

𝐿 (𝑥𝑖) ∙   𝐹𝑀(𝑒)
𝐿 (xi)) + (𝐹𝐾(𝑒)

𝑈 (𝑥𝑖) ∙   𝐹𝑀(𝑒)
𝑈 (xi)))

=𝑇𝐾(𝑒)
𝐿 (𝑥1) ∙   𝑇𝑀(𝑒)

𝐿 (𝑥1)+𝑇𝐾(𝑒)
𝐿 (𝑥2) ∙   𝑇𝑀(𝑒)

𝐿 (𝑥2)+…+𝑇𝐾(𝑒)
𝐿 (𝑥𝑛) ∙   𝑇𝑀(𝑒)

𝐿 (𝑥𝑛)+𝑇𝐾(𝑒)
𝑈 (𝑥1) ∙

𝑇𝑀(𝑒)
𝑈 (𝑥1)+𝑇𝐾(𝑒)

𝑈 (𝑥2) ∙   𝑇𝑀(𝑒)
𝑈 (𝑥2)+…+𝑇𝐾(𝑒)

𝑈 (𝑥𝑛) ∙   𝑇𝑀(𝑒)
𝑈 (𝑥𝑛)+

𝐼𝐾(𝑒)
𝐿 (𝑥1) ∙   𝐼𝑀(𝑒)

𝐿 (𝑥1)+𝐼𝐾(𝑒)
𝐿 (𝑥2) ∙   𝐼𝑀(𝑒)

𝐿 (𝑥2)+…+𝐼𝐾(𝑒)
𝐿 (𝑥𝑛) ∙   𝐼𝑀(𝑒)

𝐿 (𝑥𝑛)+𝐼𝐾(𝑒)
𝑈 (𝑥1) ∙

𝐼𝑀(𝑒)
𝑈 (𝑥1)+𝐼𝐾(𝑒)

𝑈 (𝑥2) ∙   𝐼𝑀(𝑒)
𝑈 (𝑥2)+…+𝐼𝐾(𝑒)

𝑈 (𝑥𝑛) ∙   𝐼𝑀(𝑒)
𝑈 (𝑥𝑛)+

𝐹𝐾(𝑒)
𝐿 (𝑥1) ∙   𝐹𝑀(𝑒)

𝐿 (𝑥1)+𝐹𝐾(𝑒)
𝐿 (𝑥2) ∙   𝐹𝑀(𝑒)

𝐿 (𝑥2)+…+𝐹𝐾(𝑒)
𝐿 (𝑥𝑛) ∙   𝐹𝑀(𝑒)

𝐿 (𝑥𝑛)+𝐹𝐾(𝑒)
𝑈 (𝑥1) ∙

𝐹𝑀(𝑒)
𝑈 (𝑥1)+𝐹𝐾(𝑒)

𝑈 (𝑥2) ∙   𝐹𝑀(𝑒)
𝑈 (𝑥2)+…+𝐹𝐾(𝑒)

𝑈 (𝑥𝑛) ∙   𝐹𝑀(𝑒)
𝑈 (𝑥𝑛)+

According to the Cauchy–Schwarz inequality: 

(𝑥1 ∙ 𝑦1 + 𝑥2 ∙ 𝑦2 + ⋯ + 𝑥𝑛 ∙ 𝑦𝑛)2 ≤ (𝑥1
2 + 𝑥2

2 + ⋯ + 𝑥𝑛
2)  ∙ (𝑦1

2 + 𝑦2
2 + ⋯ + 𝑦𝑛

2)

where  (𝑥1, 𝑥2, …, 𝑥𝑛) ∈ 𝑅𝑛and  (𝑦1, 𝑦2, …, 𝑦𝑛)  ∈ 𝑅𝑛 we can obtain

[𝑆𝑀𝐹(𝛶, 𝛹)]2 ≤ ∑(𝑇𝐾(𝑒)
𝐿 (𝑥𝑖)

2 + 𝑇𝐾(𝑒)
𝑈 (𝑥𝑖)

2 + 𝐼𝐾(𝑒)
𝐿 (𝑥𝑖)

2 + 𝐼𝐾(𝑒)
𝑈 (𝑥𝑖)2 + 𝐹𝐾(𝑒)

𝐿 (𝑥𝑖)
2

𝒏

𝒊=𝟏

+ 𝐹𝐾(𝑒)
𝑈 (𝑥𝑖)

2) ∙

∑ (𝑇𝑀(𝑒)
𝐿 (𝑥𝑖)

2 + 𝑇𝑀(𝑒)
𝑈 (𝑥𝑖)

2 + 𝐼𝑀(𝑒)
𝐿 (𝑥𝑖)

2 + 𝐼𝑀(𝑒)
𝑈 (𝑥𝑖)

2 + 𝐹𝑀(𝑒)
𝐿 (𝑥𝑖)2 +𝒏

𝒊=𝟏

𝐹𝑀(𝑒)
𝑈 (𝑥𝑖)

2)=S(Υ, Υ)∙S(Ψ, Ψ)

Thus   𝑆𝑀𝐹(Υ,Ψ)≤ [𝑆(Υ, Υ)]
1

2 ∙ [𝑆(Ψ, Ψ)]
1

2

Then 𝑆𝑀𝐹(Υ,Ψ)≤max{S(Υ, Υ), S(Ψ, Ψ)] 

Therefore,𝑆𝑀𝐹(Υ,Ψ)≤ 1. 

If we take the weight of each element 𝑥𝑖 ∈ X into account, then 

𝑆𝑀𝐹
𝑤 (Υ,Ψ)=

∑ 𝑤𝑖 ((𝑇𝐴
𝐿(𝑥𝑖) ∙   𝑇𝐵

𝐿(𝑥𝑖)) + (𝑇𝐴
𝑈(𝑥𝑖) ∙   𝑇𝐵

𝑈(𝑥𝑖)) + (𝐼𝐴
𝐿(𝑥𝑖) ∙   𝐼𝐵

𝐿(𝑥𝑖)) + (𝐼𝐴
𝑈(𝑥𝑖) ∙   𝐼𝐵

𝑈(𝑥𝑖)) + (𝐹𝐴
𝐿(𝑥𝑖) ∙   𝐹𝐵

𝐿(𝑥𝑖)) + (𝐹𝐴
𝑈(𝑥𝑖) ∙   𝐹𝐵

𝑈(𝑥𝑖)))𝒏
𝒊=𝟏

max( ∑ 𝑤𝑖 (TA
L(xi)

2 + TA
U(xi)

2 +  IA
L(xi)

2 +𝑛
𝑖= IA

U(xi)
2 +  FA

L(xi)
2 + FA

U(xi)
2),   ∑ 𝑤𝑖  (TB

L(xi)
2 + TB

U(xi)
2 +  IB

L(xi)
2 +𝑛

𝑖= IB
U(xi)

2 +  FB
L(xi)

2 + FB
U(xi)

2))

     (20) 

Particularly ,if  each element  has  the same importance, then (20) is reduced to  (19)  ,clearly 
this also satisfies all the properties of definition . 
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The larger the value of S(Υ,Ψ) ,the more the similarity between Υ and Ψ. 

Majumdar and Samanta [40] compared the properties of the two measures of soft sets and 
proposed α-similar of two soft sets. In the  following, we  extend  to interval valued 
neutrosophic soft  sets as; 

Let 𝑋Υ,Ψ denote the similarity measure between two ivn-soft sets Υ and Ψ  Table  compares 
the properties of the two measures of similarity of ivn-soft soft sets discussed here. It can be 
seen that most of the properties are common to both.and few differences between them do 
exist. 

Property S (geometric  ) 𝑆 (theoretic) 𝑆 ( matching)
S(Υ, Ψ) = S(Ψ, Υ)  

0 ≤S(Υ, Ψ) ≤1
Υ = Ψ⇒S(Υ, Ψ) = 1 
S(Υ, Ψ) = 1 ⇒Υ = Ψ 

Υ ∩ Ψ = ∅⇒S(Υ, Ψ) = 0 
S(Υ, Υ𝑐) = 0

Yes 
Yes 
Yes 
Yes 
No 
No 

Yes 
Yes 
No 
Yes 
No 
No 

Yes 
Yes 

? 
? 
? 
? 

Definition A relation α≈ on IVNS(U), called α-similar, as follows:two inv-soft sets Υ and Ψ
are said to be α-similar, denoted as Υα≈Ψ  iff S(Υ, Ψ) ≥ α for α ∈(0, 1). 

Here, we call the two ivn-soft sets significantly similar if S(Υ, Ψ) >0.5

Lemma [40] α≈is reflexive and symmetric, but not transitive.

Majumdar and Samanta [40] introduced a technique of similarity measure of two soft sets 
which can be applied to detect whether an ill person is suffering from a certain disease or not.  
In a example, they was tried to estimate the possibility that an ill person having certain visible 
symptoms is suffering from pneumonia.Therefore, they were given an example by using 
similarity measure of two soft sets. In the following application, similarly we will try for ivn-
soft sets in same example. Some of it is quoted from [40] . 

6. An Application
This technique of similarity measure of two inv-soft sets can be applied to detect whether an 
ill person is suffering from a certain disease or not. In the followinge xample, we will try to 
estimate the possibility that an ill person having certain visible symptoms is suffering from 
pneumonia. For this, we first construct a model inv-soft set for pneumonia and the inv-soft set 
for the ill person. Next we find the similarity measure of these two sets. If they are 
significantly similar, then we conclude that the person is possibly suffering from pneumonia. 

Let our universal set contain only two elements yes and no, i.e. U = {yes=h1, no=h2}. Here
the set of parameters E is the set of certain visible symptoms. Let E = {e1, e2, e3, e4, e5, e6},
where e1 = high body temperature, e2 = cough with chest congestion, e3 = body ache, e4 =
headache, e5 = loose motion, and e6 = breathing trouble. Our model inv-soft for
pneumoniaΥis given below and this can be prepared with the help of a medical person: 
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Υ= { (𝑒1,{<ℎ1,[0.5, 0.6], [0.6 ,0.7],[0.3,0.4]> ,<ℎ2, [0.5, 0.6], [0.6 ,0.7],[0.3,0.4]>}), 

(𝑒2,{< ℎ1, [0.5, 0.6], [0.6,0.7],[0.3,0.4]>,<ℎ2,[0.2, 0.3], [0.5 ,0.6],[0.3,0.6]>}), 

(𝑒3,{<ℎ1, [0.4, 0.6], [0.2 ,0.3],[0.2,0.3]> , <ℎ2,[0.5, 0.6], [0.6 ,0.7],[0.3,0.4]> }), 

 (𝑒4,{<ℎ1,[0.3, 0.4], [0.1 ,0.5],[0.2,0.4]>,<ℎ2, [0.2, 0.5],[0.3,0.4],[0.4,0.5]> }), 

 (𝑒5,{<ℎ1,[0.5, 0.6],[0 .6,0.7],[0.3,0.4]>,<ℎ2,[0.4, 0.6], [0.3 ,0.5],[0.3,0.4]>}), 

(𝑒6,{<ℎ1, [0.4, 0.6], [0.2 ,0.3],[0.2,0.3]>) , <ℎ2, [0.3, 0.4], [0.2,0.7],[0.1,0.4]>}) } 

Now the ill person is having fever, cough and headache. After talking to him, we can 
construct his ivn-soft Ψ as follows: 

Ψ = { (𝑒1,{<ℎ1,[0.1, 0.2], [0.1 ,0.2],[0.8,0.9]> ,<ℎ2, [0.1, 0.2], [0.0 ,0.1],[0.8,0.9]>}), 

(𝑒2,{< ℎ1, [0.8, 0.9], [0.1,0.2],[0.2,0.9]> ,<ℎ2,[0.8, 0.9], [0.2 ,0.9],[0.8,0.9]>}),  

(𝑒3,{<ℎ1,[0.1, 0.9], [0.7 ,0.8],[0.6,0.9]> , <ℎ2, [0.1, 0.8], [0.6 ,0.7],[0.8,0.7]> }), 

 (𝑒4,{<ℎ1,[0.8, 0.8], [0.1 ,0.9],[0.3,0.3]>,<ℎ2, [0.6, 0.9],[0.5,0.9],[0.8,0.9]> }), 

(𝑒5,{<ℎ1, [0.3, 0.4],[0 .1,0.2],[0.8,0.8]> ,<ℎ2,[0.5, 0.9], [0.8 ,0.9],[0.1,0.2]>}), 

(𝑒6,{<ℎ1, [0.1, 0.2], [0.8 ,0.9],[0.7,0.7]>) , <ℎ2, [0.7, 0.8], [0.8,0.9],[0.0,0.4]>}) } 

Then we find the similarity measure of these two ivn-soft sets as: 
𝑆𝐼𝑉𝑁𝑆𝑆

𝐻 (Υ ,Ψ)= 1

1+𝑑𝐼𝑉𝑁𝑆𝑆
𝐻 (Υ ,Ψ) 

 =0.17 

Hence the two ivn-softsets, i.e. two symptoms Υ and Ψare not significantly similar. Therefore, 
we conclude that the person is not possibly suffering from pneumonia. A person suffering 
from the following symptoms whose corresponding ivn-soft set Ω is given below: 

Ω= { (𝑒1,{<ℎ1,[0.5, 0.7], [0.5 ,0.7],[0.3,0.5]> ,<ℎ2, [0.6, 0.6], [0.6 ,0.8],[0.3,0.5]>}), 

(𝑒2,{< ℎ1, [0.5, 0.7], [0.5,0.7],[0.3,0.4]> ,<ℎ2,[0.2, 0.4], [0.6 ,0.7],[0.2,0.7]>}), 

 (𝑒3,{<ℎ1,    [0.4, 0.7], [0.2 ,0.2],[0.1,0.3]> , <ℎ2, [0.4, 0.8], [0.2 ,0.8],[0.2,0.8]> }), 

 (𝑒4,{<ℎ1,[0.3, 0.4], [0.1 ,0.5],[0.2,0.6]>,<ℎ2, [0.2, 0.5],[0.3,0.4],[0.4,0.5]> }), 

(𝑒5,{<ℎ1, [0.5, 0.6],[0 .6,0.7],[0.3,0.4]> ,<ℎ2,[0.4, 0.6], [0.3 ,0.5],[0.1,0.8]>}), 

(𝑒6,{<ℎ1, [0.4, 0.7], [0.3 ,0.7],[0.2,0.8]>) , <ℎ2, [0.5, 0.2], [0.3,0.5],[0.2,0.5]>}) } 

Then, 

𝑆𝐼𝑉𝑁𝑆𝑆
𝐻 (Υ ,Ω)= 1

1+𝑑𝐼𝑉𝑁𝑆𝑆
𝐻 (Υ ,Ψ) 

 = 0.512

Here the two ivn-soft sets, i.e. two symptoms Υ and Ω are significantly similar. Therefore, we 
conclude that the person is possibly suffering from pneumonia. This is only a simple example 
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to show the possibility of using this method for diagnosis of diseases which could be 
improved by incorporating clinical results and other competing diagnosis. 

Conclusions 

In this paper we have defined, for the first time, the notion of distance and similarity measures 
between two interval neutrosophic soft sets. We have studied few properties of distance and 
similarity measures. The similarity measures have natural applications in the field of pattern 
recognition, feature extraction, region extraction, image processing, coding theory etc. The 
results of the proposed similarity measure and existing similarity measure are compared. We 
also give an application for similarity measures of interval neutrosophic soft sets. 
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Generalized Interval Neutrosophic Soft Set and its Decision Making 
Problem 

Said Broumi 

Rıdvan Sahin

Florentin Smarandache 

Abstract – In this work, we introduce the concept of generalized interval neutrosophic soft set and
study their operations. Finally, we present an application of generalized interval neutrosophic soft set 
in decision making problem. 

Keywords –  Soft set, neutrosophic set, neutrosophic soft set, decision making 

1. Introduction

Neutrosophic sets, founded by Smarandache [8] has capability to deal with uncertainty, imprecise, 
incomplete and inconsistent information which exist in real world. Neutrosophic set theory is a 
powerful tool which generalizes the concept of the classic set, fuzzy set [16], interval-valued fuzzy set 
[10], intuitionistic fuzzy set [13] interval-valued intuitionistic fuzzy set [14], and so on. 

After the pioneering work of Smarandache, Wang [9] introduced the notion of interval neutrosophic set 
(INS) which is another extension of neutrosophic set. INS can be described by a membership interval, a 
non-membership interval and indeterminate interval, thus the interval value (INS) has the virtue of 
complementing NS, which is more flexible and practical than neutrosophic set, and interval 
neutrosophic set provides a morereasonable mathematical framework to deal with indeterminate and 
inconsistent information.The theory of neutrosophic sets and their hybrid structures has proven useful in 
many different fields such as control theory [25], databases [17,18], medical diagnosis problem [3,11], 
decision making problem [1,2,15,19,23,24,27,28,29,30,31,32,34], physics[7], and etc. 
In 1999, a Russian researcher [5] firstly gave the soft set theory as a general mathematical tool for 
dealing with uncertainty and vagueness. Soft set theory is free from the parameterization inadequacy 
syndrome of fuzzy set theory, rough set theory, probability theory. Recently, some authors have 
introduced new mathematical tools by generalizing and extending Molodtsov’s classical soft set theory; 
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fuzzy soft set [22], vague soft set [35], intuitionistic fuzzy soft set [20], interval valued intuitionistic 
fuzzy set [36]. 

Similarity, combining neutrosophic set models with other mathematical models has attracted the 
attention of many researchers: neutrosophic soft set [21], intuitionistic neutrosophic soft set [26], 
generalized neutrosophic soft set [23], interval neutrosophic soft set [12]. 

Broumi et al. [33] presented the concept of rough neutrosophic set which is based on a combination of 
the neutrosophic set and rough set models. Recently, Şahin and Küçük [23] generalized the concept of 
neutrosophic soft set with a degree of which is attached with the parameterization of fuzzy sets while 
defining a neutrosophic soft set, and investigated some basic properties of the generalized neutrosophic 
soft sets. 

In this paper our main objective is to extend the concept of generalized neutrosophic soft set introduced 
by Şahin and Küçük [23] to the case of interval neutrosophic soft set [12]. 

The paper is structured as follows. In Section 2, we first recall the necessary background on 
neutrosophic sets,soft set and generalized neutrosophic soft set. The concept of generalized interval 
neutrosophic soft sets and some of their properties are presented in Section 3.In Section 4, we present 
an application of generalized interval neutrosophic soft sets in decision making. Finally we conclude 
the paper. 

2. Preliminaries

In this section, we will briefly recall the basic concepts of neutrosophic set,soft sets and generalized 
neutrosophic soft sets. Let 𝑈 be an initial universe set of objects and E the set of parameters in relation 
to objects in 𝑈 . Parameters are often attributes, characteristics or properties of objects. Let 𝑃(𝑈) 
denote the power set of 𝑈 and  𝐴 ⊆  𝐸. 

2.1 Neutrosophic Sets 

Definition 2.1 [8]. Let 𝑈 be an universe of discourse.The neutrosophic set 𝐴 is an object having the 
form 𝐴 =  {<  𝑥: 𝑢𝐴(𝑥), 𝑤𝐴(𝑥), 𝑣𝐴(𝑥) > : 𝑥 ∈  𝑈},where the functions 𝑢,𝑤, 𝑣 ∶  𝑈 → ]0−, 1+[define
respectively the degree of membership, the degree of indeterminacy, and the degree of non-
membership of the element 𝑥 ∈  𝑈 to the set 𝐴 with the condition.  

0− ≤  𝑢𝐴(𝑥) + 𝑤𝐴(𝑥) + 𝑣𝐴(𝑥)) ≤ 3+

From philosophical point of view, the neutrosophic set takes the value from real standard or non-
standard subsets of ]−0,1+[. So instead of ]−0,1+[ we need to take the interval [0,1] for 
technical applications, because ]−0,1+[will be difficult to apply in the real applicationssuch as in 
scientific and engineering problems. 

Definition 2.2 [8] A neutrosophicset 𝐴 is contained in the other neutrosophic set 𝐵 , 𝐴 ⊆ 𝐵  iff 
inf 𝑢𝐴(𝑥) ≤ inf 𝑢𝐵(𝑥) , sup𝑢𝐴(𝑥) ≤ sup𝑢𝐵(𝑥) , inf 𝑤𝐴(𝑥) ≥ inf𝑤𝐵(𝑥), sup𝑤𝐴(𝑥) ≥ sup𝑤𝐵(𝑥)and
inf 𝑣𝐴(𝑥) ≥ inf 𝑣𝐵(𝑥), sup𝑣𝐴(𝑥) ≥ sup 𝑣𝐵(𝑥) for all 𝑥 ∈ 𝑈.

An INS is an instance of a neutrosophic set, which can be used in real scientific and engineering 
applications. In the following, we introduce the definition of an INS. 
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2.2 Interval Neutrosophic Sets 

Definition 2.3 [9] Let 𝑈 be a space of points (objects) and Int[0,1] be the set of all closed subsets of
[0,1]. An INS 𝐴 in 𝑈 is defined with the form  

𝐴 = {〈𝑥, 𝑢𝐴(𝑥), 𝑤𝐴(𝑥), 𝑣𝐴(𝑥)〉: 𝑥 ∈ 𝑈}

where 𝑢𝐴(𝑥): 𝑈 → int[0,1] , 𝑤𝐴(𝑥): 𝑈 → int[0,1]  and 𝑣𝐴(𝑥): 𝑈 → int[0,1]  with 0 ≤ sup𝑢𝐴(𝑥) +
sup𝑤𝐴(𝑥) + sup𝑣𝐴(𝑥) ≤ 3  for all 𝑥 ∈ 𝑈 . The intervals 𝑢𝐴(𝑥),𝑤𝐴(𝑥)  and 𝑣𝐴(𝑥)  denote the truth-
membership degree, the indeterminacy-membership degree and the falsity membership degree of 𝑥to 
𝐴, respectively. 

For convenience, 

if let 𝑢𝐴(𝑥) = [𝑢𝐴−(𝑥), 𝑢𝐴+(𝑥)], 𝑤𝐴(𝑥) = [𝑤𝐴−(𝑥),𝑤𝐴+(𝑥)] and 𝑣(𝑥) = [𝑣𝐴−(𝑥), 𝑣𝐴+(𝑥)], then
𝐴 = {〈𝑥, [𝑢𝐴

−(𝑥), 𝑢𝐴
+(𝑥)], [𝑤𝐴

−(𝑥),𝑤𝐴
+(𝑥)], [𝑣𝐴

−(𝑥), 𝑣𝐴
+(𝑥)]〉: 𝑥 ∈ 𝑈}

with the condition, 0 ≤ sup𝑢𝐴+(𝑥) + sup𝑤𝐴+(𝑥) + sup 𝑣𝐴+(𝑥) ≤ 3  for all 𝑥 ∈ 𝑈 . Here, we only
consider the sub-unitary interval of [0,1]. Therefore, an INS is clearly a neutrosophic set.  

Definition 2.4 [9] Let 𝐴 and 𝐵 be two interval neutrosophic sets,

𝐴 = {〈𝑥, [𝑢𝐴
−(𝑥), 𝑢𝐴

+(𝑥)], [𝑤𝐴
−(𝑥),𝑤𝐴

+(𝑥)], [𝑣𝐴
−(𝑥), 𝑣𝐴

+(𝑥)]〉: 𝑥 ∈ 𝑈}
𝐵 = {〈𝑥, [𝑢𝐵

−(𝑥), 𝑢𝐵
+(𝑥)], [𝑤𝐵

−(𝑥),𝑤𝐵
+(𝑥)], [𝑣𝐵

−(𝑥), 𝑣𝐵
+(𝑥)]〉: 𝑥 ∈ 𝑈}.

Then some operations can be defined as follows: 

(1) 𝐴 ⊆ 𝐵 iff 𝑢𝐴
−(𝑥) ≤ 𝑢𝐵

−(𝑥), 𝑢𝐴
+(𝑥) ≤ 𝑢𝐵

+(𝑥),𝑤𝐴
−(𝑥) ≥ 𝑤𝐵

−(𝑥), 𝑤𝐴
+(𝑥) ≥ 𝑤𝐵

+(𝑥)𝑣𝐴
−(𝑥) ≥

𝑣𝐵
−(𝑥), 𝑣𝐴

+(𝑥) ≥ 𝑣𝐵
+(𝑥) for each 𝑥 ∈ 𝑈.

(2) 𝐴 = 𝐵iff𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴. 
(3) 𝐴𝑐 = {〈𝑥, [𝑣𝐴

−(𝑥), 𝑣𝐴
+(𝑥)], [1 − 𝑤𝐴

+(𝑥), 1 − 𝑤𝐴
−(𝑥)], [𝑢𝐴

−(𝑥), 𝑢𝐴
+(𝑥)]〉: 𝑥 ∈ 𝑈}

2.3 Soft Sets 

Defnition2.5 [5] A pair (𝐹, 𝐴) is called a soft set over, where 𝐹 is a mapping given by 𝐹 ∶  𝐴 →
 𝑃 (𝑈 ). In other words, a soft set over 𝑈 is a mapping from parameters to the power set of 𝑈, and it is 
not a kind of set in ordinary sense, but a parameterized family of subsets of U. For any parameter𝑒 ∈
 𝐴, 𝐹 (𝑒) may be considered as the set of 𝑒 −approximate elements of the soft set (𝐹, 𝐴). 

Example 2.6 Suppose that 𝑈 is the set of houses under consideration, say 𝑈 = {ℎ1, ℎ2, . . . , ℎ5}. Let 𝐸
be the set of some attributes of such houses, say 𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4}, where 𝑒1, 𝑒2, 𝑒3, 𝑒4 stand for the
attributes “beautiful”, “costly”, “in the green surroundings” and “moderate”, respectively.  
In this case, to define a soft set means to point out expensive houses, beautiful houses, and so on. For 
example, the soft set (𝐹, 𝐴) that describes the “attractiveness of the houses” in the opinion of a buyer, 
say Thomas, may be defined like this: 

𝐹(𝑒1)  =  {ℎ2, ℎ3, ℎ5}, 𝐹(𝑒2)  =  {ℎ2, ℎ4}, 𝐹(𝑒4)  =  {ℎ3, ℎ5} for 𝐴 =  {𝑒1, 𝑒2, 𝑒4}.
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2.4 Neutrosophic Soft Sets 

Definition 2.7 [21] Let𝑼 be an initial universe set and 𝑨 ⊂  𝑬 be a set of parameters. Let NS(U)
denotes the set of all neutrosophic subsets of 𝑼. The collection (𝑭, 𝑨) is termed to be the neutrosophic 
soft set over 𝑼, where 𝐅 is a mapping given by 𝑭: 𝑨 →  𝑵𝑺(𝑼). 

Example 2.8 [21] Let U be the set of houses under consideration and E is the set of parameters. Each
parameter is a neutrosophic word or sentence involving neutrosophic words. Consider 𝐸 ={beautiful, 
wooden, costly, very costly, moderate, green surroundings, in good repair, in bad repair, cheap, 
expensive}. In this case, to define a neutrosophic soft set means to point out beautiful houses, wooden 
houses, houses in the green surroundings and so on. Suppose that, there are five houses in the universe 𝑈 
given by𝑈 = {ℎ1, ℎ2, . . . , ℎ5} and the set of parameters

𝐴 =  {𝑒1, 𝑒2, 𝑒3, 𝑒4},where 𝑒1 stands for the parameter `beautiful', 𝑒2 stands for the parameter `wooden',
𝑒3 stands for the parameter `costly' and the parameter 𝑒4stands for `moderate'. Then the neutrosophic set
(𝐹, 𝐴) is defined as follows: 

(𝐹, 𝐴) =

{

(𝑒1 {
ℎ1

(0.5,0.6,0.3)
,

ℎ2
(0.4,0.7,0.6)

,
ℎ3

(0.6,0.2,0.3)
,

ℎ4
(0.7,0.3,0.2)

,
ℎ5

(0.8,0.2,0.3)
})

(𝑒2 {
ℎ1

(0.6,0.3,0.5)
,

ℎ2
(0.7,0.4,0.3)

,
ℎ3

(0.8,0.1,0.2)
,

ℎ4
(0.7,0.1,0.3)

,
ℎ5

(0.8,0.3,0.6)
})

(𝑒3 {
ℎ1

(0.7,0.4,0.3)
,

ℎ2
(0.6,0.7,0.2)

,
ℎ3

(0.7,0.2,0.5)
,

ℎ4
(0.5,0.2,0.6)

,
ℎ5

(0.7,0.3,0.4)
})

(𝑒4 {
ℎ1

(0.8,0.6,0.4)
,

ℎ2
(0.7,0.9,0.6)

,
ℎ3

(0.7,0.6,0.4)
,

ℎ4
(0.7,0.8,0.6)

,
ℎ5

(0.9,0.5,0.7)
})
}

2.5 Interval Neutrosophic Soft Sets 

Definition 2.9 [12] Let𝑼 be an initial universe set and 𝑨 ⊂  𝑬 be a set of parameters. Let INS(U)
denotes the set of all interval neutrosophic subsets of 𝑼. The collection (𝑭, 𝑨) is termed to be the 
interval neutrosophic soft set over 𝑼, where 𝐅 is a mapping given by 𝑭: 𝑨 →  𝑰𝑵𝑺(𝑼). 

Example 2.10 [12] Let 𝑼 =  {𝒙𝟏, 𝒙𝟐}  be set of houses under consideration and 𝐄  is a set of
parameters which is a neutrosophic word. Let 𝐄 be the set of some attributes of such houses, say 𝑬 =
 {𝒆𝟏, 𝒆𝟐, 𝒆𝟑, 𝒆𝟒}, where 𝐞𝟏, 𝐞𝟐, 𝐞𝟑, 𝐞𝟒 stand for the attributes 𝐞𝟏 = cheap, 𝐞𝟐 = beautiful, 𝐞𝟑 = in the
green surroundings, 𝐞𝟒 =  costly and 𝐞𝟓 =  large, respectively. Then we define the interval
neutrosophic soft set 𝐀 as follows:  

(𝑭, 𝑨) =

{

(𝒆𝟏 {
𝒙𝟏

[𝟎. 𝟓, 𝟎. 𝟖], [𝟎. 𝟓, 𝟎. 𝟗], [𝟎. 𝟐, 𝟎. 𝟓]
,

𝒙𝟐
[𝟎. 𝟒, 𝟎. 𝟖], [𝟎. 𝟐, 𝟎. 𝟓], [𝟎. 𝟓, 𝟎. 𝟔]

})

(𝒆𝟐 {
𝒙𝟏

[𝟎. 𝟓, 𝟎. 𝟖], [𝟎. 𝟐, 𝟎. 𝟖], [𝟎. 𝟑, 𝟎. 𝟕]
,

𝒙𝟐
[𝟎. 𝟏, 𝟎. 𝟗], [𝟎. 𝟔, 𝟎. 𝟕], [𝟎. 𝟐, 𝟎. 𝟑]

})

(𝒆𝟑 {
𝒙𝟏

[𝟎. 𝟐, 𝟎. 𝟕], [𝟎. 𝟏, 𝟎. 𝟓], [𝟎. 𝟓, 𝟎. 𝟖]
,

𝒙𝟐
[𝟎. 𝟓, 𝟎. 𝟕], [𝟎. 𝟏, 𝟎. 𝟒], [𝟎. 𝟔, 𝟎. 𝟕]

})

(𝒆𝟒 {
𝒙𝟏

[𝟎. 𝟒, 𝟎. 𝟓], [𝟎. 𝟒, 𝟎. 𝟗], [𝟎. 𝟒, 𝟎. 𝟗]
,

𝒙𝟐
[𝟎. 𝟑, 𝟎. 𝟒], [𝟎. 𝟔, 𝟎. 𝟕], [𝟎. 𝟏, 𝟎. 𝟓]

})

(𝒆𝟓 {
𝒙𝟏

[𝟎. 𝟏, 𝟎. 𝟕], [𝟎. 𝟓, 𝟎. 𝟔], [𝟎. 𝟏, 𝟎. 𝟓]
,

𝒙𝟐
[𝟎. 𝟔, 𝟎. 𝟕], [𝟎. 𝟐, 𝟎. 𝟒], [𝟎. 𝟑, 𝟎. 𝟕]

})
}
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2.6 Generalized Neutrosophic Soft Sets 

The concept of generalized neutrosophic soft is defined by Şahin and Küçük [23] as follows: 

Definition 2.11 [23] Let𝑈 be an intial universe and 𝐸 be a set of parameters. Let 𝑁𝑆(𝑈) be the set of
all neutrosophic sets of 𝑈. A generalized neutrosophic soft set 𝐹𝜇  over 𝑈  is defined by the set of
ordered pairs 

𝐹𝜇 = {(𝐹(𝑒), 𝜇 (𝑒)): 𝑒 ∈  𝐸 , 𝐹(𝑒)  ∈ 𝑁(𝑈), 𝜇(𝑒)  ∈  [0, 1]}, 

where𝐹 isa mapping given by𝐹: 𝐸 → 𝑁𝑆(𝑈) ×  𝐼 and 𝜇 is a fuzzy set such that 𝜇: 𝐸 →  𝐼 = [0, 1]. 
Here,𝐹𝜇is a mapping defined by𝐹𝜇: 𝐸 → 𝑁𝑆(𝑈) ×  𝐼.

For any parameter 𝑒 ∈  𝐸, 𝐹(𝑒) is referred as the neutrosophic value set of parameter 𝑒, i.e, 

𝐹(𝑒) = {〈𝑥, 𝑢𝐹(𝑒)(𝑥),𝑤𝐹(𝑒)(𝑥), 𝑣𝐹(𝑒)(𝑥)〉: 𝑥 ∈ 𝑈}

where  𝑢, 𝑤, 𝑣  : U→  [0 ,1] are the memberships functions of truth, indeterminacy and falsity 
respectively of the element 𝑥 ∈  𝑈. For any 𝑥 ∈  𝑈and 𝑒 ∈  𝐸, 

0 ≤ 𝑢𝐹(𝑒) (𝑥)  + 𝑤𝐹(𝑒) (𝑥) + 𝑣𝐹(𝑒) (𝑥)  ≤ 3.

In fact, 𝐹𝜇is a parameterized family of neutrosophic sets over𝑈, which has the degree of possibility of
the approximate value set which is represented by 𝜇 (𝑒) for each parameter 𝑒, so 𝐹𝜇 can be expressed
as follows: 

𝐹𝜇(𝑒) = {(
𝑥1

𝐹(𝑒)(𝑥1)
 ,

𝑥2
𝐹(𝑒)(𝑥2)

 , … . . ,
𝑥𝑛

𝐹(𝑒)(𝑥𝑛)
) , 𝜇(e)}. 

Definition 2.12 [4] A binary operation ⨂: [0,1] × [0,1] ⟶ [0,1]is continuous 𝑡 −norm if ⨂ satisfies
the following conditions: 

(1) ⨂ is commutative and associative,  
(2) ⨂ is continuous, 
(3) 𝑎⨂1 = 𝑎, ∀𝑎 ∈ [0,1], 
(4) 𝑎⨂𝑏 ≤ 𝑐⨂𝑑whenever𝑎 ≤ 𝑐, 𝑏 ≤ 𝑑 and 𝑎, 𝑏, 𝑐, 𝑑 ∈ [0,1]. 

Definition 2.13 [4] A binary operation ⨁: [0,1] × [0,1] ⟶ [0,1] is continuous 𝑡 −conorm if ⨁
satisfies the following conditions: 

(1) ⨁ is commutative and associative,  
(2) ⨁ is continuous, 
(3) 𝑎⨁0 = 𝑎, ∀𝑎 ∈ [0,1], 
(4) 𝑎⨁𝑏 ≤ 𝑐⨁𝑑whenever𝑎 ≤ 𝑐, 𝑏 ≤ 𝑑 and 𝑎, 𝑏, 𝑐, 𝑑 ∈ [0,1]. 
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3. Generalized Interval Neutrosophic Soft Set

In this section, we define the generalized interval neutrosophic soft sets and investigate some basic 
properties. 

Definition 3.1. Let 𝑈 be an initial universe and 𝐸 be a set of parameters.Suppose that𝐼𝑁𝑆(𝑈)is the set
of all interval neutrosophic sets over𝑈 and int[0,1]is the set of all closed subsets of [0,1]. A generalized 
interval neutrosophic soft set 𝐹𝜇 over 𝑈 is defined by the set of ordered pairs

𝐹𝜇 = {(𝐹(𝑒), 𝜇 (𝑒)): 𝑒 ∈  𝐸 , 𝐹(𝑒)  ∈  𝐼𝑁𝑆(𝑈), 𝜇(𝑒)  ∈  [0, 1]},

where 𝐹 is a mapping given by𝐹: 𝐸 → 𝐼𝑁𝑆(𝑈) ×  𝐼 and 𝜇 is a fuzzy set such that 𝜇: 𝐸 → 𝐼 = [0, 1]. 
Here,𝐹𝜇is a mapping defined by𝐹𝜇: 𝐸 → 𝐼𝑁𝑆(𝑈) ×  𝐼.

For any parameter 𝑒 ∈ 𝐸,𝐹(𝑒) is referred as the interval neutrosophic value set of parameter e, i.e, 

𝐹(𝑒) = {〈𝑥, 𝑢𝐹(𝑒)(𝑥),𝑤𝐹(𝑒)(𝑥), 𝑣𝐹(𝑒)(𝑥)〉: 𝑥 ∈ 𝑈}

where 𝑢𝐹(𝑒), 𝑤𝐹(𝑒), 𝑣𝐹(𝑒): 𝑈 →  int[0 ,1]with the condition

0 ≤ sup𝑢𝐹(𝑒)(𝑥) + sup𝑤𝐹(𝑒)(𝑥) + sup𝑣𝐹(𝑒) (𝑥)  ≤ 3

for all 𝑥 ∈ 𝑈. 

The intervals 𝑢𝐹(𝑒)(𝑥), 𝑤𝐹(𝑒)(𝑥) and 𝑣𝐹(𝑒)(𝑥)are the interval memberships functions of truth, interval
indeterminacy and interval falsity of the element 𝑥 ∈  𝑈, respectively. 

For convenience, if let 

𝑢𝐹(𝑒)(𝑥) = [𝑢𝐹(𝑒)
𝐿 (𝑥), 𝑢𝐹(𝑒)

𝑈 (𝑥)]

𝑤𝐹(𝑒)(𝑥) = [𝑤𝐹(𝑒)
𝐿 (𝑥),𝑤𝐹(𝑒)

𝑈 (𝑥)]

𝑣𝐹(𝑒)(𝑥) = [𝑣𝐹(𝑒)
𝐿 (𝑥), 𝑣𝐹(𝑒)

𝑈 (𝑥)]

then 

𝐹(𝑒) = {〈𝑥, [𝑢𝐹(𝑒)
𝐿 (𝑥), 𝑢𝐹(𝑒)

𝑈 (𝑥)], [𝑤𝐹(𝑒)
𝐿 (𝑥),𝑤𝐹(𝑒)

𝑈 (𝑥)], [𝑣𝐹(𝑒)
𝐿 (𝑥), 𝑣𝐹(𝑒)

𝑈 (𝑥)]〉: 𝑥 ∈ 𝑈}

In fact, 𝐹𝜇 is a parameterized family of interval neutrosophic sets on U, which has the degree of
possibility of the approximate value set which is represented by 𝜇 (𝑒) for each parameter 𝑒, so 𝐹𝜇can
be expressed as follows: 

𝐹𝜇(𝑒) = {(
𝑥1

𝐹(𝑒)(𝑥1)
 ,

𝑥2
𝐹(𝑒)(𝑥2)

 , … . . ,
𝑥𝑛

𝐹(𝑒)(𝑥𝑛)
) , 𝜇 (e)} 

Example 3.2. Consider two generalized interval neutrosophic soft set 𝐹𝜇and 𝐺𝜃. Suppose that 𝑈 =
{ ℎ1 , ℎ2 , ℎ3 } is the set of house and 𝐸 = {𝑒1, 𝑒2 , 𝑒3 } is the set of parameters where
𝑒1 =cheap,𝑒2 =moderate,𝑒3 =comfortable. Suppose that 𝐹𝜇 and 𝐺𝜃are given as follows, respectively:
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{

𝐹𝜇(𝑒1) = (
ℎ1

([0.2, 0.3], [0.3, 0.5], [0.2, 0.3])
,

ℎ2
([0.3, 0.4], [0.3, 0.4], [0.5, 0.6])

 ,
ℎ3

([0.5, 0.6], [0.2, 0.4], [0.5, 0.7])
) , (0.2)

𝐹𝜇(𝑒2) = (
ℎ1

([0.1, 0.4], [0.5, 0.6], [0.3, 0.4])
,

ℎ2
([0.6, 0.7], [0.4, 0.5], [0.5, 0.8])

 ,
ℎ3

([0.2, 0.4], [0.3, 0.6], [0.6, 0.9])
) , (0.5)

𝐹𝜇(𝑒3) = (
ℎ1

([0.2, 0.6], [0.2, 0.5], [0.1, 0.5])
,

ℎ2
([0.3, 0.5], [0.3, 0.6], [0.4, 0.5])

 ,
ℎ3

([0.6, 0.8], [0.3, 0.4], [0.2, 0.3])
) , (0.6)

}

and 

{

𝐺𝜃(𝑒1) = (
ℎ1

([0.1, 0.2], [0.1, 0.2], [0.1, 0.2])
,

ℎ2
([0.4, 0.5], [0.2, 0.3], [0.3, 0.5])

 ,
ℎ3

([0.6, 0.7], [0.1, 0.3], [0.2, 0.3])
) , (0.4)

𝐺𝜃(𝑒2) = (
ℎ1

([0.2, 0.5], [0.3, 0.4], [0.2, 0.3])
,

ℎ2
([0.7, 0.8], [0.3, 0.4], [0.4, 0.6])

 ,
ℎ3

([0.3, 0.6], [0.2, 0.5], [0.4, 0.6])
) , (0.7)

𝐺𝜃(𝑒3) = (
ℎ1

([0.3, 0.5], [0.1, 0.3], [0.1, 0.3])
,

ℎ2
([0.4, 0.5], [0.1, 0.5], [0.2, 0.3])

 ,
ℎ3

([0.7, 0.9], [0.2, 0.3], [0.1, 0.2])
) , (0.8)

}

For the purpose of storing a generalized interval neutrosophic soft sets in a computer, we can present it 
in matrix form. For example, the matrix form of𝐹𝜇can be expressed as follows;

(
([0.2, 0.3], [0.3, 0.5], [0.2, 0.3]) ([0.3, 0.4], [0.3, 0.4], [0.5, 0.6]) ([0.5, 0.6], [0.2, 0.4], [0.5, 0.7]), ( 0.2 )
([0.1, 0.4], [0.5, 0.6], [0.3, 0.4]) ([0.6, 0.7], [0.4, 0.5], [0.5, 0.8]) ([0.2, 0.4], [0.3, 0.6], [0.6, 0.9]), (0.5)
([0.2, 0.6], [0.2, 0.5], [0.1, 0.5]) ([0.3, 0.5], [0.3, 0.6], [0.4 0.5]) ([0.6, 0.8], [0.3, 0.4], [0.2, 0.3]), (0.6)

) 

Definition 3.3. A generalized interval neutrosophic soft set𝐹𝜇over 𝑈 is said to be generalized null
interval neutrosophic soft set ,denoted by ∅𝜇, if ∅𝜇: 𝐸 →IN(U) ×I such that

∅𝜇(𝑒) =  {(𝐹(𝑒), 𝜇 (𝑒)}, where 𝐹(𝑒) = { < 𝑥, ([0, 0], [1,1], [1, 1]) >} and 𝜇 (𝑒)  =  0  for each 𝑒 ∈
𝐸 and 𝑥 ∈  𝑈. 

Definition 3.4. A generalized interval neutrosophic soft set𝐹𝜇over 𝑈  is said to be generalized
absolute interval neutrosophic soft set, denoted by 𝑈𝜇 , if 𝑈𝜇: 𝐸 → 𝐼𝑁(𝑈)  ×  𝐼 such that 𝑈𝜇(𝑒) =
 {(𝐹(𝑒), 𝜇 (𝑒)},where 𝐹(𝑒) = { < 𝑥, ([1,1], [0 ,0], [0, 0]) >}and𝜇 (𝑒) = 1 for each 𝑒 ∈ 𝐸 and 𝑥 ∈  𝑈. 

Definition 3.5. Let𝐹𝜇be a generalized interval neutrosophic soft set over U, where

𝐹𝜇 (e) = {(𝐹(𝑒), 𝜇 (𝑒)}
and 

𝐹(𝑒) = {〈𝑥, [𝑢𝐹(𝑒)
𝐿 (𝑥), 𝑢𝐹(𝑒)

𝑈 (𝑥)], [𝑤𝐹(𝑒)
𝐿 (𝑥),𝑤𝐹(𝑒)

𝑈 (𝑥)], [𝑣𝐹(𝑒)
𝐿 (𝑥), 𝑣𝐹(𝑒)

𝑈 (𝑥)]〉: 𝑥 ∈ 𝑈}

for all 𝑒 ∈ 𝐸 . Then, for𝑒𝑚 ∈ 𝐸 and 𝑥𝑛 ∈  𝑈;

(1) 𝐹⋆  =  [F𝐿
⋆, F𝑈

⋆ ]is said to be interval truth membership part of 𝐹𝜇
where𝐹⋆  = {(F⋆𝑚𝑛 (𝑒𝑚) , 𝜇 (𝑒𝑚))} and 𝐹⋆𝑚𝑛(𝑒𝑚) = {〈𝑥𝑛, [𝑢𝐹(𝑒𝑚)

𝐿 (𝑥𝑛), 𝑢𝐹(𝑒𝑚)
𝑈 (𝑥𝑛)]〉},

(2) F≀  =  [F𝐿
≀ , F𝑈

≀ ]is said to be interval indeterminacy membership part of 𝐹𝜇
where𝐹≀  = {𝐹≀𝑚𝑛 (𝑒𝑚) , 𝜇 (𝑒𝑚)} and𝐹≀𝑚𝑛(𝑒𝑚) = {〈𝑥𝑛, [𝑤𝐹(𝑒𝑚)

𝐿 (𝑥𝑛),𝑤𝐹(𝑒𝑚)
𝑈 (𝑥𝑛)]〉},

(3) F△  =  [F𝐿
△, F𝑈

△]is said to be interval falsity membership part of 𝐹𝜇
whereF△ ={F△𝑚𝑛 (𝑒𝑚) , 𝜇 (𝑒𝑚)} and F△𝑚𝑛(𝑒𝑚) = {〈𝑥𝑛, [𝑣𝐹(𝑒𝑚)

𝐿 (𝑥𝑛), 𝑣𝐹(𝑒𝑚)
𝑈 (𝑥𝑛)]〉}.

We say that every part of 𝐹𝜇 is a component of itself and is denote by 𝐹𝜇  = (F⋆, F≀, F△). Then matrix
forms of components of 𝐹𝜇in example 3.2 can be expressed as follows:

Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

103



F⋆= (
([0.2, 0.3], [0.3, 0.6], [0.4, 0.5]) (0.1)

([0.2, 0.5], [0.3, 0.5], [0.4, 0.7]) (0.4)

([0.3, 0.4], [0.1, 0.3], [0.1, 0.4]) (0.6)

) 

F≀= (
([0.2, 0.3], [0.3, 0.5], [0.2, 0.5]) (0.1)

([0.2, 0.5], [0.4, 0.8], [0.3, 0.8]) (0.4)

([0.3, 0.4], [0.2, 0.5], [0.2, 0.3]) (0.6)

) 

F△= (
([0.2, 0.3], [0.2, 0.4], [0.2, 0.6]) (0.1)

([0.2, 0.5], [0.8, 0.9], [0.3, 0.4]) (0.4)

([0.7, 0.9], [0.3, 0.7], [0.5, 0.7]) (0.6)

) 

where 

𝐹⋆𝑚𝑛(𝑒𝑚) = {〈𝑥𝑛, [𝑢𝐹(𝑒𝑚)
𝐿 (𝑥𝑛), 𝑢𝐹(𝑒𝑚)

𝑈 (𝑥𝑛)]〉} 

F≀𝑚𝑛(𝑒𝑚) = {〈𝑥𝑛, [𝑤𝐹(𝑒𝑚)
𝐿 (𝑥𝑛), 𝑤𝐹(𝑒𝑚)

𝑈 (𝑥𝑛)]〉} 

F△𝑚𝑛(𝑒𝑚) = {〈𝑥𝑛, [𝑣𝐹(𝑒𝑚)
𝐿 (𝑥𝑛), 𝑣𝐹(𝑒𝑚)

𝑈 (𝑥𝑛)]〉}

are defined as the interval truth, interval indeterminacy and interval falsity values of 𝑛 −th element the 
according to 𝑚−th parameter, respectively. 

Remark 3.6. Suppose that 𝐹𝜇 is a generalizedinterval neutrosophic soft set over U.Then we say that
each components of𝐹𝜇can be seen as the generalizedinterval valued vague soft set [15]. Also if it is
taken 𝜇 (𝑒)  = 1 for all 𝑒 ∈ E,the our generalized interval neutrosophic soft set concides with the 
interval neutrosophic soft set [12]. 

Definition 3.7. Let 𝑈  be an universe and 𝐸  be a of parameters, 𝐹𝜇  and 𝐺𝜃  be two generalized
interval neutrosophic soft sets, we say that 𝐹𝜇 is a generalized interval neutrosophic soft subset 𝐺𝜃 if

(1) 𝜇 is a fuzzy subset of 𝜃, 
(2) For 𝑒 ∈ 𝐸, 𝐹(𝑒) is an interval neutrosophic subset of𝐺(𝑒), i.e, for all 𝑒𝑚 ∈ 𝐸 and 𝑚, 𝑛 ∈ ∧,

𝐹⋆𝑚𝑛(𝑒𝑚) ≤ 𝐺
⋆
𝑚𝑛(𝑒𝑚), 𝐹≀𝑚𝑛(𝑒𝑚) ≥ 𝐺≀𝑚𝑛(𝑒𝑚) and 𝐹△𝑚𝑛(𝑒𝑚) ≥ 𝐺△𝑚𝑛(𝑒𝑚) where,

𝑢𝐹(𝑒𝑚)
𝐿 (𝑥𝑛) ≤  𝑢𝐺(𝑒𝑚)

𝐿 (𝑥𝑛), 𝑢𝐹(𝑒𝑚)
𝑈 (𝑥𝑛) ≤  𝑢𝐺(𝑒𝑚)

𝑈 (𝑥𝑛) 

𝑤𝐹(𝑒𝑚)
𝐿 (𝑥𝑛) ≥ 𝑤𝐺(𝑒𝑚)

𝐿 (𝑥𝑛),𝑤𝐹(𝑒𝑚)
𝑈 (𝑥𝑛) ≥ 𝑤𝐺(𝑒𝑚)

𝑈 (𝑥𝑛) 

𝑣𝐹(𝑒𝑚)
𝐿 (𝑥𝑛) ≥  𝑣𝐺(𝑒𝑚)

𝐿 (𝑥𝑛), 𝑣𝐹(𝑒𝑚)
𝑈 (𝑥𝑛) ≥  𝑣𝐺(𝑒𝑚)

𝑈 (𝑥𝑛)

For 𝑥𝑛 ∈ 𝑈.

We denote this relationship by𝐹𝜇 ⊑ 𝐺𝜃 . Moreover if𝐺𝜃  is generalized interval neutrosophic soft
subset of 𝐹𝜇, then𝐹𝜇 is called a generalized interval neutrosophic soft superset of 𝐺𝜃 this relation is
denoted by 𝐹𝜇 ⊒ 𝐺𝜃.

Example 3.8. Consider two generalized interval neutrosophic soft set 𝐹𝜇 and 𝐺𝜃.suppose that U=
{ ℎ1 , ℎ2 , ℎ3 ] is the set of houses and E = {𝑒1, 𝑒2, 𝑒3} is the set of parameters where
𝑒1=cheap,𝑒2 =moderate,𝑒3 =comfortable. Suppose that 𝐹𝜇 and 𝐺𝜃are given as follows respectively:
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{

𝐹𝜇(𝑒1) = (
ℎ1

([0.1, 0.2], [0.3, 0.5], [0.2, 0.3])
,

ℎ2
([0.3, 0.4], [0.3, 0.4], [0.5, 0.6])

 ,
ℎ3

([0.5, 0.6], [0.2, 0.4], [0.5, 0.7])
) , (0.2)

𝐹𝜇(𝑒2) = (
ℎ1

([0.1, 0.4], [0.5, 0.6], [0.3, 0.4])
,

ℎ2
([0.6, 0.7], [0.4, 0.5], [0.5, 0.8])

 ,
ℎ3

([0.2, 0.4], [0.3, 0.6], [0.6, 0.9])
) , (0.5)

𝐹𝜇(𝑒3) = (
ℎ1

([0.2, 0.6], [0.2, 0.5], [0.1, 0.5])
,

ℎ2
([0.3, 0.5], [0.3, 0.6], [0.4, 0.5])

 ,
ℎ3

([0.6, 0.8], [0.3, 0.4], [0.2, 0.3])
) , (0.6)

}

and 

{

𝐺𝜃(𝑒1) = (
ℎ1

([0.2, 0.3], [0.1, 0.2], [0.1, 0.2])
,

ℎ2
([0.4, 0.5], [0.2, 0.3], [0.3, 0.5])

 ,
ℎ3

([0.6, 0.7], [0.1, 0.3], [0.2, 0.3])
) , (0.4)

𝐺𝜃(𝑒2) = (
ℎ1

([0.2, 0.5], [0.3, 0.4], [0.2, 0.3])
,

ℎ2
([0.7, 0.8], [0.3, 0.4], [0.4, 0.6])

 ,
ℎ3

([0.3, 0.6], [0.2, 0.5], [0.4, 0.6])
) , (0.7)

𝐺𝜃(𝑒3) = (
ℎ1

([0.3, 0.7], [0.1, 0.3], [0.1, 0.3])
,

ℎ2
([0.4, 0.5], [0.1, 0.5], [0.2, 0.3])

 ,
ℎ3

([0.7, 0.9], [0.2, 0.3], [0.1, 0.2])
) , (0.8)

}

Then 𝐹𝜇is a generalized interval neutrosophic soft subset of𝐺𝜃, that is𝐹𝜇 ⊑ 𝐺𝜃.

Definition3.9. The union of two generalized interval neutrosophic soft sets𝐹𝜇and𝐺𝜃over 𝑈, denoted
by H𝜆  =  𝐹𝜇 ⊔ 𝐺𝜃 is a generalized interval neutrosophic soft setH𝜆defined by

H𝜆 = ([ H𝐿
⋆, H𝑈

⋆ ], [ H𝐿
≀ , H𝑈

≀ ], [ H𝐿
△, H𝑈

△])

where𝜆 (𝑒𝑚) =  𝜇 (𝑒𝑚)⨁𝜃 (𝑒𝑚),

H𝐿𝑚𝑛
⋆ = F𝐿𝑚𝑛

⋆ (𝑒𝑚)⨁G𝐿𝑚𝑛
⋆ (𝑒𝑚)

H𝐿𝑚𝑛
≀ = F𝐿𝑚𝑛

≀ (𝑒𝑚)⨂G𝐿𝑚𝑛
≀ (𝑒𝑚)

H𝐿𝑚𝑛
△ = F𝐿𝑚𝑛

△  (𝑒𝑚)⨂G𝐿𝑚𝑛
△ (𝑒𝑚)

and 

H𝑈𝑚𝑛
⋆ = F𝑈𝑚𝑛

⋆ (𝑒𝑚)⨁G𝑈𝑚𝑛
⋆ (𝑒𝑚)

H𝑈𝑚𝑛
≀ = F𝑈𝑚𝑛

≀ (𝑒𝑚)⨂G𝑈𝑚𝑛
≀ (𝑒𝑚)

H𝑈𝑚𝑛
△ = F𝑈𝑚𝑛

△  (𝑒𝑚)⨂G𝑈𝑚𝑛
△ (𝑒𝑚)

for all 𝑒𝑚 ∈ E and 𝑚, 𝑛 ∈ ∧ .

Definition 3.10. The intersection of two generalized interval neutrosophic soft sets𝐹𝜇𝑎𝑛𝑑 𝐺𝜃over 𝑈,
denoted by K𝜀 = 𝐹𝜇 ⊓ 𝐺𝜃isa generalized interval neutrosophic soft setK𝜀defined by

K𝜀  =  ([ K𝐿
⋆ , K𝑈

⋆ ], [ K𝐿
≀ , K𝑈

≀ ], [ K𝐿
△, K𝑈

△])

where𝜀 (𝑒𝑚) = 𝜇 (𝑒𝑚)⨂ 𝜃 (𝑒𝑚),

K𝐿𝑚𝑛
⋆ = F𝐿𝑚𝑛

⋆ (𝑒𝑚)⨂G𝐿𝑚𝑛
⋆ (𝑒𝑚)

K𝐿𝑚𝑛
≀ = F𝐿𝑚𝑛

≀ (𝑒𝑚)⨁G𝐿𝑚𝑛
≀ (𝑒𝑚)

K𝐿𝑚𝑛
△ = F𝐿𝑚𝑛

△  (𝑒𝑚)⨁G𝐿𝑚𝑛
△ (𝑒𝑚)

and 

K𝑈𝑚𝑛
⋆ = F𝑈𝑚𝑛

⋆ (𝑒𝑚)⨂G𝑈𝑚𝑛
⋆ (𝑒𝑚)

K𝑈𝑚𝑛
≀ = F𝑈𝑚𝑛

≀ (𝑒𝑚)⨁G𝑈𝑚𝑛
≀ (𝑒𝑚)

K𝑈𝑚𝑛
△ = F𝑈𝑚𝑛

△  (𝑒𝑚)⨁G𝑈𝑚𝑛
△ (𝑒𝑚)
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for all 𝑒𝑚 ∈ E and 𝑚, 𝑛 ∈ ∧ .

Example 3.11. Let us consider the generalized interval neutrosophic soft sets 𝐹𝜇𝑎𝑛𝑑 𝐺𝜃defined in
Example 3.2. Suppose that the t-conorm is defined by ⨁(𝑎, 𝑏) = max{𝑎, 𝑏}  and the 𝑡 − norm 
by⨂(𝑎, 𝑏)  = min{𝑎, 𝑏}for 𝑎, 𝑏 ∈  [ 0, 1].Then H𝜆 = 𝐹𝜇 ⊔ 𝐺𝜃is defined as follows:

{

𝐻(𝑒1) = (
ℎ1

([0.2, 0.3], [0.1, 0.2], [0.1, 0.2])
,

ℎ2
([0.4, 0.5], [0.2, 0.3], [0.3, 0.5])

 ,
ℎ3

([0.6, 0.7], [0.1, 0.3], [0.2, 0.3])
) , (0.4)

𝐻(𝑒2) = (
ℎ1

([0.2, 0.5], [0.3, 0.4], [0.2, 0.3])
,

ℎ2
([0.7, 0.8], [0.3, 0.4], [0.4, 0.6])

 ,
ℎ3

([0.3, 0.6], [0.2, 0.5], [0.4, 0.6])
) , (0.7)

𝐻(𝑒3) = (
ℎ1

([0.3, 0.6], [0.1, 0.3], [0.1, 0.3])
,

ℎ2
([0.4, 0.5], [0.1, 0.5], [0.2, 0.3])

 ,
ℎ3

([0.7, 0.9], [0.2, 0.3], [0.1, 0.2])
) , (0.8)

}

Example 3.12. Let us consider the generalized interval neutrosophic soft sets 𝐹𝜇𝑎𝑛𝑑 𝐺𝜃defined in
Example 3.2. Suppose that the 𝑡 −conorm is defined by⨁ (a, b)  = max{a, b}and the 𝑡 −norm by 
⨂(𝑎, 𝑏)  = min{a, b} for𝑎, 𝑏 ∈ [ 0, 1].ThenK𝜀 = 𝐹𝜇 ⊓ 𝐺𝜃is defined as follows:

{

𝐾(𝑒1) = (
ℎ1

([0.1, 0.2], [0.3, 0.5], [0.2, 0.3])
,

ℎ2
([0.3, 0.4], [0.3, 0.4], [0.5, 0.6])

 ,
ℎ3

([0.5, 0.6], [0.2, 0.4], [0.5, 0.7])
) , (0.2)

𝐾(𝑒2) = (
ℎ1

([0.1, 0.4], [0.5, 0.6], [0.3, 0.4])
,

ℎ2
([0.6, 0.7], [0.4, 0.5], [0.5, 0.8])

 ,
ℎ3

([0.2, 0.4], [0.3, 0.6], [0.6, 0.9])
) , (0.5)

𝐾(𝑒3) = (
ℎ1

([0.2, 0.5], [0.2, 0.5], [0.1, 0.5])
,

ℎ2
([0.3, 0.5], [0.3, 0.6], [0.4, 0.5])

 ,
ℎ3

([0.6, 0.8], [0.3, 0.4], [0.2, 0.3])
) , (0.6)

}

Proposition 3.13. Let 𝐹𝜇 , 𝐺𝜃and H𝜆  be three generalized interval neutrosophic soft sets over U.
Then 

(1) 𝐹𝜇 ⊔ 𝐺𝜃= 𝐺𝜃 ⊔ 𝐹𝜇,
(2) 𝐹𝜇 ⊓ 𝐺𝜃= 𝐺𝜃 ⊓ 𝐹𝜇,
(3) (𝐹𝜇 ⊔ 𝐺𝜃 ) ⊔ 𝐻𝜆=𝐹𝜇 ⊔ (𝐺𝜃 ⊔ 𝐻𝜆),
(4) (𝐹𝜇 ⊓ 𝐺𝜃 ) ⊓ 𝐻𝜆=𝐹𝜇 ⊓ (𝐺𝜃 ⊓ 𝐻𝜆).

Proof. The proofs are trivial.

Proposition 3.14. Let 𝐹𝜇 , 𝐺𝜃and H𝜆 be three generalized interval neutrosophic soft sets over 𝑈. If
we consider the 𝑡 −conorm defined by ⨁(𝑎, 𝑏) = 𝑚𝑎𝑥{𝑎, 𝑏} and the 𝑡 −norm defined by⨂(𝑎, 𝑏)  =
𝑚𝑖𝑛{𝑎, 𝑏}for 𝑎, 𝑏 ∈ [ 0, 1], then the following relations holds: 

(1) 𝐻𝜆 ⊓ (𝐹𝜇 ⊔ 𝐺𝜃 ) = (𝐻𝜆 ⊓ 𝐹𝜇) ⊔ ( 𝐻𝜆 ⊓ 𝐺𝜃),
(2) 𝐻𝜆 ⊔ (𝐹𝜇 ⊓ 𝐺𝜃 ) = (𝐻𝜆 ⊔ 𝐹𝜇) ⊓ ( 𝐻𝜆 ⊔ 𝐺𝜃).

Remark 3.15. The relations in above proposition does not hold in general.

Definition 3.16. The complement of a generalized interval neutrosophic soft sets 𝐹𝜇 over U, denoted
by 𝐹𝜇(𝑐)is defined by𝐹𝜇(𝑐)  = ([ F𝐿

⋆(𝑐)
, F𝑈
⋆(𝑐)

], [ F𝐿
≀(𝑐)
, F𝑈
≀(𝑐)
], [ F𝐿

△(𝑐)
, F𝑈
△(𝑐)

]) where

𝜇(𝑐)(𝑒𝑚) =  1 −  𝜇(𝑒𝑚)

and 

F𝐿𝑚𝑛
⋆(𝑐) = F𝐿𝑚𝑛

△ ;  F𝐿𝑚𝑛
≀(𝑐) =  1 − F𝑈𝑚𝑛

≀ ;  F𝐿𝑚𝑛
△(𝑐) = F𝐿𝑚𝑛

⋆
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F𝑈𝑚𝑛
⋆(𝑐)

= F𝑈𝑚𝑛
△  ;  F𝑈𝑚𝑛

≀(𝑐)
=  1 − F𝐿𝑚𝑛

≀ ;  F𝑈𝑚𝑛
△(𝑐)

= F𝑈𝑚𝑛
⋆

Example 3.17. Consider Example 3.2. Complement of the generalized interval neutrosophic soft set 
𝐹𝜇 denoted by 𝐹𝜇(𝑐) is given as follows:

{

𝐹𝜇(𝑐)(𝑒1) = (
ℎ1

([0.2, 0.3], [0.5, 0.7], [0.2, 0.3])
,

ℎ2
([0.5, 0.6], [0.6, 0.7], [0.3, 0.4])

 ,
ℎ3

([0.5, 0.7], [0.6, 0.8], [0.5, 0.6])
) , (0.8)

𝐹𝜇(𝑐)(𝑒2) = (
ℎ1

([0.3, 0.4], [0.4, 0.5], [0.1, 0.4])
,

ℎ2
([0.5, 0.8], [0.5, 0.6], [0.6, 0.7])

 ,
ℎ3

([0.6, 0.9], [0.4, 0.7], [0.2, 0.4])
) , (0.5)

𝐹𝜇(𝑐)(𝑒3) = (
ℎ1

([0.1, 0.5], [80.5, 0.5], [0.2, 0.6])
,

ℎ2
([0.4, 0.5], [0.4, 0.7], [0.3, 0.5])

 ,
ℎ3

([0.2, 0.3], [0.6, 0.7], [0.6, 0.8])
) , (0.4)

}

Proposition 3.18. Let𝐹𝜇 𝑎𝑛𝑑 𝐺𝜃 be two generalized interval neutrosophic soft sets over U. Then,

(1) 𝐹𝜇 is a generalized interval neutrosophic soft subset of𝐹𝜇 ⊔ 𝐹𝜇(𝑐)
(2) 𝐹𝜇 ⊓ 𝐹𝜇(𝑐)is a generalized interval neutrosophic soft subset of𝐹𝜇.

Proof: It is clear. 

Definition 3.19. ”And” operation on two generalized interval neutrosophic soft sets 𝐹𝜇and𝐺𝜃 over
U,denoted byH𝜆  = 𝐹𝜇 ∧ 𝐺𝜃 is the mappingH𝜆: 𝐶 → IN(U) ×  I defined by

H𝜆  = ([ H𝐿
⋆, H𝑈

⋆ ], [ H𝐿
≀ , H𝑈

≀ ], [ H𝐿
△, H𝑈

△])

where𝜆 (𝑒𝑚) =  min( 𝜇 (𝑒𝑘), 𝜃 (𝑒ℎ) and

H𝐿
⋆(𝑒𝑚) = min{F𝐿

⋆(𝑒𝑘𝑛), G𝐿
⋆(𝑒ℎ𝑛)}

H𝐿
≀ (𝑒𝑚) = max {F𝐿

≀ (𝑒𝑘𝑛), G𝐿
≀ (𝑒ℎ𝑛) 

H𝐿
△(𝑒𝑚) = max {F𝐿

△(𝑒𝑘𝑛), G𝐿
△(𝑒ℎ𝑛)}

and 
HU
⋆ (em) = min{FU

⋆ (ekn), GU
⋆ (ehn)} 

H𝑈
≀ (𝑒𝑚) = max {F𝑈

≀ (𝑒𝑘𝑛), G𝑈
≀ (𝑒ℎ𝑛)} 

H𝑈
△(𝑒𝑚) = max {F𝑈

△(𝑒𝑘𝑛), G𝑈
△(𝑒ℎ𝑛)}

for all𝑒𝑚 = (𝑒𝑘 , 𝑒ℎ) ∈ 𝐶 ⊆ 𝐸 × 𝐸 and 𝑚, 𝑛, 𝑘, ℎ ∈  𝛬.

Definition 3.20. ”OR” operation on two generalized interval neutrosophic soft sets 𝐹𝜇and𝐺𝜃 over
U,denoted byK𝜆 = 𝐹𝜇 ∨ 𝐺𝜃 is the mappingK𝜀: 𝐶 → IN(U) ×  Idefined by

K𝜀 = ([K𝐿
⋆ , K𝑈

⋆ ], [k𝐿
≀ , K𝑈

≀ ], [ K𝐿
△, K𝑈

△])

where 𝜀 (𝑒𝑚)= max( 𝜇 (𝑒𝑘), 𝜃 (𝑒ℎ) and

K𝐿
⋆(𝑒𝑚) = max{F𝐿

⋆(𝑒𝑘𝑛), G𝐿
⋆(𝑒ℎ𝑛)}

K𝐿
≀ (𝑒𝑚) = min{𝐹𝐿

≀(𝑒𝑘𝑛), 𝐺𝐿
≀(𝑒ℎ𝑛)}

K𝐿
△(𝑒𝑚) = min{𝐹𝐿

△(𝑒𝑘𝑛), 𝐺𝐿
△(𝑒ℎ𝑛)}

and 

KU
⋆ (em) = max{𝐹𝑈

⋆(𝑒𝑘𝑛), 𝐺𝑈
⋆(𝑒ℎ𝑛)}

K𝑈
≀ (𝑒𝑚) = min{F𝑈

≀ (𝑒𝑘𝑛), G𝑈
≀ (𝑒ℎ𝑛)} 

K𝑈
△(𝑒𝑚) = min{F𝑈

△(𝑒𝑘𝑛), G𝑈
△(𝑒ℎ𝑛)}
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for all 𝑒𝑚 = (𝑒𝑘 , 𝑒ℎ) ∈ 𝐶 ⊆ 𝐸 × 𝐸 and 𝑚, 𝑛, 𝑘, ℎ ∈ 𝛬.

Definition 3.21. Let𝐹𝜇and𝐺𝜃 be two generalizedinterval neutrosophic soft sets over UandC ⊆ E × E
, a function 𝑅: 𝐶 →IN(U) ×Idefined by R= 𝐹𝜇 ∧ 𝐺𝜃and 𝑅(𝑒𝑚, 𝑒ℎ) = 𝐹𝜇(𝑒𝑚) ∧ 𝐺𝜃(𝑒ℎ )is said to be a
interval neutrosophic relation from 𝐹𝜇 to 𝐺𝜃for all (𝑒𝑚, 𝑒ℎ) ∈ 𝐶.

4. Application of Generalized Interval Neutrosophic Soft Set

Now, we illustrate an application of generalized interval neutrosophic soft set in decision making 
problem. 

Example 4.1. Supposethat the universe consists of three machines, that is𝑈 ={𝑥1 ,𝑥2 ,𝑥3} and
consider the set of parameters 𝐸 = {𝑒1,𝑒2,𝑒3} which describe their performances according to certain
specific task. Assumethat a firm wants to buy one such machine depending on any two of the 
parameters only. Let there be two observations 𝐹𝜇  and 𝐺𝜃by two experts A and B respectively,
defined as follows: 

{

𝐹𝜇(𝑒1) = (
ℎ1

([0.2, 0.3], [0.2, 0.3], [0.2, 0.3])
,

ℎ2
([0.3, 0.6], [0.3, 0.5], [0.2, 0.4])

 ,
ℎ3

([0.4, 0.5], [0.2, 0.5], [0.2, 0.6])
) , (0.2)

𝐹𝜇(𝑒2) = (
ℎ1

([0.2, 0.5], [0.2, 0.5], [0.2, 0.5])
,

ℎ2
([0.3, 0.5], [0.4, 0.8], [0.8, 0.9])

 ,
ℎ3

([0.4, 0.7], [0.3, 0.8], [0.3, 0.4])
) , (0.5)

𝐹𝜇(𝑒3) = (
ℎ1

([0.3, 0.4], [0.3, 0.4], [0.7, 0.9])
,

ℎ2
([0.1, 0.3], [0.2, 0.5], [0.3, 0.7])

 ,
ℎ3

([0.1, 0.4], [0.2, 0.3], [0.5, 0.7])
) , (0.6)

}

{

𝐺𝜃(𝑒1) = (
ℎ1

([0.2, 0.3], [0.3, 0.5], [0.2, 0.3])
,

ℎ2
([0.3, 0.4], [0.3, 0.4], [0.5, 0.6])

 ,
ℎ3

([0.5, 0.6], [0.2, 0.4], [0.5, 0.7])
) , (0.3)

𝐺𝜃(𝑒2) = (
ℎ1

([0.1, 0.4], [0.5, 0.6], [0.3, 0.4])
,

ℎ2
([0.6, 0.7], [0.4, 0.5], [0.5, 0.8])

 ,
ℎ3

([0.2, 0.4], [0.3, 0.6], [0.6, 0.9])
) , (0.6)

𝐺𝜃(𝑒3) = (
ℎ1

([0.2, 0.6], [0.2, 0.5], [0.1, 0.5])
,

ℎ2
([0.3, 0.5], [0.3, 0.6], [0.4, 0.5])

 ,
ℎ3

([0.6, 0.8], [0.3, 0.4], [0.2, 0.3])
) , (0.4)

}

To find the “AND” between the two GINSSs, we have 𝐹𝜇and 𝐺𝜃,𝑅 = 𝐹𝜇 ∧ 𝐺𝜃 where

(𝐹𝜇)⋆= (
𝑒1 ([0.2, 0.3], [0.3, 0.6], [0.4, 0.5]) (0.2)

𝑒2 ([0.2, 0.5], [0.3, 0.5], [0.4, 0.7]) (0.5)

𝑒3 ([0.3, 0.4], [0.1, 0.3], [0.1, 0.4]) (0.6)

) 

(𝐹𝜇)≀= (
𝑒1 ([0.2, 0.3], [0.3, 0.5], [0.2, 0.5]) (0.2)

𝑒2 ([0.2, 0.5], [0.4, 0.8], [0.3, 0.8]) (0.5)

𝑒3 ([0.3, 0.4], [0.2, 0.5], [0.2, 0.3]) (0.6)

) 

(𝐹𝜇)△= (
𝑒1 ([0.2, 0.3], [0.2, 0.4], [0.2, 0.6]) (0.2)

𝑒2 ([0.2, 0.5], [0.8, 0.9], [0.3, 0.4]) (0.5)

𝑒3 ([0.7, 0.9], [0.3, 0.7], [0.5, 0.7]) (0.6)

) 

(𝐺𝜃)⋆= (
𝑒1 ([0.2, 0.3], [0.3, 0.4], [0.5, 0.6]) (0.3)

𝑒2 ([0.1, 0.4], [0.6, 0.7], [0.2, 0.4]) (0.6)

𝑒3 ([0.2, 0.6], [0.3, 0.5], [0.6, 0.8]) (0.4)

) 

(𝐺𝜃)≀= (
𝑒1 ([0.3, 0.5], [0.3, 0.4], [0.2, 0.4]) (0.3)

𝑒2 ([0.5, 0.6], [0.4, 0.5], [0.3, 0.6]) (0.6)

𝑒2 ([0.2, 0.5], [0.3, 0.6], [0.3, 0.4]) (0.4)

) 
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(𝐺𝜃)△= (
𝑒1 ([0.2, 0.3], [0.5, 0.6], [0.5, 0.7]) (0.3)

𝑒2 ([0.3, 0.4], [0.5, 0.8], [0.6, 0.9]) (0.6)

𝑒3 ([0.1, 0.5], [0.4, 0.5], [0.2, 0.3]) (0.4)
) 

We present the table of three basic component of 𝑅, which are interval truth –membership, Interval 
indeterminacy membership and interval falsity-membership part.To choose the best candidate, we 
firstly propose the induced interval neutrosophic membership functions by taking the arithmetic 
average of the end point of the range, and mark the highest numerical grade (underline) in each row of 
each table. But here, since the last column is the grade of such belongingness of a candidate for each 
pair of parameters, its not taken into account while making. Then we calculate the score of each 
component of 𝑅 by taking the sum of products of these numerical grades with the corresponding 
values of μ. Next, we calculate the final score by subtracting the score of falsity-membership part of 𝑅 
from the sum of scores of truth-membership part and of indeterminacy membership part of 𝑅.The 
machine with the highestscore is the desired machine by company. 

For the interval truth membership function components we have: 

(𝐹𝜇)⋆= (
𝑒1 ([0.2, 0.3], [0.3, 0.6], [0.4, 0.5]) (0.2)

𝑒2 ([0.2, 0.5], [0.3, 0.5], [0.4, 0.7]) (0.5)

𝑒3 ([0.3, 0.4], [0.1, 0.3], [0.1, 0.4]) (0.6)

) 

(𝐺𝜃)⋆= (
𝑒1 ([0.2, 0.3], [0.3, 0.4], [0.5, 0.6]) (0.3)

𝑒2 ([0.1, 0.4], [0.6, 0.7], [0.2, 0.4]) (0.6)

𝑒3 ([0.2, 0.6], [0.3, 0.5], [0.6, 0.8]) (0.4)

) 

(𝑅)⋆ = 

(𝑅)⋆(𝑒1 , 𝑒1) = {(
𝑥1

[0.2, 0.3]
,

𝑥2
[0.3, 0.4]

 ,
𝑥3

[0.4, 0.5]
) , 0.2} 

(𝑅)⋆(𝑒1 , 𝑒2) = {(
𝑥1

[0.1, 0.3]
,

𝑥2
[0.3, 0.6]

 ,
𝑥3

[0.2, 0.5]
) , 0.2} 

(𝑅)⋆(𝑒1 , 𝑒3) = {(
𝑥1

[0.2, 0.3]
,

𝑥2
[0.3, 0.5]

 ,
𝑥3

[0.2, 0.4]
) , 0.2} 

(𝑅)⋆(𝑒2 , 𝑒1) = {(
𝑥1

[0.2, 0.3]
,

𝑥2
[0.3, 0.4]

 ,
𝑥3

[0.4, 0.6]
) , 0.3} 

(𝑅)⋆(𝑒2 , 𝑒2) = {(
𝑥1

[0.1, 0.4]
,

𝑥2
[0.3, 0.5]

 ,
𝑥3

[0.2, 0.4]
) , 0.5} 

(𝑅)⋆(𝑒2 , 𝑒3) = {(
𝑥1

[0.2, 0.5]
,

𝑥2
[0.3, 0.5]

 ,
𝑥3

[0.4, 0.7]
) , 0.4} 

(𝑅)⋆(𝑒3 , 𝑒1) = {(
𝑥1

[0.2, 0.3]
,

𝑥2
[0.1, 0.3]

 ,
𝑥3

[0.1, 0.4]
) , 0.3} 

(𝑅)⋆(𝑒3 , 𝑒2) = {(
𝑥1

[0.1, 0.4]
,

𝑥2
[0.1, 0.3]

 ,
𝑥3

[0.1, 0.4]
) , 0.6} 

(𝑅)⋆(𝑒3 , 𝑒3 ) = {(
𝑥1

[0.2, 0.4]
,

𝑥2
[0.1, 0.3]

 ,
𝑥3

[0.1, 0.4]
) , 0.4} 
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𝑥1 𝑥2 𝑥3 𝜇 
(𝑒1 , 𝑒1 ) [0.2, 0.3] [0.3, 0.4] [0.4, 0.5] 0.2 
(𝑒1 , 𝑒2 ) [0.1, 0.3] [0.3, 0.6] [0.2, 0.5] 0.2 
(𝑒1 , 𝑒3 ) [0.2, 0.3] [0.3, 0.5] [0.2, 0.4] 0.2 
(𝑒2 , 𝑒1 ) [0.2, 0.3] [0.3, 0.4] [0.4, 0.6] 0.3 
(𝑒2 , 𝑒2 ) [0.1, 0.4] [0.3, 0.5] [0.2, 0.4] 0.5 
(𝑒2 , 𝑒3 ) [0.2, 0.5] [0.3, 0.5] [0.4, 0.7] 0.4 
(𝑒3 , 𝑒1 ) [0.2, 0.3] [0.1, 0.3] [0.1, 0.4] 0.3 
(𝑒3 , 𝑒1 ) [0.1, 0.4] [0.1, 0.3] [0.1, 0.4] 0.6 
(𝑒3 , 𝑒2 ) [0.2, 0.4] [0.1, 0.3] [0.1, 0.4] 0.4 

Table 1: Interval truth membership function.

𝑥1 𝑥2 𝑥3 𝜇 
(𝑒1 , 𝑒1 ) 0.25 0.35 0.45 0.2 
(𝑒1 , 𝑒2 ) 0.2 0.45 0.35 0.2 
(𝑒1 , 𝑒3 ) 0.25 0.4 0.3 0.2 
(𝑒2 , 𝑒1 ) 0.25 0.35 0.5 0.3 
(𝑒2 , 𝑒2 ) 0.25 0.4 0.3 0.5 
(𝑒2 , 𝑒3 ) 0.35 0.4 0.55 0.4 
(𝑒3 , 𝑒1 ) 0.25 0.2 0.25 0.3 
(𝑒3 , 𝑒1 ) 0.25 0.2 0.25 0.6 
(𝑒3 , 𝑒2 ) 0.3 0.2 0.25 0.4 

Table 2: Induced interval truth membership function.

The value of representation interval truth membership function [𝑎, 𝑏]  are obtained using mean 
value.Then, the scores of interval truth membership function of 𝑥1,𝑥2 and𝑥3are:

𝑆(𝑅)⋆(𝑥1) = (0.25 × 0.3) + ( 0.25 × 0.6) + ( 0.3 × 0.4) = 𝟎. 𝟑𝟐𝟓 

𝑆(𝑅)⋆(𝑥2)  = ( 0.45 × 0.2) + (0.4 × 0.2) + (0.4 × 0.5)) =  𝟎. 𝟑𝟕 

𝑆(𝑅)⋆(𝑥3)  = (0.45 × 0.2) + ( 0.5 × 0.3) + ( 0.55 × 0.4) ) + ( 0.25 × 0.3) + ( 0.25 × 0.6)

=  𝟎. 𝟔𝟖𝟓. 

For the interval indeterminacy membership function components we have: 

(𝐹𝜇)≀= (
([0.2, 0.3], [0.3, 0.5], [0.2, 0.5]) (0.2)

([0.2, 0.5], [0.4, 0.8], [0.3, 0.8]) (0.5)

([0.3, 0.4], [0.2, 0.5], [0.2, 0.3]) (0.6)

) 

(𝐺𝜃)≀= (
([0.3, 0.5], [0.3, 0.4], [0.2, 0.4]) (0.3)

([0.5, 0.6], [0.4, 0.5], [0.3, 0.6]) (0.6)

([0.2, 0.5], [0.3, 0.6], [0.3, 0.4]) (0.4)

) 

(𝑅)≀ = 

(𝑅)≀(𝑒1 , 𝑒1) = {(
𝑥1

[0.3, 0.5]
,

𝑥2
[0.3, 0.5]

 ,
𝑥3

[0.2, 0.5]
) , 0.3} 
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(𝑅)≀(𝑒1 , 𝑒2) = {(
𝑥1

[0.5, 0.6]
,

𝑥2
[0.4, 0.5]

 ,
𝑥3

[0.3, 0.6]
) , 0.6} 

(𝑅)≀(𝑒1 , 𝑒3) = {(
𝑥1

[0.2, 0.5]
,

𝑥2
[0.3, 0.6]

 ,
𝑥3

[0.3, 0.5]
) , 0.4} 

(𝑅)≀(𝑒2 , 𝑒1) = {(
𝑥1

[0.3, 0.5]
,

𝑥2
[0.4, 0.8]

 ,
𝑥3

[0.3, 0.8]
) , 0.5} 

(𝑅)≀(𝑒2 , 𝑒2) = {(
𝑥1

[0.5, 0.6]
,

𝑥2
[0.4, 0.8]

 ,
𝑥3

[0.3, 0.8]
) , 0.6} 

(𝑅)≀(𝑒2 , 𝑒3) = {(
𝑥1

[0.2, 0.5]
,

𝑥2
[0.4, 0.8]

 ,
𝑥3

[0.3, 0.8]
) , 0.5} 

(𝑅)≀(𝑒3 , 𝑒1) = {(
𝑥1

[0.3, 05]
,

𝑥2
[0.3, 0.5]

 ,
𝑥3

[0.2, 0.4]
) , 0.6} 

(𝑅)≀(𝑒3 , 𝑒2) = {(
𝑥1

[0.5, 0.6]
,

𝑥2
[0.4, 0.5]

 ,
𝑥3

[0.3, 0.6]
) , 0.6} 

(𝑅)≀(𝑒3 , 𝑒3) = {(
𝑥1

[03, 0.5]
,

𝑥2
[0.3, 0.6]

 ,
𝑥3

[0.3, 0.4]
) , 0.6} 

𝑥1 𝑥2 𝑥3 𝜇 
(𝑒1 , 𝑒1 ) [0.3, 0.5] [0.3, 0.5] [0.2, 0.5] 0.3 
(𝑒1 , 𝑒2 ) [0.5, 0.6] [0.4, 0.5] [0.3, 0.6] 0.6 
(𝑒1 , 𝑒3 ) [0.2, 0.5] [0.3, 0.6] [0.3, 0.5] 0.4 
(𝑒2 , 𝑒1 ) [0.3, 0.5] [0.4, 0.8] [0.3, 0.8] 0.5 
(𝑒2 , 𝑒2 ) [0.5, 0.6] [0.4, 0.8] [0.3, 0.8] 0.6 
(𝑒2 , 𝑒3 ) [0.2, 0.5] [0.4, 0.8] [0.3, 0.8] 0.5 
(𝑒3 , 𝑒1 ) [0.3, 05] [0.3, 0.5] [0.2, 0.4] 0.6 
(𝑒3 , 𝑒1 ) [0.5, 0.6] [0.4, 0.5] [0.3, 0.6] 0.6 
(𝑒3 , 𝑒2 ) [0.3, 0.5] [0.3, 0.6] [0.3, 0.4] 0.6 

Table 3: Interval indeterminacy membership function

𝑥1 𝑥2 𝑥3 𝜇 
(𝑒1 , 𝑒1 ) 0.4 0.4 0.35 0.3 
(𝑒1 , 𝑒2 ) 0.55 0.45 0.45 0.6 
(𝑒1 , 𝑒3 ) 0.35 0.45 0.4 0.4 
(𝑒2 , 𝑒1 ) 0.4 0.6 0.55 0.5 
(𝑒2 , 𝑒2 ) 0.55 0.6 0.55 0.6 
(𝑒2 , 𝑒3 ) 0.35 0.6 0.55 0.5 
(𝑒3 , 𝑒1 ) 0.4 0.4 0.3 0.6 
(𝑒3 , 𝑒1 ) 0.55 0.45 0.45 0.6 
(𝑒3 , 𝑒2 ) 0.4 0.45 0.35 0.6 

Table 4: Induced interval indeterminacy membership function
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The value of representation interval indeterminacy membership function[𝑎, 𝑏] are obtained using mean 
value. Then, the scores of interval indeterminacy membership function of 𝑥1, 𝑥2 and𝑥3are:

𝑆(𝑅)≀(𝑥1) = (0.4 × 0.3) + (0.55 × 0.6) + (0.4 × 0.6) + (0.55 × 0.6) = 𝟏. 𝟎𝟐

𝑆(𝑅)≀(𝑥2) = (0.4 × 0.3) + (0.45 × 0.4) + (0.6 × 0.5) + (0.6 × 0.6) + (0.6 × 0.5) + (0.4 × 0.60)

+ (0.45 × 0.6)+  =  𝟏. 𝟕𝟕 

𝑆𝐼(𝑅)≀(𝑥2) = 𝟎.

For the interval indeterminacy membership function components we have: 

(𝐹𝜇)△= (
([0.2, 0.3], [0.2, 0.4], [0.2, 0.6]) (0.2)

([0.2, 0.5], [0.8, 0.9], [0.3, 0.4]) (0.5)

([0.7, 0.9], [0.3, 0.7], [0.5, 0.7]) (0.6)

) 

(𝐺𝜃)△= (
([0.2, 0.3], [0.5, 0.6], [0.5, 0.7]) (0.3)

([0.3, 0.4], [0.5, 0.8], [0.6, 0.9]) (0.6)

([0.1, 0.5], [0.4, 0.5], [0.2, 0.3]) (0.4)

) 

(𝑅)△ = 

(𝑅)△ (𝑒1 , 𝑒1) = {(
𝑥1

[0.2, 0.3]
,

𝑥2
[0.5, 0.6]

 ,
𝑥3

[0.5, 0.7]
) , 0.3} 

(𝑅)△ (𝑒1 , 𝑒2) = {(
𝑥1

[0.3, 0.4]
,

𝑥2
[0.5, 0.8]

 ,
𝑥3

[0.6, 0.9]
) , 0.6} 

(𝑅)△ (𝑒1 , 𝑒3) = {(
𝑥1

[0.2, 0.5]
,

𝑥2
[0.4, 0.5]

 ,
𝑥3

[0.2, 0.6]
) , 0.4} 

(𝑅)△ (𝑒2 , 𝑒1) = {(
𝑥1

[0.2, 0.5]
,

𝑥2
[0.8, 0.9]

 ,
𝑥3

[0.5, 0.7]
) , 0.5} 

(𝑅)△ (𝑒2 , 𝑒2) = {(
𝑥1

[0.3, 0.5]
,

𝑥2
[0.8, 0.9]

 ,
𝑥3

[0.6, 0.9]
) , 0.6} 

(𝑅)△ (𝑒2 , 𝑒3) = {(
𝑥1

[0.2, 0.5]
,

𝑥2
[0.8, 0.9]

 ,
𝑥3

[0.3, 0.4]
) , 0.5} 

(𝑅)△ (𝑒3 , 𝑒1) = {(
𝑥1

[0.7, 0.9]
,

𝑥2
[0.5, 0.7]

 ,
𝑥3

[0.5, 0.7]
) , 0.6} 

(𝑅)△ (𝑒3 , 𝑒2) = {(
𝑥1

[0.7, 0.9]
,

𝑥2
[0.5, 0.8]

 ,
𝑥3

[0.6, 0.9]
) , 0.6} 

(𝑅)△ (𝑒3 , 𝑒3 ) = {(
𝑥1

[0.7, 0.9]
,

𝑥2
[0.4, 0.7]

 ,
𝑥3

[0.5, 0.7]
) , 0.6} 
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𝑥1 𝑥2 𝑥3 𝜇 
(𝑒1 , 𝑒1 ) [0.2, 0.3] [0.5, 0.6] [0.5, 0.7] 0.3 
(𝑒1 , 𝑒2 ) [0.3, 0.4] [0.5, 0.8] [0.6, 0.9] 0.6 
(𝑒1 , 𝑒3 ) [0.2, 0.5] [0.4, 0.5] [0.2, 0.6] 0.4 
(𝑒2 , 𝑒1 ) [0.2, 0.5] [0.8, 0.9] [0.5, 0.7] 0.5 
(𝑒2 , 𝑒2 ) [0.3, 0.5] [0.8, 0.9] [0.6, 0.9] 0.6 
(𝑒2 , 𝑒3 ) [0.2, 0.5] [0.8, 0.9] [0.3, 0.4] 0.5 
(𝑒3 , 𝑒1 ) [0.7, 0.9] [0.5, 0.7] [0.5, 0.7] 0.6 
(𝑒3 , 𝑒1 ) [0.7, 0.9] [0.5, 0.8] [0.6, 0.9] 0.6 
(𝑒3 , 𝑒2 ) [0.7, 0.9] [0.4, 0.7] [0.5, 0.7] 0.6 

Table 5: Interval falsity membership function.

𝑥1 𝑥2 𝑥3 𝜇 
(𝑒1 , 𝑒1 ) 0.25 0.55 0.6 0.3 
(𝑒1 , 𝑒2 ) 0.35 0.43 0.75 0.6 
(𝑒1 , 𝑒3 ) 0.35 0.45 0.4 0.4 
(𝑒2 , 𝑒1 ) 0.35 0.85 0.6 0.5 
(𝑒2 , 𝑒2 ) 0.4 0.85 0.75 0.6 
(𝑒2 , 𝑒3 ) 0.35 0.85 0.35 0.5 
(𝑒3 , 𝑒1 ) 0.8 0.6 0.6 0.6 
(𝑒3 , 𝑒1 ) 0.8 0.43 0.75 0.6 
(𝑒3 , 𝑒2 ) 0.8 0.55 0.6 0.6 

Table 6: Induced interval falsity membership function.

The value of representation interval falsity membership function [𝑎, 𝑏] are obtained using mean value. 
Then, the scores of interval falsity membership function of 𝑥1, 𝑥2 and 𝑥3are:

𝑆(𝑅)△ (𝑥1) = (0.8 × 0.6) + (0.8 × 0.6) + (0.8 × 0.6) =  𝟏. 𝟒𝟒 

𝑆(𝑅)△ (𝑥2) = (0.45 × 0.4) + (0.85 × 0.5) + (0.85 × 0.6) + (0.85 × 0.5) = 𝟏. 𝟓𝟒 

𝑆(𝑅)△ (𝑥3) = (0.6 × 0.3) + (0.75 × 0.6) = 𝟎. 𝟔𝟑.

Thus, we conclude the problem by calculating final score, using the following formula: 

 S(𝑥i)  =  S(R)⋆( 𝑥i)  + S(R)≀( 𝑥i)  − S(R)△ ( 𝑥i)

so, 

S(𝑥1) = 0.325 + 1.02 − 1.44 =  −0.095

S(𝑥2) = 0.37 + 1.77 − 1.54 =  0.6

S(𝑥3)  = 0.685 + 0 − 0.63 =  0.055.

Then the optimal selection for Mr.X is the 𝑥2.

Table 1, Table 3 and Table 5 present the truth–membership function, indeterminacy-membership 
function and falsity-membership function in generalized interval neutrosophic soft set respectively. 
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5. Conclusions

This paper can be viewed as a continuation of the study of Sahin and Küçük [23]. We extended the 
generalized neutrosophic soft set to the case of interval valued neutrosophic soft set and also gave the 
application of GINSS in dealing with some decision making problems. In future work, will study 
another type of generalized interval neutrosophic soft set where the degree of possibility are interval. 
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G-Neutrosophic Space

Mumtaz Ali, Florentin Smarandache, Munazza Naz, Muhammad Shabir

In this article we give an extension of group action theory to neutrosophic theory and 
develop G-neutrosophic spaces by certain valuable techniques. Every G-neutrosophic space 
always contains a G-space. A G-neutrosophic space has neutrosophic orbits as well as strong 
neutrosophic orbits. Then we give an important theorem for orbits which tells us that how many 
orbits of a G-neutrosophic space. We also introduce new notions called pseudo neutrosophic 
space and ideal space and then give the important result that the transitive property implies to 
ideal property 

. 
Keywords: Group action, G-space, orbit, stabilizer, G-neutrosophic space,
neutrosophic orbit, neutrosophic stabilizer. 

1. Introduction

    The Concept of a G-space came into being as a consequence of Group 
action on an ordinary set. Over the history of Mathematics and Algebra, theory of 
group action has emerged and proven to be an applicable and effective framework 
for the study of different kinds of structures to make connection among them. The 
applications of group action in different areas of science such as physics, 
chemistry, biology, computer science, game theory, cryptography etc has been 
worked out very well. The abstraction provided by group actions is a powerful 
one, because it allows geometrical ideas to be applied to more abstract objects. 
Many objects in Mathematics have natural group actions defined on them. In 
particular, groups can act on other groups, or even on themselves. Despite this 
generality, the theory of group actions contains wide-reaching theorems, such as 
the orbit stabilizer theorem, which can be used to prove deep results in several 
fields. Neutrosophy is a branch of neutrosophic philosophy which handles the 
origin and stages of neutralities. Neutrosophic science is a newly emerging 
science which has been firstly introduced by Florentin Smarandache in 1995. This 
is quite a general phenomenon which can be found almost everywhere in the 
nature. Neutrosophic approach provides a generosity to absorbing almost all the 
corresponding algebraic structures open heartedly. This tradition is also 
maintained in our work here. The combination of neutrosophy and group action 
gives some extra ordinary excitement while forming this new structure called G-
neutrosophic space. This is a generalization of all the work of the past and some 
new notions are also raised due to this approach. Some new types of spaces and 
their core properties have been discovered here for the first time. Examples and 
counter examples have been illustrated wherever required. In this paper we have 
also coined a new term called pseudo neutrosophic spaces and a new property 
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called ideal property. The link of transitivity with ideal property and the 
corresponding results are established. 

2. Basic Concepts

Group Action 

Definition 1:  Let  be a non empty set and G be a group. Let : G  be 
a mapping. Then   is called an action of G on  such that for all  and  

,g h G .
1) , , ,g h gh

2) ,1 , where 1 is the identity element in G .

Usually we write g  instead of  , g . Therefore 1  and 2  becomes as

1)
h ghg . For all and ,g h G .

2) 1  . 

Definition 2:  Let  be a G -space. Let 1   be a subset of . Then 1 is 
called G -subspace of  if 1

g  for all 1 and  g G .

Definition 3:  We say that is transitive G -space if for any , G , there exist
g G   such that g .

Definition 4:  Let , then G or G  is called G -orbit and is defined as
:G g g G .

A transitive G -subspace is also called an orbit.

Remark 1:  A transitive G  space has only one orbit.

Definition 5:  Let G be a group acting on   and if   , we denote stabilizer 
of  by G   and is define as : g

GG stab g G . 
Lemma 1:  Let  be a G -space and . Then 
1) G G  and
2) There is one-one correspondence between the right cosets of G  and the G -

orbit G in G .
Corollary 1:  If G is finite, then . GG G
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Definition 6:  Let  be a G -space and g G . Then
: gfix g . 

Theorem 1:  Let  and G be finite. Then
1

g G
Orb G fix g

G
, 

where Orb G is the number of orbits of G  in .

3. Neutrosophic Spaces

Definition 10:  Let  be a G -space. Then N is called G -neutrosophic
space if  N I  which is generated by  and I. 

Example 1:  Let  2 2, , , , ,e x x y xy x y =S3 and  ,G e y .  Let

: G  be an action of G   on  defined by , g g ,  for all 
and  g G .  Then be a G -space under this action. Let N  be the 

corresponding G -neutrosophic space, where
2 2 2 2, , , , , , , , , , ,N I e x x y xy x y I Ix Ix Iy Ixy Ix y

 Theorem 3:  N  always contains . 

Definition 11:  Let N  be a neutrosophic space and  1N be a subset of 
N .  Then 1N is called neutrosophic subspace of  N if 1

gx N

for all 1x N and  g G  .

Example 2:  In the above example 1 . Let 1 ,N x xy  and
2 2

2 ,N Ix Ix y  are subsets of  N . Then clearly 1N  and 2N

are neutrosophic subspaces of N . 

Theorem 4:  Let N be aG -neutrosophic space and  be a G -space. Then
is always a neutrosophic subspace of N . 
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Proof:  The proof is straightforward. 

Definition 12:  A neutrosophic subspace 1N  is called strong neutrosophic 
subspace or pure neutrosophic subspace if all the elements of 1N  are
neutrosophic elements. 

Example 3:  In example 1  , the neutrosophic subspace  2 2
2 ,N Ix Ix y  is

a strong neutrosophic subspace or pure neutrosophic subspace of N . 

Remark 2:  Every strong neutrosophic subspace or pure neutrosophic subspace is
trivially neutrosophic subspace. 

The converse of the above remark is not true. 

Example 4:  In previous example 1 ,N x xy  is a neutrosophic subspace but
it is not strong neutrosophic subspace or pure neutrosophic subspace of  N . 

Definition 13:  Let N be a  G -neutrosophic  space. Then N  is said to 
be transitive G -neutrosophic space if for any ,x y N , there exists  g G
such that  gx y .

Example 5:  Let 4 ,G Z , where 4Z  is a group under addition modulo
4 . Let : G   be an action of  G  on itself defined by , g g ,
for all  and  g G . Then   is a G -space and N  be the 
corresponding G -neutrosophic space , where

0,1,2,3, ,2 ,3 ,4 ,1 ,2 ,3 ,1 2 ,2 2 ,2 3 ,3 2 ,3 3N I I I I I I I I I I I I

Then N is not transitive neutrosophic space. 

Theorem 5:  All the G -neutrosophic spaces are intransitive G -neutrosophic
spaces. 
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Definition 14:  Let  n N , the neutrosophic orbit of n  is denoted by nNO

and is defined as  :g
nNO n g G .

 Equivalently neutrosophic orbit is a transitive neutrosophic subspace. 

Example 6:  In example 1 , the neutrosophic space  N  has 6  neutrosophic 
orbits which are given below 

2

2

2 2

2 2

, , , ,

, , , ,

, , , .

e x

Ix

Ix Ix

NO e y NO x xy

NO x x y NO I Iy

NO Ix Ixy NO Ix Ix y

Definition 15:  A neutrosophic orbit nNO  is called strong neutrosophic orbit or
pure neutrosophic orbit if it has only neutrosophic elements. 

Example 7:  In example 1 ,

2
2 2

, ,

, ,

, .

I

Ix

Ix

NO I Iy

NO Ix Ixy

NO Ix Ix y
are strong neutrosophic orbits or pure neutrosophic orbits of  N . 

Theorem 7: All strong neutrosophic orbits or pure neutrosophic orbits are
neutrosophic orbits. 

Proof: Straightforward 

 To show that the converse is not true, let us check the following example. 

Example 8:  In example 1

2
2 2

, ,

, ,

, .

e

x

x

NO e y

NO x xy

NO x x y
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are neutrosophic orbits of N  but they are not strong or pure neutrosophic 
orbits. 

Definition 16:  Let G  be a group acting on  and  x N . The neutrosophic 

stabilizer of x  is defined as : g
x GG stab x g G x x .

Example 9:  Let  2 2, , , , ,e x x y xy x y  and 2, ,G e x x .  Let

: G  be an action of  G  on  defined by , g g , for all  
and g G .  Then is a  G -space under this action.  Now N  be the  

G -neutrosophic space, where
2 2 2 2, , , , , , , , , , ,N e x x y xy x y I Ix Ix Iy Ixy Ix y

Let  x N , then the neutrosophic stabilizer of x  is xG e  and also let
I N , so the neutrosophic stabilizer of I is IG e .

Lemma 2:  Let N be a neutrosophic space and  x N , then 
1) xG G .
2) There is also one-one correspondence between the right cosets of xG  and the

neutrosophic orbit xNO .

Corollary 2:  Let G is finite and x N , then  .x xG G NO  .

Definition 17:  Let x N , then the neutrosophic stabilize of x  is called
strong neutrosophic stabilizer or pure neutrosophic stabilizer if and only if x  is a
neutrosophic element of  N .

Example 10: In above example (9), IG e   is a strong neutrosophic or pure
neutrosophic stabilizer of neutrosophic element I , where  I N . 

 Remark 3:  Every strong neutrosophic stabilizer or pure neutrosophic stabilizer
is always a neutrosophic stabilizer  

but the converse is not true. 
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Example 11:  Let  x N ,  where 
2 2 2 2, , , , , , , , , , ,N e x x y xy x y I Ix Ix Iy Ixy Ix y

Then xG e  is the neutrosophic stabilize of x  but it is not strong neutrosophic
stabilizer or pure neutrosophic stabilizer as x  is not a neutrosophic element of
N .

Definition 18:  Le  N be a neutrosophic space and  G  be a finite group

acting on .  For  g G , : g
Nfix g x N x x

Example 12:  In example 11,
2 2 2 2, , , , , , , , , , ,Nfix e e x x y xy x y I Ix Ix Iy Ixy Ix y

Nfix g , where g e .

 Theorem 8:  Let N  be a finite neutrosophic space, then 
1

N N
g G

NO G fix g
G

. 

 Proof:  The proof is same as in group action. 

Example 13:  Consider example 1 , only identity element of  G  fixes all the

elements of N .  Hence  2 2 2 2, , , , , , , , , , ,Nfix e e x x y xy x y I Ix Ix Iy Ixy Ix y

and hence 12Nfix e . 

The number of neutrosophic orbits of N  are given by above theorem 
1 12 6
2NNO G  

Hence N  has 6  neutrosophic orbits. 

4. Pseudo Neutrosophic Space

Definition 19:   A neutrosophic space N  is called pseudo neutrosophic space 
which does not contain a proper set which is a G -space.

Example 14:  Let 2G Z  where 2Z  is a group under addition modulo 2 .
Let : G be an action of G  on  defined by , g g , for all
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and  g G .  Then  be a G -space under this action and N  be the 
G -neutrosophic space, where 0,1, ,1N I I .
Then clearly N  is a pseudo neutrosophic space.

Theorem 9:  Every pseudo neutrosophic space is a neutrosophic space but the
converse is not true in general. 

Example 15:  In example 1 , N  is a neutrosophic space but it is not pseudo 

neutrosophic space because  , , ,e y x xy  and 2 2,x x y  are  proper subsets
which are G -spaces.

Definition 20:  Let N  be a neutrosophic space and  1N  be a 
neutrosophic subspace of N . Then  1N  is called pseudo neutrosophic 
subspace of  N   if 1N  does not contain a proper subset of   which is a 
G -subspace of  .

Example 16:  In example 1 , , , ,e y Ix Ixy  etc are pseudo neutrosophic
subspaces of N but  , , ,e y Ix Ixy  is not pseudo neutrosophic subspace of
N as ,e y  is a proper G -subspace of .

Theorem 10:  All pseudo neutrosophic subspaces are neutrosophic subspaces but
the converse is not true in general. 

Example 17:  In example 1 , , , ,e y Ix Ixy  is a neutrosophic subspace of
N but it is not pseudo neutrosophic subspace of N .

Theorem 11:  A neutrosophic space N has neutrosophic subspaces as well as 
pseudo neutrosophic subspaces. 

Proof : The proof is obvious. 

Theorem 12:  A transitive neutrosophic subspace is always a pseudo
neutrosophic subspace but the converse is not true in general. 
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Proof:  A transitive neutrosophic subspace is a neutrosophic orbit and hence 
neutrosophic orbit does not contain any other subspace and so pseudo 
neutrosophic subspace. 

The converse of the above theorem does not holds in general. For instance let see 
the following example. 

Example 18:  In example 1 ,  , , ,I Iy Ix Ixy  is a pseudo neutrosophic subspace
of  N  but it is not transitive.

Theorem 13:  All transitive pseudo neutrosophic subspaces are always
neutrosophic orbits. 

Proof:  The proof is followed from by definition. 

Definition 21: The pseudo property in a pseudo neutrosophic subspace is called
ideal property. 

Theorem 14: The transitive property implies ideal property but the converse is
not true. 

 Proof:  Let us suppose that 1N  be a transitive neutrosophic subspace of 
N . Then by following above theorem, 1N  is pseudo neutrosophic 
subspace of  N  and hence transitivity implies ideal property. 
The converse of the above theorem is not holds. 

Example 19:  In example 1 , , , ,I Iy Ix Ixy  is a pseudo neutrosophic subspace
of N  but it is not transitive.

Theorem 15: The ideal property and transitivity both implies to each other in
neutrosophic orbits. 

Proof:  The proof is straightforward. 

Definition 22:  A neutrosophic space N is called ideal space or simply  if all 
of its proper neutrosophic subspaces are pseudo neutrosophic subspaces. 
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Example 20:  In example 14 , the neutrosophic space N  is an ideal space
because 0,1 , ,1I I  are only proper neutrosophic subspaces which are pseudo
neutrosophic subspaces of N .

Theorem 16:  Every ideal space is trivially a neutrosophic space but the converse
is not true. 

For converse, we take the following example 

Example 21:  In example 1 , N  is a neutrosophic space but it is not an ideal 
space. 

Theorem 17:  A neutrosophic space N  is an ideal space If  is transitive 
G -space.

Theorem 18:  Let N be a neutrosophic space, then N  is pseudo 
neutrosophic space if and only if N  is an ideal space. 

Proof:  Suppose that N is a pseudo neutrosophic space and hence by
definition all proper neutrosophic subspaces are also pseudo neutrosophic 
subspaces. Thus N  is an ideal space. 
Conversely suppose that N  is an ideal space and so all the proper 
neutrosophic subspaces are pseudo neutrosophic subspaces and hence N

does not contain any proper set which is G -subspace and consequently N  is 
a pseudo neutrosophic space. 

Theorem 19:  If the neutrosophic orbits are only the neutrosophic proper
subspaces of N , then N  is an ideal space.

Proof:  The proof is obvious. 

Theorem 20:  A neutrosophic space N  is an  ideal space if  2NNO G  

 Theorem 21:  A neutrosophic space N  is  ideal space if all of its proper 
neutrosophic subspaces are neutrosophic orbits. 
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6. Conclusions

The main theme of this paper is the extension of neutrosophy to group action and 
G-spaces to form G-neutrosophic spaces. Our aim is to see the newly generated 
structures and finding their links to the old versions in a logical manner. 
Fortunately enough, we have found some new type of algebraic structures here, 
such as ideal space, Pseudo spaces. Pure parts of neutrosophy and their 
corresponding properties and theorems are discussed in detail with a sufficient 
supply of examples. 

[1 ] D. S. Dummit, Richard M. Foote, Abstract Algebra, 3rd Ed., John Viley & Sons Inc (2004). 

[2] Florentin Smarandache, A Unifying Field in Logics. Neutrosophy: Neutrosophic 
Probability, Set and Logic. Rehoboth: American Research Press, (1999). 

[3] W. B. Vasantha Kandasamy & Florentin Smarandache, Some Neutrosophic Algebraic 
Structures and Neutrosophic N-Algebraic Structures, 219 p., Hexis, 2006. 

[4] W. B. Vasantha Kandasamy & Florentin Smarandache, N-Algebraic Structures and S-N-
Algebraic Structures, 209 pp., Hexis, Phoenix, 2006. 

[5] W. B. Vasantha Kandasamy & Florentin Smarandache, Basic Neutrosophic Algebraic 
Structures and their Applications to Fuzzy and Neutrosophic Models, Hexis, 149 pp., 2004. 

Published in „U.P.B. Sci. Bull.”, 11 p., pages 116 - 126.

Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

126



Interval Neutrosophic Rough Set 

Said Broumi      
Florentin Smarandache

Abstract –This paper combines  interval-valued neutrosophic sets and
rough sets. It studies rougheness in    interval-valued neutrosophic sets and 
some of its properties. Finally we  propose a Hamming distance between 
lower an upper approximations of interval neutrosophic sets. 

Keywords - 

Interval Neutrosophic, Rough Set, Interval Neutrosophic Rough Set.  

1.Introduction

Neutrosophic set (NS for short), a part of neutrosophy introduced by Smarandache [1] as a new 
branch of philosophy, is a mathematical tool dealing with problems involving imprecise, 
indeterminacy and inconsistent knowledge. Contrary to fuzzy sets and  intuitionistic fuzzy sets, 
a neutrosophic set consists of three basic membership functions independently of each other, 
which are truth, indeterminacy and falsity. This theory has been well developed in both theories 
and applications. After the pioneering work  of  Smarandache,  In 2005, Wang [2] introduced 
the notion of  interval neutrosophic sets ( INS for short) which is another extension of 
neutrosophic sets. INS can be described by a membership interval, a non-membership interval 
and indeterminate interval, thus the interval neutrosophic  (INS) has the virtue of 
complementing NS, which is more flexible and practical than neutrosophic set, and Interval 
Neutrosophic Set (INS ) provides a more  reasonable mathematical framework to deal with 
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indeterminate and inconsistent information. The interval neutrosophic set generalize, the 
classical set ,fuzzy set [ 3] , the interval valued fuzzy set [4], intuitionistic fuzzy set [5 ] , interval 
valued intuitionstic fuzzy set [ 6] and so on. Many scholars have performed studies on 
neutrosophic sets , interval neutrosophic sets and their properties [7,8,9,10,11,12,13]. Interval 
neutrosophic sets  have also been widely applied to many fields [14,15,16,17,18,19]. 

The rough  set  theory  was introduced  by  Pawlak  [20]  in  1982, which  is  a  technique  for  
managing  the  uncertainty  and  imperfection,  can  analyze  incomplete  information  effectively. 
Therefore, many models have been built upon different aspect, i.e, univers, relations, object, 
operators by many scholars [21,22,23,24,25,26]such as rough fuzzy sets, fuzzy rough sets, 
generalized fuzzy rough, rough intuitionistic fuzzy set.  intuitionistic fuzzy rough sets[27].  It 
has been successfully applied in many fields such as attribute reduction [28,29,30,31], feature 
selection [32,33,34], rule extraction [35,36,37,38] and so on. The  rough sets theory 
approximates any subset of objects of the universe by two sets, called the lower and upper 
approximations. It focuses on the ambiguity caused by the limited discernibility of  objects in 
the universe of discourse. 
More recently, S.Broumi et al [39] combined neutrosophic sets with rough sets in a new hybrid 
mathematical structure called “rough neutrosophic sets” handling incomplete and indeterminate 
information . The concept of rough neutrosophic sets generalizes fuzzy rough sets and 
intuitionistic fuzzy rough sets. Based on the equivalence relation on the universe of discourse, 
A.Mukherjee et al [40]  introduced lower and upper approximation of interval valued 
intuitionistic fuzzy set in Pawlak’s approximation space . Motivated by this ,we extend the  
interval intuitionistic fuzzy  lower and upper approximations to the case of interval valued 
neutrosophic set. The concept of interval valued neutrosophic rough set is introduced by  
coupling both interval neutrosophic sets and rough sets. 

The organization of this paper is as follow : In section 2, we briefly present some basic 
definitions and preliminary results are given which will be used in the rest of the paper. In 
section 3 , basic concept of rough approximation of an interval valued neutrosophic sets and 
their properties are presented. In section 4, Hamming distance between lower approximation 
and upper approximation of interval neutrosophic set is introduced, Finally, we concludes the 
paper 

2.Preliminaries

Throughout this paper, We now recall some basic notions of neutrosophic set , interval 
neutrosophic set , rough set theory and intuitionistic fuzzy rough set. More can found in ref [1, 
2,20,27]. 
Definition 1 [1] 
Let U be an universe of discourse  then the neutrosophic set A is an object having the form A= 
{< x: 𝛍 A(x), 𝛎 A(x), 𝛚 A(x) >,x ∈ U}, where the functions 𝛍, 𝛎, 𝛚 : U→]−0,1+[  define respectively 
the degree of membership , the degree of indeterminacy, and the degree of non-membership of 
the element x ∈ X to the set A with the condition.  

−0 ≤μ A(x)+ ν A(x) + ω A(x) ≤ 3+.                           (1) 
From philosophical point of view, the neutrosophic set takes the value from real standard or 
non-standard subsets of ]−0,1+[.so instead of ]−0,1+[ we need to take the interval [0,1] for 
technical applications, because ]−0,1+[will be difficult to apply in the real applications  such as 

Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

128



in scientific and engineering problems. 
Definition 2 [2] 
Let X be a space of points (objects) with generic elements in X denoted by x. An interval 
valued neutrosophic set (for short IVNS) A in X is characterized by truth-membership 
function μ

A
(x) , indeteminacy-membership function νA(x)  and falsity-membership

function ωA(x). For each point x in X, we have that μ
A

(x), νA(x), ωA(x) ∈ [0 ,1].
For two IVNS, A= {<x , [μ

A
L (x), μ

A
U(x)] , [νA

L (x), νA
U(x)] , [ωA

L (x), ωA
U(x)]  > | x ∈ X }   (2) 

And B= {<x , [μ
B
L (x), μ

B
U(x)] , [νB

L (x), νB
U(x)] , [ωB

L (x), ωB
U(x)]> | x ∈ X } the two relations are

defined as follows: 

(1) A ⊆  B if and only if μ
A
L (x) ≤ μ

B
L (x) ,μ

A
U(x) ≤ μ

B
U(x) , νA

L (x) ≥ νB
L (x)  ,ωA

U(x) ≥ ωB
U(x)  ,

ωA
L (x) ≥ ωB

L (x) ,ωA
U(x) ≥ ωB

U(x)

(2)A =  B  if and only if , μ
A

(x) =μ
B

(x) ,νA(x) =νB(x) ,ωA(x) =ωB(x) for any x ∈ X

The complement of AIVNS is denoted by AIVNS
o  and is defined by 

Ao={ <x , [ωA
L (x), ωA

U(x)]>  ,  [1 − νA
U(x), 1 − νA

L (x)]  , [μ
A
L (x), μ

A
U(x)] | x ∈ X }

A∩B ={ <x , [min(μ
A
L (x),μ

B
L (x)), min(μ

A
U(x),μ

B
U(x))], [max(νA

L (x),νB
L (x)),

max(νA
U(x),νB

U(x)],  [max(ωA
L (x),ωB

L (x)), max(ωA
U(x),ωB

U(x))] >: x ∈ X }

A∪B ={ <x , [max(μ
A
L (x),μ

B
L (x)), max(μ

A
U(x),μ

B
U(x))], [min(νA

L (x),νB
L (x)),

min(νA
U(x),νB

U(x)], [min(ωA
L (x),ωB

L (x)), min(ωA
U(x),ωB

U(x))] >: x ∈ X }

 ON = {<x, [ 0, 0] ,[ 1 , 1], [1 ,1] >| x ∈ X}, denote the neutrosophic empty set ϕ 

1N = {<x, [ 0, 0] ,[ 0 , 0], [1 ,1] >| x ∈ X}, denote the neutrosophic universe set U 

As an illustration, let us consider the following example. 
Example 1.Assume that the universe of discourse U={x1, x2, x3}, where x1characterizes the 
capability, x2characterizes the trustworthiness and x3  indicates the prices of the objects. It 
may be further assumed that the values of x1, x2 and x3 are in [0, 1] and they are obtained 
from some questionnaires of some experts. The experts may impose their opinion in three 
components viz. the degree of goodness, the degree of indeterminacy and that of poorness to 
explain the characteristics of the objects. Suppose A is an interval neutrosophic set (INS) of 
U, such that, 
A = {< x1,[0.3 0.4],[0.5 0.6],[0.4 0.5] >,< x2, ,[0.1 0.2],[0.3 0.4],[0.6 0.7]>,< x3, [0.2 0.4],[0.4 
0.5],[0.4 0.6] >}, where the degree of goodness of capability is 0.3, degree of indeterminacy 
of capability is 0.5 and degree of falsity of capability is 0.4 etc. 

Definition 3 [20]  
Let R be an equivalence relation on the universal set U. Then the pair (U, R) is called a Pawlak 
approximation space. An equivalence class of R containing x will be denoted by [x]R. Now 
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for X ⊆ U, the lower and upper approximation of X with respect to (U, R) are denoted by 
respectively R ∗X and R∗ X and are defined by
R∗ X ={x∈U: [x]R ⊆ X}, 
R ∗X ={ x∈U: [x]R ∩ X ≠ ∅}.
Now if R ∗X = R∗ X, then X is called definable; otherwise X is called a rough set.
Definition 4 [27] 
Let U be a universe and X , a rough set in U. An IF rough set A in U is characterized  by a 
membership function  μA :U→ [0, 1] and  non-membership function  νA :U→ [ 0 , 1] such that 
  μA(R X) = 1 ,  νA(R X) = 0 
Or [ μA(x) ,  νA(x)] = [ 1, 0]      if  x ∈ (R X ) and  μA(U -R X) = 0 ,  νA(U -R X) = 1 

Or [ μA(x) ,  νA(x)] = [ 0, 1]      if   x ∈ U − R X , 
0 ≤  μA(R X − R X) + νA(R X − R X) ≤ 1 

Example 2: Example of IF Rough Sets 
Let U= {Child,  Pre-Teen,  Teen,  Youth,  Teenager, Young-Adult, Adult, Senior, Elderly} 
be a universe.  
Let the equivalence relation R be defined as follows: 
R*= {[Child,  Pre-Teen],  [Teen,  Youth,  Teenager], [Young-Adult, Adult],[Senior, Elderly]}. 
Let  X = {Child, Pre-Teen, Youth, Young-Adult} be a subset  of univers U. 
We  can  define X in  terms  of  its  lower  and  upper  approximations: 
R X = {Child, Pre-Teen}, and R X =  {Child,  Pre-Teen,  Teen,  Youth,  Teenager,  
Young-Adult, Adult}. 
The  membership  and  non-membership  functions  
 μA:U→] 1 , 0 [  and   νA∶ U→] 1 , 0 [  on a set  A are defined as  follows: 
 μAChild) = 1,   μA (Pre-Teen) = 1 and   μA (Child) = 0,  μA(Pre-Teen) = 0 
 μA (Young-Adult) = 0,   μA (Adult) = 0,  μA(Senior) = 0,  μA (Elderly) = 0 

3.Basic Concept of Rough Approximations of an Interval Valued
Neutrosophic Set and their Properties. 
In  this  section  we  define  the  notion  of interval valued neutrosophic rough sets (in brief  ivn- 
rough  set ) by combining both rough sets and interval neutrosophic sets. IVN- rough sets are 
the generalizations  of interval valued intuitionistic fuzzy rough sets, that  give  more 
information about uncertain or boundary region. 

Definition  5  : Let ( U,R) be a pawlak approximation space ,for an interval valued neutrosophic set

𝐴= {<x , [μA
L (x), μA

U(x)] , [νA
L (x), νA

U(x)] , [ωA
L (x), ωA

U(x)]  > | x ∈ U } neutrosophic set of.
The lower approximation 𝐴𝑅   and 𝐴𝑅 upper approximations   of  A in the pawlak 
approwimation space (U,R) are defined as: 

𝐴𝑅={<x, [⋀ {μA
L (y)}𝑦 ∈[x]𝑅

,  ⋀ {μA
U(y)}𝑦 ∈[x]𝑅

], [⋁ {νA
L (y)}𝑦 ∈[x]𝑅

, ⋁ {νA
U(y)}𝑦 ∈[x]𝑅

], 

[⋁ {ωA
L (y)}𝑦 ∈[x]𝑅

,  ⋁ {ωA
U(y)}𝑦 ∈[x]𝑅

]>:x ∈ U}. 
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𝐴𝑅={<x, [⋁ {μA
L (y)}𝑦 ∈[x]𝑅

,  ⋁ {μA
U(y)}𝑦 ∈[x]𝑅

], [⋀ {νA
L (y)}𝑦 ∈[x]𝑅

,  ⋀ {νA
U(y)𝑦 ∈[x]𝑅

], 

[⋀ {ωA
L (y)}𝑦 ∈[x]𝑅

,  ⋀ {ωA
U(y)}𝑦 ∈[x]𝑅

]:x ∈ U}. 

Where “ ⋀  “ means “ min” and “ ⋁ “ means “ max”, R denote an equivalence relation for 

interval valued neutrosophic set A. 

Here [x]𝑅  is the equivalence class of the element x. 

It is easy to see that 

[⋀ {μA
L (y)}𝑦 ∈[x]𝑅

,  ⋀ {μA
U(y)}𝑦 ∈[x]𝑅

] ⊂  [ 0 ,1] 

[⋁ {νA
L (y)}𝑦 ∈[x]𝑅

, ⋁ {νA
U(y)}𝑦 ∈[x]𝑅

] ⊂  [ 0 ,1] 

[⋁ {ωA
L (y)}𝑦 ∈[x]𝑅

,  ⋁ {ωA
U(y)}𝑦 ∈[x]𝑅

] ⊂  [ 0 ,1] 

And 

 0 ≤  ⋀ {μA
U(y)}𝑦 ∈[x]𝑅

 + ⋁ {νA
U(y)}𝑦 ∈[x]𝑅

 + ⋁ {ωA
U(y)}𝑦 ∈[x]𝑅

 ≤ 3 

Then,  𝐴𝑅 is an interval neutrosophic set 

Similarly , we have 

[⋁ {μA
L (y)}𝑦 ∈[x]𝑅

,  ⋁ {μA
U(y)}𝑦 ∈[x]𝑅

] ⊂  [ 0 ,1] 

[⋀ {νA
L (y)}𝑦 ∈[x]𝑅

, ⋀ {νA
U(y)}𝑦 ∈[x]𝑅

] ⊂  [ 0 ,1] 

[⋀ {ωA
L (y)}𝑦 ∈[x]𝑅

,  ⋀ {ωA
U(y)}𝑦 ∈[x]𝑅

] ⊂  [ 0 ,1] 

And 

 0 ≤  ⋁ {μA
U(y)}𝑦 ∈[x]𝑅

 + ⋀ {νA
U(y)}𝑦 ∈[x]𝑅

 + ⋀ {ωA
U(y)}𝑦 ∈[x]𝑅

 ≤ 3 

Then,  𝐴𝑅 is an interval neutrosophic set 

If 𝐴𝑅 = 𝐴𝑅 ,then A is a definable set, otherwise A is an interval valued neutrosophic rough set, 

𝐴𝑅 and 𝐴𝑅 are called the lower and upper approximations of interval valued neutrosophic set 

with respect to approximation space ( U, R), respectively. 𝐴𝑅 and 𝐴𝑅 are simply denoted by 𝐴 

and 𝐴. 

In the following , we employ an example to illustrate the above concepts 

Example: 

 Theorem 1.  Let A, B be interval neutrosophic sets and 𝐴  and 𝐴  the lower and upper 

approximation of interval –valued neutrosophic set A with respect to approximation space 
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(U,R) ,respectively.  𝐵  and 𝐵  the lower and upper approximation of interval –valued 

neutrosophic set B with respect to approximation space (U,R) ,respectively.Then we have 

i. 𝐴 ⊆ A ⊆  𝐴

ii. 𝐴 ∪ 𝐵 =𝐴 ∪ 𝐵 , 𝐴 ∩ 𝐵 =𝐴 ∩ 𝐵

iii. 𝐴 ∪ 𝐵 = 𝐴 ∪ 𝐵 , 𝐴 ∩ 𝐵 = 𝐴 ∩ 𝐵

iv. (𝐴) =(𝐴) =𝐴 , (𝐴)= (𝐴)=𝐴

v. 𝑈 =U ; 𝜙  = 𝜙

vi. If A ⊆ B ,then 𝐴 ⊆ 𝐵 and 𝐴 ⊆ 𝐵

vii. 𝐴𝑐 =(𝐴)𝑐  , 𝐴𝑐=(𝐴)𝑐

Proof:we prove only i,ii,iii, the others are trivial 

(i) 

Let  𝐴= {<x , [μA
L (x), μA

U(x)] , [νA
L (x), νA

U(x)] , [ωA
L (x), ωA

U(x)]  > | x ∈ X } be  interval
neutrosophic set 

From definition of  𝐴𝑅 and 𝐴𝑅, we have 

Which implies that  

μ𝐴
L (x) ≤ μA

L (x) ≤ μ
𝐴
L (x) ; μ𝐴

U(x) ≤ μA
U(x) ≤ μ

𝐴
U(x) for all x ∈ X

ν𝐴
L(x) ≥ νA

L (x) ≥ ν
𝐴
L (x) ; ν𝐴

U(x) ≥ νA
U(x) ≥ ν

𝐴
U(x) for all x ∈ X

ω𝐴
L(x) ≥ ωA

L (x) ≥ ω
𝐴
L (x) ; ω𝐴

U(x) ≥ ωA
U(x) ≥ ω

𝐴
U(x) for all x ∈ X

([μ𝐴
L  , μ𝐴

U], [ν𝐴
L , ν𝐴

U], [ω𝐴
L , ω𝐴

U]) ⊆ ([μ𝐴
L  , μ𝐴

U], [ν𝐴
L , ν𝐴

U], [ω𝐴
L , ω𝐴

U]) ⊆([μ
𝐴
L , μ

𝐴
U], [ν

𝐴
L , ν

𝐴
U], [ω

𝐴
L

, ω
𝐴
U]) .Hence  𝐴𝑅 ⊆A ⊆ 𝐴𝑅

(ii) Let  𝐴= {<x , [μA
L (x), μA

U(x)] , [νA
L (x), νA

U(x)] , [ωA
L (x), ωA

U(x)]  > | x ∈ X } and

B= {<x , [μB
L (x), μB

U(x)] , [νB
L (x), νB

U(x)] , [ωB
L (x), ωB

U(x)]  > | x ∈ X } are two interval
neutrosophic set and  

𝐴 ∪ 𝐵 ={<x , [μ
𝐴∪𝐵
L (x), μ

𝐴∪𝐵
U (x)] , [ν

𝐴∪𝐵
L (x), ν

𝐴∪𝐵
U (x)] , [ω

𝐴∪𝐵
L (x), ω

𝐴∪𝐵
U (x)]  > | x ∈ X }

𝐴 ∪ 𝐵= {x, [max(μ
𝐴
L (x) , μ

𝐵
L (x)) ,max(μ

𝐴
U(x) , μ

𝐵
U(x)) ],[ min(ν

𝐴
L (x) , ν

𝐵
L (x)) ,min(ν

𝐴
U(x) 

, ν
𝐵
U(x))],[ min(ω

𝐴
L (x) , ω

𝐵
L (x)) ,min(ω

𝐴
U(x) , ω

𝐵
U(x))] 

for all x ∈ X 

μ
𝐴∪𝐵
L (x) =⋁{ μ𝐴 ∪𝐵

L (y)| 𝑦 ∈ [x]𝑅}

= ⋁  {μA
L (y)  ∨  μB

L (y) | 𝑦 ∈ [x]𝑅}

= ( ∨  μA
L (y) | 𝑦 ∈ [x]𝑅) ⋁  (∨ μA

L (y) | 𝑦 ∈ [x]𝑅)
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=(μ
𝐴
L ⋁ μ

𝐵
L  )(x) 

μ
𝐴∪𝐵
U (x) =⋁{ μ𝐴 ∪𝐵

u (y)| 𝑦 ∈ [x]𝑅}

= ⋁  {μA
U(y)  ∨  μB

U(y) | 𝑦 ∈ [x]𝑅}

= ( ∨  μA
u (y) | 𝑦 ∈ [x]𝑅) ⋁  (∨ μA

U(y) | 𝑦 ∈ [x]𝑅)

=(μ
𝐴
U ⋁ μ

𝐵
U )(x)

ν
𝐴∪𝐵
L (x)=⋀{ ν𝐴 ∪𝐵

L (y)| 𝑦 ∈ [x]𝑅}

= ⋀  {νA
L (y)  ∧  νB

L (y) | 𝑦 ∈ [x]𝑅}

= ( ∧  νA
L (y) | 𝑦 ∈ [x]𝑅) ⋀  (∧  νB

L (y) | 𝑦 ∈ [x]𝑅)

=(ν
𝐴
L  ⋀ ν

𝐵
L  )(x)

ν
𝐴∪𝐵
U (x)=⋀{ ν𝐴 ∪𝐵

U (y)| 𝑦 ∈ [x]𝑅}

= ⋀  {νA
U(y)  ∧  νB

U(y) | 𝑦 ∈ [x]𝑅}

= ( ∧  νA
U(y) | 𝑦 ∈ [x]𝑅) ⋀  (∧  νB

U(y) | 𝑦 ∈ [x]𝑅)

=(ν
𝐴
U(y) ⋀ ν

𝐵
U(y) )(x)

ω
𝐴∪𝐵
L (x)=⋀{ ω𝐴 ∪𝐵

L (y)| 𝑦 ∈ [x]𝑅}

= ⋀  {ωA
L (y)  ∧  ωB

L (y) | 𝑦 ∈ [x]𝑅}

= ( ∧  ωA
L (y) | 𝑦 ∈ [x]𝑅) ⋀  (∧ ωB

L (y) | 𝑦 ∈ [x]𝑅)

=(ω
𝐴
L  ⋀ ω

𝐵
L  )(x)

ω
𝐴∪𝐵
U (x)=⋀{ ω𝐴 ∪𝐵

U (y)| 𝑦 ∈ [x]𝑅}

= ⋀  {ωA
U(y)  ∧  νB

U(y) | 𝑦 ∈ [x]𝑅}

= ( ∧  ωA
U(y) | 𝑦 ∈ [x]𝑅) ⋀  (∧  ωB

U(y) | 𝑦 ∈ [x]𝑅)

=(ω
𝐴
U ⋀ ω

𝐵
U )(x)

 Hence, 𝐴 ∪ 𝐵 =𝐴 ∪ 𝐵 

Also for 𝐴 ∩ 𝐵 =𝐴 ∩ 𝐵 for all x ∈ A 

μ𝐴∩𝐵 
L (x) =⋀{ μ𝐴 ∩𝐵

L (y)| 𝑦 ∈ [x]𝑅}

= ⋀  {μA
L (y)  ∧  μB

L (y) | 𝑦 ∈ [x]𝑅}
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= ⋀  (μA
L (y) | 𝑦 ∈ [x]𝑅) ⋀  ( ∨ μB

L (y) | 𝑦 ∈ [x]𝑅)

=μ𝐴
L(x) ∧ μ𝐵

L(x) 

=(μ𝐴
L ∧ μ𝐵

L)(x) 

Also 

μ𝐴∩𝐵 
U (x) =⋀{ μ𝐴 ∩𝐵

U (y)| 𝑦 ∈ [x]𝑅}

= ⋀  {μA
U(y)  ∧  μB

U(y) | 𝑦 ∈ [x]𝑅}

= ⋀  (μA
U(y) | 𝑦 ∈ [x]𝑅) ⋀  ( ∨ μB

U(y) | 𝑦 ∈ [x]𝑅)

=μ𝐴
U(x) ∧ μ𝐵

U(x)

=(μ𝐴
U ∧ μ𝐵

U)(x)

ν𝐴∩𝐵 
L (x) =⋁{ ν𝐴 ∩𝐵

L (y)| 𝑦 ∈ [x]𝑅}

= ⋁  {νA
L (y)  ∨  νB

L (y) | 𝑦 ∈ [x]𝑅}

= ⋁  (νA
L (y) | 𝑦 ∈ [x]𝑅) ⋁  ( ∨ νB

L (y) | 𝑦 ∈ [x]𝑅)

=ν𝐴
L(x) ∨ ν𝐵

L(x)

=(ν𝐴
L ∨ ν𝐵

L)(x) 

ν𝐴∩𝐵 
U (x) =⋁{ ν𝐴 ∩𝐵

U (y)| 𝑦 ∈ [x]𝑅}

= ⋁  {νA
U(y)  ∨  νB

U(y) | 𝑦 ∈ [x]𝑅}

= ⋁  (νA
U(y) | 𝑦 ∈ [x]𝑅) ⋁  ( ∨ νB

U(y) | 𝑦 ∈ [x]𝑅)

=ν𝐴
U(x) ∨ ν𝐵

U(x)

=(ν𝐴
U ∨ ν𝐵

U)(x)

ω𝐴∩𝐵 
L (x) =⋁{ ω𝐴 ∩𝐵

L (y)| 𝑦 ∈ [x]𝑅}

= ⋁  {ωA
L (y)  ∨  ωB

L (y) | 𝑦 ∈ [x]𝑅}

= ⋁  (ωA
L (y) | 𝑦 ∈ [x]𝑅) ⋁  ( ∨ ωB

L (y) | 𝑦 ∈ [x]𝑅)

=ω𝐴
L(x) ∨ νω𝐵

L(x) 

=(ω𝐴
L ∨ ω𝐵

L)(x) 

Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

134



ω𝐴∩𝐵 
U (x) =⋁{ ω𝐴 ∩𝐵

U (y)| 𝑦 ∈ [x]𝑅}

= ⋁  {ωA
U(y)  ∨  ωB

U(y) | 𝑦 ∈ [x]𝑅}

= ⋁  (ωA
U(y) | 𝑦 ∈ [x]𝑅) ⋁  ( ∨ ωB

U(y) | 𝑦 ∈ [x]𝑅)

=ω𝐴
U(x) ∨ ω𝐵

U(x)

=(ω𝐴
U ∨ ω𝐵

U)(x)

(iii) 

μ
𝐴∩𝐵
U (x) =⋁{ μ𝐴 ∩𝐵

U (y)| 𝑦 ∈ [x]𝑅}

= ⋁  {μA
U(y)  ∧  μB

U(y) | 𝑦 ∈ [x]𝑅}

=( ⋁  ( μA
U(y) | 𝑦 ∈ [x]𝑅)) ∧ (⋁  ( μA

U(y) | 𝑦 ∈ [x]𝑅))

= μ
𝐴
U(x) ∨ μ

𝐵
U(x)

=(μ
𝐴
U ⋁ μ

𝐵
U )(x) 

ν
𝐴∩𝐵
U (x) =⋀{ ν𝐴 ∩𝐵

U (y)| 𝑦 ∈ [x]𝑅}

= ⋀  {νA
U(y)  ∧  νB

U(y) | 𝑦 ∈ [x]𝑅}

=( ⋀  ( νA
U(y) | 𝑦 ∈ [x]𝑅)) ∨ (⋀  ( νA

U(y) | 𝑦 ∈ [x]𝑅))

= ν
𝐴
U(x) ∨ ν

𝐵
U(x) 

=(ν
𝐴
U ⋁ ν

𝐵
U )(x) 

ω
𝐴∩𝐵
U (x) =⋀{ ω𝐴 ∩𝐵

U (y)| 𝑦 ∈ [x]𝑅}

= ⋀  {ωA
U(y)  ∧  ωνB

U(y) | 𝑦 ∈ [x]𝑅}

=( ⋀  ( ωA
U(y) | 𝑦 ∈ [x]𝑅)) ∨ (⋀  ( ωA

U(y) | 𝑦 ∈ [x]𝑅))

= ω
𝐴
U(x) ∨ ω

𝐵
U(x)

=(ω
𝐴
U ⋁ ω

𝐵
U )(x) 

Hence follow that 𝐴 ∩ 𝐵 = 𝐴 ∩ 𝐵 .we get    𝐴 ∪ 𝐵 = 𝐴 ∪ 𝐵    by following the same procedure as 

above. 

Definition  6: 
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Let ( U,R) be a pawlak approximation space ,and A and B two interval valued neutrosophic 

sets over U. 

If  𝐴 =𝐵 ,then A and B are called interval valued neutrosophic lower rough equal. 

If 𝐴=𝐵 , then A and B are called interval valued neutrosophic upper rough equal. 

If 𝐴 =𝐵 , 𝐴=𝐵, then A and B are called interval valued neutrosophic rough equal. 

Theorem 2 . 

Let ( U,R) be a pawlak approximation space ,and A and B two interval valued neutrosophic sets over 

U. then 

1. 𝐴 =𝐵 ⇔ 𝐴 ∩ 𝐵 =𝐴 , 𝐴 ∩ 𝐵 =𝐵

2. 𝐴=𝐵 ⇔ 𝐴 ∪ 𝐵 =𝐴 , 𝐴 ∪ 𝐵 =𝐵

3. If 𝐴 = 𝐴′ and 𝐵 = 𝐵′ ,then 𝐴 ∪ 𝐵 =𝐴′ ∪ 𝐵′

4. If 𝐴 =𝐴′ and 𝐵 =𝐵′ ,Then

5. If  A ⊆ B and  𝐵 = 𝜙   ,then 𝐴 = 𝜙

6. If  A ⊆ B and  𝐵 = 𝑈  ,then 𝐴 = 𝑈
7. If  𝐴 = 𝜙   or  𝐵 = 𝜙    or  then 𝐴 ∩ 𝐵 =𝜙

8. If 𝐴 = 𝑈 or 𝐵 =𝑈,then 𝐴 ∪ 𝐵 =𝑈

9. 𝐴 = 𝑈 ⇔ A = U

10. 𝐴 = 𝜙  ⇔ A = 𝜙
Proof: the proof is trial 

4.Hamming distance between Lower Approximation and Upper Approximation 

of IVNS 

 In this section , we will compute the Hamming distance between lower and upper 

approximations of interval neutrosophic sets based on Hamming distance introduced by Ye 

[41 ] of interval neutrosophic sets. 

Based on Hamming distance between two interval neutrosophic set A and B as follow: 

d(A,B)=
1

6
∑ [|μA

L (xi) − μB
L (xi)| + |μA

U(xi) − μB
U(xi)| + |νA

L (xi) − νB
L (xi)| + |νA

U(xi) −𝑛
𝑖=1

νB
U(xi)| + |ωA

L (xi) − ωB
L (xi)| +   |ωA

L (xi) − vB
U(xi)|]

we can obtain the standard hamming distance of 𝐴 and 𝐴 from 

𝑑𝐻(𝐴 , 𝐴) = 
1

6
∑ [|μ𝐴

L (xj) − μ
𝐴
L (xj)| + |μ𝐴

U(xj) − μ
𝐴
U(xj)| + |ν𝐴

L(xj) − ν
𝐴
L (xj)| + |ν𝐴

U(xj) −𝑛
𝑖=1

ν
𝐴
U(xj)| + |ω𝐴

L(xj) − ω
𝐴
L (xj)| + |ω𝐴

U(xj) − ω
𝐴
U(xj)|] 

Where 
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𝐴𝑅={<x, [⋀ {μA
L (y)}𝑦 ∈[x]𝑅

,  ⋀ {μA
U(y)}𝑦 ∈[x]𝑅

], [⋁ {νA
L (y)}𝑦 ∈[x]𝑅

, ⋁ {νA
U(y)}𝑦 ∈[x]𝑅

], [⋁ {ωA
L (y)}𝑦 ∈[x]𝑅

,  

⋁ {ωA
U(y)}𝑦 ∈[x]𝑅

]>:x ∈ U}. 

𝐴𝑅={<x, [⋁ {μA
L (y)}𝑦 ∈[x]𝑅

,  ⋁ {μA
U(y)}𝑦 ∈[x]𝑅

], [⋀ {νA
L (y)}𝑦 ∈[x]𝑅

,  ⋀ {νA
U(y)𝑦 ∈[x]𝑅

], [⋀ {ωA
L (y)}𝑦 ∈[x]𝑅

,  

⋀ {ωA
U(y)}𝑦 ∈[x]𝑅

]:x ∈ U}. 

μ𝐴
L (xj) =   ⋀ {μA

L (y)}𝑦 ∈[x]𝑅
  ; μ𝐴

U(xj) =⋀ {μA
U(y)}𝑦 ∈[x]𝑅

ν𝐴
L(xj)=  ⋁ {νA

L (y)}𝑦 ∈[x]𝑅
  ; ν𝐴

U(xj) =  ⋁ {νA
U(y)}𝑦 ∈[x]𝑅

ω𝐴
L(xj)=  ⋁ {ωA

L (y)}𝑦 ∈[x]𝑅
  ; ω𝐴

U(xj) = ⋁ {ωA
U(y)}𝑦 ∈[x]𝑅

μ
𝐴
L (xj)=   ⋁ {μA

L (y)}𝑦 ∈[x]𝑅
  ; μ

𝐴
U(xj) =  ⋁ {μA

U(y)}𝑦 ∈[x]𝑅

μ
𝐴
L (xj)=  ⋀ {νA

L (y)}𝑦 ∈[x]𝑅
  ; μ

𝐴
U(xj) =  ⋀ {νA

U(y)𝑦 ∈[x]𝑅
}  

ω
𝐴
L (xj)= ⋀ {ωA

L (y)}𝑦 ∈[x]𝑅
,  ; ω

𝐴
U(xj) =   ⋀ {ωA

U(y)}𝑦 ∈[x]𝑅

Theorem 3. Let (U,  R) be approximation space, A be an interval valued neutrosophic set
over U . Then 

(1) If d (𝐴 , 𝐴) = 0, then A is a definable set. 

(2) If 0 < d(𝐴 , 𝐴) < 1, then A is an interval-valued neutrosophic rough set.     

Theorem 4. Let (U, R) be a Pawlak approximation space, and A and B two interval-valued
neutrosophic sets over U . Then 

1. d (𝐴 , 𝐴) ≥ d (𝐴 , 𝐴) and  d (𝐴 , 𝐴) ≥ d (𝐴 , 𝐴);
2. d (𝐴 ∪ 𝐵 , 𝐴 ∪ 𝐵) = 0, d (𝐴 ∩ 𝐵 , 𝐴 ∩ 𝐵 ) = 0.
3. d (𝐴 ∪ 𝐵 , A  ∪ B)  ≥ d(𝐴 ∪ 𝐵 , 𝐴 ∪ 𝐵)

and  d(𝐴 ∪ 𝐵 , A  ∪ B)  ≥ d(𝐴 ∪ 𝐵 , A  ∪  B) ;
and d( A ∩ B, 𝐴 ∩ 𝐵)  ≥ d(A ∩ B, 𝐴 ∩ 𝐵)
and d( A ∩ B, 𝐴 ∩ 𝐵)   ≥ 𝑑(𝐴 ∩ 𝐵, 𝐴 ∩ 𝐵)

4. d((𝐴), (𝐴)= 0 , d((𝐴), 𝐴) = 0 , d((𝐴) , 𝐴)= 0;
d((𝐴) , (𝐴)) = 0 , d((𝐴) , , 𝐴) = 0 , d((𝐴) , 𝐴) = 0,

5. d (𝑈, U) =0 , d(𝜙, 𝜙) = 0
6. if A  B   ,then d(𝐴 ,B) ≥ d(𝐴 , 𝐵) and d(𝐴 , 𝐵) ≥ d(𝐵 ,B)

d(𝐴 , 𝐵) ≥d( A, 𝐴) and d( A, 𝐵)= ≥d(𝐴 , 𝐵) 
7. d(𝐴𝑐 ,(𝐴)𝑐)= 0, d( 𝐴𝑐,(𝐴)𝑐) = 0

5-Conclusion 

Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

137



In this paper we have defined the notion of interval valued neutrosophic rough sets. We have 
also studied some properties on them and proved some propositions. The concept combines two 
different theories which are rough sets theory and  interval valued neutrosophic set  theory. 
Further, we have introduced the Hamming distance between two interval neutrosophic rough 
sets. We hope that our results can also be extended to other algebraic system. 
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Intuitionistic Neutrosophic Soft Set 

Broumi Said and Florentin Smarandache 

Abstract. In this paper we study the concept of intuitionistic neutrosophic set of Bhowmik and Pal. We 
have introduced this concept in soft sets and def ned intuitionistic neutrosophic soft set. Some def nitions and 
operations have been introduced on intuitionistic neutrosophic soft set. Some properties of this concept have 
been established. 

Keywords: Soft sets, Neutrosophic set,Intuitionistic neutrosophic set, Intuitionistic neutrosophic soft set. 

1. Introduction
In wide varities of real problems like , engineering problems, social, economic, computer science, medical 
science…etc. The data associated are often uncertain or imprecise, all real data are not necessarily crisp, 
precise, and deterministic because of their fuzzy nature. Most of these problem were solved by different 
theories, firstly by fuzzy set theory provided by Lotfi , Zadeh [1] ,Later several researches  present a number 
of results using different direction of fuzzy set such as : interval fuzzy set [13], intuitionistic fuzzy set  by 
Atanassov[2], all these are successful to some extent in dealing with the problems arising due to the 
vagueness present in the real world ,but there are also cases where these theories failed to give satisfactory 
results, possibly  due to indeterminate and  inconsistent information which exist in belif system, then in 1995, 
Smarandache [3] intiated the theory of neutrosophic as new mathematical tool for handling problems 
involving imprecise, indeterminacy,and inconsistent data. Later on  authors like Bhowmik and Pal [7] have 
further studied the intuitionistic  neutrosophic set and presented various properties of it. In 1999 Molodtsov 
[4] introduced the concept of soft set which was completely a new approche for dealing with vagueness and 
uncertainties ,this concept can be seen free from the inadequacy of parameterization tool. After 
Molodtsovs’work, there have been many researches in combining fuzzy set with soft set, which  incorporates 
the beneficial properties of both fuzzy set and soft set techniques ( see [12] [6] [8]). Recently , by the concept 
of neutrosophic set and soft set, first time,  Maji [11] introduced  neutrosophic soft set, established its 
application in decision making, and thus opened a new direction, new path of thinking to engineers, 
mathematicians, computer scientists and many others in various tests. This paper is an attempt to combine 
the concepts: intuitionistic neutrosophic set and soft set together by introducing a new concept called 
intuitionistic neutrosophic sof set, thus we introduce its operations namely equal ,subset, union ,and 
intersection, We also  present an application of intuitionistic neutrosophic soft set in decision making 
problem. 

The organization of this paper is as follow : in section 2, we brief y present some basic definitions and 
preliminary results are given which will be used in the rest of the paper. In section 3, Intuitionistic 
neutrosophic soft set. In section 4 an application of intuitionistic neutrosophic soft set in a decision making 
problem. Conclusions are there in the concluding section 5. 

2. Preliminaries
Throughout this paper, let U be a universal set and E be the set of all possible parameters under

Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

161



consideration with respect to U, usually, parameters are attributes , characteristics, or properties of objects in 
U. We now recall some basic notions of neutrosophic set , intuitionistic neutrosophic set and soft set . 
Definition 2.1 (see[3]). Let U be an universe of discourse  then the neutrosophic set A is an object having 
the form A = {< x: TA(x),I A(x),FA(x) ∈>,x  U}, where the functions T,I,F : U→]−0,1+[  define respectively the 
degree of membership , the degree of indeterminacy, and the degree of non- ∈membership of the element x  
X to the set A with the condition.  

−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+. 
From philosophical point of view, the neutrosophic set takes the value from real standard or non-standard 
subsets of ]−0,1+[.so instead of ]−0,1+[ we need to take the interval [0,1] for 
technical applications, because ]−0,1+[will be difficult to apply in the real applications  such as in scientific 
and engineering problems.  
Definition 2.2 (see [3]). A neutrosophic set A is contained in another neutrosophic set B i.e. A ⊆ B if ∀x ∈ U, TA(x) ≤ TB(x), IA(x) ≤ IB(x), FA(x) ≥ FB(x).  
A complete account of the operations and application of neutrsophic set  can be seen  in [3 ] [10 ].  
Definition 2.3(see[7]).  intuitionistic neutrosophic set 
An element x of  U is called significant with respect to neutrsophic set A of U if the degree  of  truth-
membership or falsity-membership or indeterminancy-membership value, i.e.,TA(x) or FA(x)or IA(x) ≤ 0.5. 
Otherwise, we call it insignificant. Also, for neutrosophic set the truth-membership, indeterminacy-
membership and falsity-membership all can not be significant. We define an intuitionistic neutrosophic set 
by A = {< x: TA(x),I A(x),FA(x) ∈>,x  U},where  
 min { TA( x ), FA( x ) } ≤ 0.5, 
 min { TA( x ) , IA( x ) } ≤ 0.5, 
 min { FA( x ) , IA( x ) } ≤ 0.5, for all x ∈ U, 
with the condition  0  ≤ TA(x) + IA(x) + FA(x) ≤  2. 
As an illustration ,let us consider the following example. 
Example2.4.Assume that the universe of discourse U={x1,x2,x3},where x1  
characterizes the capability, x2 characterizes the trustworthiness and x3 indicates 
the prices of the objects. It may be further assumed that the values of x1, x2 and x3  
are in [0,1] and they are obtained from some questionnaires of some experts. The 
experts may impose their opinion in three components viz. the degree of goodness, 
the degree of indeterminacy and that of poorness to explain the characteristics of 
the objects. Suppose A is an intuitionistic neutrosophic set ( IN S ) of U, such that, 
A = {< x1,0.3,0.5,0.4 >,< x2,0.4,0.2,0.6 >,< x3,0.7,0.3,0.5 >}, where the degree of goodness of 
capability is 0.3, degree of indeterminacy of capability is 0.5 and degree of falsity of capability is 0.4 etc. 

Definition 2.5 (see[4]). Let U be an initial universe set and E be a set of parameters. 
Let P(U) denotes the power set of U. Consider a nonempty set A, A ⊂ E. A pair 
( F, A ) is called a soft set over U, where F is a mapping given by F : A → P(U).  
As an illustration ,let us consider the following example. 
Example 2.6. Suppose that U is the set of houses under consideration, say U = {h1, h2, . . ., h5}. Let E be the 
set of some attributes of such houses, say E = {e1, e2, . . ., e8}, where e1, e2, . . ., e8 stand for the attributes 
“expensive”, “beautiful”, “wooden”, “cheap”, “modern”, and “in bad repair”, respectively.  
In this case, to define a soft set means to point out expensive houses, beautiful houses, and so on. For 
example, the soft set (F, A) that describes the “attractiveness of the houses” in the opinion of a buyer, say 
Thomas, may be defined like this:  
A={e1,e2,e3,e4,e5};  
F(e1) = {h2, h3, h5}, F(e2) = {h2, h4}, F(e3) = {h1}, F(e4) = U, F(e5) = {h3, h5}.  
For more details on the algebra and operations on intuitionistic neutrosophic set and soft set, the reader may 
refer to [ 5,6,8,9,12].  

3. Intuitionistic Neutrosophic Soft Set
In this section ,we will initiate the study on hybrid structure involving both intuitionstic neutrosophic set and 
soft set theory. 
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Definition 3.1. Let U be an initial universe set and A ⊂ E  be a set of parameters. Let N( U ) denotes the set 
of all intuitionistic neutrosophic sets of U. The collection (F,A) is termed to be the soft intuitionistic 
neutrosophic set over U, where F is a mapping given by F : A → N(U).  
Remark 3.2. we will denote the intuitionistic neutrosophic soft set defined over an universe by   INSS. 
Let us consider the following example. 
Example 3.3. Let U be the set of blouses under consideration and E is the set of parameters (or qualities). 
Each parameter is a intuitionistic neutrosophic word or sentence involving intuitionistic neutrosophic words. 
Consider E = { Bright, Cheap, Costly, very costly, Colorful, Cotton, Polystyrene, long sleeve , expensive }. 
In this case, to define a intuitionistic neutrosophic soft set means to point out Bright blouses, Cheap blouses, 
Blouses in Cotton and so on. Suppose that, there are five blouses in the universe U given by, U = 
{b1,b2,b3,b4,b5} and the set of parameters A = {e1,e2,e3,e4}, where each  ei  is a specific criterion for blouses: 

e1 stands for ‘Bright’, 
e2 stands for ‘Cheap’, 

   e3 stands for ‘costly’, 
  e4 stands for ‘Colorful’, 

Suppose that, 

F(Bright)={<b1,0.5,0.6,0.3>,<b2,0.4,0.7,0.2>,<b3,0.6,0.2,0.3>,<b4,0.7,0.3,0.2> 
       ,<b5,0.8,0.2,0.3>}. 

F(Cheap)={<b1,0.6,0.3,0.5>,<b2,0.7,0.4,0.3>,<b3,0.8,0.1,0.2>,<b4,0.7,0.1,0.3> 
       ,<b5,0.8,0.3,0.4}.  

F(Costly)={<b1,0.7,0.4,0.3>,<b2,0.6,0.1,0.2>,<b3,0.7,0.2,0.5>,< b4,0.5,0.2,0.6 > 
       ,< b5,0.7,0.3,0.2 >}.  

F(Colorful)={<b1,0.8,0.1,0.4>,<b2,0.4,0.2,0.6>,<b3,0.3,0.6,0.4>,<b4,0.4,0.8,0.5> 
 ,< b5,0.3,0.5,0.7 >}. 

The intuitionistic neutrosophic soft set ( INSS ) ( F, E ) is a parameterized family {F(ei),i = 1,···,10} of all 
intuitionistic neutrosophic sets of U and describes a collection of approximation of an object. The mapping F 
here is ‘blouses (.)’, where dot(.) is to be filled up by a parameter ei ∈ E. Therefore, F(e1) means ‘blouses 
(Bright)’ whose functional-value is the intuitionistic neutrosophic set  
{< b1,0.5,0.6,0.3 >,< b2,0.4,0.7,0.2 >, < b3,0.6,0.2,0.3 >,< b4,0.7,0.3,0.2 >,< b5,0.8,0.2,0.3 >}. 
Thus we can view the intuitionistic neutrosophic soft set ( INSS ) ( F, A ) as a collection of approximation as 
below:  
( F, A ) = { Bright blouses= {< b1,0.5,0.6,0.3 >,< b2,0.4,0.7,0.2 >, < b3,0.6,0.2,0.3 >,< b4,0.7,0.3,0.2 >,< 
b5,0.8,0.2,0.3 >}, Cheap blouses= {< b1,0.6,0.3,0.5 >,< b2,0.7,0.4,0.3 >,< b3,0.8,0.1,0.2 >, < b4,0.7,0.1,0.3 >,< 
b5,0.8,0.3,0.4 >}, costly blouses= {< b1,0.7,0.4,0.3 > ,< b2,0.6,0.1,0.2 >,< b3,0.7,0.2,0.5 >,< b4,0.5,0.2,0.6 >,< 
b5,0.7,0.3,0.2 >}, Colorful blouses= {< b1,0.8,0.1,0.4 >,< b2,0.4,0.2,0.6 >,< b3,0.3,0.6,0.4 >, < 
b4,0.4,0.8,0.5>,< b5,0.3,0.5,0.7 >}}.  
where each approximation has two parts: (i) a predicate p, and (ii) an approximate value-set v ( or simply to 
be called value-set v ).  
For example, for the approximation ‘Bright blouses= {< b1,0.5,0.6,0.3 >, < 
b2,0.4,0.7,0.2 >,<b3,0.6,0.2,0.3>,<b4,0.7,0.3,0.2>,<b5,0.8,0.2,0.3>}’. 
we have (i) the predicate name ‘Bright blouses’, and (ii) the approximate value-set 
is{<b1,0.5,0.6,0.3>,<b2,0.4,0.7,0.2>,<b3,0.6,0.2,0.3>,<b4,0.7,0.3,0.2> ,< b5,0.8,0.2,0.3 >}. Thus, an 
intuitionistic neutrosophic soft set ( F, E ) can be viewed as a collection of approximation like ( F, E ) = {p1 = 
v1,p2 = v2,···,p10 = v10}. In order to store an intuitionistic neutrosophic soft set in a computer, we could 
represent it in the form of a table as shown below ( corresponding to the intuitionistic neutrosophic soft set in 
the above example ). In this table, the entries are cij corresponding to the blouse bi  and the parameter ej, 
where cij = (true-membership value of bi, indeterminacy-membership value of bi, falsity membership value of 
bi) in F(ej). The table 1 represent the intuitionistic neutrosophic soft set ( F, A ) described above. 
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U bright cheap costly colorful 
b1 ( 0.5,0.6, 0.3 ) ( 0.6,0.3, 0.5 ) ( 0.7,0.4, 0.3 ) ( 0.8,0.1, 0.4 ) 
b2 ( 0.4,0.7, 0.2 ) ( 0.7,0.4, 0.3 ) ( 0.6,0.1, 0.2 ) ( 0.4,0.2, 0.6 ) 
b3 ( 0.6,0.2, 0.3 ) ( 0.8,0.1, 0.2 ) ( 0.7,0.2, 0.5 ) ( 0.3,0.6, 0.4 ) 
b4 ( 0.7,0.3, 0.2 ) ( 0.7,0.1, 0.3 ) ( 0.5,0.2, 0.6 ) ( 0.4,0.8, 0.5 ) 
b5 ( 0.8,0.2, 0.3 ) ( 0.8,0.3, 0.4 ) ( 0.7,0.3, 0.2 ) ( 0.3,0.5, 0.7 ) 

Table 1: Tabular form of the INSS ( F, A ). 

Remark 3.4.An intuitionistic neutrosophic soft set is not an intuituionistic neutrosophic set but a 
parametrized family of an intuitionistic neutrosophic subsets. 

Definition 3.5. Containment of two intuitionistic neutrosophic soft sets. 
For two intuitionistic neutrosophic soft sets ( F, A ) and ( G, B ) over the common universe U. We say 
that ( F, A ) is an intuitionistic neutrosophic soft subset of ( G, B ) if and only if 

 (i) A ⊂ B. 
   (ii) F(e) is an intuitionistic neutrosophic subset of G(e).  
        Or TF(e)(x) ≤ TG(e)(x), IF(e)(x) ≤ IG(e)(x), FF(e)(x) ≥ FG(e)(x), ∀e ∈ A, x ∈ U.  
We denote this relationship by ( F, A ) ⊆ ( G, B ). 
( F, A ) is said to be intuitionistic neutrosophic soft super set of ( G, B ) if ( G, B ) is an intuitionistic neutrosophic 
soft subset of ( F, A ). We denote it by ( F, A ) ⊇ ( G, B ). 
Example 3.6. Let (F,A) and (G,B)  be two INSSs over the same universe U = {o1,o2,o3,o4,o5}. The 
INSS (F,A) describes the sizes of the objects whereas the INSS ( G, B ) describes its surface textures. 
Consider the tabular representation of the INSS ( F, A ) is as follows. 

U small large colorful
O1 ( 0.4,0.3, 0.6 ) ( 0.3,0.1, 0.7 ) ( 0.4,0.1, 0.5 ) 
O2 ( 0.3,0.1, 0.4 ) ( 0.4,0.2, 0.8 ) ( 0.6,0.3, 0.4 ) 
O3 ( 0.6,0.2, 0.5 ) ( 0.3,0.1, 0.6 ) ( 0.4,0.3, 0.8 ) 
O4 ( 0.5,0.1, 0.6 ) ( 0.1,0.5, 0.7 ) ( 0.3,0.3, 0.8 ) 
O5 ( 0.3,0.2, 0.4 ) ( 0.3,0.1, 0.6 ) ( 0.5,0.2, 0.4 ) 

    Table 2: Tabular form of the INSS ( F, A ). 

The tabular representation of the INSS ( G, B ) is given by table 3. 
U small large colorful very smooth
O1 (0.6,0.4, 0.3 ) ( 0.7,0.2, 0.5 ) ( 0.5,0.7, 0.4 ) ( 0.1,0.8, 0.4 ) 
O2 ( 0.7,0.5, 0.2 ) ( 0.4,0.7, 0.3 ) ( 0.7,0.3, 0.2 ) ( 0.5,0.7, 0.3 ) 
O3 ( 0.6,0.3, 0.5 ) ( 0.7,0.2, 0.4 ) ( 0.6,0.4, 0.3 ) ( 0.2,0.9, 0.4 ) 
O4 ( 0.8,0.1, 0.4 ) ( 0.3,0.6, 0.4 ) ( 0.4,0.5, 0.7 ) ( 0.4,0.4, 0.5 ) 
O5 ( 0.5,0.4, 0.2 ) ( 0.4,0.1, 0.5 ) ( 0.6,0.4, 0.3 ) ( 0.5,0.8, 0.3 ) 

Table 3: Tabular form of the INSS ( G, B ). 

 Clearly, by definition 3.5 we have ( F, A ) ⊂ ( G, B ).  
Definition 3.7. Equality of two intuitionistic neutrosophic soft sets.  
Two INSSs ( F, A ) and ( G, B ) over the common universe U are said to be intuitionistic neutrosophic soft 
equal if ( F, A ) is an intuitionistic neutrosophic soft subset of ( G, B ) and ( G, B ) is an intuitionistic 
neutrosophic soft subset of ( F, A ) which can be denoted by ( F, A )= ( G, B ). 
Definition 3.8. NOT set of a set of parameters. 
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 Let E = {e1,e2,···,en} be a set of parameters. The NOT set of E is denoted by ⌉E is defined by ⌉E ={ ⌉ e1, ⌉e2, ··· ,⌉ en}, where ⌉ ei = not ei,∀i ( it may be noted that ⌉ and ⌉ are different operators ).  
Example 3.9. Consider the example 3.3. Here ⌉E = { not bright, not cheap, not costly, not colorful }. 
Definition 3.10. Complement of an intuitionistic neutrosophic soft set.  
The complement of an intuitionistic neutrosophic soft set ( F, A ) is denoted by (F,A)c and is defined by 
(F,A)c= (Fc,⌉A), where Fc :⌉A → N(U) is a mapping given by 
Fc(α) = intutionistic neutrosophic soft complement with TF

c
(x) = FF(x),IF

c
(x) = IF(x) and  FF

c
(x) = TF(x).  

Example 3.11.  As an illustration consider the example presented in the example 3.2. the complement (F,A)c 
describes the ‘not attractiveness of the blouses’. Is given below.
F( not bright) = {< b1,0.3,0.6,0.5 >,< b2,0.2,0.7,0.4 >,< b3,0.3,0.2,0.6 >,  

        < b4,0.2,0.3,0.7 >< b5,0.3,0.2,0.8 >}.  
F( not cheap ) = {< b1,0.5,0.3,0.6 >,< b2,0.3,0.4,0.7 >,< b3,0.2,0.1,0.8 >, 

        < b4,0.3,0.1,0.7 >,< b5,0.4,0.3,0.8 >}.  
F( not costly ) = {< b1,0.3,0.4,0.7 >,< b2,0.2,0.1,0.6 >,< b3,0.5,0.2,0.7 >, 

       < b4,0.6,0.2,0.5 >,< b5,0.2,0.3,0.7 >}.  
F( not colorful ) = {< b1,0.4,0.1,0.8 >,< b2,0.6,0.2,0.4 >,< b3,0.4,0.6,0.3 >, 

       < b4,0.5,0.8,0.4 >< b5,0.7,0.5,0.3 >}.  
Definition 3.12:Empty or Null intuitionistic neutrosopphic soft set.  
An intuitionistic neutrosophic soft set (F,A) over U is said to be empty or null intuitionistic neutrosophic soft 
(with respect to the set of parameters) denoted by ΦA or (Φ,A) if TF(e)(m) = 0,FF(e)(m) = 0 and IF(e)(m) = 
0,∀m ∈ U,∀e ∈ A.  
Example 3.13. Let U = {b1,b2,b3,b4,b5}, the set of five blouses be considered as the universal set and A = 
{ Bright, Cheap, Colorful } be the set of parameters that characterizes the blouses. Consider the 
intuitionistic neutrosophic soft set ( F, A) which describes the cost of the blouses and  
F(bright)={< b1,0,0,0 >,< b2,0,0,0 >,< b3,0,0,0 >,< b4,0,0,0 >, < b5,0,0,0 >},  
F(cheap)={< b1,0,0,0 >,< b2,0,0,0 >,< b3,0,0,0 >,< b4,0,0,0 >, < b5,0,0,0 >}, 
F(colorful)={< b1,0,0,0 >,< b2,0,0,0 >,< b3,0,0,0 >, < b4,0,0,0 >,< b5,0,0,0 >}.  
Here the NINSS ( F, A ) is the null intuitionistic neutrosophic soft set.  
Definition 3.14. Union of two intuitionistic neutrosophic soft sets.  
Let (F,A) and (G,B) be two INSSs over the same universe U.Then the 
union of (F,A) and (G,B) is denoted by ‘(F,A)∪(G,B)’ and is defined 
by (F,A)∪(G,B)=(K,C), where C=A∪B and the truth-membership, 
indeterminacy-membership and falsity-membership of ( K,C) are as follows:  
TK(e)(m)   = TF(e)(m), if e ∈ A − B, 

  = TG(e)(m), if e ∈ B – A , 
      = max (TF(e)(m),TG(e)(m)), if e ∈ A ∩ B. 

IK(e)(m)   = IF(e)(m), if e ∈ A − B, 
  = IG(e)(m), if e ∈ B – A , 

      = min (IF(e)(m),IG(e)(m)), if e ∈ A ∩ B. 
FK(e)(m)   = FF(e)(m), if e ∈ A − B, 

  = FG(e)(m), if e ∈ B – A , 
   = min (FF(e)(m),FG(e)(m)), if e ∈ A ∩ B. 

Example 3.15. Let ( F, A ) and ( G, B ) be two INSSs over the common universe U. Consider the tabular 
representation of the INSS ( F, A ) is as follow:  

Bright Cheap Colorful 
b1 ( 0.6,0.3, 0.5 ) ( 0.7,0.3, 0.4 ) ( 0.4,0.2, 0.6 ) 
b2 ( 0.5,0.1, 0.8 ) ( 0.6,0.1, 0.3 ) ( 0.6,0.4, 0.4 ) 
b3 ( 0.7,0.4, 0.3 ) ( 0.8,0.3, 0.5 ) ( 0.5,0.7, 0.2 ) 
b4 ( 0.8,0.4, 0.1 ) ( 0.6,0.3, 0.2 ) ( 0.8,0.2, 0.3 
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b5 ( 0.6,0.3, 0.2 ) ( 0.7,0.3, 0.5 ) ( 0.3,0.6, 0.5 

        Table 4: Tabular form of the INSS ( F, A ). 

The tabular representation of the INSS ( G, B ) is as follow: 
U Costly Colorful
b1 ( 0.6,0.2, 0.3) ( 0.4,0.6, 0.2 ) 
b2 ( 0.2,0.7, 0.2 ) ( 0.2,0.8, 0.3 ) 
b3 ( 0.3,0.6, 0.5 ) ( 0.6,0.3, 0.4 ) 
b4 ( 0.8,0.4, 0.1 ) ( 0.2,0.8, 0.3 ) 
b5 ( 0.7,0.1, 0.4 ) ( 0.5,0.6, 0.4 ) 

Table 5: Tabular form of the INSS ( G, B ). 
Using definition 3.12 the union of two  INSS (F, A ) and ( G, B ) is ( K, C ) can be represented into the 
following Table.  

U Bright Cheap Colorful Costly 
b1 ( 0.6,0.3, 

0.5 ) 
( 0.7,0.3, 
0.4 )

( 0.4,0.2, 
0.2 )

( 0.6,0.2, 
0.3 ) 

b2 ( 0.5,0.1, 
0.8 ) 

( 0.6,0.1, 
0.3 )

( 0.6,0.4, 
0.3 )

( 0.2,0.7, 
0.2 ) 

b3 ( 0.7,0.4, 
0.3 ) 

( 0.8,0.3, 
0.5 )

( 0.6,0.3, 
0.2 )

( 0.3,0.6, 
0.5 ) 

b4 ( 0.8,0.4, 
0.1 ) 

( 0.6,0.3, 
0.2 )

( 0.8,0.2, 
0.3 )

( 0.8,0.4, 
0.1 ) 

b5 ( 0.6,0.3, 
0.2 ) 

( 0.7,0.3, 
0.5 )

( 0.5,0.6, 
0.4 )

( 0.7,0.1, 
0.4 ) 

Table 6: Tabular form of the INSS ( K, C ). 

Definition 3.16. Intersection  of  two  intuitionistic  neutrosophic soft sets.  
Let (F,A) and (G,B) be two INSSs over the same universe U such that A ∩ B≠0. Then the intersection of 
(F,A) and ( G,B) is denoted by ‘( F,A) ∩ (G, B)’ and is defined by ( F, A ) ∩( G, B ) = ( K,C),where C 
=A∩B and the truth-membership, indeterminacy membership and falsity-membership of ( K, C ) are 
related to those of (F,A) and (G,B) by:  

TK(e)(m)   = min (TF(e)(m),TG(e)(m)),  
IK(e)(m)   = min (IF(e)(m),IG(e)(m)),  
FK(e)(m) = max (FF(e)(m),FG(e) ∈(m)), for all e C. 

Example 3.17. Consider the above example 3.15. The intersection of ( F, A ) and ( G, B ) can be represented 
into the following table :  

U Colorful 
b1 ( 0.4,0.2,0.6) 
b2 ( 0.2,0.4,0.4) 
b3 ( 0.6,0.3,0.4) 
b4 ( 0.8,0.2,0.3) 
b5 ( 0.3,0.6,0.5) 

  Table 7: Tabular form of the INSS ( K, C ). 

Proposition 3.18. If (F, A) and (G, B) are two INSSs over U and on the basis of the  operations defined 
above ,then: 
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(1) idempotency laws: (F,A) ∪ (F,A) = (F,A). 
       (F,A) ∩ (F,A) = (F,A). 

(2) Commutative laws : (F,A) ∪ (G,B) = (G,B) ∪ (F,A). 
      (F,A) ∩ (G,B) = (G,B) ∩ (F,A). 

(3)    (F,A) ∪ Φ = (F,A). 
(4)    (F,A) ∩ Φ = Φ.  
(5)    [(F,A)c]c = (F,A).  
Proof. The proof of the propositions 1 to 5 are obvious. 
Proposition 3.19 . If ( F, A ), ( G, B ) and ( K, C ) are three INSSs over U,then: 
 (1) (F,A) ∩ [(G,B) ∩ (K,C)] = [(F,A) ∩ (G,B)] ∩ (K,C). 
 (2) (F,A) ∪ [(G,B) ∪ (K,C)] = [(F,A) ∪ (G,B)] ∪ (K,C). 
 (3) Distributive  laws: (F,A) ∪ [(G,B) ∩ (K,C)] = [(F,A) ∪ (G,B)] ∩ [(F,A) ∪ (K,C)]. 
 (4) (F,A) ∩ [(G,B) ∪ (K,C)] = [(H,A) ∩ (G,B)] ∪ [(F,A) ∩ (K,C)]. 
Exemple 3.20. Let (F,A) ={〈b1 ,0.6,0.3,0. 1 〉 ,〈 b2,0.4,0.7,0. 5) ,(b3,0.4,0.1,0.8) } , (G,B) ={ (b1,0.2,0.2,0.6), (b2 
0.7,0.2,0.4), (b3,0.1,0.6,0.7) } and (K,C) ={ (b1, 0.3,0.8,0.2) ,〈b2, 0.4,0.1,0.6) ,〈 b3,0.9,0.1,0.2)} be three INSSs of U, 
Then: 

(F,A) ∪ (G,B) = { 〈b1, 0.6,0.2,0.1 〉 , 〈b2, 0.7,0.2,0.4 〉 , 〈 b3,0.4,0.1,0.7 〉 }. 
(F,A) ∪ (K,C) = { 〈 b1,0.6,0.3,0.1 〉 , 〈b2, 0.4,0.1,0.5 〉 , 〈 b3,0.9,0.1,0.2 〉 }. 
(G,B) ∩ (K,C)] =  { 〈 b1,0.2,0.2,0.6 〉 , 〈 b2,0.4,0.1,0.6 〉 , 〈b3, 0.1,0.1,0.7 〉 }. 
 (F,A) ∪ [(G,B) ∩ (K,C)]  =  { 〈 b1,0.6,0.2,0.1 〉 , 〈 b2,0.4,0.1,0.5 〉 , 〈 b3,0.4,0.1,0.7 〉 }. 
 [(F,A) ∪ (G,B)] ∩ [(F,A) ∪ (K,C)] = {〈b1,0.6,0.2,0.1〉,〈b2,0.4,0.1,0.5〉,〈b3,0.4,0.1,0.7〉}. 
Hence distributive (3)  proposition verified. 
Proof, can be easily proved from definition 3.14.and 3.16. 
Definition 3.21. AND operation on two intuitionistic neutrosophic soft sets. 
Let ( F, A ) and ( G, B ) be two INSSs over the same universe U. then ( F, A ) ‘’AND ( G, B) denoted 
by ‘( F, A ) ∧ ( G, B )and is defined by ( F, A ) ∧ ( G, B ) = ( K, A × B ), where K(α, β)=F(α)∩ B(β) 
and the truth-membership, indeterminacy-membership and falsity-membership of ( K, A×B ) are as 
follows:  

TK(α,β)(m) = min(TF(α)(m),TG(β)(m)), IK(α,β)(m) = min(IF(α)(m),IG(β)(m)) 
FK(α,β)(m) = max(FF(α)(m),FG(β)(m)), ∀ ∈α  A,∀ ∈β  B.

Example 3.22. Consider the same example 3.15 above. Then the tabular representation of (F,A) AND ( G, 
B ) is as follow: 

u (bright, costly) (bright, Colorful) (cheap, costly) 
b1 ( 0.6,0.2, 0.5 ) ( 0.4,0.3, 0.5 ) ( 0.6,0.2, 0.4 ) 
b2 ( 0.2,0.1, 0.8 ) ( 0.2,0.1, 0.8 ) ( 0.2,0.1, 0.3 ) 
b3 ( 0.3,0.4, 0.5 ) ( 0.6,0.3, 0.4 ) ( 0.3,0.3, 0.5 ) 
b4 ( 0.8,0.4, 0.1 ) ( 0.2,0.4,0.3 ) ( 0.6,0.3, 0.2 ) 
b5 ( 0.6,0.1, 0.4 ) ( 0.5,0.3, 0.4 ) ( 0.7,0.1, 0.5) 
u (cheap, colorful) (colorful, costly) (colorful, colorful) 
b1 ( 0.4,0.3, 0.4 ) ( 0.4,0.2, 0.6 ) ( 0.4,0.2, 0.6 ) 
b2 ( 0.2,0.1, 0.3 ) ( 0.2,0.4, 0.4 ) ( 0.2,0.4, 0.4 ) 
b3 ( 0.6,0.3, 0.5 ) ( 0.3,0.6, 0.5 ) ( 0.5,0.3, 0.4 ) 
b4 ( 0.2,0.3, 0.3 ) ( 0.8,0.2, 0.3 ) ( 0.2,0.2, 0.3 ) 
b5 ( 0.5,0.3, 0.5 ) ( 0.3,0.1, 0.5 ) ( 0.3,0.6, 0.5 ) 

Table 8: Tabular representation of the INSS ( K, A × B). 

Definition 3.23. If (F,A) and (G,B) be two INSSs over the common universe U then ‘(F,A) OR(G,B)’ 
denoted by (F,A) ∨ (G,B) is defined by ( F, A) ∨ (G, B ) = (O,A×B), where, the truth-membership, 
indeterminacy membership and falsity-membership of O( α, β) are given as follows:  
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TO(α,β)(m) = max(TF(α)(m),TG(β)(m)),

I
O(α,β)(m) = min(IF(α)(m),IG(β)(m)), 
FO(α,β)(m) = min(FF(α)(m),FG(β) ∀ ∈ ∀ ∈(m)), α  A, β  B.

Example 3.24  Consider the same example 3.14 above. Then the tabular representation of ( F, A ) OR ( G, 
B ) is as follow: 
u (bright, costly) (bright, colorful) (cheap, costly) 
b1 ( 0.6,0.2, 0.3 ) ( 0.6,0.3, 0.2 ) ( 0.7,0.2, 0.3 ) 
b2 ( 0.5,0.1, 0.2 ) ( 0.5,0.1, 0.3 ) ( 0.6,0.1, 0.2 ) 
b3 ( 0.7,0.4, 0.3 ) ( 0.7,0.3, 0.3 ) ( 0.8,0.3, 0.5 ) 
b4 ( 0.8,0.4, 0.1 ) ( 0.8,0.4, 0.1 ) ( 0.8,0.3, 0.1 ) 
b5 ( 0.7,0.1, 0.2 ) ( 0.6,0.3, 0.4 ) ( 0.7,0.1, 0.4 ) 
u (cheap, colorful) (colorful, costly) (colorful, colorful) 
b1 ( 0.7,0.3, 0.2 ) ( 0.6,0.2, 0.3 ) ( 0.4,0.2, 0.2 ) 
b2 ( 0.6,0.1, 0.3 ) ( 0.6,0.4, 0.2 ) ( 0.6,0.4, 0.3 ) 
b3 ( 0.8,0.3, 0.4 ) ( 0.5,0.6, 0.2 ) ( 0.5,0.7, 0.2 ) 
b4 ( 0.6,0.3, 0.2 ) ( 0.8,0.2, 0.1 ) ( 0.8,0.2, 0.3 ) 
b5 ( 0.7,0.3, 0.4 ) ( 0.7,0.1, 0.4 ) ( 0.5,0.6, 0.4) 

Table 9: Tabular representation of the INSS ( O, A × B). 

Proposition 3.25. if ( F, A ) and ( G, B ) are two INSSs over U, then : 
(1) [(F,A) ∧ (G,B)]c = (F,A)c ∨ (G,B)c

(2) [(F,A) ∨ (G,B)]c = (F,A)c ∧ (G,B)c

Proof1. Let (F,A)={<b, TF(x)(b), IF(x)(b), FF(x)(b)>|b ∈ U}  
and  

(G,B) = {< b, TG(x)(b), IG(x)(b), FG(x)(b) > |b ∈ U} 
be two INSSs over the common universe U. Also let (K,A × B) = (F,A) ∧ (G,B),  
where, K(α, β) = F(α) ∩ G(β) for all (α, β) ∈ A × B then 
K(α, β) = {< b, min(TF(α)(b),TG(β)(b)), min(IF(α)(b),IG(β)(b)), max(FF(α)(b),FG(β)(b)) >| b ∈ U}. 
Therefore,  
[(F,A) ∧ (G,B)]c = (K,A × B)c  
= {< b, max(FF(α)(b),FG(β)(b)), min(IF(α)(b),IG(β)(b)), min(TF(α)(b),TG(β)(b)) >|b ∈ U}. 
Again  
(F,A)c ∨ (G,B)c  
= {< b, max(FF

c
(α)(b)),FG

c
(β)(b)), min(IF

c
(α)(b),IG

c
(β)(b)), min(TF

c
(α)(b), TG

c
(β)(b)) >| b ∈ U}.  

= {< b, min(TF(α)(b),TG(β)(b)), min(IF(α)(b),IG(β)(b)), max(FF(α)(b),FG(β)(b)) >| b ∈ U}c 
.

= {< b, max(FF(α)(b), FG(β)(b)), min(IF(α)(b),IG(β)(b)), min(TF(α)(b),TG(β)(b)) >| b ∈ U}.  

It follows that [(F,A) ∧ (G,B)]c = (F,A)c ∨ (G,B)c . 

Proof 2. 
 Let ( F, A ) = {< b, TF(x)(b), IF(x)(b), FF(x)(b) > |b ∈ U} and  
(G,B) = {< b, TG(x)(b),IG(x)(b),FG(x)(b) > |b ∈ U} be two INSSs over the common universe U. 
Also let (O,A × B) = (F,A) ∨ (G,B), where, O (α,β) = F(α) ∪ G(β) for all (α,β) ∈ A × B. then 
O(α,β) = {< b, max(TF(α)(b),TG(β)(b)), min(IF(α)(b),IG(β)(b)), min(FF(α)(b),FG(β)(b)) > |b ∈ U}. 
[(F,A)∨(G,B)]c = (O,A×B)c ={< b, min(FF(α)(b),FG(β)(b)), min(IF(α)(b),IG(β)(b)), 
max(TF(α)(b),TG(β)(b)) > |b ∈ U}.  
Again  
(H,A)c ∧ (G,B)c  
= {< b,min(FF

c
(α)(b),FG

c
(β)(b)),min(IF

c
(α)(b),IG

c
(β)(b)), max(TF

c
(α)(b),TG

c
(β)(b)),>| b ∈ U}.  
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= {< b,max(TF(α)(b),TG(β)(b)),min(IF
c
(α)(b),IG

c
(β)(b)),min(FF(α)(b),FG(β)(b))>| b ∈ U}c . 

= {< b, min(FF(α)(b),FG(β)(b)),min(IF(α)(b),IG(β)(b)), max(TF(α)(b),TG(β)(b)) >| b ∈ U}.  
It follows that [(F,A) ∨ (G,B)]c = (F,A)c ∧ (G,B)c .  

4. An application of intuitionistic neutrosophic soft set in a decision making
problem

For a concrete example of the concept described above, we revisit the blouse purchase problem in Example 
3.3.  So let us consider the intuitionistic  neutrosophic soft set S = (F,P) (see also Table 10 for its tabular 
representation), which describes the "attractiveness of the blouses" that Mrs.  X is going to buy.  on the basis 
of her  m number of parameters (e1,e2,…,em) out of  n  number of blouses(b1,b2,…,bn). We also assume that 
corresponding to the parameter ej(j =1,2,···,m) the performance value of the blouse bi (i = 1,2,···,n) is a tuple 
pij = (T F(ej) (bi),I F(ej) (bi),T F(ej) (bi)), such that for a fixed i that values  pij (j = 1,2,···,m) represents an 
intuitionistic  neutrosophic soft set of all the n objects. Thus the performance values could be arranged in 
the form of a matrix called the ‘criteria matrix’. The more are the criteria values, the more preferability of the 
corresponding object is. Our problem is to select the most suitable object i.e. the object which dominates each 
of the objects of the spectrum of the parameters ej. Since the data are not crisp but intuitionistic neutrosophic 
soft the selection is not straightforward. Our aim is to find out the most suitable blouse with the choice 
parameters for Mrs. X. The blouse which is suitable for Mrs. X need not be suitable for Mrs. Y or Mrs. Z, as 
the selection is dependent on the choice parameters of each buyer. We use the technique to calculate the score 
for the objects. 

4.1. Definition: Comparison matrix 
    The Comparison matrix is a matrix whose rows are labelled by the object names of the universe such as 
b1,b2,···,bn and the columns are labelled by the parameters e1,e2,···,em. The entries are cij, where  cij, is the 
number of parameters for which the value of bi exceeds or is equal to the value bj.  The entries are calculated 
by cij =a + d - c, where ‘a’ is the integer calculated as ‘how many times Tbi (ej) exceeds or equal to Tbk (ej)’, 
for bi ≠ bk, ∀ bk ∈  U, ‘d’is the integer calculated as ‘how many times Ibi(ej) exceeds or equal to Ibk(ej)’, for bi 
≠ bk, ∀ bk ∈  U and ‘c’ is the integer ‘how many times Fbi(ej) exceeds  or equal to Fbk(ej)’, for bi ≠ bk, ∀ bk ∈ 
U. 
Definition 4.2.  Score of an object.  The score of an object bi  is Si  and is calculated as : 

Si =∑j cij
Now the  algorithm for most appropriate selection of an object will be as follows.  
Algorithm  
(1) input the  intuitionistic Neutrosophic Soft Set ( F, A).  
(2) input P, the choice parameters of Mrs. X which is a subset of A.  
(3) consider the INSS ( F, P) and write it in tabular form.  
(4) compute the comparison matrix of the INSS ( F, P).  
(5) compute the score Si of bi,∀i.  
(6) find Sk = maxi Si  
(7) if k has more than one value then any one of bi  may be chosen.  
To illustrate the basic idea of the algorithm, now we apply it to the intuitionistic neutrosophic soft set 
based decision making problem. 
Suppose the wishing parameters for Mrs. X where P={Bright,Costly, Polystyreneing,Colorful,Cheap}. 

Consider the INSS ( F, P )  presented into the following table.  
U Bright costly Polystyreneing Colorful Cheap

b1 ( 0.6,0.3, 0.4 ) ( 0.5,0.2, 0.6 ) ( 0.5,0.3, 0.4 ) ( 0.8,0.2, 0.3 ) ( 0.6,0.3, 0.2 ) 

b2 ( 0.7,0.2, 0.5 ) ( 0.6,0.3, 0.4 ) ( 0.4,0.2, 0.6 ) ( 0.4,0.8, 0.3 ) ( 0.8,0.1, 0.2 ) 

b3 ( 0.8,0.3, 0.4 ) ( 0.8,0.5, 0.1 ) ( 0.3,0.5, 0.6 ) ( 0.7,0.2, 0.1 ) ( 0.7,0.2, 0.5 ) 

b4 ( 0.7,0.5, 0.2 ) ( 0.4,0.8, 0.3 ) ( 0.8,0.2, 0.4 ) ( 0.8,0.3, 0.4 ) ( 0.8,0.3, 0.4 ) 
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b5 ( 0.3,0.8, 0.4 ) ( 0.3,0.6, 0.1 ) ( 0.7,0.3, 0.2 ) ( 0.6,0.2, 0.4 ) ( 0.6,0.4, 0,2 ) 

Table 10: Tabular form of the INSS (F, P). 

The comparison-matrix of the above INSS ( F, P) is represented into the following table. 
U Bright  Costly Polystyreneing  Colorful Cheap 
b1 0 -2 3 0 2 
b2 -1 1 -2 2 2 
b3 3 5 0 4 -1 
b4 6 3 3 3 4 
b5 7 2 6 -1 3 

Table 11: Comparison matrix of the INSS ( F, P ). 

Next we compute the score for each bi as shown below:  

U Score (Si)
b1 3 
b2 2 
b3 11 
b4 19 
b5 17 

Clearly, the maximum score is the score 19, shown in the table above for the blouse b4. 
Hence the best decision for Mrs. X is to select b4 , followed by  b5  . 

5. Conclusions

In this paper we study the notion of intuitionistic  neutrosophic set initiated by Bhowmik and Pal. We use this concept in 
soft sets considering the fact that the parameters ( which are words or sentences ) are mostly intutionistic neutrosophic set; 
but both the concepts deal with imprecision, We have also defined some operations on INSS and prove some propositions. 
Finally, we present an application of INSS in a decision making problem. 

Acknowledgements. 

The authors are thankful to the anonymous referee for his valuable and constructive remarks that helped to 
improve the clarity and the completeness of this paper. 

 6  References 
[1]. Zadeh, L. (1965).  “Fuzzy sets”, Inform and Control 8 338-353. 
[2]. Atanassov, K. (1986). “Intuitionistic fuzzy sets”.Fuzzy Sets and Systems 20 87-96. 
[3]. Smarandache, F. (1999). A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability,  Set and Logic. 

Rehoboth: American Research Press. 
[4]. D. Molodtsov, Soft set theory - First results, Comput. Math. Appl. 37 (1999) 19-31. 
[5]. P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl. 45 (2003) 555-562. 
[6]. M. Irfan Ali, Feng Feng, Xiaoyan Liu, Won Keun Min, M. Shabir, On some new operations in soft set theory, 

Comput. Math. Appl. 57 (2009) 1547-1553. 
[7]. M. Bhowmik and M.Pal. Intuitionistic neutrosophic set, Journal of Information and Computing Science Vol. 4, No. 

2, 2009, pp. 142-152. 
[8]. P. K. Maji, R. Biswas, and A. R. Roy, Soft Set Theory, Comput. Math. Appl. 45 (2003)   555–562. 
[9]. P.K.Maji,R.Biswas,andA.R.Roy,An application of soft sets in a decision making problem, Comput. Math. Appl. 

44 (2002) 1077–1083. 
[10]. F. Smarandache, Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Inter. J.Pure Appl. Math.  24 

(2005) 287–297. 
[11]. P. K. Maji, Neutrosophic soft set,Volume x, No. x, (Month 201y), pp. 1- xx ISSN 2093-9310,Annals of     Fuzzy 

Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

170



Mathematics and Informatics. 
[12]. R. Roy and P. K. Maji, A fuzzy soft set theoretic approach application of soft set in a decision making problem, 

Comput. Appl. Math. 203 (2007) 412–418 
[13]. Turksen, “Interval valued fuzzy sets based on normal forms,” Fuzzy Sets and Systems, vol. 20, pp. 191-210, 1986. 

Published in Journal of Information and Computing Science, Vol. 8, No. 2, 2013, pp. 
130-140, 11 p., pages 161 - 171.

Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

171



Intuitionistic Neutrosphic Soft Set over Rings 

Said Broumi, Florentin Smarandache, Pabitra Kumar Maji

Abstract . S.Broumi and F.Smarandache introduced the 
concept of intuitionistic neutrosophic soft set as an extension 
of the soft set theory. In this paper we have applied the 
concept of intuitionistic neutrosophic soft set to rings 
theory .The notion of intuitionistic neutrosophic soft set over 
ring (INSSOR for short ) is introduced and their basic 
properties have been investigated.The definitions of 
intersection, union, AND, and OR operations over ring 
(INSSOR) have also been defined. Finally, we have defined 
the product of two intuitionistic neutrosophic soft set over 
ring.  

Keywords Intuitionistic Neutrosphic Soft Set, 
Intuitionistic Neutrosphic Soft Set over Ring, Soft Set, 
Neutrosphic Soft Set 

1. Introduction
The theory of neutrosophic set (NS), which is the 

generalization of the classical sets, conventional fuzzy set [1], 
intuitionistic fuzzy set [2] and interval valued fuzzy set 
[3],was introduced by Samarandache [4]. This concept has 
recently motivated new research in several directions such as 
databases [5,6], medical diagnosis problem [7],decision 
making problem [8],topology [9 ],control theory [10]and so 
on. We become handicapped to use fuzzy sets, intuitionistic 
fuzzy sets or interval valued fuzzy sets when the 
indeterministic part of uncertain data plays an important role 
to make a decision. In this context some works can be found 
in [11,12,13,14].  

Another important concept that addresses uncertain 
information is the soft set theory originated by 
Molodtsov[15]. This concept is free from the 
parameterization inadequacy syndrome of fuzzy set theory, 
rough set theory, probability theory. Molodtsov has 
successfully applied the soft set theory in many different 
fields such as smoothness of functions, game theory, 
operations research, Riemann integration, Perron integration, 
and probability. 

In recent years, soft set theory has been received much 
attention since its appearance. There are many papers 
devoted to fuzzify the concept of soft set theory which leads 
to a series of mathematical models such as fuzzy soft set 
[16,17,18,19,20], generalized fuzzy soft set [21,22], 
possibility fuzzy soft set [23] and so on. Thereafter ,P.K.Maji 
and his coworker[24]introduced the notion of intuitionistic 
fuzzy soft set which is based on a combination of the 
intuitionistic fuzzy sets and soft set models and studied the 
properties of intuitionistic fuzzy soft set. Later, a lot of 
extentions of intuitionistic fuzzy soft are appeared such as 
generalized intuitionistic fuzzy soft set [25], possibility 
Intuitionistic fuzzy soft set [26] and so on. Furthermore, few 
researchers have contributed a lot towards neutrosophication 
of soft set theory. In [27] P.K.Maji, first proposed a new 
mathematical model called “neutrosophic soft set” and 
investigate some properties regarding neutrosophic soft 
union, neutrosophic soft intersection, complement of a 
neutrosophic soft set ,De Morgan’s laws. In 2013, S.Broumi 
and F. Smarandache [28]combined the intuitionistic 
neutrosophic set and soft set which lead to a new 
mathematical model called” intutionistic neutrosophic soft 
sets”. They studied the notions of intuitionistic neutrosophic 
soft set union, intuitionistic neutrosophic soft set intersection, 
complement of intuitionistic neutrosophic soft set and 
several other properties of intuitionistic neutrosophic soft set 
along with examples and proofs of certain results. S.Broumi 
[29]presented the concept of“generalized neutrosophic soft 
set” by combining the generalized neutrosophic sets[13]and 
soft set models, studied some properties on it, and presented 
an application of generalized neutrosophic soft Set in 
decision making problem. 

The algebraic structure of soft set theories has been 
explored in recent years. In [30], Aktas and Cagman gave a 
definition of soft groups and compared soft sets to the related 
concepts of fuzzy sets and rough sets. Sezgin and Atagün [33] 
defined the notion of normalistic soft groups and corrected 
some of the problematic cases in paper by Aktas and Cagman 
[30]. Aygunoglu and Aygun [31] introduced the notion of 
fuzzy soft groups based on Rosenfeld’s approach [32]and 
studied its properties. In 2010, Acar et al. [34] introduced the 
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basic notion of soft rings which are actually a parametrized 
family of subrings. Ghosh, Binda and Samanta [35] 
introduced the notion of fuzzy soft rings and fuzzy soft ideals 
and studied some of its algebraic properties. Inan and Ozturk 
[36]concurrently studied the notion of fuzzy soft rings and 
fuzzy soft ideals but they dealt with these concepts in a more 
detailed manner compared to Ghosh et al.[35]. In 2012, 
B.P.Varol et al [37]introduced the notion of fuzzy soft ring in 
different way and studied several of their basic properties. J. 
Zhan et al[38]introduced soft rings related to fuzzy set theory. 
G. Selvachandran and A. R. Salleh[39]introduced vague soft 
rings and vague soft ideals and studied some of their basic 
properties. Z.Zhang [40] introduced intuitionistic fuzzy soft 
rings studied the algebraic properties of intuitionistic fuzzy 
soft ring. Studies of fuzzy soft rings are carried out by several 
researchers but the notion of neutrosophic soft rings is not 
studied. So, in this work we first study with the algebraic 
properties of intuitionistic neutrosophic soft set in ring 
theory. This paper is organized as follows. In section 2 we 
gives some known and useful preliminary definitions and 
notations on soft set theory, neutrosophic set, intuitionistic 
neutrosophic set, intuitionistic neutrosophic soft set and ring 
theory. In section 3 we discuss intuitionistic neutrosophic 
soft set over ring (INSSOR). In section 4 concludes the 
paper. 

2. Preliminaries
In this section we recapitulate some relevant definitions 

viz, soft set, neutrosophic set, intuitionistic neutrosophic set, 
intuitionistic neutrosophic soft sets, fuzzy subring for better 
understanding of this article. 

2.1. Definition [15] 

Molodtsov defined the notion of a soft set in the following 
way: Let U be an initial universe and E be a set of parameters. 
Let 𝜁𝜁(U) denotes the power set of U and A be a non-empty 
subset of E. Then a pair (P, A) is called a soft set over U, 
where P is a mapping given by P : A → 𝜁𝜁(U). In other words, 
a soft set over U is a parameterized family of subsets of the 
universe U. For 𝜀𝜀 ∈ A, P (𝜀𝜀) may be considered as the set of 
𝜀𝜀 -approximate elements of the soft set (P, A). 

2.2. Definition [4] 

Let U be an universe of discourse then the neutrosophic set 
A is an object having the form A={<x: 
TA (x), IA (x), FA (𝐱𝐱)>,x ∈U}, where the functions T, I, F : 
U→]−0,1+[define respectively the degree of membership , the 
degree of indeterminacy, and the degree of non-membership 
of the element x ∈ X to the set A with the condition.  

−0 ≤ TA (x) + IA (x)+ FA (x)≤ 3+.   (1) 

From philosophical point of view, the neutrosophic set 
takes the value from real standard or non-standard subsets 

of ]−0,1+[.So instead of ]−0,1+[we need to take the 
interval[0,1]for technical applications, because ]−0,1+[will be 
difficult to apply in the real applications such as in scientific 
and engineering problems.  

2.3. Definition [11] 

An element x of U is called significant with respect to 
neutrosophic set A of U if the degree of truth-membership or 
falsity-membership or indeterminancy-membership value, 
i.e.,  TA (x)  or IA (x) or FA (𝐱𝐱)  ≤ 0.5. Otherwise, we call it
insignificant. Also, for neutrosophic set the 
truth-membership, indeterminacy-membership and 
falsity-membership all can not be significant. We define an 
intuitionistic neutrosophic set by  

A={<x: TA (x), IA (x) , FA (𝐱𝐱) >,x ∈U},where 

min { TA (x), FA (𝐱𝐱) } ≤ 0.5, 

min { TA (x), IA (x) } ≤ 0.5, 

min { FA (𝐱𝐱) , IA (x)} ≤ 0.5, for all x ∈ U, 

with the condition 0 ≤ TA (x) + IA (x)+ FA (x) ≤ 2.   (2) 

As an illustration, let us consider the following example. 

2.4. Example 

Assume that the universe of discourse U={x1,x2,x3}, 
where x1 characterizes the capability, x2 characterizes the 
trustworthiness and x3 indicates the prices of the objects. 
Further, It may be assumed that the values of x1, x2 and x3 are 
in[0,1]and they are obtained from some questionnaires of 
some experts. The experts may impose their opinion in three 
components viz. the degree of goodness, the degree of 
indeterminacy and that of poorness to explain the 
characteristics of the objects. Suppose A is an intuitionistic 
neutrosophic set ( INS ) of U, such that, 

A = {< 𝑥𝑥1,0.3, 0.5, 0.4 >,< 𝑥𝑥2,0.4, 0.2, 0.6>, < 𝑥𝑥3, 0.7, 
0.3, 0.5 >}, where the degree of goodness of capability is 0.3, 
degree of indeterminacy of capability is 0.5 and degree of 
falsity of capability is 0.4 etc.  

2.5. Definition [28] 

Let U be an initial universe set and A ⊂ E be a set of 
parameters. Let N(U) denotes the set of all intuitionistic 
neutrosophic sets of U. The collection (P, A) is termed to be 
the soft intuitionistic neutrosophic set over U, where P is a 
mapping given by P: A → N(U). 

2.6. Remark 

We will denote the intuitionistic neutrosophic soft set 
defined over a universe by INSS. 

Let us consider the following example. 

2.7. Example 
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Let U be the set of blouses under consideration and E is 
the set of parameters (or qualities). Each parameter is a 
intuitionistic neutrosophic word or sentence involving 
intuitionistic neutrosophic words. Consider E = { Bright, 
Cheap, Costly, very costly, Colorful, Cotton, Polystyrene, 
long sleeve , expensive }. In this case, to define a 
intuitionistic neutrosophic soft set means to point out Bright 
blouses, Cheap blouses, Blouses in Cotton and so on. 
Suppose that, there are five blouses in the universe U given 
by, U = {b1, b2, b3, b4, b5} and the set of parameters A = {e1, 
e2, e3, e4}, where each ei is a specific criterion for blouses: 
e1 stands for ‘Bright’, 
e2 stands for ‘Cheap’, 
e3 stands for ‘costly’, 
e4 stands for ‘Colorful’, 
Suppose that, 
P(Bright)={<b1,0.5,0.6,0.3>,<b2,0.4,0.7,0.2>,<b3,0.6,0.
2,0.3>,<b4,0.7,0.3,0.2>,<b5,0.8,0.2,0.3>}. 
P(Cheap)={<b1,0.6,0.3,0.5>,<b2,0.7,0.4,0.3>,<b3,0.8,0.
1,0.2>,<b4,0.7,0.1,0.3> ,<b5,0.8,0.3,0.4}.  
P(Costly)={<b1,0.7,0.4,0.3>,<b2,0.6,0.1,0.2>,<b3,0.7,0.
2,0.5>,< b4,0.5,0.2,0.6 > ,< b5,0.7,0.3,0.2 >}.  
P(Colorful)={<b1,0.8,0.1,0.4>,<b2,0.4,0.2,0.6>,<b3,0.3,
0.6,0.4>,<b4,0.4,0.8,0.5> ,< b5,0.3,0.5,0.7 >}.  

2.8. Definition [28] 

For two intuitionistic neutrosophic soft sets (P,A) and 
(Q,B) over the common universe U. We say that (P,A) is an 
intuitionistic neutrosophic soft subset of (Q,B) if and only if 
(i) A ⊂ B. 
(ii)P(e) is an intuitionistic neutrosophic subset of Q(e). 
TP(e)(x), 

Or TP(e)(x)  ≤ TQ(e)(x) , IP(e)(x)  ≥ IQ(e)(x) , FP(e)(x)≥ 

FQ(e)(x), ∀e ∈ A, x ∈ U. 

We denote this relationship by (P,A) ⊆ (Q,B). 

(P,A) is said to be intuitionistic neutrosophic soft super set 
of (Q,B) if (Q,B) is an intuitionistic neutrosophic soft subset 
of (P,A). We denote it by (P, A) ⊇ (Q,B). 

2.9. Definition [28] 

Two INSSs ( P, A ) and ( Q, B ) over the common universe 
U are said to be equal if (P,A) is an intuitionistic 
neutrosophic soft subset of (Q,B) and (Q,B) is an 
intuitionistic neutrosophic soft subset of (P,A) which can be 
denoted by (P,A) = (Q,B ). 

2.10. Definition [28] 

Let (P,A) and (Q,B) be two INSSs over the same 
universe U. Then the union of (P, A) and (Q, B) is denoted 
by ‘(P,A) ∪ (Q , B)’ and is defined by (P,A) ∪ (Q,B)=(K, 
C), where C=A ∪ B and the truth-membership, 
indeterminacy-membership and falsity-membership of ( K, 

C) are as follows:

TK(𝜀𝜀)(m)=�
TP(𝜀𝜀)(m), if 𝜀𝜀 ∈  A −  B,
TQ (𝜀𝜀)(m), if 𝜀𝜀 ∈  B –  A

max(TP(𝜀𝜀)(m), TQ (𝜀𝜀)(m)), if 𝜀𝜀 ∈  A ∩  B
 

IK(𝜀𝜀)(m) =�
IP(𝜀𝜀)(m), if 𝜀𝜀 ∈  A −  B,
IQ(𝜀𝜀)(m), if 𝜀𝜀 ∈  B –  A

min (IP(𝜀𝜀)(m), IQ(𝜀𝜀)(m)), if 𝜀𝜀 ∈  A ∩  B

� 

FK(𝜀𝜀)(m) =�
FP(𝜀𝜀)(m), if 𝜀𝜀 ∈  A −  B,
FQ(𝜀𝜀)(m), if 𝜀𝜀 ∈  B –  A

min (FP(𝜀𝜀)(m), FQ(𝜀𝜀)(m)), if 𝜀𝜀 ∈  A ∩  B

�(3) 

2.11. Definition[28] 

Let (P,A) and (Q,B) be two INSSs over the same 
universe U such that A ∩ B≠0. Then the intersection of (P, 
A) and ( Q, B) is denoted by ‘(P,A) ∩ (Q,B)’ and is defined
by (P,A) ∩  (Q,B) = (L,C),where C =A ∩ B and the 
truth-membership, indeterminacy membership and 
falsity-membership of (L,C) are related to those of (P,A) 
and (Q,B) by:  

TL(𝜀𝜀)(m) =�
TP(𝜀𝜀)(m), if 𝜀𝜀 ∈  A −  B,
TQ(𝜀𝜀)(m), if 𝜀𝜀 ∈  B –  A

min (TP(𝜀𝜀)(m), TQ(𝜀𝜀)(m)), if 𝜀𝜀 ∈  A ∩  B

IL(𝜀𝜀)(m) =�
IP(𝜀𝜀)(m), if 𝜀𝜀 ∈  A −  B,
IQ(𝜀𝜀)(m), if 𝜀𝜀 ∈  B –  A

min (IP(𝜀𝜀)(m), IQ(𝜀𝜀)(m)), if 𝜀𝜀 ∈  A ∩  B

� 

FL(𝜀𝜀)(m) =�
FP(𝜀𝜀)(m), if 𝜀𝜀 ∈  A −  B,
FQ(𝜀𝜀)(m), if 𝜀𝜀 ∈  B –  A

max (FP(𝜀𝜀)(m), FQ(𝜀𝜀)(m)), if 𝜀𝜀 ∈  A ∩  B

�(4) 

2.12. Definition [27] 

Let (P, A) be a soft set. The set Supp (P,A) = {x ∈ A | P (x)≠ 
∅} is called the support of the soft set (P,A). A soft set 
(P, A) is non-null if Supp (P, A) ≠∅. 

2.13. Definition [41] 

A fuzzy subset 𝜇𝜇 of a ring R is called a fuzzy subring of R 
(in Rosenfeld’ sense), if for all x, y ∈  R the following 
requirements are met:  

𝜇𝜇 (x-y) ≥ min (𝜇𝜇(x), 𝜇𝜇(𝑦𝑦)) and 
𝜇𝜇 (xy) ≥ min (𝜇𝜇(x), 𝜇𝜇(𝑦𝑦))    (5) 

3. Intuitionistic Neutrosophic Soft Set
over Ring
In this section, we introduce the notions of intuitionistic

neutrosophic soft set over ring and intuitionistic 
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neutrosophic soft subring in Rosenfeld’s sense and study 
some of their properties related to this notions. 

Throughout this paper. Let (R, + , .) be a ring . E be a 
parameter set and let A ⊆ E. For the sake of simplicity , we 
will denote the ring (R, +, .) simply as R. 

From now on, R denotes a commutative ring and all 
intuitionistic neutrosophic soft sets are considered over R. 

3.1. Definition 
Let (𝑃𝑃�,A) be an intuitionistic neutrosophic soft set. The 

set Supp(𝑃𝑃�,A) = { 𝜀𝜀 ∈ A |𝑃𝑃�(𝜀𝜀)≠ ∅} is called the support of 
the intuitionistic neutrosophic soft set (𝑃𝑃� ,A).An 
intuitionistic neutrosophic soft set (𝑃𝑃�,A) is non-null if Supp 
(𝑃𝑃�,A) ≠∅. 

3.2. Definition 

A pair (𝑃𝑃�,A) is called an intuitionistic neutrosophic soft 
set over ring, where 𝑃𝑃� is a mapping given by 
𝑃𝑃� :A → ([0,1] × [0 ,1] × [0 ,1])𝑅𝑅 , 𝑃𝑃�(𝜀𝜀) : R → [0,1] ×

[0, 1] × [0 ,1], 
𝑃𝑃�(𝜀𝜀)= �(𝑥𝑥,𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥), 𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ,𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥)): 𝑥𝑥 ∈ 𝑅𝑅 � for all 

𝜀𝜀 ∈ A, 

If for all x ,y ∈ R the following condition hold: 
(1) 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) ≥ 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ⋀ 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑦𝑦) , 

𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) ≤ 𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∨  𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑦𝑦) and 
𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) ≤ 𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∨  𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑦𝑦)   (6) 

(2) 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥𝑦𝑦) ≥ 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ⋀ 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑦𝑦) , 
𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥𝑦𝑦) ≤ 𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∨  𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑦𝑦) and 

   𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥𝑦𝑦) ≤ 𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∨  𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑦𝑦)       (7) 

3.3. Definition 

For two intuitionistic neutrosophic soft set over ring (𝑃𝑃�,A) 
and (𝑄𝑄� ,B), we say that (𝑃𝑃� ,A) is an intuitionistic 
neutrosophic soft subring of (𝑄𝑄� ,B) and write (𝑃𝑃� ,A) ⊆
 (𝑄𝑄� ,B)  if 

(i) A ⊆ B 
(ii) for each x ∈ 𝑅𝑅 , 𝜀𝜀 ∈ A, 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ≤  𝑇𝑇𝑄𝑄�(𝜀𝜀)(𝑥𝑥), 

𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ≥  𝐼𝐼𝑄𝑄�(𝜀𝜀)(𝑥𝑥) , 𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ≥  𝐹𝐹𝑄𝑄�(𝜀𝜀)(𝑥𝑥) . (8) 

3.4. Definition 

Two intuitionist neutrosophic soft set over ring (𝑃𝑃�,A) and 
(𝑄𝑄� ,B) are said to be equal if (𝑃𝑃�,A) ⊆  (𝑄𝑄� ,B) and (𝑄𝑄� ,B) 
⊆  (𝑃𝑃�,A). 

3.5. Theorem 

Let (𝑃𝑃�,A) and (𝑄𝑄� ,B) be two intuitionistic neutrosophic 
soft over ring R. if 𝑃𝑃�(𝜀𝜀) ≤  𝑄𝑄�(𝜀𝜀) for all 𝜀𝜀 ∈ A and A ⊂
 B, then (𝑃𝑃� ,A)  is an intuitionistic neutrosophic soft 
subring of (𝑄𝑄� ,B). 

Proof The proof is straightforward 

3.6. Definition 

The union of two intuitionistic neutrosophic soft set over 
ring (𝑃𝑃�,A) and (𝑄𝑄� ,B) is denoted by (𝑃𝑃�,A) ⋃�  (𝑄𝑄� ,B) and is 
defined by a intuitionistic neutrosophic soft set over ring 

𝐻𝐻�:A ⋃ B → ([0, 1] × [0, 1] × [0, 1])𝑅𝑅  such that for each 
𝜀𝜀 ∈ A ⋃ B. 

𝐻𝐻�(𝜀𝜀)= 

⎩
⎪
⎨

⎪
⎧ < 𝑥𝑥,𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥), 𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ,  𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥) > 𝑖𝑖𝑖𝑖 𝜀𝜀 ∈  A − B

< 𝑥𝑥,𝑇𝑇𝑄𝑄�(𝜀𝜀)(𝑥𝑥),  𝐼𝐼𝑄𝑄�(𝜀𝜀)(𝑥𝑥) ,  𝐹𝐹𝑄𝑄�(𝜀𝜀)(𝑥𝑥) > 𝑖𝑖𝑖𝑖 𝜀𝜀 ∈  B − A
< 𝑥𝑥,𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∨ 𝑇𝑇𝑄𝑄�(𝜀𝜀)(𝑥𝑥), 𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∧ 𝐼𝐼𝑄𝑄�(𝜀𝜀)(𝑥𝑥) ,𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∧ 𝐹𝐹𝑄𝑄�(𝜀𝜀)(𝑥𝑥) >,

𝑖𝑖𝑖𝑖 𝜀𝜀 ∈  A ∩ B

� 

      (9) 

This is denoted by (𝐻𝐻�,𝐶𝐶)=(𝑃𝑃�,A)⋃ �(𝑄𝑄� ,B), where C= A⋃B. 

3.7. Theorem 

If  (𝑃𝑃�,A) and  (𝑄𝑄� ,B) are two intuitionistic neutrosophic 
soft set over ring R, then , so are  (𝑃𝑃�,A) ⋃�  (𝑄𝑄� ,B) . 
Proof. For any 𝜀𝜀 ∈ A⋃B and x, y ∈ R,we consider the 
following cases. 
Case 1. Let 𝜀𝜀 ∈  A − B .Then, 
𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) = 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) 

  ≥ 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ⋀ 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑦𝑦) 
    = 𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ⋀ 𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑦𝑦), 

𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑥𝑥𝑦𝑦) = 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥𝑦𝑦) 
≥ 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ⋀ 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑦𝑦) 

     =𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ⋀ 𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑦𝑦), 
𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) = 𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) 

≤ 𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∨  𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑦𝑦) 
   =𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ∨  𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑦𝑦), 

𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑥𝑥𝑦𝑦) = 𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥𝑦𝑦) 

≤ 𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∨  𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑦𝑦) 

=𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ∨  𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑦𝑦), 

𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦)=𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) 

  ≤ 𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∨  𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑦𝑦) 

=𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ∨  𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑦𝑦), 

𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑥𝑥𝑦𝑦)=𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥𝑦𝑦) 

≤ 𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∨  𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑦𝑦) 

=𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ∨  𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑦𝑦), 

Case 2. Let 𝑖𝑖𝑖𝑖 𝜀𝜀 ∈  B − A .Then, analogous to the proof of 
case 1, we have 

𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) ≥ 𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ⋀ 𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑦𝑦) 

𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑥𝑥𝑦𝑦) ≥ 𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ⋀ 𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑦𝑦) 

𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) ≤ 𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ∨  𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑦𝑦) 

𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑥𝑥𝑦𝑦) ≤ 𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ∨  𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑦𝑦) 
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𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) ≤ 𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ∨  𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑦𝑦) 

𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑥𝑥𝑦𝑦) ≤ 𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ∨  𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑦𝑦) 

Case 3. Let 𝜀𝜀 ∈  A ∩ B . In this case the proof is 
straightforward. thus ,in any cases ,we have 

𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) ≥ 𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ⋀ 𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑦𝑦) 

𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑥𝑥𝑦𝑦) ≥ 𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ⋀ 𝑇𝑇𝐻𝐻�(𝜀𝜀)(𝑦𝑦) 

𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) ≤ 𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ∨  𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑦𝑦) 

𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑥𝑥𝑦𝑦) ≤ 𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ∨  𝐼𝐼𝐻𝐻�(𝜀𝜀)(𝑦𝑦) 

𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) ≤ 𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ∨  𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑦𝑦) 

𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑥𝑥𝑦𝑦) ≤ 𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑥𝑥) ∨  𝐹𝐹𝐻𝐻�(𝜀𝜀)(𝑦𝑦) 

Therefore , (𝑃𝑃�, A)⋃�( 𝑄𝑄� , B) is an intuitionistic neutrosophic 
soft set over ring 

3.8. Definition 

The intersection of two intuitionistic neutrosophic soft set 
over ring (𝑃𝑃�,A) and (𝑄𝑄� ,B) is denoted by (𝑃𝑃�,A) ∩� (𝑄𝑄� ,B) 
and is defined by an intuitionistic neutrosophic soft set over 
ring.  

𝑀𝑀�:A ⋃ B → ([0, 1] × [0, 1] × [0, 1])𝑅𝑅  such that for each 
𝜀𝜀 ∈ A ⋃ B. 

𝑀𝑀�(𝜀𝜀)= 

⎩
⎪
⎨

⎪
⎧ < 𝑥𝑥,𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥), 𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ,𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥) > 𝑖𝑖𝑖𝑖 𝜀𝜀 ∈  A − B

< 𝑥𝑥,𝑇𝑇𝑄𝑄�(𝜀𝜀)(𝑥𝑥), 𝐼𝐼𝑄𝑄�(𝜀𝜀)(𝑥𝑥) ,𝐹𝐹𝑄𝑄�(𝜀𝜀)(𝑥𝑥) > 𝑖𝑖𝑖𝑖 𝜀𝜀 ∈  B − A
< 𝑥𝑥,  𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∧ 𝑇𝑇𝑄𝑄�(𝜀𝜀)(𝑥𝑥), 𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∧ 𝐼𝐼𝑄𝑄�(𝜀𝜀)(𝑥𝑥) ,𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∨ 𝐹𝐹𝑄𝑄�(𝜀𝜀)(𝑥𝑥) >,

𝑖𝑖𝑖𝑖 𝜀𝜀 ∈  A ∩ B

�

(10) 

This is denoted by (𝑀𝑀� ,𝐶𝐶)= (𝑃𝑃�,A) ∩� (𝑄𝑄� ,B), where C = 
A⋃ B . 

3.9. Theorem 

If (𝑃𝑃�,A) and (𝑄𝑄� ,B) are two intuitionistic neutrosophic 
soft set over ring, then , so are (𝑃𝑃�,A) ∩� (𝑄𝑄� ,B). 
Proof. The proof is similar to that of Theorem 3.8. 

3.10. Definition 

Let (𝑃𝑃�,A) and (𝑄𝑄� ,B) be two intuitionistic neutrosophic 
soft set over ring R. Then , “(𝑃𝑃�,A) AND (𝑄𝑄� ,B)” is denoted 
by (𝑃𝑃� ,A)⋀ � (𝑄𝑄� ,B) and is defined by (𝑃𝑃� ,A) ⋀ � (𝑄𝑄� ,B)= 
(𝑁𝑁�,𝐶𝐶) ,where C= A×B and 𝐻𝐻�:C → ([0,1]3 × [0, 1]3 )𝑅𝑅  is 
defined as 

𝑁𝑁�(𝛼𝛼,𝛽𝛽) = 𝑃𝑃�(𝛼𝛼) ∩  𝑄𝑄�(𝛽𝛽) , for all (𝛼𝛼,𝛽𝛽)  ∈ C. 

3.11. Theorem 

If (𝑃𝑃�,A) and (𝑄𝑄� ,B) are two intuitionistic neutrosophic 
soft set over ring R, then , so is (𝑃𝑃�,A)⋀ � (𝑄𝑄� ,B). 
Proof. For all x, y ∈ R and (𝛼𝛼,𝛽𝛽)  ∈ A x B we have  

𝑇𝑇𝑁𝑁�(𝛼𝛼 ,𝛽𝛽)(𝑥𝑥 − 𝑦𝑦) = (𝑇𝑇𝑃𝑃�(𝛼𝛼)(𝑥𝑥 − 𝑦𝑦) ⋀ 𝑇𝑇𝑄𝑄�(𝛽𝛽)(𝑥𝑥 − 𝑦𝑦)) 

   ≥ (𝑇𝑇𝑃𝑃�(𝛼𝛼)(𝑥𝑥) ⋀ 𝑇𝑇𝑃𝑃�(𝛼𝛼)(𝑦𝑦)) ⋀ (𝑇𝑇𝑄𝑄�(𝛽𝛽)(𝑥𝑥)⋀ 𝑇𝑇𝑄𝑄�(𝛽𝛽)(𝑦𝑦)) 

= (𝑇𝑇𝑃𝑃�(𝛼𝛼)(𝑥𝑥)⋀ 𝑇𝑇𝑄𝑄�(𝛽𝛽)(𝑥𝑥)) ⋀ (𝑇𝑇𝑃𝑃�(𝛼𝛼)(𝑦𝑦) ⋀ 𝑇𝑇𝑄𝑄�(𝛽𝛽)(𝑦𝑦)) 

  = 𝑇𝑇𝑁𝑁�(𝛼𝛼 ,𝛽𝛽)(𝑥𝑥) ⋀ 𝑇𝑇𝑁𝑁�(𝛼𝛼 ,𝛽𝛽)(𝑦𝑦) 

𝑇𝑇𝑁𝑁�(𝛼𝛼 ,𝛽𝛽)(𝑥𝑥𝑦𝑦) = (𝑇𝑇𝑃𝑃�(𝛼𝛼)(𝑥𝑥𝑦𝑦) ⋀ 𝑇𝑇𝑄𝑄�(𝛽𝛽)(𝑥𝑥𝑦𝑦)) 

≥(𝑇𝑇𝑃𝑃�(𝛼𝛼)(𝑥𝑥) ⋀ 𝑇𝑇𝑃𝑃�(𝛼𝛼)(𝑦𝑦)) ⋀ (𝑇𝑇𝑄𝑄�(𝛽𝛽)(𝑥𝑥)⋀ 𝑇𝑇𝑄𝑄�(𝛽𝛽)(𝑦𝑦)) 

= (𝑇𝑇𝑃𝑃�(𝛼𝛼)(𝑥𝑥)⋀ 𝑇𝑇𝑄𝑄�(𝛽𝛽)(𝑥𝑥)) ⋀ (𝑇𝑇𝑃𝑃�(𝛼𝛼)(𝑦𝑦) ⋀ 𝑇𝑇𝑄𝑄�(𝛽𝛽)(𝑦𝑦)) 

 =𝑇𝑇𝑁𝑁�(𝛼𝛼 ,𝛽𝛽)(𝑥𝑥) ⋀ 𝑇𝑇𝑁𝑁�(𝛼𝛼 ,𝛽𝛽)(𝑦𝑦) 

In a similar way ,we have  

𝐼𝐼𝑁𝑁�(𝛼𝛼 ,𝛽𝛽)(𝑥𝑥 − 𝑦𝑦) ≤ 𝐼𝐼N�(𝛼𝛼 ,𝛽𝛽)(𝑥𝑥) ∨  𝐼𝐼𝑁𝑁�(𝛼𝛼 ,𝛽𝛽)(𝑦𝑦) 

𝐼𝐼𝑁𝑁�(𝛼𝛼 ,𝛽𝛽)(𝑥𝑥𝑦𝑦) ≤ 𝐼𝐼𝑁𝑁�(𝛼𝛼 ,𝛽𝛽)(𝑥𝑥) ∨  𝐼𝐼𝑁𝑁�(𝛼𝛼 ,𝛽𝛽)(𝑦𝑦) 

𝐹𝐹𝑁𝑁�(𝛼𝛼 ,𝛽𝛽)(𝑥𝑥 − 𝑦𝑦) ≤ 𝐹𝐹𝑁𝑁�(𝛼𝛼 ,𝛽𝛽)(𝑥𝑥) ∨  𝐹𝐹𝑁𝑁�(𝛼𝛼 ,𝛽𝛽)(𝑦𝑦) 

𝐹𝐹𝑁𝑁�(𝛼𝛼 ,𝛽𝛽)(𝑥𝑥𝑦𝑦) ≤ 𝐹𝐹𝑁𝑁�(𝛼𝛼 ,𝛽𝛽)(𝑥𝑥) ∨  𝐹𝐹𝑁𝑁�(𝛼𝛼 ,𝛽𝛽)(𝑦𝑦) 

For all x, y ∈  R and (𝛼𝛼,𝛽𝛽)  ∈  C .It follows that 
(𝑃𝑃�,A)∧� (𝑄𝑄� ,B) is an intuitionistic neutrosophic soft set over 
ring R. 

3.12. Definition 

Let (𝑃𝑃�,A) and (𝑄𝑄� ,B) be two intuitionistic neutrosophic 
soft set over ring R. Then , “(𝑃𝑃�,A) OR (𝑄𝑄� ,B)” is denoted by 
(𝑃𝑃� ,A) ∨ �(𝑄𝑄� ,B) and is defined by (𝑃𝑃� ,A) 
∨ �(𝑄𝑄� ,B)= (𝑂𝑂� ,𝐶𝐶)  ,where C= A ×  B and 𝑂𝑂�  : C → 
([0,1]3 × [0, 1]3 )𝑅𝑅 is defined as 

𝑂𝑂�(𝛼𝛼,𝛽𝛽) = 𝑃𝑃�(𝛼𝛼)∪� 𝑄𝑄�(𝛽𝛽) , for all (𝛼𝛼,𝛽𝛽)  ∈ C. 

3.13. Theorem 

If ( 𝑃𝑃�, A) and ( 𝑄𝑄� , B) are two intuitionist neutrosophic 
soft set over ring R, then , so are ( 𝑃𝑃�, A)∨�( 𝑄𝑄� , B). 
Proof. The proof is straightforward. 
The following theorem is a generalization of previous 
results. 

3.14. Theorem 

Let ( 𝑃𝑃�, A) be an intuitionist neutrosophic soft set over 
ring R, and let {( 𝑃𝑃�𝑖𝑖 ,𝐴𝐴𝑖𝑖)}𝑖𝑖∈𝐼𝐼  be a nonempty family of 
intuitionistic neutrosophic soft set over ring, where I is an 
index set .Then , one has the following: 

(1) ⋀ (𝑃𝑃�𝑖𝑖 ,𝐴𝐴𝑖𝑖)𝑖𝑖∈𝐼𝐼  is an intuitionistic neutrosophic soft set 
over ring R. 

(2) if 𝐴𝐴𝑖𝑖  ∩  𝐴𝐴𝑗𝑗  = 0 ,for all i, j ∈ I ,then ⋁ (𝑃𝑃�𝑖𝑖 ,  𝐴𝐴𝑖𝑖)𝑖𝑖∈𝐼𝐼  is 
an intuitionistic neutrosophic soft set over ring R. 

3.15. Definition 

Let (𝑃𝑃�,A) and (𝑄𝑄� ,B) be two intuitionistic neutrosophic 
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soft set over ring R. Then ,the product of (𝑃𝑃�,A) and (𝑄𝑄� ,B) 
is defined to be the intuitionistic neutrosophic soft set over 
ring (𝑃𝑃� ∘ 𝑄𝑄� , C) ,where C= A∪ B and 
𝑇𝑇(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥) 

=�
 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥) 𝑖𝑖𝑖𝑖 𝜀𝜀 ∈  A − B
𝑇𝑇𝑄𝑄�(𝜀𝜀)(𝑥𝑥) 𝑖𝑖𝑖𝑖 𝜀𝜀 ∈  B − A

 ⋁ {𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑎𝑎) ∧ 𝑇𝑇𝑄𝑄�(𝜀𝜀)(𝑏𝑏)}𝑥𝑥=𝑎𝑎𝑏𝑏  𝑖𝑖𝑖𝑖 𝜀𝜀 ∈  A ∩ B
�      (11) 

𝐼𝐼(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥) =�
 𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥) 𝑖𝑖𝑖𝑖 𝜀𝜀 ∈  A − B
𝐼𝐼𝑄𝑄�(𝜀𝜀)(𝑥𝑥) 𝑖𝑖𝑖𝑖 𝜀𝜀 ∈  B − A

 ⋀ {𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑎𝑎) ∨ 𝐼𝐼𝑄𝑄�(𝜀𝜀)(𝑏𝑏)}𝑥𝑥=𝑎𝑎𝑏𝑏  𝑖𝑖𝑖𝑖 𝜀𝜀 ∈  A ∩ B
� 

𝐹𝐹(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥) 

=�
 𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥) 𝑖𝑖𝑖𝑖 𝜀𝜀 ∈  A − B
𝐹𝐹𝑄𝑄�(𝜀𝜀)(𝑥𝑥) 𝑖𝑖𝑖𝑖 𝜀𝜀 ∈  B − A

 ⋀ {𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑎𝑎) ∨ 𝐹𝐹𝑄𝑄�(𝜀𝜀)(𝑏𝑏)}𝑥𝑥=𝑎𝑎𝑏𝑏  𝑖𝑖𝑖𝑖 𝜀𝜀 ∈  A ∩ B , a , b ∈ 𝑅𝑅
� 

For all 𝜀𝜀 ∈ C and a , b ∈ R .This is denoted by (𝑃𝑃� ∘ 𝑄𝑄� , C) 
= (𝑃𝑃�,A)∘ (𝑄𝑄� ,B). 

3.16. Theorem 

If (𝑃𝑃�,A) and (𝑄𝑄� ,B) are two intuitionistic neutrosophic 
soft set over ring R. Then , so is (𝑃𝑃�,A) ∘ (𝑄𝑄� ,B) . 
Proof. Let (𝑃𝑃� ,A) and (𝑄𝑄� ,B) be two intuitionistic 
neutrosophic soft set over ring R. Then ,for any 𝜀𝜀 ∈  A ∪
B ,and x ,y ∈ R, we consider the following cases. 
Case 1. Let 𝜀𝜀 ∈  A − B. Then, 
𝑇𝑇(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) = 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) 

≥ 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ⋀ 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑦𝑦) 
=𝑇𝑇(𝑃𝑃�  ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥) ⋀ 𝑇𝑇(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑦𝑦), 

𝑇𝑇(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥𝑦𝑦) = 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥𝑦𝑦) 
≥ 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ⋀ 𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑦𝑦) 

=𝑇𝑇(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥) ⋀ 𝑇𝑇(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑦𝑦) 
𝐼𝐼(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) = 𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) 

≤ 𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∨  𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑦𝑦) 
=𝐼𝐼(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥)  ∨  𝐼𝐼(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑦𝑦), 

𝐼𝐼(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥𝑦𝑦) = 𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥𝑦𝑦) 
  ≤ 𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∨  𝐼𝐼𝑃𝑃�(𝜀𝜀)(𝑦𝑦) 

  = 𝐼𝐼(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥)  ∨  𝐼𝐼(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑦𝑦) 

𝐹𝐹(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) = 𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥 − 𝑦𝑦) 
≤ 𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∨  𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑦𝑦) 

   =𝐹𝐹(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥)  ∨  𝐹𝐹(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑦𝑦), 
𝐹𝐹(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥𝑦𝑦) = 𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥𝑦𝑦) 

  ≤ 𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑥𝑥) ∨  𝐹𝐹𝑃𝑃�(𝜀𝜀)(𝑦𝑦) 
= 𝐹𝐹(𝑃𝑃�  ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥)  ∨  𝐹𝐹(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑦𝑦) 

Case 2. Let 𝜀𝜀 ∈  B − A. Then, analogous to the proof of 
case 1,the proof is straightforward. 
Case 3. Let 𝜀𝜀 ∈  A ∩ B. Then, 

𝑇𝑇(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥)= ⋁ (𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑎𝑎) ⋀ 𝑇𝑇𝑄𝑄�(𝜀𝜀)(𝑏𝑏))𝑥𝑥=𝑎𝑎𝑏𝑏  

   ≥ ⋁ (𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑎𝑎) ⋀ 𝑇𝑇𝑄𝑄�(𝜀𝜀)(𝑏𝑏𝑦𝑦))𝑥𝑥𝑦𝑦=𝑎𝑎𝑏𝑏𝑦𝑦  

≥ ⋁ (𝑇𝑇𝑃𝑃�(𝜀𝜀)(𝑐𝑐) ⋀ 𝑇𝑇𝑄𝑄�(𝜀𝜀)(𝑑𝑑))𝑥𝑥𝑦𝑦=𝑐𝑐𝑑𝑑  

= 𝑇𝑇(𝑃𝑃�  ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥𝑦𝑦) 

Similarly ,we have 𝑇𝑇(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥𝑦𝑦) ≥ 𝑇𝑇(𝑃𝑃�  ∘ 𝑄𝑄�)(𝜀𝜀)(𝑦𝑦) , and so 

𝑇𝑇(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥𝑦𝑦)  ≥ 𝑇𝑇(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥) ⋀ 𝑇𝑇(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑦𝑦) 

In a similar way , we prove that 

𝐼𝐼(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥𝑦𝑦) ≤ 𝐼𝐼(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥)  ∨ 𝐼𝐼(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑦𝑦)

and 𝐹𝐹(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥𝑦𝑦) ≤ 𝐹𝐹(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑥𝑥)  ∨ 𝐹𝐹(𝑃𝑃� ∘ 𝑄𝑄�)(𝜀𝜀)(𝑦𝑦) 

Therefore (𝑃𝑃� ,A)∘ (𝑄𝑄� ,B) is an intuitionistic neutrosophic 
soft set over ring R. 

4. Conclusion
In this paper we have introduced the concept of 

intuitionistic neutrosophic soft set over ring (INSSOR for 
short ). We also studied and discussed some properties 
related to this concept. The definitions of intersection, union, 
AND, and OR operations over ring (INSSOR) have also 
been defined. we have defined the product of two 
intuitionistic neutrosophic soft set over ring. Finally, it is 
hoped that this concept will be useful for the researchers to 
further promote and advance the research in neutrosophic 
soft set theory.  
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More on Intuitionistic Neutrosophic Soft Sets 

Said Broumi, Florentin Smarandache

Abstract  Intuitionistic Neutrosophic soft set theory 
proposed by S.Broumi and F.Samarandache [28], has been 
regarded as an effective mathematical tool to deal with 
uncertainties. In this paper  new operations on intuitionistic 
neutrosophic soft sets have been introduced . Some results 
relating to the properties of these operations have been 
established. Moreover ,we illustrate their interconnections 
between each other. 

Keywords  Soft Set, Intuitionistic Fuzzy Soft , 
Intuitionistic Neutrosophic Soft Sets, Necessity and 
Possibility Operations 

1. Introduction
The theory of neutrosophic set (NS), which is the 

generalization of the classical sets, conventional fuzzy set 
[1], intuitionistic fuzzy set [2]and interval valued fuzzy set 
[3],was introduced by Samarandache [4]. This concept has 
been applied in many fields such as Databases [5, 6], 
Medical diagnosis problem [7], Decision making problem 
[8],Topology [9],control theory [10] and so on. The concept 
of neutrosophic set handle indeterminate data whereas 
fuzzy set theory, and intuitionstic fuzzy set theory failed 
when the relation are indeterminate. 

Later on, several researchers have extended the 
neutrosophic set theory, such as Bhowmik and M.Pal in [11, 
12], in their paper, they defined “intuitionistic neutrosophic 
set”.In [13], A.A.Salam, S.A.Alblowi introduced another 
concept called “Generalized neutrosophic set”. In [14], 
Wang et al. proposed another extension of neutrosophic set 
which is” single valued neutrosophic”. In 1998 a Russian 
researcher, Molodtsov proposed a new mathematical tool 
called” Soft set theory” [ 15],for dealing with uncertainty 
and how soft set theory is free from the parameterization 
inadequacy syndrome of fuzzy set theory, rough set theory, 
probability theory. 

In recent time, researchers have contributed a lot towards 
fuzzification of soft set theory which leads to a series of 
mathematical models such as Fuzzy soft set [17, 18, 19, 20], 

generalized fuzzy soft set [21, 22], possibility fuzzy soft set 
[23] and so on, therafter, P.K.Maji and his coworker [24] 
introduced the notion of intuitionistic fuzzy soft set which is 
based on a combination of the intuitionistic fuzzy setsand 
soft set models and studied the properties of intuitionistic 
fuzzy soft set. Later a lot of extentions of intuitionistic 
fuzzy soft are appeared such as generalized intuitionistic 
fuzzy soft set [25], Possibility intuitionistic fuzzy soft set 
[26]and so on. Few studies are focused on 
neutrosophication of soft set theory. In [25] P.K.Maji, first 
proposed a new mathematical model called “Neutrosophic 
Soft Set” and investigate some properties regarding 
neutrosophic soft union, neutrosophic soft 
intersection ,complement of a neutrosophic soft set ,De 
Morgan law etc. Furthermore , in 2013, S.Broumi and F. 
Smarandache [26] combined the intuitionistic neutrosophic 
and soft set which lead to a new mathematical model called” 
intutionistic neutrosophic soft set”. They studied the 
notions of intuitionistic neutrosophic soft set union, 
intuitionistic neutrosophic soft set intersection, complement 
of intuitionistic neutrosophic soft set and several other 
properties of intuitionistic neutrosophic soft set along with 
examples and proofs of certain results. Also ,in [27] 
S.Broumi presentedthe concept of “Generalized 
neutrosophic soft set” by combining the generalized 
neutrosophic sets [13] and soft set models ,studied some 
properties on it, and presented an application of generalized 
neutrosophic soft set in decision making problem. 

In the present work, we have extended the intuitionistic 
neutrosophic soft sets defining new operations on it. Some 
properties of these operations have also been studied.  

The rest of this paper is organized as follow: section II 
deals with some definitions related to soft set 
theory ,neutrosophic set, intuitionistic neutrosophic set, 
intuitionistic neutrosophic soft set theory. Section III deals 
with the necessity operation on intuitionistic neutrosophic 
soft set. Section IV deals with the possibility operation on 
intuitionistic neutrosophic soft set. Finally ,section V give 
the conclusion. 
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In this section we represent definitions needful for next 
section,we denote by N(u) the set of all intuitionistic 
neutrosophic set. 

2.1. Soft Sets (see [15]). 

Let U be a universe set and E be a set of parameters. Let 𝜁𝜁 
( U ) denotes the power set of U and A ⊂ E.  

2.1.1. Definition [15] 
A pair ( P, A ) is called a soft set over U, where F is a 
mapping given by P : A →  𝜁𝜁 ( U ). In other words, a soft set 
over U is a parameterized family of subsets of the universe U. 
For e ∈ A, P (e ) may be considered as the set of e- 
approximate elements of the soft set ( P, A ).  

2.2 Intuitionistic Fuzzy Soft Set 

Let  U  be an initial universe set and  E  be the set of 
parameters. Let  IFU denote the collection of all 
intuitionistic fuzzy subsets of  U. Let . A ⊆  E pair (P  A) 
is called an intuitionistic fuzzy soft set over U where P is a 
mapping given by P: A→ IFU . 

2.2.1. Defintion 
Let  P: A→ IFU  then  F is a function defined as  P (𝜀𝜀) ={ x, 
𝝁𝝁𝑷𝑷(𝜀𝜀)(𝒙𝒙) , 𝝂𝝂𝑷𝑷(𝜀𝜀)(𝒙𝒙) : 𝒙𝒙 ∈ 𝑼𝑼 , 𝜀𝜀 ∈ 𝑬𝑬}   where  𝜇𝜇 , 𝜈𝜈 denote 
the degree of  membership and degree of non-membership 
respectively and  𝜋𝜋 = 1- 𝜇𝜇-  𝜈𝜈 , denote the hesitancy degree. 

2.3. Neutrosophic Sets (see [4 ]). 

Let U be an universe of discourse then the neutrosophic set A 
is an object having the form  
A = {< x: TA(x),IA(x),FA(x)>,x ∈ U}, where the functions T, I, F : 
U→ ]−0, 1+[  define respectively the degree of membership 
(or Truth) , the degree of indeterminacy, and the degree of 
non-membership (or Falsehood) of the element x ∈ U to the 
set A with the condition. 

−0 ≤ TA (x) + IA (x)+ FA (x)≤ 3+.    (1) 

From philosophical point of view, the neutrosophic set 
takes the value from real standard or non-standard subsets 
of ]−0, 1+[. So instead of ]−0, 1+[ we need to take the interval 
[0, 1] for technical applications, because ]−0, 1+[will be 
difficult to apply in the real applications  such as in 
scientific and engineering problems.  

2.4. Single Valued Neutrosophic Set(see [ 14]). 

2.4.1. Definition (see [14] ) 
Let X be a space of points (objects) with generic elements in 
X denoted by x. An SVNS A in X is characterized by a 
truth-membership function TA(x), an 
indeterminacy-membership function IA(x), and a 

falsity-membership function FA(x) for each point x in X, 
TA(x), IA(x), FA(x) ∈ [0, 1].  
When X is continuous, an SVNS A can be written as 

A=∫ <𝑇𝑇𝐴𝐴 (𝑥𝑥), 𝐼𝐼𝐴𝐴 (𝑥𝑥), 𝐹𝐹𝐴𝐴 (𝑥𝑥),>
𝑥𝑥𝑋𝑋 , 𝑥𝑥 ∈ 𝑋𝑋.  (2) 

When X is discrete, an SVNS A can be written as 

A= ∑ <𝑇𝑇𝐴𝐴 (𝑥𝑥𝑖𝑖 ), 𝐼𝐼𝐴𝐴 (𝑥𝑥𝑖𝑖 ),𝐹𝐹𝐴𝐴 (𝑥𝑥𝑖𝑖 ),>
𝑥𝑥𝑖𝑖

𝑛𝑛
1 , 𝑥𝑥𝑖𝑖 ∈ 𝑋𝑋    (3) 

2.4.2. Definition (see [4,14]) 
A neutrosophic set or single valued neutrosophic set (SVNS ) 
A is contained in another neutrosophic set B i.e. A ⊆ B if ∀x 
∈ U, TA(x) ≤ TB(x), IA(x) ≥ IB(x), FA(x) ≥ FB(x). 

2.4.3. Definition (see [2]) 
The complement of a neutrosophic set A is denoted by Ac 
and is defined as TA

c
(x) = FA(x),  IA

c
(x) = IA(x) and F A

c
(x) = TA(x) 

for every x in X. 
A complete study of the operations and application of 
neutrosophic set can be found in [4] . 

2.5. Intuitionistic Neutrosophic Set 

2.5.1. Definition (see[11]) 
An element x of  U is called significant with respect to 

neutrsophic set A of U if the degree  of  truth-membership 
or falsity-membership or indeterminancy-membership value, 
i.e.,  TA (x) or FA (x) or IA (x) )≤0.5. Otherwise, we call it
insignificant. Also, for neutrosophic set the 
truth-membership, indeterminacy-membership and 
falsity-membership all can not be significant. We define an 
intuitionistic neutrosophic set by A = {< x: TA (x)  , IA (x) ,
FA (x) >,x ∈U},where  

min { TA (x), FA (x)} ≤ 0.5, 

  min { TA (x), , IA (x)} ≤ 0.5, 

min { FA (x), IA (x) } ≤ 0.5, for all x ∈U,  (4) 

with the condition 

0 ≤ TA (x) + IA (x)+ FA (x)≤ 2.  (5) 

As an illustration ,let us consider the following example. 

2.5.2. Example 
Assume that the universe of discourse U={x1,x2,x3},where x1
characterizes the capability, x2 characterizes the 
trustworthiness and x3indicates the prices of the objects. It 
may be further assumed that the values of x1, x2 and x3 are in 
[0,1] and they are obtained from some questionnaires of 
some experts. The experts may impose their opinion in three 
components viz. the degree of goodness, the degree of 
indeterminacy and that of poorness to explain the 
characteristics of the objects. Suppose A is an intuitionistic 
neutrosophic set ( IN S ) of U, such that, 

2. Preliminaries
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A = {< 𝑥𝑥1 ,0.3,0.5,0.4 >,< 𝑥𝑥2 ,,0.4,0.2,0.6 >,< 𝑥𝑥3 , 0.7,0.3,0.5 >}, 

where the degree of goodness of capability is 0.3, degree of indeterminacy of capability is 0.5 and degree of falsity of 
capability is 0.4 etc. 

2.6. Intuitionistic Neutrosophic Soft Sets (see [28 ]). 

2.6.1. Definition 
Let U be an initial universe set and A ⊂ E  be a set of parameters. Let N( U ) denotes the set of all intuitionistic 

neutrosophic sets of U. The collection (P,A) is termed to be the soft intuitionistic neutrosophic set over U, where F is a 
mapping given by P : A → N(U).  

2.6.2. Example 
Let U be the set of blouses under consideration and E is the set of parameters (or qualities). Each parameter is a 

intuitionistic neutrosophic word or sentence involving intuitionistic neutrosophic words. Consider E = { Bright, Cheap, 
Costly, very costly, Colorful, Cotton, Polystyrene, long sleeve , expensive }. In this case, to define a intuitionistic 
neutrosophic soft set means to point out Bright blouses, Cheap blouses, Blouses in Cotton and so on. Suppose that, there are 
five blouses in the universe U given by, U = {b1, b2, b3 , b4 , b5} and the set of parameters A = {e1,e2,e3,e4}, where each  ei  
is a specific criterion for blouses: 
𝑒𝑒1  stands for ‘Bright’, 
𝑒𝑒2  stands for ‘Cheap’, 
𝑒𝑒3  stands for ‘Costly’, 
𝑒𝑒4  stands for ‘Colorful’, 
Suppose that, 
P(Bright)={< b1,0.5,0.6,0.3>,<b2 ,0.4,0.7,0.2>,<b3 ,0.6,0.2,0.3>,<b4 ,0.7,0.3,0.2>  ,< b5 ,0.8,0.2,0.3>}. 
P(Cheap)={< b1,0.6,0.3,0.5>,<b2 ,0.7,0.4,0.3>,<b3,0.8,0.1,0.2>,<b4 ,0.7,0.1,0.3> ,< b5 ,0.8,0.3,0.4}. 
P(Costly)={< b1,0.7,0.4,0.3>,<b2 ,0.6,0.1,0.2>,<b3 ,0.7,0.2,0.5>,< b4 ,0.5,0.2,0.6 >,< b5 ,0.7,0.3,0.2 >}.  
P(Colorful)={< b1,0.8,0.1,0.4>,<b2,0.4,0.2,0.6>,<b3 ,0.3,0.6,0.4>,<b4 ,0.4,0.8,0.5> ,< b5,0.3,0.5,0.7 >}.  

2.6.3.Definition([28]).Containment of two intuitionistic neutrosophic soft sets 
For two intuitionistic neutrosophic soft sets ( P, A ) and ( Q, B ) over the common universe U. We say that ( P, A ) is an 

intuitionistic neutrosophic soft subset of ( Q, B ) if and only if 
(i) A ⊂B. 
(ii)P(e) is an intuitionistic neutrosophic subset of Q(e). 
Or TP(e)(x) ≤ TQ(e)(m) ,  IP(e)(m)≥ IQ(e)(m), FP(e)(m) ≥ FQ(e)(m),∀e ∈ A, x ∈ U.  
We denote this relationship by ( P, A ) ⊆ ( Q, B ). 
( P, A ) is said to be intuitionistic neutrosophic soft super set of ( Q, B ) if ( Q, B ) is an intuitionistic neutrosophic soft subset 
of ( P, A ). We denote it by ( P, A ) ⊇ ( Q, B ). 

2.6.4 .Definition [28]. Equality of two intuitionistic neutrosophic soft sets 
Two INSSs ( P, A ) and ( Q, B ) over the common universe U are said to be intuitionistic neutrosophic soft equal if ( P, A ) 

is an intuitionistic neutrosophic soft subset of ( Q, B ) and (Q, B ) is an intuitionistic neutrosophic soft subset of ( P, A ) which 
can be denoted by ( P, A )= ( Q, B ). 

2.6.5. Definition [28]. Complement of an intuitionistic neutrosophic soft set 
The complement of an intuitionistic neutrosophic soft set ( P, A ) is denoted by (P,A)c and is defined by (P,A)c= (Pc,⌉A), 

where Pc :⌉A → N(U) is a mapping given by  Pc(α) = intutionistic neutrosophic soft complement with TP
c
(x) = FP(x), IP

c
(x) = IP(x) 

and FP
c
(x) = TP(x). 

2.6.6. Definition [28] Union of two intuitionistic neutrosophic soft sets 
Let (P, A) and (Q, B) be two INSSs over the same universe U.Then the union of (P, A) and (Q, B) is denoted by ‘(P, 

A)∪(Q, B)’ and is defined by (P,A)∪(Q, B) =(K, C), where C=A∪B and the truth-membership,  
indeterminacy-membership and falsity-membership of ( K,C) are as follows:  

𝑇𝑇𝐾𝐾(𝑒𝑒)(m) = �
TP(e)(m)  , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
TQ(e)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑚𝑚𝑥𝑥�𝑇𝑇𝑃𝑃(𝑒𝑒)(m), 𝑇𝑇𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖  𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 
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𝐼𝐼𝐾𝐾(𝑒𝑒)(m) = �
𝐼𝐼𝑃𝑃(𝑒𝑒)(m)  , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝐼𝐼𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑖𝑖𝑛𝑛 �𝐼𝐼𝑃𝑃(𝑒𝑒)(m), 𝐼𝐼𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖  𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

𝐹𝐹𝐾𝐾(𝑒𝑒)(m)  = �
𝐹𝐹𝑃𝑃(𝑒𝑒)(m)  , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝐹𝐹𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑖𝑖𝑛𝑛�𝐹𝐹𝑃𝑃(𝑒𝑒)(m) , 𝐹𝐹𝑄𝑄(𝑒𝑒)(m) �, 𝑖𝑖𝑖𝑖  𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
�     (6) 

2.6.7. Definition. Intersection of two intuitionistic neutrosophic soft sets [28] 
Let (P,A) and (Q,B) be two INSSs over the same universe U such that A ∩ B≠0. Then the intersection of (P,A) and ( Q, 

B) is denoted by ‘( P,A) ∩ (Q, B)’ and is defined by ( P, A ) ∩( Q, B ) = ( K,C),where C =A∩B and the truth-membership,
indeterminacy membership and falsity-membership of ( K, C ) are related to those of (P,A) and (Q,B) by: 

𝑇𝑇𝐾𝐾(𝑒𝑒)(m) = �
𝑇𝑇𝑃𝑃(𝑒𝑒)(m)  , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝑇𝑇𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑖𝑖𝑛𝑛�𝑇𝑇𝑃𝑃(𝑒𝑒)(m), 𝑇𝑇𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖  𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

𝐼𝐼𝐾𝐾(𝑒𝑒)(m) = �
𝐼𝐼𝑃𝑃(𝑒𝑒)(m)  , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝐼𝐼𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑖𝑖𝑛𝑛 �𝐼𝐼𝑃𝑃(𝑒𝑒)(m) , 𝐼𝐼𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖  𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

𝐹𝐹𝐾𝐾(𝑒𝑒)(m) = �
𝐹𝐹𝑃𝑃(𝑒𝑒)(m)  , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝐹𝐹𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑚𝑚𝑥𝑥�𝐹𝐹𝑃𝑃(𝑒𝑒)(m), 𝐹𝐹𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖  𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
�      (7) 

In this paper we are concerned with intuitionistic neutrosophic sets whose TA, IA and FA values are single points in [0, 1] 
instead of subintervals/subsets in [0, 1] 

3. The Necessity Operation on Intuitionistic Neutrosophic Soft Set
In this section,we shall introduce the necessity operation on intuitionistic neutrosophic soft set 

3.1. Remark 

𝑠𝑠𝐴𝐴= 𝑇𝑇𝐴𝐴+𝐼𝐼𝐴𝐴+𝐹𝐹𝐴𝐴, 𝑠𝑠𝐵𝐵  =𝑇𝑇𝐵𝐵+𝐼𝐼𝐵𝐵+𝐹𝐹𝐵𝐵  .if 𝑠𝑠𝐴𝐴= 𝑠𝑠𝐵𝐵  we put S = 𝑠𝑠𝐴𝐴= 𝑠𝑠𝐵𝐵  

3.2. Definition 

The necessity operation on an intuitionistic neutrosophic soft set ( P, A ) is denoted by ( P, A ) and is defined as 

⊡ (P, A) = {<m, T𝑃𝑃(𝑒𝑒)(𝑚𝑚), I𝑃𝑃(𝑒𝑒)(𝑚𝑚), 𝑠𝑠𝐴𝐴–T𝑃𝑃(𝑒𝑒)(𝑚𝑚)> |m ∈ U and e ∈A}, 

where 𝑠𝑠𝐴𝐴=T+I+F. 
Here TP(e)(m) is the neutrosophic membership degree that object m hold on parameter e , I𝑃𝑃(𝑒𝑒)(𝑚𝑚)represent the 
indeterminacy function and P is a mapping P : A → N(U), N(U) is the set of aintuitionistic neutrosophic sets of U.  

3.3. Example 

Let there are five objects as the universal set where U = { m1, m2, m3, m4, m5 }and the set of parameters as E = { beautiful, 
moderate, wooden, muddy, cheap, costly }and  
Let A = {beautiful, moderate, wooden}. Let the attractiveness of the objects represented by the intuitionistic neutrosophic 
soft sets (P, A) is given as  

P(beautiful)={ m1/(.6,.2,.4), m2/(.7, .3, .2), m3/(.5, .4, .4), m4/(.6, .4, .3), m5/(.8, .4, .1)}, 
P(moderate)={m1/(.7, .3, .2), m2/(.8,.1, .1), m3/(.7, .5, .2), m4/(.8, .5, .1), m5/(1, .2, 0)} 

and P(wooden) ={ m1/(.8, .5, .1), m2/(.6, .4,0), m3/(.6, .5, .2), m4/(.2, .3, .4), m5/(.3, .2, .5)}. 

Then the intuitionistic neutrosophicsoft sets  (P,A) becomes as  
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P(beautiful) ={ m1/(.6,.2,.6), m2/(.7, .3, .5), m3/(.5, .4, .8), m4/(.6, .4, .7), m5/(.8, .4, .5)}, 
P(moderate) ={ m1/(.7, .3, .5), m2/(.8,.1, .2), m3/(.7, .5, .7), m4/(.8, .5, .6), m5/(1, .2,.2} 

And 
P(wooden) ={ m1/(.8, .5, .6), m2/(.6, .4,.4), m3/(.6, .5, .7), m4/(.2, .3, .7), m5/(.3, .2, .7)}. 

Let (P, A) and (Q, B) be two intuitionistic neutrosophic soft sets over a universe  
U and A, B be two sets of parameters. Then we have the following propositions:  

3.4. Proposition 

i. ⊡ [( P, A ) ∪( Q, B ) ] =⊡ ( P, A ) ∪ ⊡ ( Q, B ).   (8) 

ii. ⊡ [( P, A ) ∩( Q, B ) ] = ⊡ ( P, A ) ∩ ⊡ ( G, B ). (9) 

iii. ⊡ ⊡ ( P, A ) = ⊡ ( P, A ).   (10) 

iv. ⊡ [( P, A )]n = [⊡ ( P, A )]n (11) 

for any finite positive integer n. 

v. ⊡ [( P, A )  ∪  ( Q, B )]𝑛𝑛  = [⊡  ( P, A )  ∪ ⊡  ( Q, B )]𝑛𝑛 . (12) 

vi. ⊡ [( P, A )  ∩  ( Q, B )]𝑛𝑛  = [⊡  ( P, A )  ∩ ⊡  ( Q, B )]𝑛𝑛 . (13) 

Proof 
i. [( P, A ) ∪ ( Q, B ) ]
suppose (P ,A) ∪ (Q , B) =(H, C) ,where C= A∪ B and for all e ∈ C and 
𝑠𝑠𝐴𝐴  =𝑇𝑇𝑃𝑃(𝑒𝑒)+𝐼𝐼𝑃𝑃(𝑒𝑒)+𝐹𝐹𝑃𝑃(𝑒𝑒)  and 𝑠𝑠𝐵𝐵  =𝑇𝑇𝑄𝑄(𝑒𝑒)+𝐼𝐼𝑄𝑄(𝑒𝑒)+𝐹𝐹𝑄𝑄(𝑒𝑒) , 𝑠𝑠𝐴𝐴 − T𝑃𝑃(𝑒𝑒)(𝑚𝑚) = I𝑃𝑃(𝑒𝑒)(𝑚𝑚)  + F𝑃𝑃(𝑒𝑒)(𝑚𝑚),  𝑠𝑠𝐵𝐵 − T𝑄𝑄(𝑒𝑒)(𝑚𝑚) = I𝑄𝑄(𝑒𝑒)(𝑚𝑚) +
F𝑄𝑄(𝑒𝑒)(𝑚𝑚), 

𝑇𝑇𝐻𝐻(𝑒𝑒)(m) = �
T𝑃𝑃(𝑒𝑒)(𝑚𝑚) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
T𝑄𝑄(𝑒𝑒)(𝑚𝑚) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑚𝑚𝑥𝑥�𝑇𝑇𝑃𝑃(𝑒𝑒)(𝑚𝑚), 𝑇𝑇𝑄𝑄(𝑒𝑒)(𝑚𝑚 )�, 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

𝐼𝐼𝐻𝐻(𝑒𝑒)(m) = �
I𝑃𝑃(𝑒𝑒)(𝑚𝑚) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
I𝑄𝑄(𝑒𝑒)(𝑚𝑚) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑖𝑖𝑛𝑛�I𝑃𝑃(𝑒𝑒)(𝑚𝑚), I𝑄𝑄(𝑒𝑒)(𝑚𝑚)�, 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

𝐹𝐹𝐻𝐻(𝑒𝑒)(m) = �
F𝑃𝑃(𝑒𝑒)(𝑚𝑚), 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
F𝑄𝑄(𝑒𝑒)(𝑚𝑚) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑖𝑖𝑛𝑛�F𝑃𝑃(𝑒𝑒)(𝑚𝑚), F𝑄𝑄(𝑒𝑒)(𝑚𝑚)�, 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

Since [( P, A ) ∪ ( Q, B ) ] =  ( H, C ) and m ∈ U, by definition 3.2 we Have 

𝑇𝑇𝐻𝐻(𝑒𝑒)(m) = �
𝑇𝑇𝑃𝑃(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝑇𝑇𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑚𝑚𝑥𝑥�𝑇𝑇𝑃𝑃(𝑒𝑒)(m), 𝑇𝑇𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

𝐼𝐼𝐻𝐻(𝑒𝑒)(m) = �
𝐼𝐼𝑃𝑃(𝑒𝑒) (m), 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝐼𝐼𝑄𝑄(𝑒𝑒) (m), 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑖𝑖𝑛𝑛�𝐼𝐼𝑃𝑃(𝑒𝑒)(m), 𝐼𝐼𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
�   

𝐹𝐹𝐻𝐻(𝑒𝑒)(m) = �
𝑠𝑠𝐴𝐴 − 𝑇𝑇𝑃𝑃(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B ,
𝑠𝑠𝐵𝐵 − 𝑇𝑇𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑆𝑆 − 𝑚𝑚𝑚𝑚𝑥𝑥�𝑇𝑇𝑃𝑃(𝑒𝑒)(m), 𝑇𝑇𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

For all e ∈ C =A ∪ B and m ∈ U. Assume that ⊡ (P, A)={<m, 𝑇𝑇𝑃𝑃(𝑒𝑒)(𝑚𝑚) ,𝐼𝐼𝑃𝑃(𝑒𝑒)(𝑚𝑚) ,𝑠𝑠𝐴𝐴-𝑇𝑇𝑃𝑃(𝑒𝑒)(𝑚𝑚)>,m ∈ U} and ⊡ 

(Q, A)={< 𝑚𝑚,  𝑇𝑇𝑂𝑂(𝑒𝑒)(m)  ,𝐼𝐼𝑂𝑂(𝑒𝑒)(m)  ,𝑠𝑠𝐵𝐵-𝑇𝑇𝑂𝑂(𝑒𝑒)(m)  ,m ∈ U} .Suppose that (P,A) ∪  (Q,B) =(O,C), where C= A ∪ 

B,and for all e ∈ C and m ∈ U. 

Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

183



𝑇𝑇𝑂𝑂(𝑒𝑒)(m) = �
𝑇𝑇𝑃𝑃(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝑇𝑇𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑚𝑚𝑥𝑥�𝑇𝑇𝑃𝑃(𝑒𝑒)(m), 𝑇𝑇𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

𝐼𝐼𝑂𝑂(𝑒𝑒)(m) = �
𝐼𝐼𝑃𝑃(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝐼𝐼𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑖𝑖𝑛𝑛�𝐼𝐼𝑃𝑃(𝑒𝑒)(m), 𝐼𝐼𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

𝐹𝐹𝑂𝑂(𝑒𝑒)(m) = �
𝑠𝑠𝐴𝐴 − 𝑇𝑇𝑃𝑃(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝑠𝑠𝐵𝐵 − 𝑇𝑇𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑖𝑖𝑛𝑛�𝑠𝑠𝐴𝐴 − 𝑇𝑇𝑃𝑃(𝑒𝑒)(m), 𝑠𝑠𝐴𝐴 − 𝑇𝑇𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

= 

⎩
⎪
⎨

⎪
⎧ 𝑠𝑠𝐴𝐴 − 𝑇𝑇𝑃𝑃(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 

𝑠𝑠𝐵𝐵 − 𝑇𝑇𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A
𝑆𝑆 − 𝑚𝑚𝑚𝑚𝑥𝑥�𝑇𝑇𝑃𝑃(𝑒𝑒)(m), 𝑇𝑇𝑄𝑄(𝑒𝑒)(m)�,

𝑖𝑖𝑖𝑖 𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 𝑤𝑤𝑖𝑖𝑤𝑤ℎ 𝑆𝑆 = 𝑠𝑠𝐴𝐴 = 𝑠𝑠𝐵𝐵

� 

Consequently, (H,C) and (O, C) are the same intuitionistic neutrosophic soft sets.Thus , 

⊡ ( (P,A) ∪ (Q,B))= ⊡ (P,A) ∪ ⊡ (Q,B). 

Hence the result is proved.  
(ii ) and (iii) are proved analogously. 
iii. Let

(P, A) = {<m, TP(e)(m), IP(e)(m), FP(e)(m), >|m ∈ U and e ∈ A}. 

Then 

⊡ (P, A) = {<m, TP(e)(m), IP(e)(m), sA –TP(e)(m) >|m ∈ U and e ∈A}. 

So 

⊡  ⊡ (P, A) = {<m, TP(e)(m), I𝑃𝑃(𝑒𝑒)(m), 𝑠𝑠𝐴𝐴- 𝑇𝑇𝑃𝑃(𝑒𝑒)(m) >|m ∈ U and e ∈A}. 

Hence the result follows.  
iv. Let the intuitionistic neutrosophic soft set

( P, A ) = {<m, 𝑇𝑇𝑃𝑃(𝑒𝑒)(m) , I𝑃𝑃(𝑒𝑒)(m),  F𝑃𝑃(𝑒𝑒)(m)>|m ∈ U and e ∈A}. 

Then for any finite positive integer n  

( P, A )𝑛𝑛 = {<m, [TP(e)(m)  ]𝑛𝑛 , [IP(e)(m)  ]𝑛𝑛 , 𝑠𝑠𝐴𝐴-[𝑠𝑠𝐴𝐴–FP(e)(m)]n>|m ∈ U and e ∈A} 

So, 

⊡ ( P, A )𝑛𝑛  = {<m, [TP(e)(m)]𝑛𝑛 , [IP(e)(m)  ]𝑛𝑛 ,𝑠𝑠𝐴𝐴- [TP(e)(m)]𝑛𝑛 >|m∈U and e ∈A}. 

Again, [⊡ (P, A)]𝑛𝑛 = {<m, [TP(e)(m)]𝑛𝑛 , [IP(e)(m)]𝑛𝑛  , 𝑠𝑠𝐴𝐴- [TP(e)(m) ]𝑛𝑛 >|m ∈ U and e ∈ A} as   

⊡ (P, A) = {<m, 𝑇𝑇𝑃𝑃(𝑒𝑒)(m) , I𝑃𝑃(𝑒𝑒)(m),  𝑠𝑠𝐴𝐴–𝑇𝑇𝑃𝑃(𝑒𝑒)(m) >|m ∈ U and e ∈ A}. 

Hence the result. 

v. As ( P, A )𝑛𝑛 ∪  ( Q, B )𝑛𝑛 = [( P, A )  ∪  ( Q, B )  ]𝑛𝑛

⊡ [  ( P, A )  ∪  ( Q, B )  ]𝑛𝑛  = [ ⊡  [( P, A ) ∪  ( Q, B )] ]𝑛𝑛   by the proposition 3.4.iv 
      = [⊡ ( P, A )  ∪ ⊡ ( Q, B )  ]𝑛𝑛    by the proposition 3.4.i 

vi. As ( P, A )𝑛𝑛 ∩ ( Q, B )𝑛𝑛 =[( P, A )  ∩  ( Q, B )  ]𝑛𝑛

So, ⊡ [  ( P, A )  ∩  ( Q, B )  ]𝑛𝑛 = [ ⊡  [( P, A ) ∩  ( Q, B )] ]𝑛𝑛  by the proposition3.4.iv 
     = [⊡ ( P, A )  ∩ ⊡ ( Q, B )  ]𝑛𝑛  by the proposition 3.4.ii 

The result is proved. 

The concept of  necessity operation on intuitionistic neutrosophic soft set can also be applied to measure  the necessity 
operation on intuitionistic fuzzy soft set (IFSS) ,proposed by P.K .Maji  [30] ,where the indeterminacy degree IP(e)(m) 
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should be replaced by IP(e)(m) = 1-TP(e)(m)- FP(e)(m) in case of IFSS. In this case, we conclude that the necessity 
operation on intuitionistic neutrosophic soft set is a generalization of the necessity operation on intuitionistic fuzzy soft set 

4. The Possibility Operation on Intuitionistic Neutrosophic Soft Sets
In this section, we shall define another operation, the possibility operation on intuitionistic neutrosophic soft sets. 
Let U be a universal set. E be a set of parameters and A be a subset of E. Let the intuitionistic neutrosophic soft set. 

(P, A) = {<m, T𝑃𝑃(𝑒𝑒)(𝑚𝑚), I𝑃𝑃(𝑒𝑒)(𝑚𝑚) , F𝑃𝑃(𝑒𝑒)(𝑚𝑚)  >| m ∈ U and e ∈A}, where T𝑃𝑃(𝑒𝑒)(𝑚𝑚), I𝑃𝑃(𝑒𝑒)(𝑚𝑚) , F𝑃𝑃(𝑒𝑒)(𝑚𝑚)be the 
membership, indeterminacyand non-membership functions respectively.  

4.1. Definition 

Let U be the universal set and E be the set of parameters. The possibility operation on the intuitionistic neutrosophic soft 
set (P, A) is denoted by ◊(P, A) and is defined as  

◊ ( P, A ) =  {<m, 𝑠𝑠𝐴𝐴– FP(e)(m),  IP(e)(m),  FP(e)(m) >| m ∈U and e ∈A },

where 

𝑠𝑠𝐴𝐴=  T𝑃𝑃(𝑒𝑒)(𝑚𝑚)+ I𝑃𝑃(𝑒𝑒)(𝑚𝑚)+ F𝑃𝑃(𝑒𝑒)(𝑚𝑚) and  0- ≤ 𝑠𝑠𝐴𝐴 ≤3+ 

4.2. Example 

Let there are five objects as the universal set where U = {m1, m2, m3, m4, m5}. Also let the set of  parameters as E = 
{ beautiful, costly, cheap, moderate, wooden, muddy } and A = { costly, cheap, moderate}. The cost of the objects 
represented by the intuitionistic neutrosophic soft sets  
(P, A) is given as  

P(costly)={ m1/(.7, .1, .2), m2/(.8, .3, 0), m3/(.8, .2, .1), m4/(.9, .4, 0), m5/(.6, .2, .2)}, 
P(cheap)={ m1/(.5, .3, .2),m2/(.7, .5, .1), m3/(.4, .3, .2), m4/(.8, .5, .1), m5/(.4, .4, .2)} 

and 
P(moderate) ={ m1/(.8, .4, .2), m2/(.6, .1, .3), m3/(.5, .5, .1), m4/(.9, .4, 0),m5/(.7, .3,.1)}. 

Then the neutrosophic soft set ◊( P, A )  is as  
P(costly) ={ m1/(.8, .1, .2), m2/(1.1, .3, 0), m3/(1, .2, .1), m4/(1.3, .4, 0), m5/(.8, .2, .2)}, 

P(cheap) ={ m1/(.8, .3, .2),m2/(1.2, .5, .1), m3/(.7, .3, .2), m4/(1.3, .5, .1), m5/(.8, .4, .2} 

and 
P(moderate) ={  m1/(1.2, .4, .2), m2/(.7, .1, .3), m3/(1, .5, .1), m4/(1.3, .4, 0),m5/(1, .3,.1)}. 

The concept of  possibilty operation on intuitionistic neutrosophic soft set can also be applied to measure  the necessity 
operation on intuitionistic fuzzy soft set (IFSS) ,proposed by P.K .Maji  [30] ,where the indeterminacy degree IP(e)(m) 

should be replaced by IP(e)(m) = 1-TP(e)(m)- FP(e)(m) in case of IFSS. In this case, we conclude that the possibility 
operation on intuitionistic neutrosophic soft set is a generalization of the possibility operation on intuitionistic fuzzy soft 
set. 

Let ( P, A ) and ( Q, B ) be two intuitionistic neutrosophic  soft sets over the same universe U and A, B be two sets of 
parameters. Then we have the propositions 

4.3. Proposition 

i.◊ [( P, A ) ∪( Q, B ) ] = ◊ ( P, A ) ∪  ◊ ( Q, B ).  (14) 

ii.◊ [( P, A ) ∩( Q, B ) ] = ◊ ( P, A ) ∩ ◊ ( Q, B )    (15) 
iii. ◊◊ ( P, A ) = ◊ ( P, A ).      (16) 

iv. ◊ [(P, A)]𝑛𝑛 = [◊ (P, A)]𝑛𝑛       (17) 

for any finite positive integer n. 
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v.◊ [( P, A )  ∪  ( Q, B )  ]𝑛𝑛 = [◊  ( P, A )  ∪ ◊  ( Q, B )   ]𝑛𝑛 .      (18) 

vi.◊ [( P, A )  ∩  ( Q, B )  ]𝑛𝑛= [◊  ( P, A )  ∩ ◊  ( Q, B )   ]𝑛𝑛    (19) 

Proof 
i. ◊ [( P, A ) ∪ (Q, B ) ]  
suppose (P ,A) ∪ (Q , B) =(H, C) ,where C= A∪ B and for all e ∈ C and 

𝑠𝑠𝐴𝐴  =T𝑃𝑃(𝑒𝑒)(𝑚𝑚)+ I𝑃𝑃(𝑒𝑒)(𝑚𝑚)+ F𝑃𝑃(𝑒𝑒)(𝑚𝑚)  and 𝑠𝑠𝐵𝐵  =T𝑄𝑄(𝑒𝑒)(𝑚𝑚)+ I𝑄𝑄(𝑒𝑒)(𝑚𝑚)+ F𝑄𝑄(𝑒𝑒)(𝑚𝑚) 

 𝑠𝑠𝐴𝐴 − 𝐹𝐹𝑃𝑃(𝑒𝑒)(m) = 𝐼𝐼𝑃𝑃(𝑒𝑒)(m) + 𝑇𝑇𝑃𝑃(𝑒𝑒)(m) , 

 𝑠𝑠𝐵𝐵 − 𝐹𝐹𝑄𝑄(𝑒𝑒)(m)  = 𝐼𝐼𝑃𝑃(𝑒𝑒)(m) + 𝑇𝑇𝑄𝑄(𝑒𝑒)(m) 

𝑇𝑇𝐻𝐻(𝑒𝑒)(m) = �
𝑇𝑇𝑃𝑃(𝑒𝑒)(m)  , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝑇𝑇𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑚𝑚𝑥𝑥�𝑇𝑇𝑃𝑃(𝑒𝑒)(m)  , 𝑇𝑇𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖  𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

𝐼𝐼𝐻𝐻(𝑒𝑒)(m) = �
𝐼𝐼𝑃𝑃(𝑒𝑒)(m)  , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝐼𝐼𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑖𝑖𝑛𝑛 �𝐼𝐼𝑃𝑃(𝑒𝑒)(m), 𝐼𝐼𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖  𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

𝐹𝐹𝐻𝐻(𝑒𝑒)(m) = �
𝐹𝐹𝑃𝑃(𝑒𝑒)(m)  , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝐹𝐹𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑖𝑖𝑛𝑛�𝐹𝐹𝑃𝑃(𝑒𝑒)(𝑚𝑚), 𝐹𝐹𝑄𝑄(𝑒𝑒)(𝑚𝑚)�, 𝑖𝑖𝑖𝑖  𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

Since ◊ [(P, A ) ∪ (Q, B ) ] =◊ (H, C ) and m ∈ U, by definition 4.1 we Have 

𝑇𝑇𝐻𝐻(𝑒𝑒)(m) = 

⎩
⎪
⎨

⎪
⎧ 𝑠𝑠𝐴𝐴 − 𝐹𝐹𝑃𝑃(𝑒𝑒)(m)    , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 

𝑠𝑠𝐵𝐵 − 𝐹𝐹𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A
𝑆𝑆 − 𝑚𝑚𝑖𝑖𝑛𝑛�𝐹𝐹𝑃𝑃(𝑒𝑒)(m), 𝐹𝐹𝑄𝑄(𝑒𝑒)(m)�,

𝑖𝑖𝑖𝑖  𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵, 𝑤𝑤𝑖𝑖𝑤𝑤ℎ 𝑆𝑆 = 𝑠𝑠𝐴𝐴 = 𝑠𝑠𝐵𝐵

� 

𝐼𝐼𝐻𝐻(𝑒𝑒)(m)  = �
𝐼𝐼𝑃𝑃(𝑒𝑒)(m)  , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝐼𝐼𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑖𝑖𝑛𝑛�𝐼𝐼𝑃𝑃(𝑒𝑒)(m), 𝐼𝐼𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖  𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

𝐹𝐹𝐻𝐻(𝑒𝑒)(m) = �
𝐹𝐹𝑃𝑃(𝑒𝑒)(m)  , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝐹𝐹𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑖𝑖𝑛𝑛 �𝐹𝐹𝑃𝑃(𝑒𝑒)(m), 𝐹𝐹𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖  𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

For all e ∈ C =A ∪ B and m ∈ U. Assume that 

◊ (P, A)={<m, 𝑠𝑠𝐴𝐴-𝐹𝐹𝑃𝑃(𝑒𝑒)(m), 𝐼𝐼𝑃𝑃(𝑒𝑒)(m) , 𝐹𝐹𝑃𝑃(𝑒𝑒)(m)>,m ∈ U}

and 

◊ (Q, B)={< 𝑚𝑚,   𝑠𝑠𝐵𝐵-𝐹𝐹𝑄𝑄(𝑒𝑒)(m) , 𝐼𝐼𝑄𝑄(𝑒𝑒)(m) , 𝐹𝐹𝑄𝑄(𝑒𝑒)(m)  > ,m ∈ U} .

Suppose that 

◊ (P, A) ∪ ◊ (Q, B ) = (O, C) ,

where C= A ∪ B, and for all e ∈ C and m ∈ U. 

𝑇𝑇𝑂𝑂(𝑒𝑒)(m) = �
𝑠𝑠𝐴𝐴 − 𝐹𝐹𝑃𝑃(𝑒𝑒)(m),   , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝑠𝑠𝐵𝐵 − 𝐹𝐹𝑄𝑄(𝑒𝑒)(m), , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑚𝑚𝑥𝑥�𝑠𝑠𝐴𝐴 − 𝐹𝐹𝑃𝑃(𝑒𝑒)(m), 𝑠𝑠𝐵𝐵 − 𝐹𝐹𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖  𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

= 

⎩
⎪
⎨

⎪
⎧ 𝑠𝑠𝐴𝐴 − 𝐹𝐹𝑃𝑃(𝑒𝑒)(m)  , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 

𝑠𝑠𝐵𝐵 − 𝐹𝐹𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A
𝑆𝑆 − 𝑚𝑚𝑖𝑖𝑛𝑛�𝐹𝐹𝑃𝑃(𝑒𝑒)(m), 𝐹𝐹𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖  𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵,

𝑤𝑤𝑖𝑖𝑤𝑤ℎ 𝑆𝑆 = 𝑠𝑠𝐴𝐴 = 𝑠𝑠𝐵𝐵

� 
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𝐼𝐼𝑂𝑂(𝑒𝑒)(m) = �
𝐼𝐼𝑃𝑃(𝑒𝑒)(m)  , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝐼𝐼𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑖𝑖𝑛𝑛 �𝐼𝐼𝑃𝑃(𝑒𝑒)(m) , 𝐼𝐼𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖  𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

𝐹𝐹𝑂𝑂(𝑒𝑒)(m) = �
𝐹𝐹𝑃𝑃(𝑒𝑒)(m)  , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  A − B 
𝐹𝐹𝑄𝑄(𝑒𝑒)(m) , 𝑖𝑖𝑖𝑖 𝑒𝑒 ∈  B − A

𝑚𝑚𝑖𝑖𝑛𝑛�𝐹𝐹𝑃𝑃(𝑒𝑒)(m), 𝐹𝐹𝑄𝑄(𝑒𝑒)(m)�, 𝑖𝑖𝑖𝑖  𝑒𝑒 ∈ 𝐴𝐴 ∩ 𝐵𝐵 
� 

Consequently, ◊ (H,C) and (O, C) are the same intuitionistic neutrosophic soft sets.Thus , 

◊ ( (P, A) ∪  (Q, B))=◊ (P, A) ∪ ◊ (Q, B).

Hence the result is proved.  
(ii ) and (iii) are proved analogously. 

iii. ◊( P, A ) = {<m, 𝑠𝑠𝐴𝐴- F𝑃𝑃(𝑒𝑒)(𝑚𝑚), I𝑃𝑃(𝑒𝑒)(𝑚𝑚)], F𝑃𝑃(𝑒𝑒)(𝑚𝑚)]>|m ∈U and e∈A}. 

So 

◊◊( P, A ) = {<m, 𝑠𝑠𝐴𝐴–F𝑃𝑃(𝑒𝑒)(𝑚𝑚) , I𝑃𝑃(𝑒𝑒)(𝑚𝑚), F𝑃𝑃(𝑒𝑒)(𝑚𝑚)] >| m ∈ U and e ∈A}. 

Hence the result. 
iv. For any positive finite integer n,

  (P, A)𝑛𝑛  ={<m, [T𝑃𝑃(𝑒𝑒)(𝑚𝑚)]𝑛𝑛 ,  [I𝑃𝑃(𝑒𝑒)(𝑚𝑚)]𝑛𝑛 ,  𝑠𝑠𝐴𝐴-[𝑠𝑠𝐴𝐴 −  F𝑃𝑃(𝑒𝑒)(𝑚𝑚)]]𝑛𝑛 >|m∈U } ∀e∈A, 

So, 

◊(P, A)𝑛𝑛 = {<m, 𝑠𝑠𝐴𝐴- [𝑠𝑠𝐴𝐴-[𝑠𝑠𝐴𝐴 −  F𝑃𝑃(𝑒𝑒)(𝑚𝑚)]𝑛𝑛 ], [I𝑃𝑃(𝑒𝑒)(𝑚𝑚)]𝑛𝑛 , 𝑠𝑠𝐴𝐴-[𝑠𝑠𝐴𝐴 −  F𝑃𝑃(𝑒𝑒)(𝑚𝑚)]𝑛𝑛 >|m ∈U }

= {<m, [𝑠𝑠𝐴𝐴 −  F𝑃𝑃(𝑒𝑒)(𝑚𝑚)]𝑛𝑛 , [I𝑃𝑃(𝑒𝑒)(𝑚𝑚)]𝑛𝑛  , 𝑠𝑠𝐴𝐴-[𝑠𝑠𝐴𝐴 −  F𝑃𝑃(𝑒𝑒)(𝑚𝑚)]𝑛𝑛 >|m∈U } ∀ e ∈A. 

Again 

     [◊ (P, A)]𝑛𝑛  = {<m, [𝑠𝑠𝐴𝐴 −  F𝑃𝑃(𝑒𝑒)(𝑚𝑚)]𝑛𝑛 , [I𝑃𝑃(𝑒𝑒)(𝑚𝑚)]𝑛𝑛 , 𝑠𝑠𝐴𝐴-[𝑠𝑠𝐴𝐴 −  F𝑃𝑃(𝑒𝑒)(𝑚𝑚)]𝑛𝑛   >| m∈U } ∀ e ∈A. 

Hence the result follows.  

v. As [( P, A )  ∪  ( Q, B )  ]𝑛𝑛 = (P, A)𝑛𝑛∪(Q, B)𝑛𝑛 ,

◊[( P, A )  ∪  ( Q, B )  ]𝑛𝑛 = = ◊(P, A)𝑛𝑛  ∪ ◊ (Q, B)𝑛𝑛 .

the result is proved 

vi.As  [( P, A )  ∩  ( Q, B )  ]𝑛𝑛  = (P, A)𝑛𝑛 ∩ (Q, B)𝑛𝑛 ,

◊[( P, A )  ∩  ( Q, B )  ]𝑛𝑛 = ◊ (P, A)𝑛𝑛 ∩◊ (Q, B)𝑛𝑛 .

Hence the result follows. 
For any intuitionistic neutrosophic soft set ( P,  A ) we have the following  propositions. 

4.4. Proposition 

i. ◊ ⊡ (P, A)  =  ⊡ (P, A)     (20) 

ii. ⊡ ◊ (P, A)  = ◊ (P, A)    (21) 

Proof 
i.Let ( P, A ) be a intuitionistic neutrosophic soft set over the universe U.
Then ( P, A ) = { <m, T𝑃𝑃(𝑒𝑒)(𝑚𝑚), I𝑃𝑃(𝑒𝑒)(𝑚𝑚), F𝑃𝑃(𝑒𝑒)(𝑚𝑚)> |m ∈ U} where e ∈ A. 
So, ⊡ ( P, A ) = { <m, T𝑃𝑃(𝑒𝑒)(𝑚𝑚), I𝑃𝑃(𝑒𝑒)(𝑚𝑚), 𝑠𝑠𝐴𝐴- T𝑃𝑃(𝑒𝑒)(𝑚𝑚)> | m ∈ U}, and  
◊ ( P, A ) = { <m, 𝑠𝑠𝐴𝐴- F𝑃𝑃(𝑒𝑒)(𝑚𝑚), I𝑃𝑃(𝑒𝑒)(𝑚𝑚), F𝑃𝑃(𝑒𝑒)(𝑚𝑚)>| m ∈ U}.
So ◊⊡ ( P, A ) = { <m, 𝑠𝑠𝐴𝐴- (𝑠𝑠𝐴𝐴- T𝑃𝑃(𝑒𝑒)(𝑚𝑚)), I𝑃𝑃(𝑒𝑒)(𝑚𝑚), 𝑠𝑠𝐴𝐴- T𝑃𝑃(𝑒𝑒)(𝑚𝑚)>| m ∈ U}. 
= { <m, T𝑃𝑃(𝑒𝑒)(𝑚𝑚), I𝑃𝑃(𝑒𝑒)(𝑚𝑚), 𝑠𝑠𝐴𝐴- T𝑃𝑃(𝑒𝑒)(𝑚𝑚)> | m ∈ U}.   
= ⊡ (P, A )  
ii.The proof is similar to the proof of the proposition 3.4.i.
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Let ( P, A ) and ( Q, B ) be two intuitionistic neutrosophic soft sets over the common universe U, then we have the 
following propositions: 

4.5. Proposition  

i. ⊡ [ ( P, A ) ∧ ( Q, B ) ] = ⊡ ( P, A ) ∧ ⊡ ( Q, B ).  (22) 

ii. ⊡ [ ( P, A ) ∨ ( Q, B ) ]  = ⊡ ( P, A ) ∨  ⊡ ( Q, B ). (23) 

iii.◊ [ ( P, A ) ∧ ( Q, B ) ]  = ◊ ( P, A ) ∧ ◊ ( Q, B ).  (24) 

iv.◊ [ ( P, A ) ∨ ( Q, B ) ] = ◊ ( P, A ) ∨ ◊ ( Q, B ).     (25) 

Proof 
i. Let ( H, A ×B ) = ( P, A ) ∧ ( Q, B ).
Hence, 

( H, A × B ) = {<m,T𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m),I𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m),F𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m)(m)>|m∈U }, 

where 

T𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m)= min { T𝑃𝑃(𝛼𝛼)(m), T𝑄𝑄(𝛽𝛽 )(m)} , F𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m) = max {F𝑃𝑃(𝛼𝛼)(m), F𝑄𝑄(𝛽𝛽 )(m) } 

and 

I𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m)= max {I𝑃𝑃(𝛼𝛼)(m), I𝑄𝑄(𝛽𝛽 )(m) }. 

So, 

⊡ ( H, A × B ) = { <m, T𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m),I𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m), S - T𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m)>|m∈U }, (𝛼𝛼, 𝛽𝛽 ) ∈A × B 

= { < m, min (T𝑃𝑃(𝛼𝛼)(m), T𝑄𝑄(𝛽𝛽 )(m) ),max (I𝑃𝑃(𝛼𝛼)(m), I𝑄𝑄(𝛽𝛽 )(m)), S - min (T𝑃𝑃(𝛼𝛼)(m), T𝑄𝑄(𝛽𝛽 )(m)) > |m∈U } 

= { < m, min (T𝑃𝑃(𝛼𝛼)(m), T𝑄𝑄(𝛽𝛽 )(m)),max (I𝑃𝑃(𝛼𝛼)(m), I𝑄𝑄(𝛽𝛽 )(m)),max (S - T𝑃𝑃(𝛼𝛼)(m), S- T𝑄𝑄(𝛽𝛽 )(m) ) > |m∈U } 

= { < m, T𝑃𝑃(𝛼𝛼)(m), I𝑃𝑃(𝛼𝛼)(m), S- T𝑃𝑃(𝛼𝛼)(m)>|m∈U} AND {<m, T𝑄𝑄(𝛽𝛽 )(m),I𝑄𝑄(𝛽𝛽 )(m), S- T𝑄𝑄(𝛽𝛽 )(m)>|m∈U} 

=⊡ ( P, A ) ∧ ⊡ ( Q, B ). 

Hence the result is proved 
ii. Let ( L, A × B ) = ( P, A ) ∨ ( Q, B ).
Hence , 

( L, A × B ) = { <m, T𝐿𝐿(𝛼𝛼 ,𝛽𝛽 )(m), I𝐿𝐿(𝛼𝛼 ,𝛽𝛽 )(m),F𝐿𝐿(𝛼𝛼 ,𝛽𝛽 )(m)>|m∈U }, 

where 

T𝐿𝐿(𝛼𝛼 ,𝛽𝛽 )(m) = max { T𝑃𝑃(𝛼𝛼)(m), T𝑄𝑄(𝛽𝛽 )(m) } ,I𝐿𝐿(𝛼𝛼 ,𝛽𝛽 )(m) = min {IP(α)(m), I𝑄𝑄(𝛽𝛽 )(m) } 

And  F𝐿𝐿(𝛼𝛼 ,𝛽𝛽 )(m) = min{ F𝑃𝑃(𝛽𝛽 )(m), F𝑄𝑄(𝛽𝛽 )(m)}. 

So, 

⊡ ( L, A × B ) = { <m, T𝐿𝐿(𝛼𝛼 ,𝛽𝛽 )(m),I𝐿𝐿(𝛼𝛼 ,𝛽𝛽 )(m) ,S - T𝐿𝐿(𝛼𝛼 ,𝛽𝛽 )(m)>|m∈U }, for (𝛼𝛼, 𝛽𝛽 ) ∈A × B 

= { < m, max (T𝑃𝑃(𝛼𝛼)(m), T𝑄𝑄(𝛽𝛽 )(m)), min (IP(α)(m), I𝑄𝑄(𝛽𝛽 )(m)), S - max (T𝑃𝑃(𝛼𝛼)(m), T𝑄𝑄(𝛽𝛽 )(m) ) > |m∈U } 

= { < m, max (T𝑃𝑃(𝛼𝛼)(m), T𝑄𝑄(𝛽𝛽 )(m) ),min (IP(α)(m), I𝑄𝑄(𝛽𝛽 )(m)),min (S - T𝑃𝑃(𝛼𝛼)(m), S- T𝑄𝑄(𝛽𝛽 )(m)) > |m∈U } 

= { < m, T𝑃𝑃(𝛼𝛼)(m), IP(α)(m), S- T𝑃𝑃(𝛼𝛼)(m)> |m∈U} OR {<m, T𝑄𝑄(𝛽𝛽 )(m),I𝑄𝑄(𝛽𝛽 )(m), S- T𝑄𝑄(𝛽𝛽 )(m)> |m∈U} 

=⊡ ( P, A ) ∨ ⊡ ( Q, B ). 

Hence the result is proved 
iii. Let ( H, A × B ) =( P, A ) ∧ ( Q, B ).
Hence, 

( H, A × B ) = {<m, T𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m), I𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m), F𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m)>|m ∈ U }, 

where 

T𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m)= min {T𝑃𝑃(𝛼𝛼)(m), T𝑄𝑄(𝛽𝛽 )(m)},I𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m)= max {I𝑃𝑃(𝛼𝛼)(m),I𝑄𝑄(𝛽𝛽 )(m)}. 
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and 

F𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m)= max {F𝑃𝑃(𝛼𝛼)(m),F𝑄𝑄(𝛽𝛽 )(m)}. 

So, 

◊ ( H, A × B ) = { <m, S - F𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m),I𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m),F𝐻𝐻(𝛼𝛼 ,𝛽𝛽 )(m)>|m ∈ U }, for (𝛼𝛼, 𝛽𝛽 ) ∈A × B

= { < m, S - max ( F𝑃𝑃(𝛼𝛼)(m), F𝑄𝑄(𝛽𝛽 )(m)), max (I𝑃𝑃(𝛼𝛼)(m), I𝑄𝑄(𝛽𝛽 )(m)), max ( F𝑃𝑃(𝛼𝛼)(m), F𝑄𝑄(𝛽𝛽 )(m) ) > |m ∈U } 

= { < m, min (S- F𝑃𝑃(𝛼𝛼)(m), S- F𝑄𝑄(𝛽𝛽 )(m)), max (I𝑃𝑃(𝛼𝛼)(m), I𝑄𝑄(𝛽𝛽 )(m)), max ( F𝑃𝑃(𝛼𝛼)(m),  F𝑄𝑄(𝛽𝛽 )(m)) > |m ∈U } 

= {< m, S- F𝑃𝑃(𝛼𝛼)(m),I𝑃𝑃(𝛼𝛼)(m), F𝑃𝑃(𝛼𝛼)(m)> |m∈ U} AND {<m, S- F𝑄𝑄(𝛽𝛽 )(m),I𝑄𝑄(𝛽𝛽 )(m), F𝑄𝑄(𝛽𝛽 )(m)> |m∈U} 

= ◊ ( P, A ) ∧ ◊ ( Q, B ). Hence the result is proved  
iv. The proof  is similar to the proof of the proposition 3.5.iii.

5. Conclusion
In the present work ,We have continued to study the 

properties of intuitionistic neutrosophic soft set. New 
operations such as necessity and possibility on the 
intuitionistic neutrosophic soft set are introduced. Some 
properties of these operations and their interconnection 
between each other are also presented and discussed. We 
conclude that necessity and possibility operations  on the 
intuitionistic neutrosophic soft set are generalization of 
necessity and possibility operations  on the intuitionistic 
fuzzy soft set. The new operations can be applied also on 
neutrosophic soft set [27] and generalized neutrosophic 
soft set [29]. We hope that the findings, in this paper will 
help researcher enhance the study on the intuitionistic 
neutrosophic soft set theory. 

Acknowledgements
The authors would like to thank the anonymous 

reviewer for their careful reading of this article and for 
their helpful comments. 

REFERENCES 
[1] L.A.Zadeh. Fuzzy sets. Information and Control.(1965), 8: 

pp.338-353. 

[2] K.Atanassov. Intuitionistic fuzzy sets.Fuzzy Sets and 
Systems.(1986), 20,pp.87-96. 

[3] Turksen, “Interval valued fuzzy sets based on normal 
forms”.Fuzzy Sets and Systems, 20,(1968),pp.191–210. 

[4] F.Smarandache,“A Unifying Field in Logics. Neutrosophy: 
Neutrosophic  Probability, Set and Logic”. Rehoboth: 
American Research Press,(1999). 

[5] M.Arora, R.Biswas,U.S.Pandy, “Neutrosophic Relational 
Database Decomposition”, International Journal of Advanced 
Computer Science and Applications, Vol. 2, No. 8, (2011), 
pp.121-125. 

[6] M. Arora and R. Biswas,” Deployment of Neutrosophic 
technology to retrieve answers for queries posed in natural 
language”, in 3rdInternational Conference on Computer 

Science and Information Technology ICCSIT, IEEE catalog 
Number CFP1057E-art,Vol.3, ISBN:
978-1-4244-5540-9,(2010), pp. 435-439. 

[7] Ansari, Biswas, Aggarwal,”Proposal forApplicability of 
Neutrosophic Set Theory in Medical AI”, International 
Journal of Computer Applications (0975 – 8887),Vo 27– 
No.5, (2011), pp:5-11 

[8] A. Kharal, “A Neutrosophic Multicriteria Decision Making 
Method”,New Mathematics & Natural Computation, to 
appear in Nov 2013. 

[9] F.G Lupiáñez, "On neutrosophic topology", Kybernetes, Vol. 
37 Iss: 6,(2008), pp.797 - 
800 ,Doi:10.1108/03684920810876990. 

[10] S. Aggarwal, R. Biswas,A.Q.Ansari,”Neutrosophic Modeling 
and Control”,978-1-4244-9034-/10/$26.00©2010 IEEE, 
pp.718-723. 

[11] M. Bhowmik and M. Pal ,” Intuitionistic Neutrosophic Set”, 
ISSN 1746-7659, England, UK, Journal of Information and 
Computing Science,Vol. 4, No. 2, (2009), pp. 142-152. 

[12] M. Bhowmik and M. Pal ,” Intuitionistic Neutrosophic Set 
Relations and Some of  Its  Properties ,ISSN 1746-7659, 
England, UK, Journal of Information and Computing Science, 
Vol. 5, No. 3, (2010), pp. 183-192. 

[13] A. A. Salama, S.A.Alblowi, “Generalized Neutrosophic Set 
and Generalized Neutrosophic Topological 
Spaces” ,Computer Science and Engineering, p-ISSN: 
2163-1484    e-ISSN: 2163-1492 DOI:
10.5923/j.computer.20120207.01,(2012), 2(7), pp. 129-132 

[14] Wang, H., Smarandache, F., Zhang, Y. Q., 
Sunderraman,R,”Singlevalued neutrosophic”,sets.Multispace 
and Multistructure, 4,(2010) , pp. 410–413. 

[15] D. A. Molodtsov, “Soft Set Theory - First Result”, Computers 
and Mathematics with Applications, Vol. 37, (1999), pp. 
19-31. 

[16] P. K. Maji, R. Biswas and A.R. Roy, “Fuzzy Soft Sets”, 
Journal of Fuzzy Mathematics, Vol 9 , no.3, (2001), pp. 
589-602.  

[17] B. Ahmad, and A. Kharal, On Fuzzy Soft Sets, Hindawi 
Publishing Corporation, Advances in Fuzzy Systems, volume 
Article ID 586507, (2009), 6pages doi: 
10.1155/2009/586507. 

[18] P. K. Maji, A. R. Roy and R. Biswas, “Fuzzy soft 

Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

189



sets” ,Journal of Fuzzy Mathematics. 9 (3),(2001), 
pp.589-602. 

[19] T. J. Neog and D. K. Sut, “On Fuzzy Soft Complement and 
Related Properties”, Accepted for publication in International, 
Journal of Energy, Information and communications (IJEIC). 

[20] M. Borah, T. J. Neog and D. K. Sut,” A study on some 
operations of fuzzy soft sets”, International Journal of 
Modern Engineering Research (IJMER), Vol.2, Issue. 
2,(2012), pp. 157-168.. 

[21] H. L.  Yang, “Notes On  Generalized Fuzzy Soft Sets”, 
Journal of Mathematical Research and Exposition, Vol 31, 
No. 3, (2011), pp.567-570  

[22] P. Majumdar, S. K. Samanta, “Generalized Fuzzy Soft Sets”, 
Computers and Mathematics with Applications,59,(2010), 
pp.1425-1432. 

[23] S. Alkhazaleh, A. R. Salleh, and N. Hassan,”Possibility Fuzzy 
Soft Set”,Advances in Decision Sciences,Vol2011, Article ID 
479756,18 pages,doi:10.1155/2011/479756. 

[24] P. K. Maji, R. Biswas, A.  R. Roy, “Intuitionistic fuzzy soft 
sets”, The journal of fuzzy mathematics 9(3),( 2001 ), 
pp.677-692. 

[25] K.V .Babitha.and J. J. Sunil,”Generalized Intuitionistic Fuzzy 
Soft Sets  and Its Applications “,Gen. Math. Notes, ISSN 
2219-7184; Copyright © ICSRS Publication, (2011), Vol. 7, 
No. 2, (2011), pp.1-14. 

[26] M.Bashir, A.R. Salleh, and S. Alkhazaleh,” Possibility 
Intuitionistic Fuzzy Soft Set”, Advances in Decision Sciences 
Volume 2012 (2012), Article ID 404325, 24 pages, 
doi:10.1155/2012/404325. 

[27] P. K. Maji,” Neutrosophic Soft Set”, Annals of Fuzzy 
Mathematics and Informatics,Vol 5, No. 1,ISSN: 
2093-9310(online) ,ISSN: 2287-623(print). 

[28] S.Broumi and F. Smarandache, “Intuitionistic Neutrosophic 
Soft Set”, Journal of Information and Computing Science, 
England, UK ,ISSN 1746-7659,Vol. 8, No. 2, (2013), 
pp.130-140. 

[29] S.Broumi, “Generalized Neutrosophic Soft Set”, International 
Journal of Computer Science, Engineering and Information 
Technology (IJCSEIT), ISSN: 2231-3605, E-ISSN : 
2231-3117, Vol.3, No.2, (2013), pp.17-30. 

[30] P. K. Maji,” More on Intuitionistic Fuzzy Soft Set”,Springer 
–Verlag Berlin Heidelberg, H.Sakai et al.( Eds):RSFDGrC
2009.LNAI 5908, pp231-240.

Published in Computer Science and Information Technology, No. 1(4), 2013, pp. 257-268, DOI: 
10.13189/csit.2013.010404, 12 p., pages 179 - 190.

Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

190



Lower  and Upper Soft Interval Valued Neutrosophic Rough 
Approximations of An IVNSS-Relation 

Said Broumi, Florentin Smarandache

Abstract: In this paper, we extend the lower and upper soft interval valued intuitionstic fuzzy 
rough approximations of IVIFS –relations proposed by Anjan et al.  to the case of interval 
valued neutrosophic soft set relation(IVNSS-relation for short) 

Keywords: Interval valued neutrosophic soft , Interval valued neutrosophic soft set relation 

0. Introduction

This paper is an attempt to extend the concept of interval valued intuitionistic fuzzy soft relation 
(IVIFSS-relations) introduced by A. Mukherjee et al  [45 ]to  IVNSS relation . 

The organization of this paper is as follow: In section 2, we briefly present some basic 
definitions and preliminary results are given which will be used in the rest of the paper. In 
section 3, relation interval neutrosophic soft relation is  presented. In section 4 various type of 
interval valued neutrosophic soft relations. In section 5, we concludes the paper 

1. Preliminaries

Throughout this paper, let U be a universal set and E be the set of all possible parameters under 
consideration with respect to U, usually, parameters are attributes, characteristics, or properties 
of objects in U. We now recall some basic notions of neutrosophic set, interval neutrosophic 
set, soft set, neutrosophic  soft set and  interval neutrosophic soft set. 

Definition 2.1.

then the neutrosophic set A is an object having the form  Let U be an universe of discourse  
[  define +0,1−: U→]  𝛚, 𝛎,𝛍U}, where the functions  ∈,x > A(x)  𝛚,A(x)  𝛎A(x), 𝛍A= {< x: 

respectively the degree of membership , the degree of indeterminacy, and the degree of 
non-membership of the element x ∈ X to the set A with the condition. 

−0 ≤μ A(x)+ ν A(x) + ω A(x) ≤ 3+. 
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From philosophical point of view, the neutrosophic set takes the value from real standard or 
non-standard subsets of ]−0,1+[.so instead of ]−0,1+[ we need to take the interval [0,1] for 
technical applications, because ]−0,1+[will be difficult to apply in the real applications  such as 
in scientific and engineering problems.  

Definition 2.2. A neutrosophic set A is contained in another neutrosophic set B i.e. A ⊆ B 
if ∀x ∈ U, μ A(x) ≤ μ B(x), ν A(x) ≥ ν B(x), ω A(x) ≥ ω B(x).  

Definition 2.3. Let X be a space of points (objects) with generic elements in X denoted by x. 
An interval valued neutrosophic set (for short IVNS) A in X is characterized by truth-
membership function 𝛍𝐀(𝐱), indeteminacy-membership function 𝛎𝐀(𝐱) and falsity-
membership function  𝛚𝐀(𝐱). For each point x in X, we have that  𝛍𝐀(𝐱), 𝛎𝐀(𝐱),
𝛚𝐀(𝐱) ∈  [0 ,1] .
For two IVNS , 𝐴IVNS ={ <x , [μ

A
L (x), μ

A
U(x)] , [νA

L (x), νA
U(x)] , [ωA

L (x), ωA
U(x)]  > | x ∈ X }

And 𝐵IVNS ={ <x , [μ
B
L (x), μ

B
U(x)] , [νB

L (x), νB
U(x)] , [ωB

L (x), ωB
U(x)]> | x ∈ X } the two

relations are defined as follows: 
(1) 𝐴IVNS ⊆  𝐵IVNS if and only if μ

A
L (x) ≤ μ

B
L (x),μ

A
U(x) ≤ μ

B
U(x) , νA

L (x) ≥ νB
L (x) , ωA

U(x) ≥
ωB

U(x) ,  ωA
L (x) ≥ ωB

L (x) , ωA
U(x) ≥ ωB

U(x)
(2) 𝐴IVNS =  𝐵IVNS  if and only if , μ

A
(x) =μ

B
(x) , νA(x) =νB(x) , ωA(x) =ωB(x) for any x ∈

X 
As an illustration ,let us consider the following example. 
Example 2.4.  Assume that the universe of discourse U={x1,x2,x3},where x1 characterizes the 
capability, x2 characterizes the trustworthiness and x3 indicates the prices of the objects. It 
may be further assumed that the values of x1, x2 and x3 are in [0,1] and they are obtained from 
some questionnaires of some experts. The experts may impose their opinion in three 
components viz. the degree of goodness,  
the degree of indeterminacy and that of poorness to explain the characteristics of the objects. 
Suppose A is an interval neutrosophic set (INS) of U, such that, 
A = {< x1,[0.3 0.4],[0.5 0.6],[0.4 0.5] >,< x2, ,[0.1 0.2],[0.3 0.4],[0.6 0.7]>,< x3, [0.2 
0.4],[0.4 0.5],[0.4 0.6] >}, where the degree of goodness of capability is 0.3, degree of 
indeterminacy of capability is 0.5 and degree of falsity of capability is 0.4 etc. 

Definition 2.5.  
Let U be an initial universe set and E be a set of parameters. Let P(U) denotes the power set of 
U. Consider a nonempty set A, A ⊂ E. A pair (K, A) is called a soft set over U, where K is a 
mapping given by K : A → P(U).  
As an illustration, let us consider the following example. 
Example 2.6 . 
Suppose that U is the set of houses under consideration, say U = {h1, h2, . . ., h5}. Let E be the 
set of some attributes of such houses, say E = {e1, e2, . . ., e8}, where e1, e2, . . ., e8 stand for the 
attributes “beautiful”, “costly”, “in the green surroundings’”, “moderate”, respectively.  
In this case, to define a soft set means to point out expensive houses, beautiful houses, and so 
on. For example, the soft set (K,A) that describes the “attractiveness of the houses” in the 
opinion of a buyer, say Thomas, may be defined like this:  
A={e1,e2,e3,e4,e5};  
K(e1) = {h2, h3, h5}, K(e2) = {h2, h4}, K(e3) = {h1}, K(e4) = U, K(e5) = {h3, h5}.  

Definition 2.7 .  
Let U be an initial universe set and A ⊂ E  be a set of parameters. Let IVNS(U) denotes the 
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set of all interval neutrosophic subsets of U. The collection (K,A) is termed to be the soft 
interval neutrosophic set over U, where F is a mapping given by K : A → IVNS(U).  
The interval neutrosophic soft set defined over an universe   is denoted by INSS. 
To illustrate let us consider the following example: 
Let U be the set of houses under consideration and E is the set of parameters (or qualities). 
Each parameter is a interval neutrosophic word or sentence involving interval neutrosophic 
words. Consider E = { beautiful, costly, in the green surroundings, moderate, expensive }. In 
this case, to define a interval neutrosophic soft set means to point out beautiful houses, costly 
houses, and so on. Suppose that, there are five houses in the universe U given by, U = 
{h1,h2,h3,h4,h5} and the set of parameters A = {e1,e2,e3,e4}, where each  ei  is a specific 
criterion for houses: 
 e1 stands for ‘beautiful’, 
 e2 stands for ‘costly’, 
 e3 stands for ‘in the green surroundings’, 
 e4 stands for ‘moderate’, 
Suppose that, 

K(beautiful)={< h1,[0.5, 0.6], [0.6, 0.7], [0.3, 0.4]>,< h2,[0.4, 0.5], [0.7 ,0.8], [0.2, 0.3] >, < 
h3,[0.6, 0.7],[0.2 ,0.3],[0.3, 0.5] >,< h4,[0.7 ,0.8],[0.3, 0.4],[0.2, 0.4] >,< h5,[ 0.8, 0.4] ,[0.2 
,0.6],[0.3, 0.4] >}.K(costly)={< b1,[0.5, 0.6], [0.6, 0.7], [0.3, 0.4]>,< h2,[0.4, 0.5], [0.7 ,0.8], 
[0.2, 0.3] >, < h3,[0.6, 0.7],[0.2 ,0.3],[0.3, 0.5] >,< h4,[0.7 ,0.8],[0.3, 0.4],[0.2, 0.4] >,< h5,[ 0.8, 
0.4] ,[0.2 ,0.6],[0.3, 0.4] >}. 
K(in the green surroundings)= {< h1,[0.5, 0.6], [0.6, 0.7], [0.3, 0.4]>,< b2,[0.4, 0.5], [0.7 ,0.8], 
[0.2, 0.3] >, < h3,[0.6, 0.7],[0.2 ,0.3],[0.3, 0.5] >,< h4,[0.7 ,0.8],[0.3, 0.4],[0.2, 0.4] >,< h5,[ 0.8, 
0.4] ,[0.2 ,0.6],[0.3, 0.4] >}.K(moderate)={< h1,[0.5, 0.6], [0.6, 0.7], [0.3, 0.4]>,< h2,[0.4, 0.5], 
[0.7 ,0.8], [0.2, 0.3] >, < h3,[0.6, 0.7],[0.2 ,0.3],[0.3, 0.5] >,< h4,[0.7 ,0.8],[0.3, 0.4],[0.2, 0.4] 
>,< h5,[ 0.8, 0.4] ,[0.2 ,0.6],[0.3, 0.4] >}. 
Definition 2.8. 
Let U  be an initial universe and (F,A) and (G,B) be two interval valued neutrosophic soft set . 
Then a relation between them is defined as a pair (H, AxB), where H is mapping given by H: 
AxB→IVNS(U). This is called an interval valued neutrosophic soft sets relation ( IVNSS-
relation for short).the collection of relations on interval valued neutrosophic soft sets on Ax 
Bover U is denoted by 𝜎𝑈(𝐴x 𝐵). 

Defintion 2.9.   Let P, Q ∈ 𝜎𝑈(𝐴𝑥 𝐵) and the ordre of their relational matrices are same. Then
P ⊆ Q if H (𝑒𝑗,𝑒𝑗)  ⊆ J (𝑒𝑗,𝑒𝑗)  for (𝑒𝑗,𝑒𝑗)  ∈ A x B where P=(H, A x B) and Q = (J, A x B) 
Example: 
P 

Q 

U  (𝑒1 ,𝑒2) (𝑒1 ,𝑒4) (𝑒3 ,𝑒2) (𝑒3 ,𝑒4)
h1 ([0.2, 0.3],[0.2, 0.3],[0.4, 0.5]) ([0.4, 0.6],[0.7, 0.8],[0.1,0.4]) ([0.4, 0.6],[0.7, 0.8],[0.1,0.4]) ([0.4, 0.6],[0.7, 0.8],[0.1,0.4]) 
h2 ([0.6, 0.8],[0.3, 0.4],[0.1,0.7]) ([1, 1],[0, 0],[0, 0]) ([0.1, 0.5],[0.4, 0.7],[0.5,0.6]) ([0.1, 0.5],[0.4, 0.7],[0.5,0.6]) 
h3 ([0.3, 0.6],[0.2, 0.7],[0.3,0.4]) ([0.4, 0.7],[0.1, 0.3],[0.2,0.4]) ([1, 1],[0, 0],[0, 0]) ([0.4, 0.7],[0.1, 0.3],[0.2,0.4]) 
h4 ([0.6, 0.7],[0.3, 0.4],[0.2,0.4]) ([0.3, 0.4],[0.7, 0.9],[0.1,0.2]) ([0.3, 0.4],[0.7, 0.9],[0.1,0.2]) ([1, 1],[0, 0],[0, 0]) 

U  (𝑒1 ,𝑒2) (𝑒1 ,𝑒4) (𝑒3 ,𝑒2) (𝑒3 ,𝑒4)
h1 ([0.3, 0.4],[0, 0],[0, 0]) ([0.4, 0.6],[0.7, 0.8],[0.1,0.4]) ([0.4, 0.6],[0.7, 0.8],[0.1,0.4]) ([0.4, 0.6],[0.7, 0.8],[0.1,0.4]) 
h2 ([0.6, 0.8],[0.3, 0.4],[0.1,0.7]) ([1, 1],[0, 0],[0, 0]) ([0.1, 0.5],[0.4, 0.7],[0.5,0.6]) ([0.1, 0.5],[0.4, 0.7],[0.5,0.6]) 
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Definition 2.10. 
Let U be an initial universe and (F, A) and (G, B) be two interval valued neutrosophic soft 
sets. Then a null relation between them is denoted 
by OU  and is defined as OU =(HO , A xB) where HO (𝑒𝑖,𝑒𝑗)={<hk , [0, 0],[1, 1],[1, 1]>; hk ∈ 
U} for (𝑒𝑖,𝑒𝑗) ∈ A xB. 
Example. Consider the interval valued neutrosophic soft sets (F, A) and (G, B). Then a null 
relation between them is given by 

Remark. It can be easily seen that P ∪ OU  =P and P ∩ OU  =OU  for any P ∈ 𝜎𝑈(𝐴𝑥 𝐵)
Definition 2.11.   
Let U be an initial universe and (F, A) and (G, B) be two interval valued neutrosophic soft sets. 
Then an absolute relation between them is denoted by IU  and is defined as IU =(HI , A xB) 
where HI (𝑒𝑖,𝑒𝑗)={<hk , [1, 1],[0, 0],[0, 0]>; hk ∈ U} for (𝑒𝑖,𝑒𝑗) ∈ A xB. 

Definition.2.12 Let P ∈ 𝜎𝑈(𝐴𝑥 𝐵), P= (H, AxB) ,Q = (J, AxB) and the order of their relational 
matrices are same.Then we define 

(i) P ⋃ Q= (H ∘J, AxB) where  H∘ J :AxB →IVNS(U) is defined as 
 (H ∘J)( 𝑒𝑖,𝑒𝑗)= H(𝑒𝑖,𝑒𝑗) ∨ J(𝑒𝑗,𝑒𝑗) for (𝑒𝑖,𝑒𝑗) ∈ A x B, where ∨ denotes the interval 
valued neutrosophic union. 

(ii)  P ∩ Q= ( H ∎J, AxB) where  H∎J :AxB →IVNS(U) is defined as (H∎J)( 𝑒𝑖,𝑒𝑗)= 
H(𝑒𝑖,𝑒𝑗) ∧ J(𝑒𝑖,𝑒𝑗) for (𝑒𝑗,𝑒𝑗) ∈ A x B, where ∧ denotes the interval valued 
neutrosophic intersection 

(iii) Pc= (∼H, AxB) , where  ∼H :AxB →IVNS(U) is defined as
∼H( 𝑒𝑖,𝑒𝑗)=[H(𝑒𝑖,𝑒𝑗)] 𝑐 for (𝑒𝑖,𝑒𝑗) ∈ A x B, where 𝑐 denotes the interval valued
neutrosophic complement. 

Defintion.2.13.  
Let R be an equivalence relation on the universal set U. Then the pair (U, R) is called a 
Pawlak approximation space. An equivalence class of R containing x will be denoted by [𝑥]𝑅. 
Now for X ⊆ U, the lower and upper approximation of X with respect to (U, R) are denoted 
by respectively R *X and R* X and are defined by 

h3 ([0.3, 0.6],[0.2, 0.7],[0.3,0.4]) ([0.4, 0.7],[0.1, 0.3],[0.2,0.4]) ([1, 1],[0, 0],[0, 0]) ([0.4, 0.7],[0.1, 0.3],[0.2,0.4]) 
h4 ([0.6, 0.7],[0.3, 0.4],[0.2,0.4]) ([0.3, 0.4],[0.7, 0.9],[0.1,0.2]) ([0.3, 0.4],[0.7, 0.9],[0.1,0.2]) ([1, 1],[0, 0],[0, 0]) 

U  (𝑒1 ,𝑒2) (𝑒1 ,𝑒4) (𝑒3 ,𝑒2) (𝑒3 ,𝑒4)
h1 ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) 
h2 ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) 
h3 ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) 
h4 ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) 

U  (𝑒1 ,𝑒2) (𝑒1 ,𝑒4) (𝑒3 ,𝑒2) (𝑒3 ,𝑒4)
h1 ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) 
h2 ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) 
h3 ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) 
h4 ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) 
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R*X={x∈U: [𝑥]𝑅 ⊆X}, 
R*X={ x∈U: [𝑥]𝑅 ∩ 𝑋 ≠}. 
Now if R *X = R* X, then X is called definable; otherwise X is called a rough set. 

3-Lower  and upper soft interval valued neutrosophic rough approximations of an 
IVNSS-relation 

Defntion 3.1 .Let R ∈ 𝜎𝑈(𝐴x 𝐴) and R=( H, Ax A). Let Θ=(f,B) be an interval valued neutrosophic
soft set over U and S= (U, Θ) be the soft interval valued neutrosophic approximation space. Then 
the lower and upper soft interval valued neutrosophic rough approximations of R with respect 
to S are denoted by LwrS(R)and UprS(R) respectively, which are IVNSS- relations over AxB 
in U given by: 
LwrS(R)= ( J, A xB)    and UprS(R) =(K, A xB)
J( 𝒆𝒊 ,𝒆𝒌) ={<x, [⋀ (inf μ𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∧  inf μ𝐟( 𝒆𝒌 ) (x)) ,⋀ (sup μ𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∧  sup μ𝐟( 𝒆𝒌 ) (x)) ],

[⋀ (inf ν𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨ inf ν𝐟( 𝒆𝒌 ) (x)) ,⋀ (sup ν𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨ sup ν𝐟( 𝒆𝒌 ) (x)) ],
[⋀ (inf ω𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨ inf ω𝐟( 𝒆𝒌 ) (x)) ,⋀ (sup ω𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨ sup ω𝐟( 𝒆𝒌 ) (x)) ] :x ∈ U}.

K( 𝒆𝒊 ,𝒆𝒌) ={<x, [⋀ (inf μ𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒊∈𝑨 (x) ∨ inf μ𝐟( 𝒆𝒌 ) (x)) ,⋀ (sup μ𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨ sup μ𝐟( 𝒆𝒌 ) (x))
], 

[⋀ (inf ν𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∧ inf ν𝐟( 𝒆𝒌 ) (x)) ,⋀ (sup ν𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∧ sup ν𝐟( 𝒆𝒌 ) (x)) ],
[⋀ (inf ω𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∧ inf ω𝐟( 𝒆𝒌 ) (x)) ,⋀ (sup ω𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∧ sup ω𝐟( 𝒆𝒌 ) (x)) ] :x ∈ U}.

For 𝑒𝑖 ∈ A , 𝑒𝐾 ∈ B

Theorem 3.2. Let  be an interval valued neutrosophic soft over U and S = ( U,Θ) be the soft 
approximation space. Let   𝑅1  , 𝑅2 ∈ 𝜎𝑈(𝐴x 𝐴) and 𝑅1=( G,Ax A) and 𝑅2=( H,Ax A).Then

(i) LwrS(OU)= OU 

(ii) LwrS(1U)= 1U 

(iii) 𝑹𝟏 ⊆ 𝑹𝟐 ⟹ LwrS (𝑹𝟏) ⊆ LwrS (𝑹𝟐) 

(iv) 𝑹𝟏 ⊆ 𝑹𝟐 ⟹ UprS (𝑹𝟏) ⊆ UprS (𝑹𝟐 

(v) LwrS (𝑹𝟏 ∩ 𝑹𝟐) ⊆ LwrS (𝑹𝟏) ∩ LwrS (𝑹𝟐) 

(vi) UprS (𝑹𝟏 ∩ 𝑹𝟐) ⊆ UprS (𝑹𝟏) ∩ UprS (𝑹𝟐) 

(vii) LwrS (𝑹𝟏) ∪ LwrS (𝑹𝟐) ⊆ LwrS (𝑹𝟏 ∪ 𝑹𝟐) 

(viii) UprS (𝑹𝟏) ∪ UprS (𝑹𝟐) ⊆ UprS (𝑹𝟏 ∪ 𝑹𝟐) 

Proof. (i) –(iv) are straight forward. 
Let Lwrs(𝑅1 ∩ 𝑅2) =(S, Ax B).Then for ( 𝒆𝒊 , 𝒆𝒌) ∈ A xB , we have

S( 𝒆𝒊 , 𝒆𝒌) ={<x, [⋀ (inf μ𝐆∘𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∧ inf μ𝐟( 𝒆𝒌 ) (x)) , ⋀ (sup μ𝐆∘𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∧
sup μ𝐟( 𝒆𝒌 ) (x))],
[⋀ (inf ν𝐆∘𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨  inf ν𝐟( 𝒆𝒌 ) (x)) , ⋀ (sup ν𝐆∘𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨ sup ν𝐟( 𝒆𝒌 ) (x))],

[⋀ (inf ω𝐆∘𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨ inf ω𝐟( 𝒆𝒌 ) (x)) ,⋀ (sup ω𝐆∘𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨  sup ω𝐟( 𝒆𝒌 ) (x)) ] :x ∈ U}
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={<x, [⋀ (min(inf μ𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x), inf μ𝐇( 𝒆𝒊 ,𝒆𝒋) (x)) ∧  inf μ𝐟( 𝒆𝒌 ) (x))
,⋀ (min(sup μ𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x), sup μ𝐇( 𝒆𝒊 ,𝒆𝒋) (x)) ∧ sup μ𝐟( 𝒆𝒌 ) (x))],

[⋀ (max(inf ν𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x), inf ν𝐇( 𝒆𝒊 ,𝒆𝒋) (x))  ∨ inf ν𝐟( 𝒆𝒌 ) (x))
,⋀ (max(sup ν𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x), sup ν𝐇( 𝒆𝒊 ,𝒆𝒋) (x))  ∨ sup ν𝐟( 𝒆𝒌 ) (x))],

[⋀ (max(inf ω𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x), inf ω𝐇( 𝒆𝒊 ,𝒆𝒋) (x))   ∨  inf ω𝐟( 𝒆𝒌 ) (x))
,⋀ (max(sup ω𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x), sup ω𝐇( 𝒆𝒊 ,𝒆𝒋) (x)) ∨ sup ω𝐟( 𝒆𝒌 ) (x)) ] :x ∈ U}

Also for LwrS (𝑹𝟏) ∩ LwrS (𝑹𝟐) =(Z,A x B) and ( 𝒆𝒊 , 𝒆𝑲) ∈ A xB ,we have ,
Z ( 𝒆𝒊 , 𝒆𝑲)= {<x, [ Min (⋀ (inf μ𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∧  inf μ𝐟( 𝒆𝒌 ) (x)) ,  ⋀ (inf μ𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∧
inf μ𝐟( 𝒆𝒌 ) (x)) )  , Min(⋀ (sup μ𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∧ sup μ𝐟( 𝒆𝒌 ) (x)) ,  ⋀ (sup μ𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∧
sup μ𝐟( 𝒆𝒌 ) (x)) )] ,
[Max (⋀ (inf ν𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨  inf ν𝐟( 𝒆𝒌 ) (x)) ,  ⋀ (inf ν𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨ inf ν𝐟( 𝒆𝒌 ) (x)) )  ,
Max(⋀ (sup ν𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨  sup ν𝐟( 𝒆𝒌 ) (x)) ,  ⋀ (sup ν𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨ sup ν𝐟( 𝒆𝒌 ) (x)) )] ,

[Max (⋀ (inf ω𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨ inf ω𝐟( 𝒆𝒌 ) (x)) ,  ⋀ (inf ω𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨ inf ω𝐟( 𝒆𝒌 ) (x)) )  ,
Max(⋀ (sup ω𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨ sup ω𝐟( 𝒆𝒌 ) (x)) ,  ⋀ (sup ω𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨ sup ω𝐟( 𝒆𝒌 ) (x)) )] :x ∈
U} 

Now since  min(inf μ𝐆( 𝒆𝒊 ,𝒆𝒋) , inf μ𝐇( 𝒆𝒊 ,𝒆𝒋) (x) ) ≤  inf μ𝐆( 𝒆𝒊 ,𝒆𝒋) (x) and
min(inf μ𝐆( 𝒆𝒊 ,𝒆𝒋) , inf μ𝐇( 𝒆𝒊 ,𝒆𝒋) (x) ) ≤  inf μ𝐇( 𝒆𝒊 ,𝒆𝒋) (x) we have
⋀ (min(inf μ𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x), inf μ𝐇( 𝒆𝒊 ,𝒆𝒋) (x)) ∧ inf μ𝐟( 𝒆𝒌 ) (x)) ≤ Min (⋀ (inf μ𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∧
inf μ𝐟( 𝒆𝒌 ) (x)) ,  ⋀ (inf μ𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∧ inf μ𝐟( 𝒆𝒌 ) (x)) ).
Similarly we can get  
⋀ (min(sup μ𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x), sup μ𝐇( 𝒆𝒊 ,𝒆𝒋) (x)) ∧ sup μ𝐟( 𝒆𝒌 ) (x)) ≤ Min (⋀ (sup μ𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∧
sup μ𝐟( 𝒆𝒌 ) (x)) ,  ⋀ (sup μ𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∧ sup μ𝐟( 𝒆𝒌 ) (x)) ).

Again as    max(inf ν𝐆( 𝒆𝒊 ,𝒆𝒋) , inf ν𝐇( 𝒆𝒊 ,𝒆𝒋) (x) ) ≥  inf ν𝐆( 𝒆𝒊 ,𝒆𝒋) (x) ,and
max(inf ν𝐆( 𝒆𝒊 ,𝒆𝒋) , inf ν𝐇( 𝒆𝒊 ,𝒆𝒋) (x) ) ≥  inf ν𝐇( 𝒆𝒊 ,𝒆𝒋) (x)

we have 

⋀ (max(inf ν𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x), inf ν𝐇( 𝒆𝒊 ,𝒆𝒋) (x)) ∨ inf ν𝐟( 𝒆𝒌 ) (x)) ≥ Max (⋀ (inf ν𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨
inf ν𝐟( 𝒆𝒌 ) (x)) ,  ⋀ (inf ν𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨ inf ν𝐟( 𝒆𝒌 ) (x)) ).
Similarly we can get  

⋀ (max(sup ν𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x), sup ν𝐇( 𝒆𝒊 ,𝒆𝒋) (x)) ∨ sup ν𝐟( 𝒆𝒌 ) (x)) ≥ Max (⋀ (sup ν𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨
sup ν𝐟( 𝒆𝒌 ) (x)) ,  ⋀ (sup ν𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨  sup ν𝐟( 𝒆𝒌 ) (x)) ).
Again as    max(inf ω𝐆( 𝒆𝒊 ,𝒆𝒋) , inf ω𝐇( 𝒆𝒊 ,𝒆𝒋) (x) ) ≥  inf ω𝐆( 𝒆𝒊 ,𝒆𝒋) (x) ,and
max(inf ω𝐆( 𝒆𝒊 ,𝒆𝒋) , inf ω𝐇( 𝒆𝒊 ,𝒆𝒋) (x) ) ≥  inf ω𝐇( 𝒆𝒊 ,𝒆𝒋) (x)

we have 
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⋀ (max(inf ω𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x), inf ω𝐇( 𝒆𝒊 ,𝒆𝒋) (x)) ∨ inf ω𝐟( 𝒆𝒌 ) (x)) ≥ Max (⋀ (inf ω𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨
inf ω𝐟( 𝒆𝒌 ) (x)) ,  ⋀ (inf ω𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨  inf ω𝐟( 𝒆𝒌 ) (x)) ).
Similarly we can get  

⋀ (max(sup ω𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x), sup ω𝐇( 𝒆𝒊 ,𝒆𝒋) (x)) ∨ sup ω𝐟( 𝒆𝒌 ) (x)) ≥ Max (⋀ (sup ω𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨
sup ω𝐟( 𝒆𝒌 ) (x)) ,  ⋀ (sup ω𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨ sup ω𝐟( 𝒆𝒌 ) (x)) ).

Consequently, LwrS (𝑹𝟏 ∩ 𝑹𝟐) ⊆ LwrS (𝑹𝟏) ∩ LwrS (𝑹𝟐)
(vi) Proof is similar to (v) 

(vii) Let LwrS (𝑹𝟏 ∪ 𝑹𝟐) =( S, A xB).Then for ( 𝒆𝒊 , 𝒆𝒌) ∈ A xB , we have

S( 𝒆𝒊 , 𝒆𝒌)={<x, [⋀ (inf μ𝐆∎𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∧  inf μ𝐟( 𝒆𝒌 ) (x)) ,⋀ (sup μ𝐆∎𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∧
sup μ𝐟( 𝒆𝒌 ) (x))],
[⋀ (inf ν𝐆∎𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨ inf ν𝐟( 𝒆𝒌 ) (x)) ,⋀ (inf ν𝐆∎𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨ inf ν𝐟( 𝒆𝒌 ) (x))],

[⋀ (inf ω𝐆∎𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨ inf ω𝐟( 𝒆𝒌 ) (x)) ,⋀ (inf ω𝐆∎𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨ inf ω𝐟( 𝒆𝒌 ) (x)) ] :x ∈ U}

={<x, [⋀ (max(inf μ𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x), inf μ𝐇( 𝒆𝒊 ,𝒆𝒋) (x)) ∧ inf μ𝐟( 𝒆𝒌 ) (x))
,⋀ (max(sup μ𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x), sup μ𝐇( 𝒆𝒊 ,𝒆𝒋) (x)) ∧  sup μ𝐟( 𝒆𝒌 ) (x))],

[⋀ (min(inf ν𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x), inf ν𝐇( 𝒆𝒊 ,𝒆𝒋) (x))  ∨ inf ν𝐟( 𝒆𝒌 ) (x))
,⋀ (min(sup ν𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x), sup ν𝐇( 𝒆𝒊 ,𝒆𝒋) (x))  ∨ sup ν𝐟( 𝒆𝒌 ) (x))],

[⋀ (min(inf ω𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x), inf ω𝐇( 𝒆𝒊 ,𝒆𝒋) (x))   ∨  inf ω𝐟( 𝒆𝒌 ) (x))
,⋀ (min(sup ω𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x), sup ω𝐇( 𝒆𝒊 ,𝒆𝒋) (x)) ∨ sup ω𝐟( 𝒆𝒌 ) (x)) ] :x ∈ U}

Also for Lwrs(𝑹𝟏) ∪ Lwrs(𝑹𝟐) = ( Z, AxB) and ( 𝒆𝒊 , 𝒆𝒌) ∈ A xB ,we have ,

Z ( 𝒆𝒊 , 𝒆𝑲)= {<x, [ Max (⋀ (inf μ𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∧ inf μ𝐟( 𝒆𝒌 ) (x)) ,  ⋀ (inf μ𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∧
inf μ𝐟( 𝒆𝒌 ) (x)) )  , Max(⋀ (sup μ𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∧  sup μ𝐟( 𝒆𝒌 ) (x)) ,  ⋀ (sup μ𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∧
sup μ𝐟( 𝒆𝒌 ) (x)) )] ,
[Min (⋀ (inf ν𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨ inf ν𝐟( 𝒆𝒌 ) (x)) ,  ⋀ (inf ν𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨ inf ν𝐟( 𝒆𝒌 ) (x)) )  ,
Min(⋀ (sup ν𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨  sup ν𝐟( 𝒆𝒌 ) (x)) ,  ⋀ (sup ν𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨ sup ν𝐟( 𝒆𝒌 ) (x)) )] ,

[Min (⋀ (inf ω𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨ inf ω𝐟( 𝒆𝒌 ) (x)) ,  ⋀ (inf ω𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨ inf ω𝐟( 𝒆𝒌 ) (x)) )  ,
Min(⋀ (sup ω𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨ sup ω𝐟( 𝒆𝒌 ) (x)) ,  ⋀ (sup ω𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨ sup ω𝐟( 𝒆𝒌 ) (x)) )] :x ∈
U} 
Now since  max(inf μ𝐆( 𝒆𝒊 ,𝒆𝒋) , inf μ𝐇( 𝒆𝒊 ,𝒆𝒋) (x) ) ≥  inf μ𝐆( 𝒆𝒊 ,𝒆𝒋) (x) and
max(inf μ𝐆( 𝒆𝒊 ,𝒆𝒋) , inf μ𝐇( 𝒆𝒊 ,𝒆𝒋) (x) ) ≥  inf μ𝐇( 𝒆𝒊 ,𝒆𝒋) (x) we have
⋀ (max(inf μ𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x), inf μ𝐇( 𝒆𝒊 ,𝒆𝒋) (x)) ∧  inf μ𝐟( 𝒆𝒌 ) (x)) ≥ max (⋀ (inf μ𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∧
inf μ𝐟( 𝒆𝒌 ) (x)) ,  ⋀ (inf μ𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∧ inf μ𝐟( 𝒆𝒌 ) (x)) ).

Similarly we can get  
⋀ (max(sup μ𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x), sup μ𝐇( 𝒆𝒊 ,𝒆𝒋) (x)) ∧ sup μ𝐟( 𝒆𝒌 ) (x)) ≥ max(⋀ (sup μ𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∧
sup μ𝐟( 𝒆𝒌 ) (x)) ,  ⋀ (sup μ𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∧ sup μ𝐟( 𝒆𝒌 ) (x)) ).
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Again as   min(inf ν𝐆( 𝒆𝒊 ,𝒆𝒋) , inf ν𝐇( 𝒆𝒊 ,𝒆𝒋) (x) )≤ inf ν𝐆( 𝒆𝒊 ,𝒆𝒋) (x) ,and
min(inf ν𝐆( 𝒆𝒊 ,𝒆𝒋) , inf ν𝐇( 𝒆𝒊 ,𝒆𝒋) (x) ) ≤  inf ν𝐇( 𝒆𝒊 ,𝒆𝒋) (x)

we have 

⋀ (min(inf ν𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x), inf ν𝐇( 𝒆𝒊 ,𝒆𝒋) (x)) ∨ inf ν𝐟( 𝒆𝒌 ) (x)) ≤Min (⋀ (inf ν𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨
inf ν𝐟( 𝒆𝒌 ) (x)) ,  ⋀ (inf ν𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨ inf ν𝐟( 𝒆𝒌 ) (x)) ).
Similarly we can get  

⋀ (min(sup ν𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x), sup ν𝐇( 𝒆𝒊 ,𝒆𝒋) (x)) ∨  sup ν𝐟( 𝒆𝒌 ) (x)) ≤ Min (⋀ (sup ν𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨
sup ν𝐟( 𝒆𝒌 ) (x)) ,  ⋀ (sup ν𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨  sup ν𝐟( 𝒆𝒌 ) (x)) ).

Again as    min(inf ω𝐆( 𝒆𝒊 ,𝒆𝒋) , inf ω𝐇( 𝒆𝒊 ,𝒆𝒋) (x) ) ≤  inf ω𝐆( 𝒆𝒊 ,𝒆𝒋) (x) ,and
min(inf ω𝐆( 𝒆𝒊 ,𝒆𝒋) , inf ω𝐇( 𝒆𝒊 ,𝒆𝒋) (x) )≤  inf ω𝐇( 𝒆𝒊 ,𝒆𝒋) (x)

we have 

⋀ (min(inf ω𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x), inf ω𝐇( 𝒆𝒊 ,𝒆𝒋) (x)) ∨  inf ω𝐟( 𝒆𝒌 ) (x)) ≤ Min (⋀ (inf ω𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨
inf ω𝐟( 𝒆𝒌 ) (x)) ,  ⋀ (inf ω𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨  inf ω𝐟( 𝒆𝒌 ) (x)) ).
Similarly we can get  

⋀ (min(sup ω𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x), sup ω𝐇( 𝒆𝒊 ,𝒆𝒋) (x)) ∨ sup ω𝐟( 𝒆𝒌 ) (x)) ≤ Min (⋀ (sup ω𝐆( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨
sup ω𝐟( 𝒆𝒌 ) (x)) ,  ⋀ (sup ω𝐇( 𝒆𝒊 ,𝒆𝒋)𝒆𝒋∈𝑨 (x) ∨ sup ω𝐟( 𝒆𝒌 ) (x)) ).

Consequently  LwrS (𝑹𝟏) ∪ LwrS (𝑹𝟐) ⊆ Lwrs(𝑹𝟏  ∩ 𝑹𝟐)
(vii) Proof is similar to (vii). 

Conclusion 
In the present paper we extend the concept of Lower  and upper soft interval valued intuitionstic 
fuzzy rough approximations of an IVIFSS-relation to the case IVNSS and investigated some of 
their properties. 
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Neutrosophic Crisp Open Set and Neutrosophic Crisp Continuity via 
Neutrosophic Crisp Ideals 

A. A. Salama, Said Broumi and Florentin Smarandache 

Abstract—The focus of this paper is to propose a new notion of neutrosophic crisp sets via neutrosophic crisp 
ideals and to study some basic operations and results in neutrosophic crisp topological spaces. Also, 
neutrosophic crisp L-openness and neutrosophic crisp L- continuity are considered as a generalizations for a 
crisp and fuzzy concepts. Relationships between the above new neutrosophic crisp notions and the other 
relevant classes are investigated. Finally, we define and study two different types of neutrosophic crisp 
functions. 

Index Terms—Neutrosophic Crisp Set; Neutrosophic Crisp Ideals; Neutrosophic Crisp L-open Sets; 
Neutrosophic Crisp L- Continuity; Neutrosophic Sets. 

I.  INTRODUCTION 

The fuzzy set was introduced by Zadeh [20] in 1965, 
where each element had a degree of membership. In 
1983 the intuitionstic fuzzy set was introduced by K. 
Atanassov [1, 2, 3] as a generalization of fuzzy set, 
where besides the degree of membership and the degree 
of non- membership of each element. Salama et al [11] 
defined intuitionistic fuzzy ideal and neutrosophic ideal 
for a set and generalized the concept of fuzzy ideal 
concepts, first initiated by Sarker [19]. Smarandache [16, 
17, 18] defined the notion of  neutrosophic sets, which is 
a generalization of  Zadeh's fuzzy set and Atanassov's 
intuitionistic fuzzy set.  Neutrosophic sets have been 
investigated by Salama et al. [4, 5, 6, 7, 8, 9, 10, 11, 12, 
13, 14, 15]. In this paper is to introduce and study some 
new neutrosophic crisp notions via neutrosophic crisp 
ideals. Also, neutrosophic crisp L-openness and 
neutrosophic crisp L- continuity are considered. 
Relationships between the above new neutrosophic crisp 
notions and the other relevant classes are investigated. 
Recently, we define and study two different types of 
neutrosophic crisp functions. 

The paper unfolds as follows. The next section briefly 
introduces some definitions related to neutrosophic set  
theory and some terminologies of neutrosophic crisp set 
and neutrosophic crisp ideal. Section 3 presents 
neutrosophic crisp L- open and neutrosophic crisp L- 
closed sets. Section 4 presents neutrosophic crisp L–
continuous functions. Conclusions appear in the last 
section. 

II. PRELIMINARIES

We recollect some relevant basic preliminaries, and in 
particular, the work of Smarandache in [16, 17, 18], and 
Salama et al. [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. 

2.1 Definitions [9]. 

1) Let X be a non-empty fixed set. A  neutrosophic
crisp set (NCS for short) A  is an object having the form  

321 ,, AAAA   where 321   and , AAA are  subsets of X 

satisfying  21 AA ,  31 AA and  32 AA .

2) Let
321 ,, AAAA  , be a neutrosophic crisp set on a 

set X, then       ,,, 321 pppp  321 ppp  X is 
called a neutrosophic crisp point. A neutrosophic crisp 
point (NCP for short)       ,,, 321 pppp   is said to 
be belong to a neutrosophic crisp set

321 ,, AAAA  , of X, 

denoted by Ap , if may be defined by two types 

i) Type 1: 2211 }{,}{ ApAp  and 33}{ Ap  , 

ii) Type 2: 2211 }{,}{ ApAp  and 33}{ Ap  . 

3) Let X be non-empty set, and  L a non–empty
family of NCSs. We call L a neutrosophic crisp ideal 
(NCL for short) on X if  

i. LBABLA   and  [heredity],
ii. LL and   BABLA [Finite additivity].

A neutrosophic crisp ideal L is called a  - 
neutrosophic crisp ideal if   LA

jj 


  , implies 

j
j J

A L

   (countable additivity).

The smallest and largest neutrosophic crisp ideals on a 
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non-empty set X are  N and the NSs on X. Also, 

cf NCL  ,LNC  are denoting the neutrosophic crisp 
ideals (NCL for short) of neutrosophic crisp subsets 
having finite and countable support of X respectively. 
Moreover, if A is a nonempty NS in X, then 
 ABNCSB  :  is an NCL on X. This is called the
principal NCL of all NCSs, denoted by NCL A . 

2.1 Proposition [9] 

Let  JjL j :  be any non - empty family of
neutrosophic crisp ideals on a set X. Then 

Jj
jL



 and


Jj

jL


 are neutrosophic crisp ideals on X, where 

321 ,, jJjjJjjJjjJj
AAAL


 or

321 ,, jJjjJjjJjjJj
AAAL


  and 

321 ,, jJjjJjjJjjJj
AAAL


 or 

.,, 321 jJjjJjjJjjJj
AAAL


  

2.2 Proposition [9] 

A neutrosophic crisp set
321 ,, AAAA   in the 

neutrosophic crisp ideal L on X is a base of L iff every 
member of  L is contained in A. 

2.1 Theorem [9] 

Let ,,, 321 AAAA  and ,,, 321 BBBB  be 
neutrosophic crisp subsets of X. Then BA  iff Ap  
implies Bp  for any neutrosophic crisp point p in X. 

2.2 Theorem [9] 

Let
321 ,, AAAA  , be a neutrosophic crisp subset of 

X. Then  .: AppA 

2.3 Proposition [ 9] 

Let  JjA j :  is a family of NCSs in X. Then 

)( 1a      321 ,, pppp  jJj
A


  iff jAp  for 

each Jj . 
)( 2a jJj

Ap

  iff Jj  such that jAp  . 

2.4 Proposition [9] 

Let 
321 ,, AAAA   and 

321 ,, BBBB   be two 

neutrosophic crisp sets in X. Then 

a) BA  iff for each p  we have
BpAp   and for each p  we have

BpAp  . 

b) BA   iff for each p  we have BpAp 

and for each p  we have BpAp  .

2.5 Proposition[9] 

Let 
321 ,, AAAA   be a neutrosophic crisp set in X. 

Then      333222111 :,:,: AppAppAppA  .

2.2 Definition [9] 

Let YXf : be a function and p  be a neutrosophic 
crisp point in X. Then the image of p  under f , 
denoted by )( pf , is defined by      321 ,,)( qqqpf  , 

where )(),( 2211 pfqpfq  and )( 33 pfq  . 
It is easy to see that )( pf  is indeed a NCP in Y, 

namely qpf )( , where )( pfq  , and it is exactly the 
same meaning of the image of a NCP under the 
function f . 

2.3 Definition [9] 

Let p be a neutrosophic crisp point of a neutrosophic 
crisp topological space  NCX , . A neutrosophic crisp
neighbourhood ( NCNBD for short) of a neutrosophic 
crisp point p if there is a neutrosophic crisp open 
set( NCOS for short) B in X such that .ABp   

2.3 Theorem [9] 

Let  NCX ,  be a neutrosophic crisp topological
space (NCTS for short) of X. Then the neutrosophic 
crisp set A of X is NCOS iff A is a NCNBD of p for 
every neutrosophic crisp set .Ap  

2.4 Definition [9] 

Let  ,X be a neutrosophic crisp topological spaces
(NCTS for short) and L be neutrosophic crisp ideal 
(NCL, for short) on X. Let A be any NCS of X. Then the 
neutrosophic crisp local function  ,LNCA  of A is the
union of all neutrosophic crisp point NCTS( NCP, for 
short)       ,,, 321 pppP   such that if  )( pNU   and 

 N(P) of nbd every Ufor   :),(* LUAXpLNA 

, ),( LNCA  is called a neutrosophic crisp local 

function of A with respect to L and    which it will be 
denoted by ),( LNCA , or simply   LNCA . The
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neutrosophic crisp topology generated by   LNCA in [9] 
we will be denoted by NC*. 

2.5 Theorem [9] 

Let  ,X  be a NCTS and 21 , LL be two
neutrosophic crisp ideals on X. Then for any 
neutrosophic crisp sets BA   ,  of X. then the following 
statements are verified 

i) ),,(),(  LNCBLNCABA    
ii) ),(),( 1221  LNCALNCALL   , 

iii) )()( ANCclANCclNCA   , 

iv)  NCANCA ** , 

v)   
 NCBNCABANC ,

vi) )()()()( LNCBLNCALBANC  

vii)   
 NCAANCL 

viii) ),( LNCA  be a neutrosophic crisp closed set. 

2.6 Theorem [9] 

Let 21,  NCNC  be two neutrosophic crisp topologies 
on X. Then for any neutrosophic crisp ideal L on X, 

21  NCNC   implies ),(),( 12  NCNCLNCANCLNCA   , 
for every LA  then 21

   NCNC . A basis

  ,LNC  for )(LNC   can be described as 
follows: 

  ,LNC  NCLBNCABA  ,:  . Then we have
the following theorem. 

2.7 Theorem [9] 

  ,LNC  LBABA  ,:   forms a basis
for the generated NCTS of the NCT  ,X  with
neutrosophic crisp ideal L on X. 

2.8 Theorem [9] 

Let 21,  NCNC  be two neutrosophic crisp 
topologies on X. Then for any topological neutrosophic 
crisp ideal L on X, 21  NCNC  implies 

21
   NCNC . 

2.9 Theorem [9] 

Let   ,  be a NCTS and 21  , LL  be two neutrosophic
crisp ideals on X. Then for any neutrosophic crisp set A 
in X, we have 

i)      .)(,)(,, 221121 LNCLNCALNCLNCALLNCA   

ii)     )()()()()( 122121 LLNCLLNCLLNC
  

2.1 Corollary [9] 

Let   ,  be a NCTS with topological neutrosophic
crisp ideal L on X. Then 

i)  ),(),(    LNCALNCA and )())(()(NC LLNCNCL    , 

ii)    )()()( 2121 LNCLNCLLNC    . 

III. NEUTROSOPHIC CRISP L- OPEN AND NEUTROSOPHIC
CRISP L- CLOSED SETS 

Definition 3.1 

Given (X,) be a NCTS with neutrosophic crisp ideal 
L on X, and  is called a neutrosophic crisp Lopen set 
iff there exists ζ   such that   ζ   NC 

We will denote the family of all neutrosophic crisp 
Lopen sets by NCLO(X). 

Theorem 3.1 

Let (X, ) be a NCTS with neutrosophic crisp ideal L, 
then NCLO(X) iff  NCint(C). 

Proof 
Assume that NCLO(X) then by Definition 

3.1there exists ζ   such that   ζ  NCAut 
NCint(NCA*)   NC, put ζ = NCint (C*). 
Hence NCint(C

Conversely   NCint
(C*) CThen there exists ζ = NCint (C*)  
. Hence NCLO(X). 

Remark 3.1 

For a NCTS (X,) with neutrosophic crisp ideal L and 
 be a neutrosophic crisp set on X, the following holds: 
If   NCLO (X) then NCint (  NC

Theorem 3.2 

Given (X,) be a NCTS with neutrosophic crisp ideal 
L on X and , B are neutrosophic crisp sets  such that  
NCLO(X), B  then  B   NCLO(X) 

Proof 
From the assumption  B  NCint (NCB = 

NCint (NC*B), we have B   
NCintNC(B)* and this complete the proof. 
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Corollary 3.1 

If {j} Jj is a neutrosophic crisp Lopen set in

NCTS (X,) with neutrosophic crisp ideal L. Then 
{j} Jj  is neutrosophic crisp Lopen sets.

Corollary 3.2 

For a NCTS (X,) with neutrosophic crisp ideal L, and 
neutrosophic crisp set on X and NCLO(X), then
NC* = NC(NCintNC(NC  

  and
NCcl*(Cint (C*).

Proof: It’s clear. 

Definition 3.2 

Given a NCTS (X,) with neutrosophic crisp ideal L 
on X and neutrosophic crisp set . Then  is said to be: 

(i) Neutrosophic crisp *  closed (or NC*-
closed) if NC≤ 

(ii) Neutrosophic crisp L–dense – in – itself (or 
NC*– dense – in – itself) if    NC*. 

(iii) Neutrosophic crisp *  perfect if  is NC*  
closed and NC*  dense – in – itself. 

Theorem 3.3 

Given a NCTS (X,) with neutrosophic crisp ideal L 
and A is a neutrosophic crisp set on X, then 

(i) NC*  closed iff NCcl*()  
(ii) NC*  dense – in – itself iff NCcl*() 

C 
(iii) NC*  perfect iff NCcl*() C 

Proof: Follows directly from the neutrosophic crisp 
closure operator NCcl* for a neutrosophic crisp topology 
*(L) (NC* for short). 

Remark 3.2 

One can deduce that 

(i) Every NC*dense – in – itself is neutrosophic 
crisp dense set. 

(ii) Every neutrosophic crisp closed (resp. 
neutrosophic crisp open) set is N*closed 
(resp. NCopen). 

(iii) Every neutrosophic crisp Lopen set is NC 
dense – in – itself. 

Corollary 3.3 

Given a NCTS (X,) with neutrosophic crisp ideal L 
on X and  then we have:

(i) If  is NC* closed then    NCint(A) 
 C Cl ( 

(ii) If  is NC* dense – in – itself then Nint(A) 
 C 

(iii) If  is NC* perfect then 
NCint(A)NCcl(A)C. 

Proof: Obvious. 
we give the relationship between neutrosophic crisp 

Lopen set and some known neutrosophic crisp 
openness. 

Theorem 3.4 

Given a NCTS (X,) with neutrosophic crisp ideal L 
and neutrosophic crisp set A on X then the following 
holds: 

(i) If  is both neutrosophic crisp L open and 
NCerfect then is neutrosophic crisp 
open. 

(ii) If  is both neutrosophic crisp open and 
NC dense–in – itself then  is neutrosophic 
crisp Lopen. 

Proof. Follows from the definitions. 

Corollary 3.4 

For a neutrosophic crisp subset  of a NCTS (X,) 
with neutrosophic crisp ideal L on X, we have: 

(i) If  is NCclosed and NLopen then  NCint 
(Cint(NC

(ii) If  is NCperfect and NLopen then 
Cint (NC

Remark 3.3 

One can deduce that the intersection of two 
neutrosophic crisp Lopen sets is neutrosophic crisp 
Lopen. 

Corollary 3.5 

Given (X,) be a NCTS with neutrosophic crisp ideal 
L and neutrosophic crisp set A on X. The following hold: 
If L= {Nx}, then C(L) = N  and hence is
neutrosophic crisp Lopen iff  = N 

Proof: It’s clear. 

Definition 3.5 

Given a NCTS (X,) with neutrosophic crisp ideal L 
and  neutrosophic crisp set A then neutrosophic crisp 
ideal interior of  is defined as largest neutrosophic 
crisp Lopen set contained in A, we denoted by 
NCLCint().
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Theorem 3.5 

If (X,) is a NCTS with neutrosophic crisp ideal L and 
neutrosophic crisp set A then 

(i) Nint (C) is neutrosophic crisp
Lopen set. 

(ii) NLint (N iff  Nint (C= N.

Proof 
(i) Since NCint C =NC NCintC), 

then NCint C =NC  NCint 
C)   NC( C). Thus  C 
   (  NCint NC(NC))   
NCintNC(  NCintCC). Hence 
Cint CNCLO(X). 

(ii) Let NCLNCint() = N , then    =

N , implies NCcl (CintC) = N

and so  int  = N . Conversely
assume that NCint NC= N , then  C
int(C)= N . Hence NCLCint () =

N . 

Theorem 3.6 

If (X,) be a NCTS with neutrosophic crisp ideal L 
and A is aneutrosophic crisp set on X, then 
NCLCint() =   NCint(NC). 

Proof. The first implication follows from Theorem 3.4, 
that is C NCL-NCint((1) 

For the reverse inclusion, if  NCLO(X) and 
then NC  C and hence  NC int(NC) 
NCint(NCA). This implies   NCint(NC) 
C. 

Thus NCLCint() NCint(NC)     (2) 
From (1) and (2) we have the result.

Corollary 3.6 

For a NCTS (X,) with neutrosophic crisp ideal L and 
neutrosophic crisp set A on X then the following holds: 

(i) If  is NCclosed then NLint ()  
 If  is NCdense – in itself then NL 

int ()  

(iii) If  is NCperfect set then NCL Cint 
() C 

Definition 3.6 

Given (X,) be a NCTS with neutrosophic crisp ideal 
L and be a neutrosophic crisp set on X,  is called 
neutrosophic crisp Lclosed set if its complement is 
neutrosophic crisp Lopen set . We will denote the 
family of neutrosophic crisp Lclosed sets by NLCC(X). 

Theorem 3.7 

Given (X,) be a NCTS with neutrosophic crisp ideal 
L and be a neutrosophic crisp set on X is 
neutrosophic crisp L closedthenCNCint≤ 

Proof: It’s clear. 

Theorem 3.8 

Let (X,) be a NCTS with neutrosophic crisp ideal L 
on X and be a neutrosophic crisp set on X such that 
NCNCint c=Cintc then   NLC(X) iff
NC(NCint   

Proof 
(Necessity) Follows immedially from the above 

theorem (Sufficiency). Let NC)Cint   (    then 
c   NC(NCint  )c = NCint (NCc*. from the 
hypothesis. HencecNCLO(X), Thus NLCC(X). 

Corollary 3.7 

For a NCTS (X,) with neutrosophic crisp ideal L on 
X the following holds: 

(i) The union of neutrosophic crisp L closed set 
and neutrosophic crisp closed set is 
neutrosophic crisp  Lclosed set. 

(ii) The union of neutrosophic crisp L closed and 
neutrosophic crisp Lclosed is neutrosophic 
crisp  perfect. 

IV.  NEUTROSOPHIC CRISP L–CONTINUOUS FUNCTIONS

By utilizing the notion of NL open sets, we establish 
in this article a class of  neutrosophic crisp L- continuous 
function. Many characterizations and properties of this 
concept are investigated. 

Definition 4.1 

A function f : (X,)  (Y,) with neutrosophic crisp
ideal L on X is said to be neutrosophic crisp 
Lcontinuous if for every , f -1() NCLO(X).

Theorem 4.1 
For a function f : (X,)  (Y,) with neutrosophic

crisp ideal L on X the following are equivalent: 

(i.) f is neutrosophic crisp L-continuous. For a 
neutrosophic crisp point p in X and each 
containing f (p), there exists 
NCLO(X) containing p such that 
f () .
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(ii.) For each neutrosophic crisp point p in X and 
 containing f (p), ( f -1())* is 
neutrosophic crisp nbd of p. 

(iii.) The inverse image of each neutrosophic crisp 
closed set in Y is  neutrosophic crisp Lclosed. 

Proof 
(i) → (ii).Since  containing f (p), then by (i),

f -1()  NCLO(X), by putting     f -1()
which containing p, we have f ()  

(ii) → (iii). Let  containing f (p). Then by (ii) 
there exists  NCLO(X) containing p such 
that f () ≤ , so  p    NCint(NC)≤
NCint ( f -1())  ( f -1()). Hence 
( f -1())is neutrosophic crisp nbd of p.

(iii) → (i) Let , since ( f -1())is neutrosophic

crisp nbd of any point 1f (), every point x  
( f -1())* is a neutrosophic crisp interior point
of f -1()*. Then f -1()   NCint NC          
( f -1())and hence f  is neutrosophic crisp
Lcontinuous  

(i)→ (iv) Let  y be a neutrosophic crisp closed 
set. Then c is neutrosophic crisp open set, by 
f -1(c) =( f -1(c NCLO(X). Thus f -1()

is neutrosophic crisp Lclosed set. 

The following theorem establish the relationship 
between neutrosophic crisp L-continuous and 
neutrosophic crisp continuous by using the previous 
neutrosophic crisp notions. 

Theorem 4.2 

Given f : (X,) → (Y,) is a function with a 
neutrosophic crisp ideal L on X then we have. If f  is 
neutrosophic crisp L continuous of each neutrosophic 
crisp*perfect set in X, then f  is neutrosophic crisp 
continuous. 

Proof: Obvious. 

Corollary 4.1 

Given a function f : (X,) → (Y,) and each member 
of X is neutrosophic crisp NC*dense – in – itself. Then 
we have every neutrosophic crisp continuous function is 
neutrosophic crisp NCLcontinuous. 

Proof: It’s clear. 
We define and study two different types of 

neutrosophic crisp functions. 

Definition 4.2 

A function     ,,: YXf   with neutrosophic crisp
ideal L on Y is  called neutrosophic crisp L-open (resp. 
neutrosophic crisp  NCL- closed), if for each A (resp. 
A is neutrosophic crisp closed in X), 

)()( YNCLOAf  (resp. )(Af is NCL-closed). 

Theorem 4.3 

Let a function     ,,: YXf   with neutrosophic
crisp ideal L on Y. Then the following are equivalent: 

(i.) f  is neutrosophic crisp L-open.
(ii.) For each p in X and each neutrosophic crisp 

ncnbd A of p, there exists a  neutrosophic crisp L-
open set YIB containing  pf  such that

 AfB  .

Proof: Obvious. 

Theorem 4.4 

A neutrosophic crisp function     ,,: YXf 

with neutrosophic crisp ideal L on Y be a neutrosophic 
crisp L-open (resp.neutrosophic crisp L-closed), if A in 
Y and B in X is a neutrosophic crisp closed (resp. 
neutrosophic crisp open )  set C in Y containing A such 
that   BCf 1 . 

Proof 

Assume that   BfA XY  11 , since   BCf 1

and CA   then C is neutrosophic crisp L-closed and 
     BAffCf XX   11 11 . 

Theorem 4.5 

If a  function     ,,: YXf   with neutrosophic
crisp ideal L on Y is  a neutrosophic crisp L-open, then 

       AfNCANCNCf 11 int such that  Af 1  is 
neutrosophic crisp*-dense-in-itself and A in Y. 

Proof 

Since A in Y,    AfNC 1  is neutrosophic crisp 

closed in X containing  Af 1 , f is neutrosophic 
crisp L-open then by using Theorem 4.4 there is a 
neutrosophic crisp L-closed set BA  suchthat, 

            intint 1111 NCNCfBNCfBfAf . 
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Corollary 4.2 

For any bijective function     ,,: YXf   with
neutrosophic crisp ideal L on Y , the following are 
equivalent: 

(i.)     ,,:1 XYf   is neutrosophic crisp L-
continuous. 

(ii.) f  is neutrosophic crisp L-open.

(iii.) f  is neutrosophic crisp L-closed.

Proof: Follows directly from Definitions. 

V.  CONCLUSION 

In our work, we have put forward some new 
concepts of neutrosophic crisp open set and  
neutrosophic crisp continuity via neutrosophic crisp 
ideals. Some related properties have been established 
with example. It ‘s hoped that our work will enhance 
this study in neutrosophic set theory. 
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Neutrosophic Crisp Sets & Neutrosophic Crisp Topological Spaces

A. A. Salama, Florentin Smarandache and Valeri Kroumov

Abstract. In this paper, we generalize the crisp topological space to the notion of neutrosophic
crisp topological space, and we construct the basic concepts of the neutrosophic crisp topology. In
addition to these, we introduce the definitions of neutrosophic crisp continuous function and neutrosophic
crisp compact spaces. Finally, some characterizations concerning neutrosophic crisp compact spaces are
presented and one obtains several properties. Possible application to GIS topology rules are touched
upon.

Keywords: Neutrosophic Crisp Set; Neutrosophic Topology; Neutrosophic Crisp Topology.

1 Introduction

Neutrosophy has laid the foundation for a whole fami-ly of new mathematical theories generalizing both
their crisp and fuzzy counterparts, such as a neutrosophic set theory in [1, 2, 3]. After the introduction of
the neutrosoph-ic set concepts in [4, 5, 6, 7, 8, 9, 10, 11, 12] and fter have given the fundamental definitions
of neutrosophic set operations we generalize the crisp topological space to the notion of neutrosophic crisp
set. Finally, we introduce the definitions of neutrosophic crisp continuous function and neutrosophic crisp
compact space, and we obtain several properties and some characterizations concerning the neutrosophic
crisp compact space.

2 Terminologies

We recollect some relevant basic preliminaries, and in particular, the work of Smarandache in [1, 2, 3, 11],
and Salama et al. [4, 5, 6, 7, 8, 11]. Smarandache introduced the neutrosophic components T, I, F which
represent the membership, indeterminacy, and non-membership values respectively, where ]−0, 1+[ is a
non-standard unit interval.

Hanafy and Salama et al.[10, 11] considered some possible definitions for basic concepts of the neu-
trosophic crisp set and its operations. We now improve some results by the following.

3 Neutrosophic Crisp Sets

Definition 3.1 Let X be a non-empty fixed set. A neutrosophic crisp set (NCS) A is an object having
the form A = ⟨A1, A2, A3⟩, where A1, A2, and A3 are subsets of X satisfying A1 ∩A2 = ϕ, A1 ∩A3 = ϕ,
and A2 ∩A3 = ϕ.

Remark 3.1 A neutrosophic crisp set A = ⟨A1, A2, A3⟩ can be identified as an ordered triple ⟨A1, A2, A3⟩,
where A1, A2, and A3 are subsets on X, and one can define several relations and operations between NCSs.

Since our purpose is to construct the tools for developing neutrosophic crisp sets, we must introduce the
types of NCSs ϕN and XN in X as follows:
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1) ϕN may be defined in many ways as an NCS, as follows

i) ϕN = ⟨ϕ, ϕ,X⟩, or
ii) ϕN = ⟨ϕ,X,X⟩, or
iii) ϕN = ⟨ϕ,X, ϕ⟩, or
iv) ϕN = ⟨ϕ, ϕ, ϕ⟩.

2) XN may also be defined in many ways as an NCS:

i) XN = ⟨X,ϕ, ϕ⟩,
ii) XN = ⟨X,X, ϕ⟩,
iii) XN = ⟨X,X,X⟩.

Every crisp set A formed by three disjoint subsets of a non-empty set X is obviously an NCS having the
form A = ⟨A1, A2, A3⟩.

Definition 3.2 Let A = ⟨A1, A2, A3⟩ an NCS on X, then the complement Acof the set A may be defined
in three different ways:

(C1) A
c = ⟨Ac

1, A
c
2, A

c
3⟩,

(C2) A
c = ⟨A3, A2, A1⟩,

(C3) A
c = ⟨A3, A

c
2, A3⟩.

One can define several relations and operations between NCSs as follows:

Definition 3.3 Let X be a non-empty set, and NCSs A and B in the form A = ⟨A1, A2, A3⟩, B =
⟨B1, B2, B3⟩, then we may consider two possible definitions for subsets (A ⊆ B):

1) A ⊆ B ⇔ A1 ⊆ B1, A2 ⊆ B2 and A3 ⊇ B3,
or

2) A ⊆ B ⇔ A1 ⊆ B1, A2 ⊇ B2 and A3 ⊇ B3.

Proposition 3.1 For any neutrosophic crisp set A the following are hold:

i) ϕN ⊆ A,ϕN ⊆ ϕN ,

ii) A ⊆ XN , XN ⊆ XN .

Definition 3.4 Let X is a non-empty set, and the NCSs A and B in the form A = ⟨A1, A2, A3⟩,
B = ⟨B1, B2, B3⟩. Then:

1) A ∩B may be defined in two ways:

i) A ∩B = ⟨A1 ∩B1, A2 ∩B2, A3 ∪B3⟩ or
ii) A ∩B = ⟨A1 ∩B1, A2 ∪B2, A3 ∪B3⟩.

2) A ∪B may also be defined in two ways:

i) A ∪B = ⟨A1 ∪B1, A2 ∩B2, A3 ∩B3⟩ or
ii) A ∪B = ⟨A1 ∪B1, A2 ∪B2, A3 ∩B3⟩.

3) [ ]A = ⟨A1, A2, A
c
1⟩.

4) <> A = ⟨Ac
3, A2, A3⟩.

Proposition 3.2 For any two neutrosophic crisp sets A and B on X, the followings are true:

1) (A ∩B)c = Ac ∪Bc.

2) (A ∪B)c = Ac ∩Bc.

Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

207



We can easily generalize the operations of intersection and union in Definition 3.2 to arbitrary family of
neutrosophic crisp subsets as follows:

Proposition 3.3 Let {Aj : j ∈ J} be arbitrary family of neutrosophic crisp subsets in X. Then

1) ∩Aj may be defined as the following types:

i) ∩Aj = ⟨∩AJ1,∩AJ2,∪Aj3⟩, or
ii) ∩Aj = ⟨∩AJ1,∪AJ2,∪Aj3⟩.

2) ∪Aj may be defined as the following types:

i) ∪Aj = ⟨∪AJ1,∩AJ2,∩Aj3⟩, or
ii) ∪Aj = ⟨∪AJ1,∪AJ2,∩Aj3⟩.

Definition 3.5 The product of two neutrosophic crisp sets A and B is a neutrosophic crisp set given by

A×B = ⟨A1 ×B1, A2 ×B2, A3 ×B3⟩

.

4 Neutrosophic crisp Topological Spaces

Here we extend the concepts of topological space and intuitionistic topological space to the case of
neutrosophic crisp sets.

Definition 4.1 A neutrosophic crisp topology (NCT) on a non-empty set X is a family Γ of neutrosophic
crisp subsets in X satisfying the following axioms

i) ϕN , XN ∈ Γ.

ii) A1 ∩A2 ∈ Γ for any A1 and A2 ∈ Γ.

iii) ∪Aj ∈ Γ ∀ {Aj : j ∈ J} ⊆ Γ.

In this case the pair (X,Γ) is called a neutrosophic crisp topological space (NCTS) in X. The elements
in Γ are called neutrosophic crisp open sets (NCOSs) in Y . A neutrosophic crisp set F is closed if and
only if its complement F c is an open neutrosophic crisp set.

Remark 4.1 Neutrosophic crisp topological spaces are very natural generalizations of topological spaces
and intuitionistic topological spaces, and they allow more general functions to be members of topology:

TS → ITS → NCTS

Example 4.1 Let X = {a, b, c, d}, ϕN , XN be any types of the universal and empty subsets, and A, B
two neutrosophic crisp subsets on X defined by A = ⟨{a}, {b, d}, c⟩, B = ⟨{a}, {b}, {c}⟩, then the family
Γ = {ϕN , XN , A,B} is a neutrosophic crisp topology on X.

Example 4.2 Let (X, τ0) be a topological space such that τ0 is not indiscrete. Suppose {Gi : i ∈ J} be a
family and τ0 = {X,ϕ} ∪ {Gi : i ∈ J}. Then we can construct the following topologies:

i) Two intuitionistic topologies

a) τ1 = {ϕI , XI} ∪ {⟨Gi, ϕ⟩, i ∈ J}.
b) τ2 = {ϕI , XI} ∪ {⟨ϕ,Gc

i ⟩, i ∈ J}.

ii) Four neutrosophic crisp topologies

a) Γ1 = {ϕN , XN} ∪ {⟨ϕ, ϕ,Gc
i ⟩, i ∈ J}.

b) Γ2 = {ϕN , XN} ∪ {⟨Gi, ϕ, ϕ⟩, i ∈ J}.
c) Γ3 = {ϕN , XN} ∪ {⟨Gi, ϕ,G

c
i ⟩, i ∈ J}.

d) Γ4 = {ϕN , XN} ∪ {⟨Gc
i , ϕ, ϕ⟩, i ∈ J}.
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Definition 4.2 Let (X,Γ1), (X,Γ2) be two neutrosophic crisp topological spaces on X. Then Γ1 is said
be contained in Γ2 (in symbols Γ1 ⊆ Γ2) if G ∈ Γ2 for each G ∈ Γ1. In this case, we also say that Γ1 is
coarser than Γ2.

Proposition 4.1 Let {Γj : j ∈ J} be a family of NCTSs on X. Then ∩Γj is a neutrosophic crisp
topology on X. Furthermore, ∩Γj is the coarsest NCT on X containing all topologies.

Proof. Obvious

Now, we define the neutrosophic crisp closure and neutrosophic crisp interior operations in neutro-
sophic crisp topological spaces:

Definition 4.3 Let (X,Γ) be NCTS and A = ⟨A1.A2, A3⟩ be a NCS in X. Then the neutrosophic crisp
closure of A (NCCl(A) for short) and neutrosophic crisp interior (NCInt(A) for short) of A are defined
by

NCCl(A) = ∩{K : is an NCS in Xand A ⊆ K}
NCInt(A) = ∪{G : G is an NCOS in Xand G ⊆ A},

where NCS is a neutrosophic crisp set, and NCOS is a neutrosophic crisp open set.

It can be also shown that NCCl(A) is NCCS (neutrosophic crisp closed set) and NCInt(A) is a
CNOS in X.

a) A is in X if and only if NCCl(A) ⊇ A.

b) A is an NCCS in X if and only if NCInt(A) = A.

Proposition 4.2 For any neutrosophic crisp set A in (X,Γ) we have

(a) NCCl(Ac) = (NCInt(A))c.

(b) NCInt(Ac) = (NCCl(A))c.

Proof. Let A = ⟨A1, A2, A3⟩ and suppose that the family of neutrosophic crisp subsets contained in A are
indexed by the family if NCSs contained in A are indexed by the family A = { < Aj1, Aj2, Aj3 >: i ∈ J}.

a) Then we see that we have two types of

NCInt(A) = {< ∪Aj1,∪Aj2,∩Aj3 >} or

NCInt(A) = {< ∪Aj1,∩Aj2,∩Aj3 >} hence

(NCInt(A))c = {< ∩Aj1,∩Aj2,∪Aj3 >} or

(NCInt(A))c = {< ∩Aj1,∪Aj2,∪Aj3 >} .

b) Hence NCCl(Ac) = (NCInt(A))c follows immediately, which is analogous to (a).

Proposition 4.3 Let (X,Γ) be a NCTS and A,B be two neutrosophic crisp sets in X. Then the following
properties hold:

(a) NCInt(A) ⊆ A,

(b) A ⊆ NCCl(A),

(c) A ⊆ B ⇒ NCInt(A) ⊆ NCInt(B),

(d) A ⊆ B ⇒ NCCl(A) ⊆ NCCl(B),

(e) NCInt(A ∩B) = NCInt(A) ∩NCInt(B),

(f) NCCl(A ∪B) = NCCl(A) ∪NCCl(B),

(g) NCInt(XN ) = XN ,

(h) NCCl(ϕN ) = ϕN .

Proof. (a), (b) and (e) are obvious; (c) follows from (a) and definitions.
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5 Neutrosophic Crisp Continuity

Here come the basic definitions first:

Definition 5.1 (a) If B = ⟨B1, B2, B3⟩ is a NCS in Y , then the preimage of B under f denoted by
f−1(B) is a NCS in X defined by f−1(B) = ⟨f−1(B1), f

−1(B2), f
−1(B3)⟩.

(b) If A = ⟨A1, A2, A3⟩ is a NCS in X, then the image of A under f denoted by f(A) is the NCS in Y
defined by f(A) = ⟨f(A1), f(A2), f(A3)

c⟩.

Here we introduce the properties of images and preimages some of which we shall frequently use in the
following sections.

Corollary 5.1 Let A, {Ai : i ∈ J} be NCSs in X, and B, {Bj : j ∈ K} NCS in Y , and f : X → Y a
function. Then

(a) A1 ⊆ A2 ⇔ f(A1) ⊆ f(A2),
B1 ⊆ B2 ⇔ f−1(B1) ⊆ f−1(B2),

(b) A ⊆ f−1(f(A)) and if f is injective, then A = f−1(f(A)).

(c) f−1(f(B)) ⊆ B and if f is surjective, then f−1(f(B)) = B.

(d) f−1(∪Bi) = ∪f−1(Bi), f
−1(∩B1) = ∩f−1(Bi),

(e) f(∪Ai) = ∪f(Ai); f(∩Ai) ⊆ ∩f(Ai); and if f is injective, then f(∩Ai) = ∩f(Ai);

(f) f−1(YN ) = XN , f
−1(ϕN ) = ϕN .

(g) f(ϕN ) = ϕN , f(XN ) = YN , if f is subjective.

Proof. Obvius.

Definition 5.2 Let (X, Γ1) and (Y, Γ2) be two NCTSs, and let f : X → Y be a function. Then f is
said to be continuous iff the preimage of each NCS in Γ2 is an NCS in Γ1.

Definition 5.3 Let (X, Γ1) and (Y, Γ2) be two NCTSs and let f : X → Y be a function. Then f is
said to be open iff the image of each NCS in Γ1 is an NCS in Γ2.

Example 5.1 Let (X, Γ0) and (Y, ψ0) be two NCTSs.

(a) If f : X → Y is continuous in the usual sense, then in this case, f is continuous in the sense
of Definition 5.1 too. Here we consider the NCTs on X and Y , respectively, as follows: Γ1 =
{⟨G,ϕ,Gc⟩ : G ∈ Γ0} and Γ2 = {⟨H,ϕ,Hc⟩ : H ∈ Ψ0}, In this case we have, for each ⟨H,ϕ,Hc⟩ ∈
Γ2, H ∈ Ψ0, f

−1⟨H,ϕ,Hc⟩ = ⟨f−1(H), f−1(ϕ), f−1(Hc)⟩ = ⟨f−1(H), f(ϕ), (f(H))c⟩ ∈ Γ1.

(b) If f : X → Y is open in the usual sense, then in this case, f is open in the sense of Definition 3.2.

Now we obtain some characterizations of continuity:

Proposition 5.1 Let f : (X,Γ1) → (Y,Γ2). f is continuous iff the preimage of each CNCS (crisp
neutrosophic closed set) in Γ2 is a CNCS in Γ2.

Proposition 5.2 The following are equivalent to each other:

(a) f : (X,Γ1) → (Y,Γ2) is continuous.

(b) f−1(CNInt(B) ⊆ CNInt(f−1(B)) for each CNS B in Y .

(c) CNCl(f−1(B)) ⊆ f−1(CNCl(B)) for each CNC B in Y .

Example 5.2 Let (Y,Γ2) be an NCTS and f : X → Y be a function. In this case Γ1 = {f−1(H) :
H ∈ Γ2} is a NCT on X. Indeed, it is the coarsest NCT on X which makes the function f : X → Y
continuous. One may call the initial neutrosophic crisp topology with respect to f .
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6 Neutrosophic Crisp Compact Space (NCCS)

First we present the basic concepts:

Definition 6.1 Let (X,Γ) be a NCTS.

(a) If a family {⟨Gi1 , Gi2 , Gi3⟩ : i ∈ J} of NCOSs in X satisfies the condition ∪{⟨Gi1 , Gi2 , Gi3⟩ : i ∈
J} = XN then it is called an neutrosophic open cover of X.

(b) A finite subfamily of an open cover {⟨Gi1 , Gi2 , Gi3⟩ : i ∈ J} on X, which is also a neutrosophic
open cover of X, is called a neutrosophic finite subcover {⟨Gi1 , Gi2 , Gi3⟩ : i ∈ J}.

(c) A family {⟨Ki1 ,Ki2 ,Ki3⟩ : i ∈ J} of NCCSs in X satisfies the finite intersection property (FIP for
short) iff every finite subfamily {⟨Ki1 ,Ki2 ,Ki3⟩ : i = 1, 2, . . . , n} of the family satisfies the condition
∩{⟨Ki1 ,Ki2 ,Ki3⟩ : i ∈ J} ̸= ϕN .

Definition 6.2 A NCTS (X,Γ) is called neutrosophic crisp compact iff each crisp neutrosophic open
cover of X has a finite subcover.

Example 6.1 (a) Let X = N and consider the NCSs given below:

A1 = ⟨{2, 3, 4, . . .} , ϕ, ϕ⟩,
A2 = ⟨{3, 4, 5, . . .} , ϕ, {1}⟩,
A3 = ⟨{4, 5, 6, . . .} , ϕ, {1, 2}⟩,

...

An = ⟨{n+ 1, n+ 2, n+ 3, . . .} , ϕ, {1, 2, 3, . . . , n− 1}⟩.

Then Γ = {ϕN , XN} ∪ {An = 3, 4, 5, . . .} is an NCT on X and (X,Γ) is a neutrosophic crisp
compact.

(b) Let X = (0, 1) and let’s make the NCSs

An =

⟨
X,

(
1

n
,
n− 1

n

)
, ϕ,

(
0,

1

n

)⟩
, n = 3, 4, 5, . . . in X

In this case Γ = {ϕN , Xn} ∪ {An = 3, 4, 5, . . .} is a NCT on X, which is not a neutrosophic crisp
compact.

Corollary 6.1 A NCTS (X,Γ) is neutrosophic crisp compact iff every family {⟨X,Gi1 , Gj2 , Gi3⟩ : i ∈ J}
of NCCSs in X having the FIP has nonempty intersection.

Corollary 6.2 Let (X,Γ1), (Y,Γ2) be NCTSs and f : X → Y be a continuous surjection. If (X,Γ1) is
a neutrosophic crisp compact, then so is (Y,Γ2).

Definition 6.3 (a) If a family {⟨X,Gi1 , Gj2 , Gi3⟩ : i ∈ J}of NCCSs in X satisfies the condition A ⊆
∪{⟨Gi1 , Gj2 , Gi3⟩ : i ∈ J}, then it is called a neutrosophic crisp open cover of A.

(b) Let’s consider a finite subfamily of a neutrosophic crisp open subcover of {⟨X,Gi1 , Gj2 , Gi3⟩ : i ∈ J}.
A neutrosophic crisp set A = ⟨A1, A2, A3⟩ in a NCTS (X,Γ) is called neutrosophic crisp compact
iff every neutrosophic crisp open cover of A has a finite neutrosophic crisp open subcover.

Corollary 6.3 Let (X,Γ1), (Y,Γ2) be NCTSs and f : X → Y is a continuous surjection. If A is a
neutrosophic crisp compact in (X,Γ1), then so is f(A) in (Y,Γ2).

7 Conclusion

In this paper we introduced the neutrosophic crisp topology and the neutrosophic crisp compact space.
Then we presented several properties for each of them.
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 Neutrosophic Ideal Theory 

Neutrosophic Local Function and Generated Neutrosophic Topology 

A. A. Salama &Florentin Smarandache 

ABSTRACT 

Abstract  In this paper we  introduce the notion of ideals on neutrosophic set which is considered as a 
generalization of fuzzy and fuzzy intuitionistic ideals studies in [9,11] , the important neutrosophic 
ideals  has been given in [4]. The concept of neutrosophic local function is also introduced for a 
neutrosophic topological space. These concepts are discussed with a view to find new nutrosophic 
topology from the original one in [8]. The basic structure, especially a basis for such generated 
neutrosophic topologies and several relations between different neutrosophic ideals and neutrosophic 
topologies are also studied here. Possible application to GIS topology rules are touched upon. 

KEYWORDS: Neutrosophic Set, Intuitionistic Fuzzy Ideal, Fuzzy Ideal, Neutrosophic Ideal, Neutrosophic Topology. 

1-INTRODUCTION 

The neutrosophic set concept was introduced by Smarandache [12, 13]. In 2012 neutrosophic sets have been 

investigated by Hanafy and Salama at el [4, 5, 6, 7, 8, 9, 10]. The fuzzy set was introduced by Zadeh [14] in 1965, where 

each element had a degree of membership. In 1983 the intuitionstic fuzzy set was introduced by K. Atanassov [1, 2, 3] as a 

generalization of fuzzy set, where besides the degree of membership and the degree of non- membership of each element. 

Salama at el [9] defined intuitionistic fuzzy ideal for a set and generalized the concept of fuzzy ideal concepts, first 

initiated by Sarker [10]. Neutrosophy has laid the foundation for a whole family of new mathematical theories generalizing 

both their classical and fuzzy counterparts. In this paper we will introduce the definitions of normal neutrosophic set, 

convex set, the concept of α-cut and neutrosophic ideals, which can be discussed as generalization of fuzzy and fuzzy 

intuitionistic studies. 

2-TERMINOLOGIES 

We recollect some relevant basic preliminaries, and in particular, the work of Smarandache in [12, 13], and 

Salama at el. [4, 5, 6, 7, 8, 9, 10]. 

3- NEUTROSOPHIC IDEALS [4]. 
Definition.3.1 

 Let X is non-empty set and L a non–empty family of NSs. We will call L is a neutrosophic ideal (NL for short) on X if 

LBABLA  and  [heredity], 
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LL and  BABLA [Finite additivity]. 

A neutrosophic ideal L is called a -neutrosophic ideal if LA
jj , implies LjA

Jj (countable 

additivity). 

The smallest and largest neutrosophic ideals on a non-empty set X are N0 and NSs on X. Also, cf L N.  ,L .N  

are denoting the neutrosophic ideals (NL for short) of neutrosophic subsets having finite and countable support of X 

respectively. Moreover, if A is a nonempty NS in X, then ABNSB :  is an NL on X. This is called the principal NL 

of all NSs of denoted by NL A . 

Remark 3.1 

If LN1 , then L is called neutrosophic proper ideal. 

If LN1 , then L is called neutrosophic improper ideal. 

 LON .

Example.3.1 

Any Initiutionistic fuzzy ideal   on X in the sense of Salama is obviously and NL in the form

.,,,: AAAxAAL

Example.3.2 

Let cbaX ,, 6.0,5.0,2.0,xA , 8.0,7.0,5.0,xB , and 8.0,6.0,5.0,xD , then the family 

DBAOL N ,, ,  of NSs is an NL on X. 

Example.3.3 

Let edcbaX ,,,,  and AAAxA ,,,  given by: 

X xA xA xA
a 0.6 0.4 0.3 
b 0.5 0.3 0.3 
c 0.4 0.6 0.4 
d 0.3 0.8 0.5 
e 0.3 0.7 0.6 

Then the family AOL N ,  is an NL on X. 

Definition.3.3 

Let L1 and L2 be two NL on X. Then L2 is said to be finer than L1 or L1 is coarser than L2 if L1  L2. If also L1 

L2. Then L2 is said to be strictly finer than L1 or L1 is strictly coarser than L2. 

Two NL said to be comparable, if one is finer than the other. The set of all NL on X is ordered by the relation L1 

is coarser than L2 this relation is induced the inclusion in NSs. 
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The next Proposition is considered as one of the useful result in this sequel, whose proof is clear. 

Proposition.3.1 

Let JjL j :  be any non - empty family of neutrosophic ideals on a set X. Then 
Jj

jL  and 
Jj

jL  are 

neutrosophic ideal on X, 

In fact L is the smallest upper bound of the set of the Lj in the ordered set of all neutrosophic ideals on X. 

Remark.3.2 

The neutrosophic ideal by the single neutrosophic set NO  is the smallest element of the ordered set of all

neutrosophic ideals on X. 

Proposition.3.3 

A neutrosophic set A in neutrosophic ideal L on X is a base of L iff every member of L contained in A. 

Proof 

(Necessity)Suppose A is a base of L. Then clearly every member of L contained in A. 

(Sufficiency) Suppose the necessary condition holds. Then the set of neutrosophic subset in X contained in A 

coincides with L by the Definition 4.3. 

Proposition.3.4 

For a neutrosophic ideal L1 with base A, is finer than a fuzzy ideal L2 with base B iff every member of B 

contained in A. 

Proof 

Immediate consequence of Definitions 

Corollary.3.1 

Two neutrosophic ideals bases A, B, on X are equivalent iff every member of A, contained in B and via versa. 

Theorem.3.1 

Let Jjjjj :,,  be a non empty collection of neutrosophic subsets of X. Then there exists a 

neutrosophic ideal L ( ) = {A  NSs: A  Aj} on X for some finite collection {Aj: j = 1,2, ......, n }. 

Proof 

Clear. 

Remark.3.3 

ii) The neutrosophic ideal L ( ) defined above is said to be generated by  and  is called sub base of L( ).

Corollary.3.2 

Let L1 be an neutrosophic ideal on X and A  NSs, then there is a neutrosophic ideal L2 which is finer than L1 
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and such that A  L2 iff 

A  B  L2 for each B  L1. 

Corollary.3.3 

Let AAAxA ,,, 1L  and BBBxB ,,, 2L , where 1L  and 2L  are neutrosophic ideals on the set X. 

then the neutrosophic set xxxBA BABABA ** ),(,* 21 LL  on X where )(,: * xXxxxx BABABA

may be = )()( xx BA  or )()( xx BA  and Xxxxx BABA : . 

4. Neutrosophic local Functions

Definition.4.1. Let (X, ) be a neutrosophic topological spaces (NTS for short ) and L be neutrsophic ideal (NL, for 
short)  on X. Let A be any NS of X. Then the neutrosophic local function ,LNA  of A is the union of all neutrosophic 
points( NP, for short) ,,C  such that if ,,CNU  and 

),,C( of nbd every Ufor   :),,(),(* LUAXCLNA , ),(LNA  is called a neutrosophic local function of A

with respect to L and   which it will be denoted by ),(LNA , or simply  LNA . 
Example .4.1. One may easily verify that. 
If L= )(),( N then  },0{ ANclLAN , for any neutrosophic set NSsA  on X. 

If  NLA 0),(N      then  Xon  NSs all L , for any NSsA  on X . 

Theorem.4.1. Let ,X  be a NTS and 21, LL be two neutrosophic ideals on X. Then for any neutrosophic sets A, B
of   X. then the following statements are verified  

i) ),,(),( LNBLNABA  
ii) ),(),( 1221 LNALNALL . 

iii) )()( ANclANclNA . 

iv) NANA . 

v) NBNABAN ., 

vi) ).()()()( LNBLNALBAN
vii) .NAANL 

viii) ),(LNA  is neutrosophic closed set .

Proof. 
i) Since BA , let 1

*,, LNACp  then LUA  for every pNU . By hypothesis we get 

LUB , then 1
*,, LNBCp . 

ii) Clearly. 21 LL  implies ),(),( 12 LNALNA  as there may be other IFSs which belong to 2L  so that for

GIFP NACp ,,  but ,,C  may not be contained in 2LNA . 

iii) Since LON  for any NL on X, therefore by (ii) and Example 3.1, )(ANclONALNA N  for 

any NS A on X. Suppose )(,, 1
*

11 LNANclCp . So for every 1pNU , ,NOUNA  there exists 

), 1
*

22 ULACp  such that for every V  nbd  of .,22 LUApNp  Since 2pNVU  then 

LVUA  which leads to LUA , for every ,CNU  therefore )(, *
1 LACp
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and so NANANcl   While, the other inclusion follows directly. Hence )(NANclNA .But the 

inequality )(NANclNA . 

iv) The inclusion BANNBNA  follows directly by (i). To show the other implication, let 

BANCp ,,  then for every ),( pNU  ,., eiLUBA .LUBUA  then, we have 

two cases LUA  and LUB  or the converse, this means that exist ,,(, 21 CNUU  such that 

LUA 1 , ,1 LUB LUA 2  and LUB 2 . Then LUUA 21  and LUUB 21  this 
gives ,21 LUUBA  ,,(21 CNUU  which contradicts the hypothesis. Hence the equality holds in 
various cases. 

vi) By (iii), we have )(NANclNA NANANcl )(
Let ,X  be a GIFTS and L be GIFL on X . Let us  define the neutrosophic closure operator AAAcl )(  for

any GIFS A of X. Clearly, let )(ANcl  is a neutrosophic operator. Let )(LN   be NT generated by Ncl
.i.e .)(: cc AANclALN  Now NOL ANclANAAANcl  for every 

neutrosophic set A. So, )( NON . Again  Xon  NSs  allL ,AANcl  because NONA* , 
for every neutrosophic set A so LN * is the neutrosophic discrete topology on X. So we can conclude by Theorem

4.1.(ii). LNON N
*)(  i.e. *NN , for  any neutrosophic   ideal 1L  on X. In particular, we have for two 

neutrosophic ideals ,1L  and 2L  on X, 2
*

1
*

21 LNLNLL  . 

Theorem.4.2. Let 21,  be two neutrosophic topologies on X. Then for any neutrosophic ideal L on X, 21

implies ),(),( 12 LNALNA , for every A L  then 21 NN
Proof. Clear. 
A basis ,LN  for )(LN  can be described as follows: 

,LN LBABA ,:  Then we have the following theorem 

Theorem 4.3. ,LN LBABA ,:  Forms a basis for the generated NT of the  NT ,X  with 
neutrosophic ideal L on X. 

Proof. Straight forward. 

The relationship between and N (L) established throughout the following result which have an immediately proof 
. 

Theorem 4.4. Let 21,  be two neutrosophic topologies on X. Then for any neutrosophic ideal L on X,

21 implies 21 NN . 

Theorem 4.5 : Let ,  be a NTS and 21  , LL  be two neutrosophic  ideals on X . Then for any neutrosophic set A in 
X, we have  
i) .)(,)(,, 221121 LNLNALNLNALLNA ii) 

)(()()()( 122121 LLNLLNLLN  
Proof Let ,,),( 21 LLCp  this means that there exists PNU p  such that 21 LLUA p i.e. There 

exists 11 L  and 22 L  such that 21 pUA  because of the heredity of L1 , and assuming

NO21  .Thus we have 21 pUA  and  12 pUA  therefore 221 LAU p 

and 112 LAU p  . Hence ,,),,( 12 LNLNACp  or ,,),,( 21 LNLNACp  because 

p  must belong to either 1 or 2 but not to both. This gives .)(,)(,, 221121 LNLNALNLNALLNA  

.To show the second inclusion, let us assume ,,),,( 21 LNLNACp . This implies that there exist PNU p

and 22 L  such that 12 LAU p  . By the heredity of 2L ,  if we assume that A2  and define

AU p 21   . Then we have 2121 LLUA p  . Thus, 
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.)(,)(,, 221121 LNLNALLNALLNA  and similarly, we can get .)(,, 1221 LLALLA .  This 
gives the other inclusion, which complete the proof. 

Corollary 4.1. Let ,  be a NTS with neutrosophic ideal L on X. Then 

i) )())(()(N and ),(),( LLNNLLNALNA  .

ii) )()()( 2121 LNLNLLN
Proof.  Follows by applying the previous statement. 
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Neutrosophic Principle of Interconvertibility Matter-Energy- 
Information (NPI_MEI) 

Florentin Smarandache            Stefan Vladutescu 

Abstract 
The research aims to reveal and prove the thesis of the neutral and convertibility relationship between constituent constructive 

elements of the universe: matter, energy and information. The approach perspective is a computationally-communicative-

neutrosophic one. We configure a coherent and cohesive ideation line. Matter, energy and information are fundamental elements of 

the world. Among them, there is an inextricable multiple, elastic and evolutionary connection. The elements are defined by the 

connections between them. Our hypothesis is that the relationship between matter, energy and information is a neutral one. This 

relationship is not required by the evidence. At this level, it does not give up in front of the evidence intelligibility. Neutral 

relationship is revealed as a law connection. First, the premise that matter, energy and information never come into contradiction is 

taken as strong evidence. Their law-like-reciprocal obligations are non contradictory. Being beyond the contrary, matter, energy 

and information maintain a neutral relationship. Therefore, on the basis of the establishment and functioning of the universe or 

multi-verse, there is neutrality. Matter, energy and information are primary-founder neutralities. Matter, energy and information are 

neutral because they are related to inexorable legitimate. They are neutral because they are perfectly bound to one another. 

Regularity is the primary form of neutrality. The study further radiographies the relational connections, and it highlights and renders 

visible the attributes and characteristics of the elements (attributes are essential features of elements and characteristics are their 

specific features). It explains the bilateral relationships matter-energy, information-matter and energy-information. It finally results 

that reality is an ongoing and complex process of bilateral and multi-lateral convertibility. Thus, it is formulated the neutrosophic 

principle of Interconvertibility Matter-Energy-Information (NPI_MEI). 

Keywords  
matter, energy, information, Neutrosophy Smarandache , Neutrosophic Principle of Interconvertibility Matter-Energy-Information 

(NPI_MEI) 

1. Introduction: properties, constituents, elements or ontological principles
In the last half of past century, there has been issued and acknowledged the idea that the world would be made 

of matter, energy and information. The axiom of foundation of the world issued by Norbert Wiener has already become 
canonical. Wiener‟s axiom states that "Information is information, not matter or energy" [1]. Everything in the 
universe/multiverse is based on matter, energy and information. 

The material of "construction" of the universe is matter and energy. In Big Bang, the amorphous matter, the 
vortex, unstructured and volatile was brought to a form by the energy. In other words, since the birth of the universe/ 
multiverse, there have existed matter, energy, and "construction", the "form" - information. The energy put the matter 
into the form "in formae" (in Latin), i.e. energy generated "informatio" (in Latin) - information. The movement of the 
matter to form is performed by energy. The initial impulse of the universe/multiverse is given by power. (D. Deutsch 
shows that “the physical world is a multiverse” [2]; D. Wallace states that is an “emergent multiverse” [3]). 
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 Therefore, the CERN attempt to simulate the initial phenomenon of the creation of the universe started with a huge 
amount of energy. 

Tom Stonier‟s point of view expressed in "Towards a new theory of information" (1991) is that "information is 
a basic property of the universe. That is, like matter and energy, information has physical reality. Any system that 
exhibits organization contains information. Changes in entropy represent changes in the organizational states of systems 
and, as such, quantify changes in the information content of such systems. Information, like energy, exists in many 
forms. These are interconvertible. Likewise, energy and information are readily interconverted” [4] [5]. In his turn, 
Anthony Reading noticed the information as "fundamental property of organized matter" [6].  

In the article "Information in the Structure of the World" (2011), Mark Burgin deals with the place of 
information in the world; he believes that there are four "basic constituents of the World" (...) "matter, energy, mentality 
and knowledge”. He points out that some researchers "relate information only to society", others "include the level of 
individual human beings", "many presume that information is everywhere in nature". His opinion is that the information 
is "in the structure of the world" and that the "structure of information processes, as well as relations between 
information and basic constituents of the world, such as matter, energy, mentality and knowledge" [7] should be taken 
into account [8]. Mark Burgin and Gordana Dodig-Crnkovic believe that "Information is a basic essence of the world" 
[9]. On the other hand, they postulate the universality of information: "Information is related to everything and 
everything is related to information" [10] [11]. David Bawden and Lyn Robinson emphasize that „information is now 
becoming accepted as a fundamental constituent of the physical universe” [12]. 

In our opinion, the world is composed of three fundamental elements: element 1-matter, element 2 - energy and 
element 3 - information. Ontologically, matter and energy are primary natural elements, and information is a secondary 
element. The Matter and energy are constituent elements. In epistemological order, information is superior, being a 
constructive element. Information is the computational element of the world. Hans Christian von Baeyer believes that 
this three are elements [13]. The internal computational principle of information is linked to Wheeler‟s principle [14]: 
"It from bit", as the Cover-Thomas axiom states: "computation is communication limited, and communication is 
computation limited" [15]. Information is the computational principle of the world. Information is the first element and 
then the onto-computational principle. 

Rafael Capurro appreciates that that there are not elements, there are not properties, but ontological principles 
aside others; he lists as ontological principles "energy, matter, spirit, subjectivity, substance, or information" [16]. 
Without the existence of a direct connection between these principled categories, R. Capurro reveals exponential 
capacity of information to represent the world: "We would then say: whatever exists can be digitalized. Being is 
computation" [17] [18] [19] [20]. As ontological principle, information is computational. S. Lloyd emphasizes that 
“universe is computational” [21]. 

2. Convertive relationship between matter-energy
The first two elements of the triad are those of the Einstein physical formula of mass-energy equivalence. We 

are interested, first, in the matter connection (mass)-energy. In principle, this relationship was clarified by Albert 
Einstein. 

On the depth axis of Einsteinian thought, the determination of mass-energy relationship is a synthesis of the 
major ideas launched in the four articles published in 1905. 1905 is known as the miraculous year "Wunderjahr" 
(German) or "Miracle Year". In Latin it was called "Annus Mirabilis" and the articles published in Annalen der Physik 
were called "Annus Mirabilis Papers" [22] [23] [24]. They are considered to have significantly contributed to the 
foundation of modern physics. We could say more: 1905 is the most important year in the history of physics hitherto.

The first article published on the June 9th 1905 introduced the concept of "energy quanta": „Energy, during the 
propagation of a ray of light, is not continuously distributed over steadily increasing spaces, but it consists of a finite 
number of energy quanta localized at points in space, moving without diving and capable of being absorbed or 
generated only as entities”. Albert Einstein notes that "energy quanta" is converted "at least partially into kinetic energy 
of the electrons". Thus he reveals "photoelectric effect", discovery for which he would win, in 1921, the Nobel Prize for 
physics. Note that from here, the concern for energy is evident. 

The second article, published on July (1905), is a specification of Brownian motion: In this paper, shows A. 
Einstein, according to the molecular Kinetic theory of heat, "bodies of a microscopically visible size suspended in 
liquids must, as a result of thermal molecular motion, perform motions of such magnitudes that they can be easily 
observed with a microscope". The article reveals a high consciousness of scientific honesty: "It is possible that the 
motions to be discussed here are identical with the so-called Brownian molecular motion; however, the information 
available to me on regarding the latter is so lacking in precision that I form no judgment in the matter". We notice that in 
this article the orientation is on matter: liquid, molecules [25]. 

On September 1905, there is published a study that will be the core of what would later be called the "Special 
Theory of Relativity" [26]. However, a strong emphasis is placed on the speed of light. Entitled "On the 
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electrodynamics of Moving Bodies", the study analyzes, in context of electricity and magnetism, the major changes that 
occur in "mechanics", when the speeds are close to the speed of light. A. Einstein shows that the "speed of light" is 
constant in "all inertial frames of references". Then, he "also introduces another postulate (...) that light is always 
propagated in empty space with a defined velocity c which is independent of the state of motion of the emitting body". 
We are interested in the fact that this study is concerned about the speed of light as a constant and that this would be the 
maximum speed in the universe. In this context it is shown that, as Professor Leonardo F. D. da Motta argues "in 1972, 
Smarandache proposed there is not a limit speed on the nature" [27]. Initiated in 1972, "Smarandache Hypothesis" was 
completed by Professor Florentin Smarandache in 1998. Smarandache shows: "We promote the hypothesis that: there is 
no speed barrier in the universe and one can construct any speed even infinite (instantaneous transmission)" [28]. As Ion 
Pătraşcu outlined in October 2011, Smarandache‟s hypothesis "has been partially confirmed by the recent CERN results 
of OPERA team led by Antonio Ereditato that experimentally found that neutrino particles travel faster than light" [29].

The fourth article of "Wundejahr" - 1905 emerges as convergence of the others. Energy, light and matter are 
brought within a formula. The article is called „Ist die Träghit eines Körpers von seinem Energienhalt abhänging?” 
"Does the inertia of a body depend upon its energy-content?" It was sent on September 27th 1905 and published on 
November 21st 1905 [30]. Because in this article we find the phrase "the principle of energy", we consider that the most 
famous formula in physics and, perhaps, of human knowledge (E = mc2) formulation may be called "the principle of 
energy". In the article, for energy there are used three symbolic notations, L, H and E, according to the system and 
measurement. Strictly, the formula itself, in mathematical language (E = mc2) does not appear, it is presented 
linguistically:  „If a body gives off the energy in the form of radiation, its mass diminishes by L/c2. The fact that the 
energy withdraws from the body and becomes energy of radiation evidently makes no difference, so that we are led to 
the more general conclusion that the mass of a body is a measure of its energy-content; if the energy changes by L, the 
mass changes in the same sense by L/9x1020, the energy being measured in ergs, and the mass in grams”. 

It should result, we show, m = L/c2 ↔ L = mc2. 
Even if the formula was not canonically marked from the beginning, Albert Einstein underlines the energy 

equation. Contributions to finalize the formula are also brought, through symbolic using, by Max Planck, Johannes Stark 
and Louis de Broglie. 

In 1946, Albert Einstein published the article "E = mc2: the most urgent problem of our time", accrediting the 
formula for history. The internal subject of the formula is the relationship between "mass" and "its energy-content". The 
mass of a body and the energy contained by it are defined mutually and are mutual dependent. The formula E = mc2 is 
neither mass, nor energy. The formula E = mc2 is information. More precisely, it constitutes scientific information: law-
like information, grounded, indisputable in terms of a strengthened conceptual reference system. 

Mass and energy are inseparable and mutually convertible. There is no mass without energy and no energy 
without any mass. All energy has a mass. Energy can be kinetic, chemical, thermal energy given by the position in a 
field of forces, and so on. When there is added energy to an object, this leads to a gain of mass. While it may seem 
strange in comparison with common sense, scientifically, the body temperature increase causes the increase of its mass. 
The mass increases insignificantly, but it increases, because any energy has a mass. The body is a complex mass plus 
energy. 

Einstein‟s formula is available for any type of mass and energy. 
Albert Einstein also proved that motion is crucial in the destiny of the world. As far as matter and bodies are 

concerned, to speak about the “rest mass” and relative mass (motion mass), E = mc2 shows, subsequently, two specific 
variables. 

If we deal with a body at rest E = mc2 becomes E = m0c2 (m0 = rest mass). For the rest, the speed is zero. A
body has energy also when it is stationary. A solid body, has obviously,  at least, one thermal energy. 

When the body is in motion, with speed v, E = mc2 becomes E = mrel c2  (where  mrel  is relative mass,

      ). 
Another case is the variation of matter and energy: ΔE = Δm0c2. The formula is valid not only in terms of any

type of energy and matter, it is valid in any system. When it is a closed system, there appears a feature: closed systems 
do not lose mass. On the other hand, in closed systems, the energies are additive, they are cumulative. That means that 
in closed systems, energy and mass are controlled by each other. Progressively, mass becomes energy and energy 
becomes mass.  

Matter, as it is well known, is defined as something that has mass and volume. Taking into consideration that 
the mass has as reference system the Earth, and on the planet Earth, the objects are considered in rest, the mass is 
regularly identified by the rest mass or invariant mass. The volume is measured as the three-dimensional amplitude of 
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the occupied space. Sometimes, the concept of substance is used for the “matter”. Mark Burgin observes that "the matter 
is the name of all substances" [31]. 

In relationship with the substance, matter is taken as the substance of which the observed physical objects are 
constituted. The idea of matter as observed matter is important, because it cannot talk about substance in the case of 
detected matter only as presence in the fields of forces. In some force fields, besides effects of some visible material 
elements, there are observed effects of forces due to some objects-matter yet directly unnoticed, even still unknown. 
Martin H. Krieger states that "matter is matter that is observed" [32]. Scientific discoveries have shown that objects are 
composed of molecules, atoms, subatomic particles (protons, neutrons, electrons, etc.). At rest, the relationship of matter 
with energy is measurable, as Martin H. Krieger has demonstrated; at rest, the "matter is energetically stable" [33]. 

Taking into consideration that in the Universe there are two primary natural elements, element 1 (matter) and 
element 2 (energy), as we call them, they can be defined, also by one another. Such an understanding of the matter is 
shown by S. M. Carroll when he asserts that “matter” "contributes to energy" [34]. We observe that the corollary is also 
true, because energy also "contributes to matter". S. M. Carroll admits that "energy sources are a combination of matter 
and radiation" [31]. It is generally considered that the radiation is a form of energy. Gary T. Horowitz expresses a 
similar point of view, contending that "the black hole radiates energy" [36]. Matter and energy are "purely natural 
elements" fundamental to the universe. They are created and are controlled by each other. It is interesting that E = mc2 
has generated along the time no discussion concerning demonstrability, but it has generated debate concerning the 
positioning. Luce Irigaray shows that E = mc2, as it would favour "the speed of light over the other speeds that is vitally 
necessary to us", constitutes a "sexed equation" [37]. 

3. The convert relationship information-energy
Rolf Landauer observed a conversion information-energy: Landauer‟s Principle shows that erasure of one bit of 

information augments physical entropy, and generates heat [38]. As regards the relations between the elements of the 
fundamental triad, Mark Burgin and Gordana Dodig-Crnkovic believe that "the most intimate relations exist between 
information and energy. (...) Energy is a kind of information in the broad sense" [39]. 

The formulation of the “second law of thermodynamics” by Ludwig Boltzmann was one of the great 
intellectual challenges of the nineteenth century; the law says that entropy in an isolated system should not decrease 
[40]. James Clerk Maxwell, Scottish physicist and mathematician, tested foundations of the law, including the 
foundations of statistical mechanics and thermodynamics. He thought of an event of physical nature that would 
contradict the content of the law. He imagined a box with two compartments communicating between them through a 
hatch. In the box there is a gas at a particular temperature. In relation to the average temperature some molecules are 
cooler and some molecules are hotter. The hotter molecules are moving faster, and the cooler molecules are moving 
slower. The hatch is activated by a being who decides when the molecules move from a side to other side. After a 
certain interval and a number of openings of the hatch, the hot molecules will gather in a compartment, cold molecules, 
in the other. By opening the hatch the being separated the cold molecules from the warm molecules and modified the 
thermodynamic entropy. That is, initially the gas was a mixture of hot and cold molecules; it was in a state of disorder, it 
had a higher entropy. Once the molecules were separated and thus a state of order was introduced, it generated a lower 
entropy. In other words, the entropy of an isolated system was modified. It was proved that, against the law provisions, 
entropy in an isolated system should decrease. Furthermore, this being was called demon, Maxwell's demon. What we 
observe today is that the demon decreased the entropy, i.e. it produced information. Apparently the demon contradicts 
the law, because the functioning of the law compulsorily implies that there is not and there cannot be built a perfect heat 
engine which can extract energy from an isolated system and use it almost entirely; such a heat engine is not possible 
because the container itself containing the gas consumes heat to heat as container. The demon has knowledge of the idea 
of temperature and, without introducing energy into the box, it separates the molecules. The temperature was used as a 
separator engine, as the perfect heat engine. That is the demon that "seems" to turn information into energy, violating 
the rules induced by law. 

In 1929, in the study "On the reduction of entropy in a thermodynamic system by the intervention of intelligent 
beings", Leo Szilard proves that the law is not violated. He describes the demon as "intelligent being". He laid aside the 
qualitative contribution of the demon and put in quantitative terms its activity (intervention of intelligent being). He 
pointed out that the demon (being) turns the knowledge in thermodynamic energy [41]. Our remark is that Szilard 
makes from even the intelligence of the demon a consumer of energy: to determine which of molecules are hot and 
which molecules are cold, the demon exerts some energy. He showed that the law would not be violated if the entropy S 
of a system increased by an amount ΔS = k ln 2; k is Boltzmann's constant = 1,38 x 10-23 joules per degree Kelvin. On 
the other hand, it is known that the information is the inverse of the entropy. This implies that ΔI = ΔS = - k ln 2 [42]. 
By the description that is made of a dynamic system, a certain observer intervenes in the evolution of the system. The 
intervention consists in the description of the induced instantaneous dynamics and irreversible discontinuity; 
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intervention generates a change. In fact, by its description, the observer selects a certain state of the system. The number 
of unknown states of the system is reduced by choice and the stream of possibilities of the system decreases. So a 
reduction of entropy takes place. Leo Szilard notes in the observer action “how entropy in a thermodynamic system can 
be reduced by the intervention of intelligent beings” [43]. With a point of view related to the content of Szilard‟s article, 
L. Brown, B. Pippard and A. Pais assert that “the decrease of entropy caused through the observation of a 
thermodynamic system (by an intelligent being) must be compensated by an increase of entropy imposed on the 
observed system through the procedure of measurement” [44]. Through this demonstration, Leo Szilard formulated a 
law of relation energy-information, called Szilard‟s engine or “information heat engine” [45]. 

Today, we say that the law is not violated, since intelligence constitutes energy consumption. Our thesis is that 
intelligence always converts information into energy and energy into information. 

In "A Mathematical Theory of Communication” (published study in numbers 3 and 4, 1948, of the Bell System 
Technical Journal), Claude E. Shannon defines information based on entropy. The second of the 23 theorems formulated 
contains one of the most important and most cited formulas in the history of science. It is comparable to Einsteinian  E = 
mc2 or formula of entropy given by L. Boltzmann (and the latter has engraved it on his grave from Vienna). In its 
development, Shannon starts from the question: „Can we find a measure of how much 'choice' is involved in the 
selection of the event or of how uncertain we are of the outcome?” [46]. From here, he formulates „theorem 2”: (...) H = 
- KΣpi log pi [47]; H is entropy. Shannon explains: „Quantities of the form H = - KΣpi log pi (the constant K merely 
amounts to a choice of a unit of measure) play a central role in information theory as measures of information, choice 
and uncertainty. The form of H will be recognized as that of entropy, as defined in certain formulations of statistical 
mechanics where pi is the probability of a system being in cell of its phase space. H is then, for example, the H of 
Boltzmann's famous theorem. We shall call H = - KΣpi log pi the entropy of the set of possibilities p1, ...., pn” [48]. 

Generally, entropy represents the disorder of a system. As we observe H (entropy) is the minus of the 
information measure - that is information is the reverse of entropy, minus entropy, as such, as we‟ll later see  with Louis 
Brillouin. "Entropy" goes in the same direction with "uncertainty": „this quantity measures how uncertain we are” (...) 
„entropy (or uncertainty)” [49]. In relation to channel time (continuous, discrete, mixed), "continuous and discrete 
entropies" are registered: “In the discrete case, the entropy measures in an absolute way the randomness of the chance 
variable. In the continuous case, the measurement is relative to the coordinate of system” [50]. 

Later, in 1962, Leon Brillouin (1962) notes that information is "minus entropy", that information is negative 
entropy, and information means "entropy", i.e. "negentropy" [51]. He formulated the Negentropy Principle of 
Information, designating the idea that aggregation of information associated to states of a system is directly proportional 
to the decrease of entropy. Also, he stated that in this situation there is no violation of the second law of 
thermodynamics; that there is a reduction of the thermodynamic entropy in an area of a system and an increase of 
entropy in another area of it that do not constitute a violation of the second law of thermodynamics.  

On the line of L. Brillouin, S. P. Mahulikar and H. Herwig (2009) consolidated Negentropy Principle of 
Information. They observed that the reduction of entropy may be understood as a deficiency of entropy; thereby 
reduction of entropy of a sub-system is a deficiency of entropy in relation to surrounding sub-systems [52]. 

Further researches cleared the doubts demon entered. Even more, it was demonstrated the possibility of 
converting information into energy [53] [54] [55] [56]. Starting from Szilárd-type information-to-energy conversion and 
the Jarzynski equality, S. Toyabe, M. Sagawa, E. Ueda, E. and M. Sano Muneyuki sketched “a new fundamental 
principle of an „information-to-heat engine‟ that converts information into energy by feedback control” [57]. 

Mihaela Colhon and N. Tandareanu speak about "sentential form", referring to those forms which include 
propositional information formulated in a natural language [58]. Thought has several forms: language thought, 
geometric thought, thought, digital thought, pictorial thought, musical thought etc. Each type of thought has one type of 
efficiency called intelligence. Efficiency is effectiveness in unit or time interval. Howard Gardner asserts that there are 9 
types of intelligence: naturalist intelligence (nature smart), musical intelligence (musical smart), logical-mathematical 
intelligence (number/reasoning smart), existential intelligence, interpersonal intelligence (people smart), bodily-
kinesthetic intelligence (body smart), linguistic intelligence (word smart), intra-personal intelligence (self smart), spatial 
intelligence (picture smart) [59]. 

On conditions in which the informational process consists mainly of computation, there is easy to deduce that 
man is a "computer" that converts energy into information. It is the most efficient converter of the blue planet: "Man is 
the most complex information-processing system existing on the earth. By some estimates, the total number of bits 
processed in the human body every second is 3.4 x 1019, but it uses only 20 watts power" [60]. 

Information means computation [61] [62] [63] [64] [65] [66]. Intelligence is a computational quality of 
information converting into energy. Information-energy converters can operate on the principles of computational 
intelligence. 
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4. The relationship matter-information
Forms, patterns of the information core are the materials, are material nature. That is in the information core 

lies matter. Immanent relationship between matter and information is represented by the forms, by patterns. Matter has 
form, it has information. Rolf Landauer shows that „information is physical” [67]; on the same idea, V. Vedral argues 
that material, physical „universe” is „quantum information” [68].  

Formula E = mc2 is twice impregnated informationally. The first impregnation consists of the fact that the 
formula which contains the principle is an equation information. Any equation is a piece of information. A second 
informational impregnation of the formula consists of that c2 is information. The relationship between energy and matter 
is informationally mediated. 

Information has a quantitative dimension and a qualitative dimension. On the quantitative dimension, 
information is a function of probability [69] [70]. On the qualitative dimension, information is a function of meaning. 

We associate to our opinion about internal form, the position expressed by Anthony Reading related to 
"intrinsic information". This shows that he caught up Norbert Wiener‟s concept and "intrinsic information" is "the way 
the various particles, atoms, molecules, and objects in the universe are organized and arranged" [71] [72] [73] [74]. 

The cognitive organization of the matter, energy and information itself takes place through information. The 
modelling core of information is represented by the form. The forms are concepts that bring in convergence the 
observing of the informational object and its structural thought. They are places of objective finding meeting with 
subjective internal computation. The forms are active patterns. The computation takes place by the designing of forms 
on informational objectives apparently amorphous and through their structural magnetization. Through information, the 
mental forms find their modelling resonance in the informational medium [75] [76] [77] [78]. 

"Intrinsic information" is the finding of a way of organization for the matter, energy and information itself. 
Like world itself, the informational medium has an intrinsic structure, irrespective of the relation to the informational 
subject. This objective configuration creates the internal form of the informational object [79] [80] [81]. 

On the other hand, in its projective approach, the radiant, radiographic, resonator and infusive, informational 
subject designs on medium of interest the external forms. The external conceptual forms can resonate with the internal 
forms of informational object or they may not resonate. When the informational medium is structured, the forms 
resonate and the subject objectifies them. When the informational medium is not structured, the external forms do not 
find resonance in the amorphous medium. Then the external forms magnetize the amorphous medium and structure it 
informationally. The subjective is charging the objective. The informational subject infuses itself with forms, the subject 
"pattern-izes". In the first case, the extrinsic information is brought within range of the intrinsic information. In the 
second case, the extrinsic information is required as modeller and intrinsic information. 

If in the intrinsic information core stands the objective organization discovery of the informational medium, in 
the centre of extrinsic information there is meaningful structure induced from exterior, an external form. Intrinsic 
information means discovery of meanings. Extrinsic information is assigning of meanings. 

As critical informational tools, forms are active nuclear structure, radiant. Forms are previous informational 
constructions with which the informational medium is exploring and exploiting. As attested models, the forms are 
themselves seeking the informational space. 

In fact, the forms are forms because they form (form-s). They are inserted in "amorphous and disorganized 
pyrite" and formally structure it. Like language, information is the discourser of computational process of 
commensuration with conceptual forms. Information is a putting in discourse on putting in order. 

In the intrinsic information, putting in order is noticeable, because organization belongs to inventory domains. 
In the extrinsic information, putting in order is infused-modelling, because the organization belongs to the 
implementation order, it is induced by the informational subject. The extrinsic information is of the impression type. 
The impression-able form is found as impression. In these cases, the forms bring and radiate meanings. Intrinsic 
information deals with a recognition of meanings-forms. The difference between intrinsic information and extrinsic 
information comes from central computational operation: recognition, through forms, of meanings organization vs. 
assigning, through forms, of meanings [82]. The extrinsic information is more visible and meaningfully marked. 
Therefore, it is reasonably thought that they could also be called "meaningful information". Anthony Reading shows 
that besides intrinsic information there is also meaningful information. He states: "Meaningful information is defined as 
a detectable pattern of matter or energy that generates a response in a recipient" [83].  

The detectable pattern is a "form". 

5. Conclusion
Relationally, the neutral relationship between matter, energy and information is not primary, but secondary. 

The fact that the three elements of the Universe/Multi-verse do not contradict results in a liminal manner from 
interconvertibility. The primary relationship, principled, law-like, liminal, fundamental to the world is the 
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Interconvertibility of Matter-Energy-Information (I_MEI). The Matter-Energy-Information interconvertibilility renders 
the world permanent and dense, more and more dense inter-elements emerging in the conversion process. The 
unavoidable law that controls any process that takes place in the world is the law of the permanent conversion Matter-
Energy-Information. Each process has an index of interconvertibility and a formula of existence, of reality. 

The reality is the reality of interconvertibility. Man is the main instrument of conversion and computability. We 
got to illuminate some of the bilateral and non-contextual (in the absence of the third element) conversions. Reality is 
the place of the permanent interconversion, simultaneous and multiphase of M-E-I. What happens today contains all the 
history of interconversion at the beginning of the world. There remains to be investigated how to convert M into I in 
presence of I (in the context of I), a M in I in the presence of E (in the context of E) and an E in I in the presence of M 
(in the context of M). Furthermore, there is yet to be clarified how to convert M to E in the presence of I, a M "in the 
presence of E (in the context of E) and an E in I in the presence of M (in the context of M)" and so on. However, any 
presence and any context light and shadow the neutral war of the convertibilities. 
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Neutrosophic Refined Relations and Their Properties

Said Broumi, Irfan Deli, Florentin Smarandache

Abstract

In this paper, the neutrosophic refined relation (NRR) defined on the
neutrosophic refined sets( multisets) [13] is introduced. Various properties
like reflexivity, symmetry and transitivity are studied.

Keyword 0.1 Neutrosophic sets, neutrosophic refined sets, neutrosophic
refined relations, reflexivity, symmetry, transitivity.

1 Introduction

Recently, several theories have been proposed to deal with uncertainty, impre-
cision and vagueness. Theory of probability, fuzzy set theory[18], intuitionistic
fuzzy sets[17], rough set theory[49] etc. are consistently being utilized as efficient
tools for dealing with diverse types of uncertainties and imprecision embedded
in a system. But, all these above theories failed to deal with indeterminate
and inconsistent information which exist in beliefs system. In 1995, inspired
from the sport games (wining/tie/defeating), from votes (yes/ NA/ no), from
decision making (making a decision/ hesitating/not making) etc. and guided by

the fact that the law of excluded middle did not work any longer in the mod-
ern logics, F. Smarandache[10] developed a new concept called neutrosophic
set (NS) which generalizes fuzzy sets and intuitionistic fuzzy sets. NS can be
described by membership degree, indeterminate degree and non-membership
degree. This theory and their hybrid structures have proven useful in many
different fields such as control theory[32], databases[20, 21], medical diagnosis
problem[1], decision making problem [24, 2], physics[8], topology [9], etc. The
works on neutrosophic set, in theories and applications, have been progressing
rapidly (e.g. [3, 6, 35, 41, 48, 19]).
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Combining neutrosophic set models with other mathematical models has at-
tracted the attention of many researchers. Maji et al.[22] presented the concept
of neutrosophic soft sets which is based on a combination of the neutrosophic set
and soft set models. Broumi and Smarandache[33, 36] introduced the concept
of the intuitionistic neutrosophic soft set by combining the intuitionistic neutro-
sophic sets and soft sets. Broumi et al. presented the concept of rough neutro-
sophic set[39] which is based on a combination of neutrosophic sets and rough set
models. The works on neutrosophic sets combining with soft sets, in theories and
applications, have been progressing rapidly (e.g. [34, 37, 38, 14, 15, 40, 16, 42]).

The notion of multisets was formulated first in [31] by Yager as generaliza-
tion of the concept of set theory and then the multiset was developed in [7] by
Calude et al. Several authors from time to time made a number of generaliza-
tions of the multiset theory. For example, Sebastian and Ramakrishnan[46, 45]
introduced a new notion called multi fuzzy sets, which is a generalization of the
multiset. Since then, Several researchers [30, 44, 4, 5] discussed more properties
on multi fuzzy set. And they [47, 23] made an extension of the concept of Fuzzy
multisets to an intuitionstic fuzzy set, which was called intuitionstic fuzzy mul-
tisets (IFMS). Since then in the study on IFMS , a lot of excellent results have
been achieved by researchers [43, 25, 26, 27, 28, 29]. An element of a multi fuzzy
set can occur more than once with possibly the same or different membership
values, whereas an element of intuitionistic fuzzy multiset allows the repeated
occurrences of membership and non–membership values. The concepts of FMS
and IFMS fail to deal with indeterminacy. In 2013 Smarandache [11] extended
the classical neutrosophic logic to n-valued refined neutrosophic logic, by refin-
ing each neutrosophic component T, I, F into respectively T1, T2, ..., Tm, and
I1, I2, ..., Ip, and F1, F2, ..., Fr. Recently, Deli et al.[13] used the concept of
neutrosophic refined sets and studied some of their basic properties. The con-
cept of neutrosophic refined set (NRS) is a generalization of fuzzy multisets and
intuitionistic fuzzy multisets.

The neutrosophic refined relations are the neutrosophic refined subsets in
a cartesian product of the universe. The purpose of this paper is an attempt
to extend the neutrosophic relations to neutrosophic refined relations (NRR).
This paper is arranged in the following manner. In section 2, we present some
definitions of neutrosophic set and neutrosophic refined set theory which help us
in the later section. In section 3, we study the concept of neutrosophic refined
relations and their operations. Finally, we conclude the paper.
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2 Preliminary

In this section, we mainly recall some notions related to neutrosophic set[10],single
valued neutrosophic set (SVNS)[12] and neutrosophic refined set relevant to the
present work. See especially[20, 21, 1, 3, 6, 35, 24, 2, 9, 8, 12] for further details
and background.

Smarandache[11] refine T , I, F to T1, T2,..., Tm and I1, I2,..., Ip and F1,
F2,..., Fr where all Tm , Ip and Fr can be subset of [0,1]. In the following
sections ,we considered only the case when T ,I and F are split into the same
number of subcomponents 1,2,...p, and T j

A IjA,F j
A are single valued neutrosophic

number.

Definition 2.1 [10] Let U be a space of points (objects), with a generic element
in U denoted by u. A neutrosophic set (N-set) A in U is characterized by a
truth-membership function TA, a indeterminacy-membership function IA and a
falsity-membership function FA. TA(x); IA(x) and FA(x) are real standard or
nonstandard subsets of ]−0, 1+[. It can be written as

A = {< u, (TA(x), IA(x), FA(x)) >: x ∈ E, TA(x), IA(x), FA(x) ∈]−0, 1+[}.

There is no restriction on the sum of TA(x); IA(x) and FA(x), so −0 ≤
supTA(x) + supIA(x) + supFA(x) ≤ 3+.

For application in real scientific and engineering areas,Wang et al.[12] proposed
the concept of an SVNS, which is an instance of neutrosophic set. In the fol-
lowing, we introduce the definition of SVNS.

Definition 2.2 [12] Let U be a space of points (objects), with a generic element
in U denoted by u. An SVNS A inX is characterized by a truth-membership func-
tion TA(x), a indeterminacy-membership function IA(x) and a falsity-membership
function FA(x), where TA(x), IA(x), and FA(x) belongs to [0,1] for each point
u in U. Then, an SVNS A can be expressed as

A = {< u, (TA(x), IA(x), FA(x)) >: x ∈ E, TA(x), IA(x), FA(x) ∈ [0, 1]}.

There is no restriction on the sum of TA(x); IA(x) and FA(x), so 0 ≤
supTA(x) + supIA(x) + supFA(x) ≤ 3.

Definition 2.3 [13] Let E be a universe. A neutrosophic refined set (NRS) A
on E can be defined as follows:

A = {< x, (T 1
A(x), T 2

A(x), ..., TP
A (x)), (I1A(x), I2A(x), ..., IPA (x)),

(F 1
A(x), F 2

A(x), ..., FP
A (x)) >: x ∈ E}

where,

T 1
A(x), T 2

A(x), ..., TP
A (x) : E → [0, 1],
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I1A(x), I2A(x), ..., IPA (x) : E → [0, 1],

and
F 1
A(x), F 2

A(x), ..., FP
A (x) : E → [0, 1]

such that
0 ≤ supT i

A(x) + supIiA(x) + supF i
A(x) ≤ 3

(i = 1, 2, ..., P ) and

T 1
A(x) ≤ T 2

A(x) ≤ ... ≤ TP
A (x)

for any x ∈ E.
(T 1

A(x), T 2
A(x), ..., TP

A (x)), (I1A(x), I2A(x), ..., IPA (x)) and (F 1
A(x), F 2

A(x), ..., FP
A (x))

is the truth-membership sequence, indeterminacy-membership sequence and falsity-
membership sequence of the element x, respectively. Also, P is called the di-
mension(cardinality) of NRS A. We arrange the truth-membership sequence in
decreasing order but the corresponding indeterminacy-membership and falsity-
membership sequence may not be in decreasing or increasing order.

The set of all Neutrosophic refined sets on E is denoted by NRS(E).

Definition 2.4 [13] Let A,B ∈ NRS(E). Then,

1. A is said to be NR subset of B is denoted by A⊆̃B if T i
A(x) ≤ T i

B(x),
IiA(x) ≥ IiB(x) ,F i

A(x) ≥ F i
B(x), ∀x ∈ E.

2. A is said to be neutrosophic equal of B is denoted by A = B if T i
A(x) =

T i
B(x), IiA(x) = IiB(x) ,F i

A(x) = F i
B(x), ∀x ∈ E.

3. the complement of A denoted by Ac̃ and is defined by

Ac̃ = {< x, (F 1
A(x), F 2

A(x), ..., FP
A (x)), (I1A(x), I2A(x), ..., IPA (x)),

(T 1
A(x), T 2

A(x), ..., TP
A (x)) >: x ∈ E}

4. If T i
A(x) = 0 and IiA(x) = F i

A(x) = 1 for all x ∈ E and i = 1, 2, ..., P then
A is called null ns-set and denoted by Φ̃.

5. If T i
A(x) = 1 and IiA(x) = F i

A(x) = 0 for all x ∈ E and i = 1, 2, ..., P ,
then A is called universal ns-set and denoted by Ẽ.

Definition 2.5 [13] Let A,B ∈ NRS(E). Then,

1. the union of A and B is denoted by A∪̃B = C1 and is defined by

C = {< x, (T 1
C(x), T 2

C(x), ..., TP
C (x)), (I1C(x), I2C(x), ..., IPC (x)),

(F 1
C(x), F 2

C(x), ..., FP
C (x)) >: x ∈ E}

where T i
C = T i

A(x) ∨ T i
B(x), IiC = IiA(x) ∧ IiB(x) ,F i

C = F i
A(x) ∧ F i

B(x),
∀x ∈ E and i = 1, 2, ..., P .
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2. the intersection of A and B is denoted by A∩̃B = D and is defined by

D = {< x, (T 1
D(x), T 2

D(x), ..., TP
D (x)), (I1D(x), I2D(x), ..., IPD(x)),

(F 1
D(x), F 2

D(x), ..., FP
D (x)) >: x ∈ E}

where T i
D = T i

A(x) ∧ T i
B(x), IiD = IiA(x) ∨ IiB(x) ,F i

D = F i
A(x) ∨ F i

B(x),
∀x ∈ E and i = 1, 2, ..., P .

3. the addition of A and B is denoted by A+̃B = E1 and is defined by

E1 = {< x, (T 1
E1

(x), T 2
E1

(x), ..., TP
E1

(x)), (I1E1
(x), I2E1

(x), ..., IPE1
(x)),

(F 1
E1

(x), F 2
E1

(x), ..., FP
E1

(x)) >: x ∈ E}

where T i
E1

= T i
A(x) + T i

B(x) − T i
A(x).T i

B(x), IiE1
= IiA(x).IiB(x) ,F i

E1
=

F i
A(x).F i

B(x), ∀x ∈ E and i = 1, 2, ..., P .

4. the multiplication of A and B is denoted by A×̃B = E2 and is defined by

E2 = {< x, (T 1
E2

(x), T 2
E2

(x), ..., TP
E2

(x)), (I1E2
(x), I2E2

(x), ..., IPE2
(x)),

(F 1
E2

(x), F 2
E2

(x), ..., FP
E2

(x)) >: x ∈ E}

where T i
E2

= T i
A(x).T i

B(x), IiE2
= IiA(x) + IiB(x) − IiA(x).IiB(x) ,F i

E2
=

F i
A(x) + F i

B(x)− F i
A(x).F i

B(x), ∀x ∈ E and i = 1, 2, ..., P .

Here ∨, ∧, +, ., − denotes maximum, minimum, addition, multiplication,
subtraction of real numbers respectively.

3 Relations on Neutrosophic Refined Sets

In this section, after given the Cartesian product of two neutrosophic refined sets
(NRS), we define a relations on neutrosophic refined sets and study their desired
properties. The relation extend the concept of intuitionistic multirelation [27] to
single valued neutrosophic refined relation. Some of it is quoted from [13, 27, 10].

Definition 3.1 Let ∅ 6= A,B ∈ NRS(E) and j ∈ {1, 2, ..., n}. Then, cartesian
product of A and B is a neutrosophic refined set in E × E, denoted by A × B,
defined as

A×B = {< (x, y), T j
A×B(x, y)), IjA×B(x, y), F j

A×B(x, y) >: (x, y) ∈ E × E}

where
T j
A×B(x, y), IjA×B(x, y), F j

A×B(x, y) : E → [0, 1]

,

T j
A×B(x, y) = min

{
T j
A(x), T j

B(x)
}
,

IjA×B(x, y) = max
{
IjA(x), IjB(x)

}
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and
F j
A×B(x, y) = max

{
F j
A(x), F j

B(x)
}

for all x, y ∈ E.

Remark 3.2 A Cartesian product on A is a neutrosophic refined set in E×E,
denoted by A×A, defined as

A×A = {< (x, y), T j
A×A(x, y)), IjA×A(x, y), F j

A×A(x, y) >: (x, y) ∈ E × E}

where j = 1, 2, ..., n and T j
A×A, I

j
A×A, F

j
A×A : E × E → [0, 1].

Example 3.3 Let E = {x1, x2} be a universal set and A and B be two Nm-sets
over E as;

A = {< x1, {0.3, 0.5, 0.6}, {0.2, 0.3, 0.4}, {0.4, 0.5, 0.9} >,
< x2, {0.4, 0.5, 0.7}, {0.4, 0.5, 0.1}, {0.6, 0.2, 0.7} >}

and

B = {< x1, {0.4, 0.5, 0.6}, {0.2, 0.4, 0.4}, {0.3, 0.8, 0.4} >,
< x2, {0.6, 0.7, 0.8}, {0.3, 0.5, 0.7}, {0.1, 0.7, 0.6} >}

Then, the cartesian product of A and B is obtained as follows

A×B = {< (x1, x1), {0.3, 0.5, 0.6}, {0.2, 0.4, 0.4}, {0.3, 0.8, 0.9} >,
< (x1, x2), {0.3, 0.7, 0.8}, {0.2, 0.5, 0.7}, {0.1, 0.7, 0.9} >,
< (x2, x1), {0.4, 0.5, 0.6}, {0.2, 0.5, 0.4}, {0.3, 0.8, 0.7} >,
< (x2, x2), {0.4, 0.7, 0.8}, {0.3, 0.5, 0.7}, {0.1, 0.7, 0.7} >}

Definition 3.4 Let ∅ 6= A,B ∈ NRS(E) and j ∈ {1, 2, ..., n}. Then, a neutro-
sophic refined relation from A to B is a neutrosophic refined subset of A × B.
In other words, a neutrosophic refined relation from A to B is of the form
(R,C), (C ⊆ E × E) where R(x, y) ⊆ A×B ∀(x, y) ∈ C.

Example 3.5 Let us consider the Example 3.3. Then, we define a neutrosophic
refined relation R and S, from A to B, as follows

R = {< (x1, x1), {0.2, 0.6, 0.9}, {0.2, 0.4, 0.5}, {0.3, 0.8, 0.9} >,
< (x1, x2), {0.3, 0.9, 0.8}, {0.2, 0.8, 0.7}, {0.1, 0.8, 0.9} >,
< (x2, x1), {0.1, 0.9, 0.6}, {0.2, 0.5, 0.4}, {0.2, 0.8, 0.7} >}

and

S = {< (x1, x1), {0.1, 0.7, 0.9}, {0.2, 0.5, 0.7}, {0.1, 0.9, 0.9} >,
< (x1, x2), {0.3, 0.9, 0.8}, {0.2, 0.8, 0.8}, {0.1, 0.8, 0.9} >,
< (x2, x1), {0.1, 0.9, 0.7}, {0.2, 0.9, 0.4}, {0.2, 0.8, 0.9} >}
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Definition 3.6 Let A,B ∈ NRS(E) and, R and S be two neutrosophic refined
relation from A to B. Then, the operations R∪̃S, R∩̃S, R+̃S and R×̃S are
defined as follows;

1.

R∪̃S = {< (x, y), (T 1
R∪̃S(x, y), T 2

R∪̃S(x, y), ..., Tn
R∪̃S(x, y)),

(I1
R∪̃S(x, y), I2

R∪̃S(x, y), ..., In
R∪̃S(x, y)),

(F 1
R∪̃S(x, y), F 2

R∪̃S(x, y), ..., Fn
R∪̃S(x, y)) >: x, y ∈ E}

where

T i
R∪̃S(x, y) = T i

R(x) ∨ T i
S(y),

IiR∪̃S(x, y) = IiR(x) ∧ IiS(y),

F i
R∪̃S(x, y) = F i

R(x) ∧ F i
S(y)

∀x, y ∈ E and i = 1, 2, ..., n.

2.
R∩̃S = {< (x, y), (T 1

R∩̃S(x, y), T 2
R∩̃S(x, y), ..., Tn

R∩̃S(x, y)),
(I1

R∩̃S(x, y), I2
R∩̃S(x, y), ..., In

R∩̃S(x, y)),
(F 1

R∩̃S(x, y), F 2
R∩̃S(x, y), ..., Fn

R∩̃S(x, y)) >: x, y ∈ E}

where

T i
R∩̃S(x, y) = T i

R(x) ∧ T i
S(y),

IiR∩̃S(x, y) = IiR(x) ∨ IiS(y),

F i
R∩̃S(x, y) = F i

R(x) ∨ F i
S(y)

∀x, y ∈ E and i = 1, 2, ..., n.

3.

R+̃S = {< (x, y), (T 1
R+̃S

(x, y), T 2
R+̃S

(x, y), ..., Tn
R+̃S

(x, y)),

(I1
R+̃S

(x, y), I2
R+̃S

(x, y), ..., In
R+̃S

(x, y)),

(F 1
R+̃S

(x, y), F 2
R+̃S

(x, y), ..., Fn
R+̃S

(x, y)) >: x, y ∈ E}

where

T i
R+̃S

(x, y) = T i
R(x) + T i

S(y)− T i
R(x).T i

S(y),

Ii
R+̃S

(x, y) = IiR(x).IiS(y),

F i
R+̃S

(x, y) = F i
R(x).F i

S(y)

∀x, y ∈ E and i = 1, 2, ..., n.
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4.

R×̃S = {< (x, y), (T 1
R×̃S(x, y), T 2

R×̃S(x, y), ..., Tn
R×̃S(x, y)),

(I1
R×̃S(x, y), I2

R×̃S(x, y), ..., In
R×̃S(x, y)),

(F 1
R×̃S(x, y), F 2

R×̃S(x, y), ..., Fn
R×̃S(x, y)) >: x, y ∈ E}

where

T i
R×̃S(x, y) = T i

R(x).T i
S(y),

IiR×̃S(x, y) = IiR(x) + IiS(y)− IiR(x).IiS(y),

F i
R×̃S(x, y) = F i

R(x) + F i
S(y)− F i

R(x).F i
S(y)

∀x, y ∈ E and i = 1, 2, ..., n.

Here ∨, ∧, +, ., − denotes maximum, minimum, addition, multiplication,
subtraction of real numbers respectively.

Example 3.7 Let us consider the two neutrosophic refined relation R and S,
from A to B, as follows

R = {< (x1, x1), {0.2, 0.3, 0.4}, {0.4, 0.5, 0.6}, {0.3, 0.8, 0.9} >,
< (x1, x2), {0.3, 0.4, 0.6}, {0.2, 0.3, 0.4}, {0.5, 0.6, 0.7} >,
< (x2, x1), {0.1, 0.6, 0.3}, {0.2, 0.5, 0.6}, {0.2, 0.3, 0.4} >}

and

S = {< (x1, x1), {0.1, 0.4, 0.5}, {0.3, 0.5, 0.7}, {0.2, 0.7, 0.1} >,
< (x1, x2), {0.2, 0.3, 0.4}, {0.5, 0.6, 0.7}, {0.2, 0.3, 0.6} >,
< (x2, x1), {0.4, 0.5, 0.6}, {0.2, 0.3, 0.4}, {0.1, 0.2, 0.3} >}

Then,

R∪̃S = {< (x1, x1), {0.2, 0.3, 0.4}, {0.4, 0.5, 0.6}, {0.3, 0.7, 0.1} >,
< (x1, x2), {0.3, 0.3, 0.4}, {0.5, 0.3, 0.4}, {0.5, 0.3, 0.6} >,
< (x2, x1), {0.4, 0.5, 0.3}, {0.2, 0.3, 0.4}, {0.2, 0.2, 0.3} >}

and

R∩̃S = {< (x1, x1), {0.1, 0.4, 0.5}, {0.3, 0.5, 0.7}, {0.2, 0.8, 0.9} >,
< (x1, x2), {0.2, 0.4, 0.6}, {0.2, 0.6, 0.7}, {0.2, 0.6, 0.6} >,
< (x2, x1), {0.1, 0.6, 0.6}, {0.2, 0.5, 0.6}, {0.1, 0.3, 0.4} >}

Assume that ∅ 6= A,B,C ∈ NRS(E). Two neutrosophic refined relations
under a suitable composition, could too yield a new neutrosophic refined relation
with a useful significance. Composition of relations is important for applications,
because of the reason that if a relation on A and B is known and if a relation on
B and C is known then the relation on A and C could be computed and defined
as follows;
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Definition 3.8 Let R(A→ B) and S (B→ C) be two neutrosophic refined re-
lations. The composition S ◦R is a neutrosophic refined relation from A to C,
defined by

S ◦R = {< (x, z), (T 1
S◦R(x, z), T 2

S◦R(x, z), ..., Tn
S◦R(x, z)),

(I1S◦R(x, z), I2S◦R(x, z), ..., InS◦R(x, z)),
(F 1

S◦R(x, z), F 2
S◦R(x, z), ..., Fn

S◦R(x, z)) >: x, z ∈ E}

where
T j
S◦R(x, z) = ∨

y

{
T j
R(x, y) ∧ T j

S(y, z)
}

IjS◦R(x, z) = ∧
y

{
IjR(x, y) ∨ IjS(y, z)

}
and

F j
S◦R(x, z) = ∧

y

{
F j
R(x, y) ∨ F j

S(y, z)
}

for every (x, z) E × E, for every y ∈ E and j = 1, 2, ..., n.

Definition 3.9 A neutrosophic refined relation R on A is said to be;

1. reflexive if T j
R(x, x) = 1, IjR(x, x) = 0 and F j

R(x, x) = 0 for all x ∈ E

2. symmetric if T j
R(x, y) = T j

R(y, x), IjR(x, y) = IjR(y, x) and F j
R(x, y) =

F j
R(y, x) for all x, y ∈ E

3. transitive if R ◦R ⊆ R.

4. neutrosophic refined equivalence relation if the relation R satisfies reflex-
ive, symmetric and transitive.

Definition 3.10 The transitive closure of a neutrosophic refined relation R on

E × E is
ˆ

R = R∪̃R2∪̃R3∪̃...

Definition 3.11 If R is a neutrosophic refined relation from A to B then R−1

is the inverse neutrosophic refined relation R from B to A, defined as follows:

R−1 =
{〈

(y, x), T j
R−1(x, y)), IjR−1(x, y), F j

R−1(x, y)
〉

: (x, y) ∈ E × E
}

where
T j
R−1(x, y) = T j

R(y, x), IjR−1(x, y) = IjR(y, x), F j
R−1(x, y) = F j

R(y, x) and
j = 1, 2, ..., n.

Proposition 3.12 If R and S are two neutrosophic refined relation from A to
B and B to C, respectively. Then,

1. (R−1)−1 = R
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2. (S ◦R)−1 = R−1 ◦ S−1

Proof

1. Since R−1 is a neutrosophic refined relation from B to A, we have

T j
R−1(x, y) = T j

R(y, x), IjR−1(x, y) = IjR(y, x) and F j
R−1(x, y) = F j

R(y, x)

Then,

T j
(R−1)−1(x, y) = T j

R−1(y, x) = T j
R(x, y),

Ij(R−1)−1(x, y) = IjR−1(y, x) = IjR(x, y)

and
F j
(R−1)−1(x, y) = F j

R−1(y, x) = F j
R(x, y)

therefore (R−1)−1 = R.

2. If the composition S ◦ R is a neutrosophic refined relation from A to C,
then the composition R−1 ◦ S−1 is a neutrosophic refined relation from C
to A. Then,

T j
(S◦R)−1(z, x) = T j

(S◦R)(x, z)

= ∨
y

{
T j
R(x, y) ∧ T j

S(y, z)
}

= ∨
y

{
T j
R−1(y, x) ∧ T j

S−1(z, y)
}

= ∨
y

{
T j
S−1(z, y) ∧ T j

R−1(y, x)
}

= T j
R−1◦S−1(z, x)

,

Ij(S◦R)−1(z, x) = Ij(S◦R)(x, z)

= ∧
y

{
IjR(x, y) ∨ IjS(y, z)

}
= ∧

y

{
IjR−1(y, x) ∨ IjS−1(z, y)

}
= ∧

y

{
IjS−1(z, y) ∨ IjR−1(y, x)

}
= IjR−1◦S−1(z, x)

and
F j
(S◦R)−1(z, x) = F j

(S◦R)(x, z)

= ∧
y

{
F j
R(x, y) ∨ F j

S(y, z)
}

= ∧
y

{
F j
R−1(y, x) ∨ F j

S−1(z, y)
}

= ∧
y

{
F j
S−1(z, y) ∨ F j

R−1(y, x)
}

= F j
R−1◦S−1(z, x)

Finally; proof is valid.
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Proposition 3.13 If R is symmetric ,then R−1is also symmetric.

Proof: Assume that R is Symmetric then we have

T j
R(x, y) = T j

R(y, x),

IjR(x, y) = IjR(y, x)

and
F j
R(x, y) = F j

R(y, x)

Also if R−1 is an inverse relation, then we have

T j
R−1(x, y) = T j

R(y, x),

IjR−1(x, y) = IjR(y, x)

and
F j
R−1(x, y) = F j

R(y, x)

for all x, y ∈ E
To prove R−1 is symmetric, it is enough to prove

T j
R−1(x, y) = T j

R−1(y, x),

IjR−1(x, y) = IjR−1(y, x)

and
F j
R−1(x, y) = F j

R−1(y, x)

for all x, y ∈ E
Therefore;

T j
R−1(x, y) = T j

R(y, x) = T j
R(x, y) = T j

R−1(y, x);

IjR−1(x, y) = IjR(y, x) = IjR(x, y) = IjR−1(y, x)

and
F j
R−1(x, y) = F j

R(y, x) = F j
R(x, y) = F j

R−1(y, x)

Finally; proof is valid.

Proposition 3.14 If R is symmetric ,if and only if R = R−1.

Proof: Let R be symmetric , then

T j
R(x, y) = T j

R(y, x);

IjR(x, y) = IjR(y, x)

and
F j
R(x, y) = F j

R(y, x)
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and
R−1 is an inverse relation, then

T j
R−1(x, y) = T j

R(y, x);

IjR−1(x, y) = IjR(y, x)

and
F j
R−1(x, y) = F j

R(y, x)

for all x, y ∈ E
Therefore; T j

R−1(x, y) = T j
R(y, x) = T j

R(x, y).
Similarly

IjR−1(x, y) = IjR(y, x) = IjR(x, y)

and
F j
R−1(x, y) = F j

R(y, x) = F j
R(x, y)

for all x, y ∈ E.
Hence R = R−1

Conversely, assume that R = R−1 then, we have

T j
R(x, y) = T j

R−1(x, y) = T j
R(y, x).

Similarly
IjR(x, y) = IjR−1(x, y) = IjR(y, x)

and
F j
R(x, y) = F j

R−1(x, y) = F j
R(y, x).

Hence R is symmetric.

Proposition 3.15 If R and S are symmetric neutrosophic refined relations,
then

1. R∪̃S,

2. R∩̃S,

3. R+̃S

4. R×̃S

are also symmetric.

Proof: R is symmetric, then we have;

T j
R(x, y) = T j

R(y, x),

IjR(x, y) = IjR(y, x)

and
F j
R(x, y) = F j

R(y, x)

Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

239



similarly S is symmetric, then we have

T j
S(x, y) = T j

S(y, x),

IjS(x, y) = IjS(y, x)

and
F j
S(x, y) = F j

S(y, x)

Therefore,

1.
T j

R∪̃S(x, y) = max
{
T j
R(x, y), T j

S(x, y)
}

= max
{
T j
R(y, x), T j

S(y, x)
}

= T j

R∪̃S(y, x)

,

Ij
R∪̃S(x, y) = min

{
IjR(x, y), IjS(x, y)

}
= min

{
IjR(y, x), IjS(y, x)

}
= Ij

R∪̃S(y, x),

and

F j

R∪̃S(x, y) = min
{
F j
R(x, y), F j

S(x, y)
}

= min
{
F j
R(y, x), F j

S(y, x)
}

= F j

R∪̃S(y, x)

therefore, R∪̃S is symmetric.

2.

T j

R∩̃S(x, y) = min
{
T j
R(x, y), T j

S(x, y)
}

= min
{
T j
R(y, x), T j

S(y, x)
}

= T j

R∩̃S(y, x),

Ij
R∩̃S(x, y) = max

{
IjR(x, y), IjS(x, y)

}
= max

{
IjR(y, x), IjS(y, x)

}
= Ij

R∩̃S(y, x),

and
F j

R∩̃S(x, y) = max
{
F j
R(x, y), F j

S(x, y)
}

= max
{
F j
R(y, x), F j

S(y, x)
}

= F j

R∩̃S(y, x)

therefore; R∩̃S is symmetric.
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3.
T j

R+̃S
(x, y) = T j

R(x, y) + T j
S(x, y)− T j

R(x, y)T j
S(x, y)

= T j
R(y, x) + T j

S(y, x)− T j
R(y, x)T j

S(y, x)

= T j

R+̃S
(y, x)

Ij
R+̃S

(x, y) = IjR(x, y)IjS(x, y)

= IjR(y, x)IjS(y, x)

= Ij
R+̃S

(y, x)

and
F j

R+̃S
(x, y) = F j

R(x, y)F j
S(x, y)

= F j
R(y, x)F j

S(y, x)

= F j

R+̃S
(y, x)

therefore, R+̃S is also symmetric

4.
T j

R×̃S(x, y) = T j
R(x, y)T j

S(x, y)

= T j
R(y, x)T j

S(y, x)

= T j

R×̃tS(y, x)

Ij
R×̃S(x, y) = IjR(x, y) + IjS(x, y)− IjR(x, y)IjS(x, y)

= IjR(y, x) + IjS(y, x)− IjR(y, x)IjS(y, x)

= Ij
R×̃S(y, x)

F j

R×̃S(x, y) = F j
R(x, y) + F j

S(x, y)− F j
R(x, y)F j

S(x, y)

= F j
R(y, x) + F j

S(y, x)− F j
R(y, x)F j

S(y, x)

= F j

R×̃S(y, x)

hence, R×̃S is also symmetric.

Remark 3.16 R◦S in general is not symmetric, as

T j
(R◦S)(x, z) = ∨

y

{
T j
S(x, y) ∧ T j

R(y, z)
}

= ∨
y

{
T j
S(y, x) ∧ T j

R(z, y)
}

6= T j
(R◦S)(z, x)

Ij(R◦S)(x, z) = ∧
y

{
IjS(x, y) ∨ IjR(y, z)

}
= ∧

y

{
IjS(y, x) ∨ IjR(z, y)

}
6= Ij(R◦S)(z, x)
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F j
(R◦S)(x, z) = ∧

y

{
F j
S(x, y) ∨ F j

R(y, z)
}

= ∧
y

{
F j
S(y, x) ∨ F j

R(z, y)
}

6= F j
(R◦S)(z, x)

but R◦S is symmetric, if R◦S = S◦R, for R and S are symmetric relations.

T j
(R◦S)(x, z) = ∨

y

{
T j
S(x, y) ∧ T j

R(y, z)
}

= ∨
y

{
T j
S(y, x) ∧ T j

R(z, y)
}

= ∨
y

{
T j
R(y, x) ∧ T j

R(z, y)
}

T j
(R◦S)(z, x)

Ij(R◦S)(x, z) = ∧
y

{
IjS(x, y) ∨ IjR(y, z)

}
= ∧

y

{
IjS(y, x) ∨ IjR(z, y)

}
= ∧

y

{
IjR(y, x) ∨ IjR(z, y)

}
Ij(R◦S)(z, x)

and

F j
(R◦S)(x, z) = ∧

y

{
F j
S(x, y) ∨ F j

R(y, z)
}

= ∧
y

{
F j
S(y, x) ∨ F j

R(z, y)
}

= ∧
y

{
F j
R(y, x) ∨ F j

R(z, y)
}

F j
(R◦S)(z, x)

for every (x, z) ∈ E × E and for y ∈ E.

Proposition 3.17 If R is transitive relation, then R−1 is also transitive.

Proof : R is transitive relation, if R ◦ R ⊆ R, hence if R−1 ◦ R−1 ⊆ R−1,
then R−1 is transitive.

Consider;

T j
R−1(x, y) = T j

R(y, x) ≥ T j
R◦R(y, x)

= ∨
z

{
T j
R(y, z) ∧ T j

R(z, x)
}

= ∨
z

{
T j
R−1(x, z) ∧ T j

R−1(z, y)
}

= T j
R−1◦R−1(x, y)

IjR−1(x, y) = IjR(y, x) ≤ IjR◦R(y, x)

= ∧
z

{
IjR(y, z) ∨ IjR(z, x)

}
= ∧

z

{
IjR−1(x, z) ∨ IjR−1(z, y)

}
= IjR−1◦R−1(x, y)
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and
F j
R−1(x, y) = F j

R(y, x) ≤ F j
R◦R(y, x)

= ∧
z

{
F j
R(y, z) ∨ F j

R(z, x)
}

= ∧
z

{
F j
R−1(x, z) ∨ F j

R−1(z, y)
}

= F j
R−1◦R−1(x, y)

hence, proof is valid.

Proposition 3.18 If R is transitive relation, then R ∩ S is also transitive

Proof: As R and S are transitive relations, R ◦R ⊆ R and S ◦ S ⊆ S.
also

T j

R∩̃S(x, y) ≥ T j

(R∩̃S)◦(R∩̃S)
(x, y)

Ij
R∩̃S(x, y) ≤ Ij

(R∩̃S)◦(R∩̃S)
(x, y)

F j

R∩̃S(x, y) ≤ F j

(R∩̃S)◦(R∩̃S)
(x, y)

implies R∩̃S) ◦ (R∩̃S) ⊆ R ∩ S, hence R ∩ S is transitive.

Proposition 3.19 If R and S are transitive relations, then

1. R∪̃S,

2. R+̃S

3. R×̃S

are not transitive.

Proof:

1. As

T j

R∪̃S(x, y) = max
{
T j
R(x, y), T j

S(x, y)
}

Ij
R∪̃S(x, y) = min

{
IjR(x, y), IjS(x, y)

}
F j

R∪̃S(x, y) = min
{
F j
R(x, y), F j

S(x, y)
}

and
T j

(R∪̃S)◦(R∪̃S)
(x, y) ≥ T j

R∪̃S(x, y)

Ij
(R∪̃S)◦(R∪̃S)

(x, y) ≤ Ij
R∪̃S(x, y)

F j

(R∪̃S)◦(R∪̃S)
(x, y) ≤ F j

R∪̃S(x, y)

2. As
T j

R+̃S
(x, y) = T j

R(x, y) + T j
S(x, y)− T j

R(x, y)T j
S(x, y)

Ij
R+̃S

(x, y) = IjR(x, y)IjS(x, y)

F j

R+̃S
(x, y) = F j

R(x, y)F j
S(x, y)

and
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T j

(R+̃S)◦(R+̃S)
(x, y) ≥ T j

R+̃S
(x, y)

Ij
(R+̃S)◦(R+̃S)

(x, y) ≤ Ij
R+̃S

(x, y)

F j

(R+̃S)◦(R+̃S)
(x, y) ≤ F j

R+̃S
(x, y)

3. As
T j

R×̃S(x, y) = T j
R(x, y)T j

S(x, y)

Ij
R×̃S(x, y) = IjR(x, y) + IjS(x, y)− IjR(x, y)IjS(x, y)

F j

R×̃S(x, y) = F j
R(x, y) + F j

S(x, y)− F j
R(x, y)F j

S(x, y)

and
T j

(R×̃S)◦(R×̃S)
(x, y) ≥ T j

R×̃S(x, y)

Ij
(R×̃S)◦(R×̃S)

(x, y) ≤ Ij
R×̃S(x, y)

F j

(R×̃S)◦(R×̃S)
(x, y) ≤ F j

R×̃S(x, y)

Hence R∪̃S, R+̃S and R×̃S are not transitive.

Proposition 3.20 If R is transitive relation, then R2 is also transitive.

Proof: R is transitive relation, if R ◦ R ⊆ R, therefore if R2 ◦ R−2 ⊆ R2,
then R2 is transitive.

T j
R◦R(y, x) = ∨

z

{
T j
R(y, z) ∧ T j

R(z, x)
}
≥ ∨

z

{
T j
R◦R(y, z) ∧ T j

R◦R(z, x)
}

= T j
R2◦R2(y, x),

IjR◦R(y, x) = ∧
z

{
IjR(y, z) ∨ IjR(z, x)

}
≤ ∧

z

{
IjR◦R(y, z) ∨ IjR◦R(z, x)

}
= IjR2◦R2(y, x)

and

F j
R◦R(y, x) = ∧

z

{
F (y, z) ∨ F j

R(z, x)
}
≤ ∧

z

{
IjR◦R(y, z) ∨ F j

R◦R(z, x)
}

= F j
R2◦R2(y, x)

Finally, the proof is valid.
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5 Conclusion

In this paper, we have firstly defined the neutrosophic refined relations(NRR).
The NRR are the extension of neutrosophic relation (NR) and intuitionistic
multirelation[27]. The notions of inverse, symmetry, reflexivity and transitivity
on neutrosophic refined relations are studied. The future work will cover the
application of the NRR in decision making, pattern recognition and in medical
diagnosis.
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New Distance and Similarity Measures of Interval Neutrosophic Sets 

Said Broumi Florentin Smarandache

Abstract: In this paper we proposed a new distance and several 
similarity measures between interval neutrosophic sets. 

Keywords: Neutrosophic set, Interval neutrosohic set, Similarity 
measure. 

I. INTRODUCTION 
The neutrsophic set, founded by F.Smarandache [1], has 

capability to deal with uncertainty, imprecise, incomplete and 
inconsistent information which exist in the real world. 
Neutrosophic set theory is a powerful tool in the formal 
framework, which generalizes the concepts of the classic set, 
fuzzy set [2], interval-valued fuzzy set [3], intuitionistic fuzzy 
set [4], interval-valued intuitionistic fuzzy set [5], and so on. 

After the pioneering work of Smarandache, in 2005 Wang 
[6] introduced the notion of interval neutrosophic set (INS for 
short) which is a particular case of the neutrosophic set. INS 
can be described by a membership interval, a non-membership 
interval, and the indeterminate interval. Thus the interval value 
neutrosophic set has the virtue of being more flexible and 
practical than single value neutrosophic set. And the Interval 
Neutrosophic Set provides a more reasonable mathematical 
framework to deal with indeterminate and inconsistent 
information. 

Many papers about neutrosophic set theory have been done 
by various researchers [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 
18, 19, 20]. 

A similarity measure for neutrosophic set (NS) is used for 
estimating the degree of similarity between two neutrosophic 
sets. Several researchers proposed some similarity measures 
between NSs, such as S. Broumi and F. Smarandache [26], Jun 
Ye [11, 12], P. Majumdar and S.K.Smanta [23].  

In the literature, there are few researchers who studied the 
distance and similarity measure of IVNS. 

In 2013, Jun Ye [12] proposed similarity measures between 
interval neutrosophic set based on the Hamming and Euclidean 
distance, and developed a multicriteria decision–making 
method based on the similarity degree. S. Broumi and F. 

Smarandache [10] proposed a new similarity measure, called 
“cosine similarity measure of interval valued neutrosophic 
sets”.  On the basis of numerical computations, S. Broumi and 
F. Smarandache found out that their similarity measures are 
stronger and more robust than Ye’s measures.  

We all know that there are various distance measures in 
mathematics. So, in this paper, we will extend the generalized 
distance of single valued neutrosophic set proposed by Ye [12] 
to the case of interval neutrosophic set and we’ll study some 
new similarity measures. 

This paper is organized as follows. In section 2, we review 
some notions of neutrosophic set andinterval valued 
neutrosophic set. In section 3, some new similarity measures of 
interval valued neutrosophic sets and their proofs are 
introduced. Finally, the conclusions are stated in section 4. 

II. PRELIMIAIRIES

This section gives a brief overview of the concepts of 
neutrosophic set, and interval valued neutrosophic set. 
A. Neutrosophic Sets 

1) Definition [1]
Let X be a universe of discourse, with a generic element in 

X denoted by x, then a neutrosophic set A is an object having 
the form:  

A = {< x: TA(x), IA(x), FA(x)>, x ∈ X}, where the
functions T, I, F : X→ ]−0, 1+[  define respectively the degree 
of membership (or Truth), the degree of indeterminacy, and the 
degree of non-membership (or Falsehood) of the element x ∈ X 
to the set A with the condition: 

 −0≤TA(x)+IA(x)+FA(x)≤3+.  (1) 

From philosophical point of view, the neutrosophic set 
takes the value from real standard or non-standard subsets of 
]−0, 1+[. Therefore, instead of ]−0, 1+[ we need to take the 
interval [0, 1] for technical applications, because ]−0, 1+[ will 
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be difficult to apply in the real applications such as in scientific 
and engineering problems.  

For two NSs, 𝐴𝑁𝑆= {<x, TA(x),  IA(x),  FA(x)>|x ∈ X}      (2)                 

and 𝐵𝑁𝑆 ={ <x, TB(x),  IB(x),  FB(x)> | x ∈ X } the two
relations are defined as follows: 

(1) 𝐴𝑁𝑆 ⊆  𝐵𝑁𝑆 if and only if TA(x) ≤ TB(x), IA(x) ≥
IB(x), FA(x) ≥ FB(x).

(2) 𝐴𝑁𝑆 = 𝐵𝑁𝑆  if and only if , TA(x)=TB(x), IA(x)
=IB(x), FA(x) =FB(x).

B. Interval Valued Neutrosophic Sets 

In actual applications, sometimes, it is not easy to express the 
truth-membership, indeterminacy-membership and falsity-
membership by crisp value, and they may be easier to be 
expressed by interval numbers. Wang et al. [6] further defined 
interval neutrosophic sets (INS) shows as follows: 

1) Definition [6]
Let X be a universe of discourse, with generic element in X 

denoted by x. An interval valued neutrosophic set (for short 
IVNS) A in X is characterized by truth-membership 
functionTA(x), indeteminacy-membership function IA(x), and
falsity-membership function  FA(x). For each point x in X, we
have that TA(x), IA(x), FA(x) ∈  [ 0 ,1] .

For two IVNS, AIVNS={<x,[TA
L(x),TA

U(x)],  [IA
L(x), IA

U(x)],
[FA

L(x), FA
U(x)]> | x ∈ X }                                                 (3)

and BIVNS= {<x, [TB
L(x),TB

U(x)],
[IB

L(x), IB
U(x)], [FB

L(x), FB
U(x)] > | x ∈ X } the two relations are

defined as follows: 

(1) AIVNS ⊆  BIVNS if and only if TA
L(x) ≤ TB

L(x),TA
U(x) ≤

TB
U(x), IA

L(x) ≥ IB
L(x), IA

U(x) ≥ IB
U(x),  FA

L(x) ≥ FB
L(x), FA

U(x)

≥ FB
U(x).

(2) AIVNS =  BIVNS  if and only if TA
L(xi) = TB

L(xi),  TA
U(xi) =

TB
U(xi), IA

L(xi) = IB
L(xi),IA

U(xi) = IB
U(xi),  FA

L(xi) = FB
L(xi)

and FA
U(xi) = FB

U(xi)  for any x ∈ X.

C. Defintion 
Let A and B be two interval valued neutrosophic sets, then 

i. 0 ≤ 𝑆(𝐴, 𝐵) ≤ 1.
ii. 𝑆(𝐴, 𝐵) = 𝑆(𝐵, 𝐴).

iii. 𝑆(𝐴, 𝐵)  = 1  if A= B, i.e
𝑇𝐴

𝐿(𝑥𝑖) =  𝑇𝐵
𝐿(𝑥𝑖),   𝑇𝐴

𝑈(𝑥𝑖) = 𝑇𝐵
𝑈(𝑥𝑖) ,  𝐼𝐴

𝐿(𝑥𝑖) =
𝐼𝐵

𝐿(𝑥𝑖),   𝐼𝐴
𝑈(𝑥𝑖)  =  𝐼𝐵

𝑈(𝑥𝑖) and
𝐹𝐴

𝐿(𝑥𝑖) =  𝐹𝐵
𝐿(𝑥𝑖),    𝐹𝐴

𝑈(𝑥𝑖)  =  𝐹𝐵
𝑈(𝑥𝑖),  for  i = 1, 2,…., n.

        iv .    A⊂  B ⊂ C ⇒ S(A,B) ≤ min (S(A,B), S(B,C). 

III. NEW DISTANCE MEASURE OF INTERVAL VALUED 
NEUTROSOPHIC SETS 

Let  A and B be two single  neutrosophic sets, then J. Ye 
[11] proposed a generalized single valued neutrosophic 
weighted distance measure between A and B as follows:  

𝑑𝜆(𝐴 , 𝐵) = {1

3
∑ 𝑤𝑖[|𝑇𝐴(𝑥𝑖) − 𝑇𝐵(𝑥𝑖)|𝜆 + |𝐼𝐴(𝑥𝑖) −𝑛

𝑖=1

𝐼𝐵(𝑥𝑖)|𝜆 + |𝐹𝐴(𝑥𝑖) − 𝐹𝐵(𝑥𝑖)|𝜆]}

1

𝜆  (4) 
where 

𝜆 > 0 and 𝑇𝐴(𝑥𝑖),  𝐼𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖), 𝑇𝐵(𝑥𝑖), 𝐼𝐵(𝑥𝑖), 𝐹𝐵(𝑥𝑖) ∈ [
0, 1]. 

Based on the geometrical distance model and using the 
interval neutrosophic sets, we extended the distance (4) as 
follows: 

𝑑𝜆(𝐴 , 𝐵) = {1

6
∑ 𝑤𝑖[|𝑇𝐴

𝐿(𝑥𝑖) − 𝑇𝐵
𝐿(𝑥𝑖)|𝜆 + |𝑇𝐴

𝑈(𝑥𝑖) − 𝑇𝐵
𝑈(𝑥𝑖)|𝜆 + |𝐼𝐴

𝐿(𝑥𝑖) − 𝐼𝐵
𝐿(𝑥𝑖)|𝜆 + |𝐼𝐴

𝑈(𝑥𝑖) − 𝐼𝐵
𝑈(𝑥𝑖)|𝜆 + |𝐹𝐴

𝐿(𝑥𝑖) −𝑛
𝑖=1

𝐹𝐵
𝐿(𝑥𝑖)|𝜆 + |𝐹𝐴

𝑈(𝑥𝑖) − 𝐹𝐵
𝑈(𝑥𝑖)|𝜆]}

1

𝜆
.  (5) 

The normalized generalized interval neutrosophic distance is 

𝑑𝜆(𝐴 , 𝐵) = { 1

6𝑛
∑ 𝑤𝑖[|𝑇𝐴

𝐿(𝑥𝑖) − 𝑇𝐵
𝐿(𝑥𝑖)|𝜆 + |𝑇𝐴

𝑈(𝑥𝑖) − 𝑇𝐵
𝑈(𝑥𝑖)|𝜆 + |𝐼𝐴

𝐿(𝑥𝑖) − 𝐼𝐵
𝐿(𝑥𝑖)|𝜆 + |𝐼𝐴

𝑈(𝑥𝑖) − 𝐼𝐵
𝑈(𝑥𝑖)|𝜆 + |𝐹𝐴

𝐿(𝑥𝑖) −𝑛
𝑖=1

𝐹𝐵
𝐿(𝑥𝑖)|𝜆 + |𝐹𝐴

𝑈(𝑥𝑖) − 𝐹𝐵
𝑈(𝑥𝑖)|𝜆]}

1

𝜆
.          (6) 

If w={1

𝑛
,

1

𝑛
, … ,

1

𝑛
}, the distance (6)  is reduced to the following distances: 

𝑑𝜆(𝐴 , 𝐵) = {1

6
∑ [|𝑇𝐴

𝐿(𝑥𝑖) − 𝑇𝐵
𝐿(𝑥𝑖)|𝜆 + |𝑇𝐴

𝑈(𝑥𝑖) − 𝑇𝐵
𝑈(𝑥𝑖)|𝜆 + |𝐼𝐴

𝐿(𝑥𝑖) − 𝐼𝐵
𝐿(𝑥𝑖)|𝜆 + |𝐼𝐴

𝑈(𝑥𝑖) − 𝐼𝐵
𝑈(𝑥𝑖)|𝜆 + |𝐹𝐴

𝐿(𝑥𝑖) −𝑛
𝑖=1

𝐹𝐵
𝐿(𝑥𝑖)|𝜆 + |𝐹𝐴

𝑈(𝑥𝑖) − 𝐹𝐵
𝑈(𝑥𝑖)|𝜆]}

1

𝜆
.          (7) 

𝑑𝜆(𝐴 , 𝐵) = { 1

6𝑛
∑ [|𝑇𝐴

𝐿(𝑥𝑖) − 𝑇𝐵
𝐿(𝑥𝑖)|𝜆 + |𝑇𝐴

𝑈(𝑥𝑖) − 𝑇𝐵
𝑈(𝑥𝑖)|𝜆 + |𝐼𝐴

𝐿(𝑥𝑖) − 𝐼𝐵
𝐿(𝑥𝑖)|𝜆 + |𝐼𝐴

𝑈(𝑥𝑖) − 𝐼𝐵
𝑈(𝑥𝑖)|𝜆 + |𝐹𝐴

𝐿(𝑥𝑖) −𝑛
𝑖=1

𝐹𝐵
𝐿(𝑥𝑖)|𝜆 + |𝐹𝐴

𝑈(𝑥𝑖) − 𝐹𝐵
𝑈(𝑥𝑖)|𝜆]}

1

𝜆
.           (8) 

Particular case. 
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(i)  If   𝜆 = 1 then the distances (7) and (8) are reduced to the following Hamming distance and respectively normalized Hamming 
distance defined by Ye Jun [11]: 

𝑑𝐻(𝐴 , 𝐵) = {1

6
∑ [|𝑇𝐴

𝐿(𝑥𝑖) − 𝑇𝐵
𝐿(𝑥𝑖)| + |𝑇𝐴

𝑈(𝑥𝑖) − 𝑇𝐵
𝑈(𝑥𝑖)| + |𝐼𝐴

𝐿(𝑥𝑖) − 𝐼𝐵
𝐿(𝑥𝑖)| + |𝐼𝐴

𝑈(𝑥𝑖) − 𝐼𝐵
𝑈(𝑥𝑖)| + |𝐹𝐴

𝐿(𝑥𝑖) − 𝐹𝐵
𝐿(𝑥𝑖)| +𝑛

𝑖=1

|𝐹𝐴
𝑈(𝑥𝑖) − 𝐹𝐵

𝑈(𝑥𝑖)|]},   (9) 

𝑑𝑁𝐻(𝐴 , 𝐵) = { 1

6𝑛
∑ [|𝑇𝐴

𝐿(𝑥𝑖) − 𝑇𝐵
𝐿(𝑥𝑖)| + |𝑇𝐴

𝑈(𝑥𝑖) − 𝑇𝐵
𝑈(𝑥𝑖)| + |𝐼𝐴

𝐿(𝑥𝑖) − 𝐼𝐵
𝐿(𝑥𝑖)| + |𝐼𝐴

𝑈(𝑥𝑖) − 𝐼𝐵
𝑈(𝑥𝑖)| + |𝐹𝐴

𝐿(𝑥𝑖) − 𝐹𝐵
𝐿(𝑥𝑖)| +𝑛

𝑖=1

|𝐹𝐴
𝑈(𝑥𝑖) − 𝐹𝐵

𝑈(𝑥𝑖)|]}.  (10) 

(ii) If   𝜆 = 2 then the distances (7) and (8) are reduced to the following Euclidean distance and respectively normalized Euclidean 
distance defined by Ye Jun [12]: 
𝑑𝐸(𝐴 , 𝐵) = {1

6
∑ [|𝑇𝐴

𝐿(𝑥𝑖) − 𝑇𝐵
𝐿(𝑥𝑖)|2 + |𝑇𝐴

𝑈(𝑥𝑖) − 𝑇𝐵
𝑈(𝑥𝑖)|2 + |𝐼𝐴

𝐿(𝑥𝑖) − 𝐼𝐵
𝐿(𝑥𝑖)|2 + |𝐼𝐴

𝑈(𝑥𝑖) − 𝐼𝐵
𝑈(𝑥𝑖)|2 + |𝐹𝐴

𝐿(𝑥𝑖) −𝑛
𝑖=1

𝐹𝐵
𝐿(𝑥𝑖)|2 + |𝐹𝐴

𝑈(𝑥𝑖) − 𝐹𝐵
𝑈(𝑥𝑖)|2]}

1

2
,          (11) 

𝑑𝑁𝐸(𝐴 , 𝐵) = { 1

6𝑛
∑ [|𝑇𝐴

𝐿(𝑥𝑖) − 𝑇𝐵
𝐿(𝑥𝑖)|2 + |𝑇𝐴

𝑈(𝑥𝑖) − 𝑇𝐵
𝑈(𝑥𝑖)|2 + |𝐼𝐴

𝐿(𝑥𝑖) − 𝐼𝐵
𝐿(𝑥𝑖)|2 + |𝐼𝐴

𝑈(𝑥𝑖) − 𝐼𝐵
𝑈(𝑥𝑖)|2 + |𝐹𝐴

𝐿(𝑥𝑖) −𝑛
𝑖=1

𝐹𝐵
𝐿(𝑥𝑖)|2 + |𝐹𝐴

𝑈(𝑥𝑖) − 𝐹𝐵
𝑈(𝑥𝑖)|2]}

1

2 .  (12) 

IV. NEW SIMILARITY MEASURES OF INTERVAL VALUED NEUTROSOPHIC SET

A.  Similarity measure based on the geometric distance model 
Based on distance (4), we define the similarity measure between the interval valued neutrosophic sets A and B as follows: 

SDM(A , B) = 1- {
1

6n
∑ [|TA

L(xi) − TB
L(xi)|

λ
+ |TA

U(xi) − TB
U(xi)|

λ
+ |IA

L(xi) − IB
L(xi)|

λ
+ |IA

U(xi) − IB
U(xi)|

λ
+ |FA

L(xi) −n
i=1

FB
L(xi)|

λ
+ |FA

U(xi) − FB
U(xi)|

λ
]}

1

λ
,  (13) 

where λ > 0 and SDM(A , B)  is the degree of similarity of A and B .

If we take the weight of each element 𝑥𝑖  ∈ X into account, then

SDM
w (A , B)=1- {1

6
∑ wi [|TA

L(xi) − TB
L(xi)|

λ
+ |TA

U(xi) − TB
U(xi)|

λ
+ |IA

L(xi) − IB
L(xi)|

λ
+ |IA

U(xi) − IB
U(xi)|

λ
+ |FA

L(xi) −n
i=1

FB
L(xi)|

λ
+ |FA

U(xi) − FB
U(xi)|

λ
]}

1

λ
.  (14) 

If each elements has the same importance, i.e. w =  {1

𝑛
,

1

𝑛
, … ,

1

𝑛
}, then similarity (14) reduces to (13).

By (definition C) it can easily be known that SDM(A , B) satisfies all the properties of the definition..

Similarly, we define another similarity measure of A and B, as: 

S( A, B) = 1 – [
∑ (|TA

L (xi)−TB
L (xi)|

λ
+|TA

U(xi)−TB
U(xi)|

λ
+|IA

L (xi)−IB
L (xi)|

λ
+|IA

U(xi)−IB
U(xi)|

λ
+|FA

L (xi)−FB
L (xi)|

λ
+|FA

U(xi)−FB
U(xi)|

λ
)𝑛

𝑖=1

∑ (|TA
L (xi)+TB

L (xi)|
λ

+|TA
U(xi)+TB

U(xi)|
λ

+|IA
L (xi)+IB

L (xi)|
λ

+|IA
U(xi)+IB

U(xi)|
λ

+|FA
L (xi)+FB

L (xi)|
λ

+|FA
U(xi)+FB

U(xi)|
λ

)𝑛
𝑖=1

]

1

𝜆

.  (15) 

If we take the weight of each element 𝑥𝑖  ∈ X into account, then

S( A, B) = 1 – [
∑ wi(|TA

L (xi)−TB
L (xi)|

λ
+|TA

U(xi)−TB
U(xi)|

λ
+|IA

L (xi)−IB
L (xi)|

λ
+|IA

U(xi)−IB
U(xi)|

λ
+|FA

L (xi)−FB
L (xi)|

λ
+|FA

U(xi)−FB
U(xi)|

λ
)𝑛

𝑖=1

∑ wi(|TA
L (xi)+TB

L (xi)|
λ

+|TA
U(xi)+TB

U(xi)|
λ

+|IA
L (xi)+IB

L (xi)|
λ

+|IA
U(xi)+IB

U(xi)|
λ

+|FA
L (xi)+FB

L (xi)|
λ

+|FA
U(xi)+FB

U(xi)|
λ

)𝑛
𝑖=1

]

1

𝜆

.  (16) 

It also has been proved that all conditions of the definition are 
satisfied. If each elements has the same importance, and then 
the similarity (16) reduces to (15). 

B.  Similarity measure based on the interval valued 
neutrosophic theoretic approach: 
In this section, following the similarity measure between 

two neutrosophic sets defined by P. Majumdar in [24], we 
extend Majumdar’s definition to interval valued neutrosophic 
sets. 
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Let A and B be two interval valued neutrosophic sets, then we define a similarity measure between A and B as follows: 

𝑆𝑇𝐴(𝐴, 𝐵)= ∑ {min{TA
L (xi),TB

L (xi)}+min{TA
U(xi),TB

U(xi)} +min{IA
L (xi),IB

L (xi)}+min{IA
U(xi),IB

U(xi)}+ min{FA
L (xi),FB

L (xi)}+min{FA
U(xi),FB

U(xi)}𝑛
𝑖=1

∑ {max{TA
L (xi),TB

L (xi)}+max{TA
U(xi),TB

U(xi)} +max{IA
L (xi),IB

L (xi)}+max{IA
U(xi),IB

U(xi)}+ max{FA
L (xi),FB

L (xi)}+max{FA
U(xi),FB

U(xi)}𝑛
𝑖=1

  (17) 

1) Proposition
Let A and B be two interval valued neutrosophic sets, then 

iv. 0 ≤ 𝑆𝑇𝐴(𝐴, 𝐵) ≤ 1.
v. 𝑆𝑇𝐴(𝐴, 𝐵) = 𝑆𝑇𝐴(𝐴, 𝐵).

vi. 𝑆(𝐴, 𝐵)  = 1  if A = B i.e.
𝑇𝐴

𝐿(𝑥𝑖) =  𝑇𝐵
𝐿(𝑥𝑖),   𝑇𝐴

𝑈(𝑥𝑖) = 𝑇𝐵
𝑈(𝑥𝑖),  𝐼𝐴

𝐿(𝑥𝑖) =  𝐼𝐵
𝐿(𝑥𝑖),   𝐼𝐴

𝑈(𝑥𝑖)  =  𝐼𝐵
𝑈(𝑥𝑖) and

𝐹𝐴
𝐿(𝑥𝑖) =  𝐹𝐵

𝐿(𝑥𝑖),    𝐹𝐴
𝑈(𝑥𝑖)  =  𝐹𝐵

𝑈(𝑥𝑖)  for  i = 1, 2, …., n.
iv. A⊂  B ⊂ C ⇒ 𝑆𝑇𝐴(𝐴, 𝐵) ≤ min (𝑆𝑇𝐴(𝐴, 𝐵), 𝑆𝑇𝐴(𝐵, 𝐶)).

Proof. Properties (i) and (ii) follow from the definition. 

(iii) It is clearly that if A = B ⇒ 𝑆𝑇𝐴(𝐴, 𝐵) =1
⇒ ∑ {min{TA

L(xi), TB
L(xi)} + min{TA

U(xi), TB
U(xi)} +min{IA

L(xi), IB
L(xi)} + min{IA

U(xi), IB
U(xi)} + min{FA

L(xi), FB
L(xi)} +𝑛

𝑖=1

min{FA
U(xi), FB

U(xi)} =∑ {𝑚𝑎𝑥{𝑇𝐴
𝐿(𝑥𝑖), 𝑇𝐵

𝐿(𝑥𝑖)} + 𝑚𝑎𝑥{𝑇𝐴
𝑈(𝑥𝑖), 𝑇𝐵

𝑈(𝑥𝑖)} +𝑚𝑎𝑥{𝐼𝐴
𝐿(𝑥𝑖), 𝐼𝐵

𝐿(𝑥𝑖)} +𝑛
𝑖=1

𝑚𝑎𝑥{𝐼𝐴
𝑈(𝑥𝑖), 𝐼𝐵

𝑈(𝑥𝑖)} + 𝑚𝑎𝑥{𝐹𝐴
𝐿(𝑥𝑖), 𝐹𝐵

𝐿(𝑥𝑖)} + 𝑚𝑎𝑥{𝐹𝐴
𝑈(𝑥𝑖), 𝐹𝐵

𝑈(𝑥𝑖)}

⇒ ∑ {[min{TA
L(xi), TB

L(xi)} − max{𝑇𝐴
𝐿(𝑥𝑖), 𝑇𝐵

𝐿(𝑥𝑖)}] + [min{TA
U(xi), TB

U(xi)} −max{𝑇𝐴
𝑈(𝑥𝑖), 𝑇𝐵

𝑈(𝑥𝑖)}] + [min{IA
L(xi), IB

L(xi)} −𝑛
𝑖=1

max{𝐼𝐴
𝐿(𝑥𝑖), 𝐼𝐵

𝐿(𝑥𝑖)}] + [min{IA
U(xi), IB

U(xi)} − max{𝐼𝐴
𝑈(𝑥𝑖), 𝐼𝐵

𝑈(𝑥𝑖)}] + [min{FA
L(xi), FB

L(xi)} − max{𝐹𝐴
𝐿(𝑥𝑖), 𝐹𝐵

𝐿(𝑥𝑖)}] +

[min{FA
U(xi), FB

U(xi)} − max{𝐹𝐴
𝑈(𝑥𝑖), 𝐹𝐵

𝑈(𝑥𝑖)]} = 0.
Thus for each x, one has that 

[min{TA
L(xi), TB

L(xi)} − max{𝑇𝐴
𝐿(𝑥𝑖), 𝑇𝐵

𝐿(𝑥𝑖)}] = 0
[min{TA

U(xi), TB
U(xi)} − max{𝑇𝐴

𝑈(𝑥𝑖), 𝑇𝐵
𝑈(𝑥𝑖)}] = 0

[min{IA
L(xi), IB

L(xi)} − max{𝐼𝐴
𝐿(𝑥𝑖), 𝐼𝐵

𝐿(𝑥𝑖)}] = 0
[min{IA

U(xi), IB
U(xi)} − max{𝐼𝐴

𝑈(𝑥𝑖), 𝐼𝐵
𝑈(𝑥𝑖)}] = 0

[min{FA
L(xi), FB

L(xi)} − max{𝐹𝐴
𝐿(𝑥𝑖), 𝐹𝐵

𝐿(𝑥𝑖)}] = 0
[min{FA

U(xi), FB
U(xi)} − max{𝐹𝐴

𝑈(𝑥𝑖), 𝐹𝐵
𝑈(𝑥𝑖)]}= 0

hold. 
Thus TA

L(xi) = TB
L(xi) , TA

U(xi) =  TB
U(xi) , IA

L(xi) = IB
L(xi) , IA

U(xi) = IB
U(xi) , FA

L(xi) = FB
L(xi) and FA

U(xi) = FB
U(xi) ⇒ A=B

(iv) Now we prove the last result. 
Let A⊂  B ⊂ C, then we have  
TA

L(x) ≤ TB
L(x) ≤ TC

L(x), TA
U(x)  ≤ TB

U(x) ≤ TC
L(x) , IA

L(x) ≥ IB
L(x) ≥ IC

L(x), IA
U(x) ≥ IB

U(x) ≥ IC
U(x),  FA

L(x) ≥ FB
L(x) ≥

FC
L(x), FA

U(x) ≥ FB
U(x) ≥ FC

U(x) for all x ∈ X.
Now 
TA

L(x) +TA
U(x) +IA

L(x) +IA
U(x) +FB

L(x)+FB
U(x) ≥ TA

L(x) +TA
U(x) +IA

L(x) +IA
U(x)+FC

L(x)+FC
U(x)

and  

TB
L(x) +TB

U(x) +IB
L(x) +IB

U(x) +FA
L(x)+FA

U(x) ≥ TC
L(x) +TC

U(x) +IC
L(x) +IC

U(x)+FA
L(x)+FA

U(x).

S(A,B) =TA
L (x) +TA

U(x) +IA
L (x) +IA

U(x) +FB
L (x)+FB

U(x)

TB
L (x) +TB

U(x) +IB
L (x) +IB

U(x) +FA
L (x)+FA

U(x)
  ≥   TA

L (x) +TA
U(x) +IA

L (x) +IA
U(x)+FC

L(x)+FC
U(x)

TC
L(x) +TC

U(x) +IC
L(x) +IC

U(x)+FA
L (x)+FA

U(x)
 = S(A,C).

Again, similarly we have 

TB
L(x) +TB

U(x) +IB
L(x) +IB

U(x)+FC
L(x)+FC

U(x) ≥ TA
L(x) +TA

U(x) +IA
L(x) +IA

U(x)+FC
L(x)+FC

U(x)

TC
L(x) +TC

U(x) +IC
L(x) +IC

U(x)+FA
L(x)+FA

U(x) ≥ TC
L(x) +TC

U(x) +IC
L(x) +IC

U(x)+FB
L(x)+FB

U(x)

S(B,C) =TB
L (x) +TB

U(x) +IB
L (x) +IB

U(x)+FC
L(x)+FC

U(x)

TC
L(x) +TC

U(x) +IC
L(x) +IC

U(x)+FB
L (x)+FB

U(x)
  ≥   TA

L (x) +TA
U(x) +IA

L (x) +IA
U(x)+FC

L(x)+FC
U(x)

TC
L(x) +TC

U(x) +IC
L(x) +IC

U(x)+FA
L (x)+FA

U(x)
 = S(A,C)

⇒ 𝑆𝑇𝐴(𝐴, 𝐵) ≤ min (𝑆𝑇𝐴(𝐴, 𝐵), 𝑆𝑇𝐴(𝐵, 𝐶)).
      Hence the proof of this proposition.  

If we take the weight of each element 𝑥𝑖 ∈ X into account, then

𝑆(𝐴, 𝐵)= ∑ 𝑤𝑖{min{TA
L (xi),TB

L (xi)}+min{TA
U(xi),TB

U(xi)} +min{IA
L (xi),IB

L (xi)}+min{IA
U(xi),IB

U(xi)}+ min{FA
L (xi),FB

L (xi)}+min{FA
U(xi),FB

U(xi)}𝑛
𝑖=1

∑  𝑤𝑖{max{TA
L (xi),TB

L (xi)}+max{TA
U(xi),TB

U(xi)} +max{IA
L (xi),IB

L (xi)}+max{IA
U(xi),IB

U(xi)}+ max{FA
L (xi),FB

L (xi)}+max{FA
U(xi),FB

U(xi)}𝑛
𝑖=1
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     (18) 
Particularly, if each element has the same importance, then 

(18) is reduced to (17), clearly this also satisfies all the 
properties of the definition. 

C. Similarity measure based on matching function by using 
interval neutrosophic sets: 
Chen [24] and Chen et al. [25] introduced a matching 

function to calculate the degree of similarity between fuzzy 

sets. In the  following, we  extend  the matching  function to 
deal with the similarity measure of interval valued 
neutrosophic  sets. 

Let  A and B be two interval  valued neutrosophic sets, then 
we define a similarity measure between A and B as follows:  

𝑆𝑀𝐹(A,B) =
∑ ((𝑇𝐴

𝐿(𝑥𝑖) ∙   𝑇𝐵
𝐿(𝑥𝑖)) + (𝑇𝐴

𝑈(𝑥𝑖) ∙   𝑇𝐵
𝑈(𝑥𝑖)) + (𝐼𝐴

𝐿(𝑥𝑖) ∙   𝐼𝐵
𝐿(𝑥𝑖)) + (𝐼𝐴

𝑈(𝑥𝑖) ∙   𝐼𝐵
𝑈(𝑥𝑖)) + (𝐹𝐴

𝐿(𝑥𝑖) ∙   𝐹𝐵
𝐿(𝑥𝑖)) + (𝐹𝐴

𝑈(𝑥𝑖) ∙   𝐹𝐵
𝑈(𝑥𝑖)))𝒏

𝒊=𝟏

max( ∑ (TA
L(xi)

2 + TA
U(xi)

2 +  IA
L (xi)

2 +𝑛
𝑖= IA

U(xi)
2 + FA

L(xi)
2 + FA

U(xi)
2),   ∑ (TB

L(xi)
2 + TB

U(xi)
2 +  IB

L(xi)
2 +𝑛

𝑖= IB
U(xi)

2 +  FB
L(xi)

2 + FB
U(xi)

2))

 (19) 
Proof. 

i. 0 ≤ 𝑆𝑀𝐹(A,B) ≤ 1.
The inequality 𝑆𝑀𝐹(A,B)  0 is obvious. Thus, we only prove the inequality S(A, B)  1.

𝑆𝑀𝐹(A,B)= ∑ ((𝑇𝐴
𝐿(𝑥𝑖) ∙   𝑇𝐵

𝐿(𝑥𝑖)) + (𝑇𝐴
𝑈(𝑥𝑖) ∙   𝑇𝐵

𝑈(𝑥𝑖)) + (𝐼𝐴
𝐿(𝑥𝑖) ∙   𝐼𝐵

𝐿(𝑥𝑖)) + (𝐼𝐴
𝑈(𝑥𝑖) ∙   𝐼𝐵

𝑈(𝑥𝑖)) + (𝐹𝐴
𝐿(𝑥𝑖) ∙   𝐹𝐵

𝐿(𝑥𝑖)) +𝒏
𝒊=𝟏

(𝐹𝐴
𝑈(𝑥𝑖) ∙   𝐹𝐵

𝑈(𝑥𝑖)))

= 𝑇𝐴
𝐿(𝑥1) ∙   𝑇𝐵

𝐿(𝑥1)+𝑇𝐴
𝐿(𝑥2) ∙   𝑇𝐵

𝐿(𝑥2)+…+𝑇𝐴
𝐿(𝑥𝑛) ∙   𝑇𝐵

𝐿(𝑥𝑛)+𝑇𝐴
𝑈(𝑥1) ∙   𝑇𝐵

𝑈(𝑥1)+𝑇𝐴
𝑈(𝑥2) ∙   𝑇𝐵

𝑈(𝑥2)+…+𝑇𝐴
𝑈(𝑥𝑛) ∙   𝑇𝐵

𝑈(𝑥𝑛)+
𝐼𝐴

𝐿(𝑥1) ∙   𝐼𝐵
𝐿(𝑥1)+𝐼𝐴

𝐿(𝑥2) ∙   𝐼𝐵
𝐿(𝑥2)+…+𝐼𝐴

𝐿(𝑥𝑛) ∙   𝐼𝐵
𝐿(𝑥𝑛)+𝐼𝐴

𝑈(𝑥1) ∙   𝐼𝐵
𝑈(𝑥1)+𝐼𝐴

𝑈(𝑥2) ∙   𝐼𝐵
𝑈(𝑥2)+…+𝐼𝐴

𝑈(𝑥𝑛) ∙   𝐼𝐵
𝑈(𝑥𝑛)+

𝐹𝐴
𝐿(𝑥1) ∙   𝐹𝐵

𝐿(𝑥1)+𝐹𝐴
𝐿(𝑥2) ∙   𝐹𝐵

𝐿(𝑥2)+…+𝐹𝐴
𝐿(𝑥𝑛) ∙   𝐹𝐵

𝐿(𝑥𝑛)+𝐹𝐴
𝑈(𝑥1) ∙   𝑇𝐵

𝑈(𝑥1)+𝐹𝐴
𝑈(𝑥2) ∙   𝐹𝐵

𝑈(𝑥2)+…+𝐹𝐴
𝑈(𝑥𝑛) ∙   𝐹𝐵

𝑈(𝑥𝑛).
According to the Cauchy–Schwarz inequality: 

(𝑥1 ∙ 𝑦1 + 𝑥2 ∙ 𝑦2 + ⋯ + 𝑥𝑛 ∙ 𝑦𝑛)2 ≤ (𝑥1
2 + 𝑥2

2 + ⋯ + 𝑥𝑛
2)  ∙ (𝑦1

2 + 𝑦2
2 + ⋯ + 𝑦𝑛

2)
where  (𝑥1, 𝑥2, …, 𝑥𝑛) ∈  𝑅𝑛  and  (𝑦1, 𝑦2, …, 𝑦𝑛)  ∈ 𝑅𝑛

we can obtain 
[𝑆𝑀𝐹(A, B)]2 ≤ ∑ (TA

L(xi)
2 + TA

U(xi)
2 + IA

L(xi)
2 + IA

U(xi)
2 + FA

L(xi)
2 + FA

U(xi)
2)𝒏

𝒊=𝟏  ∙ 
∑ (TB

L(xi)
2 + TB

U(xi)
2 + IB

L(xi)
2 + IB

U(xi)
2 + FB

L(xi)
2 + FB

U(xi)
2)𝒏

𝒊=𝟏 = S(A, A) ∙ S(B, B) 

Thus   𝑆𝑀𝐹(A,B)≤ [𝑆(𝐴, 𝐴)]
1

2  ∙ [𝑆(𝐵, 𝐵)]
1

2 . 

Then 𝑆𝑀𝐹(A,B)≤ max{S(A,A), S(B,B)].

Therefore 𝑆𝑀𝐹(A, B) ≤ 1.

If we take the weight of each element 𝑥𝑖 ∈ X into account, then

𝑆𝑀𝐹
𝑤 (A,B)=

∑ 𝑤𝑖((𝑇𝐴
𝐿(𝑥𝑖)∙  𝑇𝐵

𝐿(𝑥𝑖))+(𝑇𝐴
𝑈(𝑥𝑖)∙  𝑇𝐵

𝑈(𝑥𝑖))+(𝐼𝐴
𝐿(𝑥𝑖)∙  𝐼𝐵

𝐿(𝑥𝑖))+(𝐼𝐴
𝑈(𝑥𝑖)∙  𝐼𝐵

𝑈(𝑥𝑖))+(𝐹𝐴
𝐿(𝑥𝑖)∙  𝐹𝐵

𝐿(𝑥𝑖))+(𝐹𝐴
𝑈(𝑥𝑖)∙  𝐹𝐵

𝑈(𝑥𝑖)))𝒏
𝒊=𝟏

max( ∑ 𝑤𝑖 (TA
L (xi)2+TA

U(xi)2+ IA
L (xi)2+𝑛

𝑖= IA
U(xi)2+ FA

L (xi)2+FA
U(xi)2),   ∑ 𝑤𝑖 (TB

L (xi)2+TB
U(xi)2+ IB

L (xi)2+𝑛
𝑖= IB

U(xi)2+ FB
L (xi)2+FB

U(xi)2))

      (20) 

Particularly, if  each element  has  the same importance, 
then the similarity (20) is reduced to (19). Clearly this also 
satisfies all the properties of definition. 

The larger the value of S(A,B), the more the similarity 
between A and B. 

V. COMPARISON OF NEW  SIMILARITY MEASURE OF IVNS 
WITH THE EXISTING MEASURES. 

Let A and B be two interval  valued neutrosophic sets in the 
universe of discourse X = {𝑥1, 𝑥2 ,.., 𝑥𝑛}.The new similarity
𝑆𝑇𝐴(𝐴, 𝐵) of IVNS and the existing similarity measures of

interval valued neutrosophic sets (examples 1 and 2) 
introduced in [10, 12, 23] are listed as follows: 

Pinaki similarity I: 
this similarity  measure was proposed as concept of 

association coefficient of the neutrosophic sets  as follows 

𝑆𝑃𝐼= ∑ {min{TA(xi),TB(xi)}+min{IA(xi),IB(xi)}+ min{FA(xi),FB(xi)}}𝑛
𝑖=1

∑ {max{TA(xi),TB(xi)}+max{IA(xi),IB(xi)}+ max{FA(xi),FB(xi)}}𝑛
𝑖=1

   (21) 

Broumi and Smarandache cosine similarity: 
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𝐶𝑁(  𝐴, 𝐵)= 1

𝑛
  ∑ (𝑇𝐴

𝐿(𝑥𝑖) + 𝑇𝐴
𝑈(𝑥𝑖)) (𝑇𝐵

𝐿(𝑥𝑖)+𝑇𝐵
𝑈(𝑥𝑖))+(𝐼𝐴

𝐿(𝑥𝑖) + 𝐼𝐴
𝑈(𝑥𝑖)) (𝐼𝐵

𝐿(𝑥𝑖) + 𝐼𝐵
𝑈(𝑥𝑖)) +(𝐹𝐴

𝐿(𝑥𝑖) + 𝐹𝐴
𝑈(𝑥𝑖)) (𝐹𝐵

𝐿(𝑥𝑖) + 𝐹𝐵
𝑈(𝑥𝑖)) 

√(𝑇𝐴
𝐿(𝑥𝑖) + 𝑇𝐴

𝑈(𝑥𝑖))2+(𝐼𝐴
𝐿(𝑥𝑖)+𝐼𝐴

𝑈(𝑥𝑖))2+(𝐹𝐴
𝐿(𝑥𝑖) + 𝐹𝐴

𝑈(𝑥𝑖))2  √(𝑇𝐵
𝐿(𝑥𝑖) + 𝑇𝐵

𝑈(𝑥𝑖))2+(𝐼𝐵
𝐿(𝑥𝑖)+𝐼𝐵

𝑈(𝑥𝑖))2+(𝐹𝐵
𝐿(𝑥𝑖) + 𝐹𝐵

𝑈(𝑥𝑖))2

𝑛
𝑖=1

 (22) 

Ye similarity 

𝑆𝑦𝑒(A, B) = 1- 1
6

∑𝑛
𝑖=1 [|infTA(xi) − infTB(xi)| + |supTA(xi) − supTB(xi)| + |infIA(xi) − infIB(xi)| + |supIA(xi) −

supIB(xi)| + |infFA(xi) − infFB(xi)| + |supFA(xi) − supFB(xi)|].  (23) 

Example 1 

Let  A = {<x, (a, 0.2 , 0.6 , 0.6), (b, 0.5, 0.3 , 0.3), (c, 0.6 , 
0.9  , 0.5)>}    

 and B = {<x, (a, 0.5 , 0.3 , 0.8), (b, 0.6 , 0.2 , 0.5), (c, 0.6 , 
0.4 , 0.4)>}.  

Pinaki similarity I = 0.6. 

𝑆𝑦𝑒(A, B) = 0.38 (with wi =1).

Cosine similarity 𝐂𝐍(𝐀, 𝐁) = 0.95.

𝑆𝑇𝐴(𝐴, 𝐵) = 0.8. 

Example 2: 

Let  A= {<x, (a, [ 0.2 , 0.3 ] ,[0.2,  0.6], [0.6 , 0.8]), (b, [ 0.5 
, 0.7 ], [0.3,  0.5], [0.3 , 0.6]), (c, [0.6 , 0.9] ,[0.3,  0.9], [0.3, 
0.5])>} and  

B={<x, (a, [ 0.5 , 0.3 ] ,[0.3,  0.6], [0.6 , 0.8]), (b, [ 0.6, 0.8 
] ,[0.2,  0.4], [0.5 , 0.6]), (c, [ 0.6 , 0.9] ,[0.3,  0.4], [0.4 , 
0.6])>}. 

Pinaki similarity I = NA. 

𝑆𝑦𝑒(A, B)  = 0.7 (with wi =1).

Cosine similarity 𝐂𝐍( 𝐀, 𝐁) = 0.92.

𝑆𝑇𝐴(𝐴, 𝐵) = 0.9.

On the basis of computational study Jun Ye [12] has shown 
that their measure is more effective and reasonable. A similar 
kind of study with the help of the proposed new measure based 
on theoretic approach, it has been done and it is found that the 
obtained results are more refined and accurate. It may be 
observed from the above examples that the values of similarity 
measures are closer to 1 with 𝑆𝑇𝐴(𝐴, 𝐵) which is this proposed
similarity measure.  

VI. CONCLUSIONS

Few distance and similarity measures have been proposed in 
literature for measuring the distance and the degree of 
similarity between interval neutrosophic sets. In this paper, we 
proposed a new method for distance and similarity measure for 
measuring the degree of similarity between two weighted 
interval valued neutrosophic sets, and we have extended the 
work of Pinaki, Majumdar and S. K. Samant and Chen. The 
results of the proposed similarity measure and existing 

similarity measure are compared. 
In the future, we will use the similarity measures which are 

proposed in this paper in group decision making 
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New Operations on Interval Neutrosophic Sets 

Said Broumi  Florentin Smarandache 

Abstract.   An interval neutrosophic set is an instance of a neutrosophic set, which can be used in real scientific and 
engineering applications. In this paper, three new operations based on the arithmetic mean, geometrical mean, and 
respectively harmonic mean are defined on interval neutrosophic sets. 

Keywords:  Neutrosophic Sets, Interval Valued Neutrosophic Sets.  

1. Introduction

In recent decades, several types of sets, such as fuzzy sets [1], interval-valued fuzzy sets [2], intuitionistic 
fuzzy sets [3, 4], interval-valued intuitionistic fuzzy sets [5], type 2 fuzzy sets [6, 7], type n fuzzy sets [6], and 
hesitant fuzzy sets [8], neutrosophic set theory [9  ], interval valued neutrosophic set [10 ]  have been introduced 
and investigated widely. The concept of neutrosophic sets, introduced by Smarandache [6, 9], and is interesting 
and useful in modeling several real life problems. 

The neutrosophic set theory (NS for short), which is a generalization  of intuitionistic fuzzy set  has three 
associated defining functions, namely the membership function, the non-membership function and the 
indeterminacy function, which are completely independent. After the pioneering work of Smarandache [9], 
Wang, H et al. [10] introduced the notion of interval neutrosophic sets theory (INS for short) which is a special 
case of neutrosophic sets. This concept is characterized by a membership function, a non-membership function 
and indeterminacy function, whose values are intervals rather than real numbers. INS is more powerful in 
dealing with vagueness and uncertainty than NS, also INS is regarded as a useful and practical tool for dealing 
with indeterminate and inconsistent information in real world. 

The theories of both neutrosophic set (NS)  and interval neutrosophic set (INS) have achieved great success in 
various areas such as medical diagnosis [11], database [12, 13], topology[14], image processing [15, 16, 17], 
and decision making problem[18]. 

Recently, Ye [19] defined the similarity measures between INSs on the basis of the hamming and Euclidean 
distances, and a multicriteria decision–making method based on the similarity degree was proposed. Some set 
theoretic operations such as union, intersection and complement on interval neutrosophic sets have also been 
proposed by Wang, H. et al.  [10]. 
Later on, S. Broumi and F. Smarandache [20] also defined the correlation coefficient of interval neutrosophic 
set. 

In 2013, Peide Liu [21] have presented some new operational laws for interval neutrosophic sets (INSs) and 
studied their properties and proposed some aggregation operators, including the interval neutrosophic power 
generalized weighted aggregation (INPGWA) operator and interval neutrosophic power generalized ordered 
weighted aggregation (INPGOWA) operator, and gave  a decision making method based on these operators.  
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In this paper, our aim is to propose three new operations on interval neutrosophic sets (INSs) and study their 
properties. 
Therefore, the rest of the paper is set out as follows. In Section 2, some basic definitions related to neutrosophic 
set and interval valued neutrosophic set are briefly discussed. In Section 3, three new operations on interval 
neutrosophic sets have been proposed and some properties of the proposed operations on interval neutrosophic 
sets are proved. In section 4 we conclude the paper. 

2. Preliminaries

In this section, we mainly recall some notions related to neutrosophic sets, and interval neutrosophic sets 
relevant to the present work. See especially [9, 10, and 21] for further details and background. 

2.1. Definition ([9]). Let U be an universe of discourse;  then the neutrosophic set A is an object having the 
form A = {< x: T (x), I (x), F (x)>, x ∈ U}, where the functions T, I, F : U→]−0,1+[  define respectively the 
degree of membership, the degree of indeterminacy, and the degree of non-membership of the element x ∈ U to 
the set A with the condition: 

     −0 ≤ T (x)+ I (x)+ F (x)≤ 3+.          (1) 

From philosophical point of view, the neutrosophic set takes the value from real standard or non-standard 
subsets of ]−0,1+[. So instead of ]−0,1+[ we need to take the interval [0,1] for technical applications, because 
]−0,1+[ will be difficult to apply in the real applications  such as in scientific and engineering problems.  

2.2 .Definition [10]. Let X be a space of points (objects) with generic elements in X denoted by x. An interval 
neutrosophic set (for short INS) A in X is characterized by truth-membership function	T (x), indeteminacy-
membership function I (x) and falsity-membership function		F (x). For each point x in X, we have that	T (x), I (x), F (x) ∈	 [ 0, 1] . 

For convenience, we can use x =( [ T 	,	T ] ,   [I 	,	I ] ,   [ F 	,	F ] ) to represent an element in INS. 

Remark 1. An INS is clearly a NS.

2.3 .Definition [10]. Let A ={( [ 	,	 ] ,   [ 	,	 ] ,   [ 	,	 ] )} 

i. An INS A is empty if = = 0, = = 1, 	 = = 1, for all x in A.
ii. Let 0 = <0, 1 ,1>   and 1 = <1, 0 ,0>

   In the following, we introduce some basic concepts related to INSs. 

2.4. Definition [21]. Let   ={( [ 	,	 ] ,   [ 	,	 ] ,   [ 	,	 ] )} and   = {([ 	,	 ] ,   [ 	,	 ] , [ 	,	 ])} be two INSs. 

i. ∪	 	=[max( , ), max(  , )  ], [min	( , ),min( , ) ] , [min	( , ),min( , ) ] }
ii. ∩	 	=[min( , ), min(  , )  ], [max	( , )max( , ) ] , [max	( , ),max( , ) ] }

2.5. Definition.  Let   ={( [ 	,	 ] ,   [ 	,	 ] ,   [ 	,	 ] )} and   = {([ 	,	 ] ,   [ 	,	 ] ,   [ 	,	 ])} be two INSs, then the operational laws are defined as follows. 

i.  = [ 	,	 ] ,   [1 − 	,1 −	 ] ,   [ 	,	 ]
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ii. ⨁    = ([ + −	 	, + −	 ], [	 	 	, 	 ]	, [ 	, ])
iii. ⊗  ℎ  = [ 	 	 ,		 	 )],[ + −	  ,	 + −	 ], [ + −	   , + −

 ]
iv. 	  =	 1 −	(1 − ) , 1 −	(1 − ) , 	(	 ) 	, (	 ) , [	(	 ) 	, (	 ) ] 	 .
v. 

3. Three New Operations on INSs

3.1. Definition: Let  and  be two interval neutrosophic sets;, we propose the following operations on INSs 
as follows: 

  @ 	   = {( [ 	 , 	 	], [ 	 , 	 ]  ,[	 	 , 	 ],  where < , ,	  >∈  ,< , ,	 >∈   } 

  $ 	   = {( [ 	 , 	 	], [ 	 ,  	 	] , [ 	 ,  	 	] } ,where < , ,	  >∈  ,< , 

,	 >∈  } 

  # 	   = {( [ 	 		 , 	 	 		 ], [ 	 		 , 	 	 		 ] , [ 	 		 , 	 		 ]}  , where < , ,	  >∈  ,< , ,	 >∈  } 

With = [  ,	 ] ,	 = [  ,	 ] ,	 = [  ,	 ] and  = [  ,	 ] ,	 = [  ,	 ] ,	 = [  ,	 ] 

Obviously, for every two n  and n , (	n @n ),  (n $n ) and (n #n ) are also INSs. 

3.2.Example Let	  (x)= {([0.2, 0.3], [0.5, 0.6] , [ 0.2 , 0.4  ]),([0.5, 0.8], [0.1, 0.2], [ 0.6 ,0.1 ])} and   (x)= 
{([0.4, 0.6],[0.3, 0.4], [   0.3 , 0.5]), ([0.3, 0.5], [0.1, 0.2], [ 0.5 ,0.1 ]) be two interval neutrosophic sets. Then we 
have (   @ 	 ) = {([0.3, 0.45], [0.4, 0.5],[  0.25 ,0.45 ] ),(b, [0.4, 0.65], [0.1, 0.2], [ 0.55 ,  0.1 ])} 

( 	$	 ) ={(a, [0.28, 0.42], [0.38, 0.48], [ 0.24  ,0.44 ]),(b, [0.38, 0.63], [0.1, 0.2], [0.55  ,0.1 ])} 

 ( # ) = {(a, [0.26, 0.4], [0.37, 0.48] , [ 0.24  , 0.44] ),  (b, [0.37, 0.61], [0.1, 0.2], [ 0.54 , 0.1 ])} 

With these operations, several results follow. 

3.4. Theorem. For ,	  ∈ INSs(X), 

(i)	 @ 	 =	 	@ ; 

(ii)	 $ 	 =	 	$	 ; 

(iii)	 #	 =	 #	 ; 

Proof. These also follow from definitions. 

3.5. Theorem. For	 ,	  ∈	INSs(X),  (	 @		 	)	  =	 @    

Proof.	   @ 	   = {( [ 	 , 	 	], [ 	 , 	 	]  ,[	 	 , 	 	]  where < , ,	  >∈  ,< , ,	 >∈   } 
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    ={( [ 	,	 ] ,   [1- 	,	1 − ] ,   [ 	,	 ] )} 

   = {([ 	,	 ] ,   [1- 	,	1 − ] ,   [ 	,	 ])} 

@		  ={ [ 	 	 , 	 	], [( ) 	( 	) , ( ) ( 	 )	]  ,[	 	 , 	 	]  } 
(	 @		 	)	   = [ 	 , 	 ], [( ) 	( 	) , ( ) ( 	 )	]		, [	 	 , 	 	]

=	 [	 	 , 	 ], [1 − ( ) 	( 	) ,1 −	 ( ) ( 	 )	]		, [ 	 , 	 ]		  

=  [	 	 , 	 ], [ [ ( 	 	)] , [ ( 	 	)]	]		, [ 	 , 	 ]		  

= [	 	 , 	 ], [( 	 	) , ( 	 	)	]		, [ 	 , 	 	]		
Then       (	 @		 	)	   = @ 	  

This proves the theorem. 

Note 1: One can easily verify that 

(i) (	 $		 	)	  ≠ $ 	  
(ii) (	 #		 	)	 ≠ #	  

3.6. Theorem.  For ,	   and	   ∈ INSs(X) , we have the following identities: 

(i) (  ∪ ) @  = (  @ ) ∪ (  @ ); 

(ii) (  ∩ ) @  =(  @ ) ∩ ( @ ) 

(iii) (  ∪ ) $ = ( $	 ) ∪(	 $	 ); 

(iv) (  ∩ ) $ = ( $	 ) ∩ (	 $	ℎ ); 

(v) ((  ∪	 )) # = ( #	 ) ∪(	 	#	 ); 

(vi) (  ∩ ) # = ( #	 ) ∩ (	 #	 ); 

 (vii) ( @	 ) ⨁  = (  ⨁	 ) @(	  ⨁	 ); 

(viii) ( @ ) ⊗ =(  ⊗ )@ (	  ⊗ ) 

Proof. We prove (i), (iii), (v), (vii) and (ix), results (ii), (iv), (vi), (viii) and (x) can be proved analogously 

(i) Using definitions in 2.4, 2.5 and 3.1,we have 

   ={( [ 	,	 ] ,   [ 	,	 ] ,   [ 	,	 ] )} 

   = {([ 	,	 ] ,   [ 	,	 ] ,   [ 	,	 ])} 

(  ∪ ) @  =  {( [max( , )	,max(	 , )] ,   [min ( , )		,min(	 , )] ,   [min( 	,	 ),min(	 , )] )}  @ {([ 	,	 ] ,   [ 	,	 ] ,   [ 	,	 ])} 
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={[ (	 , ) , (	 , )	 	 ] , [	 	( , ) , (	 , ) ] ,[	 	 	, , , (	 , )  ]} 

={[max(   	,  ) , max(   	,  ) ], [ min ( , ) , min ( , )], [min ( ,  ) , 

min ( ,  ] } 

= (  @ ) ∪ (  @ ) 

This proves (i) 

(iii) From definitions in 2.4, 2.5 and 3.1, we have 

(  ∪ ) $  = {( [max( , )	,max(	 , )] ,   [min ( , )		,min(	 , )] ,   [min( 	,	 ),min(	 , )] )} $ {([ 	,	 ] ,   [ 	,	 ] ,   [ 	,	 ])} 

=    {  [ (	 , )	   , max(	 , )	     ] , [ min(	 , )	   , min(	 , )	  ], [ min(	 	, )	   , min(	 , )	  ]}. 

={ [ max( 	     , 	    ) , max( 	     , 	    ) ] , [min( 	     , 	    ) , min( 	     , 	    )], [min(     , 	    ) , min( 	     , 	   )]} 

=( $ ) ∪	(	 $ ); 

This proves (iii). 

(v) Using definitions in 2.4, 2.5 and 3.1, we have 

 ((  ∪ )) #  = {( [max( , )	,max(	 , )] ,   [min ( , )		,min(	 , )] ,   [min( 	,	 ),min(	 , )] )} # {([	,	 ] ,   [ 	,	 ] ,   [ 	,	 ])} 

= { [ 	 (	 , )	(	 , ) 	  , 	 (	 	, )	(	 	, )		 	 ], [ 	 	( , )		( , ) 	  , 	 (	 , )		(	 , )	 	 ]  , ], [ 	 	( , )		( , ) 	  , 	 (	 , )		(	 , )	 	 ]  } 

 ={ [ max ( 		 			   , 		 		 		 ) ,max ( 		 			   , 		 			  )] , [ min ( 		 		   , 		 	 		 	 ) ,min ( 		 		   , 		 		 	  )], [ 

min ( 		 		   , 		 	 		 	 ) ,min ( 		 		   , 		 		 	  )]} 

=( 	# ) ∪	(	 # )       

This proves (v) 

(vii) Using definitions in 2.4, 2.5 and 3.1, we have 

 ( @	 ) ⨁  = (  ⨁	 ) @(	  ⨁	 ); 

   ={( [ 	,	 ] ,   [ 	,	 ] ,   [ 	,	 ] )} 

   = {([ 	,	 ] ,   [ 	,	 ] ,   [ 	,	 ])} 

= {( [ 	,	 ] ,   [ 	,	 ] ,   [ 	,	 ] )} 

= {( [ 	 , 	 	], [ 	 	 , 	 	]  ,[	 	 	 , 	 	])} ⨁ {( [ 	,	 ] ,   [ 	,	 ] ,   [ 	,	 ] )} 

={[ 	 	 +  - 	 ,   	 +  - 	 	  ] , [ 	 	 ,   	 	 ] , [ 	 	 ,   	 	 ] } 
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={ [( 	 ) ( ) ,		( 	 ) ( ) ], [ 	 	 ,   	 	 	 ] , [ 	  ,   	 	 	 ] }

= (  ⨁ ) @ (	  ⨁ ) 

This proves (vi)  

3.7. Theorem. For and ∈ INSs(X), we have the following identities: 

(i) ( ⨁	 ) ∩  (	 ⊗ ) =	 ⊗ ; 

(ii) ( ⨁	 ) ∪	(	 ⊗ ) =	 ⨁	 ; 

(iii) ( ⨁	 ) ∩  (	 @	 ) =	 @	 ; 

(iv) ( ⨁	 ) ∪	(	 @	 )=	 ⨁	 ; 

(v) ( ⊗ ) ∩  (	 @	 )=	 ⊗ ; 

(vi) ( ⊗ ) ∪	(	 @ )=	 @	 ; 

(vii) ( ⨁ ) ∩  (	 $	 )=	 	$	 ; 

(viii) ( ⨁ ) ∪	(	 $	 )=	 ⨁	 ; 

(ix) ( ⊗ ) ∩  (	 $	 )=	 ⊗ ; 

(x) ( ⊗ ) ∪	(	 $ )=	 $	 ; 

(xi) ( ⨁	 ) ∩ (	 #	 )=	 #	 ; 

(xii) ( ⨁	 ) ∪	(	 # )=	 ⨁ ; 

(xiii) ( ⊗ )∩ (	 # )=	 ⊗ ; 

(xiv) ( ⊗ )∪(	 # )=	 #  

Proof. We prove (i), (iii), (v), (vii), (ix), (xi) and (xii), other results can be proved analogously. 

(i) From definitions in 2.4, 2.5 and 3.1, we have 

( ⨁ ) ∩  (	 ⊗ )

   ={( [ 	,	 ] ,   [ 	,	 ] ,   [ 	,	 ] )} 

   = {([ 	,	 ] ,   [ 	,	 ] ,   [ 	,	 ])} =([ + −	 	, + −	 ], [	 	 	, 	 ]	, [ 	, ]) ∩ {[	 	 	, 	 ], [ + −	 , +−	 ]	,	 [  + −	  , + −	  ] } 

={[ min ( + −	 	, 	 	 ) , min ( + −	   , 	 )] , 

 [ max ( 	   ,	 + −	  ) , max ( 	 , + −	 )],  [ max (   ,	 + −	   ) , max ( , +−	 )]} 

=[ 	 	 ,		 	 )],[ + −	  ,	 + −	 ], [ + −	   , + −	  ] 
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= ⊗  

This proves (i) 

(iii) Using definitions in 2.4, 2.5 and 3.1, we have 

( ⨁ )	∩ (	 @ ) =	 @	 ; 

={ ([ + −	 	, + −	 ], [	 	 	, 	 ]	, [ 	, ]) 	∩( [ 	 , 	 	], [ 	 , 	 	]  ,[	 	
, 	 ])

= {[ min  ( + −	  ,	 	  ) , min ( + −	  ,	 	 	] ) ], 
[ max ( 	  , 	 	) , max ( 	 , 	 	)] , [ max (  , 	 	) , max ( , 	 )]}.  

={ [ 	 , 	 ] , [	 	 ,  	 	], [  	 	  , 	 	   ] = 	@  

This proves (iii). 

(v) From definitions in 2.4, 2.5 and 3.1, we have 

( ⊗ ) ∩ (	 @ ) =	 ⊗ ; 

{[ 	 	 ,		 	 )],[ + −	  ,	 + −	 ], [ + −	   , + −	  ]} ∩{ [ 	 , 	  ] , 

[	 	 	  ,  	 	], [  	 , 	 	 ]}. 

={[ min  ( 	 	 ,	 	 	) , min ( 	  , 	 	 	) ],[ max ( + −	  , 	 	) , max ( + −	 , 	 	) 
], [max ( + −	    , 	 	) , max ( + −	  , 	 )]}. 

= {[ 	 	 , 	 	   ], [ + −	  ,			 1 + 2 − 	 1 2 ], [	 + −	  , 	 + −	  ] }=  ⊗	 	This	proves	(v).	(vii)	Using	definitions	in	2.4, 2.5 and 3.1,	we	have	
( ⨁ )	∩ (	 $	 )=	 	$	
=  ([ + −	 	, + −	 ], [	 	 	, 	 ]	, [ 	, ])	 ∩ {( [ 	 , 	 	], [ 	 ,  	 	] ,
[ 	 ,  	 	]} 
= { [ min ( + −	  ,	 	  ) , min ( + −	  ,	 	 	 )],  [max (	 	 ,	 	  ) , max ( 	  , 	 	) 
], [max (	 	 ,	 	  ) , max ( 	  , 	 	) ]} 
={[ 	     	, 	 	  ] , [  	   ,	 	 	  ] , [ 	   ,	 	 	  ] } = 	$	  

This proves (vii) (ix)	From	definitions	in	2.4, 2.5 and 3.1, we	have	
( ⊗ )	∩ (	 $ )=	 ⊗ ; 
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={[ 	 	 ,		 	 )], [ + −	  ,	 + −	 ], [ + −	   , + −	  ]}  ∩{[ 		, 	 	  ] , [  	   ,	 	 	  ] , [ 	   ,	 	 	  ]} 
= {[ min ( 	 	 , 	 ) , min (	 	 ,	 	 	 )], [max ( + −	 	 , 	 ) , max ( + −	 , 	 	)], [max ( + −	 	 , 	 ) , max ( + −	 , 	 	)]} 

={[ 	 	 ,	 	 	] , [	 + −	   ,	 + −	  ], [  + −	   , + −	   ]} = ⊗ 	
This proves (ix) 

(xiii) From definitions in 2.3, 2.5 and 3.1, we have 

 ( ⊗ )	∩ (	 #	 ) =	 ⊗ ; 

={[ 	 	 ,		 	 )], [ + −	  ,	 + −	 ], [ + −	   , + −	  ]}  ∩ {( [ 	 		  , 	 	 		 ], [ 	 	 		  , 	 	 		 ] , [ 	 	 		  , 	 	 		 ]}

={ [ min ( 	  , 	 	 		 ) , min ( 	  ,	 	 		  ) ] , [ max ( + −	  , 	 	 		 ) , max( + −	  , 	 		  ], [ max 

( + −	    , 	 	 		 ) , max( + −	   ,	 	 	 		  ]}

={ [ 	 , 	 ], [	 + −	  ,	 + −	 ]	,	[  + −	   , + −	   ]}   = ⊗  

This proves (xiii). This proves the theorem. 

3.8. Theorem. For and		 ∈	INSs(X), then following relations are valid: 

(i) ( # ) $ (	 # ) =	 #	 ; 

 (ii) ( ⨁ ) $ (	 ⨁ ) =	 ⨁ ; 

(iii) ( ⊗ ) $ (	 ⊗ ℎ ) =	 ⊗ ; 

(iv) ( @	 ) $ (	 @	 ) =	 @	 ; 

(v) ( #	 ) @ (	 	#	 ) =	 	#	 ; 

 (vi) ( ⨁	 ) @ (	 ⊗ ) =	 @	 ; 

(vii) ( ∪ 	 ) @ (	 ∩ ) =	 @ ; 

(viii) ( ∪ 	 ) $ (	 ∩ ) =	 $	 ; 

(ix) ( ∪ 	 ) # (	 ∩ ) =	 #	 ; 

Proof. The proofs of these results are the same as in the above proof 

3.9. Theorem For every two 	and 		∈	INSs(X), we have: 

(i) (( ∪ )	⨁ (	 ∩ )) @ ((	 ∪ )	⊗ (	 ∩ )) =	 @ ;  

(ii) (( ∪ )#(	 ∩ )) $ (( ∪ ) @ (	  ∩ )) =	 $   
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(iii) (( ⨁ ) ∪	(	 ⊗ )) @ ((	 ⨁ ) ∩ (	 ⊗ ))=	 @ ; 

(iv) (( ⨁ ) ∪	(	 @ )) @ ((	 ⊗ ) ∩ (	 @ ))=	 @ ; 

(v) (( ⨁ ) ∪ (	 # )) @ ((	 ⊗ ) ∩ (	 # )) =	 @ ; 

(vi) (( 	⨁ )	∪ (	 $ )) @ ((	 ⊗ )	∩ (	 $ )) =	 @ ; 

(vii) (( ⨁ )	∪ (	 @ )) @ ((	 ⨁ ) ∩ (	 # )) =	 $ . 

Proof. In the following, we prove (i) and (iii), other results can be proved analogously. 

(i) From definitions in 2.4, 2.5 and 3.1, we have 

(( ∪ ) ⨁	(	 ∩ ))  @  ((	 ∪ ) ⊗	(	 ∩ )) = 

   ={( [ 	,	 ] ,   [ 	,	 ] ,   [ 	,	 ] )} 

   = {([ 	,	 ] ,   [ 	,	 ] ,   [ 	,	 ])} 

 = {( [ 	,	 ] ,   [ 	,	 ] ,   [ 	,	 ] )} 

(( ∪ ) ⨁	(	 ∩ ))  = 

{ [max( , ), max(  , )  ], [min	( , ),min( , ) ] , [min	( , ),min( , ) ] } ⨁ { [min( , ), min(  
, )  ], [max	( , ), max( , ) ] , [max	( , ), max( , ) ] }.  

={[  max( , )+ min( , ) - max( , ) min( , ),   max(  , )  + min(  , )  -  max(  ,  min(  
, )] ,[  min( , )max	( , ),  min( , ) max( , )], [  min( , )max	( , ),  min( , ) max( , )]}.  
( ∪ ) ⊗	(	 ∩ ) = 

{ [max( , ), max(  , )  ], [min	( , ),min( , ) ] , [min	( , ),min( , ) ] } ⊗ { [min( , ), min(  
, )  ], [max	( , ), max( , ) ] , [max	( , ), max( , ) ] }.  

= {[ max( , ) min( , ) , max(  , )  min(  , )  ]  ,  [	min	( , ) +	max	( , ) - min	( , ) max	( , ), min	( , ) +	max	( , ) - min	( , ) max	( , )]   ,  [	min	( , ) +	max	( , ) - min	( , ) max	( , ), min	( , ) +	max	( , ) - min	( , ) max	( , )]}. 
(( ∪ ) ⨁	(	 ∩ ))  @  ((	 ∪ ) ⊗	(	 ∩ )) = 

{[max 	 1, 2 +	min 	 1, 2 −	max 	 1, 2 min 	 1, 2 +max(	 1, 2)	min(	 1, 2) 
,	max(	 1 	, 2 )		+	min(	 1 	, 2 )		−		max(	 1 	, 2 )min(	 1 	, 2 )	+max(	 1 	, 2 )		min(	 1 	, 2 )] ,  
[	[		min 1, 2 max	( 1, 2)	+min	( 1, 2)	+	max	( 1, 2)	−	min	( 1, 2)	max	( 1, 2)),	min(	 1 , 2 )	max(	 1 , 2 )+min	( 1 , 2 )	+	max	( 1 , 2 )	−	min	( 1 , 2 )	max	( 1 , 2 )] 
[	[		min 1, 2 max	( 1, 2),+min	( 1, 2)	+	max	( 1, 2)	−	min	( 1, 2)	max	( 1, 2)),	min(	 1 , 2 )	max(	 1 , 2 )+min	( 1 , 2 )	+	max	( 1 , 2 )	−	min	( 1 , 2 )	max	( 1 , 2 )]} 

= [max 	 1, 2 +	min 	 1, 2 	,	max(	 1 	, 2 )		+	min(	 1 	, 2 )],  
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[	min	( 1, 2)	+	max	( 1, 2) ,	min	( 1 , 2 )	+	max	( 1 , 2 )	], [	min	( 1, 2)	+	max	( 1, 2) ,	min	( 1 , 2 )	+	max	( 1 , 2 )	],
={[		 1+	 2	 ,	 1+	 2] , [ 1+ 2 , 	 1+ 2		], [ 1+ 2 , 	 1+ 2		]}
=	 @  

This proves (i). 

(iii) From definitions in 2.4, 2.5 and 3.1, we have 

(( ⨁ ) ∪	(	 ⊗ )) @ ((	 ⨁ ) ∩ (	 ⊗ )) =	 @ ; 

( ⨁ ) ∩	(	 ⊗ ) ={ ([ + −	 	, + −	 ], [	 	 	, 	 ]	, [ 	, ])}∩	
{[ 	 	 ,		 	 )], [ + −	  ,	 + −	 ], [ + −	   , + −	  ]}

={ [ min (  + −	  ,  	 	 ) , min ( + −	  ,	 	 )] , 

 [ max ( 	 	, + −	  ),  max( 	   ,		 + −	   )] ,  

 [ max ( 	, + −	  ),  max(   ,	 + −	   )]}. 

 = {[ 	   ,	 	 	], [ + −	  ,	 + −	  ] ,[  + −	 ,  + −	  ]} 

 ( ⨁ ) ∪	(	 ⊗ )  ={ ([ + −	 	, + −	 ], [	 	 	, 	 ]	, [ 	, ])} ∪	
{[ 	 	 ,		 	 )], [ + −	  ,	 + −	 ], [ + −	   , + −	  ]

={ [max (  + −	  ,  	 	   ) , max ( + −	  , 	 )] , 

   [ min ( 	 	, + −	  ),  min( 	   ,	 + −	   )] , [ min ( 	, + −	 ),  min(   ,	 +−	   )]} 

 ={ [ + −	   ,	 + −	 ], [ 	   , 	   ] ,  [	 ,	 ] } 

 (( ⨁ ) ∪	(	 ⊗ )) @ ((	 ⨁ ) ∩ (	 ⊗ ))={[ 
			 1	 2+ 1+ 2−	 1 2    ,  1 	 2+ 1+ 2−	 1 2   ], 

[  1+ 2−	 2 2	+ 1	 2		   ,  			 1 + 2−	 1 2+ 1 	 2    ] , [  			 1+ 2−	 2 2	+ 1 2,  ,  1+ 2−	 1 2+ 1 2    ] } 

={[ 
			 1+ 2		 ,  

	 1 + 2    ],[ 
			 1+ 2		   , 1+ 2    ] ,[ 		 1+ 2		   ,  1+ 2    ] 

Hence, (( ⨁ ) ∪	(	 ⊗ )) @ ((	 ⨁ ) ∩ (	 ⊗ )) =	 @  

This proves (iii). 

4. Conclusion

In this paper we have defined three new operations on interval neutrosophic sets based on the arithmetic mean, geometrical 
mean, and respectively harmonic mean, which involve different defining functions. Several related results have been 
proved and the characteristics of the interval neutrosophic sets revealed.  
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New Operations over Interval Valued Intuitionistic Hesitant Fuzzy Set 

Said Broumi      Florentin Smarandache 

Abstract  Hesitancy is the most common problem in decision making, for which hesitant fuzzy set can 
be considered as a useful tool allowing several possible degrees of membership of an element to a set. Recently, 
another suitable means were defined by Zhiming Zhang [1], called interval valued intuitionistic hesitant fuzzy sets, 
dealing with uncertainty and vagueness, and which is more powerful than the hesitant fuzzy sets. In this paper, four new 
operations are introduced on interval-valued intuitionistic hesitant fuzzy sets and several important properties are 
also studied. 

Keywords  Fuzzy Sets, Intuitionistic Fuzzy Set, Hesitant 
Fuzzy Sets, Interval-Valued Intuitionistic Hesitant Fuzzy Set, 
Interval Valued Intuitionistic Fuzzy Sets 

1. Introduction
In recent decades, several types of sets, such as fuzzy sets 

[2], interval-valued fuzzy sets [3], intuitionistic fuzzy sets [4, 
5], interval-valued intuitionistic fuzzy sets [6], type 2 fuzzy 
sets [7, 8], type n fuzzy sets [7], and hesitant fuzzy sets [9], 
neutrosophic sets, have been introduced and investigated 
widely. The concept of intuitionistic fuzzy sets, was 
introduced by Atanassov [4, 5]; it is interesting and useful in 
modeling several real life problems. 

An intuitionistic fuzzy set (IFS for short) has three 
associated defining functions, namely the membership 
function, the non-membership function and the hesitancy 
function. Later, Atanassov and Gargov provided in [6] what 
they called interval-valued intuitionistic fuzzy sets theory 
(IVIFS for short), which is a generalization of both interval 
valued fuzzy sets and intuitionistic fuzzy sets. Their concept 
is characterized by a membership function and a 
non-membership function whose values are intervals rather 
than real number. IVIFS is more powerful in dealing with 
vagueness and uncertainty than IFS.   

Recently, Torra and Narukawa [9] and Torra [10] 
proposed the concept of hesitant fuzzy sets, a new 

generalization of fuzzy sets, which allows the membership of 
an element of a set to be represented by several possible 
values. They also discussed relationships among hesitant 
fuzzy sets and other generalizations of fuzzy sets such as 
intuitionistic fuzzy sets, type-2 fuzzy sets, and fuzzy 
multisets. Some set theoretic operations such as union, 
intersection and complement on hesitant fuzzy sets have also 
been proposed by Torra [9]. Hesitant fuzzy sets can be used 
as an efficient mathematical tool for modeling people’s 
hesitancy in daily life than the other classical extensions of 
fuzzy sets. We’ll further study the interval valued 
intuitionistic hesitant fuzzy sets. Xia and Xu [11] made an 
intensive study of hesitant fuzzy information aggregation 
techniques and their applications in decision making. They 
also defined some new operations on hesitant fuzzy sets 
based on the interconnection between hesitant fuzzy sets and 
the interval valued intuitionistic fuzzy sets. To aggregate the 
hesitant fuzzy information under confidence levels, Xia et al. 
[12] developed a series of confidence induced hesitant fuzzy 
aggregations operators. Further, Xia and Xu [13, 14] gave a 
detailed study on distance, similarity and correlation 
measures for hesitant fuzzy sets and hesitant fuzzy elements 
respectively. Xu et al. [15] developed several series of 
aggregation operators for interval valued intuitionistic 
hesitant fuzzy information such as: the interval valued 
intuitionistic fuzzy weighted arithmetic aggregation 
(IIFWA), the interval valued intuitionistic fuzzy ordered 
weighted aggregation (IIFOWA) and the interval valued 
intuitionistic fuzzy hybrid aggregation (IIFHA) operator. 
Wei and Wang [16], Xu et al. [17] introduced the interval 
valued intuitionistic fuzzy weighted geometric (IIFWG) 
operator, the interval valued intuitionistic fuzzy ordered 
weighted geometric (IIFOWG) operator and the interval 
valued intuitionistic fuzzy hybrid geometric (IIFHG) 
operator. Recently, Zhiming Zhang [1] have proposed the 
concept of interval valued intuitionistic hesitant fuzzy set , 
study their some basic properties and developed several 
series of aggregation operators for interval valued 
intuitionistic hesitant fuzzy environment and have applied 
them to solve multi-attribute group decision making 
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problems. 
In this paper, our aim is to propose four new operations on 

interval valued intuitionistic hesitant fuzzy sets and study 
their properties. 

Therefore, the rest of the paper is set out as follows. In 
Section 2, some basic definitions related to intuitionistic 
fuzzy sets, hesitant fuzzy sets and interval valued 
intuitionistic hesitant fuzzy set are briefly discussed. In 
Section 3, four new operations on interval valued 
intuitionistic hesitant fuzzy sets have been proposed and 
some properties of these operations are proved. In section 4, 
we conclude the paper. 

2. Preliminaries
In this section, we give below some definitions related to 

intuitionistic fuzzy sets, interval valued intuitionistic fuzzy 
sets, hesitant fuzzy set and interval valued hesitant fuzzy 
sets. 

Definition 2.1. [4, 5] (Set operations on IFS)

Let IFS(X) denote the family of all intuitionistic fuzzy sets 
defined on the universe X, and let α, β ∈ IFS(X) be given as 

𝛼𝛼 = (𝜇𝜇𝛼𝛼 , 𝜈𝜈𝛼𝛼 ),  β = (𝜇𝜇𝛽𝛽 , 𝜈𝜈𝛽𝛽 ). 

Then nine set operations are defined as follows: 
(i) 𝛼𝛼𝑐𝑐=(𝜈𝜈𝛼𝛼 , 𝜇𝜇𝛼𝛼 ); 
(ii) 𝛼𝛼 ∪  𝛽𝛽 =(max(𝜇𝜇𝛼𝛼 , 𝜇𝜇𝛽𝛽 ),min(𝜈𝜈𝛼𝛼 , 𝜈𝜈𝛽𝛽 )); 
(iii) 𝛼𝛼 ∩  𝛽𝛽 =(min(𝜇𝜇𝛼𝛼 , 𝜇𝜇𝛽𝛽 ),max(𝜈𝜈𝛼𝛼 , 𝜈𝜈𝛽𝛽 )); 
(iv) 𝛼𝛼 ⨁ 𝛽𝛽 =(𝜇𝜇𝛼𝛼 +𝜇𝜇𝛽𝛽 −𝜇𝜇𝛼𝛼 𝜇𝜇𝛽𝛽 , 𝜈𝜈𝛼𝛼 𝜈𝜈𝛽𝛽 ); 
(v) 𝛼𝛼 ⊗  𝛽𝛽 =(𝜇𝜇𝛼𝛼 𝜇𝜇𝛽𝛽 , 𝜈𝜈𝛼𝛼 +𝜈𝜈𝛽𝛽 −𝜈𝜈𝛼𝛼 𝜈𝜈𝛽𝛽 ); 
(vi) 𝛼𝛼 @ 𝛽𝛽 = (

𝜇𝜇 𝛼𝛼 + 𝜇𝜇 𝛽𝛽

2
, 

𝜈𝜈𝛼𝛼 + 𝜈𝜈𝛽𝛽

2
) ; 

(vii) 𝛼𝛼 $ 𝛽𝛽  = (  �𝜇𝜇𝛼𝛼  𝜇𝜇𝛽𝛽 , �𝜈𝜈𝛼𝛼  𝜈𝜈𝛽𝛽   ) ; 

(viii) 𝛼𝛼 # 𝛽𝛽  = (
 2 𝜇𝜇 𝛼𝛼  𝜇𝜇 𝛽𝛽

𝜇𝜇 𝛼𝛼  +𝜇𝜇 𝛽𝛽
, 

2 𝜈𝜈𝛼𝛼  𝜈𝜈𝛽𝛽

𝜈𝜈𝛼𝛼 + 𝜈𝜈𝛽𝛽
) ; 

(ix) 𝛼𝛼 ∗  𝛽𝛽  = (
𝜇𝜇 𝛼𝛼  +𝜇𝜇 𝛽𝛽

2( 𝜇𝜇 𝛼𝛼 𝜇𝜇 𝛽𝛽 +1)
 , 

𝜈𝜈𝛼𝛼 + 𝜈𝜈𝛽𝛽

2(𝜈𝜈𝛼𝛼  𝜈𝜈𝛽𝛽 +1)
) ;

In the following, we introduce some basic concepts related 
to IVIFS. 

Definition 2.2. [6] (Interval valued intuitionistic fuzzy 
sets) 

An Interval valued intuitionistic fuzzy sets (IVIFS )   α 
in the finite universe X is expressed by the form  

α = {<x, 𝜇𝜇α(x), 𝜈𝜈α (x)>| x ∈ X } ,where 𝜇𝜇α(x) = [ 𝜇𝜇𝛼𝛼
− (x), 

𝜇𝜇𝛼𝛼
+(x)] ∈ [I] is called membership interval of element to 

IVIFS α ,while [ 𝜈𝜈𝛼𝛼
− (x), 𝜈𝜈𝛼𝛼

+(x)] ∈ [I] is the non- 
membership interval of that element to the  set  α  , with 
the condition 0 ≤ 𝜇𝜇𝛼𝛼

+(x) +𝜈𝜈𝛼𝛼
+(x)  ≤1 must hold for any x ∈ 

X . 
 For convenience, the lower and upper bounds of 𝜇𝜇α (x) 

and 𝜈𝜈α (x) are denoted by 𝜇𝜇α 
−  , 𝜇𝜇α 

+  , 𝜈𝜈α 
−, 𝜈𝜈α 

+, respectively. 
Thus, the IVIFS α may be concisely expressed as 

α = (𝜇𝜇𝛼𝛼 , 𝜈𝜈𝛼𝛼 )= {<x, [ 𝜇𝜇𝛼𝛼
− , 𝜇𝜇𝛼𝛼

+] ,[𝜈𝜈𝛼𝛼
−, 𝜈𝜈𝛼𝛼

+]> | x ∈ X }  (1) 

Where 0 ≤  𝜇𝜇𝛼𝛼
+  +𝜈𝜈𝛼𝛼

+  ≤1 

Definition 2.3 [9, 11] 

Let X be a fixed set. A hesitant fuzzy set (HFS) on X is in 
terms of a function that when applied to X returns a subset of 
[0, 1] the HFS is expressed by a mathematical symbol 

E={<x, ℎ𝐸𝐸 (𝑥𝑥)> | x ∈ X}    (2) 

where ℎ𝐸𝐸 (𝑥𝑥)> is a set of some values in[0, 1], denoting the 
possible membership degree of the element x ∈ X to the set 
𝐸𝐸. For convenience, Xia and Xu [11] called  h=ℎ𝐸𝐸 (𝑥𝑥) a 
hesitant fuzzy element (HFE) and 𝐻𝐻 be the set of all HFEs.  

Given three HFEs represented by ℎ, ℎ1 ,and ℎ2 ,Torra [9] 
defined some operations on them, which can be described as: 

1) ℎ𝑐𝑐={1-𝛾𝛾| 𝛾𝛾 ∈ ℎ }
2) ℎ1 ∪ ℎ2 ={max(𝛾𝛾1 , 𝛾𝛾2) |𝛾𝛾1 ∈ ℎ1 , 𝛾𝛾2 ∈ ℎ2 }
3) ℎ1 ∩ ℎ2 ={min(𝛾𝛾1 , 𝛾𝛾2 ) |𝛾𝛾1 ∈ ℎ1 , 𝛾𝛾2 ∈ ℎ2 }
Furthermore, in order to aggregate hesitant fuzzy 

information, Xia and Xu [11] defined some new operations 
on the HFEs ℎ, ℎ1 ,and ℎ2 : 

1) ℎ1 ⨁ ℎ2 ={𝛾𝛾1 + 𝛾𝛾2 -𝛾𝛾1 𝛾𝛾2|𝛾𝛾1 ∈ ℎ1 , 𝛾𝛾2 ∈ ℎ2 }
2) ℎ1 ⊗ ℎ2 ={𝛾𝛾1 𝛾𝛾2 |𝛾𝛾1 ∈ ℎ1 , 𝛾𝛾2 ∈ ℎ2 }
3) ℎ𝜆𝜆 ={𝛾𝛾𝜆𝜆 | 𝛾𝛾 ∈ ℎ }
4) 𝜆𝜆 h={1 − (1 − 𝛾𝛾)𝜆𝜆 | 𝛾𝛾 ∈ ℎ }

Definition 2.4 [1] (Interval valued intuitionistic hesitant 
fuzzy sets) 

Let X be a fixed set, an interval-valued intuitionistic 
hesitant fuzzy set (IVIHFS) on X is given in terms of a 
function that when applied to X returns a subset of Ω. The 
IVIHFS is expressed by a mathematical symbol 

𝐸𝐸�  ={<x, ℎ𝐸𝐸� (𝑥𝑥)> | x ∈ X}   (3) 

where ℎ𝐸𝐸� (𝑥𝑥) is a set of some IVIFNs in X , denoting the 
possible membership degree intervals and non-membership 
degree intervals of the element x ∈ X to the set 𝐸𝐸� . 

For convenience, an interval-valued intuitionistic hesitant 
fuzzy element (IVIHFE) is denoted by ℎ�  = ℎ𝐸𝐸� (𝑥𝑥) and ℎ�  be 
the set of all IVIHFEs. If 𝛼𝛼 ∈ ℎ� , then an IVIFN can be 
denoted by  α = (𝜇𝜇𝛼𝛼 , 𝜈𝜈𝛼𝛼 )= ([ 𝜇𝜇𝛼𝛼1

−  , 𝜇𝜇𝛼𝛼1
+ ],[𝜈𝜈𝛼𝛼1

− , 𝜈𝜈𝛼𝛼1
+ ]). 

For any  ∈  ℎ� , if α is a real number in [0,1], then ℎ�  
reduces to a hesitant fuzzy element (HFE) [9]; if α is a closed 
subinterval of the unit interval, then ℎ�  reduces to an 
interval-valued hesitant fuzzy element (IVHFE)[1]; if α is an 
intuitionistic fuzzy number (IFN) , then ℎ�  reduces to an 
intuitionistic hesitant fuzzy element (IHFE). Therefore, 
HFEs, IVHFEs, and IHFEs are special cases of IVIHFEs. 

Definition 2.5. [1, 9] 

Given three IVIHFEs represented by ℎ� , ℎ�1 ,and ℎ�2 , one 
defines some operations on them, which can be described as: 

ℎ�𝑐𝑐  ={𝛼𝛼𝑐𝑐  | 𝛼𝛼 ∈ ℎ�  } = {([𝜈𝜈𝛼𝛼
−, 𝜈𝜈𝛼𝛼

+],[ 𝜇𝜇𝛼𝛼
− , 𝜇𝜇𝛼𝛼

+])| 𝛼𝛼 ∈ ℎ�}, 

ℎ�1 ∪  ℎ�2 ={max (𝛼𝛼1 , 𝛼𝛼2 )|𝛼𝛼1 ∈ ℎ�1, 𝛼𝛼2 ∈ ℎ�2} 
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= { ([max( 𝜇𝜇𝛼𝛼1
−  , 𝜇𝜇𝛼𝛼2

−  ), max( 𝜇𝜇𝛼𝛼1
+ , 𝜇𝜇𝛼𝛼2

+ )],[min(𝜈𝜈𝛼𝛼1
− , 𝜈𝜈𝛼𝛼2

− ), 
min( 𝜈𝜈𝛼𝛼1

+ , 𝜈𝜈𝛼𝛼2
+ )]) |𝛼𝛼1 ∈ ℎ�1, 𝛼𝛼2 ∈ ℎ�2}, 

ℎ�1 ∩  ℎ�2 ={min(𝛼𝛼1, 𝛼𝛼2) |𝛼𝛼1 ∈ ℎ�1, 𝛼𝛼2 ∈ ℎ�2} 

= { ([min( 𝜇𝜇𝛼𝛼1
−  

, 𝜇𝜇𝛼𝛼2
− ),min( 𝜇𝜇𝛼𝛼1

+ , 𝜇𝜇𝛼𝛼2
+ )],[max(𝜈𝜈𝛼𝛼1

− , 𝜈𝜈𝛼𝛼2
− ),max( 𝜈𝜈𝛼𝛼1

+ , 𝜈𝜈𝛼𝛼2
+ )]) |𝛼𝛼1 ∈ 

ℎ�1, 𝛼𝛼2 ∈ ℎ�2}, 

ℎ�1⨁ ℎ�2 = ��� �𝜇𝜇𝛼𝛼1
− + 𝜇𝜇𝛼𝛼2

− −  𝜇𝜇𝛼𝛼1
− 𝜇𝜇𝛼𝛼2

− , 𝜇𝜇𝛼𝛼1
+ + 𝜇𝜇𝛼𝛼2

+ −

𝜇𝜇𝛼𝛼1
+ 𝜇𝜇𝛼𝛼2

+ ], [ 𝜈𝜈𝛼𝛼1
−  𝜈𝜈𝛼𝛼2

−  , 𝜈𝜈𝛼𝛼1
+  𝜈𝜈𝛼𝛼2

+ ]|𝛼𝛼1  ∈  ℎ�1 , 𝛼𝛼2  ∈  ℎ�2��� 

ℎ�1 ⊗  ℎ�2 = = {([ 𝜇𝜇𝛼𝛼1
−  𝜇𝜇𝛼𝛼2

−  , 𝜇𝜇𝛼𝛼1
+  𝜇𝜇𝛼𝛼2

+ ],[𝜈𝜈𝛼𝛼1
− + 𝜈𝜈𝛼𝛼2

− −
𝜈𝜈𝛼𝛼1

− 𝜈𝜈𝛼𝛼2
− , 𝜈𝜈𝛼𝛼1

+ + 𝜈𝜈𝛼𝛼2
+ − 𝜈𝜈𝛼𝛼1

+ 𝜈𝜈𝛼𝛼2
+ ]| 𝛼𝛼1 ∈ ℎ�1 , 𝛼𝛼2 ∈ ℎ�2 } 

𝜆𝜆 ℎ�  
= ���1 −  �1 − μα

−�𝜆𝜆
, 1 −

�1 − μα
+�𝜆𝜆�, [ ( 𝜈𝜈𝛼𝛼

−)𝜆𝜆 , ( 𝜈𝜈𝛼𝛼
+)𝜆𝜆]� | 𝛼𝛼 ∈  ℎ��

3. Four New Operations on IVIHFEs

Definition 3.1 

Let ℎ�1 and ℎ�2 ∈ IVIHFE (X), we propose the following operations on IVIHFEs as follows: 

1) ℎ�1 @ ℎ�2 = {([ 
𝜇𝜇 𝛼𝛼 1

− + 𝜇𝜇 𝛼𝛼 2
−  

2
 , 

𝜇𝜇 𝛼𝛼 1
+ + 𝜇𝜇 𝛼𝛼 2

+  

2
],[

𝜐𝜐𝛼𝛼 1
− + 𝜐𝜐𝛼𝛼 2

−  

2
 , 

𝜐𝜐𝛼𝛼 1
+ + 𝜐𝜐𝛼𝛼 2

+  

2
]| 𝛼𝛼1 ∈ ℎ�1 , 𝛼𝛼2 ∈ ℎ�2 }

2) ℎ�1 $ ℎ�2 = {([�𝜇𝜇𝛼𝛼1
−  𝜇𝜇𝛼𝛼2

− , �𝜇𝜇𝛼𝛼1
+  𝜇𝜇𝛼𝛼2

+  ],[�𝜐𝜐𝛼𝛼1
−  𝜐𝜐𝛼𝛼2

− , �𝜐𝜐𝛼𝛼1
+  𝜐𝜐𝛼𝛼2

+  ]| 𝛼𝛼1 ∈ ℎ�1 , 𝛼𝛼2 ∈ ℎ�2 } 

3) ℎ�1 # ℎ�2 = {([ 
2 𝜇𝜇 𝛼𝛼 1

−  𝜇𝜇 𝛼𝛼 2
−  

𝜇𝜇 𝛼𝛼 1
− + 𝜇𝜇 𝛼𝛼 2

−  , 
2𝜇𝜇 𝛼𝛼 1

+  𝜇𝜇 𝛼𝛼2
+  

𝜇𝜇 𝛼𝛼 1
+ + 𝜇𝜇 𝛼𝛼 2

+ ],[
2𝜐𝜐𝛼𝛼 1

−  𝜐𝜐𝛼𝛼 2
−  

𝜐𝜐𝛼𝛼 1
− + 𝜐𝜐𝛼𝛼 2

−  , 
2𝜐𝜐𝛼𝛼 1

+  𝜐𝜐𝛼𝛼 2
+ ],

𝜐𝜐𝛼𝛼 1
+ + 𝜐𝜐𝛼𝛼 2

+ ]| 𝛼𝛼1 ∈ ℎ�1 , 𝛼𝛼2 ∈ ℎ�2 }

4) ℎ�1  ∗  ℎ�2 = {([ 
𝜇𝜇 𝛼𝛼 1

− + 𝜇𝜇 𝛼𝛼 2
−

2 (𝜇𝜇 𝛼𝛼 1
−  𝜇𝜇 𝛼𝛼2

− +1)
 , 

𝜇𝜇 𝛼𝛼 1
+ + 𝜇𝜇 𝛼𝛼 2

+  

2 (𝜇𝜇 𝛼𝛼 1
+  𝜇𝜇 𝛼𝛼 2

+ +1)
],[

𝜐𝜐𝛼𝛼 1
− + 𝜐𝜐𝛼𝛼 2

−

2(𝜐𝜐𝛼𝛼 1
−  𝜐𝜐𝛼𝛼 2

− +1)
 , 

𝜐𝜐𝛼𝛼 1
+ + 𝜐𝜐𝛼𝛼 2

+  

2(𝜐𝜐𝛼𝛼 1
+  𝜐𝜐𝛼𝛼 2

+ +1)
]| 𝛼𝛼1 ∈ ℎ�1 , 𝛼𝛼2 ∈ ℎ�2 }

Obviously, for every two IVIHFEs ℎ�1 and ℎ�2,( ℎ�1@ℎ�2), (ℎ�1$ℎ�2), (ℎ�1#ℎ�2) and (ℎ�1*ℎ�2) are also IVIHFEs. 

Example 3.2 
Let ℎ�1 (x)= {([0.2, 0.3],[0.5, 0.6]),([0.5, 0.8],[0.1, 0.2])} and ℎ�2 (x)= {([0.4, 0.6],[0.3, 0.4]), ([0.3, 0.5],[0.1, 0.2]) be two 

interval valued intuitionistic hesitant fuzzy elements. Then we have 

(ℎ�1 @ ℎ�2) = {([0.3, 0.45],[0.4, 0.5]),([0.4, 0.65],[0.1, 0.2])} 

(ℎ�1 $ ℎ�2) ={([0.28, 0.42],[0.38, 0.48]),([0.38, 0.63],[0.1, 0.2])} 

(ℎ�1#ℎ�2) = {([0.26, 0.4],[0.37, 0.48]),([0.37, 0.61],[0.1, 0.2])} 

(ℎ�1*ℎ�2) = {([0.27, 0.38],[0.34, 0.40]),([0.34, 0.46],[0.09, 0.19])} 

With these operations, several results follow. 

Theorem 3.3 
For every ℎ�  ∈ IVIHFE(X), the following are true, 
(i) ℎ�  @ ℎ�= ℎ�; 
(ii) ℎ�  $ ℎ�=ℎ�; 
(iii) ℎ� # ℎ�=ℎ�; 
Proof. we prove only (i) (ii) . 
(i) Let  ℎ�  ∈ IVIHFEs 
ℎ� @ ℎ� = { [ 𝜇𝜇 𝛼𝛼

−+ 𝜇𝜇 𝛼𝛼
−

2
, 𝜇𝜇 𝛼𝛼

++ 𝜇𝜇 𝛼𝛼
+

2
],[𝜐𝜐𝛼𝛼

−+ 𝜐𝜐𝛼𝛼
−

2
, 𝜐𝜐𝛼𝛼

++ 𝜐𝜐𝛼𝛼
+

2
]| 𝛼𝛼 ∈ ℎ�  } 

 =[ 𝜇𝜇𝛼𝛼
−, 𝜇𝜇𝛼𝛼

+], [ 𝜐𝜐𝛼𝛼
−, 𝜐𝜐𝛼𝛼

+] 
Then, ℎ�  @ ℎ�  = ℎ�  

(ii) Let  ℎ�  ∈ IVIHFEs 
ℎ� $ ℎ� = {([�𝜇𝜇𝛼𝛼

− 𝜇𝜇𝛼𝛼
−, �𝜇𝜇𝛼𝛼

+ 𝜇𝜇𝛼𝛼
+ ],[�𝜐𝜐𝛼𝛼

− 𝜐𝜐𝛼𝛼
−, �𝜐𝜐𝛼𝛼

+ 𝜐𝜐𝛼𝛼
+ ]| 𝛼𝛼 ∈ ℎ�   } 

     =[ 𝜇𝜇𝛼𝛼
−, 𝜇𝜇𝛼𝛼

+], [ 𝜐𝜐𝛼𝛼
−, 𝜐𝜐𝛼𝛼

+] 
Then, ℎ� $ ℎ� = ℎ�  

Theorem 3.4 
For ℎ�1, ℎ�2 ∈ IVIHFEs, 
(i) ℎ�1@  ℎ� 2= ℎ� 2 @ℎ�1; 
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(ii) ℎ�1$  ℎ� 2= ℎ� 2 $ ℎ�1; 
(iii) ℎ�1# ℎ� 2= ℎ� 2# ℎ�1; 
(iv) ℎ�1∗  ℎ� 2= ℎ�2∗ℎ�1; 
Proof. These also follow from definitions. 

Theorem 3.5 
For ℎ�1, ℎ�2 ∈ IVIHFE(X), 

( ℎ�1
𝑐𝑐@ ℎ�2

𝑐𝑐  ) 𝑐𝑐  =ℎ�1@ℎ�2 

Proof. In the following, we prove (i), (ii) and (iii), results (iv), (v) and (vi) can be proved analogously. 

( ℎ�1
𝑐𝑐@ ℎ�2

𝑐𝑐 ) 𝑐𝑐  = �[ 𝜈𝜈𝛼𝛼1
−  , 𝜈𝜈𝛼𝛼1

+ ], [𝜇𝜇𝛼𝛼1
− , 𝜇𝜇𝛼𝛼1

+ ]|𝛼𝛼1  ∈  ℎ�1� @ �[ 𝜈𝜈𝛼𝛼2
−  , 𝜈𝜈𝛼𝛼2

+ ], [𝜇𝜇𝛼𝛼2
− , 𝜇𝜇𝛼𝛼2

+ ] | 𝛼𝛼2  ∈  ℎ�2� 

( ℎ�1
𝑐𝑐@ ℎ�2

𝑐𝑐 ) 𝑐𝑐  = ��[ 𝜈𝜈𝛼𝛼1
−  , 𝜈𝜈𝛼𝛼1

+ ], [𝜇𝜇𝛼𝛼1
− , 𝜇𝜇𝛼𝛼1

+ ]|𝛼𝛼1  ∈  ℎ�1� @ �[ 𝜈𝜈𝛼𝛼2
−  , 𝜈𝜈𝛼𝛼2

+ ], [𝜇𝜇𝛼𝛼2
− , 𝜇𝜇𝛼𝛼2

+ ]|𝛼𝛼2  ∈  ℎ�2��𝑐𝑐

= �{[ 𝜈𝜈𝛼𝛼 1
− + 𝜐𝜐𝛼𝛼 2

−

2
,

𝜈𝜈𝛼𝛼 1
+ + 𝜈𝜈𝛼𝛼 2

+

2
], [𝜇𝜇 𝛼𝛼 1

− + 𝜇𝜇 𝛼𝛼 2
−

2
,

𝜇𝜇 𝛼𝛼 1
+ + 𝜇𝜇 𝛼𝛼 2

+

2
]|𝛼𝛼1  ∈  ℎ�1 , 𝛼𝛼2  ∈  ℎ�2 } �

𝑐𝑐
 

=�{[𝜇𝜇 𝛼𝛼 1
− + 𝜇𝜇 𝛼𝛼 2

−

2
,

𝜇𝜇 𝛼𝛼 1
+ + 𝜇𝜇 𝛼𝛼 2

+

2
], [ 𝜈𝜈𝛼𝛼 1

− + 𝜐𝜐𝛼𝛼 2
−

2
,

𝜈𝜈𝛼𝛼 1
+ + 𝜈𝜈𝛼𝛼 2

+

2
]| 𝛼𝛼1  ∈  ℎ�1 , 𝛼𝛼2  ∈  ℎ�2 } � 

= ℎ�1@  ℎ� 2 

This proves the theorem. 
Note 1: One can easily verify that 

1. ( ℎ�1
𝑐𝑐 $ ℎ�2

𝑐𝑐 ) 𝑐𝑐  ≠ ℎ�1$  ℎ� 2 
2. ( ℎ�1

𝑐𝑐 # ℎ�2
𝑐𝑐 ) 𝑐𝑐 ≠ ℎ�1# ℎ� 2 

3. ( ℎ�1
𝑐𝑐 ∗  ℎ�2

𝑐𝑐 ) 𝑐𝑐 ≠ ℎ�1∗  ℎ� 2 

Theorem 3.6 
For ℎ�1, ℎ�2 and ℎ�3  ∈ IVIHFE(X) , we have the following identities: 
(i) (ℎ�1 ∪ℎ�2) @ ℎ�3 = (ℎ�1 @ ℎ�3) ∪ (ℎ�2 @ ℎ�3); 
(ii) (ℎ�1 ∩ ℎ�2) @ ℎ�3 =( ℎ�1 @ ℎ�3) ∩ (ℎ�2@ ℎ�3) 
(iii) (ℎ�1 ∪ℎ�2) $ ℎ�3= (ℎ�1$ ℎ�3) ∪( ℎ�2$ℎ�3); 
(iv) (ℎ�1 ∩ ℎ�2) $ ℎ�3= (ℎ�1$ ℎ� 3) ∩ ( ℎ�2$ ℎ� 3); 
(v) ((ℎ�1 ∪ ℎ�2)) # ℎ�3= (ℎ�1# ℎ� 3) ∪( ℎ�2 # ℎ� 3); 
(vi) (ℎ�1 ∩ ℎ�2) # ℎ�3= (ℎ�1# ℎ�3) ∩ ( ℎ�2# ℎ�3); 
(vii) (ℎ�1 ∪ ℎ�2) ∗ ℎ�3= (ℎ�1 ∗ℎ�3) ∪ ( ℎ�2 ∗ℎ�3); 
(viii) (ℎ�1 ∩ ℎ�2) ∗ ℎ�3= (ℎ�1 ∗ℎ�3) ∩ ( ℎ�2 ∗ℎ�3); 
(ix) (ℎ�1@ ℎ� 2) ⨁ ℎ�3= (ℎ�1 ⨁ ℎ� 3) @( ℎ�2 ⨁ ℎ� 3); 
(x) (ℎ�1@ℎ�2) ⊗ ℎ�3=(ℎ�1 ⊗ ℎ�3)@ ( ℎ�2 ⊗ ℎ�3) 
Proof . We prove (i), (iii), (v), (vii) and (ix), results (ii), (iv), (vi), (viii) and (x) can be proved analogously 
Using definitions in 2.3 and 3.1,we have 

(ℎ�1 ∪ℎ�2) @ ℎ�3 = {[max( 𝜇𝜇𝛼𝛼1
− , 𝜇𝜇𝛼𝛼2

− ), max( 𝜇𝜇𝛼𝛼1
+  , 𝜇𝜇𝛼𝛼2

+ )],[min(𝜈𝜈𝛼𝛼1
− , 𝜈𝜈𝛼𝛼2

− ),min( 𝜈𝜈𝛼𝛼1
+ , 𝜈𝜈𝛼𝛼2

+ )]|𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2} @{[ 𝜇𝜇𝛼𝛼3
−  , 

𝜇𝜇𝛼𝛼3
+ ],[𝜈𝜈𝛼𝛼3

− , 𝜈𝜈𝛼𝛼3
+ ]| 𝛼𝛼3  ∈  ℎ�3 } 

={[
max � 𝜇𝜇 𝛼𝛼 1

− ,𝜇𝜇 𝛼𝛼 2
− �+𝜇𝜇 𝛼𝛼 3

−

2
, 

max � 𝜇𝜇 𝛼𝛼 1
+  ,𝜇𝜇 𝛼𝛼 2

+ � + 𝜇𝜇 𝛼𝛼 3
+

2
],[ 

min �𝜈𝜈𝛼𝛼 1
− ,𝜈𝜈𝛼𝛼 2

− �+𝜈𝜈𝛼𝛼 3
−  

2
 , 

min � 𝜈𝜈𝛼𝛼 1
+ ,𝜈𝜈𝛼𝛼 2

+ � +𝜈𝜈𝛼𝛼 3
+

2
]| 𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2, 𝛼𝛼3  ∈  ℎ�3} 

={[max(  
𝜇𝜇 𝛼𝛼 1

− +𝜇𝜇 𝛼𝛼 3
−  

2
, 

𝜇𝜇 𝛼𝛼 2
− +𝜇𝜇 𝛼𝛼 3

−

2
 ) , max(  

𝜇𝜇 𝛼𝛼 1
+ +𝜇𝜇 𝛼𝛼 3

+  

2
, 

𝜇𝜇 𝛼𝛼 2
+ +𝜇𝜇 𝛼𝛼 3

+

2
 )],[ min ( 

𝜈𝜈𝛼𝛼 1
− +𝜈𝜈𝛼𝛼 3

−

2
,

𝜈𝜈𝛼𝛼 2+𝜈𝜈 𝛼𝛼 3
−−

2
) , min ( 

𝜈𝜈𝛼𝛼 1
− +𝜈𝜈𝛼𝛼 3

−

2
,

𝜈𝜈𝛼𝛼 1
+ +𝜈𝜈𝛼𝛼 3

+

2
 )]| 𝛼𝛼1  ∈

ℎ�1, 𝛼𝛼2  ∈  ℎ�2, 𝛼𝛼3  ∈  ℎ�3} 

= (ℎ�1 @ ℎ�3) ∪ (ℎ�2 @ ℎ�3) 

This proves (i) 
(iii) From definitions in 2.3 and 3.1, we have 

(ℎ�1 ∪ℎ�2) $ ℎ�3 = {[max( 𝜇𝜇𝛼𝛼1
− , 𝜇𝜇𝛼𝛼2

− ), max( 𝜇𝜇𝛼𝛼1
+  , 𝜇𝜇𝛼𝛼2

+ )],[min(𝜈𝜈𝛼𝛼1
− , 𝜈𝜈𝛼𝛼2

− ),min( 𝜈𝜈𝛼𝛼1
+ , 𝜈𝜈𝛼𝛼2

+ )]|𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2}${[ 𝜇𝜇𝛼𝛼3
−  , 

𝜇𝜇𝛼𝛼3
+ ],[𝜈𝜈𝛼𝛼3

− , 𝜈𝜈𝛼𝛼3
+ ]|𝛼𝛼3  ∈  ℎ�3} 
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=  { [�𝑚𝑚𝑚𝑚𝑥𝑥� 𝜇𝜇𝛼𝛼1
− , 𝜇𝜇𝛼𝛼2

− � 𝜇𝜇𝛼𝛼3
−  , �max( 𝜇𝜇𝛼𝛼1

+  , 𝜇𝜇𝛼𝛼2
+ ) 𝜇𝜇𝛼𝛼3

+   ],[�min( 𝜈𝜈𝛼𝛼1
− , 𝜈𝜈𝛼𝛼2

− ) 𝜈𝜈𝛼𝛼3
−  , �min( 𝜈𝜈𝛼𝛼1

+ , 𝜈𝜈𝛼𝛼2
+ ) 𝜈𝜈𝛼𝛼3

+ ]| 𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈

ℎ�2, 𝛼𝛼3  ∈  ℎ�3} 

={[ max(�𝜇𝜇𝛼𝛼1
−  𝜇𝜇𝛼𝛼3

−   , �𝜇𝜇𝛼𝛼2
−  𝜇𝜇𝛼𝛼3

−   ) , max(�𝜇𝜇𝛼𝛼1
+  𝜇𝜇𝛼𝛼3

+   , �𝜇𝜇𝛼𝛼2
+  𝜇𝜇𝛼𝛼3

+   )],[min(�𝜈𝜈𝛼𝛼1
−  𝜈𝜈𝛼𝛼3

−   , �𝜈𝜈𝛼𝛼2
−  𝜈𝜈𝛼𝛼3

−   ) , 
min(�𝜈𝜈𝛼𝛼1

+  𝜈𝜈𝛼𝛼3
+   , �𝜈𝜈𝛼𝛼2

+  𝜈𝜈𝛼𝛼3
+   )]| 𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2, 𝛼𝛼3  ∈  ℎ�3} 

=(ℎ�1$ℎ�3) ∪ ( ℎ�2$ℎ�3); 

This proves (iii). 
(v) Using definitions 2.3 and 3.1,we have 

((ℎ�1 ∪ℎ�2)) # ℎ�3 = {[max( 𝜇𝜇𝛼𝛼1
− , 𝜇𝜇𝛼𝛼2

− ), max( 𝜇𝜇𝛼𝛼1
+  , 𝜇𝜇𝛼𝛼2

+ ) ],[min(𝜈𝜈𝛼𝛼1
− , 𝜈𝜈𝛼𝛼2

− ),min( 𝜈𝜈𝛼𝛼1
+ , 𝜈𝜈𝛼𝛼2

+ )]|𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2} # {[ 𝜇𝜇𝛼𝛼3
−  ,

𝜇𝜇𝛼𝛼3
+ ],[𝜈𝜈𝛼𝛼3

− , 𝜈𝜈𝛼𝛼3
+ ]| 𝛼𝛼3  ∈  ℎ�3} 

= {[ 
2 max ( 𝜇𝜇 𝛼𝛼 1

− ,𝜇𝜇 𝛼𝛼 2
− ) 𝜇𝜇 𝛼𝛼 3

−  

max ( 𝜇𝜇 𝛼𝛼 1
− ,𝜇𝜇 𝛼𝛼 2

− )+ 𝜇𝜇 𝛼𝛼 3
−  , 

2 max ( 𝜇𝜇 𝛼𝛼 1
+  ,𝜇𝜇 𝛼𝛼 2

+ ) 𝜇𝜇 𝛼𝛼 3
+

max ( 𝜇𝜇 𝛼𝛼 1
+  ,𝜇𝜇 𝛼𝛼 2

+ ) + 𝜇𝜇 𝛼𝛼 2
+ ],[

2 min (𝜈𝜈𝛼𝛼 1
− ,𝜈𝜈𝛼𝛼 2

− ) 𝜈𝜈𝛼𝛼 3
−  

min (𝜈𝜈𝛼𝛼 1
− ,𝜈𝜈𝛼𝛼 2

− )+ 𝜈𝜈𝛼𝛼 3
−  , 

2 min ( 𝜈𝜈𝛼𝛼 1
+ ,𝜈𝜈𝛼𝛼 2

+ ) 𝜈𝜈𝛼𝛼 3
+

min ( 𝜈𝜈𝛼𝛼 1
+ ,𝜈𝜈𝛼𝛼 2

+ ) + 𝜈𝜈𝛼𝛼 3
+ ]|𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2, 𝛼𝛼3  ∈  ℎ�3} 

={[ max (2 𝜇𝜇 𝛼𝛼 1
−  𝜇𝜇 𝛼𝛼 3

−  

𝜇𝜇 𝛼𝛼 1
− + 𝜇𝜇 𝛼𝛼 3

−  , 2 𝜇𝜇 𝛼𝛼 2
−  𝜇𝜇 𝛼𝛼 3

−  

 𝜇𝜇 𝛼𝛼 2
− + 𝜇𝜇 𝛼𝛼 3

− ) ,max (2 𝜇𝜇 𝛼𝛼 1
+  𝜇𝜇 𝛼𝛼3

+

𝜇𝜇 𝛼𝛼 1
+ + 𝜇𝜇 𝛼𝛼 3

+  , 2 𝜇𝜇 𝛼𝛼 2
+  𝜇𝜇 𝛼𝛼 3

+

 𝜇𝜇 𝛼𝛼 2
+ + 𝜇𝜇 𝛼𝛼 3

+  )],[ min (2 𝜈𝜈𝛼𝛼 1
−  𝜈𝜈𝛼𝛼 3

−  

𝜈𝜈𝛼𝛼 1
− + 𝜈𝜈𝛼𝛼 3

−  , 2 𝜈𝜈𝛼𝛼 2
−  𝜈𝜈𝛼𝛼 3

−  

 𝜈𝜈𝛼𝛼 2
− + 𝜈𝜈𝛼𝛼 3

− ) ,min (2 𝜈𝜈𝛼𝛼 1
+  𝜈𝜈𝛼𝛼 3

+  

𝑣𝑣𝛼𝛼 1
+ + 𝜈𝜈𝛼𝛼 3

+  , 
2 𝜈𝜈𝛼𝛼 2

+  𝜈𝜈𝛼𝛼 3
+

𝜈𝜈𝛼𝛼 2
+ + 𝜈𝜈𝛼𝛼 3

+  )]| 𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2, 𝛼𝛼3  ∈  ℎ�3} 

=(ℎ�1 #ℎ�3) ∪ ( ℎ�2#ℎ�3) 

This proves (v) 
(vii) From definitions 2.3 and 3.1, we have 

(ℎ�1 ∪ℎ�2) ∗ ℎ�3= (ℎ�1 ∗ℎ�3) ∪ ( ℎ�2 ∗ℎ�3) 

={[max( 𝜇𝜇𝛼𝛼1
− , 𝜇𝜇𝛼𝛼2

− ), max( 𝜇𝜇𝛼𝛼1
+  , 𝜇𝜇𝛼𝛼2

+ ) ],[min(𝜈𝜈𝛼𝛼1
− , 𝜈𝜈𝛼𝛼2

− ),min( 𝜈𝜈𝛼𝛼1
+ , 𝜈𝜈𝛼𝛼2

+ )]|𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2} *{[ 𝜇𝜇𝛼𝛼3
−  , 𝜇𝜇𝛼𝛼3

+ ],[𝜈𝜈𝛼𝛼3
− , 

𝜈𝜈𝛼𝛼3
+ ]| 𝛼𝛼3  ∈  ℎ�3} 

= {[
max � 𝜇𝜇 𝛼𝛼 1

− ,𝜇𝜇 𝛼𝛼 2
− �+ 𝜇𝜇 𝛼𝛼 3

−

2(max � 𝜇𝜇 𝛼𝛼 1
− ,𝜇𝜇 𝛼𝛼 2

− � 𝜇𝜇 𝛼𝛼 3
− +1)

 , 
 max � 𝜇𝜇 𝛼𝛼 1

+  ,𝜇𝜇 𝛼𝛼 2
+ � + 𝜇𝜇 𝛼𝛼 3

+

max � 𝜇𝜇 𝛼𝛼 1
+  ,𝜇𝜇 𝛼𝛼 2

+ � 𝜇𝜇 𝛼𝛼 2
+ +1

],[
min �𝜈𝜈𝛼𝛼 1

− ,𝜈𝜈𝛼𝛼 2
− �+ 𝜈𝜈𝛼𝛼 3

−

2(min �𝜈𝜈𝛼𝛼 1
− ,𝜈𝜈𝛼𝛼 2

− � 𝜈𝜈𝛼𝛼 3
− +1)

 , 
min � 𝜈𝜈𝛼𝛼 1

+ ,𝜈𝜈𝛼𝛼 2
+ �+ 𝜈𝜈𝛼𝛼 3

+

2(min � 𝜈𝜈𝛼𝛼 1
+ ,𝜈𝜈𝛼𝛼 2

+ � 𝜈𝜈𝛼𝛼 3
+ +1)

]|𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2, 𝛼𝛼3  ∈  ℎ�3} 

= {[ max (  𝜇𝜇 𝛼𝛼 1
− + 𝜇𝜇 𝛼𝛼 3

−

2(𝜇𝜇 𝛼𝛼 1
−  𝜇𝜇 𝛼𝛼3

− +1)
 , 𝜇𝜇 𝛼𝛼 2

− + 𝜇𝜇 𝛼𝛼 3
−  

2(𝜇𝜇 𝛼𝛼 2
−  𝜇𝜇 𝛼𝛼 3

− +1)
) ,max (  𝜇𝜇 𝛼𝛼 1+

+  𝜇𝜇 𝛼𝛼 3
+

2(𝜇𝜇 𝛼𝛼 1
+  𝜇𝜇 𝛼𝛼 3

+ +1)
 ,  𝜇𝜇 𝛼𝛼 2

+ + 𝜇𝜇 𝛼𝛼 3
+  

 2(𝜇𝜇 𝛼𝛼 2
+  𝜇𝜇 𝛼𝛼3

+ +1)
 )],[ min (  𝜈𝜈𝛼𝛼 1

− + 𝜈𝜈𝛼𝛼 3
−

2(𝜈𝜈𝛼𝛼 1
−  𝜈𝜈𝛼𝛼 3

− +1)
 , 𝜈𝜈𝛼𝛼 2

− + 𝜈𝜈𝛼𝛼 3
−  

2(𝜈𝜈𝛼𝛼 2
−  𝜈𝜈𝛼𝛼 3

− +1)
) ,min 

(  𝜈𝜈𝛼𝛼 1
+ + 𝜈𝜈𝛼𝛼 3

+

2(𝑣𝑣𝛼𝛼 1
+  𝜈𝜈𝛼𝛼 3

+ +1)
 , 𝜈𝜈𝛼𝛼 2

+ +𝜈𝜈𝛼𝛼 3
+

2(𝜈𝜈𝛼𝛼 2
+  𝜈𝜈𝛼𝛼 3

+ +1)
 )]| 𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2, 𝛼𝛼3  ∈  ℎ�3} 

= (ℎ�1 ∗ℎ�3) ∪ ( ℎ�2 ∗ℎ�3) 

This proves (vii). 
(ix) Using definitions 2.3 and 3.1, we have 

(ℎ�1@ ℎ� 2) ⨁ ℎ�3= (ℎ�1 ⨁ ℎ� 3) @( ℎ�2 ⨁ ℎ�3); 

= {[ 
𝜇𝜇 𝛼𝛼 1

− + 𝜇𝜇 𝛼𝛼 2
−  

2
 , 

𝜇𝜇 𝛼𝛼 1
+ + 𝜇𝜇 𝛼𝛼 2

+  

2
],[

𝜐𝜐𝛼𝛼 1
− + 𝜐𝜐𝛼𝛼 2

−

2
, 

𝜐𝜐𝛼𝛼 1
+ + 𝜐𝜐𝛼𝛼 2

+

2
]|𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2} ⨁ {[ 𝜇𝜇𝛼𝛼3

−  , 𝜇𝜇𝛼𝛼3
+ ],[𝜈𝜈𝛼𝛼3

− , 𝜈𝜈𝛼𝛼3
+ ]| 𝛼𝛼3  ∈  ℎ�3}

={[
𝜇𝜇 𝛼𝛼 1

− + 𝜇𝜇 𝛼𝛼 2
−

2
+𝜇𝜇𝛼𝛼3

−  - 
𝜇𝜇 𝛼𝛼 1

− + 𝜇𝜇 𝛼𝛼 2
−

2
𝜇𝜇𝛼𝛼3

− , 
𝜇𝜇 𝛼𝛼 1

+ + 𝜇𝜇 𝛼𝛼 2
+

2
+𝜇𝜇𝛼𝛼3

+  - 
𝜇𝜇 𝛼𝛼 1

+ + 𝜇𝜇 𝛼𝛼 2
+

2
𝜇𝜇𝛼𝛼3

+ ],[ 
𝜐𝜐𝛼𝛼 1

− + 𝜐𝜐𝛼𝛼 2
−

2
+ 𝜈𝜈𝛼𝛼3

−  - 
𝜐𝜐𝛼𝛼 1

− + 𝜐𝜐𝛼𝛼 2
−

2
𝜈𝜈𝛼𝛼3

− , 
𝜐𝜐𝛼𝛼 1

+ + 𝜐𝜐𝛼𝛼 2
+

2
 +𝜈𝜈𝛼𝛼3

+  

-
𝜐𝜐𝛼𝛼 1

+ + 𝜐𝜐𝛼𝛼 2
+

2
𝜈𝜈𝛼𝛼3

+ ]| 𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2, 𝛼𝛼3  ∈  ℎ�3} 

={[
(𝜇𝜇 𝛼𝛼 1

− +𝜇𝜇 𝛼𝛼 3
− − 𝜇𝜇 𝛼𝛼 1

− 𝜇𝜇 𝛼𝛼 3
− )+(𝜇𝜇 𝛼𝛼 2

− +𝜇𝜇 𝛼𝛼 3
− −𝜇𝜇 𝛼𝛼 2

− 𝜇𝜇 𝛼𝛼 3
− )

2
 , 

(𝜇𝜇 𝛼𝛼 1
+ +𝜇𝜇 𝛼𝛼 3

+ − 𝜇𝜇 𝛼𝛼 1
+ 𝜇𝜇 𝛼𝛼 3

+ )+(𝜇𝜇 𝛼𝛼 2
+ +𝜇𝜇 𝛼𝛼 3

+ −𝜇𝜇 𝛼𝛼 2
+ 𝜇𝜇 𝛼𝛼 3

+ )

2
],[ 

(𝜈𝜈𝛼𝛼 1
− +𝜈𝜈𝛼𝛼 3

− − 𝜈𝜈𝛼𝛼 1
− 𝜈𝜈𝛼𝛼 3

− )+(𝜈𝜈𝛼𝛼 2
− +𝜈𝜈𝛼𝛼 3

− −𝜈𝜈𝛼𝛼 2
− 𝜈𝜈𝛼𝛼 3

− )

2
 ,

 
(𝜈𝜈𝛼𝛼 1

+ +𝜈𝜈𝛼𝛼 3
+ − 𝜈𝜈𝛼𝛼 1

+ 𝜈𝜈𝛼𝛼 3
+ )+(𝜈𝜈𝛼𝛼 2

+ +𝜈𝜈𝛼𝛼 3
+ −𝜈𝜈𝛼𝛼 2

+ 𝜈𝜈𝛼𝛼 3
+ )

2
]| 𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2, 𝛼𝛼3  ∈  ℎ�3} 

= (ℎ�1 ⨁ℎ�3) @( ℎ�2 ⨁ℎ�3) 

This proves (ix)  

Theorem 3.7 
For ℎ�1and ℎ�2∈ IVIHFS (X), we have the following identities: 
(i) (ℎ�1⨁ ℎ� 2) ∩ ( ℎ�1 ⊗ ℎ�2) = ℎ�1 ⊗ ℎ�2; 
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(ii) (ℎ�1⨁ ℎ�2) ∪ ( ℎ�1 ⊗ ℎ�2) = ℎ�1⨁ ℎ� 2; 
(iii) (ℎ�1⨁ ℎ� 2) ∩ ( ℎ�1@ ℎ� 2) = ℎ�1@ ℎ� 2; 
(iv) (ℎ�1⨁ ℎ� 2) ∪ ( ℎ�1@ ℎ� 2)= ℎ�1⨁ ℎ� 2; 
(v) (ℎ�1 ⊗ ℎ�2) ∩ ( ℎ�1@ ℎ� 2)= ℎ�1 ⊗ ℎ�2; 
(vi) (ℎ�1 ⊗ ℎ�2) ∪ ( ℎ�1@ℎ�2)= ℎ�1@ ℎ�2; 
(vii) (ℎ�1⨁ℎ�2) ∩ ( ℎ�1$ ℎ� 2)= ℎ�1 $ ℎ� 2; 
(viii) (ℎ�1⨁ℎ�2) ∪ ( ℎ�1$ ℎ� 2)= ℎ�1⨁ ℎ� 2; 
(ix) (ℎ�1 ⊗ ℎ�2) ∩ ( ℎ�1$ ℎ� 2)= ℎ�1 ⊗ ℎ�2; 
(x) (ℎ�1 ⊗ ℎ�2) ∪ ( ℎ�1$ℎ�2)= ℎ�1$ ℎ�2; 
(xi) (ℎ�1⨁ ℎ� 2) ∩( ℎ�1# ℎ�2)= ℎ�1# ℎ�2; 
(xii) (ℎ�1⨁ ℎ� 2) ∪ ( ℎ�1#ℎ�2)= ℎ�1 ⨁ ℎ�2; 
(xiii) (ℎ�1 ⊗ ℎ�2)∩ ( ℎ�1#ℎ�2)= ℎ�1 ⊗ ℎ�2; 
(xiv) (ℎ�1 ⊗ ℎ�2)∪( ℎ�1#ℎ�2)= ℎ�1#ℎ�2 
Proof. We prove (i), (iii), (v), (vii), (ix), (xi) and (xii), other results can be proved analogously. 

From definitions 2.3, 2.5 and 3.1, we have 

(ℎ�1⨁ℎ�2) ∩ ( ℎ�1 ⊗ ℎ�2) 

=��μα2
− + μα1

− − μα2
− μα1

− , μα2
+ + μα1

+ −  μα2
+ μα1

+ �, [ 𝜈𝜈𝛼𝛼2
−  𝜈𝜈𝛼𝛼1

−  , 𝜈𝜈𝛼𝛼2
+  𝜈𝜈𝛼𝛼1

+ ]�∩ {[ 𝜇𝜇𝛼𝛼1
−  𝜇𝜇𝛼𝛼2

−  , 𝜇𝜇𝛼𝛼1
+  𝜇𝜇𝛼𝛼2

+ ], [𝜈𝜈𝛼𝛼1
− + 𝜈𝜈𝛼𝛼2

− −  𝜈𝜈𝛼𝛼1
− 𝜈𝜈𝛼𝛼2

− , 𝜈𝜈𝛼𝛼1
+ +

𝜈𝜈𝛼𝛼2
+ − 𝜈𝜈𝛼𝛼1

+ 𝜈𝜈𝛼𝛼2
+ ]|𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2} 

={[ min (μα2
− + μα1

− − μα2
− μα1

−  , 𝜇𝜇𝛼𝛼1
−  𝜇𝜇𝛼𝛼2

−  ) , min (μα2
+ + μα1

+ − μα2
+ μα1

+  , 𝜇𝜇𝛼𝛼1
+  𝜇𝜇𝛼𝛼2

+ )], 

[ max (𝜈𝜈𝛼𝛼2
−  𝜈𝜈𝛼𝛼1

−  , 𝜈𝜈𝛼𝛼1
− + 𝜈𝜈𝛼𝛼2

− −  𝜈𝜈𝛼𝛼1
− 𝜈𝜈𝛼𝛼2

−  ) , max (𝜈𝜈𝛼𝛼2
+  𝜈𝜈𝛼𝛼1

+ , 𝜈𝜈𝛼𝛼1
+ + 𝜈𝜈𝛼𝛼2

+ − 𝜈𝜈𝛼𝛼1
+ 𝜈𝜈𝛼𝛼2

+ )]| 𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2} 

=[𝜇𝜇𝛼𝛼1
−  𝜇𝜇𝛼𝛼2

−  , 𝜇𝜇𝛼𝛼1
+  𝜇𝜇𝛼𝛼2

+ )],[ 𝜈𝜈𝛼𝛼1
− + 𝜈𝜈𝛼𝛼2

− − 𝜈𝜈𝛼𝛼1
− 𝜈𝜈𝛼𝛼2

−  , 𝜈𝜈𝛼𝛼1
+ + 𝜈𝜈𝛼𝛼2

+ − 𝜈𝜈𝛼𝛼1
+ 𝜈𝜈𝛼𝛼2

+ ]| 𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2}

=ℎ�1 ⊗ ℎ�2 

This proves (i) 
iii) Using definitions 2.3, 2.5 and 3.1, we have

(ℎ�1⨁ℎ�2)∩( ℎ�1@ℎ�2) = ℎ�1@ℎ�2; 

={ ��μα2
− + μα1

− − μα2
− μα1

− , μα2
+ + μα1

+ −  μα2
+ μα1

+ �, [ 𝜈𝜈𝛼𝛼2
−  𝜈𝜈𝛼𝛼1

−  , 𝜈𝜈𝛼𝛼2
+  𝜈𝜈𝛼𝛼1

+ ]� | 𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2}∩ {[ 
𝜇𝜇 𝛼𝛼 1

− + 𝜇𝜇 𝛼𝛼 2
−

2
 , 

𝜇𝜇 𝛼𝛼 1
+ + 𝜇𝜇 𝛼𝛼 2

+  

2
],[

𝜐𝜐𝛼𝛼 1
− + 𝜐𝜐𝛼𝛼 2

−

2
, 

𝜐𝜐𝛼𝛼 1
+ + 𝜐𝜐𝛼𝛼 2

+

2
]| 𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2} 

= {[ min (μα2
− + μα1

− − μα2
− μα1

−  , 𝜇𝜇 𝛼𝛼 1
− + 𝜇𝜇 𝛼𝛼 2

−

2
 ) , min (μα1

− , μα2
+ + μα1

+ −  μα2
+ μα1

+  , 𝜇𝜇 𝛼𝛼 1
+ + 𝜇𝜇 𝛼𝛼 2

+

2
 )], 

[ max (𝜈𝜈𝛼𝛼2
−  𝜈𝜈𝛼𝛼1

−  , 𝜐𝜐𝛼𝛼 1
− + 𝜐𝜐𝛼𝛼 2

−

2
) , max (𝜈𝜈𝛼𝛼2

+  𝜈𝜈𝛼𝛼1
+ , 𝜐𝜐𝛼𝛼 1

+ + 𝜐𝜐𝛼𝛼 2
+  

2
)]|𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2} 

={[𝜇𝜇 𝛼𝛼 1
− + 𝜇𝜇 𝛼𝛼 2

−

2
, 

𝜇𝜇 𝛼𝛼 1
+ + 𝜇𝜇 𝛼𝛼 2

+  

2
],[ 𝜐𝜐𝛼𝛼 1

− + 𝜐𝜐𝛼𝛼 2
−  

2
 , 

𝜐𝜐𝛼𝛼 1
+ + 𝜐𝜐𝛼𝛼 2

+

2
]|𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2}= ℎ�1@ℎ�2 

This proves (iii). 
(v) From definitions 2.3, 2.5 and 3.1, we have 

(ℎ�1 ⊗ ℎ�2) ∩ ( ℎ�1@ℎ�2) = ℎ�1 ⊗ ℎ�2; 

={[ 𝜇𝜇𝛼𝛼1
−  𝜇𝜇𝛼𝛼2

−  , 𝜇𝜇𝛼𝛼1
+  𝜇𝜇𝛼𝛼2

+ ], [𝜈𝜈𝛼𝛼1
− + 𝜈𝜈𝛼𝛼2

− −  𝜈𝜈𝛼𝛼1
− 𝜈𝜈𝛼𝛼2

− , 𝜈𝜈𝛼𝛼1
+ + 𝜈𝜈𝛼𝛼2

+ −  𝜈𝜈𝛼𝛼1
+ 𝜈𝜈𝛼𝛼2

+ ]|𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2} ∩{[ 
𝜇𝜇 𝛼𝛼 1

− + 𝜇𝜇 𝛼𝛼 2
−

2
, 

𝜇𝜇 𝛼𝛼 1
+ + 𝜇𝜇 𝛼𝛼 2

+

2
], 

[
𝜐𝜐𝛼𝛼 1

− + 𝜐𝜐𝛼𝛼 2
−

2
, 

𝜐𝜐𝛼𝛼 1
+ + 𝜐𝜐𝛼𝛼 2

+

2
]| 𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2} 

={[ min (𝜇𝜇𝛼𝛼1
−  𝜇𝜇𝛼𝛼2

−  , 𝜇𝜇 𝛼𝛼 1
− + 𝜇𝜇 𝛼𝛼 2

−

2
 ) , min (𝜇𝜇𝛼𝛼1

+  𝜇𝜇𝛼𝛼2
+  , 𝜇𝜇 𝛼𝛼 1

+ + 𝜇𝜇 𝛼𝛼 2
+  

2
 )], 

[ max (𝜈𝜈𝛼𝛼1
− + 𝜈𝜈𝛼𝛼2

− −  𝜈𝜈𝛼𝛼1
− 𝜈𝜈𝛼𝛼2

−  , 𝜐𝜐𝛼𝛼 1
− + 𝜐𝜐𝛼𝛼 2

−

2
) , max (𝜈𝜈𝛼𝛼1

+ + 𝜈𝜈𝛼𝛼2
+ −  𝜈𝜈𝛼𝛼1

+ 𝜈𝜈𝛼𝛼2
+ , 𝜐𝜐𝛼𝛼 1

+ + 𝜐𝜐𝛼𝛼 2
+

2
)]| 𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2} 

={[ 𝜇𝜇𝛼𝛼1
−  𝜇𝜇𝛼𝛼2

−  , 𝜇𝜇𝛼𝛼1
+  𝜇𝜇𝛼𝛼2

+ ],[𝜈𝜈𝛼𝛼1
− + 𝜈𝜈𝛼𝛼2

− −  𝜈𝜈𝛼𝛼1
− 𝜈𝜈𝛼𝛼2

− ,  𝜈𝜈𝛼𝛼1
+ + 𝜈𝜈𝛼𝛼2

+ −  𝜈𝜈𝛼𝛼1
+ 𝜈𝜈𝛼𝛼2

+ ]|𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2}= ℎ�1 ⊗ ℎ�2 
This proves (v) 

(vii) Using definitions 2.3, 2.5 and 3.1, we have 

(ℎ�1⨁ℎ�2)∩( ℎ�1$ ℎ�2)= ℎ�1 $ ℎ�2 
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= ��μα2
− + μα1

− − μα2
− μα1

− , μα2
+ + μα1

+ −  μα2
+ μα1

+ � , [ 𝜈𝜈𝛼𝛼2
−  𝜈𝜈𝛼𝛼1

−  , 𝜈𝜈𝛼𝛼2
+  𝜈𝜈𝛼𝛼1

+ ]� ∩ {[�𝜇𝜇𝛼𝛼1
−  𝜇𝜇𝛼𝛼2

− , �𝜇𝜇𝛼𝛼1
+  𝜇𝜇𝛼𝛼2

+  ],[�𝜐𝜐𝛼𝛼1
−  𝜐𝜐𝛼𝛼2

− ,
�𝜐𝜐𝛼𝛼1

+  𝜐𝜐𝛼𝛼2
+  ]|𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2} 

= {[ min (μα2
− + μα1

− − μα2
− μα1

−  , �𝜇𝜇𝛼𝛼1
−  𝜇𝜇𝛼𝛼2

−  ) , min (μα2
+ + μα1

+ −  μα2
+ μα1

+  , �𝜇𝜇𝛼𝛼1
+  𝜇𝜇𝛼𝛼2

+   )],[max ( 𝜈𝜈𝛼𝛼2
−  𝜈𝜈𝛼𝛼1

− , �𝜐𝜐𝛼𝛼1
−  𝜐𝜐𝛼𝛼2

−  ) , max 
(𝜈𝜈𝛼𝛼2

+  𝜈𝜈𝛼𝛼1
+  , �𝜐𝜐𝛼𝛼1

+  𝜐𝜐𝛼𝛼2
+  )]| 𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2} 

={[�𝜇𝜇𝛼𝛼1
−  𝜇𝜇𝛼𝛼2

−   , �𝜇𝜇𝛼𝛼1
+  𝜇𝜇𝛼𝛼2

+   ],[ �𝜐𝜐𝛼𝛼1
−  𝜐𝜐𝛼𝛼2

−  , �𝜐𝜐𝛼𝛼1
+  𝜐𝜐𝛼𝛼2

+   ]| 𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2} = ℎ�1 $ ℎ�2 
This proves (vii) 
(ix) From definitions 2.3, 2.5 and 3.1, we have 

(ℎ�1 ⊗ ℎ�2)∩( ℎ�1$ ℎ�2)= ℎ�1 ⊗ ℎ�2; 

={([ 𝜇𝜇𝛼𝛼1
−  𝜇𝜇𝛼𝛼2

−  , 𝜇𝜇𝛼𝛼1
+  𝜇𝜇𝛼𝛼2

+ ], [𝜈𝜈𝛼𝛼1
− + 𝜈𝜈𝛼𝛼2

− − 𝜈𝜈𝛼𝛼1
− 𝜈𝜈𝛼𝛼2

− , 𝜈𝜈𝛼𝛼1
+ + 𝜈𝜈𝛼𝛼2

+ −  𝜈𝜈𝛼𝛼1
+ 𝜈𝜈𝛼𝛼2

+ ]) |𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2} ∩{[�𝜇𝜇𝛼𝛼1
−  𝜇𝜇𝛼𝛼2

− ,
�𝜇𝜇𝛼𝛼1

+  𝜇𝜇𝛼𝛼2
+  ],[�𝜐𝜐𝛼𝛼1

−  𝜐𝜐𝛼𝛼2
− , �𝜐𝜐𝛼𝛼1

+  𝜐𝜐𝛼𝛼2
+  ]|𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2} 

= {[ min (𝜇𝜇𝛼𝛼1
−  𝜇𝜇𝛼𝛼2

−  , �𝜇𝜇𝛼𝛼1
−  𝜇𝜇𝛼𝛼2

− ) , min (𝜇𝜇𝛼𝛼1
+  𝜇𝜇𝛼𝛼2

+  , �𝜇𝜇𝛼𝛼1
+  𝜇𝜇𝛼𝛼2

+   )],[max (𝜈𝜈𝛼𝛼1
− + 𝜈𝜈𝛼𝛼2

− −  𝜈𝜈𝛼𝛼1
− 𝜈𝜈𝛼𝛼2

−  , �𝜐𝜐𝛼𝛼1
−  𝜐𝜐𝛼𝛼2

− ) , max 
(𝜈𝜈𝛼𝛼1

+ + 𝜈𝜈𝛼𝛼2
+ − 𝜈𝜈𝛼𝛼1

+ 𝜈𝜈𝛼𝛼2
+ , �𝜐𝜐𝛼𝛼1

+  𝜐𝜐𝛼𝛼2
+  )]| 𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2} 

={[ 𝜇𝜇𝛼𝛼1
−  𝜇𝜇𝛼𝛼2

−  , 𝜇𝜇𝛼𝛼1
+  𝜇𝜇𝛼𝛼2

+ ],[ 𝜈𝜈𝛼𝛼1
− + 𝜈𝜈𝛼𝛼2

− −  𝜈𝜈𝛼𝛼1
− 𝜈𝜈𝛼𝛼2

−  , 𝜈𝜈𝛼𝛼1
+ + 𝜈𝜈𝛼𝛼2

+ − 𝜈𝜈𝛼𝛼1
+ 𝜈𝜈𝛼𝛼2

+ ]| 𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2} =ℎ�1 ⊗ ℎ�2 
This proves (ix) 
(xiii) From definitions 2.3, 2.5 and 3.1, we have 

(ℎ�1 ⊗ ℎ�2)∩( ℎ�1# ℎ� 2)= ℎ�1 ⊗ ℎ�2; 

={[ 𝜇𝜇𝛼𝛼1
−  𝜇𝜇𝛼𝛼2

−  , 𝜇𝜇𝛼𝛼1
+  𝜇𝜇𝛼𝛼2

+ ], [𝜈𝜈𝛼𝛼1
− + 𝜈𝜈𝛼𝛼2

− −  𝜈𝜈𝛼𝛼1
− 𝜈𝜈𝛼𝛼2

− , 𝜈𝜈𝛼𝛼1
+ + 𝜈𝜈𝛼𝛼2

+ −  𝜈𝜈𝛼𝛼1
+ 𝜈𝜈𝛼𝛼2

+ ]|𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2} ∩ {[ 
2 𝜇𝜇 𝛼𝛼 1

−  𝜇𝜇 𝛼𝛼 2
−  

𝜇𝜇 𝛼𝛼 1
− + 𝜇𝜇 𝛼𝛼 2

−  ,
2𝜇𝜇 𝛼𝛼 1

+  𝜇𝜇 𝛼𝛼 2
+  

𝜇𝜇 𝛼𝛼 1
+ + 𝜇𝜇 𝛼𝛼 2

+ ],[
2𝜐𝜐𝛼𝛼 1

−  𝜐𝜐𝛼𝛼 2
−  

𝜐𝜐𝛼𝛼 1
− + 𝜐𝜐𝛼𝛼 2

−  , 
2𝜐𝜐𝛼𝛼 1

+  𝜐𝜐𝛼𝛼 2
+  

𝜐𝜐𝛼𝛼 1
+ + 𝜐𝜐𝛼𝛼 2

+ ]|𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2}

={[ min (𝜇𝜇𝛼𝛼1
−  𝜇𝜇𝛼𝛼2

−  , 
2 𝜇𝜇 𝛼𝛼 1

−  𝜇𝜇 𝛼𝛼2
−  

𝜇𝜇 𝛼𝛼 1
− + 𝜇𝜇 𝛼𝛼 2

− ) , min (𝜇𝜇𝛼𝛼1
+  𝜇𝜇𝛼𝛼2

+  , 
2𝜇𝜇 𝛼𝛼 1

+  𝜇𝜇 𝛼𝛼 2
+  

𝜇𝜇 𝛼𝛼 1
+ + 𝜇𝜇 𝛼𝛼 2

+  )],[ max (𝜈𝜈𝛼𝛼1
− + 𝜈𝜈𝛼𝛼2

− − 𝜈𝜈𝛼𝛼1
− 𝜈𝜈𝛼𝛼2

−  , 
2𝜐𝜐𝛼𝛼 1

−  𝜐𝜐𝛼𝛼 2
−  

𝜐𝜐𝛼𝛼 1
− + 𝜐𝜐𝛼𝛼 2

− ) , max(𝜈𝜈𝛼𝛼1
+ + 𝜈𝜈𝛼𝛼2

+ −

𝜈𝜈𝛼𝛼1
+ 𝜈𝜈𝛼𝛼2

+  , 
2𝜐𝜐𝛼𝛼 1

+  𝜐𝜐𝛼𝛼 2
+  

𝜐𝜐𝛼𝛼 1
+ + 𝜐𝜐𝛼𝛼 2

+ ]| 𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2} 

={[𝜇𝜇𝛼𝛼1
−  𝜇𝜇𝛼𝛼2

− , 𝜇𝜇𝛼𝛼1
+  𝜇𝜇𝛼𝛼2

+ ],[ 𝜈𝜈𝛼𝛼1
− + 𝜈𝜈𝛼𝛼2

− − 𝜈𝜈𝛼𝛼1
− 𝜈𝜈𝛼𝛼2

−  , 𝜈𝜈𝛼𝛼1
+ + 𝜈𝜈𝛼𝛼2

+ −  𝜈𝜈𝛼𝛼1
+ 𝜈𝜈𝛼𝛼2

+ ]|𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2}=ℎ�1 ⊗ ℎ�2 
This proves (xiii). 

Theorem 3.8 
For ℎ�1and ℎ�2∈ IVIHFE(X), then following relations are valid: 
(i) (ℎ�1#ℎ�2) $ ( ℎ�1#ℎ�2) = ℎ�1# ℎ�2; 
(ii) (ℎ�1∗ℎ�2) $ ( ℎ�1∗ℎ�2) = ℎ�1∗ℎ�2; 
(iii) (ℎ�1⨁ℎ�2) $ ( ℎ�1 ⨁ ℎ�2) = ℎ�1⨁ℎ�2; 
(iv) (ℎ�1 ⊗ ℎ�2) $ ( ℎ�1 ⊗ ℎ�2) = ℎ�1 ⊗ ℎ�2; 
(v) (ℎ�1@ ℎ� 2) $ ( ℎ�1@ ℎ� 2) = ℎ�1@ ℎ�2; 
(vi) (ℎ�1# ℎ� 2) @ ( ℎ�1 # ℎ� 2) = ℎ�1 # ℎ� 2; 
(vii) (ℎ�1∗ ℎ� 2) @ ( ℎ�1∗ℎ�2) = ℎ�1∗ℎ�2; 
(viii) (ℎ�1⨁ ℎ� 2) @ ( ℎ�1 ⊗ ℎ�2) = ℎ�1@ ℎ� 2; 
(ix) (ℎ�1∪ ℎ� 2) @ ( ℎ�1∩ℎ�2) = ℎ�1@ℎ�2; 
(x) (ℎ�1∪ ℎ� 2) $ ( ℎ�1∩ℎ�2) = ℎ�1$ ℎ�2; 
(xi) (ℎ�1∪ ℎ�2) # ( ℎ�1∩ℎ�2) = ℎ�1# ℎ� 2; 
(xii) (ℎ�1∪ ℎ� 2) ∗ ( ℎ�1∩ℎ�2) = ℎ�1∗ℎ�2; 
(xiii) (ℎ�1∗ ℎ�2) @ ( ℎ�1∗ℎ�2) = ℎ�1∗ℎ�2; 
(xiv) (ℎ�1∗ ℎ�2) $ ( ℎ�1∗ℎ�2) = ℎ�1∗ℎ�2. 
Proof ,The proofs of these results are the same as in the above proof 

Theorem 3.9. 

For every two ℎ�1 and ℎ�2 ∈ IVIHFE (X), we have: 
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(i) ((ℎ�1∪ℎ�2) ⨁ ( ℎ�1∩ℎ�2)) @ (( ℎ�1∪ℎ�2) ⊗ ( ℎ�1∩ℎ�2)) = ℎ�1@ℎ�2; 
(ii) ((ℎ�1∪ℎ�2)#( ℎ�1∩ℎ�2)) $ ((ℎ�1∪ℎ�2) @ ( ℎ�1 ∩ℎ�2)) = ℎ�1$ℎ�2  
(iii) ((ℎ�1⨁ℎ�2) ∪ ( ℎ�1 ⊗ ℎ�2)) @ (( ℎ�1⨁ℎ�2) ∩ ( ℎ�1 ⊗ ℎ�2))= ℎ�1@ℎ�2; 
(iv) ((ℎ�1⨁ℎ�2) ∪ ( ℎ�1@ℎ�2)) @ (( ℎ�1 ⊗ ℎ�2) ∩ ( ℎ�1@ℎ�2))= ℎ�1@ℎ�2; 
(v) ((ℎ�1⨁ℎ�2) ∪( ℎ�1#ℎ�2)) @ (( ℎ�1 ⊗ ℎ�2) ∩ ( ℎ�1#ℎ�2)) = ℎ�1@ℎ�2; 
(vi) ((ℎ�1 ⨁ℎ�2)∪( ℎ�1$ℎ�2)) @ (( ℎ�1 ⊗ ℎ�2)∩( ℎ�1$ℎ�2)) = ℎ�1@ℎ�2; 
(vii) ((ℎ�1⨁ℎ�2)∪( ℎ�1@ℎ�2)) @ (( ℎ�1⨁ℎ�2) ∩ ( ℎ�1#ℎ�2)) = ℎ�1$ℎ�2. 
Proof .In the following, we prove (i) and (iii), other results can be proved analogously. 

(i) From definitions 2.3 and 3.1, we have 

((ℎ�1∪ℎ�2) ⨁ ( ℎ�1∩ℎ�2)) @ (( ℎ�1∪ℎ�2) ⊗ ( ℎ�1∩ℎ�2)) = 

((ℎ�1∪ℎ�2) ⨁ ( ℎ�1∩ℎ�2)) = 

{[max( 𝜇𝜇𝛼𝛼1
− , 𝜇𝜇𝛼𝛼2

− ), max( 𝜇𝜇𝛼𝛼1
+  , 𝜇𝜇𝛼𝛼2

+ ) ],[min(𝜈𝜈𝛼𝛼1
− , 𝜈𝜈𝛼𝛼2

− ),min( 𝜈𝜈𝛼𝛼1
+ , 𝜈𝜈𝛼𝛼2

+ )]|𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2} ⨁ {[min( 𝜇𝜇𝛼𝛼1
− , 𝜇𝜇𝛼𝛼2

− ) , min( 𝜇𝜇𝛼𝛼1
+  , 

𝜇𝜇𝛼𝛼2
+ ) ],[max(𝜈𝜈𝛼𝛼1

− , 𝜈𝜈𝛼𝛼2
− ), max( 𝜈𝜈𝛼𝛼1

+ , 𝜈𝜈𝛼𝛼2
+ )]| 𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2} 

={[ max( 𝜇𝜇𝛼𝛼1
− , 𝜇𝜇𝛼𝛼2

− ) + min( 𝜇𝜇𝛼𝛼1
− , 𝜇𝜇𝛼𝛼2

− ) - max( 𝜇𝜇α1
− , 𝜇𝜇𝛼𝛼2

− ) min( 𝜇𝜇𝛼𝛼1
− , 𝜇𝜇𝛼𝛼2

− )   , max( 𝜇𝜇𝛼𝛼1
+  , 𝜇𝜇𝛼𝛼2

+ ) + min( 𝜇𝜇𝛼𝛼1
+  , 𝜇𝜇𝛼𝛼2

+ ) - max( 𝜇𝜇𝛼𝛼1
+  , 

𝜇𝜇𝛼𝛼2
+ ) + min( 𝜇𝜇𝛼𝛼1

+  , 𝜇𝜇𝛼𝛼2
+ )],[ min�𝜈𝜈𝛼𝛼1

− , 𝜈𝜈𝛼𝛼2
− �  max(𝜈𝜈𝛼𝛼1

− , 𝜈𝜈𝛼𝛼2
− )  , min( 𝜈𝜈𝛼𝛼1

+ , 𝜈𝜈𝛼𝛼2
+ ) max( 𝜈𝜈𝛼𝛼1

+ , 𝜈𝜈𝛼𝛼2
+ )] 

(ℎ�1∪ℎ�2) ⊗ ( ℎ�1∩ℎ�2) = 

{[max( 𝜇𝜇𝛼𝛼1
− , 𝜇𝜇𝛼𝛼2

− ) , max( 𝜇𝜇𝛼𝛼1
+  , 𝜇𝜇𝛼𝛼2

+ ) ],[min(𝜈𝜈𝛼𝛼1
− , 𝜈𝜈𝛼𝛼2

− ),min( 𝜈𝜈𝛼𝛼1
+ , 𝜈𝜈𝛼𝛼2

+ )]|𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2} ⊗ {[min( 𝜇𝜇𝛼𝛼1
− , 𝜇𝜇𝛼𝛼2

− ) , 
min( 𝜇𝜇𝛼𝛼1

+  , 𝜇𝜇𝛼𝛼2
+ ) ],[max(𝜈𝜈𝛼𝛼1

− , 𝜈𝜈𝛼𝛼2
− ), max( 𝜈𝜈𝛼𝛼1

+ , 𝜈𝜈𝛼𝛼2
+ )]| 𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2} 

= {[max( 𝜇𝜇𝛼𝛼1
− , 𝜇𝜇𝛼𝛼2

− ) min( 𝜇𝜇𝛼𝛼1
− , 𝜇𝜇𝛼𝛼2

− ) , max( 𝜇𝜇𝛼𝛼1
+  , 𝜇𝜇𝛼𝛼2

+ ) min( 𝜇𝜇𝛼𝛼1
+  , 𝜇𝜇𝛼𝛼2

+ ) ], [min(𝜈𝜈𝛼𝛼1
− , 𝜈𝜈𝛼𝛼2

− ) + 
max�𝜈𝜈𝛼𝛼1

− , 𝜈𝜈𝛼𝛼2
− � −  min(𝜈𝜈𝛼𝛼1

− , 𝜈𝜈𝛼𝛼2
− ) max(𝜈𝜈𝛼𝛼1

− , 𝜈𝜈𝛼𝛼2
− ) , min( 𝜈𝜈𝛼𝛼1

+ , 𝜈𝜈𝛼𝛼2
+ ) + max( 𝜈𝜈𝛼𝛼1

+ , 𝜈𝜈𝛼𝛼2
+ ) - min( 𝜈𝜈𝛼𝛼1

+ , 𝜈𝜈𝛼𝛼2
+ ) max( 𝜈𝜈𝛼𝛼1

+ , 𝜈𝜈𝛼𝛼2
+ ) ]| 𝛼𝛼1  ∈

ℎ�1, 𝛼𝛼2  ∈  ℎ�2} 
((ℎ�1∪ℎ�2) ⨁ ( ℎ�1∩ℎ�2)) @ (( ℎ�1∪ℎ�2) ⊗ ( ℎ�1∩ℎ�2)) = 

{[
{max( 𝜇𝜇𝛼𝛼1

− ,𝜇𝜇𝛼𝛼2
− ) + min( 𝜇𝜇𝛼𝛼1

− ,𝜇𝜇𝛼𝛼2
− ) − max( 𝜇𝜇𝛼𝛼1

− ,𝜇𝜇𝛼𝛼2
− ) min( 𝜇𝜇𝛼𝛼1

− ,𝜇𝜇𝛼𝛼2
− )}+max( 𝜇𝜇𝛼𝛼1

− ,𝜇𝜇𝛼𝛼2
− ) min( 𝜇𝜇𝛼𝛼1

− ,𝜇𝜇𝛼𝛼2
− ) 

2
 ,

 
�max� 𝜇𝜇𝛼𝛼1

+  ,𝜇𝜇𝛼𝛼2
+ � + min� 𝜇𝜇𝛼𝛼1

+  ,𝜇𝜇𝛼𝛼2
+ �− max� 𝜇𝜇𝛼𝛼1

+  ,𝜇𝜇𝛼𝛼2
+ � + min� 𝜇𝜇𝛼𝛼1

+  ,𝜇𝜇𝛼𝛼2
+ �� +max( 𝜇𝜇𝛼𝛼1

+  ,𝜇𝜇𝛼𝛼2
+ ) min( 𝜇𝜇𝛼𝛼1

+  ,𝜇𝜇𝛼𝛼2
+ )

2
], 

[ min�𝜈𝜈𝛼𝛼1
− ,𝜈𝜈𝛼𝛼2

− � max(𝜈𝜈𝛼𝛼1
− ,𝜈𝜈𝛼𝛼2

− ) +min(𝜈𝜈𝛼𝛼1
− ,𝜈𝜈𝛼𝛼2

− ) + max�𝜈𝜈𝛼𝛼1
− ,𝜈𝜈𝛼𝛼2

− �− min(𝜈𝜈𝛼𝛼1
− ,𝜈𝜈𝛼𝛼2

− ) max(𝜈𝜈𝛼𝛼1
− ,𝜈𝜈𝛼𝛼2

− )

2
 , 

min� 𝜈𝜈𝛼𝛼1
+ ,𝜈𝜈𝛼𝛼2

+ � max� 𝜈𝜈𝛼𝛼1
+ ,𝜈𝜈𝛼𝛼2

+ �+min( 𝜈𝜈𝛼𝛼1
+ ,𝜈𝜈𝛼𝛼2

+ ) + max( 𝜈𝜈𝛼𝛼1
+ ,𝜈𝜈𝛼𝛼2

+ ) − min( 𝜈𝜈𝛼𝛼1
+ ,𝜈𝜈𝛼𝛼2

+ ) max( 𝜈𝜈𝛼𝛼1
+ ,𝜈𝜈𝛼𝛼2

+ )

2
] 

=[
{max( 𝜇𝜇𝛼𝛼1

− ,𝜇𝜇𝛼𝛼2
− ) + min( 𝜇𝜇𝛼𝛼1

− ,𝜇𝜇𝛼𝛼2
− ) 

2
 , 

�max� 𝜇𝜇𝛼𝛼1
+  ,𝜇𝜇𝛼𝛼2

+ � + min� 𝜇𝜇𝛼𝛼1
+  ,𝜇𝜇𝛼𝛼2

+ � �

2
],

[ min�𝜈𝜈𝛼𝛼1
− ,𝜈𝜈𝛼𝛼2

− � max(𝜈𝜈𝛼𝛼1
− ,𝜈𝜈𝛼𝛼2

− ) +min(𝜈𝜈𝛼𝛼1
− ,𝜈𝜈𝛼𝛼2

− ) + max�𝜈𝜈𝛼𝛼1
− ,𝜈𝜈𝛼𝛼2

− �− min(𝜈𝜈𝛼𝛼1
− ,𝜈𝜈𝛼𝛼2

− ) max(𝜈𝜈𝛼𝛼1
− ,𝜈𝜈𝛼𝛼2

− )

2
 , 

min� 𝜈𝜈𝛼𝛼1
+ ,𝜈𝜈𝛼𝛼2

+ � max� 𝜈𝜈𝛼𝛼1
+ ,𝜈𝜈𝛼𝛼2

+ �+min( 𝜈𝜈𝛼𝛼1
+ ,𝜈𝜈𝛼𝛼2

+ ) + max( 𝜈𝜈𝛼𝛼1
+ ,𝜈𝜈𝛼𝛼2

+ ) − min( 𝜈𝜈𝛼𝛼1
+ ,𝜈𝜈𝛼𝛼2

+ ) max( 𝜈𝜈𝛼𝛼1
+ ,𝜈𝜈𝛼𝛼2

+ )

2
]| 𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2} 

= {[
 𝜇𝜇𝛼𝛼1

− + 𝜇𝜇𝛼𝛼2
−

2
 , 

𝜇𝜇𝛼𝛼1
+ +  𝜇𝜇𝛼𝛼2

+

2
],[min(𝜈𝜈𝛼𝛼1

− ,𝜈𝜈𝛼𝛼2
− ) + max�𝜈𝜈𝛼𝛼1

− ,𝜈𝜈𝛼𝛼2
− �

2
, min( 𝜈𝜈𝛼𝛼1

+ ,𝜈𝜈𝛼𝛼2
+ ) + max( 𝜈𝜈𝛼𝛼1

+ ,𝜈𝜈𝛼𝛼2
+ ) 

2
]| 𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2} 

={[
 𝜇𝜇𝛼𝛼1

− + 𝜇𝜇𝛼𝛼2
−

2
 , 

𝜇𝜇𝛼𝛼1
+ +  𝜇𝜇𝛼𝛼2

+

2
],[𝜈𝜈𝛼𝛼1

− +𝜈𝜈𝛼𝛼2
−

2
,  𝜈𝜈𝛼𝛼1

+ +𝜈𝜈𝛼𝛼2
+

2
]| 𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2} 

= ℎ�1@ℎ�2 

This proves (i). 
(ii) From definitions 2.3 and 3.1, we have 

((ℎ�1⨁ℎ�2) ∪ ( ℎ�1 ⊗ ℎ�2)) @ (( ℎ�1⨁ℎ�2) ∩ ( ℎ�1 ⊗ ℎ�2)) = ℎ�1@ℎ�2; 

(ℎ�1⨁ℎ�2) ∩ ( ℎ�1 ⊗ ℎ�2) = {�μα1
− + μα2

− −  μα2
− μα1

− , μα1
+ + μα2

+ − μα2
+ μα1

+ �, [ 𝜈𝜈𝛼𝛼2
−  𝜈𝜈𝛼𝛼1

−  , 𝜈𝜈𝛼𝛼2
+  𝜈𝜈𝛼𝛼1

+ ]|𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2}∪ 

{[ 𝜇𝜇𝛼𝛼1
−  𝜇𝜇𝛼𝛼2

−  , 𝜇𝜇𝛼𝛼1
+  𝜇𝜇𝛼𝛼2

+ ],[𝜈𝜈𝛼𝛼1
− + 𝜈𝜈𝛼𝛼2

− −  𝜈𝜈𝛼𝛼1
− 𝜈𝜈𝛼𝛼2

− ,  𝜈𝜈𝛼𝛼1
+ + 𝜈𝜈𝛼𝛼2

+ −  𝜈𝜈𝛼𝛼1
+ 𝜈𝜈𝛼𝛼2

+ ]|𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2} 
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={[ min ( μα1
− + μα2

− − μα2
− μα1

−  , 𝜇𝜇𝛼𝛼1
−  𝜇𝜇𝛼𝛼2

−  ) , min (μα1
+ + μα2

+ −  μα2
+ μα1

+  , 𝜇𝜇𝛼𝛼1
+  𝜇𝜇𝛼𝛼2

+ )],

[ max (𝜈𝜈𝛼𝛼2
−  𝜈𝜈𝛼𝛼1

−  , 𝜈𝜈𝛼𝛼1
− + 𝜈𝜈𝛼𝛼2

− −  𝜈𝜈𝛼𝛼1
− 𝜈𝜈𝛼𝛼2

−  ), max(𝜈𝜈𝛼𝛼2
+  𝜈𝜈𝛼𝛼1

+  , 𝜈𝜈𝛼𝛼1
+ + 𝜈𝜈𝛼𝛼2

+ − 𝜈𝜈𝛼𝛼1
+ 𝜈𝜈𝛼𝛼2

+  )]| 𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2} 
= {[𝜇𝜇𝛼𝛼1

−  𝜇𝜇𝛼𝛼2
−  , 𝜇𝜇𝛼𝛼1

+  𝜇𝜇𝛼𝛼2
+ ],[𝜈𝜈𝛼𝛼1

− + 𝜈𝜈𝛼𝛼2
− − 𝜈𝜈𝛼𝛼1

− 𝜈𝜈𝛼𝛼2
−  , 𝜈𝜈𝛼𝛼1

+ + 𝜈𝜈𝛼𝛼2
+ − 𝜈𝜈𝛼𝛼1

+ 𝜈𝜈𝛼𝛼2
+ ]|𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2} 

(ℎ�1⨁ℎ�2) ∪ ( ℎ�1 ⊗ ℎ�2) = {�μα1
− + μα2

− −  μα2
− μα1

− , μα1
+ + μα2

+ −  μα2
+ μα1

+ �, [ 𝜈𝜈𝛼𝛼2
−  𝜈𝜈𝛼𝛼1

−  , 𝜈𝜈𝛼𝛼2
+  𝜈𝜈𝛼𝛼1

+ ]|𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2}∪ 

{[ 𝜇𝜇𝛼𝛼1
−  𝜇𝜇𝛼𝛼2

−  , 𝜇𝜇𝛼𝛼1
+  𝜇𝜇𝛼𝛼2

+ ],[𝜈𝜈𝛼𝛼1
− + 𝜈𝜈𝛼𝛼2

− −  𝜈𝜈𝛼𝛼1
− 𝜈𝜈𝛼𝛼2

− ,  𝜈𝜈𝛼𝛼1
+ + 𝜈𝜈𝛼𝛼2

+ −  𝜈𝜈𝛼𝛼1
+ 𝜈𝜈𝛼𝛼2

+ ]|𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2} 

={[max ( μα1
− + μα2

− −  μα2
− μα1

−  , 𝜇𝜇𝛼𝛼1
−  𝜇𝜇𝛼𝛼2

−  ) , max (μα1
+ + μα2

+ − μα2
+ μα1

+  , 𝜇𝜇𝛼𝛼1
+  𝜇𝜇𝛼𝛼2

+ )],

[ min (𝜈𝜈𝛼𝛼2
−  𝜈𝜈𝛼𝛼1

−  , 𝜈𝜈𝛼𝛼1
− + 𝜈𝜈𝛼𝛼2

− −  𝜈𝜈𝛼𝛼1
− 𝜈𝜈𝛼𝛼2

−  ), min(𝜈𝜈𝛼𝛼2
+  𝜈𝜈𝛼𝛼1

+  , 𝜈𝜈𝛼𝛼1
+ + 𝜈𝜈𝛼𝛼2

+ − 𝜈𝜈𝛼𝛼1
+ 𝜈𝜈𝛼𝛼2

+  )]|𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2}

={[μα1
− + μα2

− − μα2
− μα1

−  , μα1
+ + μα2

+ −  μα2
+ μα1

+ ],[ 𝜈𝜈𝛼𝛼2
−  𝜈𝜈𝛼𝛼1

− , 𝜈𝜈𝛼𝛼2
+  𝜈𝜈𝛼𝛼1

+ ]|𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2}

(((ℎ�1⨁ℎ�2) ∪ ( ℎ�1 ⊗ ℎ�2)) @ (( ℎ�1⨁ℎ�2) ∩ ( ℎ�1 ⊗ ℎ�2))={[ 
𝜇𝜇𝛼𝛼1

−  𝜇𝜇𝛼𝛼2
− +μα1

− +μα2
− − μα2

− μα1
−  

2
  , 

  𝜇𝜇𝛼𝛼1
+  𝜇𝜇𝛼𝛼2

+ +μα1
+ +μ

α2

+
− μα2

+ μα1
+

2
 ], 

[  
𝜈𝜈𝛼𝛼1

− +𝜈𝜈𝛼𝛼2
− − 𝜈𝜈𝛼𝛼1

− 𝜈𝜈𝛼𝛼2
−  + 𝜈𝜈𝛼𝛼2

−  𝜈𝜈𝛼𝛼1
−

2
  , 

𝜈𝜈𝛼𝛼1
+ +𝜈𝜈𝛼𝛼2

+ − 𝜈𝜈𝛼𝛼1
+ 𝜈𝜈𝛼𝛼2

+ +𝜈𝜈𝛼𝛼2
+  𝜈𝜈𝛼𝛼1

+

2
 ]| 𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2}

={[  
  μα1

− +μα2
−

2
  , 

μα1
+ +μ

α2

+

2
 ],[ 

𝜈𝜈𝛼𝛼1
− +𝜈𝜈𝛼𝛼2

−

2
  , 

𝜈𝜈𝛼𝛼1
+ +𝜈𝜈𝛼𝛼2

+

2
 ]| 𝛼𝛼1  ∈  ℎ�1, 𝛼𝛼2  ∈  ℎ�2} 

Hence ,( ((ℎ�1⨁ℎ�2) ∪ ( ℎ�1 ⊗ ℎ�2)) @ (( ℎ�1⨁ℎ�2) ∩ ( ℎ�1 ⊗ ℎ�2)) = ℎ�1@ℎ�2 
This proves (ii). 
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4. Conclusion
In this paper, we have defined four new operations on 

interval valued intuitionistic hesitant fuzzy sets which 
involve different defining functions. Some related results 
have been proved and the characteristics of the interval 
valued intuitionistic hesitant fuzzy sets have been brought 
out..  
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New Operations on Intuitionistic Fuzzy Soft Sets Based 
on First  Zadeh's Logical  Operators 

Said Broumi   
Pinaki Majumdar 

Florentin Smarandache 

Abstract – In this paper , we have defined First Zadeh’s implication , First 
Zadeh’s intuitionistic fuzzy conjunction and intuitionistic fuzzy 
disjunction of two intuitionistic fuzzy soft sets and some their basic 
properties are studied with proofs and examples. 

Keywords – Fuzzy sets, Intuitionistic fuzzy sets, Fuzzy soft sets, 
Intuitionistic fuzzy soft sets. 

1. Introduction

The concept of the intuitionistic fuzzy (IFS , for short ) was  introduced in 1983 by Atanassov 
[1] as an extension of Zadeh’s  fuzzy set. All operations, defined over fuzzy sets were 
transformed for the case the IFS case .This concept is capable of capturing the information 
that includes some degree of hesitation and applicable in various fields of research .For 
example , in decision making problems, particularly in the case of medial of medical diagnosis 
,sales analysis  ,new product marketing , financial services, etc.  Atanassov et.al  [2,3] have 
widely applied theory of intuitionistic sets in logic programming, Szmidt and Kacprzyk [4] 
in group decision making, De et al [5] in medical diagnosis etc. Therefore in various 
engineering application, intuitionstic fuzzy sets techniques have been more popular than 
fuzzy sets techniques in recent years. After defining a lot  of operations  over Intuitionstic 
fuzzy sets during last ten years [6] ,in 2011, Atanassov [7, 8] constructed two new operations 
based on the First Zadeh’s IF-implication which are the first Zadeh’s conjunction and 
disjounction, after that, in 2013,  Atanassov[ 9] introduced the second type of Zadeh ‘s 
conjunction and disjunction based on the Second Zadeh’s IF-implication. 
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Another important concept that addresses uncertain information is the soft set theory 
originated by Molodtsov [10]. This concept is  free from the parameterization inadequacy 
syndrome of fuzzy set theory, rough set theory, probability theory. Molodtsov has 
successfully applied the soft set theory in many different fields such as smoothness of 
functions, game theory, operations research, Riemann integration, Perron integration, and 
probability. In recent years, soft set theory  has been  received much attention since its 
appearance. There are many papers devoted to fuzzify the concept of soft set theory which 
leads to a series of mathematical models such as fuzzy soft set [11,12,13,14,15], generalized 
fuzzy soft set [16,17], possibility fuzzy soft set [18] and so on. Thereafter, Maji and his 
coworker [19] introduced the notion of intuitionstic fuzzy soft set which is based on a 
combination of the intuitionistic fuzzy sets and soft set models and studied  the properties of 
intuitionistic fuzzy soft set. Later, a lot of extentions of intuitionistic fuzzy soft are appeared 
such as generalized intuitionistic fuzzy soft set [20], possibility Intuitionistic fuzzy soft set 
[21] etc. 

In this paper, our aim is to extend the three new operations introduced by Atanassov to the 
case of intuitionistic fuzzy soft and study its properties. This paper is arranged in the following 
manner. In Section 2, some definitions and notion  about soft set, fuzzy  soft set and 
intuitionistic fuzzy soft set and some properties of its. These definitions will help us in later 
section . In Section 3, we discusses the three operations of intuitionistic fuzzy soft such as 
first Zadeh’s implication, First Zadeh’s intuitionistic fuzzy conjunction and first Zadeh 
intuitionistic  fuzzy disjunction. Section 4 concludes the paper. 

2. Preliminaries

In this section, some definitions and notions about soft sets and intutionistic fuzzy soft set are 
given. These will be useful in later sections 

Let U  be an initial universe, and E be the set of all possible parameters under consideration 
with respect to  U. The set of all subsets of U, i.e. the power set of U  is denoted by  P(U) and 
the set of all  intuitionistic  fuzzy subsets of  U  is denoted by IFU . Let A be  a subset of E. 

Definition 2.1 .A pair (F , A) is called a soft set over U , where F is a mapping given by F : A  
P (U ). 

In other words, a soft set over U is a parameterized family of subsets of the universe U . For e 
∈ A, F (e) may be considered as the set of e-approximate elements of the soft set (F , A). 

Definition 2.2. Let  U  be an initial universe set and  E  be the set of parameters. Let  IFU denote 
the collection of all intuitionistic fuzzy subsets of  U. Let . A ⊆  E pair (F,  A) is called an 
intuitionistic fuzzy soft set over U where F is a mapping given by F: A→ IFU . 

Definition 2.3. Let  F: A→ IFU  then  F is a function defined as  

F (𝜀) ={ x, 𝜇𝐹(𝜀)(𝑥), 𝜈𝐹(𝜀)(𝑥) : 𝑥 𝜀 𝑈 }

where  𝜇 , 𝜈 denote the degree of  membership and degree of non-membership respectively. 
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Definition 2.4 . For two intuitionistic fuzzy soft sets (F , A) and (G, B) over a common 
universe U , we say that (F , A) is an intuitionistic fuzzy soft subset of (G, B) if 

(1) A ⊆ B and 
(2) F (𝜀) ⊆G(𝜀) for all 𝜀 ∈ A. i.e 𝜇𝐹(𝜀)(𝑥) ≤ 𝜇𝐺(𝜀)(𝑥) , 𝜈𝐹(𝜀)(𝑥) ≥ 𝜈𝐺(𝜀)(𝑥) for all 𝜀 ∈ E and

We write (F,A) ⊆ (G, B). 

In this case (G, B) is said to be a soft super set of (F , A). 

Definition 2.5. Two soft sets (F , A) and (G, B) over a common universe U are said to be soft 
equal if (F , A) is a soft subset of (G, B) and (G, B) is a soft subset of (F , A). 

Definition 2.6. Let U be an initial universe, E be the set of parameters, and A  ⊆ E . 

(a) (F , A) is called a relative null soft set (with respect to the parameter set A), denoted by 
 ∅𝐴, if F (a) = ∅ for all a ∈ A. 

(b) (G, A) is called a relative whole soft set (with respect to the parameter set A), denoted by 
 𝑈𝐴  ,if G(e) = U for all e ∈ A. 

Definition 2.7. Let (F, A) and (G, B) be two IFSSs over the same universe U. Then the union 
of (F,A) and (G,B) is denoted by ‘(F,A)∪(G,B)’ and is defined by (F,A) ∪ (G,B)=(H,C), 
where C=A∪B and the truth-membership, falsity-membership of ( H,C) are as follows:  

𝐻(𝜀)  ={
{(𝜇𝐹(𝜀)(𝑥), 𝜈𝐹(𝜀)(𝑥) ∶ 𝑥  𝑈}   , if 𝜀 ∈  A −  B,

{(𝜇𝐺(𝜀)(𝑥), 𝜈𝐺(𝜀)(𝑥) ∶ 𝑥  𝑈}    , if 𝜀 ∈  B –  A

{max(𝜇𝐹(𝜀)(𝑥), 𝜇𝐺(𝜀)(𝑥)),min (𝜈𝐹(𝜀)(𝑥), 𝜈𝐺(𝜀)(𝑥)): 𝑥  𝑈}if 𝜀 ∈  A ∩  B

Where 𝜇𝐻(𝜀)(𝑥) = max(𝜇𝐹(𝜀)(𝑥), 𝜇𝐺(𝜀)(𝑥)) and 𝜈𝐻(𝜀)(𝑥) = min (𝜈𝐹(𝜀)(𝑥), 𝜈𝐺(𝜀)(𝑥))

Definition 2.8.  Let (F, A) and (G, B) be two IFSS over the same universe U such that 
A ∩ B ≠ 0. Then the intersection of (F, A) and ( G, B) is denoted by ‘( F, A) ∩ (G, B)’ and is 
defined by ( F, A ) ∩( G, B ) = ( K, C),where C =A ∩B and the truth-membership, falsity-
membership of ( K, C ) are related to those of (F, A) and (G, B) by:  

𝐾(𝜀)  ={
{(𝜇𝐹(𝜀)(𝑥), 𝜈𝐹(𝜀)(𝑥) ∶ 𝑥  𝑈}   , if 𝜀 ∈  A −  B,

{(𝜇𝐺(𝜀)(𝑥), 𝜈𝐺(𝜀)(𝑥) ∶ 𝑥  𝑈}    , if 𝜀 ∈  B –  A

{min(𝜇𝐹(𝜀)(𝑥), 𝜇𝐺(𝜀)(𝑥)),max (𝜈𝐹(𝜀)(𝑥), 𝜈𝐺(𝜀)(𝑥)): 𝑥  𝑈}if 𝜀 ∈  A ∩  B

Where 𝜇𝐾(𝜀)(𝑥) = min(𝜇𝐹(𝜀)(𝑥), 𝜇𝐺(𝜀)(𝑥)) and 𝜈𝐾(𝜀)(𝑥) =max (𝜈𝐹(𝜀)(𝑥), 𝜈𝐺(𝜀)(𝑥))
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3. New Operations on Intuitionstic Fuzzy Soft Sets Based on First  Zadeh's
Logical  Operators 

3.1 First Zadeh’s Implication  of Intuitionistic Fuzzy Soft Sets 

Definition 3.1.1. Let  (F, A) and (G, B) are two intuitionistic fuzzy soft set s over (U,E) .We 
define the First Zadeh’s intuitionistic fuzzy soft set implication  (F, A) 

𝑧,1
→ (G,B) is defined by

(F, A) 
𝑧,1
→  (G,B) = [ max {𝜈𝐹(𝜀)(𝑥)  , min (𝜇𝐹(𝜀)(𝑥) , 𝜇𝐺(𝜀)(𝑥))} , min (𝜇𝐹(𝜀)(𝑥) , 𝜈𝐺(𝜀)(𝑥))

Proposition 3.1.2.  Let  (F, A) ,(G, B) and  (H, C) are three  intuitionistic fuzzy soft set s over 
(U,E). Then the following results hold 

(i) (F, A) ∩ (G,B) 
𝑧,1
→   (H, C)  ⊇ [(F , A) 

𝑧,1
→  (H, C) ] ∩  [(G , B) 

𝑧,1
→  (H, C) ]

(ii) (F, A) ∪ (G,B) 
𝑧,1
→   (H, C)  ⊇ [(F , A) 

𝑧,1
→  (H, C) ] ∪  [(G , B) 

𝑧,1
→  (H, C) ]

(iii) (F, A) ∩(G,B) 
𝑧,1
→   (H, C)  ⊇ [(F , A) 

𝑧,1
→  (H, C) ] ∪  [(G , B) 

𝑧,1
→  (H, C) ]

(iv) (F, A) 
𝑧,1
→ (F, A) 𝑐 = (F, A) 𝑐

(v) (F, A) 
𝑧,1
→ (𝜑, A) =(F, A) 𝑐

Proof. 
(i) (F, A) ∩ (G,B) 

𝑧,1
→   (H, C)

=   { 𝑚𝑖𝑛 (𝜇𝐹(𝜀)(𝑥), 𝜇𝐺(𝜀)(𝑥)) , max (𝜈𝐹(𝜀)(𝑥), 𝜈𝐺(𝜀)(𝑥))  }  
𝑧,1
→   (𝜇𝐻(𝜀)(𝑥)  , 𝜈𝐻(𝜀)(x))

    = [
MAX { max (𝜈𝐹(𝜀)(𝑥), 𝜈𝐺(𝜀)(𝑥)) , min( 𝑚𝑖𝑛 (𝜇𝐹(𝜀)(𝑥), 𝜇𝐺(𝜀)(𝑥)) , 𝜇𝐻(𝜀)(𝑥))} ,

MIN {𝑚𝑖𝑛 ( 𝜇𝐹(𝜀)(𝑥), 𝜇𝐺(𝜀)(𝑥)) , 𝜈𝐻(𝜀)(𝑥)}

]

 (1) 
[(F , A) 

𝑧,1
→  (H, C) ] ∩  [(G , B) 

𝑧,1
→  (H, C) ]

= [ max {𝜈𝐹(𝜀)  , min (𝜇𝐹(𝜀) , 𝜇𝐻(𝜀))} , min (𝜇𝐹(𝜀) , 𝜈𝐻(𝜀)) ] ∩ 
[ max {𝜈𝐺(𝜀)  , min (𝜇𝐺(𝜀) , 𝜇𝐻(𝜀))} , min (𝜇𝐺(𝜀) , 𝜈𝐻(𝜀)) ] 

=    [
MIN {max (𝜈𝐹(𝜀)(𝑥), 𝑚𝑖𝑛 (𝜇𝐹(𝜀)(𝑥) , 𝜇𝐻(𝜀)(𝑥))) , max (𝜈𝐺(𝜀)(𝑥), 𝑚𝑖𝑛 (𝜇𝐺(𝜀)(𝑥) , 𝜇𝐻(𝜀)(𝑥)))} ,

MAX {𝑚𝑖𝑛 (𝜇𝐹(𝜀)(𝑥), 𝜈𝐻(𝜀)(𝑥)) , 𝑚𝑖𝑛 (𝜇𝐺(𝜀)(𝑥), 𝜈𝐻(𝜀)(𝑥))}
]  (2) 

From (1) and  (2)  it is clear that       (F, A) ∩ (G,B) 
𝑧,1
→   (H, C)  ⊇ [(F , A) 

𝑧,1
→  (H, C) ] ∩

[(G , B) 
𝑧,1
→  (H, C) ]

(ii) And (iii)  the proof is similar to (i) 

(iv)  (F, A) 
𝑧,1
→ (F, A) 𝑐 = (F, A) 𝑐

=[
Max {𝜈𝐹(𝜀)(𝑥),𝑚𝑖𝑛 ( 𝜇𝐹(𝜀)(𝑥), 𝜈𝐹(𝜀)(𝑥))} ,

MIN{𝜇𝐹(𝜀)(𝑥), 𝜇𝐹(𝜀)(𝑥)}
]
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= (𝜈𝐹(𝜀)(𝑥), 𝜇𝐹(𝜀)(𝑥)) 

It is shown that  the first Zadeh’s  intuitionistic fuzzy soft implication  generate the 
complement of intuitionistic fuzzy soft set. 

(v) The proof  is straightforward . 

Example 3.1.3. 
(F ,A) = {F(𝑒1) = (a , 0.3 , 0.2)} 
(G ,B) = {G(𝑒1) = (a , 0.4 , 0.5)} 
(H ,C) = {H(𝑒1) = (a , 0.3 , 0.6)} 

(F, A) ∩ (G,B) 
𝑧,1
→   (H, C)  =

[max { (max (0.2, min (0.3,0.4)) , 0.3 } , min { min (0.3,0.5), 0.6))} =   (0.5, 0.3 ) 
(F, A) ∩ (G,B) ={(a ,0.3 ,0.5)} 

3.2. First Zadeh’s Intuitionistic Fuzzy Conjunction of Intuitionistic Fuzzy Soft Set 

Definition 3.2.1. Let  (F, A) and (G, B) are two intuitionistic fuzzy soft sets over (U,E) .We 
define the  first Zadeh’s intuitionistic  fuzzy conjunction of (F, A) and (G,B) as the intuitionistic 
fuzzy soft set (H,C) over (U,E), written as  (F, A) ∧̃𝑧,1 (G,B)  =(H ,C). Where C = A ∩ B ≠ ∅
and ∀ 𝜀 ∈ C, x ∈ U, 

𝜇𝐻(𝜀)(𝑥) = 𝑀𝐼𝑁(𝜇𝐹(𝜀)(𝑥) , 𝜇𝐺(𝜀)(𝑥)) 
𝜈𝐻(𝜀)(𝑥)=  𝑀𝑎𝑥 {𝜈𝐹(𝜀)(𝑥) ,𝑚𝑖𝑛(𝜇𝐹(𝜀)(𝑥) , 𝜈𝐺(𝜀)(𝑥))} 

Example 3.2. 2. 
Let U={a, b, c} and E ={ 𝑒1 , 𝑒2 , 𝑒3 , 𝑒4} , A ={ 𝑒1 , 𝑒2, 𝑒4} ⊆ E, B={ 𝑒1 , 𝑒2 , 𝑒3} ⊆ E 

(F, A) ={ F(𝑒1) ={( (a, 0.5, 0.1), (b, 0.1, 0.8), (c, 0.2, 0.5)}, 
F(𝑒2) ={( (a, 0.7, 0.1), (b, 0, 0.8), (c, 0.3, 0.5)},  
F(𝑒4) ={( (a, 0.6, 0.3), (b, 0.1, 0.7), (c, 0.9, 0.1)}} 

(G, B) ={ G(𝑒1) ={( (a, 0.2, 0.6), (b, 0.7, 0.1), (c, 0.8, 0.1)}, 
G(𝑒2) ={( (a, 0.4, 0.1), (b, 0.5, 0.3), (c, 0.4, 0.5)}, 
G(𝑒3) ={( (a, 0, 0.6), (b, 0, 0.8), (c, 0.1, 0.5)}} 

Let  (F, A) ∧̃𝑧 (G,B)  =(H ,C) ,where C = A ∩ B = { 𝑒1  , 𝑒2 }

(H, C)={H (𝑒1) ={(a, min(0.5, 0.2), max(0.1, min(0.5, 0.6))) 
(b, min(0.1, 0.7), max(0.8, min(0.1, 0.1))) 
(c, min(0.2, 0.8), max(0.5, min(0.2, 0.1)))}, 

             H (𝑒2) ={(a, min(0.7, 0.4), max(0.1, min(0.7, 0.1))) 
(b, min(0, 0.5), max(0.8, min(0, 0.3))) 
(c, min(0.3, 0.4), max(0.5, min(0.3, 0.5)))}} 

(H, C)= { H (𝑒1)= {(a, min(0.5, 0.2), max(0.1, 0.5)), 
(b, min(0.1, 0.7), max(0.8, 0.1)), 
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(c, min(0.2, 0.8), max(0.5, 0.1))}, 
H (𝑒2)= {(a, min(0.7, 0.4), max(0.1, 0.1)), 

(b, min(0, 0.5), max(0, 0.8)), 
(c, min(0.3, 0.4), max(0.5, 0.3))}} 

(H, C)= { H (𝑒1)= {(a, 0.2, 0.5),(b, 0.1, 0.8), (c,0.2, 0.5)}, 
H (𝑒2)= {(a, 0.4, 0.1), (b, 0, 0), (c, 0.3, 0.5)}} 

Proposition 3.2. 3. Let  (F, A) ,(G, B) and  (H, C) are three  intuitionistic fuzzy soft set s over 
(U,E). Then the following result hold 

(F, A) ∧̃𝑧,1 (G,B) 
𝑧,1
→   (H, C)  ⊇ [(F , A) 

𝑧,1
→  (H, C) ] ∧̃𝑧,1  [(G , B) 

𝑧,1
→  (H, C) ]

Proof. Let    (F, A) ,(G, B) and (H,C) are three intuitionistic fuzzy soft set ,then 
(F, A) ∧̃𝑧,1 (G,B) 

𝑧,1
→   (H, C)  =

[
Max {max (𝜈𝐹(𝜀)(𝑥), 𝑚𝑖𝑛 (𝜇𝐹(𝜀)(𝑥) , 𝜈𝐺(𝜀)(𝑥))) , min (𝑚𝑖𝑛 (𝜇𝐹(𝜀)(𝑥) , 𝜇𝐺(𝜀)(𝑥)) , 𝜇𝐻(𝜀)(𝑥))} ,

MIN {𝑚𝑖𝑛 (𝜇𝐹(𝜀)(𝑥), 𝜇𝐺(𝜀)(𝑥)) , 𝜈𝐻(𝜀)(𝑥)}
]        

 (1) 

Let [(F , A) 
𝑧,1
→  (H, C) ] ∧̃𝑧,1  [(G , B) 

𝑧,1
→  (H, C) ]

(F , A) 
𝑧,1
→  (H, C) =[

MAX {𝜈𝐹(𝜀)(𝑥), 𝑚𝑖𝑛 (𝜇𝐹(𝜀)(𝑥) , 𝜇𝐻(𝜀)(𝑥))} ,

MIN {𝜇𝐹(𝜀)(𝑥), 𝜈𝐻(𝜀)(𝑥)}
] 

[(G , B) 
𝑧,1
→  (H, C)] = [

MAX {𝜈𝐺(𝜀)(𝑥), 𝑚𝑖𝑛 (𝜇𝐺(𝜀)(𝑥) , 𝜇𝐻(𝜀)(𝑥))} ,

MIN {𝜇𝐺(𝜀)(𝑥), 𝜈𝐻(𝜀)(𝑥)}
] 

Then [(F , A) 
𝑧,1
→  (H, C) ] ∧̃𝑧,1  [(G , B) 

𝑧,1
→  (H, C) ] = 

[
MIN (𝑚𝑎𝑥 {𝜈𝐹(𝜀)(𝑥),𝑚𝑖𝑛 ( 𝜇𝐹(𝜀)(𝑥), 𝜈𝐻(𝜀)(𝑥))} ,𝑚𝑎𝑥 {𝜈𝐺(𝜀)(𝑥),𝑚𝑖𝑛 (𝜇𝐺(𝜀)(𝑥), 𝜇𝐻(𝜀)(𝑥))}) ,

MAX  (min{𝜇𝐹(𝜀)(𝑥), 𝜈𝐻(𝜀)(𝑥)} , min {𝑚𝑎𝑥 (𝜈𝐺(𝜀)(𝑥),𝑚𝑖𝑛 (𝜇𝐺(𝜀)(𝑥), 𝜇𝐻(𝜀)(𝑥))) ,𝑚𝑖𝑛(𝜇𝐺(𝜀)(𝑥), 𝜈𝐻(𝜀)(𝑥) )})
]

 (2) 
From (1)  and (2) it is clear that  

(F, A) ∧̃𝑧,1(G,B) 
𝑧,1
→   (H, C)  ⊇ [(F , A) 

𝑧,1
→  (H, C) ] ∧̃𝑧,1    [(G , B) 

𝑧,1
→  (H, C) ]

3. 3. The  First Zadeh’s Intuitionistic  Fuzzy Disjunction of Intuitionstic Fuzzy Soft Set 

Definition 3.3.1. Let  (F, A) and (G, B) are two intuitionistic fuzzy soft set s over (U,E) .We 
define the first  Zadeh’s intuitionistic  fuzzy disjunction of (F, A) and (G,B) as the intuitionistic 
fuzzy soft set (H,C) over (U,E), written as  (F, A) ∨̃𝑧,1 (G,B)  =(H ,C). Where  C = A ∩ B ≠ ∅
and ∀ 𝜀 ∈ A , x ∈ U 

𝜇𝐻(𝜀)(𝑥) =  𝑀𝑎𝑥 {𝜇𝐹(𝜀)(𝑥),𝑚𝑖𝑛(𝜈𝐹(𝜀)(𝑥) , 𝜇𝐺(𝜀)(𝑥))} 
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𝜈𝐻(𝜀)(𝑥)=  𝑀𝑖𝑛(𝜈𝐹(𝜀)(𝑥) , 𝜈𝐺(𝜀)(𝑥)) ) 

Example 3.3.2.  Let U={a, b,c} and E ={ 𝑒1 , 𝑒2 , 𝑒3 , 𝑒4} , A ={ 𝑒1 , 𝑒2, 𝑒4} ⊆ E, 
B={ 𝑒1 , 𝑒2 , 𝑒3} ⊆ E

(F, A) ={ F(𝑒1) ={( (a, 0.5, 0.1), (b, 0.1, 0.8), (c, 0.2, 0.5)}, 
F(𝑒2) ={( (a, 0.7, 0.1), (b, 0, 0.8), (c, 0.3, 0.5)},  
F(𝑒4) ={( (a, 0.6, 0.3), (b, 0.1, 0.7), (c, 0.9, 0.1)}} 

(G, A) ={ G(𝑒1) ={( (a, 0.2, 0.6), (b, 0.7, 0.1), (c, 0.8, 0.1)}, 
G(𝑒2) ={( (a, 0.4, 0.1), (b, 0.5, 0.3), (c, 0.4, 0.5)}, 
G(𝑒3) ={( (a, 0, 0.6), (b, 0, 0.8), (c, 0.1, 0.5)}} 

Let  (F, A) ∨̃𝑧,1 (G,B)  =(H ,C),where C = A ∩ B = { 𝑒1  , 𝑒2 }

(H, C)={H (𝑒1) ={(a, max(0.5, min(0.1, 0.2)),  min(0.1, 0.6)) 
(b, max(0.1, min(0.8, 0.7)), min(0.8, 0.1)) 

(c, max(0.2, min(0.5, 0.8)), min(0.5, 0.1)) }, 
             H (𝑒2) ={(a, max(0.7, min(0.1, 0.4)),  min(0.1, 0.1)) 

(b, max(0, min(0.8, 0.5)), min(0.8, 0.3)) 
(c, max(0.3, min(0.5, 0.4)), min(0.5, 0.5))}} 

(H, C)= { H (𝑒1)= {(a, max(0.5, 0.1), min(0.1, 0.6)), 
(b, max(0.1, 0.7), min(0.8, 0.1)), 
(c, max(0.2, 0.5), min(0.5, 0.1))}, 

H (𝑒2)= {(a, max(0.7, 0.1), min(0.1, 0.1)), 
(b, max(0, 0.5), min(0.8, 0.3)), 
(c, max(0.3, 0.4), min(0.5, 0.5))}} 

(H, C)= { H (𝑒1)= {(a, 0.5, 0.1),(b, 0.7, 0.1), (c,0.5, 0.1)}, 
H (𝑒2)= {(a, 0.7, 0.1),(b, 0.5, 0.3), (c,0.4, 0.5)}} 

Proposition 3.3.3. 
(i) (𝜑 ,A)  ∧̃𝑧,1 (U, A) = (𝜑 ,A)
(ii) (𝜑 ,A)  ∨̃𝑧,1 (U, A) = (U, A)
(iii) (F, A) ∨̃𝑧,1 (𝜑 ,A)  = (F,A)

Proof. 
(i) Let  (𝜑 ,A)  ∧̃𝑧,1 (U, A) =(H, A) ,where  For all 𝜀 ∈ A , x ∈ U, we have

𝜇𝐻(𝜀)(𝑥) =min ( 0 ,1) = 0 
𝜈𝐻(𝜀)(𝑥)= max ( 1 ,min ( 0, 0) ) =max (1 , 0)= 1 

Therefore (H, A)= (0 ,1) , For all 𝜀 ∈ A , x ∈ U 

It follows that ((𝜑 ,A)  ∧̃𝑧,1 (U, A) = (𝜑 ,A)

(ii) Let  (𝜑 ,A)  ∨̃𝑧,1 (U, A) =(H, A) ,where  For all 𝜀 ∈ A , x ∈ U, we have
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𝜇𝐻(𝜀)(𝑥) = max ( 0 ,min ( 1, 1) ) =max (0 ,1)= 1 
𝜈𝐻(𝜀)(𝑥)= min ( 1 ,0) = 0 

Therefore (H, A) = (1,0) , For all 𝜀 ∈ A , x ∈ U 

It follows that ((𝜑 ,A)  ∧̃𝑧,1 (U, A) = (U, A)

(iii) Let (F, A) ∨̃𝑧,1 (𝜑 ,A)  =(H, A) ,where  For all 𝜀 ∈ A , x ∈ U, we have

𝜇𝐻(𝜀)(𝑥) = max (𝜇𝐹(𝜀)(𝑥) ,min (𝜈𝐹(𝜀)(𝑥), 0) ) = max (𝜇𝐹(𝜀)(𝑥)  , 0) = 𝜇𝐹(𝜀)(𝑥) 
𝜈𝐻(𝜀)(𝑥)= min (𝜈𝐻(𝜀)(𝑥) ,1) = 𝜈𝐻(𝜀)(𝑥) 

Therefore (H, A)   = (𝜇𝐹(𝜀)(𝑥) , 𝜈𝐻(𝜀)(𝑥)) , For all 𝜀 ∈ A , x ∈ U 

It follows that (F, A) ∨̃𝑧,1 (𝜑 ,A)  =(F, A)

Proposition 3.3.4.  
(F, A) ∨̃𝑧,1 (G,B) 

𝑧,1
→   (H, C)  ⊇ [(F , A) 

𝑧,1
→  (H, C) ] ∨̃𝑧,1 [(G , B) 

𝑧,1
→  (H, C) ]

Proof.  The proof is similar as in proposition 3.2.3 

Proposition 3.3.5. 
(i) [(𝐹, A)  ∧̃𝑧,1 (G, B) ]c =(𝐹, A)  𝑐  ∨̃𝑧,1 (𝐺 , B)𝑐
(ii) [(𝐹, A)  ∨̃𝑧,1 (G, B) ]c =(𝐹, A)  𝑐  ∧̃𝑧,1  (𝐺 , B)𝑐
(iii) [(𝐹, A)  𝑐  ∧̃𝑧,1  (𝐺 , B)  𝑐]c = (𝐹, A)  ∨̃𝑧,1(G, B)

Proof. 
(i) Let  [(𝐹 ,A)  ∧̃𝑧,1 (G, B) ]c =(H, C) ,where  For all 𝜀 ∈ C , x ∈ U, we have

[(𝐹 ,A)  ∧̃𝑧,1 (G, B) ]c = [
MIN{𝜇𝐹(𝜀)(𝑥), 𝜇𝐺(𝜀)(𝑥)},

MAX {𝜈𝐹(𝜀)(𝑥),𝑚𝑖𝑛 ( 𝜇𝐹(𝜀)(𝑥), 𝜈𝐺(𝜀)(𝑥))}
]

𝑐

= [
MAX {𝜈𝐹(𝜀)(𝑥),𝑚𝑖𝑛 ( 𝜇𝐹(𝜀)(𝑥), 𝜈𝐺(𝜀)(𝑥))} ,

MIN{𝜇𝐹(𝜀)(𝑥), 𝜇𝐺(𝜀)(𝑥)}
] 

= (𝐹 , A)  𝑐  ∨̃𝑧,1 (𝐺 , B)  𝑐

(ii)  Let  [(𝐹 ,A)  ∨̃𝑧,1(G, B) ]c =(H, C) ,where  For all 𝜀 ∈ C , x ∈ U , we have

[(𝐹 ,A)  ∨̃𝑧,1(G, B) ]c = [
MAX {𝜇𝐹(𝜀)(𝑥),𝑚𝑖𝑛 ( 𝜈𝐹(𝜀)(𝑥), 𝜇𝐺(𝜀)(𝑥))} ,

MIN{𝜈𝐹(𝜀)(𝑥), 𝜈𝐺(𝜀)(𝑥)}
]

   =  [
MIN{𝜈𝐹(𝜀)(𝑥), 𝜈𝐺(𝜀)(𝑥)},

MAX {𝜇𝐹(𝜀)(𝑥),𝑚𝑖𝑛 ( 𝜈𝐹(𝜀)(𝑥), 𝜇𝐺(𝜀)(𝑥))}
]

𝑐

= (𝐹 , A)  𝑐  ∧̃𝑧,1  (𝐺 , B)  𝑐
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(iii) The proof is straightforward. 

The following equalities are not valid. 

(𝐹 ,A)  ∨̃𝑧,1(G, B) = ( 𝐺 ,B)  ∨̃𝑧,1(F, A)
(𝐹 ,A)  ∧̃𝑧,1(G, B) = ( 𝐺 ,B)  ∧̃𝑧,1(F, A)
[(𝐹 ,A)  ∧̃𝑧,1(G, B)] ∧̃𝑧,1(K, C)  = ( 𝐹 ,A)  ∧̃𝑧,1 [(G, B) ∧̃𝑧,1(K, C)]
[(𝐹 ,A)  ∨̃𝑧,1(G, B)] ∨̃𝑧,1(K, C)  = ( 𝐹 ,A)  ∨̃𝑧,1 [(G, B) ∨̃𝑧,1(K, C)]
[(𝐹 ,A)  ∧̃𝑧,1(G, B)] ∨̃𝑧,1(K, C)  = [( 𝐹 ,A)  ∨̃𝑧,1 (G, B)] ∧̃𝑧,1 [(𝐺, 𝐵)  ∨̃𝑧,1 (K, C)]
[(𝐹 ,A)  ∨̃𝑧,1(G, B)] ∧̃𝑧,1(K, C)  = [( 𝐹 ,A)  ∧̃𝑧,1 (G, B)] ∨̃𝑧,1 [(𝐺, 𝐵)  ∧̃𝑧,1 (K, C)]

Example 3.3.6. Let U={a, b,c} and E ={ 𝑒1 , 𝑒2 , 𝑒3 , 𝑒4} , A ={ 𝑒1 , 𝑒2, 𝑒4} ⊆ E, 
B={ 𝑒1 , 𝑒2 , 𝑒3} ⊆ E

(F, A) ={ F(𝑒1) ={( (a, 0.5, 0.1), (b, 0.1, 0.8), (c, 0.2, 0.5)}, 
F(𝑒2) ={( (a, 0.7, 0.1), (b, 0, 0.8), (c, 0.3, 0.5)},  
F(𝑒4) ={( (a, 0.6, 0.3), (b, 0.1, 0.7), (c, 0.9, 0.1)}} 

(G, A) ={ G(𝑒1) ={( (a, 0.2, 0.6), (b, 0.7, 0.1), (c, 0.8, 0.1)}, 
G(𝑒2) ={( (a, 0.4, 0.1), (b, 0.5, 0.3), (c, 0.4, 0.5)}, 
G(𝑒3) ={( (a, 0, 0.6), (b, 0, 0.8), (c, 0.1, 0.5)}} 

Let  (F, A) ∧̃𝑧,1 (G,B)  =(H ,C) ,where C = A ∩ B = { 𝑒1  , 𝑒2 }

Then  (F, A) ∧̃𝑧,1 (G,B)  = (H, C)= { H (𝑒1) = {(a, 0.2, 0.5), (b, 0.1, 0.8), (c,0.2, 0.5)},
H (𝑒2)= {(a, 0.4, 0.1), (b, 0, 0), (c,0.3, 0.5)}} 

For  (G, B) ∧̃𝑧,1 (F, A)  = (K, C) ,where  K = A ∩ B = { 𝑒1  , 𝑒2 }

(K, C)={K (𝑒1) ={(a, min (0.2, 0.5), max (0.6, min (0.2, 0.1))) 
(b, min (0.7, 0.1), max (0.1, min( 0.7, 0.8))) 
(c, min (0.8, 0.2), max (0.1, min (0.8, 0.5)))}, 

             K (𝑒2) ={(a, min (0.7 0.4), max(0.1, min (0.4, 0.1))) 
(b, min (0.5, 0.), max(0.3, min (0.5, 0.8))) 
(c, min (0.4, 0.3), max(0.5, min (0.4, 0.5)))}} 

(K, C)= { K (𝑒1)= {(a, min (0.2, 0.5), max (0.6, 0.1)), 
(b, min (0.7, 0.1), max (0.1, 0.7)), 
(c, min (0.8, 0.2), max (0.1, 0.5))}, 

             K (𝑒2)= {(a, min (0.4, 0.7), max (0.1, 0.1)), 
(b, min (0.5, 0), max (0.3, 0.5)), 
(c, min (0.4, 0.3), max (0.5, 0.4))}} 

(K, C)= { K (𝑒1)= {(a, 0.2, 0.6),(b, 0.1, 0.7), (c,0.2, 0.5)}, 
K (𝑒2)= {(a, 0.4, 0.1),(b, 0, 0.5), (c,0.3, 0.5)}} 

Then  (G, B) ∧̃𝑧,1 (F, A)  = (K, C) = { K (𝑒1)= {(a, 0.2, 0.6),(b, 0.1, 0.7), (c,0.2, 0.5)},
K (𝑒2)= {(a, 0.4, 0.1),(b, 0, 0.5), (c,0.3, 0.5)}} 
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It is obviously that (F, A) ∧̃𝑧,1 (G,B) ≠ (G, B) ∧̃𝑧,1 (F, A)

Conclusion 

In this paper, three new operations have been introduced on intuitionistic fuzzy soft sets. They 
are based on First Zadeh’s  implication, conjunction and disjunction operations on 
intuitionistic fuzzy sets. Some examples of these operations were given and a few important 
properties were also studied. In our following papers, we will extended the following three 
operations such as second zadeh’s IF-implication, second zadeh’s conjunction and second 
zadeh’s disjunction to the intuitionistic fuzzy soft set. We hope that the findings, in this paper 
will help researcher enhance the study on the intuitionistic soft set theory. 
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Relations on Interval Valued Neutrosophic Soft Sets 

Said Broumi, Irfan Deli and Florentin Smarandache 

Abstract.  Anjan Mukherjee [43] ntroduced the concept of interval valued intuitionstic fuzzy 
soft relation. In this paper we will extend  this concept to the case of  interval valued 
neutrosophic soft relation( IVNSS relation for short) which can be discussed as a 
generalization of soft relations, fuzzy soft relation, intuitionstic fuzzy soft relation, interval 
valued intuitionstic fuzzy soft relations and neutrosphic soft relations [44]. Basic operations 
are presented and  the various properties like reflexivity, symmetry, transitivity of  IVNSS 
relations are also studied. 

Keywords: Neutrosophic soft sets, Interval valued neutrosophic soft sets, Interval valued 
neutrosophic soft relation. 

I.Introduction 

In 1999, Florentin Smarandache introduced the theory of  neutrosophic set (NS) [1] ,which is the 
generalization of the classical sets, conventional fuzzy set [2], intuitionistic fuzzy set [3] and interval 
valued fuzzy set [4]. This concept has been successfully applied to many fields such as Databases 
[5,6], Medical diagnosis problem [7] ,Decision making problem [8],Topology [9 ],control theory 
[10]  etc .The concept of neutrosophic set handle indeterminate data whereas fuzzy set theory, and 
intuitionstic fuzzy set theory failed when the relation are indeterminate. 

Presently work on the neutrosophic set theory is progressing rapidly. Bhowmik and M.Pal [11,12] 
defined “intuitionistic neutrosophic set”. Later on A.A.Salam, S.A.Alblowi [13] introduced another 
concept called “Generalized neutrosophic set”. Wang et al [14] proposed another extension of 
neutrosophic set which is” single valued neutrosophic”. Also Wang et  al [15 ] introduced the notion 
of interval valued neutrosophic set which is an instance of neutrosophic set. It is characterized by an 
interval membership degree, interval indeterminacy degree and interval non-membership degree. 
K.Geogiev [ 16] Ye [ 17, 18], P. Majumdar and S.K. Samant [19 ] .S.Broumi and F. Smarandache 
[20,21 ,22 ]  L.Peid [23  , ] and so on 

In 1999 a Russian researcher , Molodotsov proposed  an new mathematical tool called” Soft set 
theory [ 24], for dealing with uncertainty and how soft set theory is free from the parameterization 
inadequacy syndrome of fuzzy set theory ,rough set theory, probability theory. 
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Although there many authors [ 25,26,27,28,29,32,33] have contributed  a lot towards fuzzification 

which leads to a series of mathematical models such as Fuzzy soft set generalized fuzzy soft set, 

possibility fuzzy soft set, fuzzy parameterized soft set and so on, intuitionstic fuzzy soft set which is 

based on a combination of the intuitionstic fuzzy sets and soft set models. Later a lot  of extentions of 

intuitionistic fuzzy soft [34] are appeared such as Generalized intuitionistic fuzzy soft set [35],

Possibility Intuitionistic Fuzzy Soft Set [36] and so on . Few studies are focused on neutrosophication 

of soft set theory. In [37] P.K.Maji, first  proposed a new mathematical model called “Neutrosophic 

Soft Set” and investigate some properties regarding neutrosophic soft union, neutrosophic soft 

intersection ,complement of  a neutrosophic soft  set ,De Morgan law etc. Furthermore , in 2013, 

S.Broumi and F. Smarandache [38]  combined the intuitionistic neutrosophic and soft set which lead 

to a new mathematical model called” intutionistic neutrosophic soft set”. They studied the notions of 

intuitionistic neutrosophic soft set union, intuitionistic neutrosophic soft set intersection, complement 

of intuitionistic neutrosophic soft set and several other properties of intuitionistic neutrosophic soft set  

along with examples and proofs of certain results. Also ,in [39] S.Broumi presented the concept of  

“Generalized neutrosophic soft  set” by combining the Generalized Neutrosophic Sets [40] and Soft 

set Models ,studied some properties on it, and presented an application of Generalized Neutrosophic 

Soft  Set [39] in decision making problem. S.Broumi and F.smarandache [41 ] introduced the 

necessity and possibility operators on intuitionstic neutrosophic  and investigated some properties. 

Recently, Irfan Deli [42  ] introduced the concept of interval valued neutrosophic soft set [42] as a 
combination of interval neutrosophic set and soft set. This concept generalizes the concept of the soft 
set [24 ], fuzzy soft set[26 ], intuitionstic fuzzy soft set [34 ],interval valued intuitionstic fuzzy soft 
set[43] ,the concept of neutrosophic soft set[37] and intuitionistic neutrosophic soft set [38]. 

This paper is an attempt to extend the concept of interval valued intuitionistic fuzzy soft relation 
(IVIFSS-relations) introduced by  A.Mukherjee et al  [45 ]to  IVNSS relation . 

The organization of this paper is as follow : In section 2, we brief y present some basic definitions and 
preliminary results are given which will be used in the rest of the paper. In section 3, relation interval 
neutrosophic soft relation is  presented. In section 4 varouis type of interval valued neutrosophic soft 
relations. In section 5, we concludes the paper. 

II.Preliminaries

Throughout this paper, let U be a universal set and E be the set of all possible parameters under 
consideration with respect to U, usually, parameters are attributes , characteristics, or properties of 
objects in U. We now recall some basic notions of neutrosophic set , interval neutrosophic set ,soft set 
, neutrosophic  soft set and  interval neutrosophic soft set. 
For more details, the reader may refer to [ 5,6,8,9,12].  

Definition 1 (see[3]).Neutrosophic set 
 Let U be an universe of discourse then the neutrosophic set A is an object having the form A = {< x: 
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� A(x), � A(x), � A(x) >,x∈ U}, where the functions �, �, � : U→]−0,1+[  define respectively the degree 
of membership , the degree of indeterminacy, and the degree of non-membership of the element x ∈ 
X to the set A with the condition.  

−0 ≤μ A(x) + ν A(x) + ω A(x) ≤ 3+. 
From philosophical point of view, the neutrosophic set takes the value from real standard or non-
standard subsets of ]−0,1+[.so instead of ]−0,1+[ we need to take the interval [0,1] for 
technical applications, because ]−0,1+[will be difficult to apply in the real applications  such as in 
scientific and engineering problems.  

Definition 2 (see [3]). A neutrosophic set A is contained in another neutrosophic set B i.e. A ⊆ B 
if ∀x ∈ U, μ A(x) ≤ μ B(x), ν A(x) ≤ ν B(x), ω A(x) ≥ ω B(x).  
A complete account of the operations and application of neutrsophic set  can be seen  in [3 ] [10 ].  

Definition 3 (see[7]).  Interval neutrosophic set 
Let X be a space of points (objects) with generic elements in X denoted by x. An interval valued 
neutrosophic set (for short IVNS) A in X is characterized by truth-membership function μ�(x), 
indeteminacy-membership function ν�(x) and falsity-membership function  ω�(x). For each point x 
in X, we have that  μ�(x), ν�(x), ω�(x) ∈  [0 ,1] . 

For two IVNS , ����� ={ <x , [μ�
� (x), μ�

�(x)] , [ν�
� (x), ν�

�(x)] , [ω�
� (x), ω�

�(x)]  > | x ∈ X }

And ����� ={ <x , [μ�
� (x), μ�

�(x)] , [ν�
� (x), ν�

�(x)] , [ω�
� (x), ω�

�(x)]> | x ∈ X } the two relations are
defined as follows: 

(1) ����� ⊆  ����� if and only if μ�
� (x) ≤ μ�

� (x),μ�
�(x) ≤ μ�

�(x) , ν�
� (x) ≥ ν�

� (x) , ω�
�(x) ≥ ω�

�(x) ,
 ω�

� (x) ≥ Fω�
� (x) , ω�

�(x) ≥ ω�
�(x)

(2) ����� =  �����  if and only if , μ�(x) =μ�(x) , ν�(x) =ν�(x) , ω�(x) =ω�(x) for any x ∈ X 

As an illustration ,let us consider the following example. 
Example 1.Assume that the universe of discourse U={x1,x2,x3},where x1 characterizes the capability, 
x2 characterizes the trustworthiness and x3 indicates the prices of the objects. It may be further 
assumed that the values of x1, x2 and x3 are in [0,1] and they are obtained from some questionnaires of 
some experts. The experts may impose their opinion in three components viz. the degree of goodness,  
the degree of indeterminacy and that of poorness to explain the characteristics of the objects. Suppose 
A is an interval neutrosophic set (INS) of U, such that, 
A = {< x1,[0.3 0.4],[0.5 0.6],[0.4 0.5] >,< x2, ,[0.1 0.2],[0.3 0.4],[0.6 0.7]>,< x3, [0.2 0.4],[0.4 
0.5],[0.4 0.6] >}, where the degree of goodness of capability is 0.3, degree of indeterminacy of 
capability is 0.5 and degree of falsity of capability is 0.4 etc. 

Definition 4 (see[4]). Soft set 
Let U be an initial universe set and E be a set of parameters. Let P(U) denotes the power set of U. 
Consider a nonempty set A, A ⊂ E. A pair (K, A) is called a soft set over U, where K is a mapping 
given by K : A → P(U).  
As an illustration ,let us consider the following example. 
Example 2 .Suppose that U is the set of houses under consideration, say U = {h1, h2, . . ., h5}. Let E 
be the set of some attributes of such houses, say E = {e1, e2, . . ., e8}, where e1, e2, . . ., e8 stand for the 
attributes “beautiful”, “costly”, “in the green surroundings’”, “moderate”, respectively.  
In this case, to define a soft set means to point out expensive houses, beautiful houses, and so on. For 
example, the soft set (K,A) that describes the “attractiveness of the houses” in the opinion of a buyer, 
say Thomas, may be defined like this:  
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A={e1,e2,e3,e4,e5};  
K(e1) = {h2, h3, h5}, K(e2) = {h2, h4}, K(e3) = {h1}, K(e4) = U, K(e5) = {h3, h5}. 

Definition 5 [ ] ( interval neutrosophic soft set) . 
Let U be an initial universe set and A ⊂ E  be a set of parameters. Let IVNS(U) denotes the set of all 
interval neutrosophic subsets of U. The collection (K,A) is termed to be the soft interval neutrosophic 
set over U, where F is a mapping given by K : A → IVNS(U).  
The interval neutrosophic soft set defined over an universe   is denoted by INSS. 
To illustrate let us consider the following example: 
Let U be the set of houses under consideration and E is the set of parameters (or qualities). Each 
parameter is a interval neutrosophic word or sentence involving interval neutrosophic words. Consider 
E = { beautiful, costly, in the green surroundings, moderate, expensive }. In this case, to define a 
interval neutrosophic soft set means to point out beautiful houses, costly houses, and so on. Suppose 
that, there are five houses in the universe U given by, U = {h1,h2,h3,h4,h5} and the set of parameters A 
= {e1,e2,e3,e4}, where each  ei  is a specific criterion for houses: 

 e1 stands for ‘beautiful’, 
 e2 stands for ‘costly’, 

 e3 stands for ‘in the green surroundings’, 
 e4 stands for ‘moderate’, 

Suppose that, 

K(beautiful)={< h1,[0.5, 0.6], [0.6, 0.7], [0.3, 0.4]>,< h2,[0.4, 0.5], [0.7 ,0.8], [0.2, 0.3] >, < h3,[0.6,

0.7],[0.2 ,0.3],[0.3, 0.5] >,< h4,[0.7 ,0.8],[0.3, 0.4],[0.2, 0.4] >,< h5,[ 0.8, 0.4] ,[0.2 ,0.6],[0.3, 0.4] 

>}.K(costly)={< b1,[0.5, 0.6], [0.6, 0.7], [0.3, 0.4]>,< h2,[0.4, 0.5], [0.7 ,0.8], [0.2, 0.3] >, < h3,[0.6,

0.7],[0.2 ,0.3],[0.3, 0.5] >,< h4,[0.7 ,0.8],[0.3, 0.4],[0.2, 0.4] >,< h5,[ 0.8, 0.4] ,[0.2 ,0.6],[0.3, 0.4] >}. 

K(in the green surroundings)= {< h1,[0.5, 0.6], [0.6, 0.7], [0.3, 0.4]>,< b2,[0.4, 0.5], [0.7 ,0.8], [0.2,

0.3] >, < h3,[0.6, 0.7],[0.2 ,0.3],[0.3, 0.5] >,< h4,[0.7 ,0.8],[0.3, 0.4],[0.2, 0.4] >,< h5,[ 0.8, 0.4] ,[0.2 

,0.6],[0.3, 0.4] >}.K(moderate)={< h1,[0.5, 0.6], [0.6, 0.7], [0.3, 0.4]>,< h2,[0.4, 0.5], [0.7 ,0.8], [0.2, 0.3]

>, < h3,[0.6, 0.7],[0.2 ,0.3],[0.3, 0.5] >,< h4,[0.7 ,0.8],[0.3, 0.4],[0.2, 0.4] >,< h5,[ 0.8, 0.4] ,[0.2 ,0.6],[0.3, 

0.4] >}. 

III.Relations on Interval Valued Neutrosophic Soft Sets 

Definition 6. 

Let U  be an initial universe and (F,A) and (G,B) be two interval valued neutrosophic soft set . 
Then a relation between them is defined as a pair (H, AxB), where H is mapping given by H: 
AxB→IVNS(U). This is called an interval valued neutrosophic soft sets relation ( IVNSS-
relation for short).the collection of relations on interval valued neutrosophic soft sets on Ax 
Bover U is denoted by *+(�x �) 
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Remark 1:  Let U be an initial universe and (F,, A,),( F., A.),,...,( F/, A/),  be n numbers of 
interval valued neutrosophic soft sets over U. Then a relation * between them is defined as a 
pair (H, A,xA.x...xA/), where H is mapping given by H: A,xA.x.... xA/ → IVIFS(U) 

Example 3. (i) Let us consider an interval valued neutrosophic soft set (F,A) which describes 
the `attractiveness of the houses' under consideration. Let the universe set U ={ℎ, , ℎ. , ℎ1, 
ℎ2, ℎ3}.and the set of parameter A={beautiful(4,), in the green surroundings (41)}. 

Then the tabular representation of the interval valued neutrosophic soft set (F, A) is given 
below: 

(ii) Now Let us consider an interval valued neutrosophic soft set (G,A) which describes the 
`cost of the houses' under consideration. Let the universe set U ={ℎ, , ℎ. , ℎ1, ℎ2, ℎ3}. and the 
set of parameter A={costly(4.), moderate (42)}. 

Then the tabular representation of the interval valued neutrosophic soft set (G, b) is given 
below: 

Let us consider the two IVNSS-relations P and Q on the two given interval valued 
neutrosophic soft sets given below: 

P= (H, A xB) 

U beautiful(4,) in the green 
surroundings (41) 

h1 ([0.5, 0.6],[0.3 0.8],[0.3,0.4]) ([0.2, 0.6],[0.1, 0.3],[0.2,0.8]) 
h2 ([0.2, 0.5],[0.4, 0.7],[0.5,0.6]) ([0.4, 0.5],[0.3, 0.5],[0.2,0.4]) 
h3 ([0.3, 0.4],[0.7, 0.9],[0.1,0.2]) ([0.2, 0.3],[0.1, 0.3],[0.4,0.5]) 
h4 ([0.1, 0.7],[0.2, 0.4],[0.6,0.7]) ([0.5, 0.6],[0.4, 0.5],[0.3,0.4]) 
h5 ([0.4, 0.5],[0.3, 0.5],[0.2,0.4]) ([0.3, 0.6],[0.2, 0.3],[0.5,0.6]) 

U costly(4.) moderate (42)
h1 ([0.3, 0.4],[0.7, 0.9],[0.1,0.2]) ([0.4, 0.6],[0.7, 0.8],[0.1,0.4]) 
h2 ([0.6, 0.8],[0.3, 0.4],[0.1,0.7]) ([0.1, 0.5],[0.4, 0.7],[0.5,0.6]) 
h3 ([0.3, 0.6],[0.2, 0.7],[0.3,0.4]) ([0.4, 0.7],[0.1, 0.3],[0.2,0.4]) 
h4 ([0.6, 0.7],[0.3, 0.4],[0.2,0.4]) ([0.3, 0.4],[0.7, 0.9],[0.1,0.2]) 
h5 ([0.2, 0.6],[0.2, 0.4],[0.3,0.5]) ([0.5, 0.6],[0.6, 0.7],[0.3,0.4]) 

U  (4, ,4.) (4, ,42) (41 ,4.) (41 ,42)
H1 ([0.2, 0.4],[0.3, 0.4],[0.1,0.2]) ([0.3, 0.4],[0.3, 0.5],[0.3,0.4]) ([0.3, 0.5],[0.3, 0.4],[0.3,0.5]) ([0.4, 0.5],[0.3, 0.6],[0.2, 1]) 
h2 ([0.1,0. 3],[0.4, 0.5],[1, 1]) ([0.1, 0.2],[0, 0],[0.2,0.4]) ([0.4, 0.5],[0.1, 0.3],[0.2,0.4]) ([0.3, 0.5],[0.2, 0.4],[0.4, 0.5] 
h3 ([0.2, 0.6],[0.1, 0.4],[0.2,0.4]) ([0.2, 0.6],[0.1, 0.3],[1, 1]) ([0.2, 0.3],[0.1, 0.3],[0.3,0.6]) ([0.2, 0.5],[0.2, 0.3],[0,0.4]) 
h4 ([0.2, 0.4],[0.3, 0.5],[0, 1]) ([0.3, 0.4],[0.4, 0.5],[0.1,0.2]) ([0.3, 0.4],[0.3, 0.4],[0.4,0.5]) ([0, 0.2],[0.4, 0.5],[0.6,0.7]) 
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Q= (J,A xB) 

The tabular representations of P and Q are called relational matrices for P and Q respectively. 
From above we have , μ5678,79:(h, )= [ 0.2 ,0.3] , υ5678,79:(h. ) =[ 0.3 , 0.4] and ω567=,7>: = .
But this intervals lie on the 1st row-1st column and 2nd row -1st column respectively. So we 
denote μ5678,79:(h, )|(, ,,)= [0.2, 0.3] and υ5678,79:(h. )|(, ,,) =[ 0.3 , 0.4] and ω567=,7>:|(, ,,) =

[0.3, 0.4] etc to make the clear concept about what are the positions of the intervals in the 
relational matrices. 

Defintion 7 : The order of the relational matrix is ( @, A ), where  @ = number of the universal 
points and A = number of pairs of parametrers considered in the relational matrix. In example 
3 both the relational matrix for P and Q are of order (5,4). If @ = A ,then the relational matrix 
is called a square matrix 

Defintion 8. Let P , Q ∈ *+(�B �), P= (H, AxB) ,Q = (J, AxB) and the order of their 
relational matrices are same.Then we define 

(i) P ⋃ Q= (H ∎J, AxB) where  H∎ J :AxB →IVNS(U) is defined as 
 (H ∎J)( 4E,4F)= H(4E,4F) ∨ J(4F,4F) for (4E,4F) ∈ A x B, where ∨ denotes the interval 
valued neutrosophic union. 

(ii)  P ∩ Q= ( H ⋄J, AxB) where  H⋄J :AxB →IVNS(U) is defined as (H⋄J)( 4E,4F)= 
H(4E,4F) ∧ J(4E,4F) for (4F,4F) ∈ A x B, where ∧ denotes the interval valued 
neutrosophic intersection 

(iii) PL= (∼H, AxB) , where  ∼H :AxB →IVNS(U) is defined as 
∼H( 4E,4F)=[H(4E,4F)] O for (4E,4F) ∈ A x B, where P denotes the interval valued
neutrosophic complement. 

Example 4 .Consider the interval valued neutrosophic soft sets (F,A) and (G,B) given in 
example 3. Let us consider the two IVNSS-relations Q, and R, given below: 

Q,=(J, A x B): 

U  (4, ,4.) (4, ,42) (41 ,4.) (41 ,42)
H1 ([0.2, 0.4],[0.3, 0.4],[0.1,0.2]) ([0.3, 0.4],[0.3, 0.5],[0.3,0.4]) ([0.3, 0.5],[0.3, 0.4],[0.3,0.5]) ([0.4, 0.5],[0.3, 0.6],[0.2, 1]) 
h2 ([0.1,0. 3],[0.4, 0.5],[1, 1]) ([0.1, 0.2],[0, 0],[0.2,0.4]) ([0.4, 0.5],[0.1, 0.3],[0.2,0.4]) ([0.3, 0.5],[0.2, 0.4],[0.4, 0.5] 
h3 ([0.2, 0.6],[0.1, 0.4],[0.2,0.4]) ([0.2, 0.6],[0.1, 0.3],[1, 1]) ([0.2, 0.3],[0.1, 0.3],[0.3,0.6]) ([0.2, 0.5],[0.2, 0.3],[0,0.4]) 
h4 ([0.2, 0.4],[0.3, 0.5],[0, 1]) ([0.3, 0.4],[0.4, 0.5],[0.1,0.2]) ([0.3, 0.4],[0.3, 0.4],[0.4,0.5]) ([0, 0.2],[0.4, 0.5],[0.6,0.7]) 
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R,=(J, A x B): 

Then Q, ∪ R, : 

Q, ∩ R, : 

Q,
L

U  (4, ,4.) (4, ,42) (41 ,4.) (41 ,42)
H1 ([0.2, 0.4],[0.3, 0.4],[0.1,0.2]) ([0.3, 0.4],[0.3, 0.5],[0.3,0.4]) ([0.3, 0.5],[0.3, 0.4],[0.3,0.5]) ([0.4, 0.5],[0.3, 0.6],[0.2, 1]) 
h2 ([0.1,0. 3],[0.4, 0.5],[1, 1]) ([0.1, 0.2],[0, 0],[0.2,0.4]) ([0.4, 0.5],[0.1, 0.3],[0.2,0.4]) ([0.3, 0.5],[0.2, 0.4],[0.4, 0.5] 
h3 ([0.2, 0.6],[0.1, 0.4],[0.2,0.4]) ([0.2, 0.6],[0.1, 0.3],[1, 1]) ([0.2, 0.3],[0.1, 0.3],[0.3,0.6]) ([0.2, 0.5],[0.2, 0.3],[0,0.4]) 
h4 ([0.2, 0.4],[0.3, 0.5],[0, 1]) ([0.3, 0.4],[0.4, 0.5],[0.1,0.2]) ([0.3, 0.4],[0.3, 0.4],[0.4,0.5]) ([0, 0.2],[0.4, 0.5],[0.6,0.7]) 

U  (4, ,4.) (4, ,42) (41 ,4.) (41 ,42)
H1 ([0.5, 0.8],[0.1, 0.2],[0.1,0.2]) ([0.2, 0.3],[0.3, 0.6],[0.3,0.4]) ([0.2 0.5],[0.3, 0.5],[0.2,0.4]) ([0.2, 0.4],[0.2, 0.3],[1, 1]) 
h2 ([0.4, 0.5],[0.2, 0.4],[1, 1]) ([0.4, 0.6],[0.2, 0.3],[0.2,0.4]) ([0.4, 0.5],[0.4, 0.5],[0.2,0.5]) ([0.4, 0.5],[0.1, 0.2],[1, 1]) 
h3 ([0.2, 0.3],[0.5, 0.6],[0.2,0.4]) ([0.3, 0.4],[0.4, 0.5],[1, 1]) ([0.7, 0.8],[0.1, 0.2],[0.2,0.5]) ([0.3, 0.5],[0.3, 0.4],[0,0.4]) 
h4 ([0.3, 0.5],[0.3, 0.4],[0, 1]) ([0.3, 0.5],[0.2, 0.4],[0.1,0.2]) ([0.2, 0.4],[0.2, 0.3],[0,0.5]) ([0.3, 0.7],[0.1, 0.3],[0.6,0.7]) 

U  (4, ,4.) (4, ,42) (41 ,4.) (41 ,42)
H1 ([0.5, 0.8],[0.1, 0.2],[0.1,0.2]) ([0.3, 0.4],[0.3, 0.5],[0.3,0.4]) ([0.3 0.5],[0.3, 0.4],[0.2,0.4]) ([0.4, 0.5],[0.2, 0.3],[0.2, 1]) 
h2 ([0.4, 0.5],[0.2, 0.4],[1, 1]) ([0.4, 0.6],[0.2, 0.3],[0.2,0.4]) ([0.4, 0.5],[0.1, 0.3],[0.2,0.4]) ([0.4, 0.5],[0.1, 0.2],[0.4, 0.5]) 

h3 ([0.2, 0.6],[0.1, 0.4],[0.2,0.4]) ([0.3, 0.6],[0.1, 0.3],[1, 1]) ([0.7, 0.8],[0.1, 0.2],[0.2,0.5]) ([0.3, 0.5],[0.3, 0.4],[0,0.4]) 
h4 ([0.3, 0.5],[0.3, 0.4],[0, 1]) ([0.3, 0.5],[0.2, 0.4],[0.1,0.2]) ([0.3, 0.4],[0.2, 0.3],[0,0.5]) ([0.3, 0.7],[0.1, 0.3],[0.6,0.7]) 

U  (4, ,4.) (4, ,42) (41 ,4.) (41 ,42)
H1 ([0.2, 0.4],[0.3, 0.4],[0.1,0.2]) ([0.2, 0.3],[0.3, 0.6],[0.3,0.4]) ([0.2 0.5],[0.3, 0.5],[0.3,0.5]) ([0.2, 0.4],[0.3, 0.6],[1, 1]) 
h2 ([0.1, 0.3],[0.4, 0.5],[1, 1]) ([0.1, 0.2],[0.2, 0.3],[0.2,0.4]) ([0.4, 0.5],[0.4, 0.5],[0.2,0.5]) ([0.3, 0.5],[0.2, 0.4],[1, 1]) 
h3 ([0.2, 0.3],[0.5, 0.6],[0.2,0.4]) ([0.2, 0.4],[0.4, 0.5],[1, 1]) ([0.7, 0.8],[0.1, 0.3],[0.3,0.6]) ([0.2, 0.5],[0.3, 0.4],[0,0.4]) 
h4 ([0.2, 0.4],[0.3, 0.5],[0, 1]) ([0.3, 0.4],[0.4, 0.5],[0.1,0.2]) ([0.2, 0.4],[0.3, 0.4],[0.4,0.5]) ([0, 0.2],[0.4, 0.5],[0.6,0.7]) 

U  (4, ,4.) (4, ,42) (41 ,4.) (41 ,42)
H1 ([0.1, 0.2],[0.6, 0.7],[0.2,0.4]) ([0.3, 0.4],[0.5, 0.7],[0.3,0.4]) ([0.3 0.5],[0.6, 0.7],[0.3,0.5]) ([0.2, 1],[0.4, 0.7],[0.4, 0.5]) 
h2 ([1, 1],[0.5, 0.6],[0.1, 0.3]) ([0.2, 0.4],[1, 1],[0.1,0.2]) ([0.2, 0.4],[0.7, 0.9],[0.4,0.5]) ([0.4, 0.5],[0.6, 0.8],[0.3, 

0.5]) 
h3 ([0.2, 0.4],[0.6, 0.9],[0.2,0.6]) ([1, 1],[0.7, 0.9],[0.2, 0.6]) ([0.3, 0.6],[0.7, 0.9],[0.2,0.3]) ([0, 0.4],[0.7, 0.8],[0.2,0.5]) 
h4 ([0, 0.1],[0.5, 0.7],[0.2, 0.4]) ([0.1, 0.2],[0.5, 0.6],[0.3,0.4]) ([0.4, 0.5],[0.6, 0.7],[0.3,0.4]) ([0.6, 0.7],[0.5, 0.6],[0,0.2]) 
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Theorem 1.   Let P, Q , R ∈ *+(�B �)  and the order of their relational matrices are 
same.Then the following properties hold: 

a) (Q ∪ R)O =QO ∩ RO

b) (Q ∩ R)O =QO ∪ RO

c) P ∪ (Q ∪ R)=(P ∪ Q) ∪ R
d) P ∩ (Q ∩ R)=(P ∩ Q) ∩ R
e) P ∩ (Q ∪ R)=(P ∩ Q) ∪ (P ∩ R)
f) P ∪ (Q ∩ R)=(P ∪ Q) ∩ (P ∪ R)

Proof. a) let P= (H, AxB), Q =(J,AxB) .then P ∪ Q = (H ∎J ,AxB), where H ∎J: Ax B 
→IVNS(U) is defined as 

( H ∎J) (4E, 4F ) = H(4E, 4F ) ∨ J(4E, 4F ) for (4E, 4F )∈ A x B. 

So (Q ∪ R)O= (∼H ∎J,AxB),where ∼H ∎J:A xB→IVNS(U) is defined as (∼H ∎J) (4E, 4F )

=[H(4E, 4F  )  ∨  J(4E, 4F  )] O

=[{< hk , μH64X,4Y:
(hk ), υH64X,4Y:(hk ), ωH64X,4Y:(hk ) > : hk ∈  U}  ∨  {<

hk , μJ64X,4Y:
(hk ), υJ64X,4Y:(hk ), ωJ64X,4Y:(hk ) > : hk ∈  U}] O

={< h^ , [max (inf μ56`a,`b:(h^ ), infμc6`a,`b:(h^ ), max (sup μ56`a,`b:(h^ ), supμc6`a,`b:(h^ )],

[min (inf υ56`a,`b:(h^ ), infυc6`a,`b:(h^ ), min (sup υ56`a,`b:(h^ ), supυc6`a,`b:(h^ )],

[min (inf ω56`a,`b:(h^ ), infωc6`a,`b:(h^ ), min (sup ω56`a,`b:(h^ ), supωc6`a,`b:(h^ )] > : h^ ∈  U}L

={<h^ , [min (inf ω56`a,`b:(h^ ), infωc6`a,`b:(h^ ), min (sup ω56`a,`b:(h^ ), supωc6`a,`b:(h^ )],

[1- min (sup υ56`a,`b:(h^ ), supυc6`a,`b:(h^ ) ,1- min (inf υ56`a,`b:(h^ ), infυc6`a,`b:(h^ )],

[max (inf μ56`a,`b:(h^ ), infμc6`a,`b:(h^ ), max (sup μ56`a,`b:(h^ ), supμc6`a,`b:(h^ )]  > : h^ ∈  U}

Now QO ∩ RO = (∼H ,A x B) ∩ (∼J ,A x B) ,where ∼H , ∼J: A xB→IVNS(U) are defined as  

∼ H(4E, 4F )= [H(4E,4F)] O and ∼ J(4E, 4F )= [J(4E,4F)] O for (4F,4F) ∈ A x B, we have

(∼H ,A x B) ∩ (∼J ,A x B) =(∼H ⋄∼J, A x B) (4E, 4F ) 

Now for (4E, 4F ) ∈ A x B., (∼H ⋄∼J) (4E, 4F )= ∼H(4F, 4F ) ∧∼J(4E, 4F )= 

{< h^ , [inf ω56`a,`b:(h^ ), Supω56`a,`b:(h^ )], [1 − Sup υ56`a,`b:(h^ ), 1 − inf υ56`a,`b:(h^ )], [inf μ56`a,`b:(h^ ), Supμ56`a,`b:(h^ )]  > : h^ ∈  U} 
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∧{< h^ , [inf ωc6`a,`b:(h^ ), Supωc6`a,`b:(h^ )], [1 − Sup υc6`a,`b:(h^ ), 1 − inf υc6`a,`b:(h^ )], [inf μc6`a,`b:(h^ ), Supμc6`a,`b:(h^ )]  > : h^ ∈  U} 

= {<h^  , [min (inf ω56`a,`b:(h^ ), inf ω56`a,`b:(h^ )), min (Supωμ56`a,`b:(h^ ), Supωc6`a,`b:(h^ ), ], 

[ max ((1 − Sup υ56`a,`b:(h^ )), (1 − Sup υc6`a,`b:(h^ ))) , max ((1 − inf υ56`a,`b:(h^ )), (1 − inf υc6`a,`b:(h^ ))) ] , 

[max (inf μ56`a,`b:(h^ ), inf μc6`a,`b:(h^ )), max (Sup μ56`a,`b:(h^ ), Sup μc6`a,`b:(h^ ))] > : h^ ∈  U} 

={<h^ , [min (inf ω56`a,`b:(h^ ), infωc6`a,`b:(h^ ), min (sup ω56`a,`b:(h^ ), supωc6`a,`b:(h^ )],

[1- min (sup υ56`a,`b:(h^ ), supυc6`a,`b:(h^ ) ,1- min (inf υ56`a,`b:(h^ ), infυc6`a,`b:(h^ )],

[max (inf μ56`a,`b:(h^ ), infμc6`a,`b:(h^ ), max (sup μ56`a,`b:(h^ ), supμc6`a,`b:(h^ )]  > : h^ ∈  U}

Then , (Q ∪ R)O =QO ∩ RO 

b) Proof is similar to a)

c) let P= (H, AxB), Q =(J, AxB)  and R= (K, AxB).Then Q ∪ R = (H ∎J, A XB), where

H ∎J : A xB→IVNS(U) is defiend as (H∎ J) 64E,4F: =H(4F, 4F ) ∨ J(4E, 4F ) for  (4F,4F) ∈ A x B . 

So( Q ∪ R ) ∪ R=(( H ∎J) ∎K, AxB), where ( H ∎J) ∎K : A xB→IVNS(U)  is defined as  

for  (4F,4F) ∈ A x B ( H ∎J) ∎K ) (4F,4F) = H(4E, 4F ) ∨ J(4E, 4F ) ∨ K(4E, 4F ) .Now as 

(H(4E, 4F ) ∨ J(4E, 4F )) ∨ K(4E, 4F ) = H(4E, 4F ) ∨ (J(4E, 4F ) ∨ K(4E, 4F )).therefore 

( H ∎J) ∎K ) (4F,4F) =(( H ∎ (J ∎K )) (4F,4F), Also we have P∪(Q∪R)=(P ∪ Q) ∪ R=( H ∎ (J 
∎K),AxB).consequently, P ∪ (Q ∪ R)=(P ∪ Q) ∪ R 

d) Proof is similar to c)

e) let P= (H, AxB), Q =(J,AxB)  and R= (K,AxB).Then R ∪ j = (J ∎K, A XB), where

J ∎K: A xB→IVNS(U) is defiend as (J ∎K) 64E,4F: = J(4F, 4F ) ∨ K(4E, 4F ) for  (4F,4F) ∈ A x B . 

Then  P ∩ (Q  ∪ R)=(( H⋄ (J ∎K), AxB), where H⋄ (J ∎K): A xB→IVNS(U)  is defined as 

for  (4F,4F) ∈ A x B, (H⋄ (J ∎K)) (4F,4F) = H(4E, 4F ) ∧ (J(4E, 4F ) ∨ K(4E, 4F )) . 

since H(4E, 4F ) ∧ (J(4E, 4F ) ∨ K(4E, 4F )) =(H(4E, 4F ) ∧ (J(4E, 4F )) ∨( H(4E, 4F ) ∧ K(4E, 4F )).We 
have  (H⋄ (J ∎K)) (4F,4F) = (H(4E, 4F ) ∧ (J(4E, 4F )) ∨( H(4E, 4F ) ∧ K(4E, 4F )). 

 Also we have (P∩Q) ∪(P∩ R)= (H⋄J, AxB) ∪ (H ⋄ K, AxB) =(( H⋄ J) ∎(H⋄K),A xB) Now for 
(4F,4F) ∈ A x B , (( H⋄ J) ∎(H⋄K)) (4F,4F) = (H⋄ J)(4F,4F) ∨ (H⋄ K) (4F,4F)  =( H(4E, 4F ) ∧ J(4E, 4F 
)) ∨ (H(4E, 4F ) ∧ K(4E, 4F )) =(H⋄ (J ∎K)) (4F,4F). consequently, P ∩ (Q ∪ R)=(P ∩ Q) ∪ (P ∩ 
R). 

f)Proof is similar  to e) 

Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

296



Definition 9. Let P, Q ∈ *+(�B �) and the ordre of their relational matrices are same. Then 

P ⊆ Q if H (4F,4F)  ⊆ J (4F,4F)  for (4F,4F)  ∈ A x B where P=(H, A x B) and Q = (J, A x B) 

Example 5: 

P 

Q 

Definition 10 :Let U be an initial universe and (F, A) and (G, B) be two interval valued 
neutrosophic soft sets. Then a null relation between them is denoted 

by O�  and is defineded as O� =(Ho , A xB) where Ho 64E,4F:={<h^ , [0, 0],[1, 1],[1, 1]>; h^ ∈ 
U} for 64E,4F: ∈ A xB. 

Example 6. Consider the interval valued neutrosophic soft sets (F, A) and (G, B) given in 
example 3. Then a null relation between them is given by 

Remark 2 . It can be easily seen that P ∪ O�  =P and P ∩ O�  =O�  for any P ∈ *+(�B �) 

Definition 11 :Let U be an initial universe and (F, A) and (G, B) be two interval 

valued neutrosophic soft sets. Then an absolute relation between them is denoted 

by I�  and is defineded as I� =(H� , A xB) where H� 64E,4F:={<h^ , [1, 1],[0, 0],[0, 0]>; h^ ∈ 
U} for 64E,4F: ∈ A xB. 

U  (4, ,4.) (4, ,42) (41 ,4.) (41 ,42)
h1 ([0.2, 0.3],[0.2, 0.3],[0.4, 0.5]) ([0.2, 0.3],[0.7, 0.8],[0.2,0.4]) ([0.3, 0.4],[0.7, 0.8],[0.2,0.5]) ([0.4, 0.6],[0.7, 0.8],[0.5,0.6]) 
h2 ([0.4, 0.5],[0.3, 0.5,[0.2,0.8]) ([1, 1],[0, 0],[0, 0]) ([0.1, 0.5],[0.4, 0.7],[0.5,0.6]) ([0.1, 0.3],[0.4, 0.7],[0.5,0.6]) 
h3 ([0.2, 0.4],[0.3, 0.4],[0.3,0.4]) ([0.3, 0.5,[0.4 0.6],[0.2,0.5]) ([1, 1],[0, 0],[0, 0]) ([0.1, 0.2],[0.4, 0.5],[0.3,0.5]) 
h4 ([0.3, 0.5],[0.3, 0.4],[0.3,0.6]) ([0.2, 0.3],[0.7, 0.9],[0.4,0.5]) ([0.3, 0.4],[0.7, 0.9],[0.3,0.4]) ([0.2, 0.3],[0.3, 0.5],[0.5, 0.6]) 

U  (4, ,4.) (4, ,42) (41 ,4.) (41 ,42)
h1 ([0.3, 0.4],[0.1, 0.2],[0.3, 0.4]) ([0.4, 0.6],[0.3, 0.5],[0.1,0.4]) ([0.5, 0.6],[0.3, 0.5],[0.1,0.4]) ([0.5, 0.7],[0.2, 0.3],[0.3,0.4]) 
h2 ([0.6, 0.8],[0.3, 0.4],[0.1,0.7]) ([1, 1],[0, 0],[0, 0]) ([0.3, 0.6],[0.1, 0.3],[0.2,0.3]) ([0.3, 0.5],[0.3, 0.5],[0.2,0.4]) 
h3 ([0.3, 0.6],[0.2, 0.3],[0.1,0.2]) ([0.4, 0.7],[0.1, 0.3],[0.2,0.4]) ([1, 1],[0, 0],[0, 0]) ([0.4, 0.7],[0.1, 0.3],[0.2,0.4]) 
h4 ([0.6, 0.7],[0.1, 0.2],[0.2,0.4]) ([0.3, 0.4],[0.4, 0.6],[0.1,0.2]) ([0.4, 0.6],[0.1, 0.4],[0.1,0.2]) ([0.4, 0.5],[0.1, 0.2],[0.2, 0.3]) 

U  (4, ,4.) (4, ,42) (41 ,4.) (41 ,42)
h1 ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) 
h2 ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) 
h3 ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) 
h4 ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) 
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Example 7. Consider the interval valued neutrosophic soft sets (F, A) and (G, B) given in 
example 3. Then an absolute relation between them is given by 

Remark 3 . It can be easily seen that P ∪ I�  =I�  and P ∩ I�  =P for any P ∈ *+(�B �) 

Definition 12 :Let q  be a sub-collection of interval valued neutrosophic soft set relations of 
the same order belonging to *+(�B �).Then q is said to form a relational topology over 
*+(�B �) if the following conditions are satisfied: 

(i) O� , I�  ∈ q 
(ii) If 
(iii) If P, , P. ∈ q ,then P, ∩ P. ∈ q 

Then we say that (*+(�B �)   ,  q)  is a conditional relational topological space 

Example 8: Consider example 3. Then the collection q={O� , I� ,P,Q} forms a relational 
topology on *+(�B �). 

IV .Various type of interval valued neutrosophic soft relation 

In this section , we present  some basic properties of IVNSS relation. Let P ∈ *+(�B �)and 
P=(H, A xB) and Q=(J, A xB) whose relational matrix is a square matrix 

Defintion 13. An  IVNSS-relation P is said to be reflexive if for (4E, 4F ) ∈ A x B  and h^ ∈ 
U, such that μ56`a,`b:(h^ )|(s,/) = [1, 1] , υ56`a,`b:(h^ )|(s,/) =[0, 0] and ω56`a,`b:(h^ )|(s,/)

= [0 0] for  m = n=k 

Example 9: U ={ℎ, , ℎ. , ℎ1, ℎ2}Let us consider the interval valued neutrosophic soft sets (F, 
A) and (G, B) where A= {4,, 41 } and B ={4., 42 } then a reflexive IVNSS-relation between
them is 

U  (4, ,4.) (4, ,42) (41 ,4.) (41 ,42)
h1 ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) 
h2 ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) 
h3 ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) 
h4 ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) 

U  (4, ,4.) (4, ,42) (41 ,4.) (41 ,42)
h1 ([1, 1],[0, 0],[0, 0]) ([0.4, 0.6],[0.7, 0.8],[0.1,0.4]) ([0.4, 0.6],[0.7, 0.8],[0.1,0.4]) ([0.4, 0.6],[0.7, 0.8],[0.1,0.4]) 
h2 ([0.6, 0.8],[0.3, 0.4],[0.1,0.7]) ([1, 1],[0, 0],[0, 0]) ([0.1, 0.5],[0.4, 0.7],[0.5,0.6]) ([0.1, 0.5],[0.4, 0.7],[0.5,0.6]) 
h3 ([0.3, 0.6],[0.2, 0.7],[0.3,0.4]) ([0.4, 0.7],[0.1, 0.3],[0.2,0.4]) ([1, 1],[0, 0],[0, 0]) ([0.4, 0.7],[0.1, 0.3],[0.2,0.4]) 
h4 ([0.6, 0.7],[0.3, 0.4],[0.2,0.4]) ([0.3, 0.4],[0.7, 0.9],[0.1,0.2]) ([0.3, 0.4],[0.7, 0.9],[0.1,0.2]) ([1, 1],[0, 0],[0, 0]) 
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Defintion 14. An  IVNSS-relation P is said to be anti- reflexive if for (4E, 4F ) ∈ A x B and 
h^ ∈ U, such that μ56`a,`b:(h^ )|(s,/) = [0, 0] , υ56`a,`b:(h^ )|(s,/) =[0, 0] and

ω56`a,`b:(h^ )|(s,/) = [1 1] for m = n=k

Example 10: let U ={ℎ, , ℎ. , ℎ1, ℎ2}. Let us consider the interval valued neutrosophic soft 
sets (F, A) and (G, B) where A= {4,, 41 } an B ={4., 42} then an anti-reflexive IVNSS-
relation between them is 

Defintion 15. An  IVNSS-relation P is said to be symmetric  if for (4E, 4F ) ∈ A x B and h^ ∈ 
U, ∃  (4E, 4F ) ∈ A x B and hv   ∈ U such that μ56`a,`b:(h^ )|(s,/) = μ56`w,`x:(hv )|(/,s) ,

υ56`a,`b:(h^ )|(s,/) = υ56`w,`x:(hv )|(/,s)  and ω56`a,`b:(h^ )|(s,/) = ω56`w,`x:(hv )|(/,s)  

Example 11: let U ={ℎ, , ℎ. , ℎ1, ℎ2}. Let us consider the interval valued neutrosophic soft 
sets (F, A) and (G, B) where A= {4,, 41 } an B ={4., 42 } then a symmetric  IVNSS-relation 
between them is 

Defintion 16. An  IVNSS-relation P is said to be anti-symmetric  if for each  (4E, 4F ) ∈ A x B 
and h^ ∈ U, ∃  (4E, 4F ) ∈ A x B and hv   ∈ U such that either μ56`a,`b:(h^ )|(s,/) ≠

μ56`w,`x:(hv )|(/,s) , υ56`a,`b:(h^ )|(s,/) ≠ υ56`w,`x:(hv )|(/,s) and ω56`a,`b:(h^ )|(s,/)

≠ ω56`w,`x:(hv )|(/,s)   or μ56`a,`b:(h^ )|(s,/) = μ56`w,`x:(hv )|(/,s)  [ 0, 0] ,

υ56`a,`b:(h^ )|(s,/) = υ56`w,`x:(hv )|(/,s) =[ 0 ,0 ] and ω56`a,`b:(h^ )|(s,/)

= ω56`w,`x:(hv )|(/,s) =[1 , 1]

Example 12: let U ={ℎ, , ℎ. , ℎ1, ℎ2}. Let us consider the interval valued neutrosophic soft 
sets (F, A) and (G, B) where A= {4,, 41 } an B ={4., 42 } then an anti-symmetric  IVNSS-
relation between them is 

U  (4, ,4.) (4, ,42) (41 ,4.) (41 ,42)
h1 ([0, 0],[0, 0],[1, 1]) ([0.4, 0.6],[0.7, 0.8],[0.1,0.4]) ([0.4, 0.6],[0.7, 0.8],[0.1,0.4]) ([0.4, 0.6],[0.7, 0.8],[0.1,0.4]) 
h2 ([0.6, 0.8],[0.3, 0.4],[0.1,0.7]) ([0, 0],[0, 0],[1, 1]) ([0.1, 0.5],[0.4, 0.7],[0.5,0.6]) ([0.1, 0.5],[0.4, 0.7],[0.5,0.6]) 
h3 ([0.3, 0.6],[0.2, 0.7],[0.3,0.4]) ([0.4, 0.7],[0.1, 0.3],[0.2,0.4]) ([0, 0],[0, 0],[1, 1]) ([0.4, 0.7],[0.1, 0.3],[0.2,0.4]) 
h4 ([0.6, 0.7],[0.3, 0.4],[0.2,0.4]) ([0.3, 0.4],[0.7, 0.9],[0.1,0.2]) ([0.3, 0.4],[0.7, 0.9],[0.1,0.2]) ([0, 0],[0, 0],[1, 1]) 

U  (4, ,4.) (4, ,42) (41 ,4.) (41 ,42)
h1 ([0.3, 0.4],[0.7, 0.9],[0.1,0.2]) ([0.5, 0.6],[0.6, 0.7],[0.3,0.4]) ([0.3, 0.6],[0.5, 0.7],[0.2,0.4]) ([0.4, 0.6],[0.3 0.4],[0.3,0.4]) 
h2 ([0.5, 0.6],[0.6, 0.7],[0.3,0.4]) ([0, 0],[1, 1],[1, 1]) ([0.4, 0.7],[0.1, 0.3],[0.2,0.4]) ([0.3, 0.4],[0.7, 0.9],[0.1,0.2]) 
h3 ([0.3, 0.6],[0.5, 0.7],[0.2,0.4]) ([0.4, 0.7],[0.1, 0.3],[0.2,0.4]) ([0.4, 0.6],[0.1, 0.3],[0.2,0.5]) ([0.4, 0.5],[0.3, 0.4],[0.1,0.4]) 
h4 ([0.4, 0.6],[0.3 0.4],[0.3,0.4]) ([0.3, 0.4],[0.7, 0.9],[0.1,0.2]) ([0.4, 0.5],[0.3, 0.4],[0.1,0.4]) ([0.2, 0.7],[0.3, 0.4],[0.6,0.7]) 
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Defintion 17 . An  IVNSS-relation P is said to be perfectly anti-symmetric  if for each  (4E, 4F 
) ∈ A x B and h^ ∈ U, ∃  (4E, 4F) ∈ A x B and hv   ∈ U such that whenever inf 
μ56`a,`b:(h^ )|(s,/)  > 0, inf υ56`a,`b:(h^ )|(s,/) > 0    and inf ω56`a,`b:(h^ )|(s,/) >0,

μ56`w,`x:(hv )|(/,s) = [ 0, 0] , υ56`w,`x:(hv )|(/,s) =[ 0 ,0 ]  and  ω56`w,`x:(hv )|(/,s) =[1 , 1]

Example 13: let U ={ℎ, , ℎ. , ℎ1, ℎ2}. Let us consider the interval valued neutrosophic soft 
sets (F, A) and (G, B) where A= {4,, 41} an B ={4., 42} then a perfectly  anti-symmetric 
IVNSS-relation between them is 

In the following, we define two composite of interval valued neutrosophic soft relation. 

Definition 18 : Let P ,Q ∈ *+(�B �) and P =(H,AxA), Q=(J,AxA) and the order of their 
relational matrices are same.Then the compostion of P and Q, denoted by P*Q is defined by 
P*Q =(H∘ J,AxA) where H∘ J :AxA → IVNS(U) 

Is defined as  (H∘ J) 64E,4F: ={<h^ , μ(5∘ c) 6`a,`b:(h^ ), υ(5∘ c)6`a,`b:(h^ ), ω(5∘ c)6`a,`b:(h^ )>: h^ ∈ U}

Where  

μ(5∘ c) 6`a,`b:(h^ )=[max{(min(X|} μ56`a,`~:(h^ ),inf μc6`~,`b:(h^ ))) , max{(min(��� μ56`a,`~:(h^ ),sup μc6`~,`b:(h^ )))],

υ(5∘ c)6`a,`b:(h^ )=[ min{(max(X|} υ56`a,`~:(h^ ),inf υc6`~,`b:(h^ ))) , min{(max(��� υ56`a,`~:(h^ ),sup υc6`~,`b:(h^ )))],

And 

 ω(5∘ c)6`a,`b:(h^ )= [ min{(max(X|} ω56`a,`~:(h^ ),inf ωc6`~,`b:(h^ ))) , min{(max(��� ω56`a,`~:(h^ ),sup ωc6`~,`b:(h^ )))]

For 64E,4F: ∈ A x A 

Example 14: U ={ℎ, , ℎ. , ℎ1, ℎ2}.let us consider the interval valued  neutrosophic soft sets 
(F,A) and (G,A) where A={4,  , 4. } .Let P ,Q ∈ *+(�B �) and P =(H, AxA), Q=(J,AxA) 
where P: 

U  (4, ,4.) (4, ,42) (41 ,4.) (41 ,42)
h1 ([0.3, 0.4],[0.7, 0.9],[0.1,0.2]) ([0.5, 0.6],[0.6, 0.7],[0.3,0.4]) ([0.3, 0.6],[0.5, 0.7],[0.2,0.4]) ([0, 0],[0, 0],[1, 1]) 
h2 ([0.5, 0.6],[0.6, 0.7],[0.3,0.4]) ([0, 0],[1, 1],[1, 1]) ([0.4, 0.7],[0.1, 0.3],[0.2,0.4]) ([0.3, 0.4],[0.7, 0.9],[0.1,0.2]) 
h3 ([0.3, 0.6],[0.5, 0.7],[0.2,0.4]) ([0.4, 0.7],[0.1, 0.3],[0.2,0.4]) ([0.4, 0.6],[0.1, 0.3],[0.2,0.5]) ([0.4, 0.5],[0.3, 0.4],[0.1,0.4]) 
h4 ([0, 0],[0, 0],[1, 1]) ([0.3, 0.4],[0.7, 0.9],[0.1,0.2]) ([0, 0],[0, 0],[1, 1]) ([0.2, 0.7],[0.3, 0.4],[0.6,0.7]) 

U  (4, ,4.) (4, ,42) (41 ,4.) (41 ,42)
H1 ([0.3, 0.4],[0.7, 0.9],[0.1,0.2]) ([0.5, 0.6],[0.6, 0.7],[0.3,0.4]) ([0.3, 0.6],[0.5, 0.7],[0.2,0.4]) ([0, 0],[0, 0],[1, 1]) 
h2 ([0, 0],[0, 0],[1, 1]) ([0.4, 0.7],[0.1, 0.3],[0.2,0.4]) ([0.4, 0.6],[0.1, 0.3],[0.2,0.5]) ([0, 0],[0, 0],[1, 1]) 
h3 ([0.3, 0.6],[0.5, 0.7],[0.2,0.4]) ([0, 0],[0, 0],[1, 1]) ([0.4, 0.6],[0.1, 0.3],[0.2,0.5]) ([0, 0.5],[0, 0.4],[0,0.4]) 
h4 ([0, 0.6],[0, 0.2],[0, 1]) ([0.3, 0.4],[0.7, 0.9],[0.1,0.2]) ([0, 0.6],[0, 0.3],[0,0.5]) ([0.2, 0.7],[0.3, 0.4],[0.6,0.7]) 
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Q: 

Then 

P*Q 

Definition 19 : Let P ,Q ∈ *+(�B �) and P =(H,AxA), Q=(J,AxA) and the order of their 
relational matrices are same.Then the compostion of P and Q, denoted by P∘ Q is defined by 
P∘ Q =(H∘ J,AxA) where H∘ J :AxA → IVNS(U) 

Is defined as  (H∘ J) 64E,4F: ={<h^ , μ(5∘ c) 6`a,`b:(h^ ), υ(5∘ c)6`a,`b:(h^ ), ω(5∘ c)6`a,`b:(h^ )>: h^ ∈ U}

Whre  

μ(5∘ c) 6`a,`b:(h^ )=[min{(max(X|} μ56`a,`~:(h^ ),inf μc6`~,`b:(h^ ))) , min{(max(��� μ56`a,`~:(h^ ),sup μc6`~,`b:(h^ )))],

υ(5∘ c)6`a,`b:(h^ )=[ max{(min(X|} υ56`a,`~:(h^ ),inf υc6`~,`b:(h^ ))) , max{(min(��� υ56`a,`~:(h^ ),sup υc6`~,`b:(h^ )))],

And 

 ω(5∘ c)6`a,`b:(h^ )= [ max{(min(X|} ω56`a,`~:(h^ ),inf ωc6`~,`b:(h^ ))) , max{(min(��� ω56`a,`~:(h^ ),sup ωc6`~,`b:(h^ )))]

For 64E,4F: ∈ A x A 

Example 15 :Let U ={ℎ, , ℎ. , ℎ1, ℎ2}.let us consider the interval valued  neutrosophic soft 
sets (F,A) and (G,A) where A={4,  , 4. } .Let P ,Q ∈ *+(�B �) and P =(H, AxA), Q=(J,AxA) 
where P: 

U  (4, ,4.) (4, ,42) (41 ,4.) (41 ,42)
H1 ([0.3, 0.4],[0.3, 0.4],[0.1,0.2]) ([0.2, 0.4],[0.3, 0.5],[0.3,0.4]) ([0.2 0.5],[0.3, 0.4],[0.3,0.4]) ([0.2, 0.3],[0.3, 0.6],[0.2, 0.3]) 

h2 ([1, 1],[0, 0],[1, 1]) ([0.1, 0.2],[0, 0],[0.2,0.5]) ([0.4, 0.5],[0.1, 0.3],[0.3,0.5]) ([0.4, 0.7],[0.1, 0.3],[1, 1]) 
h3 ([0.2, 0.6],[0.1, 0.4],[0.3,0.4]) ([0.2, 0.6],[0.1, 0.3],[1, 1]) ([0.2, 0.3],[0.1, 0.3],[0.2,0.5]) ([0.2, 0.5],[0.2, 0.3],[0,0.4]) 
h4 ([0.2, 0.4],[0.3, 0.5],[0, 1]) ([0.3, 0.4],[0.4, 0.5],[0.3,0.4]) ([0.3, 0.4],[0.2, 0.3],[0,0.5]) ([0, 0.2],[0.4, 0.5],[0.6,0.7]) 

U  (4, ,4.) (4, ,42) (41 ,4.) (41 ,42)
H1 ([0.5, 0.8],[0.1, 0.2],[0.1,0.2]) ([0.2, 0.3],[0.3, 0.6],[0.3,0.4]) ([0.2 0.5],[0.3, 0.5],[0.2,0.4]) ([0.2, 0.4],[0.2, 0.3],[1, 1]) 
h2 ([0.4, 0.5],[0.2, 0.4],[1, 1]) ([0.4, 0.6],[0.2, 0.3],[0.2,0.4]) ([0.4, 0.5],[0.4, 0.5],[0.2,0.5]) ([0.4, 0.5],[0.1, 0.2],[1, 1]) 
h3 ([0.2, 0.3],[0.5, 0.6],[0.2,0.4]) ([0.3, 0.4],[0.4, 0.5],[1, 1]) ([0.7, 0.8],[0.1, 0.2],[0.2,0.5]) ([0.3, 0.5],[0.3, 0.4],[0,0.4]) 
h4 ([0.3, 0.5],[0.3, 0.4],[0, 1]) ([0.3, 0.5],[0.2, 0.4],[0.1,0.2]) ([0.2, 0.4],[0.2, 0.3],[0,0.5]) ([0.3, 0.7],[0.1, 0.3],[0.6,0.7]) 

U  (4, ,4.) (4, ,42) (41 ,4.) (41 ,42)
H1 ([0.3, 0.4],[0.3, 0.4],[0.1,0.2]) ([0.2, 0.4],[0.3, 0.5],[0.2,0.3]) ([0.2 0.5],[0.3, 0.4],[0.2,0.4]) ([0.2, 0.3],[0.2, 0.6],[0.3, 0.4]) 

h2 ([0.4, 0.5],[0.2, 0.4],[0.3, 0.5]) ([0.1, 0.6],[0.1, 0.2],[0.2,0.5]) ([0.4, 0.5],[0.2, 0.4],[0.2,0.5]) ([0.4, 0.5],[0.1, 0.3],[0.3, 0.5]) 

h3 ([0.2, 0.6],[0.1, 0.3],[0,0.4]) ([0.2, 0.5],[0.3, 0.4],[0.1, 0.4]) ([0.2, 0.5],[0.2, 0.3],[0.2,0.4]) ([0.2, 0.5],[0.3, 0.4],[0.2,0.5]) 
h4 ([0.2, 0.4],[0.3, 0.5],[0, 0.2]) ([0.3, 0.4],[0.2, 0.5],[0.3,0.4]) ([0.3, 0.4],[0.2, 0.4],[0.2,0.5]) ([0.3, 0.4],[0.3, 0.4],[0.2,0.5]) 
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Q: 

Then 

P∘Q 

Definition 20 : Let P ∈ *+(�B �) and P =(H,AxA).Then P is called transitive IVNSS-relation 
if  P*P ⊆ P,  i.e   ⋃(H(4E,4{) ∩ H(4{,4F)) ⊆ H(4E,4F), i.e,  

Max(inf μ56`a,`~:(h^ ), inf μ56`~,`b:(h^ )) ≤ inf μ56`a,`b:(h^ ),

Max(sup μ56`a,`~:(h^ ), sup μ56`~,`b:(h^ )) ≤ sup μ56`a,`b:(h^ ),

Min(inf υ56`a,`~:(h^ ), inf υ56`~,`b:(h^ )) ≤ inf υ56`a,`b:(h^ ),

Min(sup υ56`a,`~:(h^ ), sup υ56`~,`b:(h^ )) ≤ sup υ56`a,`b:(h^ ),

Min(inf ω56`a,`~:(h^ ), inf ω56`~,`b:(h^ )) ≤ inf ω56`a,`b:(h^ ),

Min(sup ω56`a,`~:(h^ ), sup ω56`~,`b:(h^ )) ≤ sup ω56`a,`b:(h^ ),

Example 16: Let U ={ℎ, , ℎ. , ℎ1, ℎ2}.let us consider the interval valued  neutrosophic soft 
sets (F,A) and (G,A) where A={4,  , 4. } .Let P ,Q ∈ *+(�B �) and P =(H, AxA), Q=(J,AxA) 
where P: 

U  (4, ,4.) (4, ,42) (41 ,4.) (41 ,42)
H1 ([0.3, 0.4],[0.3, 0.4],[0.1,0.2]) ([0.2, 0.4],[0.3, 0.5],[0.3,0.4]) ([0.2 0.5],[0.3, 0.4],[0.3,0.4]) ([0.2, 0.3],[0.3, 0.6],[0.2, 0.3]) 

h2 ([1, 1],[0, 0],[1, 1]) ([0.1, 0.2],[0, 0],[0.2,0.5]) ([0.4, 0.5],[0.1, 0.3],[0.3,0.5]) ([0.4, 0.7],[0.1, 0.3],[1, 1]) 
h3 ([0.2, 0.6],[0.1, 0.4],[0.3,0.4]) ([0.2, 0.6],[0.1, 0.3],[1, 1]) ([0.2, 0.3],[0.1, 0.3],[0.2,0.5]) ([0.2, 0.5],[0.2, 0.3],[0,0.4]) 
h4 ([0.2, 0.4],[0.3, 0.5],[0, 1]) ([0.3, 0.4],[0.4, 0.5],[0.3,0.4]) ([0.3, 0.4],[0.2, 0.3],[0,0.5]) ([0, 0.2],[0.4, 0.5],[0.6,0.7]) 

U  (4, ,4.) (4, ,42) (41 ,4.) (41 ,42)
H1 ([0.5, 0.8],[0.1, 0.2],[0.1,0.2]) ([0.2, 0.3],[0.3, 0.6],[0.3,0.4]) ([0.2 0.5],[0.3, 0.5],[0.2,0.4]) ([0.2, 0.4],[0.2, 0.3],[1, 1]) 
h2 ([0.4, 0.5],[0.2, 0.4],[1, 1]) ([0.4, 0.6],[0.2, 0.3],[0.2,0.4]) ([0.4, 0.5],[0.4, 0.5],[0.2,0.5]) ([0.4, 0.5],[0.1, 0.2],[1, 1]) 
h3 ([0.2, 0.3],[0.5, 0.6],[0.2,0.4]) ([0.3, 0.4],[0.4, 0.5],[1, 1]) ([0.7, 0.8],[0.1, 0.2],[0.2,0.5]) ([0.3, 0.5],[0.3, 0.4],[0,0.4]) 
h4 ([0.3, 0.5],[0.3, 0.4],[0, 1]) ([0.3, 0.5],[0.2, 0.4],[0.1,0.2]) ([0.2, 0.4],[0.2, 0.3],[0,0.5]) ([0.3, 0.7],[0.1, 0.3],[0.6,0.7]) 

U  (4, ,4.) (4, ,42) (41 ,4.) (41 ,42)
H1 ([0.2, 0.5],[0.3, 0.4],[0.3,0.4]) ([0.2, 0.4],[0.3, 0.4],[0.3,0.4]) ([0.2 0.4],[0.3, 0.4],[0.2,0.4]) ([0.2, 0.3],[0.2, 0.6],[0.3, 0.4]) 

h2 ([0.4, 0.5],[0.1, 0.3],[0.2, 0.5]) ([0.4, 0.5],[0.1, 0.3],[0.3,0.5]) ([0.4, 0.5],[0.1, 0.3],[0.2,0.5]) ([0.4, 0.5],[0.1, 0.3],[1, 1]) 
h3 ([0.2, 0.3],[0.2, 0.3],[1,1]) ([0.2, 0.4],[0.2, 0.4],[0.3, 0.5]) ([0.2, 0.5],[0.2, 0.4],[0.2,0.5]) ([0.2, 0.5],[0.1 0.3],[1,1]) 
h4 ([0.3, 0.4],[0.3, 0.4],[0.3, 0.7]) ([0.2, 0.4],[0.3, 0.5],[0.2,0.5]) ([0.2, 0.5],[0.4, 0.5],[0.2,0.5]) ([0.2, 0.4],[0.2, 0.3],[0.6,0.7]) 
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Then P*P 

Thus, P * P ⊆ P and so P is a transitive IVNSS-relation. 

Definition 21 . Let P ∈ *+(�B �) and P =(H,AxA).Then P is called equivalence IVNSS-
relation if  P satisfies the following conditions: 

1) Reflexivity ( see definition 13).
2) Symmetry  ( see definition 15).
3) Transitivity ( see definition 20).

Example 17: Let U ={ℎ, , ℎ. , ℎ1}.let us consider the interval valued  neutrosophic soft sets 
(F,A) where A={4,  , 4. } .Let P ,Q ∈ *+(�B �) and P =(H, AxA), where P: 

P*P 

Then P is equivalence IVNSS-relation 

U  (4, ,4.) (4, ,42) (41 ,4.) (41 ,42)
H1 ([0.3, 0.4],[0.3, 0.4],[0.1,0.2]) ([0.2, 0.4],[0.3, 0.5],[0.3,0.4]) ([0.2 0.5],[0.3, 0.4],[0.2,0.4]) ([0.2, 0.3],[0.3, 0.6],[1, 1]) 
h2 ([1, 1],[0, 0],[1, 1]) ([0.1, 0.2],[0, 0],[0.2,0.4]) ([0.4, 0.5],[0.1, 0.3],[0.2,0.5]) ([0.4, 0.7],[0.1, 0.3],[1, 1]) 
h3 ([0.2, 0.6],[0.1, 0.4],[0.2,0.4]) ([0.2, 0.6],[0.1, 0.3],[1, 1]) ([0.2, 0.3],[0.1, 0.3],[0.2,0.5]) ([0.2, 0.5],[0.2, 0.3],[0,0.4]) 
h4 ([0.2, 0.4],[0.3, 0.5],[0, 1]) ([0.3, 0.4],[0.4, 0.5],[0.1,0.2]) ([0.3, 0.4],[0.2, 0.3],[0,0.5]) ([0, 0.2],[0.4, 0.5],[0.6,0.7]) 

U  (4, ,4.) (4, ,42) (41 ,4.) (41 ,42)
H1 ([0.3, 0.4],[0.3, 0.4],[0.1,0.2]) ([0.2, 0.4],[0.3, 0.5],[0.3,0.4]) ([0.2 0.5],[0.3, 0.4],[0.2,0.4]) ([0.2, 0.3],[0.3, 0.6],[1, 1]) 
h2 ([1, 1],[0, 0],[1, 1]) ([0.1, 0.2],[0, 0],[0.2,0.4]) ([0.4, 0.5],[0.1, 0.3],[0.2,0.5]) ([0.4, 0.7],[0.1, 0.3],[1, 1]) 
h3 ([0.2, 0.6],[0.1, 0.4],[0.2,0.4]) ([0.2, 0.6],[0.1, 0.3],[1, 1]) ([0.2, 0.3],[0.1, 0.3],[0.2,0.5]) ([0.2, 0.5],[0.2, 0.3],[0,0.4]) 
h4 ([0.2, 0.4],[0.3, 0.5],[0, 1]) ([0.3, 0.4],[0.4, 0.5],[0.1,0.2]) ([0.3, 0.4],[0.2, 0.3],[0,0.5]) ([0, 0.2],[0.4, 0.5],[0.6,0.7]) 

U  (4, ,4.) (4, ,42) (41 ,4.)
h1 ([1, 1],[0, 0],[0, 0]) ([0.2, 0.3],[0.2, 0.4],[0.3,0.4]) ([0.1, 0.5],[0.2, 0.4],[0.2,0.3]) 
h2 ([0.2, 0.3],[0.4, 0.6],[0.3,0.4]) ([1, 1],[0, 0],[0, 0]) ([0.2, 0.3],[0.1, 0.5],[0.2,0.3]) 
h3 ([0.1, 0.5],[0.2, 0.4],[0.2,0.3]) ([0.2, 0.3],[0.1, 0.5],[0.2,0.3]) ([1, 1],[0, 0],[0, 0]) 

U  (4, ,4.) (4, ,42) (41 ,4.)
h1 ([1, 1],[0, 0],[0, 0]) ([0.2, 0.3],[0.2, 0.4],[0.3,0.4]) ([0.1, 0.5],[0.2, 0.4],[0.2,0.3]) 
h2 ([0.2, 0.3],[0.4, 0.6],[0.3,0.4]) ([1, 1],[0, 0],[0, 0]) ([0.2, 0.3],[0.1, 0.5],[0.2,0.3]) 
h3 ([0.1, 0.5],[0.2, 0.4],[0.2,0.3]) ([0.2, 0.3],[0.1, 0.5],[0.2,0.3]) ([1, 1],[0, 0],[0, 0]) 

Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

303



 
Conclusions 

In this paper we have defined, for the first time, the notion of interval neutrosophic soft 
relation. We have studied some  properties for interval neutrosophic soft relation.We hope 
that this paper will promote the future study on IVNSS and IVNSS relation to carry out a 
general framework for their application in practical life. 
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Several Similarity Measures of Neutrosophic Sets 

Said Broumi, Florentin Smarandache 

Abstract- Smarandache (1995) def ned the notion of neutrosophic sets, which is a generalization of Zadeh's fuzzy set and Atanassov's 
intuitionistic fuzzy set. In this paper, we f rst develop some similarity measures of neutrosophic sets. We will present a method to calculate the 
distance between neutrosophic sets (NS) on the basis of the Hausdorff  distance. Then we will use this distance to generate a new similarity 
measure to calculate the degree of similarity between NS. Finally we will prove some properties of the proposed similarity measures.  

Keywords- Neutrosophic Set, Matching Function, Hausdorff  Distance, Similarity Measure. 

I-INTRODUCTION 
Smarandache introduced a concept of neutrosophic set which has been a mathematical tool for handling problems involving 

imprecise, indeterminacy, and inconsistent data [1, 2].The concept of similarity is fundamentally important in almost every 
scientific field. Many methods have been proposed for measuring the degree of similarity between fuzzy sets (Chen, [11]; Chen 
et al., [12]; Hyung, Song, & Lee, [14]; Pappis&Karacapilidis, [10]; Wang, [13]...). But these methods are unsuitable for dealing 
with the similarity measures of neutrosophic set (NS). Few researchers have dealt with similarity measures for neutrosophic set 
([3, 4]). Recently, Jun [3] discussed similarity measures on interval neutrosophic set (which an instance of NS) based on 
Hamming distance and Euclidean distance and showed how these measures may be used in decision making problems. 
Furthermore, A.A.Salama [4] defined the correlation coefficient, on the domain of neutrosophic sets, which is another kind of 
similarity measurement. In this paper we first extend the Hausdorff  distance to neutrosophic set which plays an important role 
in practical application, especially in many visual tasks, computer assisted surgery and so on. After that a new series of 
similarity measures has been proposed for neutrosophic set using different approaches. 

Similarity measures have extensive application in several areas such as pattern recognition, image processing, region 
extraction, psychology [5], handwriting recognition [6], decision making [7], coding theory etc. 

This paper is organized as follows: Section2 briefly reviews the definition of Hausdorff distance and the neutrosophic set. 
Section 3 presents the new extended Hausdorff distance between neutrosophic sets. Section 4 provides the new series of 
similarity measure between neutrosophic sets, some of its properties are discussed. In section 5 a comparative study was done. 
Finally the section 6 outlines some conclusions. 

II-PRELIMINARIES 
In this section we briefly review some definitions and examples which will be used in rest of the paper. 

Definition 2.1: Hausdorff  Distance 

The Hausdorff  distance (Nadler, 1978)  is  the maximum distance of a set to the nearest point in the other set. More formal 
description is given by the following  

Given two finite sets A = {a1, ..., ap} and B = {b1, ..., bq}, the Hausdorff  distance H (A, B) is defined as: 
H (A, B) = max {h (A, B), h (B, A)} 

where 
H (A, B) = max min d (a, b) 

a∈A b∈B
a and b are elements of sets A and B respectively; d (a, b) is any metric between these elements. 
The two distances h (A, B) and h (B, A) are called directed Hausdorff  distances. 
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The function h (A, B) (the directed Hausdorff  distance from A to B) ranks each element of A based on its distance to the 
nearest element of B, and then the largest ranked such element (the most mismatched element of A) specifies the value 
of the distance. Intuitively, if h(A, B) = c, then each element of A must be within distance c of some element of B, and 
there also is some element of A that is exactly distance c from the nearest element of B (the most mismatched element). 
In general h (A, B) and h (B, A) can attain very different values (the directed distances are not symmetric). 

Let us consider the real space R, for any two intervals A= [a1,a2] and B= [b1,b2], the Hausdorff  distance H(A,B) is given 
by 

H (A, B) =max {|a� −  b�|, |a� − b�|}
Definition 2.2 (see [2]). Let U be an universe of discourse  then the neutrosophic set A is an object having the form A = {< x: 
TA(x),IA(x),FA(x) >,x ∈ U}, where the functions T, I, F : U→]−0,1+[  define respectively the degree of membership (or Truth) , the
degree of indeterminacy, and the degree of non-membership (or Falsehood) of the element x ∈∈∈∈ U to the set A with the condition.

−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+. 
From philosophical point of view, the neutrosophic set takes the value from real standard or non-standard subsets of ]−0,1+[. 

So instead of ]−0,1+[ we need to take the interval [0,1] for technical applications, because ]−0,1+[will be difficult to apply in the 
real applications  such as in scientific and engineering problems.  

Definition 2.3 (see [2]). A neutrosophic set A is contained in another neutrosophic set B i.e. A ⊆ B if ∀x ∈ U, TA(x) ≤ TB(x), IA(x)
≥ IB(x), FA(x) ≥ FB(x). 

Definition 2.4 (see [2]). The complement of a neutrosophic set A is denoted by Ac and is defined as TA
c
(x) = TA(x), IA

c
(x) = IA(x), and 

F A
c
(x) = FA(x) for every x in X. 

A complete study of the operations and application of neutrosophic set can be found in [1] [2]. 

In this paper we are concerned with neutrosophic sets whose TA, IA and FA values are single points in [0, 1] instead of 
subintervals/subsets in [0, 1]. 

III. EXTENDED HAUSDORFF  DISTANCE BETWEEN TWO NEUTROSOPHIC SETS

Based on the Hausdorff  metric, Eulalia Szmidt and Janusz Kacprzyk  defined a new distance between intuitionistic fuzzy 
sets and/or interval-valued fuzzy sets in[8], taking into account three parameter representation (membership, non-membership 
values, and the hesitation margins) of A-IFSs which fulfill the properties of the Hausdorff distances. Their def nition is defined 
by: 

���, �� = 1
� � ����|μ�x� −  μ�x�|, |ν�x� − ν�x�|, |π�x�  − π�x�|�

�

 !�
where A = {< x, µA(x), νA(x), πA(x) >} and B = {< x, µB(x), νB(x), πB(x)>}.

The terms and symbols used in [8] are changed so that they are consistent with those in this section. 

In this paper we are interested in extending the Hausdorff distance formulation in constructing a new distance for 
neutrosophic set due to its simplicity in the calculation. 

Let X={x1,x2, …, xn} be a discrete finite set. Consider a neutrosophic set A in X, where TA(xi), IA(xi), FA(xi) ∈ [0, 1], for every
xi ∈  X, represent its membership, indeterminacy, and non-membership values respectively denoted  by A = {< x, TA(xi) , IA(xi),
FA(xi) >}.  

Then we propose a new distance between A ∈ NS and B ∈ NS defined by

d#A, B� = 1
n � max�|T�x)� − T�x)�|, |I�x)� −  I�x)�|, |F�x)�  −  F�x)�|�  

,

)!�
 

Where -.�, �� = H A, B�  denote the extended Hausdorff  distance between two neutrosophic sets A and B.

Let A, B and C be three neutrosophic sets for all xi ∈ X we have:

d#A, B� = H (A, B) = max �|T�x)� − T�x)�|, 0I�x)� − I�12� 0, |F�x)� − F�x)�|�
The same between A and C are written as: 

For all xi ∈ X
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H (A, C) = max �|T�x)� − T3x)�|, |I�x)� − I3x)� |, |F�x)� − F3x)�|�
and between B and C is written as: 

For all xi ∈ X
H B , C� = max �|T�x)� −  T3x)�|, |I�x)� − I3x)� |, |F�x)� − F3x)�|� 
Proposition 3.1: 

The above defined distance  -.�, ��  between NS A and B satisfies the following properties (D1-D4):

(D1) -.�, �� ≥ 0.

(D2) -.�, �� =0 if and only if A = B; for all A, B ∈ NS.

(D3) -.�, �� = -.�, ��.

(D4) If A⊆B⊆C, C is an NS in X, then
-.�, 5� ≥ -.�, ��

 And 
-.�, 5� ≥ -.�, 5�

 
Remark: Let A, B ∈ NS, A⊆ B if and only if , for all xi in X

78� � ≤ 7:� �, ;8� � ≥ ;:� �, <8� � ≥ <:� � 
It is easy to see that the defined measure -.�, �� satisfies the above properties (D1)-(D3). Therefore, we only prove (D4).

Proof of (D4) for the extended  Hausdorff  distance between two  neutrosophic  sets. Since 

A⊆ B ⊆ C implies  ,  for all xi in X     78� � ≤ 7:� � ≤ 7=� �, ;8� � ≥ ;:� � ≥ ;=� �, <8� � ≥ <:� � ≥ <=� �
We prove that   -.�, �� ≤ -.�, 5�
α - If  |T�x)� − T3x)�| ≥ |I�x)� − I3x)�| ≥ |F�x)� − F3x)�|
Then 
H (A, C) = |T�x)� −  T3x)�| but we have

(i)   For all xi in X,  |I�x)� −  I�x)�| ≤ |I�x)� −  I3x)�|
≤ |T�x)� −  T3x)�|

And , for all xi in X   |F�x)� −  F�x)�| ≤ |F�x)� −  F3x)�|
≤ |T�x)� −  T3x)�|

(ii) For all xi in X,    |I�x)� −  I3x)�| ≤ |I�x)� −  I3x)�|
≤ |T�x)� −  T3x)�|

And ,for all xi in X  |F�x)� −  F3x)�| ≤ |F�x)� −  F3x)�|
≤ |T�x)� −  T3x)�|

On the other hand we have, for all xi in X 

(iii) |T�x)� −  T�x)�| ≤ |T�x)� − T3x)�|
and  |T�x)� −  T3x)�| ≤ |T�x)� −  T3x)�|

Combining  (i), (ii), and (iii) we obtain 

Therefore, for all xi in X 

�
� ∑ max �|T�x)� −  T�x)�|, |I�x)� − I�x)� |, |F�x)� − F�x)�|���  ≤ �

� ∑ max �|T�x)� − T3x)�|, |I�x)� − I3x)� |, |F�x)� −  F3x)�|���

And 
�
� ∑ max �|T�x)� − T3x)�|, |I�x)� − I3x)� |, |F�x)� − F3x)�|���  ≤ �

� ∑ max �|T�x)� − T3x)�|, |I�x)� − I3x)� |, |F�x)� − F3x)�|���

That is 

-.�, �� ≤ -.�, 5� and -.�, 5� ≤ -.�, 5�.

β - If  |?@AB� − ?CAB�| ≤ |D@AB� − DCAB�| ≤ |E@AB� − ECAB�|
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Then 

H (A, C) = |I�x)� −  I3x)�| but we have for all xi in X

aaaa���� |T�x)� − T�x)�| ≤ |T�x)� − T3x)�|  
 ≤ |I�x)� − I3x)�| 

     And     |F�x)� −  F�x)�| ≤ |F�x)� − F3x)�|   
                                      ≤ |I�x)� − I3x)�| 

bbbb����      |T�x)� − T3x)�| ≤ |T�x)� −  T3x)�| 
                           ≤ |I�x)� − I3x)�| 

  And     |F�x)� − F3x)�| ≤ |F�x)� −  F3x)�|   
                                ≤ |I�x)� − I3x)�| 

On the other hand we have for all xi ∈ X:
cccc����    |I�x)� − I�x)�| ≤ |I�x)� − I3x)�| and   

    |I�x)� − I3x)�| ≤ |I�x)� − I3x)�|                     
    

Combining (a) and (c) we obtain: 

Therefore, for all xi in X 
 
J
K ∑ LMA �|?@AB� − ?NAB�|, |E@AB� − ENAB� |, |D@AB� −  DNAB�|�KJ  ≤ J

K ∑ LMA �|?@AB� − ?CAB�|, |E@AB� − ECAB� |, |D@AB� −  DCAB�|�KJ  

And 
J
K ∑ LMA �|?NAB� − ?CAB�|, |ENAB� − ECAB� |, |DNAB� − DCAB�|�KJ  ≤ J

K ∑ LMA �|?@AB� − ?CAB�|, |E@AB� − ECAB� |, |D@AB� − DCAB�|�KJ

That is 

-.�, �� ≤ -.�, 5� and -.�, 5� ≤ -.�, 5�
O -  If  |?@AB� − ?CAB�| ≤ |E@AB� − ECAB�| ≤ |D@AB� − DCAB�|
Then 

H (A, C) = |F�x)� −  F3x)�| but we have for all xi in X

(a) |?@AB� − ?NAB�| ≤ |?@AB� − ?CAB�|
≤ |D@AB� −  DCAB�|

and      |I�x)� − I�x)�| ≤ |I�x)� − I3x)�|
≤ |F�x)� − F3x)�|

bbbb���� for all xi in X     |?NAB� −  ?CAB�| ≤ |?@AB� − ?CAB�|      
                                                                                                                        ≤ |D@AB� − DCAB�|    

and for all xi in X     |ENAB� − ECAB�| ≤ |E@AB� − ECAB�|
≤ |F�x)� − F3x)�|

On the other hand we have for all xi in X 

c�c�c�c�                                |F�x)� − F�x)�| ≤ |F�x)� − F3x)�|     and
|F�x)� − F3x)�| ≤ |F�x)� −  F3x)�| 

Combining (a), (b), and (c) we obtain 

Therefore, for all xi in X 

�
� ∑ max �|T�x)� −  T�x)�|, |I�x)� − I�x)� |, |F�x)� − F�x)�|���  ≤ �

� ∑ max �|T�x)� − T3x)�|, |I�x)� − I3x)� |, |F�x)� −  F3x)�|��� .

And 
�
� ∑ max �|T�x)� − T3x)�|, |I�x)� − I3x)� |, |F�x)� − F3x)�|���  ≤ �

� ∑ max �|T�x)� − T3x)�|, |I�x)� − I3x)� |, |F�x)� − F3x)�|���

That is 

-.�, �� ≤ -.�, 5� and -.�, 5� ≤ -.�, 5�.

From α, β , and  P, we can obtain the property (D4).

3.2 Weighted Extended Hausdorff  Distance Between Two Neutrosophic Sets. 

In many situations the weight of the element xi ∈ X should be taken into account. Usually the elements
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have different importance. We need to consider the weight of the element so that we have the following 
weighted distance between NS. Assume that the weight of xi ∈ X is wi where X={x1, x2,.., xn}, wi ∈ [0,1],
i={1,2,3,.., n} and ∑ w),� =1. Then the weighted extended Hausdorff distance between NS A and B is def ned
as: 

-.R�, �� = ∑ S �� -.�� �, �� �

It is easy to check that d#TA, B� satisfies the four properties D1-D4 defined above.

IV. SOME NEW SIMILARITY MEASURES FOR NEUTROSOPHIC SETS

The distance measure between two NS is used in finding the similarity between neutrosophic sets. 

We found in the literature different similarity measures, and we extend them to neutrosophic sets (NS), 
several of them defined below: 

Liu [9] also gave an axiom definition for the similarity measure of fuzzy sets, which also can be expressed 
for neutrosophic sets (NS) as follow: 

Definition 4.1: Axioms of a Similarity Measure 

A mapping S:NS(X)×NS(X)→[0,1], NS(X) denotes the set of all NS in X={x1,x2,…,xn}, S(A, B) is said
to be the degree of similarity between A∈ NS and B ∈ NS, if S(A,B) satisfies the properties of conditions (P1-P4):

(P1) S (A, B) = S (B, A). 
(P2) S(A,B) = (1,0,0) = 1 .If  A = B  for all A,B ∈ NS.
(P3) SXA, B�  ≥ 0, SYA, B�  ≥ 0, SZA, B�  ≥ 0.
(P4) If A B C for all A, B, C ∈ NS, then S (A, B) ≥S (A, C) and S (B, C) ≥ S (A, C).

Numerical Example: 

Let  A ≤ B  ≤  C. with TA ≤ TB ≤ TC and IA≥IB≥IC and FA≥FB≥FC for each xi∈ NS.

For example: 
A= { x1 (0.2, 0.5, 0.6); x2 (0.2, 0.4, 0.4) } 
B= { x1 (0.2, 0.4, 0.4); x2 (0.4, 0.2, 0.3) } 
C= { x1 (0.3, 0.3, 0.4); x2 (0.5, 0.0, 0.3) } 
In the following we define a new similarity measure of neutrosophic set and discuss its properties. 

4.2 Similarity Measures Based on the Set –Theoretic Approach. 

In this section we extend the similarity measure for intuitionistic and fuzzy set defined by Hung and Yung 
[16] to neutrosophic set which is based on set-theoretic approach as follow.  

Definition 4.2: Let A,B be two neutrosophic sets in X={x1,x2,.., xn}, if A = {< x, TA(xi), IA(xi), FA(xi) >} and B= 
{< x, TB(xi), IB(xi), FB(xi) >} are neutrosophic values  of X in A and B respectively, then the similarity 
measure between the neutrosophic sets A and B can be evaluated by the function 

For all xi in X 

[\�, �� = ∑ ]^ �_\`ab�,\cab�d
efa_\`ab�,\cab�dg�h� /n

[i�, �� = 1 − ∑ ]^ �_i`ab�,icab�d
efa_i`ab�,icab�dg�h� /n

[j�, �� = 1 − ∑ ]^ �_j`ab�,jcab�d
efa_j`ab�,jcab�dgh� )/n

and   [�, �� = [\�, ��, [i�, ��, [j�, ���      eq. (1)

where 

SXA, B� denote the degree of similarity (where we take only the T's).
SYA, B� denote the degree of indeterminate similarity (where we take only the I's).
SZA, B� denote degree of nonsimilarity (where we take only the F's).
Min  denotes the minimum between each element of A and B. 
Max denotes the minimum between each element of A and B. 
Proof of (P4) for the eq. (1). 
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Since A⊆B⊆C implies,  for all xi in X

 78� � ≤ 7:� � ≤ 7=� �, ;8� � ≥ ;:� � ≥ ;=� �, <8� � ≥ <:� � ≥ <=� �
Then, for all xi in X 

�k�_78� �, 7:� �d
l��_78� �, 7:� �d = 78� �

7:� �
�k�_78� �, 7=� �d
l��_78� �, 7=� �d = 78� �

7=� �
�k�_7:� �, 7=� �d
l��_7:� �, 7=� �d = 7:� �

7=� �
Therefore, for all xi in X 

\`ab�
\mab� = \cab�

\mab� + \`ab�o\cab�
\mab� ≤ \cab�

\mab�  (1) 
(since 78� � ≤ 7:� � )
Furthermore, for all xi in X 

pqK_rstq�,rutq�d
vwt_rstq�,rutq�d ≥ pqK_rstq�,rxtq�d

vwt_rstq�,rxtq�d  (2) 

Or 
rstq�
rutq� ≥ rstq�

rxtq�  or 7:� � ≤ 7=� �
(since 7=� � ≥ 7:� � )

Inequality (2) implies that, for all xi in X 

rstq�
rxtq� ≤ rstq�

rutq�  (3) 

From the inequalities (1) and (3), the property (P4) for [\�, �� ≥ [\�, 5� is proven.

In a similar way we can prove that [i�, �� and [j�, ��.

We will to prove that SYA, C� ≥ SYA, B�. For all xi∈ X we have:

[i�, 5� = 1 − ^ �_i`ab�,imab�d
efa_i`ab�,imab�d=1 − imab�

i`ab� ≥ 1 − icab�
i`ab�

Since ;=� � ≤ ;:� �
Similarly we prove  [j�, 5� ≥ [j�, �� for all xi in X

yzs, x� = J − pqK_zstq�,zxtq�d
vwt_zstq�,zxtq�d=J − zxtq�

zstq� ≥ J − zutq�
zstq�

Since F3x)� ≤ F�x)�
Then   S(A, C)≤S(A, B) where S(A,C)=( SXA, C�, SYA, C�, SZA, C�) and

S (A, B) = ( SXA, B�, SYA, B�, SZA, B�).
In a similar way we can prove that S (B, C) ≥ S (A, C). If A⊆B⊆C therefore S (A, B) satisfies (P4) of definition 4.1.
By applying eq. (1), the degree of similarity between the neutrosophic sets (A, B), (A, C) and (B, C) are: 

S(A, B) =[\�, ��,  [i�, ��,  [j�, ���= (0.75, 0.35, 0.30)
S (A, C) = [\�, 5�,  [i�, 5�,  [j�, 5��= (0.53, 0.7, 0.30)
S (B, C) = [\�, 5�,  [i�, 5�,  [j�, 5��= (0.73, 0.63, 0)
Then  eq. (1) satisfies property P4: S(A, C)  ≤ S(A, B) and S(A, C)  ≤ S(B, C).
Usually, the weight of the element xi ∈ X should be taken into account, then we present the following weighted similarity

between NS. Assume that the weight of xi ∈ X={1,2,…,n} is wi (i=1,2,…, n) when wi ∈ [0,1],∑ S �� = 1.

Denote   [R\ �, �� = ∑ S ]^ �_\`ab�,\cab�d
efa_\`ab�,\cab�dg�h� /n

  [Ri �, �� = 1 − ∑ S ]^ �_i`ab�,icab�d
efa_i`ab�,icab�dg�h� /n

  [Rj�, �� = 1 − ∑ S ]^ �_j`ab�,jcab�d
efa_j`ab�,jcab�dgh� )/n

and   [R�, �� =   [R\ �, ��,   [Ri �, ��,   [Rj �, ���
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It is easy to check that [R�, �� satisfies the four properties P1-P4 defined above.

4.3 Similarity Measure Based on the Type1 Geometric Distance Model 
In the following, we express the definition of similarity measure between fuzzy sets based on the model of 

geometric distance proposed by Pappis and Karacapilidis in [10] to similarity of neutrosophic set. 

Definition 4.3 : Let A,B be two neutrosophic sets in X={x1, x2,..., xn}, if A = {< x, TA(xi), IA(xi), FA(xi) >} and 
B= {< x, TB(xi), IB(xi), FB(xi) >} are neutrosophic values  of X in A and B respectively, then the similarity 
measure between the neutrosophic sets A and B can be evaluated by the function    

For all xi in X 

{\�, �� = 1 − ∑ |T�x)� − T�x)�|��
∑ T�x)� + T�x)����

{i�, �� = ∑ |I�x)� − I�x)�|��
∑ I�x)� + I�x)����

{j�, �� = ∑ |j`ab�o jcab�||}
∑ j`ab�~ jcab��|}

 and 
{�, �� = {\�, ��, {i�, ��, {j�, ���      eq. (2)

We will prove this similarity measure satisfies the properties 1-4 as above. The property (P1) for the 
similarity measure eq. (2) is obtained directly from the definition 4.1. 

Proof: obviously, eq. (2) satisfies P1-P3-P4 of definition 4.1. In the following L (A, B) will be proved to satisfy (P2) and (P4). 
 Proof of (P2) for the eq. 2 

 For all xi in X 

First of all, {\�, �� = 1 ↔ ∑ |X�12�o X�12�||}
∑ X�12�~ X�12��|}

= 0
↔ |T�x)� − T�x)�| = 0
↔ T�x)� =  T�x)�

{i�, �� = 0 ↔ ∑ |Y�12�o Y�12�||}
∑ Y�12�~ Y�12��|}

= 0
↔ |I�x)� − I�x)�| = 0   ↔ I�x)� =  I�x)�

{j�, �� = 0 ↔ ∑ |Z�12�o Z�12�||}
∑ Z�12�~ Z�12��|}

= 0
↔ |F�x)� − F�x)�| = 0 ↔ F�x)� =  F�x)�

Then  �A, B� = LXA, B�,  LYA, B�,  LZA, B�� = (1, 0, 0) if A=B for all A, B ∈ NS.

   Proof of P3 for the eq .(2) is obvious. 

By applying eq.2 the degree of similarity between the neutrosophic sets (A, B), (A, C) and (B, C) are: 

L (A, B) ={\�, ��, {i�, ��, {j�, ���= (0.8, 0.2, 0.17).
L (A, C) = {\�, 5�, {i�, 5�, {j�, 5��= (0.67, 0.5, 0.17).
L (B, C) = {\�, 5�, {i�, 5�, {j�, 5��= (0.85, 0.33, 0).

The result indicates that the degree of similarity between neutrosophic sets A and B ∈ [0, 1]. Then
Eq.(2)satisfies property P4: L(A, C) ≤ L(A, B) and L(A, C) ≤ L(B, C).

4.4 Similarity Measure Based on the Type 2 Geometric Distance model 
In this section we extend the similarity measure proposed by Yang and Hang [16] to neutrosophic set as 

follow: 

Definition 4.4: Let A, B be two neutrosophic set in X={x1,x2,.., xn}, if A = {< x, TA(xi), IA(xi), FA(xi) >} and B= 
{<x, TB(xi), IB(xi), FB(xi) >} are neutrosophic values  of X in A and B respectively, then the similarity 
measure between the neutrosophic set A and B can be evaluated by the function: 

For all xi in X 

l\ (A, B)= �
� ∑ 1 − |X�12�oX�12�|

� ��� .

li (A, B)= �
� ∑ |Y�12�oY�12�|

� ���  .

lj (A, B)= �
� ∑ |Z�12�oZ�12�|

� ��� .
And MX,Y,Z = MXA, B�, MYA, B�, MZA, B��  for all i={x1,x2 ,.., xn}   eq. (3)
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The proofs of the properties P1-P2-P3 in definition 4.1 (Axioms of a Similarity Measure) of the similarity measure in 
definition 4.4 are obvious. 

Proof of (P4) for the eq. (3). 

Since for all xi in X 

78� � ≤ 7:� � ≤ 7=� �, ;8� � ≥ ;:� � ≥ ;=� �, <8� � ≥ <:� � ≥ <=� �  Then for all xi in X

1 − |T3x)� − T�x)�|
2 = 1 − T3x)� − T�x)��

2
  = 1 − X�12�oX�12��

�  + X�12�oX�12��
� �

≤ 1 − X�12�oX�12��
�  ) 

= 1 − |X�12�oX�12�|
�

Then   l\(A, C) ≤  l\(B, C).
Similarly, MX(A, C) ≤  MX(A, B) can be proved easily.
For MY(A, C) ≥  MY(B, C) and MZ(A, C) ≥  MZ(B, C) the proof is easy.
Then by the definition 4.4, (P4) for definition 4.1, is satisfied as well. 
By applying eq. (3), the degree of similarity between the neutrosophic sets (A, B), (A, C) and (B, C) are: 

M(A,B)=( l\ (A,B), li (A,B), lj (A,B))=(0.95 , 0.075 , 0.075)
M(A,C)= ( l\ (A,C), li (A,C), lj (A,C))=(0.9, 0.15 , 0.075)
M(B,C)= ( l\ (B,C), li (B,C), lj (B,C))=(0.9, 0.075 , 0)

Then eq. (3) satisfies property P4: 
M (A, C)  ≤ M (A, B) and M (A, C)  ≤ M (B, C).

Another way of calculating similarity (degree) of neutrosophic sets is based on their distance. There are more approaches on 
how the relation between the two notions in form of a function can be expressed. Two of them are presented below (in section 
4.5 and 4.6).  

4.5 Similarity Measure Based on the Type3 Geometric Distance Model. 

In the following we extended the similarity measure proposed by Koczy in [15] to neutrosophic set (NS). 

Definition 4.5: Let A, B be two neutrosophic sets in X={x1,x2,.., xn}, if A = {< x, TA(xi), IA(xi), FA(xi) >} and 
B= {< x, TB(xi), IB(xi), FB(xi) >} are neutrosophic values  of x in A and B respectively, then the similarity 
measure between the neutrosophic sets A and B can be evaluated by the function 

�?@, N� = J
J~�∞

?@,N�  denotes  the degree of similarity.

�E@, N� = J − J
J~�∞

E @,N�  denotes the degree of indeterminate similarity.

�D@, N� = J − J
J~�∞

D @,N�  denotes degree of non-similarity

where  -∞
\�, ��,  -∞

i �, ��, and -∞
j�, �� are the distance measure of two neutrosophic  sets A and B.

For all xi in X 

-∞
\�, �� = max�|T�x)� − T�x)�|�.

-∞
i �, �� = max� |I�x)� − I�x)�|�.

-∞
j�, �� = max� |F�x)� − F�x)�|�.

and   H (A, B) = ( �\A, B�, �iA, B�, �jA, B�). Eq. (4)

By applying the Eq. (4) in  numerical example we obtain: 

-∞�, ��= (0.2, 0.2, 0.2), then H (A, B) = (0.83, 0.17, 0.17).

-∞�, 5�= (0.3, 0.4, 0.1), then H (A, C) = (0.76, 0.29, 0.17).

-∞�, 5�= (0.1, 0.2, 0), then H (B, C) = (0.90, 0.17, 0).

It can be verif ed that H (A, B) also has the properties (P1)-(P4). 
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4.6 Similarity Measure Based on Extended Hausdorff  Distance 

It is well known that similarity measures can be generated from distance measures. Therefore, we may use 
the proposed distance measure based on extended Hausdorff distance to define similarity measures. Based on 
the relationship of similarity measures and distance measures, we can define a new similarity measure 
between NS A and B as follows: 

��, �� = 1 − -.�, ��    eq. (5)

where -.�, ��  represent the extended Hausdorff  distance between  neutrosophic sets (NS) A and  B.

According to the above distance properties (D1-D4).It is easy to check that the similarity measure eq. (5) satisfies 
the four properties of axiom similarity defined in 4.1 

By applying the eq. (5) in  numerical example we obtain: 

��, �� =0.8
��, 5� =0.7
��, 5� =0.85
Then eq. (5) satisfies property P4: 
N(A, C)  ≤ N(A, B) and N(A, C)  ≤ N(B, C)

Remark: It is clear that the larger the value of  N(A, B),  the more the similarity between NS A and B. 
Next we define similarity measure between NS A and B using a matching function. 

4.7 Similarity Measure of two Neutrosophic  Sets Based on Matching Function. 

Chen [11] and Chen et al. [12] introduced a matching function to calculate the degree of similarity between fuzzy sets. In the 
following, we extend the matching function extend to deal with the similarity measure of NS. 

Definition 4.7 Let F and E be two neutrosophic sets over U. Then the similarity between them, denoted by K (F, G) or KF, G
has been defined based on the matching function as: 

For all xi in X 

�<, �� = �j,� = ∑ 7j� � ∙ 7�� � + ;j� � ∙ ;� � � + <j� � ∙ <�� ����
max ∑ 7j� ����� + ;j� ��� + <j� ����, ∑ 7�� ����� + ;�� ��� + <�� �����

Eq. (6) 

Considering the weight wj ∈ [0, 1] of each element xi ∈ X, we get the weighting similarity measure between NS as:

For all xi in X 

�R <, �� = ∑ S 7j� � ∙ 7�� � + ;j� � ∙ ;�� � + <j� � ∙ <�� ����
max ∑ S 7j� ����� + ;j� ��� + <j � ����, ∑ S 7� � ����� + ;� � ��� + <� � �����

Eq. (7) 

If each element xi∈ X has the same importance, then Eq.(7) is reduced to eq. (6). The larger the value of �<, �� the more
the similarity between F and G. Here �<, �� has all the properties described as listed in the definition 4.1.

By applying the eq. (6) in  numerical example we obtain: 

��, �� = 0.75 , ��, 5� = 0.66, and ��, 5� = 0.92

Then Eq. (6) satisfies property P4: K(A, C)  ≤ K(A, B) and K(A, C)  ≤ K(B, C)

V. COMPARISON OF VARIOUS SIMILARITY MEASURES 
In this section, we make a comparison among similarity measures proposed in the paper. Table I show the 

comparison of various similarity measures between two neutrosophic sets respectively. 

Table I . Example results obtained from the similarity measures between neutrosophic sets A , B and C. 

A, B A, C B, C 

Eq. (1) (0.75, 0.35, 0.3) (0.53, 0.7, 0.3) (0.73, 0.63, 0) 
Eq. (2) (0.8, 0.2,0.17) (0.67, 0.5, 0.17) (0.85, 0.33, 0) 
Eq. (3) (0.95, 0.075, 0.075) (0.9, 0.15, 0.075) (0.9, 0.075, 0) 
Eq. (4) (0.83, 0.17, 0.17) (0.76, 0.29, 0.17) (0.9, 0.17, 0) 
Eq. (5) 0.8 0.7 0.85 

Eq. (6) 0.75 0.66 0.92 
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Each similarity measure expression has its own measuring, they all evaluate the similarities in neutrosophic sets, and they can 
meet all or most of  the properties of similarity measure. 

In definition 4.1, that is P1-P4. It seem from the table above that from the results of similarity measures between neutrosophic 
sets  can be  classified in two type of similarity measures: the first type which we called “crisp similarity measure” is illustrated by 
similarity measures (N and K) and the second type called  “neutrosophic similarity measures” illustrated by similarity measures 
(S, L, M and H). The computation of measure H , N and S are much simpler than that of  L, M and K  

CONCLUSIONS 
In this paper we have presented a new distance called "extended Hausdorff distance for neutrosophic sets" 

or "neutrosophic Hausdorff distance", then we defined a new series of similarity measures to calculate the 
similarity between neutrosophic sets. It’s hoped that our findings will help enhancing this study on 
neutrosophic set for researchers. 
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Soft Neutrosophic Left Almost Semigroup

Florentin Smarandache, Mumtaz Ali, Munazza Naz, and Muhammad Shabir

Abstract
In this paper we have extended neutrosophic LA-semigroup, neutrosophic sub LA-
semigroup, neutrosophic ideals, neutosophic prime ideals, neutrosophic semiprime ideals, 
neutrosophic strong irreducible ideals to soft neutrosophic LA-semigroup,soft neutosophic 
sub LA-semigroup,soft neutrosophic ideals,soft neutrosophic prime ideals,soft neutrosophic 
semiprime ideals and soft strong irreducible neutrosophic ideals respectively. We have found some 
new notions related to the strong or pure part of neutrosophy and we give explaination with 
necessary illustrative examples. We have also given rigorious theorems and propositions. The 
notion of soft neutrosophic homomorphism is presented at the end. 

Keywords
Neutrosophic LA-semigroup, neutrosophic sub LA-semigroup, neutrosophic ideal, soft LA-
semigroup, soft LA-subsemigroup, soft ideal, soft neutrosophic LA-semigroup, soft sub-
neutrosophic LA-semigroup, soft neutrosophic ideal. 

1. INTRODUCTION

In 1995, Florentin Smarandache introduced the concept of neutrosophy. In neutrosophic logiceach 
proposition is approximated to have the percentage of truth in a subset T, the percentage of indeterminacy in 
a subset I, and the percentage of falsity in a subset F, so that this neutrosophic logic is called an extension of 
fuzzy logic. In fact neutrosophic set is the generalization of classical sets,conventional fuzzy set[ ]1 ,
intuitionistic fuzzy set [ ]2 and interval valued fuzzy set[ ]3 .This mathematical tool is used to handle
problems like imprecise,indeterminacy and inconsistent data etc. By utilizing neutrosophic theory, Vasantha 
Kandasamy and Florentin Smarandache introduced neutrosophic algebraic structures in[ ]11 . Some of them
are neutrosophic fields, neutrosophic vector spaces, neutrosophic groups, neutrosophic bigroups, 
neutrosophic N-groups, neutrosophic semigroups, neutrosophic bisemigroups, neutrosophic N-semigroup, 
neutrosophic loops, neutrosophic biloops, neutrosophic N-loops, neutrosophic groupoids, and neutrosophic 
bigroupoids and so on. 

Neutrosophic LA-semigroup is already introduced. It is basically a midway algebraic structure 
between neutrosophic groupoid and commutative neutrosophic semigroups. This is in fact a generalization of 
neutrosophic  
semigroup theory. In neutrosophic LA-semigroup we have two basic types of notions and they are traditional 
notions as well as strong or pure neutrosophic notions. It is also an extension of LA-semigroup and involves 
the origin of neutralities orindeterminacy factor in LA-semigroup structure. This is a rich structure because 
of the indeterminacy’s presence in all the corresponding notions of LA-semigroup and this property makes 
the differences between approaches of an LA-semigroup and a neutrosophic LA-semigroup. Molodstov 
introduced the concept of soft set theory which is free from the problems of parameterization inadequacy.  

In his paper [11], he presented the fundamental results of new theory and successfully applied it into 
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several directions such as smoothness of functions, game theory, operations research, Riemann-integration, 
Perron integration, theory of  probability.  After getting a high attention of researchers, soft set theory is 
applied in many fields successfully and so as in the field of LA-semigroup theory. A soft LA-semigroup 
means the parameterized collection  of sub LA-semigroup over an LA-semigroup. It is more general concept 
than the concept of LA-semigroup. 

We have further generalized this idea by adding neutrosophy and extended operations of soft set 
theory. In this paper we introduced the basic concepts of soft neutrosophic LA-semigroup. In the proceeding 
section we define soft neutrosophic LA-semigroup and characterized with some of their properties. Soft 
neutrosophic ideal over a neutrosophic LA-semigroup and soft neutrosophic ideal of a neutrosophic LA-
semigroup is given in the further sections and studied some of  their related results. In the last section, the 
concept of soft homomorphism of a soft LA-semigroup is extended to soft neutrosophic homomorphism of 
soft neutrosophic LA-semigroup. 

2. PRELIMINARIES

2.1. Definition 1 

Let  be an LA-semigroup and let  ( ,S ∗) { }: ,S I a bI a b S∪ = + ∈ . The neutrosophic LA-semigroup is

generated by  and S I under  denoted as ∗ ( ) { },N S S I= ∪ ∗ , where I is called theneutrosophic element

with property 2I I= .For an integer , and are neutrosophic elements and .n n I+ nI 0. 0I = 1I − , the inverse 
of I is not defined and hence does not exist.Similarly we can define neutrosophic  RA-semigroup on the 
same lines. 
Definition2Let ( )N S  be a neutrosophic LA-semigroup and ( )N H  be a proper subset of ( )N S . Then

( )N H is called a neutrosophic sub LA-semigroup if  ( )N H itself is a neutrosophic LA-semigroup under

the operation of ( )N S .

Definition3A neutrosophic sub LA-semigroup ( )N H  is called strong neutrosophic sub LA-semigroup or

pure neutrosophic sub LA-semigroup if all the elements of ( )N H are neutrosophic elements.

Definition4Let ( )N S  be a neutrosophic LA-semigroup and ( )N K  be a subset of ( )N S . Then ( )N K  is

called Left (right)  neutrosophic ideal of ( )N S  if  ( ) ( ) ( )N S N K⊆N K ,{ ( ) ( ) ( )N KN ⊆K N S }.If

 is both left and right neutrosophic ideal, then ( )N K ( )N K  is called a two sided neutrosophic ideal or
simply a neutrosophic ideal. 
Definition5A neutorophic ideal  of a neutrosophic LA-semigroup ( )N P ( )N S  with left identity  is

called prime neutrosophic ideal if 

e

( ) ( ) ( )N A N B N P⊆  implies either ( ) ( )N A N P⊆  or

, where ( ) ( )N B N P⊆ ( ) ( )N B,N A  are neutrosophic ideals of ( )N S .

Definition 6A neutrosophic LA-semigroup ( )N S  is called fully prime neutrosophic LA-semigroup if all of
its neutrosophic ideals are prime neutrosophic ideals. 
Definition7A neutrosophic ideal ( )N P is called semiprime  neutrosophic ideal if

implies ( ) ( ) ( ).N T N T N P⊆ ( ) ( )N PN T ⊆  for any neutrosophic ideal ( )N T  of ( )N S .

Definition8A neutrosophic LA-semigroup ( )N S  is called fully semiprime neutrosophic LA-semigroup if

every neutrosophic ideal of ( )N S  is semiprime neutrosophic ideal.

Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

318



Definition9 A neutrosophic ideal of a neutrosophic LA-semigroup ( )N R ( )N S  is called strongly

irreducible neutrosophic ideal if for any neutrosophic ideals  of( ) ( ),N H N K

( )N S ( ) ( ) ( )N H N K N R∩ ⊆  implies ( ) ( )N H N R⊆  or ( ) ( )N K N R⊆ .

Definition 10 Let be two LA-semigroups and ,S T : S Tφ → be a mapping from  to T .  Let S ( )N S  and

( )N T

(
 be the corresponding neutrosophic LA-semigroups of  and T respectively.  LetS

) ( ): N Sθ N→ T  be another mapping from ( )N S  to ( )N T . Then θ  is called neutrosophic

homomorphis if φ  is homomorphism from to T . S

2.2 Soft Sets 

Throughout this subsection  U   refers to an initial universe,  E   is a set of parameters,    is the power 

set of  U  , and  A  . Molodtsov [12] defined the soft set in the following manner: 
( )P U

E⊂
Definition 11 A pair ( ),F A   is called a soft set over  U where F is a mapping given by

F : ( )A P U→  .

In other words, a soft set over  U   is a parameterized family of subsets of the universe  U . For  a  , 
  may be considered as the set of  a  -elements of the soft set  

A∈
( )F a ( ),F A  , or as the set of a-approximate

elements of the soft set. 
Definition 12 For two soft sets  ( ),F A   and  (   over  U  ,  ),H B ( ),F A   is called a soft subset of

  if( ),H B

1) A B⊆   and
2) , for all  a A∈  .( ) ( )F a H a⊆

This relationship is denoted by  ( ) ( ),F A H B⊂ ,  . Similarly  ( ),F A   is called a soft superset of

if  (   is a soft subset of  ( ),H B ),H B ( ),F A   which is denoted by  ( ) ( ), ,H B⊃F A  .

Definition 13Let ( ),F A   and  ( ),G B

( ) (c G∩

  be two soft sets over a common universe  U   such that 

 . Then their restricted intersection is denoted by ( ,   where 

  is defined as    for all   . 

A B φ∩ ≠

( ),H C

) ( , ) )RF A G B C∩

A B∩

( ,H=

( ) )F c=H c ∈c C =

Definition 14The extended intersection of two soft sets  ( ),F A   and  ( ),G B

( )H c

  over a common universe  U

is the soft set  (  , where  C A  , and for all  c  ,    is defined as),H C B= ∪ C∈

( ) if c

( ) ( ) if c

( ) ( ) if c .

F c A B

H c G c B A

F c G c A B

⎧⎪ −⎪⎪⎪= −⎨⎪⎪ ∩ ∩⎪⎪⎩

∈
∈
∈

We write  ( ,  . ) ( , ) ( , )F A G B H Cε∩ =

Definition 15The restricted union of two soft sets  ( ),F A   and  ( ),G B

C

  over a common universe  U   is

the soft set  (  , where  C A  , and for all  c  ,    is defined as the soft set),H C B= ∪ ∈ ( )H c

( ),H C = ( ) ( ), RF A ∪ , =G B   where  C A   and    for all  c C  . B∩ ( )H c ( )F c= (G∪ )c ∈
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Definition 16 The extended union of two soft sets  ( ),F A   and  ( ),G B   over a common universe  U   is

the soft set  (  , where  C A  , and for all  c  ,    is defined 

as

)

)

,H C

( )

( )

( ) ( )

F c

G c

G c

B= ∪

.

A B

B A

A B

−
= −

∪ ∩

C∈ ( )H c

if c

( ) if c

if c

H c

F c

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∈
∈
∈

We write  ( ,  . ) ( , ) ( , )F A G B H Cε∪ =

2.3 Soft LA-semigroup 

Definition 17 The restricted product ( ,H C  of two soft sets ( ),F A  and ( ),G B  over an LA-semigroup 

is dfined as the soft set 

S

( ) ( ) ( ),, ,H C F G B= A , where ( ) ( ) ( )H c F= c G c  for all .c C A B∈ = ∩

Definition 18 A soft set (  over  is called soft LA-semigroup over S  if ),F A S ( ) ( ) ( ), , ,F A F A F A⊆ .

Definition19 A soft LA-semigroup over is said to be soft LA-semigroup with left identity e  if( ,F A) S

( )F a φ≠  is a sub LA-semigroup with left identiy ,where e  is the left identity of for all .e S a A∈

Definition 20 Let  and (  be two soft LA-semigroups over . Then the operation ( ,F A) ),G B S ∗  for soft
sets is  
defined as ( ) , where ( ) (, , ,F A G B H A B∗ = × ) ( ) ( ) ( ),H a b F a G b=  for all ,  anda A∈ b B∈

A B×  is the Cartesian product of . ,A B
Definition 21A soft set  over an LA-semigroup  is called a soft  left (right) ideal over  if( ,F A

( )
) S S

( ) ( ) ( )( ), , ,SA F A F A A F A, ,F A⊆ S ⊆   where SA  is the absolute soft  LA-semigroup over .S

Definition 22 Let  and  be two soft LA-semigroups over . Then the Cartesian product is 
defined  

( ,F A) )

)

( ,G B S

as , where ( ) ( ) (, , ,F A G B H A B× = × ( ) ( ) ( ),H a b F a G b= ×  for all a A∈  and .b B∈

Definition 23 Let  be a soft subset of ( ,G B) ( ),F A  over . Then S ( ),G B is called a soft ideal of ( ),F A ,

if ( )G b is an ideal of ( )F b  for all .b B∈

3. SOFT NEUTROSOPHIC LA-SEMIGROUPS

 The definition of soft neutrosophic LA-semigroup isintroduced in this section and we also examine some of  
their properties.Throughout this section ( )N S will dnote a neutrosophic LA-semigroup unless stated
otherwise. 
Definition 24 Let  be a soft set over ( ,F A) ( )N S . Then ( ),F A  over ( )N S  is called soft neutrosophic

LA-semigroup if ( ) ( ) ( ), , ,F A F A F A⊆ .

Proposition 1 A soft set  over ( ,F A) ( )N S  is a soft neutrosophic LA-semigroup if and only if ( )F aφ ≠
is a  
neutrosophic sub LA-semigroup of ( )N S  for all a A∈ .

Example 1  Let ( ) { }1,2,3,4,1 ,2 ,3 ,4N S I I I I=  be a neutrosophic LA-semigroup with the following
table. 
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* 1 2 3 4 1I 2I 3I 4I

1 1 4 2 3 1I 4I 2I 3I 
2 3 2 4 1 3I 2I 4I 1I 

3 4 1 3 2 4I 1I 3I 2I 
4 2 3 1 4 2I 3I 1I 4I 
1I 1I 4I 2I 3I 1I 4I 2I 3I 
2I 3I 2I 4I 1I 3I 2I 4I 1I 
3I 4I 1I 3I 2I 4I 1I 3I 2I 
4I 2I 3I 1I 4I 2I 3I 1I 4I 

Let  be a soft set over ( ,F A) ( )N S . Then clearly ( ),F A  is a soft neutrosophic LA-semigroup

over ( )N S ,
where 

( ) { }1 1,1 ,F a I= ( ) { }2 2,2 ,F a I=

( ) { }3 3,3 ,F a I= ( ) { }4 4,4F a I= . 
Theorem 1A soft LA-semigroup over an LA-semigroup  is contained in a soft neutrosophic LA-
semigroup over  

S

( )N S .

Proposition 2 Let  and (( ,F A) ),H B  be two soft neutronsophic LA-semigroup over ( )N S . Then

1) Their extended intersection ( ) ( ),F A H Bε∩ , is a soft neutrosophic LA-semigroup 

over ( )N S
2) Their restricted intersection ( ) ( ),F A H B∩ ,R is also soft neutrosophic LA-semigroup over 

( )N S .

Remark 1 Let  and ( ,F A) ( ),H B  be two soft neutrosophic LA-semigroup over ( )N S . Then

1) Their extended union ( ) ( ),F A H Bε∪ , is not a soft neutrosophic LA-semigroup over 

( )N S .

2) Their restricted union ( ) ( ),F A H B∪ ,R  is nota soft neutrosophic LA-semigroup over 

( )N S .

Proposition 3  Let (  and (  be two soft neutrosophic LA-semigroup over ) ),F A ,G B ( )N S . Then

( ) (, ,F A H B∧ )
) )

 is also soft neutrosophic LA-semigroup if it is non-empty.

Proposition 4 Let  and (  be two soft neutrosophic LA-semigroup over the neutosophic LA- ( ,F A ,G B
semigroup ( )N S . If A B φ∩ =  Then their extended union ( ) ( ),F A G Bε∪ ,  is a softneutrosophic LA-

semigroup over ( )N S .

Definition 25 A soft neutrosophic LA-semigroup ( ),F A  over ( )N S  is said to be a soft neutosophic

LA-semigroup with left identity if for all ae A∈ , the parameterized set ( )F a  is aneutrosophic sub LA-
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semigroup with left identity e  where  is the left identity of e ( )N S .

Lemma 1 Let (  be a soft neutrosophic LA-semigroup with left identity over ),F A e ( )N S , then

( ) ( ) ( )F A=, ,F A F A ,

)
.

Proposition 5 Let  and (  be two soft neutronsophic LA-semigroups over ( ,F A) ,G B ( )N S . Then the

cartesian product of  and (  is also soft neutrosophic LA-semigroup over ( ,F A) ),G B ( )N S .

Definition 26 A soft neutosophic LA-semigroup ( ),F A  over ( )N S  is called soft strong neutrosophic LA-

( )F asemigroup or soft pure neutrosophic LA-semigroup if each  is a strong or pure neutrosophic sub LA-
semigroup for all a A . ∈
Theorem 2 All soft strong neutrosophic LA-semigroups or  pure neutrosophic LA-semigroups are trivially 
soft neutrosophic LA-semigroups but the converse is not true in general. 
Definition 28 Let  be a soft neutrosophic LA-semigroup over ( ,F A) ( )N S . Then  is called an( ,F A)
absolute soft neutrosophic LA-semigroup if  ( ) ( )F a N S=  for all a A∈ . We denote it by  ( )N SA .

Definition 29 Let  and  be two soft neutrosophic LA-semigroup over ( ,F A) ( ,G B) ( )N S . Then  ( ),G B
is soft sub neutrosophic LA-semigroup of  ( ),F A , if

1) B A⊆ , and
2) ( )H b  is a neutrosophic sub LA-semigroup of  ( )F b , for all  b B∈  .

Theorem 3Every soft LA-semigroup over  is a soft sub neutrosophic LA-semigroup of a soft neutrosophic 
LA- 

S

semigroup over  ( )N S .

Definition 30 Let  be a soft sub-neutrosophic LA-smigroup of a soft neutrosophic LA-semigroup  

 over 

( ,G B)
( ,F A) ( )N S . Then ( ),G B  is said to be soft strong or pure sub-neutrosophic LA-semigroup of

  if each is strong or pure neutrosophic sub LA-semigroup of  ( ,F A) ( )G b ( )F b , for all  .b B∈

Theorem 4 A soft neutrosophic LA-semigroup  ( ),F A over  ( )N S  can have soft sub LA-semigroups, soft
sub-neutrosophic LA-semigroups and soft strong or pure sub-neutrosophic LA-semigroups. 
Theorem 5 If  (  over ),F A ( )N S is a soft strong or pureneutrosophic LA-semigroup, then every soft sub- 

neutrosophic LA-semigroup of   is a soft strong or pure sub-neutrosophic LA-semigroup.( ,F A)

)

4. SOFT NEUTROSOPHIC IDEALS OVER A NEUTROSOPHIC LA-SEMIGROUP

Definition 31A soft set (  over a neutrosophic LA-semigroup ,F A ( )N S  is called a soft neutrosophic left

(right) ideal over ( )N S  if  ( ) ( ) ( ) ( ) ( ) ( )( ), , , ,A F A F A⊆ ,F AN S N SAA F ⊆   where ( )N SA  is the

absolute soft neutrosophic LA-semigroup over ( )N S . A soft set ( ),F A  over ( )N S  is a soft neutrosophic

ideal if it is soft neutrosophic left ideal as well as soft neutrosophic right ideal over ( )N S .

Proposition 5Let  be a soft set over ( ,F A) ( )N S . Then ( ),F A  is a soft neutrosophic ideal over  ( )N S if

and only if ( )F a φ≠  is a neutrosophic ideal of ( )N S , for all  a A∈ .

Proposition 6Let  and  be two soft neutrosophic ideals over ( ,F A) ( ,G B) ( )N S . Then

1) Their restricted union ),R  is a soft neutrosophic ideal over  (( ) (F A G B )N S ., ∪
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2) Their restricted intersection  ( ) ( ),F A G B∩ ,R is a soft neutrosophic ideal over  ( )N S .

3) Their extended union ),  is also a soft neutrosophic ideal over  (( ) (,F A G Bε∪ )N S .

4) Their extended intersection  ( ) ( ),F A G Bε∩ ,  is asoft neutrosophic ideal over ( )N S .

Proposition 7Let  and  be two soft neutrosophic ideals over ( ,F A) )( ,G B ( )N S . Then

1. Their OR  operation ( ) ( ), ,F A G B∨  is a soft neutrosophic ideal over  ( )N S .

2. Their AND  operation ( ) ( ), ,F A G B∧  is a soft  neutrosophic ideal over  ( ) .N S
Proposition 8 Let  and (  be two soft neutrosophic ideals over ( ,F A) ),G B ( )N S , where ( )N S is a

neutrosophic LA-semigroup with left identity e . Then ( ) ( ) ( ),H A B, ,F A G B∗ = ×  is also a soft

neutrosophic ideal over ( )N S .

Proposition 9Let  and  be two soft neutrosophic ideals over ( ,F A) )( ,G B ( )N S  and  ( )N T .Then the

cartesian product  ( ) ( ),G B,F A ×  is a soft neutrosophic ideal over  ( ) ( )N S N T× .

Definition 32A soft neutrosophic ideal (  over  ),F A ( )N S  is called soft strong or pure neutrosophic ideal

over ( )N S  if  is a strong or pure neutrosophicideal of ( )F a ( )N S , for all  a A∈ .

Theorem 6All soft strong or pure neutrosophic ideals over ( )N S  are trivially soft neutrosophic ideals but
the converse is not true. 
Proposition 8Let  and  be two soft strong  or pure neutrosophic ideals over ( ,F A) )( ,G B ( )N S . Then

1) Their restricted union ),R  is a soft strong or pure neutrosophic ideal over  ( ) (,F A G B∪ ( )N S .

2) Their restricted intersection  ( ) ( ),F A G B∩ ,R  is a soft strong or pure neutrosophic ideal over  

( )N S .

3) Their extended union ),  is also a soft strong or pure neutrosophic ideal over

(
( ) (,F A G Bε∪

)N S .

4) Their extended intersection  ( ) ( ),F A G Bε∩ ,  is a soft strong or pure neutrosophic ideal over  

( )N S .

Proposition 9Let  and  be two soft strong or pure neutrosophic ideals over ( ,F A) )( ,G B ( )N S . Then

1) Their OR  operation )  is a soft strong or pure neutrosophic ideal over  (( ) (, ,F A G B∨ )N S .

2) Their AND  operation )  is a soft strong or pure neutrosophic ideal over  ( ) (, ,F A G B∧ ( )N S .

Proposition 10Let (  and (  be two soft strong or pure neutrosophic ideals over  ) ),F A ,G B ( )N S , where

( )N S  is a neutrosophic LA-semigroup with left identity . Then  e ( ) ( ) (, ,F A G B H ), A B∗ = ×  is also a

softstrong or pure neutrosophic ideal over  ( )N S .

Proposition 11Let  (  and   be two soft strong or pure neutrosophic ideals over ) ),F A ( ,G B ( )N S   and

( )N T  respectively. Then the cartesian product ( ) ( ), ,F A G B×  is a soft strong or pure neutrosophic ideal

over .( ) (N S N T× )
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5. SOFT NEUTROSOPHIC IDEAL OF SOFT NEUTROSOPHIC LA-SEMIGROUP

Definition 33Let  and   be a soft neutrosophic LA-semigroups over ( ,F A) )( ,G B ( )N S . Then  is 

soft neutrosophic ideal of , if

( ),G B

( )F A,
1) B A⊆ , and
2) ( )H b  is a neutrosophic ideal of  ( )F b , for all  b B∈ .

Proposition 12If  and  (  are soft neutrosophic ideals of soft neutrosophic LA-semigroup 

and  (  over neutrosophic LA-semigroups 

( ' ',F A

),G B
) )

)

' ',G B

( ,F A ( )N S  and ( )N T respectively.

Then ( )  is a soft neutrosophic ideal of soft neutrosophic LA-semigroup 

over .

( )' ',G B

( )T

' 'F A

( )N S

, ×

N×

( ) ( ), ,F A G B×

Theorem 17Let  be a soft neutrosophic LA-semigroup over ( ,F A) ( )N S  and  ( ){ }, :j jH B j J∈   be a 

non-empty family of soft neutrosophic sub LA-semigroups of  ( ),F A . Then

1) ( ),j j  is a soft neutrosophic sub LA-semigroup of  
j J

H BR
∈

∩ ( ),F A .

2) ( ),j j   is a soft neutrosophic sub LA-semigroup of  
j J

H BR
∈

∧ ( ),F A .

3) ( ),j j  is a soft neutrosophic sub LA-semigroup of 
j J

H Bε
∈

∪ ( ),F A  if j kB B φ∩ =   for all  

,j k J∈

Theorem 8Let (  be a soft neutrosophic LA-semigroup over ),F A ( )N S  and  ( ){ }, :j jH B j J∈   be a non-

empty family of soft neutrosophic ideals of  ( ),F A . Then

1) ( ),j j   is a soft neutrosophic ideal of  
j J

H BR
∈

∩ ( ),F A .

2) ( ),j j   is a soft neutrosophic ideal of 
j J

H B
∈
∧ ( ),F A .

3) ( ),j j  is a soft neutrosophic ideal of  
j J

H Bε
∈

∪ ( ),F A .

4) ( ),j j   is a soft neutrosophic ideal of
j J

H B
∈
∨ ( ),F A .

Proposition 13Let (  be a soft neutrosophic LAsemigroup with left identity e  over ),F A ( )N S   and

 be a soft neutrosophic right ideal of  ( ,G B) ( ),F A . Then ( ),G B  is also soft neutrosophic left ideal of

.( ),F A
Lemma 2Let  be a soft neutrosophic LA-semigroup with left identity  over ( ,F A) e ( )N S  and  be 

a soft neutrosophic right ideal of  . Then

( ),G B

( ,F A) ( ) ( ), ,G B G B is a soft neutrosophic ideal of ( ) .,F A
Definition 34 A soft neutrosophic ideal  of a soft neutrosophic LA-semigroup (  is called soft( ,G B) ),F A
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strong or pure neutrosophic ideal if ( )G b  is a strong or pure neutrosophic ideal of ( )F b  for all b B∈ .
Theorem 9 Every soft strong or pure neutrosophic ideal of  a soft neutrosophic LA-semigroup is trivially a 
soft  
neutrosophic ideal but the converse is not true. 
Definition 35A soft neutrosophic ideal  of a soft neutrosophic LA-semigroup (  over  ( ,G B) ) (,F A )N S

is  
called soft prime neutrosophic ideal if  ( ) ( ) ( ), , , ( ) ( ), ,HH C J D G B⊆  implies either  C ⊆ G B  or

 for soft neutosophic ideals ( ) (,J D G B⊆ ), ( ),H C  and ( ),J D  of  ( ),F A .

Definition 36A soft neutrosophic LA-semigroup  ( ),F A  over ( )N S  is called soft fully prime

neutrosophic LA-semigroup if all the soft neutrosophic ideals of ( ),F A  are soft prime neutrosophic ideals.

Definition37 A soft neutrosophic ideal   of a soft neutrosophic LA-semigroup  (  over  ( ,G B) ),F A ( )N S
is called soft semiprime neutrosophic ideal if  ( ) ( ) ( ), , ,H C H C G B⊆  implies that  ( ) ( )H , ,C G⊆ B
for any soft neutrosophic ideal ( ), of .( ),F AH C
Definition38A soft neutrosophic LA-semigroup  ( ),F A  over ( )N S  is called soft fully semiprime

neutrosophic LA-semigroup if all the soft neutrosophic ideals of ( ),F A  are soft semiprime neutrosophic
ideals. 
Definition39A soft neutrosophic ideal (  of a soft neutrosophic LA-semigroup  over  ) )( ,F A ( ),G B N S  is

called soft strongly irreducible neutrosophic ideal if  ( ) ( ) ( ), ,R ,H C J D G∩ ⊆ B  implies either  

( ) (, , )H C G B⊆  or ( ) ( ),J D G⊆ , B for soft neutrosophic ideals ( ),H C  and ( ),J D

(

of .( )F A,

6. SOFT NEUTROSOPHIC HOMOMORPHISM

Definition 40Let  and (  be two soft neutrosophic LA-semigroups over ( ,F A) ),G B ) ( )N TN S  and  

respectively. Let ( ) ( ):f N S N T→  and   be two mappings. Then  :g A B→ ( ) ( ) ( ),, :f g ,F A BG→
is called soft neutrosophic homomorphism, if 

1) f  is a neutrosophic homomorphism from ( )N S  onto ( )N T .

2) g  is a maping from A  onto B .

3) ( )( ) ( )( )f F a G g a=  for all a A∈ .

If f is a neutrosophic isomorphism from  ( )N S  to ( )N T  and  is one to one mapping from g A  onto B .

Then ( ),f g  is called soft neutrosophic isomorphism from ( ),F A  to ( ),G B .

CONCLUSION 

The literature shows us that soft LA-semigroup is a general framework than LA-semigroup but in this paper 
we can see that there exista more general structure which we call soft neutrosophic LA-semigroup.A soft 
LA-semigroup becomes soft sub-neutrosophic LA-semigroup of the corresponding soft neutrosophic LA-
semigroup.Soft neutrosophic LA-semigroup points out the indeterminacy factor involved in soft LA-
semigroup.Soft neutrosophic LA-semigroup can be characterized by soft neutrosophic ideals over a soft 
neutrosophic LA-semigroup. We can also extend soft homomorphism of soft LA-semigroup to soft 
neutrosophic homomorphism of soft neutrosophic LA-semigroup. It is also mentioned here that there is still 
a space to much more work in this field and explorations of further results has still to be done, this is just a 
beginning. 
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Soft Neutrosophic Loop, Soft Neutrosophic Biloop 
and Soft Neutrosophic N-Loop

Mumtaz Ali, Florentin Smarandache, and Muhammad Shabir

Abstract. Soft set theory is a general mathematical tool for dealing with
uncertain, fuzzy, not clearly de�ned objects. In this paper we introduced soft
neutrosophic loop,soft neutosophic biloop, soft neutrosophic N -loop with the
discuission of some of their characteristics. We also introduced a new type of
soft neutrophic loop, the so called soft strong neutrosophic loop which is of pure
neutrosophic character. This notion also foound in all the other corresponding
notions of soft neutrosophic thoery. We also given some of their properties
of this newly born soft structure related to the strong part of neutrosophic
theory.

1. Introduction

Florentin Smarandache for the �rst time intorduced the concept of neutroso-
phy in 1995; which is basically a new branch of philosophy which actually studies
the origion, nature, and scope of neutralities. The neutrosophic logic came into
being by neutrosophy. In neutrosophic logic each proposition is approximated to
have the percentage of truth in a subset T , the percentage of indeterminacy in
a subset I, and the percentage of falsity in a subset F . Neutrosophic logic is
an extension of fuzzy logic. In fact the neutrosophic set is the generalization of
classical set, fuzzy conventional set, intuitionistic fuzzy set, and interal valued
fuzzy set. Neutrosophic logic is used to overcome the problems of impercise-
ness, indeterminate, and inconsistentness of date etc. The theoy of neutrosophy
is so applicable to every �eld of agebra. W.B Vasantha Kandasamy and Florentin
Smarandache introduced neutrosophic �elds, neutrosophic rings,neutrosophic vec-
torspaces,neutrosophic groups,neutrosophic bigroups and neutrosophic N -groups,

neutrosophic semigroups, neutrosophic bisemigroups, and neutrsosophic N-
semigroups, neutrosophic loops, nuetrosophic biloops, and neutrosophic N-loops, 
and so on. Mumtaz ali et al introduced neutrosophic LA-semigoups.

Molodtsov intorduced the theory of soft set. This mathematical tool is free 
from parameterization inadequacy, syndrome of fuzzy set theory, rough set theory, 
probability theory and so on. This theory has been applied successfully in many 
�elds such as smoothness of functions, game theory, operation reaserch, Riemann 
integration, Perron integration, and probability. Recently soft set theory attained 
much attention of the researchers since its appearance and the work based on several 
operations of soft set introduced in [2; 9; 10]. Some properties and algebra may be 
found in [1] : Feng et al. introduced soft semirings in [5]. By means of level soft 
sets an adjustable approach to fuzy soft set can be seen in [6]. Some other concepts 
together with fuzzy set and rough set were shown in [7; 8].

Key words and phrases. Neutrosophic loop, neutrosophic biloop, neutrosophic 
N-loop, soft set, soft neutrosophic loop,soft neutrosophic biloop, soft 
neutrosophic N-loop.
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This paper is about to introduced soft nuetrosophic loop, soft neutrosphic biloop,
and soft neutrosophic N -loop and the related strong or pure part of neutrosophy
with the notions of soft set theory. In the proceeding section, we de�ne soft neu-
trosophic loop, soft neutrosophic strong loop, and some of their properties are
discuissed. In the next section, soft neutrosophic biloop are presented with their
strong neutrosophic part. Also in this section some of their characterization have
been made. In the last section soft neutrosophic N -loop and their coresponding
strong theory have been constructed with some thier properties.

2. Neutrosophic Loop

De�nition 1. A neutrosophic loop is generated by a loop L and I denoted by hL[Ii.
A neutrosophic loop in general need not be a loop for I2 = I and I may not have
an inverse but every element in a loop has an inverse.

De�nition 2. Let hL[Ii be a neutrosophic loop. A proper subset hP [Ii of hL[Ii
is called the neutrosophic subloop, if hP [ Ii is itself a neutrosophic loop under the
operations of hL [ Ii.

De�nition 3. Let (hL[Ii; o) be a neutrosophic loop of �nite order. A proper subset
P of hL [ Ii is said to be Lagrange neutrosophic subloop, if P is a neutrosophic
subloop under the operation �o�and o(P )=ohL [ Ii.

If every neutrosophic subloop of hL [ Ii is Lagrange then we call hL [ Ii to be
a Lagrange neutrosophic loop.

De�nition 4. If hL[ Ii has no Lagrange neutrosophic subloop then we call hL[ Ii
to be a Lagrange free neutrosophic loop.

De�nition 5. If hL[Ii has atleast one Lagrange neutrosophic subloop then we call
hL [ Ii a weakly Lagrange neutrosophic loop.

3. Neutrosophic Biloops

De�nition 6. Let (hB[Ii; �1; �2) be a non empty neutrosophic set with two binary
operations �1; �2, hB [ Ii is a neutrosophic biloop if the following conditions are
satis�ed.

(1) hB [ Ii = P1 [ P2 where P1 and P2 are proper subsets of hB [ Ii.
(2) (P1; �1) is a neutrosophic loop.
(3) (P2; �2) is a group or a loop.

De�nition 7. Let (hB [ Ii; �1; �2) be a neutrosophic biloop. A proper subset P
of hB [ Ii is said to be a neutrosophic subbiloop of hB [ Ii if (P; �1; �2) is itself a
neutrosophic biloop under the operations of hB [ Ii.

De�nition 8. Let (B = B1 [ B2; �1; �2) be a �nite neutrosophic biloop. Let P =
(P1 [ P2; �1; �2) be a neutrosophic biloop. If o(P )=o(B) then we call P a Lagrange
neutrosophic subbiloop of B.

If every neutrosophic subbiloop of B is Lagrange then we call B to be a Lagrange
neutrosophic biloop.

De�nition 9. If B has atleast one Lagrange neutrosophic subbiloop then we call B
to be a weakly Lagrange neutrosophic biloop.
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De�nition 10. If B has no Lagrange neutrosophic subbiloops then we call B to be
a Lagrange free neutrosophic biloop.

4. Neutrosophic N-loop

De�nition 11. Let S(B) = fS(B1) [ : : : [ S(BN); �1; : : : ; �Ng be a non empty
neutrosophic set with N binary operations. S(B) is a neutrosophic N -loop if
S(B) = S(B1)[ : : :[S(BN ), S(Bi) are proper subsets of S(B) for 1 � i � N) and
some of S(Bi) are neutrosophic loops and some of the S(Bj) are groups.

De�nition 12. Let S(B) = fS(B1)[S(B2)[ : : :[S(BN ); �1; : : : ; �Ng be a neutro-
sophic N -loop. A proper subset (P; �1; : : : ; �N ) of S(B) is said to be a neutrosophic
sub N loop of S(B) if P itself is a neutrosophic N -loop under the operations of
S(B).

De�nition 13. Let (L = L1 [ L2 [ : : : [ LN ; �1; �2; : : : ; �Ng be a neutrosophic N -
loop of �nite order. Suppose P is a proper subset of L, which is a neutrosophic sub
N -loop. If o(P )=o(L) then we call P a Lagrange neutrosophic sub N -loop.

If every neutrosophic sub N-loop is Lagrange then we call L to be a Lagrange
neutrosophic N-loop.

De�nition 14. If L has atleast one Lagrange neutrosophic sub N -loop then we call
L to be a weakly Lagrange neutrosophic N -loop.

De�nition 15. If L has no Lagrange neutrosophic sub N -loop then we call L to
be a Lagrange free neutrosophic N -loop.

5. Soft Set

Throughout this subsection U refers to an initial universe, E is a set of parame-
ters, P (U) is the power set of U , and A � E. Molodtsov [10] de�ned the soft set
in the following manner:

De�nition 16. A pair (F;A) is called a soft set over U where F is a mapping
given by F : A �! P (U).

In other words, a soft set over U is a parameterized family of subsets of the
universe U . For a 2 A, F (a) may be considered as the set of a-elements of the soft
set (F;A), or as the set of a-approximate elements of the soft set.

Example 1. Suppose that U is the set of shops. E is the set of parameters and each
parameter is a word or senctence. Let E = fhigh rent,normal rent,in good condition,in bad conditiong.
Let us consider a soft set (F;A) which describes the �attractiveness of shops�
that Mr.Z is taking on rent. Suppose that there are �ve houses in the universe
U = fh1; h2; h3; h4; h5g under consideration, and that A = fe1; e2; e3g be the set of
parameters where

a1 stands for the parameter �high rent,
a2 stands for the parameter �normal rent,
a3 stands for the parameter �in good condition.
Suppose that
F (a1) = fh1; h4g,
F (a2) = fh2; h5g,
F (a3) = fh3g.
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The soft set (F;A) is an approximated family fF (ai); i = 1; 2; 3g of subsets of
the
set U which gives us a collection of approximate description of an object. Thus,

we have the soft set (F,A) as a collection of approximations as below:
(F;A) = fhigh rent = fh1; h4g;normal rent = fh2; h5g;in good condition =

fh3gg.
De�nition 17. For two soft sets (F;A) and (H;B) over U , (F;A) is called a soft
subset of (H;B) if

(1) A � B and
(2) F (a) � G(a) for all a 2 A.
This relationship is denoted by (F;A)

�
� (H;B). Similarly (F;A) is called a

soft superset of (H;B) if (H;B) is a soft subset of (F;A) which is denoted by

(F;A)
�
� (H;B).

De�nition 18. Two soft sets (F;A) and (H;B) over U are called soft equal if
(F;A) is a soft subset of (H;B) and (H;B) is a soft subset of (F;A).

De�nition 19. (F;A) over U is called an absolute soft set if F (a) = U for all
a 2 A and we denote it by FU :
De�nition 20. Let (F;A) and (G;B) be two soft sets over a common universe
U such that A \ B 6= �. Then their restricted intersection is denoted by(F;A) \R
(G;B) = (H;C) where (H;C) is de�ned as H(c) = F (c) \ G(c) for all c 2 C =
A \B.
De�nition 21. The extended intersection of two soft sets (F;A) and (G;B) over
a common universe U is the soft set (H;C), where C = A [ B, and for all c 2 C,
H(c) is de�ned as

H(c) =

8<: F (c) if c 2 A�B
G(c) if c 2 B �A

F (c) \G(c) if c 2 A \B.
We write (F;A) \" (G;B) = (H;C).

De�nition 22. The resticted union of two soft sets (F;A) and (G;B) over a com-
mon universe U is the soft set (H;C), where C = A [ B, and for all c 2 C,
H(e) is de�ned as the soft set (H;C) = (F;A) [R (G;B) where C = A \ B and
H(c) = F (c) [G(c) for all c 2 C.
De�nition 23. The extended union of two soft sets (F;A) and (G;B) over a
common universe U is the soft set (H;C), where C = A [ B, and for all c 2 C,
H(c) is de�ned as

H(c) =

8<: F (c) if c 2 A�B
G(c) if c 2 B �A

F (c) [G(c) if c 2 A \B.
We write (F;A) [" (G;B) = (H;C).

6. Soft Neutrosophic Loop

De�nition 24. Let hL [ Ii be a neutrosophic loop and (F;A) be a soft set over
hL [ Ii. Then (F;A) is called soft neutrosophic loop if and only if F (a) is neutro-
sophic subloop of hL [ Ii, for all a 2 A.
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Example 2. Let hL[Ii = hL7(4)[Ii be a neutrosophic loop where L7(4) is a loop.
he; eI; 2; 2Ii; he; 3i and he; eIi are neutrosophic subloops of L7(4). Then (F;A) is a
soft neutrosophic loop over hL [ Ii, where

F (a1) = fhe; eI; 2; 2Iig ; F (a2) = fhe; 3ig ;
F (a3) = fhe; eIig :

Theorem 1. Every soft neutrosophic loop over hL[ Ii contains a soft loop over L.
Proof. The proof is straight forward. �
Theorem 2. Let (F;A) and (H;A) be two soft neutrosophic loops over hL [ Ii.
Then their intersection (F;A)\(H;A) is again a soft neutrosophic loop over hL[Ii.
Proof. The proof is staight forward. �
Theorem 3. Let (F;A) and (H;B) be two soft neutrosophic loops over hL[ Ii. If
A \B = �, then (F;A) [ (H;B) is a soft neutrosophic loop over hL [ Ii.
Theorem 4. Let (F;A) and (H;A) be two soft neutrosophic loops over hL[ Ii. If
F (a) � H(a) for all a 2 A, then (F;A) is a soft neutrosophic subloop of (H;A).
Theorem 5. Let (F;A) and (K;B) be two soft neutrosophic loops over hL [ Ii.
Then

(1) Their extended union (F;A)[" (K;B) over hL[ Ii is not soft neutrosophic
loop over hL [ Ii.

(2) Their extended intersection (F;A)\"(K;B) over hL[Ii is soft neutrosophic
loop over hL [ Ii.

(3) Their restricted union (F;A)[R (K;B) over hL[Ii is not soft neutrosophic
loop over hL [ Ii.

(4) Their restricted intersection (F;A)\"(K;B) over hL[Ii is soft neutrosophic
soft loop over hL [ Ii.

Theorem 6. Let (F;A) and (H;B) be two soft neutrosophic loops over hL [ Ii.
Then

(1) Their AND operation (F;A)^(H;B) is soft neutrosophic loop over hL[Ii.
(2) Their OR operation (F;A)_(H;B) is not soft neutrosophic loop over hL[Ii.

De�nition 25. Let hLn(m) [ Ii = fe; 1; 2; : : : ; n; e:I; 1I; : : : ; nIg be a new class of
neutrosophic loop and (F;A) be a soft neutrosophic loop over hLn(m) [ Ii. Then
(F;A) is called soft new class neutrosophic loop if F (a) is neutrosophic subloop of
hLn(m) [ Ii; for all a 2 A.
Example 3. Let hL5(3)[Ii = fe; 1; 2; 3; 4; 5; eI; 1I; 2I; 3I; 4I; 5Ig be a new class of
neutrosophic loop and fe; eI; 1; 1Ig; fe; eI; 2; 2Ig; fe; eI; 3; 3Ig; fe; eI; 4; 4Ig; fe; eI; 5; 5Ig
are neutrosophic subloops of L5(3). Then (F;A) is soft new class neutrosophic loop
over L5(3), where

F (a1) = fe; eI; 1; 1Ig; F (a2) = fe; eI; 2; 2Ig;
F (a3) = fe; eI; 3; 3Ig; F (a4) = fe; eI; 4; 4Ig;
F (a5) = fe; eI; 5; 5Ig:

Theorem 7. Every soft new class neutrosophic loop over hLn (m) [ Ii is a soft
neutrosophic loop over hLn(m) [ Ii but the converse is not true.
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Theorem 8. Let (F;A) and (K;B) be two soft new class neutrosophic loops over
hLn (m) [ Ii. Then

(1) Their extended union (F;A) [" (K;B) over hLn (m) [ Ii is not soft new
class neutrosophic loop over hLn (m) [ Ii.

(2) Their extended intersection (F;A) \" (K;B) over hLn (m) [ Ii is soft new
class neutrosophic loop over hLn (m) [ Ii.

(3) Their restricted union (F;A) [R (K;B) over hLn (m) [ Ii is not soft new
class neutrosophic loop over hLn (m) [ Ii.

(4) Their restricted intersection (F;A) \" (K;B) over hLn (m) [ Ii is soft new
class neutrosophic soft loop over hLn (m) [ Ii.

Theorem 9. Let (F;A) and (H;B) be two soft new class neutrosophic loops over
hLn (m) [ Ii. Then

(1) Their AND operation (F;A) ^ (H;B) is soft new class neutrosophic loop
over hLn (m) [ Ii.

(2) Their OR operation (F;A)_ (H;B) is not soft new class neutrosophic loop
over hLn (m) [ Ii.

De�nition 26. Let (F;A) be a soft neutrosophic loop over hL [ Ii, then (F;A) is
called the identity soft neutrosophic loop over hL [ Ii if F (a) = feg, for all a 2 A,
where e is the identity element of L.

De�nition 27. Let (F;A) be a soft neutrosophic loop over hL [ Ii, then (F;A) is
called Full-soft neutrosophic loop over hL [ Ii if F (a) = hL [ Ii, for all a 2 A.

De�nition 28. Let (F;A) and (H;B) be two soft neutrosophic loops over hL[ Ii.
Then (H;B) is soft neutrosophic subloop of (F;A), if

(1) B � A.
(2) H(a) is neutrosophic subloop of F (a), for all a 2 A.

Example 4. Consider the neutrosophic loop hL15(2)[Ii = fe; 1; 2; 3; 4; : : : ; 15; eI; 1I; 2I; : : : ; 14I; 15Ig
of order 32. It is easily veri�ed P = fe; 2; 5; 8; 11; 14; eI; 2I; 5I; 8I; 11I; 14Ig; Q =
fe; 2; 5; 8; 11; 14g and T = fe; 3; eI; 3Ig are neutrosophic subloops of hL15(2) [ Ii:
Then (F;A) is a soft neutrosophic loop over hL15 (2) [ Ii, where

F (a1) = fe; 2; 5; 8; 11; 14; eI; 2I; 5I; 8I; 11I; 14Ig;
F (a2) = fe; 2; 5; 8; 11; 14g;
F (a3) = fe; 3; eI; 3Ig:

Hence (G;B) is a soft neutrosophic subloop of (F;A) over hL15(2) [ Ii, where
G (a1) = fe; eI; 2I; 5I; 8I; 11I; 14Ig;
G (e3) = fe; 3g:

Theorem 10. Every soft loop over L is a soft neutrosophic subloop over hL [ Ii.

Theorem 11. Every absolute soft loop over L is a soft neutrosophic subloop of
Full-soft neutrosophic loop over hL [ Ii.

De�nition 29. Let hL [ Ii be a neutrosophic loop and (F;A) be a soft set over
hL [ Ii. Then (F;A) is called normal soft neutrosophic loop if and only if F (a) is
normal neutrosophic subloop of hL [ Ii, for all a 2 A.
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Example 5. Let hL5(3)[Ii = fe; 1; 2; 3; 4; 5; eI; 1I; 2I; 3I; 4I; 5Ig be a neutrosophic
loop and fe; eI; 1; 1Ig, fe; eI; 2; 2Ig, fe; eI; 3; 3Ig are normal neutrosophic subloops
of hL5(3)[Ii: Then Clearly (F;A) is normal soft neutrosophic loop over hL5(3)[Ii,
where

F (a1) = fe; eI; 1; 1Ig; F (a2) = fe; eI; 2; 2Ig;
F (a3) = fe; eI; 3; 3Ig:

Theorem 12. Every normal soft neutrosophic loop over hL [ Ii is a soft neutro-
sophic loop over hL [ Ii but the converse is not true.

Theorem 13. Let (F;A) and (K;B) be two normal soft neutrosophic loops over
hL [ Ii. Then

(1) Their extended union (F;A) [" (K;B) over hL [ Ii is not normal soft neu-
trosophic loop over hL [ Ii.

(2) Their extended intersection (F;A) \" (K;B) over hL [ Ii is normal soft
neutrosophic loop over hL [ Ii.

(3) Their restricted union (F;A) [R (K;B) over hL [ Ii is not normal soft
neutrosophic loop over hL [ Ii.

(4) Their restricted intersection (F;A) \" (K;B) over hL [ Ii is normal soft
neutrosophic soft loop over hL [ Ii.

Theorem 14. Let (F;A) and (H;B) be two normal soft neutrosophic loops over
hL [ Ii. Then

(1) Their AND operation (F;A)^(H;B) is normal soft neutrosophic loop over
hL [ Ii.

(2) Their OR operation (F;A) _ (H;B) is not normal soft neutrosophic loop
over hL [ Ii.

De�nition 30. Let hL [ Ii be a neutrosophic loop and (F;A) be a soft neutrosophic
loop over hL [ Ii. Then (F;A) is called Lagrange soft neutrosophic loop if each F (a)
is lagrange neutrosophic subloop of hL [ Ii, for all a 2 A.

Example 6. In (example 1), (F;A) is lagrange soft neutrosophic loop over hL[Ii:

Theorem 15. Every lagrange soft neutrosophic loop over hL [ Ii is a soft neutro-
sophic loop over hL [ Ii but the converse is not true.

Theorem 16. If hL [ Ii is lagrange neutrosophic loop, then (F;A) over hL [ Ii is
lagrange soft neutrosophic loop but the converse is not true.

Theorem 17. Every soft new class neutrosophic loop over hLn (m)[Ii is lagrange
soft neutrosophic loop over hLn (m) [ Ii but the converse is not true.

Theorem 18. If hL[ Ii is a new class neutrosophic loop, then (F;A) over hL[ Ii
is lagrange soft neutrosophic loop.

Theorem 19. Let (F;A) and (K;B) be two lagrange soft neutrosophic loops over
hL [ Ii. Then

(1) Their extended union (F;A) [" (K;B) over hL [ Ii is not lagrange soft
neutrosophic loop over hL [ Ii.

(2) Their extended intersection (F;A) \" (K;B) over hL [ Ii is not lagrange
soft neutrosophic loop over hL [ Ii.
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(3) Their restricted union (F;A) [R (K;B) over hL [ Ii is not lagrange soft
neutrosophic loop over hL [ Ii.

(4) Their restricted intersection (F;A) \" (K;B) over hL [ Ii is not lagrange
soft neutrosophic soft loop over hL [ Ii.

Theorem 20. Let (F;A) and (H;B) be two lagrange soft neutrosophic loops over
hL [ Ii. Then

(1) Their AND operation (F;A)^(H;B) is not lagrange soft neutrosophic loop
over hL [ Ii.

(2) Their OR operation (F;A) _ (H;B) is not lagrange soft neutrosophic loop
over hL [ Ii.

De�nition 31. Let hL [ Ii be a neutrosophic loop and (F;A) be a soft neutrosophic
loop over hL [ Ii. Then (F;A) is called weak Lagrange soft neutrosophic loop if
atleast one F (a) is lagrange neutrosophic subloop of hL [ Ii, for some a 2 A.
Example 7. Consider the neutrosophic loop hL15(2)[Ii = fe; 1; 2; 3; 4; : : : ; 15; eI; 1I; 2I; : : : ; 14I; 15Ig
of order 32. It is easily veri�ed P = fe; 2; 5; 8; 11; 14; eI; 2I; 5I; 8I; 11I; 14Ig; Q =
fe; 2; 5; 8; 11; 14g and T = fe; 3; eI; 3Ig are neutrosophic subloops of hL15(2) [ Ii:
Then (F;A) is a weak lagrange soft neutrosophic loop over hL15 (2) [ Ii, where

F (a1) = fe; 2; 5; 8; 11; 14; eI; 2I; 5I; 8I; 11I; 14Ig;
F (a2) = fe; 2; 5; 8; 11; 14g;
F (a3) = fe; 3; eI; 3Ig:

Theorem 21. Every weak lagrange soft neutrosophic loop over hL [ Ii is a soft
neutrosophic loop over hL [ Ii but the converse is not true.
Theorem 22. If hL[Ii is weak lagrange neutrosophic loop, then (F;A) over hL[Ii
is also weak lagrange soft neutrosophic loop but the converse is not true.

Theorem 23. Let (F;A) and (K;B) be two weak lagrange soft neutrosophic loops
over hL [ Ii. Then

(1) Their extended union (F;A) [" (K;B) over hL [ Ii is not weak lagrange
soft neutrosophic loop over hL [ Ii.

(2) Their extended intersection (F;A)\"(K;B) over hL[Ii is not weak lagrange
soft neutrosophic loop over hL [ Ii.

(3) Their restricted union (F;A) [R (K;B) over hL [ Ii is not weak lagrange
soft neutrosophic loop over hL [ Ii.

(4) Their restricted intersection (F;A) \" (K;B) over hL [ Ii is not weak la-
grange soft neutrosophic soft loop over hL [ Ii.

Theorem 24. Let (F;A) and (H;B) be two weak lagrange soft neutrosophic loops
over hL [ Ii. Then

(1) Their AND operation (F;A)^(H;B) is not weak lagrange soft neutrosophic
loop over hL [ Ii.

(2) Their OR operation (F;A)_ (H;B) is not weak lagrange soft neutrosophic
loop over hL [ Ii.

De�nition 32. Let hL [ Ii be a neutrosophic loop and (F;A) be a soft neutrosophic
loop over hL [ Ii. Then (F;A) is called Lagrange free soft neutrosophic loop if F (a)
is not lagrange neutrosophic subloop of hL [ Ii, for all a 2 A.
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Theorem 25. Every lagrange free soft neutrosophic loop over hL [ Ii is a soft
neutrosophic loop over hL [ Ii but the converse is not true.

Theorem 26. If hL[Ii is lagrange free neutrosophic loop, then (F;A) over hL[Ii
is also lagrange free soft neutrosophic loop but the converse is not true.

Theorem 27. Let (F;A) and (K;B) be two lagrange free soft neutrosophic loops
over hL [ Ii. Then

(1) Their extended union (F;A)[" (K;B) over hL[ Ii is not lagrange free soft
neutrosophic loop over hL [ Ii.

(2) Their extended intersection (F;A) \" (K;B) over hL [ Ii is not lagrange
free soft neutrosophic loop over hL [ Ii.

(3) Their restricted union (F;A)[R (K;B) over hL[Ii is not lagrange free soft
neutrosophic loop over hL [ Ii.

(4) Their restricted intersection (F;A) \" (K;B) over hL [ Ii is not lagrange
free soft neutrosophic soft loop over hL [ Ii.

Theorem 28. Let (F;A) and (H;B) be two lagrange free soft neutrosophic loops
over hL [ Ii. Then

(1) Their AND operation (F;A)^(H;B) is not lagrange free soft neutrosophic
loop over hL [ Ii.

(2) Their OR operation (F;A) _ (H;B) is not lagrange free soft neutrosophic
loop over hL [ Ii.

7. Soft Neutrosophic Biloop

De�nition 33. Let (hB [ Ii; �1; �2) be a neutrosophic biloop and (F;A) be a soft
set over (hB [ Ii; �1; �2). Then (F;A) is called soft neutrosophic biloop if and only
if F (a) is neutrosophic subbiloop of (hB [ Ii; �1; �2), for all a 2 A.

Example 8. Let (hB [ Ii; �1; �2) = (fe; 1; 2; 3; 4; 5; eI; 1I; 2I; 3I; 4I; 5Ig [ fg jg6 =
eg; �1; �2) be a neutrosophic biloop and fe; 2; eI; 2Ig [

�
g2; g4; e

	
, fe; 3; eI; 3Ig [�

g3; e
	
are two neutrosophic subbiloops of (hB [ Ii; �1; �2): Then (F;A) is clearly

soft neutrosophic biloop over (hB [ Ii; �1; �2); where
F (a1) = fe; 2; eI; 2Ig [

�
g2; g4; e

	
;

F (a2) = fe; 3; eI; 3Ig [
�
g3; e

	
:

Theorem 29. Let (F;A) and (H;A) be two soft neutrosophic biloops over (hB [
Ii; �1; �2). Then their intersection (F;A)\(H;A) is again a soft neutrosophic biloop
over (hB [ Ii; �1; �2).

Proof. Straight forward. �

Theorem 30. Let (F;A) and (H;B) be two soft neutrosophic biloops over (hB [
Ii; �1; �2) such that A \ B = �, then their union is soft neutrosophic biloop over
(hB [ Ii; �1; �2).

Proof. Straight forward. �

Theorem 31. Let (F;A) and (K;B) be two soft neutrosophic biloops over (hB [
Ii; �1; �2). Then
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(1) Their extended union (F;A) [" (K;B) over (hB [ Ii; �1; �2) is not soft
neutrosophic biloop over (hB [ Ii; �1; �2).

(2) Their extended intersection (F;A) \" (K;B) over (hB [ Ii; �1; �2) is soft
neutrosophic biloop over

(hB [ Ii; �1; �2):
(1) Their restricted union (F;A) [R (K;B) over (hB [ Ii; �1; �2) is not soft

neutrosophic biloop over (hB [ Ii; �1; �2).
(2) Their restricted intersection (F;A) \" (K;B) over (hB [ Ii; �1; �2) is soft

neutrosophic biloop over (hB [ Ii; �1; �2).

Theorem 32. Let (F;A) and (H;B) be two soft neutrosophic biloops over (hB [
Ii; �1; �2). Then

(1) Their AND operation (F;A)^(H;B) is soft neutrosophic biloop over (hB[
Ii; �1; �2).

(2) Their OR operation (F;A) _ (H;B) is not soft neutrosophic biloop over
(hB [ Ii; �1; �2).

De�nition 34. Let B = (hLn(m) [ Ii [ B2; �1; �2) be a new class neutrosophic
biloop and (F;A) be a soft set over B = (hLn(m) [ Ii [ B2; �1; �2). Then (F;A)
is called soft new class neutrosophic subbiloop if and only if F (a) is neutrosophic
subbiloop of B = (hLn(m) [ Ii [B2; �1; �2), for all a 2 A.

Example 9. Let B = (hB1 [ B2; �1; �2) be a new class neutrosophic biloop B1 =
(hL5(3) [ Ii = fe; 1; 2; 3; 4; 5; eI; 1I; 2I; 3I; 4I; 5Ig be a new class of neutrosophic
loop and B2 =

�
g : g12 = 1

	
is a group. fe; eI; 1; 1Ig [

�
1; g6

	
; fe; eI; 2; 2Ig [�

1; g2; g4; g6; g8; g10
	
; fe; eI; 3; 3Ig [

�
1; g3; g6; g9

	
; fe; eI; 4; 4Ig [ f1; g4; g8g are

neutrosophic subloops of B. Then (F;A) is soft new class neutrosophic biloop over
B, where

F (a1) = fe; eI; 1; 1Ig [
�
1; g6

	
;

F (a2) = fe; eI; 2; 2Ig [
�
1; g2; g4; g6; g8; g10

	
;

F (a3) = fe; eI; 3; 3Ig [
�
1; g3; g6; g9

	
;

F (a4) = fe; eI; 4; 4Ig [ f1; g4; g8g:

Theorem 33. Every soft new class neutrosophic biloop over B = (hLn(m) [ Ii [
B2; �1; �2) is a soft neutrosophic biloop over but the converse is not true.

Theorem 34. Let (F;A) and (K;B) be two soft new class neutrosophic biloops
over B = (hLn(m) [ Ii [B2; �1; �2). Then

(1) Their extended union (F;A) [" (K;B) over hLn (m) [ Ii is not soft new
class neutrosophic biloop over B = (hLn(m) [ Ii [B2; �1; �2).

(2) Their extended intersection (F;A) \" (K;B) over B = (hLn(m) [ Ii [
B2; �1; �2) is soft new class neutrosophic biloop over B = (hLn(m) [ Ii [
B2; �1; �2).

(3) Their restricted union (F;A)[R (K;B) over B = (hLn(m)[ Ii [B2; �1; �2)
is not soft new class neutrosophic biloop over B = (hLn(m)[Ii[B2; �1; �2).

(4) Their restricted intersection (F;A) \" (K;B) over B = (hLn(m) [ Ii [
B2; �1; �2) is soft new class neutrosophic soft biloop over B = (hLn(m) [
Ii [B2; �1; �2).
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Theorem 35. Let (F;A) and (H;B) be two soft new class neutrosophic biloops
over B = (hLn(m) [ Ii [B2; �1; �2). Then

(1) Their AND operation (F;A)^ (H;B) is soft new class neutrosophic biloop
over B = (hLn(m) [ Ii [B2; �1; �2).

(2) Their OR operation (F;A)_(H;B) is not soft new class neutrosophic biloop
over B = (hLn(m) [ Ii [B2; �1; �2).

De�nition 35. Let (F;A) be a soft neutrosophic biloop over B = (hB1 [ Ii [
B2; �1; �2), then (F;A) is called the identity soft neutrosophic biloop over B =
(hB1[Ii[B2; �1; �2) if F (a) = fe1; e2g, for all a 2 A, where e1,e2 are the identities
element of B = (hB1 [ Ii [B2; �1; �2) respectively.

De�nition 36. Let (F;A) be a soft neutrosophic biloop over B = (hB1 [ Ii [
B2; �1; �2), then (F;A) is called Full-soft neutrosophic biloop over B = (B1 [
B2; �1; �2) if F (a) = B = (hB1 [ Ii [B2; �1; �2), for all a 2 A.

De�nition 37. Let (F;A) and (H;B) be two soft neutrosophic biloops over B =
(hB1 [ Ii [B2; �1; �2). Then (H;B) is soft neutrosophic subbiloop of (F;A), if

(1) B � A.
(2) H(a) is neutrosophic subbiloop of F (a), for all a 2 A.

Example 10. Let B = (hB1 [ Ii [B2; �1; �2) be a neutrosophic biloop where B1 =
(hL5(3) [ Ii = fe; 1; 2; 3; 4; 5; eI; 1I; 2I; 3I; 4I; 5Ig be a neutrosophic loop and B2 =�
g : g12 = 1

	
is a group. fe; eI; 1; 1Ig[

�
1; g6

	
; fe; eI; 2; 2Ig[

�
1; g2; g4; g6; g8; g10

	
;

fe; eI; 3; 3Ig [
�
1; g3; g6; g9

	
; fe; eI; 4; 4Ig [ f1; g4; g8g are neutrosophic subbiloops

of B. Then (F;A) is soft neutrosophic biloop over B, where

F (a1) = fe; eI; 1; 1Ig [
�
1; g6

	
;

F (a2) = fe; eI; 2; 2Ig [
�
1; g2; g4; g6; g8; g10

	
;

F (a3) = fe; eI; 3; 3Ig [
�
1; g3; g6; g9

	
;

F (a4) = fe; eI; 4; 4Ig [ f1; g4; g8g:

(H;B) is soft neutrosophic subbiloop of (F;A), where

H (a2) = fe; 2; g [
�
1; g6

	
;

H (a3) = fe; eI; 3Ig [
�
1; g6

	
:

De�nition 38. Let B = (hB1 [ Ii [B2; �1; �2) be a neutrosophic biloop and (F;A)
be a soft set over B = (hB1[Ii[B2; �1; �2). Then (F;A) is called soft neutrosophic
Moufang biloop if and only if F (a) = (P1 [ P2; �1; �2; where P1 is a proper neutro-
sophic Moufang loop of B1) is neutrosophic subbiloop of B = (hB1[ Ii[B2; �1; �2),
for all a 2 A.

Example 11. Let B = (hB1[ Ii[B2); �1; �2) be a neutrosophic biloop where B1 =
hL5(3) [ Ii and B2 = S3: Let P = fe; 2; eI; 2Ig [ fe; (12)g and Q = fe; 3; eI; 3Ig [
fe; (123) ; (132)g are neutrosophic subbiloops of B in which fe; 2; eI; 2Ig and fe; 3; eI; 3Ig
are proper neutrosophic Moufang loops. Then clearly (F;A) is soft neutrosophic
Moufang biloop over B, where

F (a1) = fe; 2; eI; 2Ig [ fe; (12)g ;
F (a2) = fe; 3; eI; 3Ig [ fe; (123) ; (132)g :
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Theorem 36. Every soft neutrosophic Moufang biloop over B = (hB1 [ Ii [
B2; �1; �2) is a soft neutrosophic biloop but the converse is not true.
Theorem 37. Let (F;A) and (K;B) be two soft neutrosophic Moufang biloops over
B = (hB1 [ Ii [B2; �1; �2). Then

(1) Their extended union (F;A)[" (K;B) over B is not soft neutrosophic Mo-
ufang biloop over B.

(2) Their extended intersection (F;A) \" (K;B) over B is soft neutrosophic
Moufang biloop over B.

(3) Their restricted union (F;A) [R (K;B) over B is not soft neutrosophic
Moufang biloop over B.

(4) Their restricted intersection (F;A) \" (K;B) over B is soft neutrosophic
Moufang biloop over B.

Theorem 38. Let (F;A) and (H;B) be two soft neutrosophic Moufang biloops over
B = (hB1 [ Ii [B2; �1; �2). Then

(1) Their AND operation (F;A)^ (H;B) is soft neutrosophic Moufang biloop
over B.

(2) Their OR operation (F;A)_(H;B) is not soft neutrosophic Moufang biloop
over B.

De�nition 39. Let B = (hB1 [ Ii [B2; �1; �2) be a neutrosophic biloop and (F;A)
be a soft set over B = (hB1[Ii[B2; �1; �2). Then (F;A) is called soft neutrosophic
Bol biloop if and only if F (a) = (P1 [ P2; �1; �2; where P1 is a proper neutrosophic
Bol loop of B1) is neutrosophic subbiloop of B = (hB1 [ Ii [ B2; �1; �2), for all
a 2 A.
Example 12. Let B = (hB1[ Ii[B2); �1; �2) be a neutrosophic biloop where B1 =
hL5(3) [ Ii and B2 = S3: Let P = fe; 3; eI; 3Ig [ fe; (12)g and Q = fe; 2; eI; 2Ig [
fe; (123) ; (132)g are neutrosophic subbiloops of B in which fe; 3; eI; 3Ig and fe; 2; eI; 2Ig
are proper neutrosophic Bol loops. Then clearly (F;A) is soft neutrosophic Bol
biloop over B, where

F (a1) = fe; 3; eI; 3Ig [ fe; (12)g ;
F (a2) = fe; 2; eI; 2Ig [ fe; (123) ; (132)g :

Theorem 39. Every soft neutrosophic Bol biloop over B = (hB1 [ Ii [B2; �1; �2)
is a soft neutrosophic biloop but the converse is not true.

Theorem 40. Let (F;A) and (K;B) be two soft neutrosophic Bol biloops over
B = (hB1 [ Ii [B2; �1; �2). Then

(1) Their extended union (F;A) [" (K;B) over B is not soft neutrosophic Bol
biloop over B.

(2) Their extended intersection (F;A)\" (K;B) over B is soft neutrosophic Bol
biloop over B.

(3) Their restricted union (F;A)[R (K;B) over B is not soft neutrosophic Bol
biloop over B.

(4) Their restricted intersection (F;A) \" (K;B) over B is soft neutrosophic
Bol biloop over B.

Theorem 41. Let (F;A) and (H;B) be two soft neutrosophic Bol biloops over
B = (hB1 [ Ii [B2; �1; �2). Then
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(1) Their AND operation (F;A) ^ (H;B) is soft neutrosophic Bol biloop over
B.

(2) Their OR operation (F;A)_(H;B) is not soft neutrosophic Bol biloop over
B.

De�nition 40. Let (hB [ Ii; �1; �2) be a neutrosophic biloop and (F;A) be a soft
set over (hB [ Ii; �1; �2). Then (F;A) is called soft Lagrange neutrosophic biloop
if and only if F (a) is Lagrange neutrosophic subbiloop of (hB [ Ii; �1; �2), for all
a 2 A.

Example 13. Let B = (B1[B2; �1; �2) be a neutrosophic biloop of order 20, where
B1 = fhL5(3) [ Ii; �1g and B2 = fgj g8 = 1g. Let (P = P1 [ P2; �1; �2) where
P1 = fe; eI; 2; 2Ig � B1 and P2 = f1g � B2 and (Q = Q1 [ Q2; �1; �2) where
Q1 = fe; eI; 3; 3Ig � B1 and Q2 = f1g � B2 are Lagrange neutrosophic subbiloops
of B: Then clearly (F;A) is a soft Lagrange neutrosophic biloop over B, where

F (a1) = fe; eI; 2; 2Ig [ f1g;
F (a2) = fe; eI; 3; 3Ig [ f1g:

Theorem 42. Every soft Lagrange neutrosophic biloop over B = (hB1 [ Ii [
B2; �1; �2) is a soft neutrosophic biloop but the converse is not true.

Theorem 43. Let (F;A) and (K;B) be two soft Lagrange neutrosophic biloops
over B = (hB1 [ Ii [B2; �1; �2). Then

(1) Their extended union (F;A) [" (K;B) over B is not soft Lagrange neutro-
sophic biloop over B.

(2) Their extended intersection (F;A) \" (K;B) over B is not soft Lagrange
neutrosophic biloop over B.

(3) Their restricted union (F;A)[R (K;B) over B is not soft Lagrange neutro-
sophic biloop over B.

(4) Their restricted intersection (F;A) \" (K;B) over B is not soft Lagrange
neutrosophic biloop over B.

Theorem 44. Let (F;A) and (H;B) be two soft Lagrange neutrosophic biloops
over B = (hB1 [ Ii [B2; �1; �2). Then

(1) Their AND operation (F;A) ^ (H;B) is not soft Lagrange neutrosophic
biloop over B.

(2) Their OR operation (F;A)_(H;B) is not soft Lagrange neutrosophic biloop
over B.

De�nition 41. Let (hB [ Ii; �1; �2) be a neutrosophic biloop and (F;A) be a soft
set over (hB [ Ii; �1; �2). Then (F;A) is called soft weakly Lagrange neutrosophic
biloop if atleast one F (a) is not Lagrange neutrosophic subbiloop of (hB[Ii; �1; �2),
for some a 2 A.

Example 14. Let B = (B1 [ B2; �1; �2) be a neutrosophic biloop of order 20,
where B1 = fhL5(3)[Ii; �1g and B2 = fgj g8 = 1g. Let (P = P1[P2; �1; �2) where
P1 = fe; eI; 2; 2Ig � B1 and P2 = f1g � B2 is a Lagrange neutrosophic subbiloop of
B and (Q = Q1 [Q2; �1; �2) where Q1 = fe; eI; 3; 3Ig � B1 and Q2 = f1; g4g � B2
is not Lagrange neutrosophic subbiloop of B: Then clearly (F;A) is a soft weakly
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Lagrange neutrosophic biloop over B, where

F (a1) = fe; eI; 2; 2Ig [ f1g;
F (a2) = fe; eI; 3; 3Ig [ f1; g4g:

Theorem 45. Every soft weakly Lagrange neutrosophic biloop over B = (hB1 [
Ii [B2; �1; �2) is a soft neutrosophic biloop but the converse is not true.
Theorem 46. If B = (hB1 [ Ii [ B2; �1; �2) is a weakly Lagrange neutrosophic
biloop, then (F;A) over B is also soft weakly Lagrange neutrosophic biloop but the
converse is not holds.

Theorem 47. Let (F;A) and (K;B) be two soft weakly Lagrange neutrosophic
biloops over B = (hB1 [ Ii [B2; �1; �2). Then

(1) Their extended union (F;A) [" (K;B) over B is not soft weakly Lagrange
neutrosophic biloop over B.

(2) Their extended intersection (F;A) \" (K;B) over B is not soft weakly La-
grange neutrosophic biloop over B.

(3) Their restricted union (F;A)[R (K;B) over B is not soft weakly Lagrange
neutrosophic biloop over B.

(4) Their restricted intersection (F;A) \" (K;B) over B is not soft weakly
Lagrange neutrosophic biloop over B.

Theorem 48. Let (F;A) and (H;B) be two soft weakly Lagrange neutrosophic
biloops over B = (hB1 [ Ii [B2; �1; �2). Then

(1) Their AND operation (F;A) ^ (H;B) is soft not weakly Lagrange neutro-
sophic biloop over B.

(2) Their OR operation (F;A) _ (H;B) is not soft weakly Lagrange neutro-
sophic biloop over B.

De�nition 42. Let (hB[Ii; �1; �2) be a neutrosophic biloop and (F;A) be a soft set
over (hB [ Ii; �1; �2). Then (F;A) is called soft Lagrange free neutrosophic biloop
if and only if F (a) is not Lagrange neutrosophic subbiloop of (hB [ Ii; �1; �2), for
all a 2 A.
Example 15. Let B = (B1[B2; �1; �2) be a neutrosophic biloop of order 20, where
B1 = fhL5(3)[ Ii; �1g and B2 = fgj g8 = 1g. Let (P = P1 [P2; �1; �2) where P1 =
fe; eI; 2; 2Ig � B1 and P2 = f1; g2; g4; g6g � B2 and (Q = Q1 [ Q2; �1; �2) where
Q1 = fe; eI; 3; 3Ig � B1 and Q2 = f1; g4g � B2 are not Lagrange neutrosophic
subbiloop of B: Then clearly (F;A) is a soft Lagrange free neutrosophic biloop over
B, where

F (a1) = fe; eI; 2; 2Ig [ f1; g2; g4; g6g;
F (a2) = fe; eI; 3; 3Ig [ f1; g4g:

Theorem 49. Every soft Lagrange free neutrosophic biloop over B = (hB1 [ Ii [
B2; �1; �2) is a soft neutrosophic biloop but the converse is not true.
Theorem 50. If B = (hB1[ Ii[B2; �1; �2) is a Lagrange free neutrosophic biloop,
then (F;A) over B is also soft Lagrange free neutrosophic biloop but the converse
is not holds.

Theorem 51. Let (F;A) and (K;B) be two soft Lagrange free neutrosophic biloops
over B = (hB1 [ Ii [B2; �1; �2). Then
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(1) Their extended union (F;A) [" (K;B) over B is not soft Lagrange free
neutrosophic biloop over B.

(2) Their extended intersection (F;A) \" (K;B) over B is not soft Lagrange
free neutrosophic biloop over B.

(3) Their restricted union (F;A) [R (K;B) over B is not soft Lagrange free
neutrosophic biloop over B.

(4) Their restricted intersection (F;A) \" (K;B) over B is not soft Lagrange
free neutrosophic biloop over B.

Theorem 52. Let (F;A) and (H;B) be two soft Lagrange free neutrosophic biloops
over B = (hB1 [ Ii [B2; �1; �2). Then

(1) Their AND operation (F;A)^(H;B) is not soft Lagrange free neutrosophic
biloop over B.

(2) Their OR operation (F;A) _ (H;B) is not soft Lagrange free neutrosophic
biloop over B.

De�nition 43. Let B = (B1 [ B2; �1; �2) be a neutrosophic biloop where B1 is a
neutrosopphic biloop and B2 is a neutrosophic group and (F;A) be soft set over B.
Then (F;A) over B is called soft strong neutrosophic biloop if and only if F (a) is
a neutrosopchic subbiloop of B, for all a 2 A.

Example 16. Let (B = B1 [B2; �1; �2) where B1 = hL5(2) [ Ii is a neutrosophic
loop and B2 = f1; 2; 3; 4; I; 2I; 3I; 4Ig under multiplication modulo 5 is a neutro-
sophic group. Let P = fe; 2; eI; 2Ig [ f1; I; 4Ig and Q = fe; 3; eI; 3Ig [ f1; Ig are
neutrosophic subbiloops of B. Then (F;A) is soft strong neutrosophic biloop of B,
where

F (a1) = fe; 2; eI; 2Ig [ f1; I; 4Ig ;
F (a2) = fe; 3; eI; 3Ig [ f1; Ig :

Theorem 53. Every soft strong neutrosophic biloop over B = (hB1[Ii[B2; �1; �2)
is a soft neutrosophic biloop but the converse is not true.

Theorem 54. If B = (hB1 [ Ii [ B2; �1; �2) is a strong neutrosophic biloop, then
(F;A) over B is also soft strong neutrosophic biloop but the converse is not holds.

Theorem 55. Let (F;A) and (K;B) be two soft soft neutrosophic biloops over
B = (hB1 [ Ii [B2; �1; �2). Then

(1) Their extended union (F;A)["(K;B) over B is not soft strong neutrosophic
biloop over B.

(2) Their extended intersection (F;A) \" (K;B) over B is soft strong neutro-
sophic biloop over B.

(3) Their restricted union (F;A) [R (K;B) over B is not soft strong neutro-
sophic biloop over B.

(4) Their restricted intersection (F;A) \" (K;B) over B is soft strong neutro-
sophic biloop over B.

Theorem 56. Let (F;A) and (H;B) be two soft strong neutrosophic biloops over
B = (hB1 [ Ii [B2; �1; �2). Then

(1) Their AND operation (F;A) ^ (H;B) is soft strong neutrosophic biloop
over B.
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(2) Their OR operation (F;A) _ (H;B) is not soft strong neutrosophic biloop
over B.

De�nition 44. Let B = (B1 [B2; �1; �2) be a neutrosophic biloop of type II and
(F;A) be a soft set over B. Then (F;A) over B is called soft neutrosophic biloop
of type II if and only if F (a) is a neutrosopchic subbiloop of B, for all a 2 A.

Example 17. Let B = (B1 [ B2; �1; �2) where B1 = hL7(3) [ Ii and B2 =
L5(2); then B is a neutrosophic biloop of type II. Hence (F;A) over B is a soft
neutrosophic biloop of type II.

All the properties de�ned for soft neutrosophic biloop can easily be extend to
soft neutrosophic biloop of type II.

8. Soft Neutrosophic N-loop

De�nition 45. Let S(B) = fS(B1) [ S(B2) [ : : : [ S(Bn); �1; : : : ; �Ng be a neu-
trosophic N -loop and (F;A) be a soft set over S (B). Then (F;A) over S (B) is
called soft neutrosophic N -loop if and only if F (a) is a neutrosopchic sub N -loop
of S (B), for all a 2 A.

Example 18. Let S(B) = fS(B1 [ S(B2) [ S(B3); �1; �2; �3g where S(B1) =
fhL5(3) [ Iig, S(B2) = hgjg12 = 1i and S(B3) = S3, is a neutrosophic 3-loop. Let
P =

�
e; eI; 2; 2I; 1; g6; e; (12)

	
and

�
e; eI; 3; 3I; 1; g4; g8; e; (13)

	
are neutrosophic

sub N -loops of S (B). Then (F;A) is sof neutrosophic N -loop over S (B), where

F (a1) =
�
e; eI; 2; 2I; 1; g6; e; (12)

	
;

F (a2) =
�
e; eI; 3; 3I; 1; g4; g8; e; (13)

	
:

Theorem 57. Let (F;A) and (H;A) be two soft neutrosophic N -loops over S (B).
Then their intersection (F;A) \ (H;A) is again a soft neutrosophic biloop over
S (B).

Proof. Straight forward. �

Theorem 58. Let (F;A) and (H;C) be two soft neutrosophic N -loops over S (B)
such that A \ C = �, then their union is soft neutrosophic biloop over S (B).

Proof. Straight forward. �

Theorem 59. Let (F;A) and (K;C) be two soft neutrosophic N -loops over S (B) =
(S (B1) [ S (B2)[; :::;[S (BN ) ; �1; :::; �N ). Then

(1) Their extended union (F;A) [" (K;C) over S (B) is not soft neutrosophic
N -loop over S (B).

(2) Their extended intersection (F;A)\" (K;C) over S (B) is soft neutrosophic
N -loop over S (B).

(3) Their restricted union (F;A)[R (K;C) over S (B) is not soft neutrosophic
N -loop over S (B).

(4) Their restricted intersection (F;A)\" (K;C) over S (B) is soft neutrosophic
N -loop over S (B).

Theorem 60. Let (F;A) and (H;C) be two soft neutrosophic N -loops over S (B).
Then
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(1) Their AND operation (F;A) ^ (H;B) is soft neutrosophic N -loop over
S (B).

(2) Their OR operation (F;A) _ (H;B) is not soft neutrosophic N -loop over
S (B).

De�nition 46. Let S(L) = fL1 [ L2 [ : : : [ LN ; �1; : : : ; �Ng be a neutrosophic
N -loop of level II and (F;A) be a soft set over S (L). Then (F;A) over S (L) is
called soft neutrosophic N -loop of level II if and only if F (a) is a neutrosopchic
sub N -loop of S (L), for all a 2 A.

Example 19. Let S(L) = fL1[L2[L3[L4; �1; �2; �3; �4g be a neutrosophic 4-loop
of level II where L1 = fhL5(3) [ Iig, L2 = fe; 1; 2; 3g, L3 = S3 and L4 = N (Z3),
under multiplication modulo 3: Let P = fe; eI; 2; 2Ig [ fe; 1g [ fe; (12)g [ f1; Ig
and fe; eI; 3; 3Ig [ fe; 2g [ fe; (13)g[f1; 2g are neutrosophic sub N -loops of S (L).
Then (F;A) is sof neutrosophic N -loop of level II over S (L), where

F (a1) = fe; eI; 2; 2Ig [ fe; 1g [ fe; (12)g [ f1; Ig ;
F (a2) = fe; eI; 3; 3Ig [ fe; 2g [ fe; (13)g [ f1; 2g:

Theorem 61. Every soft neutrosophic N -loop of level II over S(L) = fL1 [ L2 [
: : : [ LN ; �1; : : : ; �Ng is a soft neutrosophic N -loop but the converse is not true.

Theorem 62. Let (F;A) and (K;C) be two soft neutrosophic N -loops of level II
over S(L) = fL1 [ L2 [ : : : [ LN ; �1; : : : ; �Ng. Then

(1) Their extended union (F;A) [" (K;C) over S (L) is not soft neutrosophic
N -loop of level II over S (L).

(2) Their extended intersection (F;A)\" (K;C) over S (L) is soft neutrosophic
N -loop of level II over S (L).

(3) Their restricted union (F;A) [R (K;C) over S (L) is not soft neutrosophic
N -loop of level II over S (L).

(4) Their restricted intersection (F;A)\" (K;C) over S (L) is soft neutrosophic
N -loop of level II over S (L).

Theorem 63. Let (F;A) and (H;C) be two soft neutrosophic N -loops of level II
over S(L) = fL1 [ L2 [ : : : [ LN ; �1; : : : ; �Ng. Then

(1) Their AND operation (F;A) ^ (H;B) is soft neutrosophic N -loop of level
II over S (L).

(2) Their OR operation (F;A)_ (H;B) is not soft neutrosophic N -loop of level
11 over S (L).

Now what all we de�ne for neutrosophic N -loops will be carried out to neutro-
sophic N -loops of level II with appropriate modi�cations.

De�nition 47. Let (F;A) be a soft neutrosophic N -loop over S (B) = (S (B1) [
S (B2)[; :::;[S (BN ) ; �1; :::; �N ), then (F;A) is called the identity soft neutrosophic
N -loop over S (B) if F (a) = fe1; e2; :::; eNg, for all a 2 A, where e1,e2; :::; eN are
the identities element of S (B1) ; S (B2) ; :::; S (BN ) respectively.

De�nition 48. Let (F;A) be a soft neutrosophic N -loop over S (B) = (S (B1) [
S (B2)[; :::;[S (BN ) ; �1; :::; �N ), then (F;A) is called Full-soft neutrosophic N -loop
over S (B) if F (a) = S (B), for all a 2 A.
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De�nition 49. Let (F;A) and (H;C) be two soft neutrosophic N -loops over S (B) =
(S (B1) [ S (B2)[; :::;[S (BN ) ; �1; :::; �N ). Then (H;C) is soft neutrosophic sub
N -loop of (F;A), if

(1) B � A.
(2) H(a) is neutrosophic sub N -loop of F (a), for all a 2 A.

De�nition 50. Let S (B) = (S (B1) [ S (B2)[; :::;[S (BN ) ; �1; :::; �N ) be a neu-
trosophic N -loop and (F;A) be a soft set over S (B). Then (F;A) is called soft
Lagrange neutrosophic N -loop if and only if F (a) is Lagrange neutrosophic sub
N -loop of S (B), for all a 2 A.

Theorem 64. All soft Lagrange neutrosophic N -loops are soft neutrosophic N -
loops but the converse is not true.

Theorem 65. Let (F;A) and (K;C) be two soft Lagrange neutrosophic N -loops
over S (B) = (S (B1) [ S (B2)[; :::;[S (BN ) ; �1; :::; �N ). Then

(1) Their extended union (F;A)[" (K;C) over S (B) is not soft Lagrange neu-
trosophic N -loop over S (B).

(2) Their extended intersection (F;A)\" (K;C) over S (B) is not soft Lagrange
neutrosophic N -loop over S (B).

(3) Their restricted union (F;A) [R (K;C) over S (B) is not soft Lagrange
neutrosophic N -loop over S (B).

(4) Their restricted intersection (F;A)\"(K;C) over S (B) is not soft Lagrange
neutrosophic N -loop over S (B).

Theorem 66. Let (F;A) and (H;C) be two soft Lagrange neutrosophic N -loops
over S (B). Then

(1) Their AND operation (F;A) ^ (H;B) is not soft Lagrane neutrosophic
N -loop over S (B).

(2) Their OR operation (F;A) _ (H;B) is not soft Lagrange neutrosophic N -
loop over S (B).

De�nition 51. Let S (B) = (S (B1)[S (B2)[; :::;[S (BN ) ; �1; :::; �N ) be a neutro-
sophic N -loop and (F;A) be a soft set over S (B). Then (F;A) is called soft weakly
Lagrange neutrosophic N -loop if atleast one F (a) is not Lagrange neutrosophic sub
N -loop of S (B), for all a 2 A.

Theorem 67. All soft weakly Lagrange neutrosophic N -loops are soft neutrosophic
N -loops but the converse is not true.

Theorem 68. Let (F;A) and (K;C) be two soft weakly Lagrange neutrosophic
N -loops over S (B) = (S (B1) [ S (B2)[; :::;[S (BN ) ; �1; :::; �N ). Then

(1) Their extended union (F;A)["(K;C) over S (B) is not soft weakly Lagrange
neutrosophic N -loop over S (B).

(2) Their extended intersection (F;A) \" (K;C) over S (B) is not soft weakly
Lagrange neutrosophic N -loop over S (B).

(3) Their restricted union (F;A) [R (K;C) over S (B) is not soft weakly La-
grange neutrosophic N -loop over S (B).

(4) Their restricted intersection (F;A) \" (K;C) over S (B) is not soft weakly
Lagrange neutrosophic N -loop over S (B).
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Theorem 69. Let (F;A) and (H;C) be two soft weakly Lagrange neutrosophic
N -loops over S (B). Then

(1) Their AND operation (F;A) ^ (H;B) is not soft weakly Lagrane neutro-
sophic N -loop over S (B).

(2) Their OR operation (F;A) _ (H;B) is not soft weakly Lagrange neutro-
sophic N -loop over S (B).

De�nition 52. Let S (B) = (S (B1) [ S (B2)[; :::;[S (BN ) ; �1; :::; �N ) be a neu-
trosophic N -loop and (F;A) be a soft set over S (B). Then (F;A) is called soft
Lagrange free neutrosophic N -loop if and only if F (a) is not Lagrange neutrosophic
sub N -loop of S (B), for all a 2 A.

Theorem 70. All soft Lagrange free neutrosophic N -loops are soft neutrosophic
N -loops but the converse is not true.

Theorem 71. Let (F;A) and (K;C) be two soft Lagrange free neutrosophic N -
loops over S (B) = (S (B1) [ S (B2)[; :::;[S (BN ) ; �1; :::; �N ). Then

(1) Their extended union (F;A) [" (K;C) over S (B) is not soft Lagrange free
neutrosophic N -loop over S (B).

(2) Their extended intersection (F;A)\" (K;C) over S (B) is not soft Lagrange
free neutrosophic N -loop over S (B).

(3) Their restricted union (F;A)[R (K;C) over S (B) is not soft Lagrange free
neutrosophic N -loop over S (B).

(4) Their restricted intersection (F;A)\"(K;C) over S (B) is not soft Lagrange
free neutrosophic N -loop over S (B).

Theorem 72. Let (F;A) and (H;C) be two soft Lagrange free neutrosophic N -
loops over S (B). Then

(1) Their AND operation (F;A)^ (H;B) is not soft Lagrane free neutrosophic
N -loop over S (B).

(2) Their OR operation (F;A) _ (H;B) is not soft Lagrange free neutrosophic
N -loop over S (B).

De�nition 53. Let fhL[ Ii = L1 [L2 [L3; �1; : : : ; �Ng be a neutrosophic N -loop
and (F;A) be a soft set over fhL[ Ii = L1 [L2 [L3; �1; :::; �Ng. Then (F;A) over
fhL[ Ii = L1 [L2 [L3; �1; :::; �Ng is called soft strong neutrosophic N -loop if and
only if F (a) is strong neutrosopchic sub N -loop of fhL[Ii = L1[L2[L3; �1; :::; �Ng,
for all a 2 A.

Example 20. Let fhL[ Ii = L1 [L2 [L3; �1; �2; �3g where L1 = hL5(3)[ Ii; L2 =
hL7(3) [ Ii and L2 = f1; 2; I; 2Ig. fhL [ Iig is a strong neutrosophic 3-loop. Then
(F;A) is a soft strong neutrosophic N -loop over hL [ Ii, where

F (a1) = fe; 2; eI; 2Ig [ fe; 2; eI; 2Ig [ f1; Ig ;
F (a2) = fe; 3; eI; 3Ig [ fe; 3; eI; 3Ig [ f1; 2; 2Ig :

Theorem 73. All soft strong neutrosophic N -loops are soft neutrosophic N -loops
but the converse is not true.

Theorem 74. Let (F;A) and (K;C) be two soft strong neutrosophic N -loops over
fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng. Then
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(1) Their extended union (F;A)["(K;C) over fhL[Ii = L1[L2[L3; �1; :::; �Ng
is not soft Lagrange free neutrosophic N -loop.

(2) Their extended intersection (F;A) \" (K;C) over fhL [ Ii = L1 [ L2 [
L3; �1; :::; �Ng is soft Lagrange free neutrosophic N -loop.

(3) Their restricted union (F;A)[R(K;C) over fhL[Ii = L1[L2[L3; �1; :::; �Ng
is not soft Lagrange free neutrosophic N -loop over.

(4) Their restricted intersection (F;A) \" (K;C) over fhL [ Ii = L1 [ L2 [
L3; �1; :::; �Ng is soft Lagrange free neutrosophic N -loop over.

Theorem 75. Let (F;A) and (H;C) be two soft strong neutrosophic N -loops over
fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng. Then

(1) Their AND operation (F;A) ^ (H;B) is soft strong neutrosophic N -loop
over fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng.

(2) Their OR operation (F;A)_ (H;B) is not soft strong neutrosophic N -loop
over fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng.

De�nition 54. Let (F;A) and (H;C) be two soft strong neutrosophic N -loops over
fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng. Then (H;C) is soft strong neutrosophic sub
N -loop of (F;A), if

(1) B � A.
(2) H(a) is neutrosophic sub N -loop of F (a), for all a 2 A.

De�nition 55. Let fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng be a strong neutrosophic
N -loop and (F;A) be a soft set over fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng. Then
(F;A) is called soft strong Lagrange neutrosophic N -loop if and only if F (a) is
strong Lagrange neutrosophic sub N -loop of fhL[ Ii = L1[L2[L3; �1; :::; �Ng, for
all a 2 A.
Theorem 76. All soft strong Lagrange neutrosophic N -loops are soft Lagrange
neutrosophic N -loops but the converse is not true.

Theorem 77. All soft strong Lagrange neutrosophic N -loops are soft neutrosophic
N -loops but the converse is not true.

Theorem 78. Let (F;A) and (K;C) be two soft strong Lagrange neutrosophic
N -loops over fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng. Then

(1) Their extended union (F;A)["(K;C) over fhL[Ii = L1[L2[L3; �1; :::; �Ng
is not soft strong Lagrange neutrosophic N -loop.

(2) Their extended intersection (F;A) \" (K;C) over fhL [ Ii = L1 [ L2 [
L3; �1; :::; �Ng is not soft strong Lagrange neutrosophic N -loop.

(3) Their restricted union (F;A)[R(K;C) over fhL[Ii = L1[L2[L3; �1; :::; �Ng
is not soft strong Lagrange neutrosophic N -loop over.

(4) Their restricted intersection (F;A) \" (K;C) over fhL [ Ii = L1 [ L2 [
L3; �1; :::; �Ng is not soft strong Lagrange neutrosophic N -loop over.

Theorem 79. Let (F;A) and (H;C) be two soft strong Lagrange neutrosophic
N -loops over fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng. Then

(1) Their AND operation (F;A) ^ (H;B) is not soft strong Lagrange neutro-
sophic N -loop over fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng.

(2) Their OR operation (F;A)_(H;B) is not soft strong Lagrange neutrosophic
N -loop over fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng.
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De�nition 56. Let fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng be a strong neutrosophic
N -loop and (F;A) be a soft set over fhL[Ii = L1[L2[L3; �1; :::; �Ng. Then (F;A)
is called soft strong weakly Lagrange neutrosophic N -loop if atleast one F (a) is not
strong Lagrange neutrosophic sub N -loop of fhL[ Ii = L1[L2[L3; �1; :::; �Ng, for
some a 2 A.
Theorem 80. All soft strong weakly Lagrange neutrosophic N -loops are soft weakly
Lagrange neutrosophic N -loops but the converse is not true.

Theorem 81. All soft strong weakly Lagrange neutrosophic N -loops are soft neu-
trosophic N -loops but the converse is not true.

Theorem 82. Let (F;A) and (K;C) be two soft strong weakly Lagrange neutro-
sophic N -loops over fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng. Then

(1) Their extended union (F;A)["(K;C) over fhL[Ii = L1[L2[L3; �1; :::; �Ng
is not soft strong weakly Lagrange neutrosophic N -loop.

(2) Their extended intersection (F;A) \" (K;C) over fhL [ Ii = L1 [ L2 [
L3; �1; :::; �Ng is not soft strong weakly Lagrange neutrosophic N -loop.

(3) Their restricted union (F;A)[R(K;C) over fhL[Ii = L1[L2[L3; �1; :::; �Ng
is not soft strong weakly Lagrange neutrosophic N -loop.

(4) Their restricted intersection (F;A) \" (K;C) over fhL [ Ii = L1 [ L2 [
L3; �1; :::; �Ng is not soft strong weakly Lagrange neutrosophic N -loop.

Theorem 83. Let (F;A) and (H;C) be two soft strong weakly Lagrange neutro-
sophic N -loops over fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng. Then

(1) Their AND operation (F;A) ^ (H;B) is not soft strong weakly Lagrange
neutrosophic N -loop over fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng.

(2) Their OR operation (F;A) _ (H;B) is not soft strong weakly Lagrange
neutrosophic N -loop over fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng.

De�nition 57. Let fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng be a strong neutrosophic
N -loop and (F;A) be a soft set over fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng. Then
(F;A) is called soft strong Lagrange free neutrosophic N -loop if and only if F (a) is
not strong Lagrange neutrosophic sub N -loop of fhL[Ii = L1[L2[L3; �1; :::; �Ng,
for all a 2 A.
Theorem 84. All soft strong Lagrange free neutrosophic N -loops are soft Lagrange
free neutrosophic N -loops but the converse is not true.

Theorem 85. All soft strong Lagrange free neutrosophic N -loops are soft neutro-
sophic N -loops but the converse is not true.

Theorem 86. Let (F;A) and (K;C) be two soft strong Lagrange free neutrosophic
N -loops over fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng. Then

(1) Their extended union (F;A)["(K;C) over fhL[Ii = L1[L2[L3; �1; :::; �Ng
is not soft strong Lagrange free neutrosophic N -loop.

(2) Their extended intersection (F;A) \" (K;C) over fhL [ Ii = L1 [ L2 [
L3; �1; :::; �Ng is not soft strong Lagrange free neutrosophic N -loop.

(3) Their restricted union (F;A)[R(K;C) over fhL[Ii = L1[L2[L3; �1; :::; �Ng
is not soft strong Lagrange free neutrosophic N -loop.

(4) Their restricted intersection (F;A) \" (K;C) over fhL [ Ii = L1 [ L2 [
L3; �1; :::; �Ng is not soft strong Lagrange free neutrosophic N -loop.
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Theorem 87. Let (F;A) and (H;C) be two soft strong Lagrange free neutrosophic
N -loops over fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng. Then

(1) Their AND operation (F;A)^ (H;B) is not soft strong Lagrange free neu-
trosophic N -loop over fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng.

(2) Their OR operation (F;A) _ (H;B) is not soft strong Lagrange free neu-
trosophic N -loop over fhL [ Ii = L1 [ L2 [ L3; �1; :::; �Ng.

Conclusion 1. This paper is an extension of neutrosphic loop to soft neutrosophic
loop. We also extend neutrosophic biloop, neutrosophic N -loop to soft neutrosophic
biloop, and soft neutrosophic N -loop. Their related properties and results are ex-
plained with many illustrative examples. The notions related with strong part of
neutrosophy also established within soft neutrosophic loop.
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Soft neutrosophic semigroups and their 
generalization

Mumtaz Ali, Muhammad Shabir, Munazza Naz and Florentin Smarandache

Abstract Soft set theory is a general mathematical tool for dealing with uncertain, fuzzy,

not clearly defined objects. In this paper we introduced soft neutrosophic semigroup,soft

neutosophic bisemigroup, soft neutrosophic N -semigroup with the discuissionf of some of their

characteristics. We also introduced a new type of soft neutrophic semigroup, the so called

soft strong neutrosophic semigoup which is of pure neutrosophic character. This notion also

foound in all the other corresponding notions of soft neutrosophic thoery. We also given some

of their properties of this newly born soft structure related to the strong part of neutrosophic

theory.

Keywords Neutrosophic semigroup, neutrosophic bisemigroup, neutrosophic N -semigroup,

soft set, soft semigroup, soft neutrosophic semigroup, soft neutrosophic bisemigroup, soft ne-

utrosophic N -semigroup.

§1. Introduction and preliminaries

Florentin Smarandache for the first time introduced the concept of neutrosophy in 1995,

which is basically a new branch of philosophy which actually studies the origin, nature, and

scope of neutralities. The neutrosophic logic came into being by neutrosophy. In neutro-

sophic logic each proposition is approximated to have the percentage of truth in a subset T ,
the percentage of indeterminacy in a subset I, and the percentage of falsity in a subset F .
Neutrosophic logic is an extension of fuzzy logic. In fact the neutrosophic set is the generaliza-

tion of classical set, fuzzy conventional set, intuitionistic fuzzy set, and interval valued fuzzy

set. Neutrosophic logic is used to overcome the problems of impreciseness, indeterminate, and

inconsistencies of date etc. The theory of neutrosophy is so applicable to every field of alge-

bra. W. B. Vasantha Kandasamy and Florentin Smarandache introduced neutrosophic fields,

neutrosophic rings,neutrosophic vector spaces,neutrosophic groups,neutrosophic bigroups and

neutrosophic N -groups, neutrosophic semigroups, neutrosophic bisemigroups, and neutrosophic
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N -semigroups, neutrosophic loops, nuetrosophic biloops, and neutrosophic N -loops, and so on.

Mumtaz ali et al. introduced nuetrosophic LA-semigroups.

Molodtsov introduced the theory of soft set. This mathematical tool is free from parame-

terization inadequacy, syndrome of fuzzy set theory, rough set theory, probability theory and so

on. This theory has been applied successfully in many fields such as smoothness of functions,

game theory, operation research, Riemann integration, Perron integration, and probability. Re-

cently soft set theory attained much attention of the researchers since its appearance and the

work based on several operations of soft set introduced in [2, 9, 10]. Some properties and algebra

may be found in [1] . Feng et al. introduced soft semirings in [5]. By means of level soft sets

an adjustable approach to fuzzy soft set can be seen in [6]. Some other concepts together with

fuzzy set and rough set were shown in [7, 8].

This paper is about to introduced soft nuetrosophic semigroup, soft neutrosophic group,

and soft neutrosophic N -semigroup and the related strong or pure part of neutrosophy with the

notions of soft set theory. In the proceeding section, we define soft neutrosophic semigroup, soft

neutrosophic strong semigroup, and some of their properties are discussed. In the next section,

soft neutrosophic bisemigroup are presented with their strong neutrosophic part. Also in this

section some of their characterization have been made. In the last section soft neutrosophic

N -semigroup and their corresponding strong theory have been constructed with some of their

properties.

§2. Definition and properties

Definition 2.1. Let S be a semigroup, the semigroup generated by S and I i.e. S ∪ I
denoted by 〈S ∪ I〉 is defined to be a neutrosophic semigroup where I is indeterminacy element

and termed as neutrosophic element.

It is interesting to note that all neutrosophic semigroups contain a proper subset which is

a semigroup.

Example 2.1. Let Z = {the set of positive and negative integers with zero}, Z is only

a semigroup under multiplication. Let N(S) = {〈Z ∪ I〉} be the neutrosophic semigroup under

multiplication. Clearly Z ⊂ N(S) is a semigroup.

Definition 2.2. Let N(S) be a neutrosophic semigroup. A proper subset P of N(S) is

said to be a neutrosophic subsemigroup, if P is a neutrosophic semigroup under the operations

of N(S). A neutrosophic semigroup N(S) is said to have a subsemigroup if N(S) has a proper

subset which is a semigroup under the operations of N(S).

Theorem 2.1. Let N(S) be a neutrosophic semigroup. Suppose P1 and P2 be any two

neutrosophic subsemigroups of N(S) then P1∪P2 (i.e. the union) the union of two neutrosophic

subsemigroups in general need not be a neutrosophic subsemigroup.

Definition 2.3. A neutrosophic semigroup N(S) which has an element e in N(S) such

that e ∗ s = s ∗ e = s for all s ∈ N(S), is called as a neutrosophic monoid.

Definition 2.4. Let N(S) be a neutrosophic monoid under the binary operation ∗.
Suppose e is the identity in N(S), that is s ∗ e = e ∗ s = s for all s ∈ N(S). We call a proper

subset P of N(S) to be a neutrosophic submonoid if
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1. P is a neutrosophic semigroup under ∗.
2. e ∈ P , i.e., P is a monoid under ∗.
Definition 2.5. Let N(S) be a neutrosophic semigroup under a binary operation ∗.

P be a proper subset of N(S). P is said to be a neutrosophic ideal of N(S) if the following

conditions are satisfied.

1. P is a neutrosophic semigroup.

2. For all p ∈ P and for all s ∈ N(S) we have p ∗ s and s ∗ p are in P .

Definition 2.6. Let N(S) be a neutrosophic semigroup. P be a neutrosophic ideal of

N(S), P is said to be a neutrosophic cyclic ideal or neutrosophic principal ideal if P can be

generated by a single element.

Definition 2.7. Let (BN(S), ∗, o) be a nonempty set with two binary operations ∗ and

o. (BN(S), ∗, o) is said to be a neutrosophic bisemigroup if BN(S) = P1 ∪ P2 where atleast

one of (P1, ∗) or (P2, o) is a neutrosophic semigroup and other is just a semigroup. P1 and P2

are proper subsets of BN(S), i.e. P1  P2.

If both (P1, ∗) and (P2, o) in the above definition are neutrosophic semigroups then we

call (BN(S), ∗, o) a strong neutrosophic bisemigroup. All strong neutrosophic bisemigroups are

trivially neutrosophic bisemigroups.

Example 2.2. Let (BN(S), ∗, o) = {0, 1, 2, 3, I, 2I, 3I, S(3), ∗, o} = (P1, ∗) ∪ (P2, o)

where (P1, ∗) = {0, 1, 2, 3, I, 2I, 3I, ∗} and (P2, o) = (S(3), o). Clearly (P1, ∗) is a neutrosophic

semigroup under multiplication modulo 4. (P2, o) is just a semigroup. Thus (BN(S), ∗, o) is a

neutrosophic bisemigroup.

Definition 2.8. Let (BN(S) = P1 ∪ P2; o, ∗) be a neutrosophic bisemigroup. A proper

subset (T, o, ∗) is said to be a neutrosophic subbisemigroup of BN(S) if

1. T = T1 ∪ T2 where T1 = P1 ∩ T and T2 = P2 ∩ T .

2. At least one of (T1, o) or (T2, ∗) is a neutrosophic semigroup.

Definition 2.9. Let (BN(S) = P1 ∪ P2, o, ∗) be a neutrosophic strong bisemigroup. A

proper subset T of BN(S) is called the strong neutrosophic subbisemigroup if T = T1∪T2 with

T1 = P1 ∩ T and T2 = P2 ∩ T and if both (T1, ∗) and (T2, o) are neutrosophic subsemigroups of

(P1, ∗) and (P2, o) respectively. We call T = T1∪T2 to be a neutrosophic strong subbisemigroup,

if atleast one of (T1, ∗) or (T2, o) is a semigroup then T = T1 ∪ T2 is only a neutrosophic

subsemigroup.

Definition 2.10. Let (BN(S) = P1 ∪ P2∗, o) be any neutrosophic bisemigroup. Let J

be a proper subset of B(NS) such that J1 = J ∩ P1 and J2 = J ∩ P2 are ideals of P1 and P2

respectively. Then J is called the neutrosophic bi-ideal of BN(S).

Definition 2.11. Let (BN(S), ∗, o) be a strong neutrosophic bisemigroup whereBN(S) =

P1 ∪P2 with (P1, ∗) and (P2, o) be any two neutrosophic semigroups. Let J be a proper subset

of BN(S) where I = I1 ∪ I2 with I1 = J ∩ P1 and I2 = J ∩ P2 are neutrosophic ideals of

the neutrosophic semigroups P1 and P2 respectively. Then I is called or defined as the strong

neutrosophic bi-ideal of B(N(S)).

Union of any two neutrosophic bi-ideals in general is not a neutrosophic bi-ideal. This is

true of neutrosophic strong bi-ideals.

Definition 2.12. Let {S(N), ∗1, . . . , ∗N} be a non empty set with N -binary operations
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defined on it. We call S(N) a neutrosophic N -semigroup (N a positive integer) if the following

conditions are satisfied.

1. S(N) = S1 ∪ . . . ∪ SN where each Si is a proper subset of S(N) i.e. Si  Sj or Sj  Si

if i 6= j.

2. (Si, ∗i) is either a neutrosophic semigroup or a semigroup for i = 1, 2, . . . , N .

If all the N -semigroups (Si, ∗i) are neutrosophic semigroups (i.e. for i = 1, 2, . . . , N) then

we call S(N) to be a neutrosophic strong N -semigroup.

Example 2.3. Let S(N) = {S1∪S2∪S3∪S4, ∗1, ∗2, ∗3, ∗4} be a neutrosophic 4-semigroup

where

S1 = {Z12, semigroup under multiplication modulo 12}.
S2 = {0, 1, 2, 3, I, 2I, 3I, semigroup under multiplication modulo 4}, a neutrosophic semi-

group.

S3 =


 a b

c d

 ; a, b, c, d ∈ 〈R ∪ I〉

, neutrosophic semigroup under matrix multiplica-

tion and S4 = 〈Z ∪ I〉, neutrosophic semigroup under multiplication.

Definition 2.13. Let S(N) = {S1 ∪ S2 ∪ . . . ∪ SN , ∗1, . . . , ∗N} be a neutrosophic N -

semigroup. A proper subset P = {P1 ∪ P2 ∪ . . . ∪ PN , ∗1, ∗2, . . . , ∗N} of S(N) is said to be a

neutrosophic Nsubsemigroup if Pi = P ∩ Si, i = 1, 2, . . . , N are subsemigroups of Si in which

atleast some of the subsemigroups are neutrosophic subsemigroups.

Definition 2.14. Let S(N) = {S1 ∪ S2 ∪ . . . ∪ SN , ∗1, . . . , ∗N} be a neutrosophic strong

N -semigroup. A proper subset T = {T1 ∪ T2 ∪ . . . ∪ TN , ∗1, . . . , ∗N} of S(N) is said to be a

neutrosophic strong sub N -semigroup if each (Ti, ∗i) is a neutrosophic subsemigroup of (Si, ∗i)
for i = 1, 2, . . . , N where Ti = T ∩ Si.

If only a few of the (Ti, ∗i) in T are just subsemigroups of (Si, ∗i) (i.e. (Ti, ∗i) are not

neutrosophic subsemigroups then we call T to be a sub N -semigroup of S(N).

Definition 2.15. Let S(N) = {S1 ∪ S2 ∪ . . . ∪ SN , ∗1, . . . , ∗N} be a neutrosophic N -

semigroup. A proper subset P = {P1 ∪ P2 ∪ . . . ∪ PN , ∗1, . . . , ∗N} of S(N) is said to be a

neutrosophic N -subsemigroup, if the following conditions are true,

i. P is a neutrosophic sub N -semigroup of S(N).

ii. Each Pi = P ∩ Si, i = 1, 2, . . . , N is an ideal of Si.

Then P is called or defined as the neutrosophic N -ideal of the neutrosophic N -semigroup

S(N).

Definition 2.16. Let S(N) = {S1 ∪ S2 ∪ . . . ∪ SN , ∗1, . . . , ∗N} be a neutrosophic strong

N -semigroup. A proper subset J = {I1 ∪ I2 ∪ . . . ∪ IN} where It = J ∩ St for t = 1, 2, . . . , N is

said to be a neutrosophic strong N -ideal of S(N) if the following conditions are satisfied.

1. Each is a neutrosophic subsemigroup of St, t = 1, 2, . . . , N i.e. It is a neutrosophic

strong N-subsemigroup of S(N).

2. Each is a two sided ideal of St for t = 1, 2, . . . , N .

Similarly one can define neutrosophic strong N -left ideal or neutrosophic strong right ideal

of S(N).

A neutrosophic strong N -ideal is one which is both a neutrosophic strong N -left ideal and

N -right ideal of S(N).
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Throughout this subsection U refers to an initial universe, E is a set of parameters, P (U)

is the power set of U , and A ⊂ E. Molodtsov [12] defined the soft set in the following manner:

Definition 2.17. A pair (F,A) is called a soft set over U where F is a mapping given

by F : A −→ P (U).

In other words, a soft set over U is a parameterized family of subsets of the universe U .

For e ∈ A, F (e) may be considered as the set of e-elements of the soft set (F,A), or as the set

of e-approximate elements of the soft set.

Example 2.4. Suppose that U is the set of shops. E is the set of parameters and each

parameter is a word or senctence. Let E={high rent, normal rent, in good condition, in bad

condition}. Let us consider a soft set (F,A) which describes the attractiveness of shops that Mr.

Z is taking on rent. Suppose that there are five houses in the universe U = {h1, h2, h3, h4, h5}
under consideration, and that A = {e1, e2, e3} be the set of parameters where

e1 stands for the parameter high rent.

e2 stands for the parameter normal rent.

e3 stands for the parameter in good condition.

Suppose that

F (e1) = {h1, h4}.

F (e2) = {h2, h5}.

F (e3) = {h3, h4, h5}.

The soft set (F,A) is an approximated family {F (ei), i = 1, 2, 3} of subsets of the set U

which gives us a collection of approximate description of an object. Thus, we have the soft set

(F,A) as a collection of approximations as below:

(F,A) = {high rent = {h1, h4}, normal rent = {h2, h5}, in good condition = {h3, h4, h5}}.

Definition 2.18. For two soft sets (F,A) and (H,B) over U , (F,A) is called a soft subset

of (H,B) if

1. A ⊆ B.

2. F (e) ⊆ G(e), for all e ∈ A.

This relationship is denoted by (F,A)
∼
⊂ (H,B). Similarly (F,A) is called a soft superset

of (H,B) if (H,B) is a soft subset of (F,A) which is denoted by (F,A)
∼
⊃ (H,B).

Definition 2.19. Two soft sets (F,A) and (H,B) over U are called soft equal if (F,A)

is a soft subset of (H,B) and (H,B) is a soft subset of (F,A).

Definition 2.20. (F,A) over U is called an absolute soft set if F (e) = U for all e ∈ A
and we denote it by U.

Definition 2.21. Let (F,A) and (G,B) be two soft sets over a common universe U such

that A ∩ B 6= φ. Then their restricted intersection is denoted by(F,A) ∩R (G,B) = (H,C)

where (H,C) is defined as H(c) = F (c) ∩G(c) for all c ∈ C = A ∩B.

Definition 2.22. The extended intersection of two soft sets (F,A) and (G,B) over a

common universe U is the soft set (H,C), where C = A∪B, and for all e ∈ C, H(e) is defined

as
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H(e) =


F (e), if e ∈ A−B,

G(e), if e ∈ B −A,

F (e) ∩G(e), if e ∈ A ∩B.

We write (F,A) ∩ε (G,B) = (H,C).

Definition 2.23. The resticted union of two soft sets (F,A) and (G,B) over a common

universe U is the soft set (H,C), where C = A ∪ B, and for all e ∈ C, H(e) is defined as the

soft set (H,C) = (F,A) ∪R (G,B) where C = A ∩B and H(c) = F (c) ∪G(c) for all c ∈ C.

Definition 2.24. The extended union of two soft sets (F,A) and (G,B) over a common

universe U is the soft set (H,C), where C = A ∪B, and for all e ∈ C, H(e) is defined as

H(e) =


F (e), if e ∈ A−B,

G(e), if e ∈ B −A,

F (e) ∪G(e), if e ∈ A ∩B.

We write (F,A) ∪ε (G,B) = (H,C).

Definition 2.25. A soft set (F,A) over S is called a soft semigroup over S if (F,A)
f◦

(F,A) ⊆ (F,A).

It is easy to see that a soft set (F,A) over S is a soft semigroup if and only if φ 6= F (a) is

a subsemigroup of S.

Definition 2.26. A soft set (F,A) over a semigroup S is called a soft left (right) ideal

over S, if (S,E) ⊆ (F,A) , ((F,A) ⊆ (S,E)) .

A soft set over S is a soft ideal if it is both a soft left and a soft right ideal over S.

Proposition 2.1. A soft set (F,A) over S is a soft ideal over S if and only if φ 6= F (a)

is an ideal of S.

Definition 2.27. Let (G,B) be a soft subset of a soft semigroup (F,A) over S, then

(G,B) is called a soft subsemigroup (ideal) of (F,A) if G (b) is a subsemigroup (ideal) of F (b)

for all b ∈ A.

§3. Soft neutrosophic semigroup

Definition 3.1. Let N(S) be a neutrosophic semigroup and (F,A) be a soft set over

N(S). Then (F,A) is called soft neutrosophic semigroup if and only if F (e) is neutrosophic

subsemigroup of N(S), for all e ∈ A.

Equivalently (F,A) is a soft neutrosophic semigroup over N(S) if (F,A)
f◦ (F,A) ⊆ (F,A),

where Ñ(N(S),A) 6= (F,A) 6=
∼
φ.

Example 3.1. Let N(S) = 〈Z+ ∪ {0}+ ∪ {I}〉 be a neutrosophic semigroup under

+. Consider P = 〈2Z+ ∪ I〉 and R = 〈3Z+ ∪ I〉 are neutrosophic subsemigroup of N(S).

Then clearly for all e ∈ A, (F,A) is a soft neutrosophic semigroup over N(S), where F (x1) =

{〈2Z+ ∪ I〉}, F (x2) = {〈3Z+ ∪ I〉} .
Theorem 3.1. A soft neutrosophic semigroup over N(S) always contain a soft semigroup

over S.
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Proof. The proof of this theorem is straight forward.

Theorem 3.2. Let (F,A) and (H,A) be two soft neutrosophic semigroups over N(S).

Then their intersection (F,A) ∩ (H,A) is again soft neutrosophic semigroup over N(S).

Proof. The proof is staight forward.

Theorem 3.3. Let (F,A) and (H,B) be two soft neutrosophic semigroups over N(S).

If A ∩B = φ, then (F,A) ∪ (H,B) is a soft neutrosophic semigroup over N(S).

Remark 3.1. The extended union of two soft neutrosophic semigroups (F,A) and (K,B)

over N(S) is not a soft neutrosophic semigroup over N(S).

We take the following example for the proof of above remark.

Example 3.2. Let N(S) = 〈Z+ ∪ I〉 be the neutrosophic semigroup under +. Take

P1 = {〈2Z+ ∪ I〉} and P2 = {〈3Z+ ∪ I〉} to be any two neutrosophic subsemigroups of N(S).

Then clearly for all e ∈ A, (F,A) is a soft neutrosophic semigroup over N(S), where F (x1) =

{〈2Z+ ∪ I〉} , F (x2) = {〈3Z+ ∪ I〉} .
Again Let R1 = {〈5Z+∪I〉} and R2 = {〈4Z+∪I〉} be another neutrosophic subsemigroups

of N(S) and (K,B) is another soft neutrosophic semigroup over N(S), where K(x1) = {〈5Z+∪
I〉},K(x3) = {〈4Z+ ∪ I〉}.

Let C = A ∪ B. The extended union (F,A) ∪ε (K,B) = (H,C) where x1 ∈ C, we

have H(x1) = F (x1) ∪K(x1) is not neutrosophic subsemigroup as union of two neutrosophic

subsemigroup is not neutrosophic subsemigroup.

Proposition 3.1. The extended intersection of two soft neutrosophic semigroups over

N(S) is soft neutrosophic semigruop over N(S).

Remark 3.2. The restricted union of two soft neutrosophic semigroups (F,A) and (K,B)

over N(S) is not a soft neutrosophic semigroup over N(S).

We can easily check it in above example.

Proposition 3.2. The restricted intersection of two soft neutrosophic semigroups over

N(S) is soft neutrosophic semigroup over N(S).

Proposition 3.3. The AND operation of two soft neutrosophic semigroups over N(S)

is soft neutrosophic semigroup over N(S).

Proposition 3.4. The OR operation of two soft neutosophic semigroup over N(S) may

not be a soft nuetrosophic semigroup over N(S).

Definition 3.2. Let N(S) be a neutrosophic monoid and (F,A) be a soft set over N(S).

Then (F,A) is called soft neutrosophic monoid if and only if F (e) is neutrosophic submonoid

of N(S), for all x ∈ A.

Example 3.3. Let N(S) = 〈Z ∪ I〉 be a neutrosophic monoid under +. Let P = 〈2Z ∪ I〉
and Q = 〈3Z ∪ I〉 are neutrosophic submonoids of N(S). Then (F,A) is a soft neutrosophic

monoid over N(S), where F (x1) = {〈2Z ∪ I〉} , F (x2) = {〈3Z ∪ I〉} .
Theorem 3.4. Every soft neutrosophic monoid over N(S) is a soft neutrosophic semi-

group over N(S) but the converse is not true in general.

Proof. The proof is straightforward.

Proposition 3.5. Let (F,A) and (K,B) be two soft neutrosophic monoids over N(S).

Then
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1. Their extended union (F,A) ∪ε (K,B) over N(S) is not soft neutrosophic monoid over

N(S).

2. Their extended intersection (F,A)∩ε (K,B) over N(S) is soft neutrosophic monoid over

N(S).

3. Their restricted union (F,A)∪R (K,B) over N(S) is not soft neutrosophic monoid over

N(S).

4. Their restricted intersection (F,A) ∩ε (K,B) over N(S) is soft neutrosophic monoid

over N(S).

Proposition 3.6. Let (F,A) and (H,B) be two soft neutrosophic monoid over N(S).

Then

1. Their AND operation (F,A) ∧ (H,B) is soft neutrosophic monoid over N(S).

2. Their OR operation (F,A) ∨ (H,B) is not soft neutrosophic monoid over N(S).

Definition 3.3. Let (F,A) be a soft neutrosophic semigroup over N(S), then (F,A) is

called Full-soft neutrosophic semigroup over N(S) if F (x) = N(S), for all x ∈ A. We denote it

by N(S).

Theorem 3.5. Every Full-soft neutrosophic semigroup overN(S) always contain absolute

soft semigroup over S.

Proof. The proof of this theorem is straight forward.

Definition 3.4. Let (F,A) and (H,B) be two soft neutrosophic semigroups over N(S).

Then (H,B) is a soft neutrosophic subsemigroup of (F,A), if

1. B ⊂ A.

2. H(a) is neutrosophic subsemigroup of F (a), for all a ∈ B.

Example 3.4. Let N(S) = 〈Z∪I〉 be a neutrosophic semigroup under +. Then (F,A) is a

soft neutrosophic semigroup overN(S), where F (x1) = {〈2Z ∪ I〉} , F (x2) = {〈3Z ∪ I〉} , F (x3) =

{〈5Z ∪ I〉} .
Let B = {x1, x2} ⊂ A. Then (H,B) is soft neutrosophic subsemigroup of (F,A) over N(S),

where H(x1) = {〈4Z ∪ I〉} , H(x2) = {〈6Z ∪ I〉} .
Theorem 3.6. A soft neutrosophic semigroup over N(S) have soft neutrosophic sub-

semigroups as well as soft subsemigroups over N(S).

Proof. Obvious.

Theorem 3.7. Every soft semigroup over S is always soft neutrosophic subsemigroup of

soft neutrosophic semigroup over N(S).

Proof. The proof is obvious.

Theorem 3.8. Let (F,A) be a soft neutrosophic semigroup overN (S) and {(Hi, Bi) ; i ∈ I}
is a non empty family of soft neutrosophic subsemigroups of (F,A) then

1. ∩i∈I (Hi, Bi) is a soft neutrosophic subsemigroup of (F,A).

2. ∧i∈I (Hi, Bi) is a soft neutrosophic subsemigroup of ∧i∈I (F,A).

3. ∪i∈I (Hi, Bi) is a soft neutrosophic subsemigroup of (F,A) if Bi ∩Bj = φ, for all i 6= j.

Proof. Straightforward.

Definition 3.5. A soft set (F,A) over N(S) is called soft neutrosophic left (right) ideal

over N(S) if N(S)
f◦ (F,A) ⊆ (F,A), where Ñ(N(S),A) 6= (F,A) 6=

∼
φ and N(S) is Full-soft

neutrosophic semigroup over N(S).
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A soft set over N(S) is a soft neutrosophic ideal if it is both a soft neutrosophic left and a

soft neutrosophic right ideal over N(S).

Example 3.5. Let N(S) = 〈Z ∪ I〉 be the neutrosophic semigroup under multiplication.

Let P = 〈2Z ∪ I〉 and Q = 〈4Z ∪ I〉 are neutrosophic ideals of N(S). Then clearly (F,A) is a

soft neutrosophic ideal over N(S), where F (x1) = {〈2Z ∪ I〉} , F (x2) = {〈4Z ∪ I〉} .
Proposition 3.7. (F,A) is soft neutrosophic ideal if and only if F (x) is a neutrosophic

ideal of N(S), for all x ∈ A.

Theorem 3.9. Every soft neutrosophic ideal (F,A) over N (S) is a soft neutrosophic

semigroup but the converse is not true.

Proposition 3.8. Let (F,A) and (K,B) be two soft neutrosophic ideals over N(S).

Then

1. Their extended union (F,A) ∪ε (K,B) over N(S) is soft neutrosophic ideal over N(S).

2. Their extended intersection (F,A) ∩ε (K,B) over N(S) is soft neutrosophic ideal over

N(S).

3. Their restricted union (F,A)∪R (K,B) over N(S) is soft neutrosophic ideal over N(S).

4. Their restricted intersection (F,A) ∩ε (K,B) over N(S) is soft neutrosophic ideal over

N(S).

Proposition 3.9.

1. Let (F,A) and (H,B) be two soft neutrosophic ideal over N(S).

2. Their AND operation (F,A) ∧ (H,B) is soft neutrosophic ideal over N(S).

3. Their OR operation (F,A) ∨ (H,B) is soft neutrosophic ideal over N(S).

Theorem 3.10. Let (F,A) and (G,B) be two soft semigroups (ideals) over S and T

respectively. Then (F,A)× (G,B) is also a soft semigroup (ideal) over S × T.
Proof. The proof is straight forward.

Theorem 3.11. Let (F,A) be a soft neutrosophic semigroup overN (S) and {(Hi, Bi) ; i ∈ I}
is a non empty family of soft neutrosophic ideals of (F,A) then

1. ∩i∈I (Hi, Bi) is a soft neutrosophic ideal of (F,A).

2. ∧i∈I (Hi, Bi) is a soft neutrosophic ideal of ∧i∈I (F,A).

3. ∪i∈I (Hi, Bi) is a soft neutrosophic ideal of (F,A).

4. ∨i∈I (Hi, Bi) is a soft neutrosophic ideal of ∨i∈I (F,A).

Definition 3.6. A soft set (F,A) over N(S) is called soft neutrosophic principal ideal

or soft neutrosophic cyclic ideal if and only if F (x) is a principal or cyclic neutrosophic ideal of

N(S), for all x ∈ A.

Proposition 3.10. Let (F,A) and (K,B) be two soft neutrosophic principal ideals over

N(S). Then

1. Their extended union (F,A)∪ε (K,B) over N(S) is not soft neutrosophic principal ideal

over N(S).

2. Their extended intersection (F,A) ∩ε (K,B) over N(S) is soft neutrosophic principal

ideal over N(S).

3. Their restricted union (F,A) ∪R (K,B) over N(S) is not soft neutrosophic principal

ideal over N(S).
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4. Their restricted intersection (F,A) ∩ε (K,B) over N(S) is soft neutrosophic principal

ideal over N(S).

Proposition 3.11. Let (F,A) and (H,B) be two soft neutrosophic principal ideals over

N(S). Then

1. Their AND operation (F,A) ∧ (H,B) is soft neutrosophic principal ideal over N(S).

2. Their OR operation (F,A) ∨ (H,B) is not soft neutrosophic principal ideal over N(S).

§3. Soft neutrosophic bisemigroup

Definition 3.1. Let {BN (S) , ∗1, ∗2} be a neutrosophic bisemigroup and let (F,A) be

a soft set over BN(S). Then (F,A) is said to be soft neutrosophic bisemigroup over BN(G) if

and only if F (x) is neutrosophic subbisemigroup of BN(G) for all x ∈ A.

Example 3.1. Let BN(S) = {0, 1, 2, I, 2I, 〈Z ∪ I〉,×,+} be a neutosophic bisemigroup.

Let T = {0, I, 2I, 〈2Z ∪ I〉,×,+}, P = {0, 1, 2, 〈5Z ∪ I〉,×,+} and L = {0, 1, 2, Z,×,+} are

neutrosophic subbisemigroup of BN (S). The (F,A) is clearly soft neutrosophic bisemigroup

over BN (S), where F (x1) = {0, I, 2I, 〈2Z∪I〉,×,+}, F (x2) = {0, 1, 2, 〈5Z∪I〉,×,+}, F (x3) =

{0, 1, 2, Z,×,+}.
Theorem 3.1. Let (F,A) and (H,A) be two soft neutrosophic bisemigroup over BN(S).

Then their intersection (F,A) ∩ (H,A) is again a soft neutrosophic bisemigroup over BN(S).

Proof. Straightforward.

Theorem 3.2. Let (F,A) and (H,B) be two soft neutrosophic bisemigroups over BN(S)

such that A ∩B = φ, then their union is soft neutrosophic bisemigroup over BN(S).

Proof. Straightforward.

Proposition 3.1. Let (F,A) and (K,B) be two soft neutrosophic bisemigroups over

BN(S). Then

1. Their extended union (F,A)∪ε (K,B) over BN(S) is not soft neutrosophic bisemigroup

over BN(S).

2. Their extended intersection (F,A)∩ε(K,B) overBN(S) is soft neutrosophic bisemigroup

over BN(S).

3. Their restricted union (F,A)∪R (K,B) over BN(S) is not soft neutrosophic bisemigroup

over BN(S).

4. Their restricted intersection (F,A) ∩ε (K,B) over BN(S) is soft neutrosophic bisemi-

group over BN(S).

Proposition 3.2. Let (F,A) and (K,B) be two soft neutrosophic bisemigroups over

BN(S). Then

1. Their AND operation (F,A) ∧ (K,B) is soft neutrosophic bisemigroup over BN(S).

2. Their OR operation (F,A) ∨ (K,B) is not soft neutrosophic bisemigroup over BN(S).

Definition 3.2. Let (F,A) be a soft neutrosophic bisemigroup over BN(S), then (F,A)

is called Full-soft neutrosophic bisemigroup over BN(S) if F (x) = BN(S), for all x ∈ A. We

denote it by BN(S).

Definition 3.3. Let (F,A) and (H,B) be two soft neutrosophic bisemigroups over

BN(S). Then (H,B) is a soft neutrosophic subbisemigroup of (F,A), if
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1. B ⊂ A.

2. H(x) is neutrosophic subbisemigroup of F (x), for all x ∈ B.

Example 3.2. Let BN(S) = {0, 1, 2, I, 2I, 〈Z ∪ I〉,×,+} be a neutosophic bisemigroup.

Let T = {0, I, 2I, 〈2Z ∪ I〉,×,+}, P = {0, 1, 2, 〈5Z ∪ I〉,×,+} and L = {0, 1, 2, Z,×,+} are

neutrosophic subbisemigroup of BN (S). The (F,A) is clearly soft neutrosophic bisemigroup

over BN (S), where F (x1) = {0, I, 2I, 〈2Z∪I〉,×,+}, F (x2) = {0, 1, 2, 〈5Z∪I〉,×,+}, F (x3) =

{0, 1, 2, Z,×,+}.
Then (H,B) is a soft neutrosophic subbisemigroup of (F,A), whereH (x1) = {0, I, 〈4Z ∪ I〉 ,

×,+}, H (x3) = {0, 1, 4Z,×,+} .
Theorem 3.3. Let (F,A) be a soft neutrosophic bisemigroup over BN (S) and {(Hi, Bi) ;

i ∈ I} be a non-empty family of soft neutrosophic subbisemigroups of (F,A) then

1. ∩i∈I (Hi, Bi) is a soft neutrosophic subbisemigroup of (F,A).

2. ∧i∈I (Hi, Bi) is a soft neutrosophic subbisemigroup of ∧i∈I (F,A).

3. ∪i∈I (Hi, Bi) is a soft neutrosophic subbisemigroup of (F,A) if Bi∩Bj = φ, for all i 6= j.

Proof. Straightforward.

Theorem 3.4. (F,A) is called soft neutrosophic biideal over BN (S) if F (x) is neutro-

sophic biideal of BN(S), for all x ∈ A.

Example 3.3. Let BN(S) = ({〈Z ∪ I〉, 0, 1, 2, I, 2I,+,×}(× under multiplication

modulo 3)). Let T = {〈2Z ∪ I〉, 0, I, 1, 2I,+,×} and J = {〈8Z ∪ I〉, {0, 1, I, 2I},+×} are

ideals of BN (S) . Then (F,A) is soft neutrosophic biideal over BN (S), where F (x1) =

{〈2Z ∪ I〉, 0, I, 1, 2I,+,×}, F (x2) = {〈8Z ∪ I〉, {0, 1, I, 2I},+×}.
Theorem 3.5. Every soft neutrosophic biideal (F,A) over BS (N) is a soft neutrosophic

bisemigroup but the converse is not true.

Proposition 3.3. Let (F,A) and (K,B) be two soft neutrosophic biideals over BN(S).

Then

1. Their extended union (F,A)∪ε (K,B) over BN(S) is not soft neutrosophic biideal over

BN(S).

2. Their extended intersection (F,A) ∩ε (K,B) over BN(S) is soft neutrosophic biideal

over BN(S).

3. Their restricted union (F,A)∪R (K,B) over BN(S) is not soft neutrosophic biideal over

BN(S).

4. Their restricted intersection (F,A) ∩ε (K,B) over BN(S) is soft neutrosophic biideal

over BN(S).

Proposition 3.4. Let (F,A) and (H,B) be two soft neutrosophic biideal over BN(S).

Then

1. Their AND operation (F,A) ∧ (H,B) is soft neutrosophic biideal over BN(S).

2. Their OR operation (F,A) ∨ (H,B) is not soft neutrosophic biideal over BN(S).

Theorem 3.6.

Let (F,A) be a soft neutrosophic bisemigroup over BN (S) and {(Hi, Bi) ; i ∈ I} is a non

empty family of soft neutrosophic biideals of (F,A) then

1. ∩i∈I (Hi, Bi) is a soft neutrosophic biideal of (F,A).

2. ∧i∈I (Hi, Bi) is a soft neutrosophic biideal of ∧i∈I (F,A).
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§4. Soft neutrosophic strong bisemigroup

Definition 4.1. Let (F,A) be a soft set over a neutrosophic bisemigroup BN(S). Then

(F,A) is said to be soft strong neutrosophic bisemigroup over BN(G) if and only if F (x) is

neutrosophic strong subbisemigroup of BN(G) for all x ∈ A.

Example 4.1. Let BN(S) = {0, 1, 2, I, 2I, 〈Z ∪ I〉,×,+} be a neutrosophic bisemigroup.

Let T = {0, I, 2I, 〈2Z ∪ I〉,×,+} and R = {0, 1, I, 〈4Z ∪ I〉,×,+} are neutrosophic strong

subbisemigroups of BN (S) . Then (F,A) is soft neutrosophic strong bisemigroup over BN (S),

where F (x1) = {0, I, 2I, 〈2Z ∪ I〉,×,+}, F (x2) = {0, I, 1, 〈4Z ∪ I〉,×,+}.
Theorem 4.1. Every soft neutrosophic strong bisemigroup is a soft neutrosophic bisemi-

group but the converse is not true.

Proposition 4.1. Let (F,A) and (K,B) be two soft neutrosophic strong bisemigroups

over BN(S). Then

1. Their extended union (F,A) ∪ε (K,B) over BN(S) is not soft neutrosophic strong

bisemigroup over BN(S).

2. Their extended intersection (F,A) ∩ε (K,B) over BN(S) is soft neutrosophic stong

bisemigroup over BN(S).

3. Their restricted union (F,A) ∪R (K,B) over BN(S) is not soft neutrosophic stong

bisemigroup over BN(S).

4. Their restricted intersection (F,A) ∩ε (K,B) over BN(S) is soft neutrosophic strong

bisemigroup over BN(S).

Proposition 4.2. Let (F,A) and (K,B) be two soft neutrosophic strong bisemigroups

over BN(S). Then

1. Their AND operation (F,A) ∧ (K,B) is soft neutrosophic strong bisemigroup over

BN(S).

2. Their OR operation (F,A) ∨ (K,B) is not soft neutrosophic strong bisemigroup over

BN(S).

Definition 4.2. Let (F,A) and (H,B) be two soft neutrosophic strong bisemigroups

over BN(S). Then (H,B) is a soft neutrosophic strong subbisemigroup of (F,A), if

1. B ⊂ A.

2. H(x) is neutrosophic strong subbisemigroup of F (x), for all x ∈ B.

Example 4.2. Let BN(S) = {0, 1, 2, I, 2I, 〈Z ∪ I〉,×,+} be a neutrosophic bisemigroup.

Let T = {0, I, 2I, 〈2Z ∪ I〉,×,+} and R = {0, 1, I, 〈4Z ∪ I〉,×,+} are neutrosophic strong

subbisemigroups of BN (S) . Then (F,A) is soft neutrosophic strong bisemigroup over BN (S),

where F (x1) = {0, I, 2I, 〈2Z ∪ I〉,×,+}, F (x2) = {0, I, 〈4Z ∪ I〉,×,+}.
Then (H,B) is a soft neutrosophic strong subbisemigroup of (F,A), where H (x1) =

{0, I, 〈4Z ∪ I〉 ,×,+} .
Theorem 4.2. Let (F,A) be a soft neutrosophic strong bisemigroup over BN (S) and

{(Hi, Bi) ; i ∈ I} be a non empty family of soft neutrosophic strong subbisemigroups of (F,A)

then

1. ∩i∈I (Hi, Bi) is a soft neutrosophic strong subbisemigroup of (F,A).

2. ∧i∈I (Hi, Bi) is a soft neutrosophic strong subbisemigroup of ∧i∈I (F,A).
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3. ∪i∈I (Hi, Bi) is a soft neutrosophic strong subbisemigroup of (F,A) if Bi ∩Bj = φ, for

all i 6= j.

Proof. Straightforward.

Definition 4.3. (F,A) over BN (S) is called soft neutrosophic strong biideal if F (x) is

neutosophic strong biideal of BN(S), for all x ∈ A.

Example 4.3. Let BN(S) = ({〈Z∪I〉, 0, 1, 2, I, 2I},+,×(× under multiplication modulo

3)). Let T = {〈2Z ∪ I〉, 0, I, 1, 2I,+,×} and J = {〈8Z ∪ I〉, {0, 1, I, 2I},+×} are neutrosophic

strong ideals of BN (S) . Then (F,A) is soft neutrosophic strong biideal over BN (S), where

F (x1) = {〈2Z ∪ I〉, 0, I, 1, 2I,+,×}, F (x2) = {〈8Z ∪ I〉, {0, 1, I, 2I},+×}.
Theorem 4.3. Every soft neutrosophic strong biideal (F,A) over BS (N) is a soft

neutrosophic bisemigroup but the converse is not true.

Theorem 4.4. Every soft neutrosophic strong biideal (F,A) over BS (N) is a soft

neutrosophic strong bisemigroup but the converse is not true.

Proposition 4.3. Let (F,A) and (K,B) be two soft neutrosophic strong biideals over

BN(S). Then

1. Their extended union (F,A)∪ε(K,B) over BN(S) is not soft neutrosophic strong biideal

over BN(S).

2. Their extended intersection (F,A) ∩ε (K,B) over BN(S) is soft neutrosophic strong

biideal over BN(S).

3. Their restricted union (F,A) ∪R (K,B) over BN(S) is not soft neutrosophic strong

biideal over BN(S).

4. Their restricted intersection (F,A) ∩ε (K,B) over BN(S) is soft neutrosophic stong

biideal over BN(S).

Proposition 4.4. Let (F,A) and (H,B) be two soft neutrosophic strong biideal over

BN(S). Then

1. Their AND operation (F,A) ∧ (H,B) is soft neutrosophic strong biideal over BN(S).

2. Their OR operation (F,A)∨ (H,B) is not soft neutrosophic strong biideal over BN(S).

Theorem 4.5. Let (F,A) be a soft neutrosophic strong bisemigroup over BN (S) and

{(Hi, Bi) ; i ∈ I} is a non empty family of soft neutrosophic strong biideals of (F,A) then

1. ∩i∈I (Hi, Bi) is a soft neutrosophic strong biideal of (F,A).

2. ∧i∈I (Hi, Bi) is a soft neutrosophic strong biideal of ∧i∈I (F,A).

§5. Soft neutrosophic N-semigroup

Definition 5.1. Let {S(N), ∗1, . . . , ∗N} be a neutrosophic N -semigroup and (F,A) be

a soft set over {S(N), ∗1, . . . , ∗N}. Then (F,A) is termed as soft neutrosophic N -semigroup if

and only if F (x) is neutrosophic sub N -semigroup, for all x ∈ A.

Example 5.1. Let S(N) = {S1∪S2∪S3∪S4, ∗1, ∗2, ∗3, ∗4} be a neutrosophic 4-semigroup

where

S1 = {Z12, semigroup under multiplication modulo 12}.
S2 = {0, 1, 2, 3, I, 2I, 3I, semigroup under multiplication modulo 4}, a neutrosophic semi-

group.
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S3 =


 a b

c d

 ; a, b, c, d ∈ 〈R ∪ I〉

, neutrosophic semigroup under matrix multiplica-

tion.

S4 = 〈Z ∪ I〉, neutrosophic semigroup under multiplication. Let T = {T1 ∪ T2 ∪ T3 ∪
T4, ∗1, ∗2, ∗3, ∗4} is a neutosophic sub 4-semigroup of S (4), where T1 = {0, 2, 4, 6, 8, 10} ⊆ Z12,

T2 = {0, I, 2I, 3I} ⊂ S2, T3 =


 a b

c d

 ; a, b, c, d ∈ 〈Q ∪ I〉

 ⊂ S3, T4 = {〈5Z ∪ I〉} ⊂ S4,

the neutrosophic semigroup under multiplication. Also let P = {P1∪P2∪P3∪P4, ∗1, ∗2, ∗3, ∗4}
be another neutrosophic sub 4-semigroup of S (4), where P1 = {0, 6} ⊆ Z12, P2 = {0, 1, I} ⊂

S2, P3 =


 a b

c d

 ; a, b, c, d ∈ 〈Z ∪ I〉

 ⊂ S3, P4 = {〈2Z ∪ I〉} ⊂ S4. Then (F,A) is soft

neutrosophic 4-semigroup over S (4), where

F (x1) = {0, 2, 4, 6, 8, 10} ∪ {0, I, 2I, 3I} ∪


 a b

c d

 ; a, b, c, d ∈ 〈Q ∪ I〉

 ∪ {〈5Z ∪ I〉},
F (x2) = {0, 6} ∪ {0, 1, I} ∪


 a b

c d

 ; a, b, c, d ∈ 〈Z ∪ I〉

 ∪ {〈2Z ∪ I〉} .
Theorem 5.1. Let (F,A) and (H,A) be two soft neutrosophic N -semigroup over S(N).

Then their intersection (F,A) ∩ (H,A) is again a soft neutrosophic N -semigroup over S(N).

Proof. Straightforward.

Theorem 5.2. Let (F,A) and (H,B) be two soft neutrosophic N -semigroups over S(N)

such that A ∩B = φ, then their union is soft neutrosophic N -semigroup over S(N).

Proof. Straightforward.

Proposition 5.1. Let (F,A) and (K,B) be two soft neutrosophic N -semigroups over

S(N). Then

1. Their extended union (F,A)∪ε (K,B) over S(N) is not soft neutrosophic N -semigroup

over S(N).

2. Their extended intersection (F,A)∩ε(K,B) over S(N) is soft neutrosophic N -semigroup

over S(N).

3. Their restricted union (F,A)∪R (K,B) over S(N) is not soft neutrosophic N -semigroup

over S(N).

4. Their restricted intersection (F,A)∩ε(K,B) over S(N) is soft neutrosophic N -semigroup

over S(N).

Proposition 5.2. Let (F,A) and (K,B) be two soft neutrosophic N -semigroups over

S(N). Then

1. Their AND operation (F,A) ∧ (K,B) is soft neutrosophic N -semigroup over S(N).

2. Their OR operation (F,A) ∨ (K,B) is not soft neutrosophic N -semigroup over S(N).

Definition 5.2. Let (F,A) be a soft neutrosophic N -semigroup over S(N), then (F,A)

is called Full-soft neutrosophic N -semigroup over S(N) if F (x) = S(N), for all x ∈ A. We

denote it by S(N).
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Definition 5.3. Let (F,A) and (H,B) be two soft neutrosophic N -semigroups over

S(N). Then (H,B) is a soft neutrosophic sub N -semigroup of (F,A), if

1. B ⊂ A.

2. H(x) is neutrosophic sub N -semigroup of F (x), for all x ∈ B.

Example 5.2. Let S(N) = {S1∪S2∪S3∪S4, ∗1, ∗2, ∗3, ∗4} be a neutrosophic 4-semigroup

where

S1 = {Z12, semigroup under multiplication modulo 12}.
S2 = {0, 1, 2, 3, I, 2I, 3I, semigroup under multiplication modulo 4}, a neutrosophic semi-

group.

S3 =


 a b

c d

 ; a, b, c, d ∈ 〈R ∪ I〉

, neutrosophic semigroup under matrix multiplica-

tion.

S4 = 〈Z ∪ I〉, neutrosophic semigroup under multiplication. Let T = {T1 ∪ T2 ∪ T3 ∪
T4, ∗1, ∗2, ∗3, ∗4} is a neutosophic sub 4-semigroup of S (4), where T1 = {0, 2, 4, 6, 8, 10} ⊆

Z12, T2 = {0, I, 2I, 3I} ⊂ S2, T3 =


 a b

c d

 ; a, b, c, d ∈ 〈Q ∪ I〉

 ⊂ S3, T4 = {〈5Z ∪

I〉} ⊂ S4, the neutrosophic semigroup under multiplication. Also let P = {P1 ∪ P2 ∪ P3 ∪
P4, ∗1, ∗2, ∗3, ∗4} be another neutrosophic sub 4-semigroup of S (4), where P1 = {0, 6} ⊆ Z12,

P2 = {0, 1, I} ⊂ S2, P3 =


 a b

c d

 ; a, b, c, d ∈ 〈Z ∪ I〉

 ⊂ S3, P4 = {〈2Z ∪ I〉} ⊂ S4. Also

let R = {R1 ∪ R2 ∪ R3 ∪ R4, ∗1, ∗2, ∗3, ∗4} be a neutrosophic sub 4-semigroup os S (4) where

R1 = {0, 3, 6, 9} , R2 = {0, I, 2I} , R3 =


 a b

c d

 ; a, b, c, d ∈ 〈2Z ∪ I〉

 , R4 = {〈3Z ∪ I〉} .

Then (F,A) is soft neutrosophic 4-semigroup over S (4), where

F (x1) = {0, 2, 4, 6, 8, 10} ∪ {0, I, 2I, 3I} ∪


 a b

c d

 ; a, b, c, d ∈ 〈Q ∪ I〉

 ∪ {〈5Z ∪ I〉},
F (x2) = {0, 6} ∪ {0, 1, I} ∪


 a b

c d

 ; a, b, c, d ∈ 〈Z ∪ I〉

 ∪ {〈2Z ∪ I〉} ,
F (x3) = {0, 3, 6, 9} ∪ {0, I, 2I} ∪


 a b

c d

 ; a, b, c, d ∈ 〈2Z ∪ I〉

 ∪ {〈3Z ∪ I〉} .
Clearly (H,B) is a soft neutrosophic sub N -semigroup of (F,A) , where

H (x1) = {0, 4, 8} ∪ {0, I, 2I} ∪


 a b

c d

 ; a, b, c, d ∈ 〈Z ∪ I〉

 ∪ {〈10Z ∪ I〉},

H (x3) = {0, 6} ∪ {0, I} ∪


 a b

c d

 ; a, b, c, d ∈ 〈4Z ∪ I〉

 ∪ {〈6Z ∪ I〉}.
Theorem 5.3. Let (F,A) be a soft neutrosophicN -semigroup over S (N) and {(Hi, Bi) ; i ∈ I}

is a non empty family of soft neutrosophic sub N -semigroups of (F,A) then
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1. ∩i∈I (Hi, Bi) is a soft neutrosophic sub N -semigroup of (F,A).

2. ∧i∈I (Hi, Bi) is a soft neutrosophic sub N -semigroup of ∧i∈I (F,A).

3. ∪i∈I (Hi, Bi) is a soft neutrosophic sub N -semigroup of (F,A) if Bi ∩ Bj = φ, for all

i 6= j.

Proof. Straightforward.

Definition 5.4. (F,A) over S (N) is called soft neutrosophic N -ideal if F (x) is neuto-

sophic N -ideal of S (N), for all x ∈ A.

Theorem 5.4. Every soft neutrosophic N -ideal (F,A) over S (N) is a soft neutrosophic

N -semigroup but the converse is not true.

Proposition 5.3. Let (F,A) and (K,B) be two soft neutrosophic N -ideals over S (N).

Then

1. Their extended union (F,A)∪ε (K,B) over S (N) is not soft neutrosophic N -ideal over

S (N).

2. Their extended intersection (F,A) ∩ε (K,B) over S (N) is soft neutrosophic N -ideal

over S (N).

3. Their restricted union (F,A)∪R (K,B) over S (N) is not soft neutrosophic N -ideal over

S (N).

4. Their restricted intersection (F,A) ∩ε (K,B) over S (N) is soft neutrosophic N -ideal

over S (N).

Proposition 5.4. Let (F,A) and (H,B) be two soft neutrosophic N -ideal over S (N).

Then

1. Their AND operation (F,A) ∧ (H,B) is soft neutrosophic N -ideal over S (N).

2. Their OR operation (F,A) ∨ (H,B) is not soft neutrosophic N -ideal over S (N).

Theorem 5.5. Let (F,A) be a soft neutrosophic N -semigroup over S (N) and {(Hi, Bi) ;

i ∈ I} is a non empty family of soft neutrosophic N -ideals of (F,A) then

1. ∩i∈I (Hi, Bi) is a soft neutrosophic N -ideal of (F,A).

2. ∧i∈I (Hi, Bi) is a soft neutrosophic N -ideal of ∧i∈I (F,A).

§6. Soft neutrosophic strong N-semigroup

Definition 6.1. Let {S(N), ∗1, . . . , ∗N} be a neutrosophic N -semigroup and (F,A) be a

soft set over {S(N), ∗1, . . . , ∗N}. Then (F,A) is called soft neutrosophic strong N -semigroup if

and only if F (x) is neutrosophic strong sub N -semigroup, for all x ∈ A.

Example 6.1. Let S(N) = {S1∪S2∪S3∪S4, ∗1, ∗2, ∗3, ∗4} be a neutrosophic 4-semigroup

where

S1 = 〈Z6 ∪ I〉, a neutrosophic semigroup.

S2 = {0, 1, 2, 3, I, 2I, 3I, semigroup under multiplication modulo 4}, a neutrosophic semi-

group.

S3 =


 a b

c d

 ; a, b, c, d ∈ 〈R ∪ I〉

, neutrosophic semigroup under matrix multiplica-

tion.
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S4 = 〈Z ∪ I〉, neutrosophic semigroup under multiplication. Let T = {T1 ∪ T2 ∪ T3 ∪
T4, ∗1, ∗2, ∗3, ∗4} is a neutosophic strong sub 4-semigroup of S (4), where T1 = {0, 3, 3I} ⊆

〈Z6 ∪ I〉, T2 = {0, I, 2I, 3I} ⊂ S2, T3 =


 a b

c d

 ; a, b, c, d ∈ 〈Q ∪ I〉

 ⊂ S3, T4 = {〈5Z ∪

I〉} ⊂ S4, the neutrosophic semigroup under multiplication. Also let P = {P1 ∪ P2 ∪ P3 ∪
P4, ∗1, ∗2, ∗3, ∗4} be another neutrosophic strong sub 4-semigroup of S (4), where P1 = {0, 2I, 4I}

⊆ 〈Z6 ∪ I〉, P2 = {0, 1, I} ⊂ S2, P3 =


 a b

c d

 ; a, b, c, d ∈ 〈Z ∪ I〉

 ⊂ S3, P4 = {〈2Z ∪ I〉}

⊂ S4. Then (F,A) is soft neutrosophic strong 4-semigroup over S (4), whereThen (F,A) is soft

neutrosophic 4-semigroup over S (4), where

F (x1) = {0, 3, 3I} ∪ {0, I, 2I, 3I} ∪


 a b

c d

 ; a, b, c, d ∈ 〈Q ∪ I〉

 ∪ {〈5Z ∪ I〉},
F (x2) = {0, 2I, 4I} ∪ {0, 1, I} ∪


 a b

c d

 ; a, b, c, d ∈ 〈Z ∪ I〉

 ∪ {〈2Z ∪ I〉} .
Theorem 6.1. Every soft neutrosophic strong N -semigroup is trivially a soft neutro-

sophic N -semigroup but the converse is not true.

Proposition 6.1. Let (F,A) and (K,B) be two soft neutrosophic strong N -semigroups

over S(N). Then

1. Their extended union (F,A) ∪ε (K,B) over S(N) is not soft neutrosophic strong N -

semigroup over S(N).

2. Their extended intersection (F,A) ∩ε (K,B) over S(N) is soft neutrosophic strong

N -semigroup over S(N).

3. Their restricted union (F,A) ∪R (K,B) over S(N) is not soft neutrosophic strong N -

semigroup over S(N).

4. Their restricted intersection (F,A) ∩ε (K,B) over S(N) is soft neutrosophic strong

N -semigroup over S(N).

Proposition 6.2. Let (F,A) and (K,B) be two soft neutrosophic strong N -semigroups

over S(N). Then

1. Their AND operation (F,A) ∧ (K,B) is soft neutrosophic strong N -semigroup over

S(N).

2. Their OR operation (F,A) ∨ (K,B) is not soft neutrosophic strong N -semigroup over

S(N).

Definition 6.2. Let (F,A) and (H,B) be two soft neutrosophic strong N -semigroups

over S (N). Then (H,B) is a soft neutrosophic strong sub N -semigroup of (F,A), if

1. B ⊂ A.

2. H(x) is neutrosophic strong sub N -semigroup of F (x), for all x ∈ B.

Theorem 6.2.

1. Let (F,A) be a soft neutrosophic strong N -semigroup over S (N) and {(Hi, Bi) ; i ∈ I}
is a non empty family of soft neutrosophic stong sub N -semigroups of (F,A) then

2. ∩i∈I (Hi, Bi) is a soft neutrosophic strong sub N -semigroup of (F,A).
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3. ∧i∈I (Hi, Bi) is a soft neutrosophic strong sub N -semigroup of ∧i∈I (F,A).

4. ∪i∈I (Hi, Bi) is a soft neutrosophic strong sub N -semigroup of (F,A) if Bi ∩ Bj = φ,

for all i 6= j.

Proof. Straightforward.

Definition 6.3. (F,A) over S (N) is called soft neutrosophic strong N -ideal if F (x) is

neutosophic strong N -ideal of S (N), for all x ∈ A.

Theorem 6.3. Every soft neutrosophic strong N -ideal (F,A) over S (N) is a soft

neutrosophic strong N -semigroup but the converse is not true.

Theorem 6.4. Every soft neutrosophic strong N -ideal (F,A) over S (N) is a soft

neutrosophic N -semigroup but the converse is not true.

Proposition 6.3. Let (F,A) and (K,B) be two soft neutrosophic strong N -ideals over

S (N). Then

1. Their extended union (F,A) ∪ε (K,B) over S (N) is not soft neutrosophic strong N -

ideal over S (N). 2. Their extended intersection (F,A)∩ε (K,B) over S (N) is soft neutrosophic

strong N -ideal over S (N).

3. Their restricted union (F,A) ∪R (K,B) over S (N) is not soft neutrosophic strong

N -ideal over S (N).

4. Their restricted intersection (F,A) ∩ε (K,B) over S (N) is soft neutrosophic strong

N -ideal over S (N).

Proposition 6.4. Let (F,A) and (H,B) be two soft neutrosophic strong N -ideal over

S (N). Then

1. Their AND operation (F,A) ∧ (H,B) is soft neutrosophic strong N -ideal over S (N).

2. Their OR operation (F,A)∨ (H,B) is not soft neutrosophic strong N -ideal over S (N).

Theorem 6.5. Let (F,A) be a soft neutrosophic strong N -semigroup over S (N) and

{(Hi, Bi) ; i ∈ I} is a non empty family of soft neutrosophic strong N -ideals of (F,A) then

1. ∩i∈I (Hi, Bi) is a soft neutrosophic strong N -ideal of (F,A).

2. ∧i∈I (Hi, Bi) is a soft neutrosophic strong N -ideal of ∧i∈I (F,A).

Conclusion

This paper is an extension of neutrosphic semigroup to soft semigroup. We also extend

neutrosophic bisemigroup, neutrosophic N -semigroup to soft neutrosophic bisemigroup, and

soft neutrosophic N -semigroup. Their related properties and results are explained with many

illustrative examples, the notions related with strong part of neutrosophy also established within

soft semigroup.
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Abstract. Both neutrosophic sets theory and rough sets theory are emerging as power-
ful tool for managing uncertainty, indeterminate, incomplete and imprecise information.

In this paper we develop an hybrid structure called rough neutrosophic sets and studied
their properties.

Keywords: Rough set, rough neutrosophic set.

1. Introduction

In 1982, Pawlak [1] introduced the concept of rough set (RS), as a formal tool for
modeling and processing incomplete information in information systems. There
are two basic elements in rough set theory, crisp set and equivalence relation,
which constitute the mathematical basis of RSs. The basic idea of rough set
is based upon the approximation of sets by a pair of sets known as the lower
approximation and the upper approximation of a set. Here, the lower and upper
approximation operators are based on equivalence relation. After Pawlak, there
has been many models built upon different aspect, i.e., universe, relations, object,
operators by many scholars [2], [3], [4], [5], [6], [7]. Various notions that combine
rough sets and fuzzy sets, vague set and intuitionistic fuzzy sets are introduced,
such as rough fuzzy sets, fuzzy rough sets, generalize fuzzy rough, intuitionistic
fuzzy rough sets, rough intuitionistic fuzzy sets, rough vagues sets. The theory of

Rough Neutrosophic Sets

Said Broumi, Florentin Smarandache, and Mamoni Dhar

rough sets is based upon the classification mechanism, from which the classification
can be viewed as an equivalence relation and knowledge blocks induced by it be
a partition on universe.
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One of the interesting generalizations of the theory of fuzzy sets and intuitio-
nistic fuzzy sets is the theory of neutrosophic sets introduced by F. Smarandache
[8], [9]. Neutrosophic sets described by three functions: a membership function
indeterminacy function and a non-membership function that are independently
related. The theory of neutrosophic set have achieved great success in various
areas such as medical diagnosis [10], database [11], [12], topology [13], image pro-
cessing [14], [15], [16], and decision making problem [17]. While the neutrosophic
set is a powerful tool to deal with indeterminate and inconsistent data, the theory
of rough sets is a powerful mathematical tool to deal with incompleteness.

Neutrosophic sets and rough sets are two different topics, none conflicts the
other. Recently many researchers applied the notion of neutrosophic sets to re-
lations, group theory, ring theory, soft set theory [23], [24], [25], [26], [27], [28],
[29], [30], [31], [32] and so on. The main objective of this study was to introduce
a new hybrid intelligent structure called rough neutrosophic sets. The significance
of introducing hybrid set structures is that the computational techniques based
on any one of theses structures alone will not always yield the best results but a
fusion of two or more of them can often give better results.

The rest of this paper is organized as follows. Some preliminary concepts
required in our work are briefly recalled in Section 2. In Section 3, the concept of
rough neutrosophic sets is investigated. Section 4 concludes the paper.

2. Preliminaries

In this section we present some preliminaries which will be useful to our work in
the next section. For more details the reader may refer to [1], [8], [9].

Definition 2.1. [8] Let X be an universe of discourse, with a generic element in
X denoted by x, the neutrosophic (NS) set is an object having the form

A = {⟨x : µA(x), νA(x), ωA(x)⟩ , x ∈ X},

where the functions µ, ν, ω : X →]−0, 1+[ define respectively the degree of member-
ship (or Truth), the degree of indeterminacy, and the degree of non-membership
(or Falsehood) of the element x ∈ X to the set A with the condition

(1) −0 ≤ µA(x) + νA(x) + ωA(x) ≤ 3+.

From a philosophical point of view, the neutrosophic set takes the value from real
standard or non-standard subsets of ]−0, 1+[. So, instead of ]−0, 1+[ we need to
take the interval [0, 1] for technical applications, because ]−0, 1+[ will be difficult
to apply in the real applications such as in scientific and engineering problems.
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For two NS,

A = {⟨x, µA(x), νA(x), ωA(x)⟩ | x ∈ X} and

B = {⟨x, µB(x), νB(x), ωB(x)⟩ | x ∈ X},

the relations are defined as follows:

(i) A ⊆ B if and only if µA(x) ≤ µB(x), νA(x) ≥ µB(x), ωA(x) ≥ ωB(x),

(ii) A = B if and only if µA(x) = µB(x), νA(x) = µB(x), ωA(x) = ωB(x),

(iii) A ∩B = {⟨x,min(µA(x), µB(x)),max(νA(x), νB(x)),max(ωA(x), ωB(x))⟩ |
x ∈ X},

(iv) A ∪B = {⟨x,max(µA(x), µB(x)),min(νA(x), νB(x)),min(ωA(x), ωB(x))⟩ |
x ∈ X},

(v) AC = {⟨x, ωA(x), 1− νA(x), µA(x)⟩ | x ∈ X}

(vi) 0n = (0, 1, 1) and 1n = (1, 0, 0).

As an illustration, let us consider the following example.

Example 2.2. Assume that the universe of discourse U = {x1, x2, x3}, where x1

characterizes the capability, x2 characterizes the trustworthiness and x3 indicates
the prices of the objects. It may be further assumed that the values of x1, x2 and
x3 are in [0, 1] and they are obtained from some questionnaires of some experts.
The experts may impose their opinion in three components viz. the degree of
goodness, the degree of indeterminacy and that of poorness to explain the cha-
racteristics of the objects. Suppose A is a neutrosophic set (NS) of U , such that,

A = {⟨x1, (0.3, 0.5, 0.6)⟩ , ⟨x2, (0.3, 0.2, 0.3)⟩ , ⟨x3, (0.3, 0.5, 0.6)⟩},

where the degree of goodness of capability is 0.3, degree of indeterminacy of
capability is 0.5 and degree of falsity of capability is 0.6 etc.

Definition 2.3. [1] Let U be any non-empty set. Suppose R is an equivalence
relation over U. For any non-null subset X of U , the sets

A1(x) = {x : [x]R ⊆ X} and A2(x) = {x : [x]R ∩X ̸= ∅}

are called the lower approximation and upper approximation, respectively of X,
where the pair S = (U,R) is called an approximation space. This equivalent
relation R is called indiscernibility relation.

The pair A(X) = (A1(x), A2(x)) is called the rough set of X in S. Here [x]R
denotes the equivalence class of R containing x.
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Definition 2.4. [1] Let A = (A1, A2) and B = (B1, B2) be two rough sets in the
approximation space S = (U,R). Then,

A ∪B = (A1 ∪B1, A2 ∪B2),

A ∩B = (A1 ∩B1, A2 ∩B2),

A ⊆ B if A ∩B = A,

∼ A = {U − A2, U − A1}.

3. Rough neutrosophic sets

In this section we introduce the notion of rough neutrosophic sets by combi-
ning both rough sets and nuetrosophic sets. and some operations viz. union,
intersection, inclusion and equalities over them. Rough neutrosophic set are the
generalization of rough fuzzy sets [2] and rough intuitionistic fuzzy sets [22].

Definition 3.1. Let U be a non-null set and R be an equivalence relation on U .
Let F be neutrosophic set in U with the membership function µF , indetermi-
nacy function νF and non-membership function ωF . The lower and the upper
approximations of F in the approximation (U,R) denoted by N(F ) and N(F ) are
respectively defined as follows:

N(F ) = {< x, µN(F )(x), νN(F )(x), ωN(F )(x) >| y ∈ [x]R, x ∈ U},
N(F )) = {< x, µN(F )(x), νN(F )(x), ωN(F )(x) >| y ∈ [x]R, x ∈ U},

where:

µN(F )(x) =
∧

y∈[x]R

µF (y), νN(F )(x) =
∨

y∈[x]R

νF (y), ωN(F )(x) =
∨

y∈[x]R

ωF (y),

µN(F )(x) =
∨

y∈[x]R

µF (y), νN(F )(x) =
∧

y∈[x]R

νF (y), ωN(F )(x) =
∧

y∈[x]R

ωF (y).

So

0 ≤ µN(F )(x) + νN(F )(x) + ωN(F )(x) ≤ 3

and

µN(F )(x) + νN(F )(x) + ωN(F )(x) ≤ 3,

where ”∨” and ”∧” mean ”max” and ”min” operators respectively, µF (x), νF (y)
and ωF (y) are the membership, indeterminacy and non-membership of y with
respect to F . It is easy to see that N(F ) and N(F ) are two neutrosophic sets in
U , thus the NS mappings N,N : N(U → N(U) are, respectively, referred to as the
upper and lower rough NS approximation operators, and the pair (N(F ), N(F ))
is called the rough neutrosophic set in (U,R).
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From the above definition, we can see that N(F ) and N(F ) have constant
membership on the equivalence classes of U , if N(F ) = N(F ); i.e.,

µN(F ) = µN(F ),

νN(F ) = νN(F ),

ωN(F ) = ωN(F ).

For any x ∈ U, we call F a definable neutrosophic set in the approximation (U,R).
It is easily to be proved that Zero ON neutrosophic set and unit neutrosophic
sets 1N are definable neutrosophic sets. Let us consider a simple example in the
following.

Example 3.2. Let U = {p1, p2, p3, p4, p5, p6, p7, p8} be the universe of discourse.
Let R be an equivalence relation its partition of U is given by

U/R = {{p1, p4}, {p2, p3, p6}, {p5}, {p7, p8}}.

Let
N(F )={(p1, (0.2, 0.3, 0.4), (p4, (0.3, 0.5, 0.4)), (p5, (0.4, 0.6, 0.2)),

(p7, (0.1, 0.3, 0.5))}
be a neutrosophic set of U . By Definition 3.1, we obtain:

N(F ) = {(p1, (0.2, 0.5, 0.4)), (p4, (0.2, 0.5, 0.4)), (p5, (0.4, 0.6, 0.2))};
N(F ) = {(p1, (0.2, 0.3, 0.4)), (p4, (0.2, 0.3, 0.4)), (p5, (0.4, 0.6, 0.2)),

(p7, (0.1, 0.3, 0.5)), (p8, (0.1, 0.3, 0.5))}.

For another neutrosophic sets

N(G) = {(p1, (0.2, 0.3, 0.4)), (p4, (0.2, 0.3, 0.4)), (p5, (0.4, 0.6, 0.2))}.

The lower approximation and upper approximation of N(G) are calculated as

N(G) = {(p1, (0.2, 0.3, 0.4)), (p4, (0.2, 0.3, 0.4)), (p5, (0.4, 0.6, 0.2))};
N(G) = {(p1, (0.2, 0.3, 0.4)), (p4, (0.2, 0.3, 0.4)), (p5, (0.4, 0.6, 0.2))}.

Obviously N(G) = N(G) is a definable neutrosophic set in the approximation
space (U,R).

Definition 3.3. If N(F ) = (N(F ), N(F )) is a rough neutrosophic set in (U,R),
the rough complement of N(F ) is the rough neutrosophic set denoted ∼ N(F ) =
(N(F )c, N(F )c), where N(F )c, N(F )c are the complements of neutrosophic sets
N(F ) and N(F ), respectively,

N(F )c = {< x, ωN(F ), 1− νN(F )(x), µN(F )(x) >| x ∈ U},

and
N(F )c = {< x, ωN(F ), 1− νN(F )(x), µN(F )(x) >| x ∈ U}.

Definition 3.4. If N(F1) and N(F2) are two rough neutrosophic set of the
neutrosophic sets F1 and F2 respectively in U , then we define the following:
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(i) N(F1) = N(F2) iff N(F1) = N(F2) and N(F1) = N(F2).

(ii) N(F1) ⊆ N(F2) iff N(F1) ⊆ N(F2) and N(F1) ⊆ N(F2).

(iii) N(F1) ∪N(F2) =
⟨
N(F1) ∪N(F2), N(F1) ∪N(F2)

⟩
.

(iv) N(F1) ∩N(F2) =
⟨
N(F1) ∩N(F2), N(F1) ∩N(F2)

⟩
.

(v) N(F1) +N(F2) =
⟨
N(F1) +N(F2), N(F1) +N(F2)

⟩
.

(vi) N(F1) ·N(F2) =
⟨
N(F1) ·N(F2), N(F1) ·N(F2)

⟩
.

If N,M,L are rough neutrosophic set in (U,R), then the results in the following
proposition are straightforward from definitions.

Proposition 3.5.

(i) ∼ N(∼ N) = N

(ii) N ∪M = M ∪N, N ∩M = M ∩N

(iii) (N ∪M) ∪ L = N ∪ (M ∪ L) and (N ∩M) ∩ L = N ∩ (M ∩ L)

(iv) (N ∪M)∩L = (N ∪M)∩ (N ∪L) and (N ∩M)∪L = (N ∩M)∪ (N ∩L).

De Morgan ’s Laws are satisfied for neutrosophic sets:

Proposition 3.6.

(i) ∼ (N(F1) ∪N(F2)) = (∼ N(F1)) ∩ (∼ N(F2))

(ii) ∼ (N(F1) ∩N(F2)) = (∼ N(F1)) ∪ (∼ N(F2)).

Proof. (i) (N(F1) ∪ N(F2)) =∼ ({N(F1) ∪ N(F2)}, {N(F1) ∪ N(F2)}) =

(∼{N(F1)∪N(F2)},∼{N(F1)∪N(F2)})=({N(F1)∪N(F2)}c, {N(F1)∪N(F2)}c)
= (∼{N(F1) ∩N(F2)},∼{N(F1) ∩N(F2)}) = (∼N(F1)) ∩ (∼ N(F2)).

(ii) Similar to the proof of (i).

Proposition 3.7. If F1 and F2 are two neutrosophic sets in U such that F1 ⊆ F2,
then N(F1) ⊆ N(F2)

(i) N(F1 ∪ F2) ⊇ N(F1) ∪N(F2),

(ii) N(F1 ∩ F2) ⊆ N(F1) ∩N(F2).
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Proof.

µN(F1∪F2)(x) = inf{µF1∪F2)(x) | x ∈ Xi}
= inf(max{µF1(x), µF2(x) | x ∈ Xi})
≥ max{inf{µF1(x) | x ∈ Xi}, inf{µF2(x) | x ∈ Xi}}
= max{µN(F1)(xi), µN(F2)(xi)}
= µN(F1) ∪ µN(F2)(xi).

Similarly,
νN(F1∪F2)(xi) ≤ (νN(F1) ∪ νN(F2))(xi)

ωN(F1∪F2)(xi) ≤ (ωN(F1) ∪ ωN(F2))(xi)

Thus,
N(F1 ∪ F2) ⊇ N(F1) ∪N(F2).

We can also see that
N(F1 ∪ F2) = N(F1) ∪N(F2).

Hence,
N(F1 ∪ F2) ⊇ N(F1) ∪N(F2).

(ii) The proof of (ii) is similar to the proof of (i).

Proposition 3.8.

(i) N(F ) = ∼ N(∼ F )

(ii) N(F ) = ∼ N(∼ F )

(iii) N(F ) ⊇ N(F ).

Proof. According to Definition 3.1, we can obtain

(i) F = {⟨x, µF (x), νF (x), ωF (x)⟩ | x ∈ X}
∼ F = {⟨x, ωF (x), 1− νF (x), µF (x)⟩ | |x ∈ X}

N(∼ F ) =
{⟨

x, ωN(∼F )(x), 1− νN(∼F )(x), µN(∼F )(x)
⟩
| y ∈ [x]R, x ∈ U

}
∼ N(∼ F ) =

{⟨
x, µN(∼F )(x), 1−(1−νN(∼F )(x)), ωN(∼F )(x)

⟩
|y ∈ [x]R, x ∈ U

}
=

{⟨
x, µN(∼F )(x), νN(∼F )(x), ωN(∼F )(x)

⟩
| y ∈ [x]R, x ∈ U

}
where

µN(∼F )(x) =
∧

y∈[x]R

µF (y), νN(∼F )(x) =
∨

y∈[x]R

νF (y), ωN(∼F )(x) =
∨

y∈[x]R

ωF (y).

Hence N(F ) =∼ N(∼ F ).

(ii) The proof is similar to the proof of (i).
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(iii) For any y ∈ N(F ), we can have

µN(F )(x) =
∧

y∈[x]R

µF (y) ≤
∨

y∈[x]R

µF (y), νN(F )(x) =
∨

y∈[x]R

νF (y) ≥
∧

y∈[x]R

νF (y)

and ωN(F )(x) =
∨

y∈[x]R

ωF (y) ≥
∧

y∈[x]R

ωF (y).

Hence N(F ) ⊆ N(F ).

4. Conclusion

In this paper we have defined the notion of rough neutrosophic sets. We have
also studied some properties on them and proved some propositions. The concept
combines two different theories which are rough sets theory and neutrosophic
theory. While neutrosophic set theory is mainly concerned with, indeterminate
and inconsistent information, rough set theory is with incompleteness; but both
the theories deal with imprecision. Consequently, by the way they are defined,
it is clear that rough neutrosophic sets can be utilized for dealing with both of
indeterminacy and incompleteness.
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Some Types of Neutrosophic Crisp Sets  and Neutrosophic Crisp Relations  

A. A. Salama, Said Broumi and Florentin Smarandache

Abstract—The purpose of this paper is to introduce a new types of 
crisp sets are called the neutrosophic crisp set with three types 1, 2, 3. 
After given the fundamental definitions and operations, we obtain 
several properties, and discussed the relationship between neutrosophic 
crisp sets and others. Finally, we introduce and study the notion of 
neutrosophic crisp relations.  

Index Terms—Neutrosophic set, neutrosophic crisp 
sets, neutrosophic crisp relations, generalized 
neutrosophic set, Intuitionistic neutrosophic Set. 

I. Introduction 

Since the world is full of indeterminacy, the 
neutrosophics found their place into contemporary 
research. The fundamental concepts of neutrosophic 
set, introduced by Smarandache in [16, 17, 18], and 
Salama et al. in [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], 
provides a natural foundation for treating 
mathematically the neutrosophic phenomena which 
exist pervasively in our real world and for building new 
branches of neutrosophic mathematics. Neutrosophy 
has laid the foundation for a whole family of new 
mathematical theories generalizing both their classical 
and fuzzy counterparts [1, 2, 3, 19] such as a 
neutrosophic set theory.  In this paper we introduce a 
new types of crisp sets are called the neutrosophic crisp 
set with three types 1, 2, 3. After given the fundamental 
definitions and operations, we obtain several 
properties, and discussed the relationship between 

neutrosophic crisp sets and others. Finally, we 
introduce and study the notion of neutrosophic crisp 
relations.  
The paper unfolds as follows. The next section briefly 
introduces some definitions related to neutrosophic set 
theory and some terminologies of neutrosophic crisp 
set. Section 3 presents new types of  neutrosophic crisp 
sets and studied some of their basic properties. Section 
4 presents the concept of neutrosophic crisp relations . 
Finally we concludes the paper. 

II. Preliminaries

We recollect some relevant basic preliminaries, and 
in particular, the work of Smarandache in  [16 , 17, 18], 
and Salama et al. [4,5]. Smarandache introduced the 
neutrosophic components T, I, F which represent the 
membership, indeterminacy, and non-membership 

values respectively, where  1,0 - is nonstandard unit 
interval. 
Definition 2.1 [9, 13, 15] 
A neutrosophic crisp set (NCS for short) 

321 ,, AAAA  can be identified to an ordered 

triple 321 ,, AAA  are subsets on X, and every crisp 
event in X is obviously an NCS having the 
form 321 ,, AAA , 

Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

378

mailto:drsalama44@gmail.com
mailto:broumisaid78@gmail.com
mailto:fsmarandache@gmail.com


Salama et al. constructed the tools for developed 
neutrosophic crisp set, and  introduced the NCS 

NN X,  in X as follows: 

1) N   may be defined as four types: 

i)Type1: ,,, XN   or 

ii)Type2: ,,, XXN   or 

iii)Type3: ,,,  XN  or 

iv)Type4:  ,,N

2) NX  may be defined as four types 

i) Type1: ,,, XX N 

ii) Type2: ,,, XXX N   

iii) Type3: ,,, XXX N   

iv) Type4: ,,, XXXX N   
Definition 2.2 [9, 13, 15] 
Let 321 ,, AAAA   a NCE or UNCE on X , then 

the complement of the set A  ( cA , for short   maybe
defined as three kinds of complements 

 1C  Type1: 321 ,, cccc AAAA  , 

 2C  Type2: 123 ,, AAAAc 

 3C  Type3: 123 ,, AAAA cc 

One can define several relations and operations 
between NCS as follows: 
Definition 2.3 [9, 13, 15] 
Let X    be a non-empty set, and NCSS A  and   B   
in the form 321 ,, AAAA  , 321 ,, BBBB  , then we 
may consider two possible definitions for subsets 
( BA ) 

( BA )  may be defined as two types: 
1)Type1:

332211   and  , BABABABA  or 
2)Type2:

332211   and  , BABABABA 

Definition 2.4 [9, 13, 15] 
Let X  be a non-empty set, and   NCSS A  and B in the 

form 321 ,, AAAA , 321 ,, BBBB   are NCSS 
Then 

1) A B  may be defined as two types:
i) Type1:

332211 ,, BABABABA  or 
ii) Type2:

332211 ,, BABABABA 

2) A B  may be defined as two types:
i) Type 1: 332211 ,, BABABABA 

or 
ii) Type 2: 332211 ,, BABABABA 

Proposition 2.1 [9, 13, 15] 
Let  JjA j :  be arbitrary family of neutrosophic 
crisp subsets in X, then 
1) jA   may be defined two types as : 

i)Type1: 321 ,, jjj AAAjA  ,or 

ii)Type2: 321 ,, jjj AAAjA  . 

2) jA   may be defined  two types as : 

i)Type1: 321 ,, jjj AAAjA  or 

ii)Type2: 321 ,, jjj AAAjA  . 

III. New Types of Neutrosophic Crisp Sets

We shall now consider some possible definitions for 
some types of neutrosophic crisp sets  
Definition 3.1 
Let X  be a non-empty fixed sample space. A 
neutrosophic crisp set (NCS for short) A  is an object 
having the form

 
321 ,, AAAA  where 

321   and , AAA are subsets of X . 
Definition 3.2  
The object having the form

 
321 ,, AAAA   is called 

1) (Neutrosophic Crisp Set with Type 1) If
satisfying  21 AA ,  31 AA  

and  32 AA . (NCS-Type1 for short). 
2) (Neutrosophic Crisp Set with Type 2 ) If
satisfying  21 AA ,  31 AA  

and  32 AA  and .321 XAAA   (NCS-
Type2 for short). 
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3) (Neutrosophic Crisp Set with Type 3 ) If satisfying
 321 AAA  and 

.321 XAAA   (NCS-Type3 for short). 
Definition 3.3 
1) (Neutrosophic Set [7]):  Let X be a non-empty fixed
set. A neutrosophic set ( NS for short) A  is an object
having the form  )(),(),(, xxxxA AAA  where 

   xx AA  , and  xA which represent the degree

of member ship function (namely  xA ), the degree 

of indeterminacy (namely  xA ), and the degree of 

non-member ship (namely  xA ) respectively of each
element Xx to the set A  where 

  1)(,(),(0 xxx AAA  and
  3)()()(0 xxx AAA  . 

2) (Generalized Neutrosophic Set [8]):  Let X be a non-
empty fixed set. A generalized neutrosophic (GNS for 
short) set A is an object having the 
form )(),(),(, xxxxA AAA  where 

   xx AA  , and  xA which represent the degree

of member ship function (namely  xA ), the degree 

of indeterminacy (namely  xA ), and the degree of 

non-member ship (namely  xA ) respectively of each
element Xx to the set A  where 

  1)(,(),(0 xxx AAA  and the functions 

satisfy the condition       5.0 xxx AAA 

and   3)()()(0 xxx AAA  . 

3) (Intuitionistic Neutrosophic Set [16]). Let X be a
non-empty fixed set. An intuitionistic  neutrosophic set 
A  (INS for short) is an object having the
form )(),(),( xxxA AAA   where 

   xx AA  , and  xA which represent the degree

of member ship function (namely  xA ), the degree 

of indeterminacy (namely  xA ), and the degree of 

non-member ship (namely  xA ) respectively of
each element Xx  to the set A  where 

)(),(),(5.0 xxx AAA  and the functions 

satisfy the condition     ,5.0 xx AA 

  ,5.0)(  xx AA    ,5.0)(  xx AA 

and   2)()()(0 xxx AAA  . 

A neutrosophic crisp with three types the object 

321 ,, AAAA   can be identified to an ordered 

triple 321 ,, AAA  are subsets on X, and every crisp
set in X is obviously a NCS having the 
form 321 ,, AAA .Every neutrosophic set 

)(),(),( xxxA AAA   on X  is obviously on NS 

having the form )(),(),( xxx AAA  .

Remark 3.1 
1) The neutrosophic set not to be generalized

neutrosophic set in general. 
2) The generalized neutrosophic set in general not

intuitionistic NS but the intuitionistic NS is
generalized NS.

Intuitionistic NS   Generalized NS   NS 

Fig.1: Represents the relation between types of NS 

Corollary 3.1 
Let X non-empty fixed set and 

)(),(),( xxxA AAA  be INS on X 
Then: 

1) Type1- cA  of INS be a GNS. 
2) Type2- cA  of INS be a INS. 
3) Type3- cA  of INS be a GNS. 

Proof 
Since A INS then )(),(),(5.0 xxx AAA  , and

5.0)()(,5.0)()(  xxxx AAAA   

5.0)()(  xx AA  Implies 

5.0)(),(),( xxx A
c

A
c

A
c   then is not to be 

Type1- cA  INS. On other hand the Type 2- cA ,
)(),(),( xxxA AAA

c  be INS and Type 3- cA ,

)(),(),( xxxA AA
c

A
c 

and 5.0)( xA
c implies to 

)(),(),( xxxA AA
c

A
c  GNS and not to be INS 
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Example 3.1 
Let  cbaX ,, , and CBA ,, are neutrosophic sets on
X, 

,\8.0,7.0,9.0(,\)6.0,7.0,6.0(,\)8.0,9.0,7.0 cbaA 

cbaB \8.0,5.0,9.0(,\)5.0,4.0,6.0(,\)5.0,9.0,7.0

cbaC \8.0,5.0,9.0(,\)5.0,8.0,6.0(,\)5.0,9.0,7.0

By the Definition 3.3 no.3 
    ,5.0)(  xxx AAA   A be not GNS and 

INS, 
cbaB \8.0,5.0,9.0(,\)5.0,4.0,6.0(,\)5.0,9.0,7.0

not INS, where 5.04.0)( bA . Since 
5.0)()()(  xxx BBB  then   B is a GNS but 

not INS.
cbaAc \2.0,3.0,1.0(,\)4.0,3.0,4.0(,\)2.0,1.0,3.0

be a GNS, but not INS. 

cbaBc \2.0,5.0,1.0(,\)5.0,6.0,4.0(,\)5.0,1.0,3.0

be a GNS, but not INS, C be INS and GNS, 
cbaC c \2.0,5.0,1.0(,\)5.0,2.0,4.0(,\)5.0,1.0,3.0

be a GNS but not INS. 

Definition 3.4  
A neutrosophic crisp set (NCS for short) 

321 ,, AAAA  can be identified to an ordered 

triple 321 ,, AAA  are subsets on X, and every crisp 
set in X is obviously an NCS having the 
form 321 ,, AAA ,  
Salama et al  in [6,13] constructed the tools for 
developed neutrosophic crisp set, and introduced the 
NCS NN X,  in X as follows:

1) N   may be defined as four types: 

i) Type1: ,,, XN   or 

ii) Type2: ,,, XXN   or 

iii) Type3: ,,,  XN  or 

iv) Type4:  ,,N

2) NX  may be defined as four types 

i) Type1: ,,, XX N 

ii) Type2: ,,, XXX N   

v) Type3: ,,, XXX N   

vi) Type4: ,,, XXXX N   
Definition 3.5  
A  NCS-Type1 11 , NN X  in X as follows: 

1) 1N   may be defined as three types: 

i) Type1: ,,,1 XN   or 

ii) Type2: ,,,1  XN  or 

iii) Type3:  ,,N . 

2) 1NX  may be defined as one type 

Type1:  ,,1 XX N  . 
Definition 3.6  
A  NCS-Type2, 22 , NN X  in X as follows: 

1) 2N   may be defined as two types: 

i) Type1: ,,,
2

XN   or 

ii) Type2:  ,,2 XN 

2) 2NX  may be defined as one type 

    Type1: ,,2 XX N 

Definition 3.7  
    a  NCS-Type 3, 33 , NN X  in X as follows: 

1) 3N   may be defined as three types: 

i) Type1: ,,,3 XN   or 

ii) Type2: ,,,3  XN  or 

iii) Type3: .,,3 XXN    

2) 3NX  may be defined as three types 

i)Type1: ,,,3 XX N   

ii)Type2: ,,,3 XXX N   

iii)Type3: ,,,3 XXX N   
Corollary 3.1 

In general  
1-Every NCS-Type 1, 2, 3 are NCS. 
2-Every NCS-Type 1 not to be NCS-Type2, 3. 
3-Every NCS-Type 2 not to be NCS-Type1, 3. 
4-Every NCS-Type 3 not to be NCS-Type2, 1, 2. 
5-Every crisp set be NCS. 
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The following Venn diagram represents the relation 
between NCSs 

Fig. 2: Venn diagram represents the relation between 
NCSs 

Example 3.2 
Let DCBA ,,, are NCSs on },,,,,{ fedcbaX  , 

the following types of neutrosophic crisp sets  
i) }{},{},{ cbaA   be a NCS-Type 1,  but not 

NCS-Type 2 and Type 3 
ii) },{},,{},,{ efdcbaB   be a NCS-Type 1, 2, 

3 
iii) },,{},{},,,,{ fbaedcbaC   be a NCS-Type 

3 but not NCS-Type 1, 2. 
iv) },,,{},,,{},,,,{ fdbacbadcbaD  be a 

NCS but not NCS-Type 1, 2, 3.  
The complement for DCBA ,,, may be equals 
The complement of A 

i)Type 1: },,,,{},,,,,{},,,,,{ fedbafedcafedcbcA 

be a NCS but not NCS—Type1, 2,3 
ii)Type 2: }{},{},{ abcAc   be a NCS-Type 3 
but not NCS—Type1, 2 
iii)Type 3: }{},,,,,{},{ afedcacAc   be a 
NCS-Type 1 but not NCS—Type 2, 3. 

The complement of B may be equals  
i)Type 1:

},,,{},,,,{},,,,{ dcbafebafedcBc   be 
NCS-Type 3 but not NCS-Type 1, 2. 
ii) Type 2:  },{},,{},,{ badcfeBc   be NCS-
Type 1, 2, 3. 
iii)Type 3:  },{},,,,{},,{ bafebafeBc   be 
NCS-Type 3, but not NCS-Type 1, 2. 

The complement of C may be equals  
i)Type 1: },,{},,,,,{},,{ edcfdcbafeCc  . 

ii)Type 2: },,,{},{},,,{ dcbaefbaCc  , 
iii)Type 3:

},,,{},,,,{},,,{ dcbadcbafbaCc  , 
The complement of D may be equals 

i)Type 1: },{},,,{},,{ ecfedfeDc 

 be NCS-Type 3 but not NCS-Type 1, 2. 
ii)Type 2: },,,{},,,{},,,,{ dcbacbafdbaDc 

be NCS-Type 3 but not NCS-Type 1, 2. 
iii)Type 3: },,,{},,,{},,,,{ dcbafedfdbaDc 

be NCS-Type 3 but not NCS-Type 1, 2. 
Definition 3.8 
Let   X be a non-empty set, 321 ,, AAAA 

1) If   A   be a NCS-Type1 on X , then the
complement of the set A  ( cA , for short   maybe
defined as one kind of complement Type1: 

123 ,, AAAAc   . 
2) If A be a NCS-Type 2 on X , then the 
complement of the set A  ( cA , for short   maybe

defined as one kind of complement 123 ,, AAAAc  . 
3)If A be NCS-Type3 on X , then the complement of 
the set A  ( cA , for short   maybe defined as one kind
of complement defined as three kinds of complements 

 1C  Type1: 321 ,, cccc AAAA  , 

 2C  Type2: 123 ,, AAAAc 

 3C  Type3: 123 ,, AAAA cc 

Example 3.3 
Let },,,,,{ fedcbaX  , }{},{},,,,{ fedcbaA

be a NCS-Type 2, },{},{},,,{ edcbaB  be a 

NCS-Type1., },{},,{},,{ fedcbaC  NCS-Type 3, 

then the complement }{},{},,,,{ fedcbaA , 

},,,{},{},{ dcbaefAc  NCS-Type 2, the 

complement of },{},{},,,{ edcbaB  , 

},,{},{},,{ cbaedBc  NCS-Type1. The 

complement of },{},,{},,{ fedcbaC  may be 
defined as three types: 
Type 1: },,,{},,,,{},,,,{ dcbafebafedcCc  . 

Type 2: },{},,{},,{ badcfeCc  , 

Type 3: },{},,,,{},,{ bafebafeCc  , 
Proposition 3.1 

Let  JjAj :  be arbitrary family of neutrosophic 
crisp subsets on X, then 

1) jA   may be defined two types as : 
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Type1: 
32

,,1 jjj AAAjA  ,or 

Type2: 
32

,,1 jjj AAAjA  . 

2) jA   may be defined  two types as :

Type1: 
32

,,1 jjj AAAjA  or 

Type2: 
32

,,1 jjj AAAjA  . 

Definition 3.9 
(a) If 321 ,, BBBB   is a NCS in Y, then the preimage 

of  B under ,f  denoted by ),(1 Bf  is a NCS in X 

defined by .)(),(),()( 3
1

2
1

1
11 BfBfBfBf    

(b) If 321 ,, AAAA   is a NCS in X, then the image 

of A under ,f denoted by ),(Af  is the a NCS in Y

defined by .))(),(),()( 321
cAfAfAfAf 

  Here we introduce the properties of images and 
preimages some of which we shall frequently use in the 
following. 
 Corollary 3.2 
Let A,  JiAi :  , be  a family of NCS in X, and 

B,  KjB j : NCS in Y, and YXf : a 
function. Then 
(a) ),()( 2121 AfAfAA 

),()( 2
1

1
1

21 BfBfBB    
(b) ))((1 AffA   and if f is injective, then 

))((1 AffA  , 

(c) BBff  ))((1  and if f is surjective, then 

,))((1 BBff   

(d) ),())( 11
ii BfBf   ),())( 11

ii BfBf    
(e) );()( iiii AfAf  );()( iiii AfAf  and if 

f is injective, then  );()( iiii AfAf   
(f) ,)(1

NN XYf 

NNf   )(1 . 

(g) ,)( NNf   ,)( NN YXf   if f is subjective.

Proof 
    Obvious 

IV. Neutrosophic Crisp Relations

Here we give the definition relation on neutrosophic 
crisp sets and study of its properties.  
Let X, Y and Z be three ordinary nonempty sets 

Definition 4.1 
Let X and Y are two non-empty crisp sets and NCSS 
A  and B  in the form 321 ,, AAAA   on X, 

321 ,, BBBB  on Y. Then 
i) The product of two neutrosophic crisp sets A and B
is a neutrosophic crisp set BA given by 

332211 ,, BABABABA  on YX  . 
ii) We will call a neutrosophic crisp relation

BAR  on the direct product YX  . 
The collection of all neutrosophic crisp relations on 

YX  is denoted as )( YXNCR   

Definition 4.2 
Let R  be a neutrosophic crisp relation on YX  , then
the inverse of R  is denoted by 1R where 

BAR  on YX  then ABR 1 on 
.XY   

Example 4.1 
Let  },,,{ dcbaX  , }{},{},,{ dcbaA and 

},{},{},{ bdcaB  then the product of two 
neutrosophic crisp sets given by 

)},(),,{()},,{()},,(),,{( bdddccabaaBA 

and 
)},(),,{()},,{()},,(),,{( dbddccbaaaAB  , 

and 
)},{()},,{()},,{(1 ddccaaR  , BAR 1 on 

XX  , 
)},(),,{()},,{()},,{(2 dbddccbaR 

ABR 2 on XX  . 
Example 4.2 
From the Example 3.1 

1
1
R = )},{()},,{()},,{( ddccaa AB  and 

)},(),,{()},,{()},,{(1
2 bdddccabR 


AB . 

Example 4.3 
Let },,,,,{ fedcbaX  , 

}{},{},,,,{ fedcbaA , 

},{},,{},,{ dfcebaD   be a NCS-Type 2, 
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},{},{},,,{ edcbaB   be a NCS-Type1. 

},{},,{},,{ fedcbaC   be a NCS-Type 3. Then 

)},(),,{()},,(),,{()},,(),,(,
),(),,(),,(),,(),,(),,(),,{(

dfffceeebdad
bcacbbbbabbaaa

DA 

)},(),,(),,(),,{()},,(),,(
),,(),,{()},,(),,(),,(),,{(
fdedffefdccc

decebbabbaaa
CD 

we can construct many types of relations on products.  
We can define the operations of neutrosophic crisp 
relation. 

Definition 4.4  
Let R  and S  be two neutrosophic crisp relations 
between X and Y for every YXyx ),(   and NCSS 

A  and B in the form 321 ,, AAAA   on X, 

321 ,, BBBB  on Y, Then we can defined the 
following operations 
i) SR may be defined as two types
a)Type1: SR  ,11 SR BA  ,22 SR BA 

SR BA 33 

b)Type2: SR  ,11 SR BA  ,22 SR BA 

RS AB 33   
ii) SR  may be defined as two types
a)Type1:

SR SRSRSR BABABA 332211 ,,  , 
b)Type2: 

SR

SRSRSR BABABA 332211 ,,  . 

iii) SR  may be defined as two types
a)Type1: SR

SRSRSR BABABA 332211 ,,  , 
b)Type2: 

SR

SRSRSR BABABA 332211 ,,  . 

Theorem 4.1 
Let R , S and Q  be three neutrosophic crisp relations 
between X and Y for every YXyx ),( , then 

i) .11   SRSR  

ii)   .111 
 SRSR  

iii)   .111 
 SRSR  

iv)   .
11 RR 
  

v)      QRSRQSR  . .
vi)      QRSRQSR  . .
vii)If ,RS  ,RQ then RQS 

Proof 
 Clear 
Definition 4.5 
The neutrosophic crisp relation )( XXNCRI  , the 
neutrosophic crisp relation of identity may be defined 
as two types  

i)Type1:   },{},{ AAAAI
ii)Type2:   ,},{ AAI

Now we define two composite relations of 
neutrosophic crisp sets. 

Definition 4.6 

Let R  be a neutrosophic crisp relation in YX  , and 
S be a neutrosophic crisp relation in ZY  . Then the 
composition of R  and S , SR  be a neutrosophic 
crisp relation in ZX  as a definition may be defined 
as two types  
i)Type1:

SR  ),)(( zxSR 

})(){({ 2211 SR BABA  ,

},)(){( 2222 SR BABA 

 })(){( 3333 SR BABA . 
ii)Type2 :

SR  ),)(( zxSR 

})(){({ 2211 SR BABA  ,

},)(){( 2222 SR BABA 

 })(){( 3333 SR BABA . 
Example 4.5 
Let },,,{ dcbaX  , }{},{},,{ dcbaA and 

},{},{},{ bdcaB  then the product of two events 
given 
by )},(),,{()},,{()},,(),,{( bdddccabaaBA  , 
and 

)},(),,{()},,{()},,(),,{( dbddccbaaaAB  , 
and 

)},{()},,{()},,{(1 ddccaaR  , BAR 1 on 

XX   , 
)},(),,{()},,{()},,{(2 dbddccbaR 

ABR 2 on XX  . 
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)},{()},,{()},,{()},{(21 ddccbaaaRR 

)},{()},,{(},{ ddcc and 

}{)},,).(,).(,{()},.).(,).(,{(1 abbaaaabbaaaI A 

, }{},{)},.).(,).(,{(2 abbaaaI A 

Theorem 4.2 
Let R  be a neutrosophic crisp relation in YX  , and 
S  be a neutrosophic crisp relation 
in ZY  then 111)(   RSSR  . 

Proof 
 Let BAR  on YX   then ABR 1 , 

DBS  on ZY  then BDS 1 , from 
Definition 3.6 and similarly we 
can ),(  and  ),(),( 111)(

zxIzxIzxI
RSSR  


 then  

111)(   RSSR  . 
V. Conclusion 

In our work, we have put forward some new types 
of neutrosophic crisp sets and  neutrosophic crisp 
continuity relations. Some related properties have 
been established with example. It ‘s hoped that our 
work will enhance this study in neutrosophic set 
theory. 
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New Results of Intuitionistic Fuzzy Soft Set 

Said Broumi 

Florentin Smarandache 

Mamoni Dhar 
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Abstract—In this paper, three new operations are introduced on intuitionistic fuzzy soft sets .They 
are based on concentration, dilatation and normalization of intuitionistic fuzzy sets. Some 
examples of these operations were given and a few important properties were also studied. 

Index Terms—Soft Set, Intuitionistic Fuzzy Soft Set, 
Concentration, Dilatation, Normalization. 

I.  INTRODUCTION 

The concept of the intuitionistic fuzzy (IFS, for short) 
was introduced in 1983 by K. Aanassov [1] as an 
extension of Zadeh‘s fuzzy set. All operations, defined 
over fuzzy sets were transformed for the case the IFS 
case .This concept is capable of capturing the 
information that includes some degree of hesitation and 
applicable in various fields of research. For example, in 
decision making problems, particularly in the case of 
medical diagnosis,  sales analysis, new product 
marketing, financial services, etc. Atanassov et.al [2,3] 
have widely applied theory of intuitionistic sets in logic 
programming, Szmidt and Kacprzyk [4] in group 
decision making , De  et al [5] in medical diagnosis etc. 
Therefore in various engineering application, 
intuitionistic fuzzy sets techniques have been more 
popular than fuzzy sets techniques in recent years. 
Another important concept that addresses uncertain 
information is the soft set theory originated by 
Molodtsov [6].  This concept is  free from the 
parameterization inadequacy syndrome of fuzzy set 
theory, rough set theory, probability theory. Molodtsov 
has successfully applied the soft set theory in many 
different fields such as smoothness of functions, game 
theory, operations research, Riemann integration, Perron 

integration, and probability. In recent years, soft set 
theory has been received much attention since its 
appearance. There are many papers devoted to fuzzify 
the concept of soft set theory which leads to a series of 
mathematical models such as fuzzy soft set [7,8,9,10,11], 
generalized fuzzy soft set [12,13], possibility fuzzy soft 
set [14] and so on. Thereafter, P.K.Maji and his 
coauthor [15] introduced the notion of intuitionistic 
fuzzy soft set which is based on a combination of the 
intuitionistic fuzzy sets and soft set models and they 
studied the properties of intuitionistic fuzzy soft set. 
Then, a lot of extensions of intuitionistic fuzzy soft have 
appeared such as generalized intuitionistic fuzzy soft set 
[16], possibility intuitionistic fuzzy soft set [17] etc. 

In this paper our aim is to extend the two operations 
defined by Wang et al. [18] on intuitionistic fuzzy set to 
the case of intuitionistic fuzzy soft sets, then we define 
the concept of normalization of intuitionistic fuzzy soft 
sets and we study some of their basic properties. 

This paper is arranged in the following manner .In 
section 2, some definitions and notions about soft set, 
fuzzy soft set, intuitionistic fuzzy soft set and several 
properties of them are presented. In section 3, we 
discuss the normalization intuitionistic fuzzy soft sets. 
In section 4, we conclude the paper. 

II. PRELIMINARIES

In this section, some definitions and notions about soft 
sets and intutionistic fuzzy soft set are given. These will 
be useful in later sections. 

Let U be an initial universe, and E be the set of all 
possible parameters under consideration with respect to 
U. The set of all subsets of U, i.e. the power set of U is 
denoted by P(U) and the set of all intuitionistic fuzzy 
subsets of U is denoted by IFU. Let A be a subset of E.
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2.1 Definition 

A pair (F, A) is called a soft set over U, where F is a 
mapping given by F: A  P (U). 

In other words, a soft set over U is a parameterized 
family of subsets of the universe U. For     A, F ( ) may 
be considered as the set of   -approximate elements of 
the soft set (F, A). 

2.2 Definition 

Let U be an initial universe set and E be the set of 
parameters. Let IFU denote the collection of all 
intuitionistic fuzzy subsets of U. Let. A    E pair (F, A) 
is called an intuitionistic fuzzy soft set over U where F is 
a mapping given by F: A→ IFU. 

2.3 Defintion 

Let F: A→ IFU  then  F is a function defined as  F ( ) 
={ x,   ( )( ) ,   ( )( ) :           +   where    ,  
denote the degree of  membership and degree of non-
membership respectively. 

2.4 Definition 

For two intuitionistic fuzzy soft sets (F , A) and (G, B) 
over a common universe U , we say that (F , A) is an 
intuitionistic fuzzy soft subset of (G, B) if 

(1) A   B and 
(2) F ( )   G( ) for all     A. i.e   ( )( )   

  ( )( ) ,   ( )( )     ( )( ) for all     E and 
We write (F, A)   (G, B). 

2.5 Definition 

Two intuitionistic fuzzy soft sets (F, A) and (G, B) 
over a common universe U are said to be soft equal if (F, 
A) is a soft subset of (G, B) and (G, B) is a soft subset of
(F, A). 

2.6 Definition 

Let U be an initial universe, E be the set of parameters, 
and A   E. 
(a) (F, A) is called a null intuitionistic fuzzy soft set (with 
respect to the parameter set A), denoted by   , if F (a) = 
   for all a   A. 
(b) (G, A) is called an absolute intuitionistic fuzzy soft 
set (with respect to the parameter set A), denoted by   , 
if G(e) = U for all e   A. 

2.7Definition 

Let (F, A) and (G, B) be two IFSSs over the same 
universe U. Then the union of (F, A) and (G, B) is 
denoted by ‗(F, A)   (G, B)‘ and is defined by (F, A)   
(G, B) = (H, C), where C=A     B and the truth-
membership, falsity-membership of (H, C) are as 
follows: 

 ( ) 

=

{
 
 

 
 

*(  ( )( )   ( )( )      +               

*(  ( )( )   ( )( )      }           –   

{   (  ( )( )   ( )( ))      (  ( )( )   ( )( ))      }  

           

Where   ( )( )  =    (  ( )( )   ( )( )) and 
  ( )( ) =    (  ( )( )   ( )( )) 

2.8 Definition 

Let (F, A) and (G, B) be two IFSSs over the same 
universe U such that A   B≠0. Then the intersection of 
(F, A) and ( G, B) is denoted by ‗( F, A)   (G, B)‘ and 
is defined by ( F, A )   ( G, B ) = ( K, C),where C =A 
 B and the truth-membership, falsity-membership of 
( K, C ) are related to those of (F, A) and (G, B) by:  

 ( ) 

=

{
 
 

 
 

*(  ( )( )   ( )( )      +               

*(  ( )( )   ( )( )      }           –   

{   (  ( )( )   ( )( ))      (  ( )( )   ( )( ))      }  

           

III. CONCENTRATION OF INTUITIONISTIC FUZZY SOFT SET

3.1 Definition 

The concentration of an intuitionistic fuzzy soft set (F, 
A) of universe U, denoted by CON (F, A), and is defined
as a unary operation on IFU: 

Con: IFU   IFU

Con (F, A) = 
{Con {F( ) } = {<x,    ( )( ) , 1- (  ( ( ))( ))

   > | 
∈ U and  ∈ A}. where 

From 0 ( )( ),   ( )( )   1 

and ( )( ) +  ( )( )   1, 

we obtain 0 ( )( ) ( )( ) 

 1- (  ( ( ))( )) ( )( ) 

     Con (F, A)   IFU, i.e Con (F, A)    (F, A ) this 
means that concentration of a intuitionistic fuzzy soft set 
leads to a reduction of the degrees of membership. 

In the following theorem, The operator ―Con ―reveals 
nice distributive properties with respect to intuitionistic 
union and intersection. 
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3.2 Theorem 

i. Con ( F, A )  ( F, A ) 

ii. Con (( F, A )   ( G,B )) = Con ( F, A )   Con ( G, B )

iii. Con (( F, A )    ( G,B )) = Con ( F, A )   Con ( G, B )

iv. Con (( F, A )   ( G,B ))=  Con ( F, A )   Con ( G,B )

v. Con ( F, A )   Con ( G, B )   Con (( F, A )   ( G,B ))

vi. ( F, A )  ( G, B )   Con ( F, A )   Con( G, B ) 

Proof , we prove only (v) ,i.e 

( )( ) + ( )( ) - ( )( )   ( )
 ( )   (   ( )( )

( )( ) ( )( ) ( )( ))
 ,

(1- ( ( ) ( ))
 ). (1- ( ( )( ))

  )   1- 
( ( )( )   ( )( ))

  or, putting 

a= ( )( ), b=   ( )( ), c =   ( )( ), d =   ( )( )

 +  -  (  ) , 

(1- (  ) ) . (1- (  ) )   1- (  )

The last inequality follows from 0   a, b, c, d   1. 

Example 

Let U={a, b, c} and E ={   ,  ,  ,   } , A ={   ,   ,   } 
 E, B={   ,    ,   }   E 

(F, A) ={ F(  ) ={( (a, 0.5, 0.1), (b, 0.1, 0.8), (c, 0.2, 
0.5)}, F(  ) ={( (a, 0.7, 0.1), (b, 0, 0.8), (c, 0.3, 0.5)}, 
F(  ) ={( (a, 0.6, 0.3), (b, 0.1, 0.7), (c, 0.9, 0.1)}} 

(G, B) ={ G(  ) ={( (a, 0.2, 0.6), (b, 0.7, 0.1), (c, 0.8, 
0.1)}, G(  ) ={( (a, 0.4, 0.1), (b, 0.5, 0.3), (c, 0.4, 0.5)}, 
G(  ) ={( (a, 0, 0.6), (b, 0, 0.8), (c, 0.1, 0.5)}} 

Con ( F, A )={ con(F(  )) ={ ( a, 0.25, 0.19), (b, 0.01, 
0.96), (c, 0.04, 0.75)}, con(F(  ))={ ( a, 0.49, 0.19), (b, 0, 
0.96), (c, 0.09, 0.75) }, con(F(  ))={ ( a, 0.36, 0.51), (b, 
0.01, 0.91), (c, 0.81, 0.19) } 

Con ( G, B )={ con(G(  ))={ ( a, 0.04, 0.84), (b, 0.49, 
0.19), (c, 0.64, 0.75)}, 

con(G(  ))={ ( a, 0.16, 0.19), (b, 0.25, 0.51), (c, 0.16, 
0.51) }, con(G(  ))={ ( a, 0, 0.84), (b, 0, 0.96), (c, 0.01, 
0.75) } 

(F, A)   (G, B) = (H, C) = {H (  ) ={( a, 0.2, 0.6), (b, 0.1, 
0.8), (c, 0.2, 0. 5)}, H (  ) ={( a, 0.4, 0.1), (b, 0, 0.8), (c, 
0.3, 0. 5)}} 

Con (( F, A )    ( G,B ))= {con H(  ) ={( a, 0.04, 0.84), 
(b, 0.01, 0.96), (c, 0.04, 0. 75)}, con H(  ) ={( a, 0.16, 
0.19), (b, 0, 0.96), (c, 0.09, 0. 75)}} 

Con ( F, A )   Con (G, B ) =(K,C) ={con K(  ) ={( a, 
0.04, 0.84), (b, 0.01, 0.96), (c, 0.04, 0. 75)}, conK(  ) 
={( a, 0.16, 0.19), (b, 0, 0.96), (c, 0.09, 0. 75)}}. 

Then 

Con (( F, A )    ( G,B )) = Con ( F, A )   Con ( G, B ) 

IV. DILATATION OF INTUITIONISTIC FUZZY SOFT SET

4.1 Definition 

The dilatation of an intuitionistic fuzzy soft set (F, A) 
of universe U, denoted by DIL (F, A ), and is defined as a 
unary operation on IFU: 

DIL: IFU   IFU

(F, A)= {<x, ( )( ),   ( )( )  > |  U and  A}. 

DIL( F, A ) ={ DIL {F( ) } = 

{<x,  
 ( )
 ( ), 1- (  ( ( ))( ))   > |  U and  A}. 

where 
From 0    ( )( ),   ( )( )   1, 

and ( )( ) +  ( )( )   1, 

we obtain 0 ( )( ) ( )
( )

0   (  ( ( ))( )) ( )( ) 

     DIL( F, A )   IFU, i.e ( F, A )    DIL( F, A ) this 
means that dilatation of an intuitionistic fuzzy soft set leads 
to an increase of the degrees of membership. 

4.2 Theorem 

i. ( F, A )  DIL( F, A ) 

ii. DIL (( F, A )   ( G, B )) = DIL ( F, A )   DIL ( G, B )

iii. DIL (( F, A )    ( G, B )) = DIL( F, A )   DIL ( G, B )

iv. DIL(( F, A )   ( G, B ))=  DIL ( F, A )   DIL ( G,B )

v. DIL ( F, A )   DIL ( G, B )   DIL (( F, A )   ( G,B ))

vi. CON ( DIL (F, A) ) = (F,A)

vii. DIL ( CON (F, A) = (F,A)

viii. ( F, A )  ( G, B )   DIL ( F, A )   DIL( G, B ) 
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Proof .we prove only (v), i.e 

( )
( ) + 

 ( )
( ) - 

 ( )
( ) 

 ( )
( )   (   ( )( )

( )( ) ( )( ) ( )( )) ,

(1- ( ( )( )) ). (1- (    ( )( ))  )   1- 

(  ( )( )   ( )( ))  or, putting 

a= ( )( ), b=   ( )( ), c =   ( )( ), d =   ( )( )

 +    -  (  ) , 
(1- (  ) ). (1- (  ) )   1- (  ) , or 

equivalently : a+ b – a b   1 ,√  1. 

The last inequality follows from 0   a, b,c,d   1. 

Example 

Let U={a, b, c} and E ={   ,  ,  ,   }, A ={   ,   ,   } 
 E, B={   ,    ,   }   E 

(F, A) ={ F(  ) ={( (a, 0.5, 0.1), (b, 0.1, 0.8), (c, 0.2, 
0.5)}, F(  ) ={( (a, 0.7, 0.1), (b, 0, 0.8), (c, 0.3, 0.5)}, 
F(  ) ={( (a, 0.6, 0.3), (b, 0.1, 0.7), (c, 0.9, 0.1)}} and 

(G, B) ={ G(  ) ={( (a, 0.2, 0.6), (b, 0.7, 0.1), (c, 0.8, 
0.1)}, G(  ) ={( (a, 0.4, 0.1), (b, 0.5, 0.3), (c, 0.4, 0.5)}, 
G(  ) ={( (a, 0, 0.6), (b, 0, 0.8), (c, 0.1, 0.5)}} 

DIL( F, A )={ DIL(F(  ))={ ( a, 0.70, 0.05), (b, 0.31, 
0.55), (c, 0.44, 0.29)}, DIL (F(  ))={ ( a, 0.83, 0.05), (b, 
0, 0.55), (c, 0.54, 0.29) }, DIL(F(  ))={ ( a, 0.77, 0.05), 
(b, 0.31, 0.45), (c, 0.94, 0.05) } and 

DIL (G, B) = {DIL (G (  )) = {(a, 0.44, 0.36), (b, 0.83, 
0.05), (c, 0.89, 0.05)}, 

DIL(G(  )) ={ ( a, 0.63, 0.05), (b, 0.70, 0.05), (c, 0.63, 
0.29) }, DIL(G(  ))={ ( a, 0, 0.36), (b, 0, 0.55), (c, 0.31, 
0.29) } 

(F, A)   (G, B) = (H, C) = {H (  ) = {(a, 0.2, 0.6), (b, 0.1, 
0.8), (c, 0.2, 0. 5)}, H (  ) = {(a, 0.4, 0.1), (b, 0, 0.8), (c, 
0.3, 0. 5)}} 

DIL (( F, A )    ( G,B ))= {DILH(  ) ={( a, 0.44, 0.36), (b, 
0.31, 0.55), (c, 0.44, 0. 29)}, DILH(  ) ={( a, 0.63, 0.05), 
(b, 0, 0.55), (c, 0.54, 0. 29)}} 

DIL ( F, A )   DIL ( G, B ) =( K,C) ={ DIL K(  ) ={( a, 
0.04, 0.84), (b, 0.01, 0.96), (c, 0.04, 0. 75)}, DIL K(  ) 
={( a, 0.16, 0.19), (b, 0, 0.96), (c, 0.09, 0. 75)}} 

Then 

DIL (( F, A )    ( G,B )) = DIL( F, A )   DIL ( G, B ) 

V.  NORMALIZATION OF INTUITIONISTIC FUZZY SOFT SET 

In this section, we shall introduce the normalization 
operation on intuitionistic fuzzy soft set.  

5.1 Definition: 

The normalization of an intuitionistic fuzzy soft set ( F, 
A ) of universe U ,denoted by 

NORM (F, A) is defined as: 

NORM (F, A) ={ Norm {F( )} = {<x, ( ( ))( ),
( ( ))( ),  > |    U and  A}. where 

( ( ))( )  = ( )( )

    (  ( )( ))
 and ( ( ))( )  =

( )( )   (  ( )( ))

  (  ( )( ))
 and 

Inf (  ( )( ))   0.

Example. Let there are five objects as the universal set 
where U = {x1, x2, x3, x4, x5} and the set of parameters 
as E = {beautiful, moderate, wooden, muddy, cheap, 
costly} and Let A = {beautiful, moderate, wooden}. Let 
the attractiveness of the objects represented by the 
intuitionistic fuzzy soft sets (F, A) is given as  

F(beautiful)={x1/(.6,.4), x2/(.7, .3), x3/(.5, .5), x4/(.8, .2), 
x5/(.9, .1)}, 

F(moderate)={x1/(.3, .7), x2/(6, .4), x3/(.8, .2), x4/(.3, .7), 
x5/(1, .9)} and 

F(wooden) ={ x1/(.4, .6), x2/(.6, .4), x3/(.5, .5), x4/(.2, .8), 
x5/(.3, .7,)}. 

Then, 

    (  ( )( )) = 0.9,     (  ( )( ) = 0.1. We
have 

   ( (  ))(  ) =  = 0.66, 

   ( (  ))(  ) =  = 0.77, 

   ( (  ))(  ) =  = 0.55, 

   ( (   ))(  ) =   =0.88, 

   ( (   ))(  ) =  = 1 and 

   ( (   ))(  ) =  = 0.33, 

   ( (   ))(  ) =  = 0.22, 
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   ( (  ))(  ) =  = 0.44 

   ( (  ))(  ) =  = 0.11, 

   ( (  ))(  ) =  = 0. 

Norm(F(         )) ={ x1/(.66,.33), x2/(.77, .22), x3/(.55, .44), 
x4/(.88, .11), x5/(1, 0) }. 

    (  ( )( )) = 0.8,   (  ( )( ) = 0.2.
We have 

   ( (  ))(  ) =  = 0.375, 

   ( (  ))(  ) =  = 0.75, 

   ( (  ))(  ) =  = 1, 

   ( (  ))(  ) =   =0.375, 

   ( (  ))(  ) =  = 0.125 And 

   ( (  ))(  ) =  = 0.625, 

   ( (  ))(  ) =  = 0.25, 

   ( (  ))(  ) =  = 0, 

   ( (  ))(  ) =   = 0.625, 

   ( (  ))(  ) =  = 0.875. 

Norm(F(      )) ={ x1/(.375,.625), x2/(.75, .25), x3/(1, 0), 
x4/(.375, .625), x5/(0.125, 0.875) }. 

    (  ( )( )) = 0.6,   (  ( )( ) = 0.4. We
have 

   ( ( ))(  ) =  = 0.66, 

   ( ( ))(  ) =  = 1, 

   ( ( ))(  ) =  = 0.83, 

   ( ( ))(  ) =  = 0.34, 

   ( ( ))(  ) =  = 0.5 and 

   ( (   ))(  ) =  = 0.34, 

   ( (   ))(  ) =  = 0, 

   ( (   ))(  ) =  = 0.17, 

   ( (   ))(  ) =  = 0.66, 

   ( ( ))(  ) =  = 0.5. 

Norm(F(  )) ={ x1/(.66,.34), x2/(1, .0), x3/(0.83, 0.17), 
x4/(.34, .66), x5/(0.5, 0. 5) }. 

Then, Norm (F, A) = {Norm F (        ), Norm 
F(        ), Norm F(  )} 

Norm (F,A)={ F(        ) ={ x1/(.66,.33), x2/(.77, .22), 
x3/(.55, .44), x4/(.88, .11), x5/(1, 0) }, F(        )={ x1/(.375,.625), 
x2/(.75, .25), x3/(1, 0), x4/(.375, .625), x5/(0.125, 0.875) }, F(      ) 
={ x1/(.66,.34), x2/(1, .0), x3/(0.83, 0.17), x4/(.34, .66), x5/(0.5, 0. 5) }} 

Clearly,        ( ( ))( ) + ( ( ))( ) = 1, for i = 1, 2,
3, 4, 5 which satisfies the property of intuitionistic fuzzy 
soft set. Therefore, Norm (F, A) is an intuitionistic fuzzy 
soft set. 

VI. CONCLUSION

In this paper, we have extended the two operations of 
intuitionistic fuzzy set introduced by Wang et al.[ 18] to 
the case of intuitionistic fuzzy soft sets. Then we have 
introduced the concept of normalization of intuitionistic 
fuzzy soft sets and studied several properties of these 
operations. 

ACKNOWLEDGMENTS 

The authors are highly grateful to the referees for their 
valuable comments and suggestions for improving the 
paper and finally to God who made all the things possible. 

REFERENCES 
[1] K.T. Atanassov,‖ Intuitionistic Fuzzy Set‖. Fuzzy Sets 

and Systems, vol. 20(1), pp.87-86, 1986. 
[2] K.T. Atanassov and G. Gargov ,‖ intuitionistic fuzzy logic 

―,C.R Academy of Bulgarian  Society , Vol. 53, pp .9-12, 
1990. 

[3] K.T. Atanassov and G.Gargov, ‖intuitionistic fuzzy 
prolog ―,Fuzzy Sets and sSystems , Vol. 4, No 3, 1993 
pp .121-128. 

[4] E.Szmidt and J.Kacprzyk, ‖Intuitionistic Fuzzy Sets in 
Group  Decision Making‖, Notes on IFS 2, ,1996, pp.11-
14.  

[5] S.K.De, R. Biswas and A.Roy, ‖An Application  of 
Intuitionstic Fuzzy Set in Medical Diagnosis ―, Fuzzy 
Sets and Systems, vol .117,2001, pp .209-213. 

[6] D. A. Molodtsov, ―Soft Set Theory - First Result‖, 
Computers and Mathematics with Applications, Vol. 37, 
1999, pp. 19-31. 

Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

390



[7] P. K. Maji, R. Biswas and A.R. Roy, ―Fuzzy Soft Sets‖, 
Journal of Fuzzy Mathematics, Vol 9 , No.3, 2001, pp. 
589-602. 

[8] B. Ahmad and A. Kharal, ―On Fuzzy Soft Sets‖, Hindawi 
Publishing Corporation, Advances in Fuzzy Systems, 
volume Article ID 586507, (2009), 6 pages doi: 
10.1155/2009/586507. 

[9] P. K. Maji, A. R. Roy and R. Biswas, ―Fuzzy Soft Sets‖, 
Journal of Fuzzy Mathematics. Vol 9, No 3, 2001, 
pp.589-602. 

[10] T. J. Neog and D. K. Sut, ―On Fuzzy Soft Complement 
and Related Properties‖, Accepted for publication in 
International, Journal of Energy, Information and 
communications (IJEIC). 

[11] M. Borah, T. J. Neog and D. K. Sut,‖ A study on some 
operations of fuzzy soft sets‖, International Journal of 
Modern Engineering Research (IJMER), Vol.2, No. 2, 
2012, pp. 157-168. 

[12] H. L. Yang, ―Notes On  Generalized Fuzzy Soft Sets‖, 

Journal of Mathematical Research and Exposition, Vol 31, 
No. 3, (2011), pp.567-570. 

[13] P. Majumdar, S. K. Samanta, ―Generalized Fuzzy Soft 
Sets‖, Computers and Mathematics with Applications, 
Vol 59, 2010, pp.1425-1432. 

[14] S. Alkhazaleh, A. R. Salleh, and N. Hassan,‖ Possibility 
Fuzzy Soft Set‖, Advances in Decision Sciences, Vol 
2011, Article ID 479756,doi:10.1155/2011/479756, 18 
pages. 

[15] P. K. Maji, R. Biswas, A. R. Roy, ―Intuitionistic fuzzy 
soft sets‖, The journal of fuzzy mathematics Vol 9, NO3, 
2001, pp.677-692. 

[16] K.V .Babitha and J. J. Sunil,‖ Generalized Intuitionistic 
Fuzzy Soft Sets and Its Applications ―Gen. Math. Notes, 
ISSN 2219-7184; ICSRS Publication, (2011), Vol. 7, No. 
2, 2011, pp.1-14. 

[17] M.Bashir, A.R. Salleh, and S. Alkhazaleh,‖ Possibility 
Intuitionistic Fuzzy Soft Set‖, Advances in Decision 
Sciences Volume 2012, 2012, Article ID 404325, 24 
pages, doi:10.1155/2012/404325. 

[18] W.Yang-Ping, Z.Jun,‖ Modifying Operations on 
Intuitionistic Fuzzy sets. 

Published in I.J. Information Engineering and 
Electronic Business, No. 2, 2014, pp. 47-52, DOI: 

10.5815/ijieeb.2014.02.06, 6 p.

Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

391



On Fuzzy Soft Matrix Based on Reference Function 

Said Broumi 

Florentin Smarandache

Mamoni Dhar

Abstract—In this paper we study fuzzy soft matrix 
based on reference function.Firstly, we define some new 
operations such as fuzzy soft complement matrix and 
trace of fuzzy soft matrix based on reference 
function.Then, we introduced some related properties, 
and some examples are given. Lastly, we define a new 
fuzzy soft matrix decision method based on reference 
function. 

Index Terms—Soft set, fuzzy soft set, fuzzy soft set 
based on reference function, fuzzy soft matrix based on 
reference function. 

I. INTRODUCTION 

Fuzzy set theory was proposed by LotfiA.Zadeh[1] in  
1965,where each element ( real valued ) [ 0, 1] had  a 
degree of membership  defined on the universe of 
discourse X, the theory has been found extensive 
application in various field to handle uncertainty. 
Therefore,several researches were conducted on the 
generalization on the notions of fuzzy  sets such as 
intuitionistic fuzzy set proposed by Atanassov[2,3], 
interval valued fuzzy set[5 ]. In the literature we found 
many well –known theories to describe uncertainty: 
rough set theory[6]..etc, but all of these theories have 
their inherit  difficulties as pointed by Molodtsov in his 
pioneer work[7].The concept introduced by Molodtsov is 
called “soft set theory” which is set valued  mapping. 
This new mathematical model is free from the 
difficult ies mentioned above.Since its introduction, the 
concept of soft set has gained considerable attention and 
this concept has resulted in a series of work [8, 9,10,11,12, 13, 

14]. 
Also as we know, matrices play an  important ro le in  

science and technology. However, the classical matrix 
theory sometimes fails to  solve the problems involving 
uncertainties,occurring in an  imprecise environment. In  
[4] Thomason, introduced the fuzzy matrices to represent 
fuzzy relat ion in a system based on fuzzy set theory and 

discussed about the convergence of powers of fuzzy  
matrix. In  [15,16,17],some important results on determinant 
of a square fuzzy matrices are discussed .Also,Ragab et 
al. [18,19] presented some properties of the min-max 
composition of fuzzy matrices. Later on, several studies 
and some applications of fuzzy  matrices are defined in  
[20,21].

In 2010,Cagmanet al [13] defined soft matrix which is  
representation of soft set, to make operations in 
theoretical studies in soft set more functional. Th is 
representation has several advantages, it‘s easy to store 
and manipulate matrices and hence the soft sets 
represented by them in a computer. 

Recently severalresearch have been studied the 
connection between soft set and soft matrices [ 13,14,22]. 
Later,Maji et al [9 ] introduced the theory of fuzzy soft 
set and applied it to decision making problem. In 2011, 
Yang and C.Ji[22],defined fuzzy soft matrix  (FSM) 
which is very useful in representing and computing the 
data involving fuzzy soft sets. 

The concept of fuzzy set based on reference function 
was first introduced by Baruah[23,24,25] in the following 
manner  -  According  to him, to define  a fuzzy set,  two  
functions  namely  fuzzy  membership function and 
fuzzy reference function  are necessary.  Fuzzy  
membership value is the difference between fuzzy  
membership function and reference function. Fuzzy  
membership function and fuzzy membership value are 
two different things. In [26, 27] M.Dhar applied this 
concept to fuzzy square matrix and developed some 
interesting properties as determinant, trace and so on. 
Thereafter, in  [28], T.J.Neog, D. K.Sutwere extended this 
new concept to soft set theory, introducing a new 
concept called “fuzzy  soft set based on fuzzy reference 
function”. Recently,Neog . T.J, Sut  D. K,M.Bora[29] 
combinedfuzzy soft set based on reference function with 
soft matrices. The paper unfolds as follows. The next  
section briefly  introduces some definit ions related tosoft 
set,fuzzy soft set, and fuzzy soft setbased on reference 
function. Section 3 presents fuzzy soft complement 
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matrix based on reference function. Sect ion 
4presentstrace of fuzzy soft matrix based on reference 
function..Section5presentsnew fuzzy soft matrix theory 
in decision making.Conclusions appear in the last 
section. 

II. PRELIMINARIES

In this section first  we review  some concepts and 
definitions of soft set,fuzzy soft set, and fuzzy soft set 
based on reference functionfrom [9,12,13,29], which will be 
needed in the sequel. 
Remark: 
For the sake of simplicity we adopt the following notation 
of fuzzy soft set based on reference function defined in 
our way as: Fuzzy soft set based on reference =(F, A)rf  

To make the difference between the notation (F, A) 
defined for classical soft set or its variants as fuzzy soft 
set. 

2.1.Definition (Soft Set [13]) 
Suppose that U is an initial universe set and E is a set 

of parameters, let P(U) denotes the power set of U.A 
pair(F,E) is called a soft set over U where F is a mapping 
given by F: E→P(U).Clearly, a soft set is a mapping from 
parameters to P(U),and it is not a set, but a parameterized 
family of subsets of the universe. 

2.2. Example. 
Suppose that U={s1,s2,s3,s4} is a set of students and 

E={e1,e2,e3} is a set of parameters, which stand for 
result, conduct and sports performances respectively. 
Consider the mapping from parameters set E to the set of 
all subsets of power set U.Then soft set (F,E) describes 
the character of the students with respect to the given 
parameters, for finding the best student of an academic 
year. 

(F, E) = {{result = s1, s3, s4} {conduct = s1,s2 } 
{sports performances = s2,s3,s4 }} 

2.3. Definition (FuzzySoft Set [9, 12] ) 
Let U be an initial universe set and E be the set of 

parameters. Let A⊆E .A pair (F,A) is called fuzzy soft set 
over  U where F is a mapping given by F: 
A→Fu ,whereFudenotes the collection of all fuzzy subsets 
of U. 

2.4.Example. 
Consider the example2.2,in soft set(F,E),if s1  is 

medium in studies, we cannot expressed with only the 
two numbers 0 and 1,we can characterize it by a 
membership function  instead of the crisp number 0 and 
1,which associates with each element a real number in the 
interval [0,1].Then fuzzy soft set can describe as  

(F, A)={F(e1) = {(s1,0.9), (s2,0.3), (s3,0.8), (s4,0.9)}, 
F(e2) = {(s1,0.8), (s2,0.9), (s3,0.4), (s4,0.3)}},where 
A={ e1,e2}. 

In the following, Neog et al. [29] showed by an example 

that this definition sometimes gives degenerate cases and 
revised the above definition as follows: 

2.5 .Definition [29] 
Let A (μ1 ,μ2)={x,μ1(x) , μ2(x) ; x ∈ U } and B (μ3 ,μ4) 

={x, μ3(x), μ4(x)  ; x ∈ U } be two fuzzy sets defined 
over the same universe U. 

Then the operations intersection and union are defined 
asA ( μ1 , μ2 ) ⋂  B ( μ3 , μ4 )= {x, 
min(μ1(x),μ3(x)) ,max( μ2(x)  ,μ4(x)) ; x ∈ U } and A 
( μ1 , μ2 ) ⋃  B ( μ3 , μ4 )= {x,  
max(μ1(x) ,μ3(x)) ,min( μ2(x),μ4(x)) ; x ∈ U } 

2.6.Definition [29] 
Let A (𝜇𝜇1 ,𝜇𝜇2)={x, 𝜇𝜇1(𝑥𝑥)  , 𝜇𝜇2(𝑥𝑥) ; x ∈  U } and B 

(𝜇𝜇3,𝜇𝜇4)={x, 𝜇𝜇3(𝑥𝑥) , 𝜇𝜇4(𝑥𝑥) ; x ∈ U } be two fuzzy sets 
defined over the same universe U.To avoid degenerate 
cases we assume that min( 𝜇𝜇1(𝑥𝑥)  , 𝜇𝜇3(𝑥𝑥)  ) ≥  
max( 𝜇𝜇2(𝑥𝑥) ,𝜇𝜇4(𝑥𝑥)) for all x∈ U. 

Then the operations intersection and union are defined 
as A ( μ1 , μ2 ) ⋂  B ( μ3 , μ4 )= {x,  
min(μ1(x),μ3(x)) ,max( μ2(x) ,μ4(x)) ; x ∈ U } and A 
( 𝜇𝜇1 , 𝜇𝜇2 ) ⋃  B ( 𝜇𝜇3 , 𝜇𝜇4 )= {x,  
max(𝜇𝜇1(𝑥𝑥) ,𝜇𝜇3(𝑥𝑥)) ,min( 𝜇𝜇2(𝑥𝑥) ,𝜇𝜇4(𝑥𝑥)) ; x ∈ U } 

2.7. Definition[29] 
For usual fuzzy setsA (𝜇𝜇, 0)={x, 𝜇𝜇(𝑥𝑥),0 ; x ∈ U }and  

B (1, 𝜇𝜇)={x, 1 , 𝜇𝜇(𝑥𝑥) ; x ∈ U } defined over the same 
universe U, we have A ( 𝜇𝜇 ,   0 ) ⋂  B (1, 𝜇𝜇 )= {x, 
min((𝑥𝑥), 1 ) ,max(0 ,𝜇𝜇(𝑥𝑥)) ; x ∈ U }= {x, 𝜇𝜇(𝑥𝑥), 𝜇𝜇(𝑥𝑥) ; x 
∈ U }, which is nothing but the null set𝜑𝜑 and A (𝜇𝜇, 0 ) ⋃ 
B (1, 𝜇𝜇)= {x, max(𝜇𝜇(𝑥𝑥), 1) ,min( 0, 𝜇𝜇(𝑥𝑥)) ; x ∈ U } = 
{x,1, 0 ; x ∈ U }, which is nothing but the universal set U. 

This means if we define a fuzzy set(A (𝜇𝜇 , 0) )𝒄𝒄 ={x,   
1, 𝜇𝜇(𝑥𝑥)  ; x ∈  U } it is nothing but the complement  
ofA (𝜇𝜇, 0)={x, 𝜇𝜇(𝑥𝑥) ,0 ; x ∈ U }. 

2.8. Definition[29] 
Let A (𝜇𝜇1,𝜇𝜇2)={x,   𝜇𝜇1(𝑥𝑥) , 𝜇𝜇2(𝑥𝑥) ; x ∈ U } and B 

(𝜇𝜇3,𝜇𝜇4)={x,   𝜇𝜇3(𝑥𝑥) , 𝜇𝜇4(𝑥𝑥) ; x ∈ U } be two fuzzy sets 
defined over the same universe U.The fuzzy setA 
(𝜇𝜇1,𝜇𝜇2)is a subset of the fuzzy set B (𝜇𝜇3,𝜇𝜇4)if  for all x ∈ 
U ,  𝜇𝜇1(𝑥𝑥) ≤ 𝜇𝜇3(𝑥𝑥) and    𝜇𝜇4(𝑥𝑥) ≤ 𝜇𝜇2(𝑥𝑥). 

Two fuzzy setsC={x,  𝜇𝜇𝐶𝐶(𝑥𝑥)x ∈ U }and D={x,  𝜇𝜇𝐷𝐷(𝑥𝑥); 
x ∈  U } in the usual definition would be expressed 
asC(𝜇𝜇𝐶𝐶, 0)={x,  𝜇𝜇𝐶𝐶(𝑥𝑥) , 0; x ∈ U }and D (𝜇𝜇𝐷𝐷, 0) ={x,  
𝜇𝜇𝐷𝐷(𝑥𝑥),0; x ∈ U } 

Accordingly, we have C(𝜇𝜇𝐶𝐶, 0) ⊆ D(𝜇𝜇𝐷𝐷, 0) if for all 
x ∈ U, 𝜇𝜇𝐶𝐶(𝑥𝑥) ≤ 𝜇𝜇𝐷𝐷(𝑥𝑥) , which can be obtained by 
putting𝜇𝜇2(𝑥𝑥) = 𝜇𝜇4(𝑥𝑥)=0 in the new definition. 

2.9 .Defintion [29] (Fuzzy soft matrices (FSMs) based on 
reference function) 

Let U be an initial universe, E be the set of parameters 
and A ⊆ E. Let (𝑓𝑓𝐴𝐴  , E) be fuzzy soft set (FS) over U. 
Then a subset of U ×E is uniquely defined by  𝑅𝑅𝐴𝐴   = {(u, 
e); e ∈  A, u∈ 𝑓𝑓𝐴𝐴(𝑒𝑒)} which is called a relation form of 
(𝑓𝑓𝐴𝐴  , E). 
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2.10. Example 
Assume that U ={u1  ,u2  ,u3  ,u4  } is a universal setand 

E ={ e1  , e ,e3  ,e4  ,e5  }  be the set of parameters and 
A={e1  ,e2  ,e3  } ⊆ E 
and 

𝑓𝑓𝐴𝐴(𝑒𝑒1) ={ 𝑢𝑢1 (0.7 , 0)⁄ , 𝑢𝑢2 (0.1 , 0)⁄ , 𝑢𝑢3 (0.2 , 0)⁄  ,
𝑢𝑢4 (0.6 ,0)⁄  } 
𝑓𝑓𝐴𝐴 (𝑒𝑒2 ) ={ 𝑢𝑢1 (0.8 ,0)⁄  , 𝑢𝑢2 (0.6 , 0)⁄  , 𝑢𝑢3 (0.1 , 0)⁄  ,
𝑢𝑢4 (0.5 , 0)⁄  } 
𝑓𝑓𝐴𝐴 (𝑒𝑒3 ) ={ 𝑢𝑢1 (0.1 ,0)⁄ , 𝑢𝑢2 (0.2 ,0)⁄  , 𝑢𝑢3 (0.7 , 0)⁄  ,
𝑢𝑢4 (0.3 , 0)⁄  } 

Then the fuzzy soft set (𝑓𝑓𝐴𝐴  , E) is a parameterized 
family {𝑓𝑓𝐴𝐴 (𝑒𝑒1) , 𝑓𝑓𝐴𝐴 (𝑒𝑒2)  ,𝑓𝑓𝐴𝐴 (𝑒𝑒3 ) } of all fuzzy soft sets 
over U. Then the relation form of (𝑓𝑓𝐴𝐴  , E) is written as 

TABLE 1.The relation form of (𝑓𝑓𝐴𝐴  , E) 

Hence,the fuzzy soft matrix representing this fuzzy 
soft set would  be represented as 

A =�
(𝟎𝟎.𝟕𝟕,𝟎𝟎)(𝟎𝟎.𝟖𝟖,𝟎𝟎)(𝟎𝟎.𝟏𝟏,𝟎𝟎)(𝟎𝟎,𝟎𝟎)
(𝟎𝟎.𝟏𝟏,𝟎𝟎)(𝟎𝟎.𝟔𝟔,𝟎𝟎)(𝟎𝟎.𝟐𝟐,𝟎𝟎)(𝟎𝟎,𝟎𝟎)
(𝟎𝟎.𝟐𝟐,𝟎𝟎)(𝟎𝟎.𝟏𝟏,𝟎𝟎)(𝟎𝟎.𝟕𝟕,𝟎𝟎)(𝟎𝟎,𝟎𝟎)
(𝟎𝟎.𝟔𝟔,𝟎𝟎)(𝟎𝟎.𝟓𝟓,𝟎𝟎)(𝟎𝟎.𝟑𝟑,𝟎𝟎)(𝟎𝟎,𝟎𝟎)

�

2.11. Definition[29 ] 
We define the membership value matrix corresponding 

to the matrix A as MV(A) =[ 𝛿𝛿𝑗𝑗𝑗𝑗 (𝑐𝑐𝑗𝑗 )] Where 𝛿𝛿(𝐴𝐴)𝑗𝑗𝑗𝑗  = 
𝜇𝜇𝑗𝑗1(𝑐𝑐𝑗𝑗)- 𝜇𝜇𝑗𝑗2(𝑐𝑐𝑗𝑗)  i= 1,2,3,…,m and j =1,2,3…..,n  ,where 
𝜇𝜇𝑗𝑗1(𝑐𝑐𝑗𝑗)  and 𝜇𝜇𝑗𝑗2(𝑐𝑐𝑗𝑗) represent the fuzzy membership 
function and fuzzy reference function respectively of𝑐𝑐𝑗𝑗  in 
the fuzzy set F( 𝑒𝑒𝑗𝑗 ). 

2.12. Definition [29] 
Let the fuzzy soft matrices corresponding to the fuzzy 

soft sets (F,E), and (G,E) beA=[ aij ]  ∈ FSMm ×n  , 
B=[ bij ]where aij = ( μj1(ci ) , μj2(ci ) )  and  bij  
=(χj1(ci ) ,χj2(ci )  ),i =1,2,3,…, m ;j =1,2,3,…,n ;Then  
Aand  Bare called fuzzy soft equal  matrices denoted 
byA=B, if 𝜇𝜇𝑗𝑗1(𝑐𝑐𝑗𝑗) = 𝜒𝜒𝑗𝑗1(𝑐𝑐𝑗𝑗) and 𝜇𝜇𝑗𝑗1(𝑐𝑐𝑗𝑗) = 𝜒𝜒𝑗𝑗1(𝑐𝑐𝑗𝑗)  for all 
i,j. 

In [13], the ‘add it ion  (+)’ operation  between two  
fuzzy  soft matrices is defined  as fo llows 

2.13. Definition [29] 
Let U={𝑐𝑐1 ,𝑐𝑐2 ,𝑐𝑐3 ,… . . , 𝑐𝑐𝑚𝑚 } be the un iversal set and  

Ebe the set  of parameters g iven  by  
E={𝑒𝑒1,𝑐𝑐2 ,𝑒𝑒3 ,… . . , 𝑒𝑒𝑛𝑛}.Let  the set  of all  m× n fuzzy  
soft matrices over U be  FSM𝑚𝑚 ×𝑛𝑛 . 

Let A , B ∈ FSMm ×n  ,where A= [𝑎𝑎𝑗𝑗𝑗𝑗 ]𝑚𝑚×𝑛𝑛   , 𝑎𝑎𝑗𝑗𝑗𝑗 = 
( 𝜇𝜇𝑗𝑗1(𝑐𝑐𝑗𝑗) , 𝜇𝜇𝑗𝑗2(𝑐𝑐𝑗𝑗) )  and B= [𝑏𝑏𝑗𝑗𝑗𝑗 ]𝑚𝑚×𝑛𝑛 ,  𝑏𝑏𝑗𝑗𝑗𝑗  
=(𝜒𝜒𝑗𝑗1(𝑐𝑐𝑗𝑗) ,𝜒𝜒𝑗𝑗2(𝑐𝑐𝑗𝑗)).To avoid degenerate cases we assume 

thatmin (𝜇𝜇𝑗𝑗1(𝑐𝑐𝑗𝑗) ,𝜒𝜒𝑗𝑗1(𝑐𝑐𝑗𝑗))  ≥max (𝜇𝜇𝑗𝑗2(𝑐𝑐𝑗𝑗),𝜒𝜒𝑗𝑗2(𝑐𝑐𝑗𝑗)) for 
all i and  j .The operat ion  o f  ‘add it ion  (+)’ between  A  
and B is defined   as A+ B=C ,where C= [𝑐𝑐𝑗𝑗𝑗𝑗 ]𝑚𝑚 ×𝑛𝑛   ,𝑐𝑐𝑗𝑗𝑗𝑗  
=(max (𝜇𝜇𝑗𝑗1(𝑐𝑐𝑗𝑗) ,𝜒𝜒𝑗𝑗1(𝑐𝑐𝑗𝑗)), min (𝜇𝜇𝑗𝑗2(𝑐𝑐𝑗𝑗) ,  𝜒𝜒𝑗𝑗2(𝑐𝑐𝑗𝑗)) ) 

2.14. Example 

Let U={𝑐𝑐1 ,𝑐𝑐2 ,𝑐𝑐3 ,𝑐𝑐4  }  be the un iversal set and Ebe 
the set of parameters g iven by  E={𝑒𝑒1,𝑒𝑒2 ,𝑒𝑒3  } 
We cons ider the fuzzy  soft  sets based  on reference 
funct ion. 

(F,E)={F(𝑒𝑒1)={(𝑐𝑐1 ,0.3, 0) ),(𝑐𝑐2 ,0.5, 0), (𝑐𝑐3 , 0.6, 0), 
(𝑐𝑐4 ,0.5,0)},F(𝑒𝑒2)={(𝑐𝑐1 ,0.7, 0) ),(𝑐𝑐2 ,0.9, 0), (𝑐𝑐3 , 0.7, 0),  
(𝑐𝑐4 ,0.8,0)},F(𝑒𝑒3)={(𝑐𝑐1 ,0.6, 0) ),(𝑐𝑐2 ,0.7, 0), (𝑐𝑐3 , 0.7, 0),  
(𝑐𝑐4 ,0.3,0)}}. 

(G,E)={G(𝑒𝑒1)={(𝑐𝑐1 ,0.8, 0) ),(𝑐𝑐2 ,0.7, 0), (𝑐𝑐3 , 0.5, 0),  
(𝑐𝑐4 ,0.4,0)}, G(𝑒𝑒2)={(𝑐𝑐1 ,0.9, 0) ),(𝑐𝑐2 ,0.9, 0), (𝑐𝑐3 , 0.8, 
0), (𝑐𝑐4 ,0.7,0)},G( 𝑒𝑒3 )={(𝑐𝑐1 ,0.5, 0) ),(𝑐𝑐2 ,0.9, 0), (𝑐𝑐3 , 
0.6, 0), (𝑐𝑐4 ,0.8,0)}}. 

The fuzzy  soft matrices based on reference 
funct ion representing  these two  fuzzy soft  sets are 
respect ively  

A  =

⎢
⎢
⎢
⎢
⎡
(𝟎𝟎.𝟑𝟑,𝟎𝟎)(𝟎𝟎.𝟕𝟕,𝟎𝟎)(𝟎𝟎.𝟔𝟔,𝟎𝟎)
(𝟎𝟎.𝟓𝟓,𝟎𝟎)(𝟎𝟎.𝟗𝟗,𝟎𝟎)(𝟎𝟎.𝟕𝟕,𝟎𝟎)
(𝟎𝟎.𝟔𝟔,𝟎𝟎)(𝟎𝟎.𝟕𝟕,𝟎𝟎)(𝟎𝟎.𝟕𝟕,𝟎𝟎)
(𝟎𝟎.𝟓𝟓,𝟎𝟎)(𝟎𝟎.𝟖𝟖,𝟎𝟎)(𝟎𝟎.𝟑𝟑,𝟎𝟎)

⎥
⎥
⎥
⎥
⎤
,B =

⎢
⎢
⎢
⎢
⎡
(𝟎𝟎.𝟖𝟖,𝟎𝟎)(𝟎𝟎.𝟗𝟗,𝟎𝟎)(𝟎𝟎.𝟓𝟓,𝟎𝟎)
(𝟎𝟎.𝟕𝟕,𝟎𝟎)(𝟎𝟎.𝟗𝟗,𝟎𝟎)(𝟎𝟎.𝟗𝟗,𝟎𝟎)
(𝟎𝟎.𝟓𝟓,𝟎𝟎)(𝟎𝟎.𝟖𝟖,𝟎𝟎)(𝟎𝟎.𝟔𝟔,𝟎𝟎)
(𝟎𝟎.𝟒𝟒,𝟎𝟎)(𝟎𝟎.𝟕𝟕,𝟎𝟎)(𝟎𝟎.𝟖𝟖,𝟎𝟎)

⎥
⎥
⎥
⎥
⎤
 

HereA+B =�

(𝟎𝟎.𝟖𝟖,𝟎𝟎)(𝟎𝟎.𝟗𝟗,𝟎𝟎)(𝟎𝟎.𝟔𝟔,𝟎𝟎)
(𝟎𝟎.𝟕𝟕,𝟎𝟎)(𝟎𝟎.𝟗𝟗,𝟎𝟎)(𝟎𝟎.𝟗𝟗,𝟎𝟎)
(𝟎𝟎.𝟔𝟔,𝟎𝟎)(𝟎𝟎.𝟖𝟖,𝟎𝟎)(𝟎𝟎.𝟕𝟕,𝟎𝟎)
(𝟎𝟎.𝟓𝟓,𝟎𝟎)(𝟎𝟎.𝟖𝟖,𝟎𝟎)(𝟎𝟎.𝟖𝟖,𝟎𝟎)

�

III. FUZZY SOFT COMPLEMENT MATRIX
BASED ON REFERENCE FUNCTION 

In this section ,westart by introducing the notion of  the 
fuzzy soft complement matrix based on reference 
function,and we prove some formal properties. 

3.1. Definition 
Let A= �(aij , 0)�

m ×n
∈ FSMm ×n   according to the

definition in [26], then Ac is calledfuzzy soft complement 
matrix if Ac  = �(1 , aij )�m ×n

  for all aij ∈ [0 , 1].

3.2 .Example 

Let A =�(0.7, 0)(0.8,0)
(0.1, 0)(0.6,0)� be fuzzy soft matrix based on

reference function, then the complement of this matrix is 
𝐴𝐴𝑐𝑐  =�(1, 0.7)(1, 0.8)

(1, 0.1)(1, 0.6)�. 

3.3. Proposition 
Let A, B be two fuzzy soft matrix based on fuzzy 

reference function .Then 

(i)(𝐴𝐴𝑐𝑐 )𝑇𝑇   = (𝐴𝐴𝑇𝑇 )𝑐𝑐       (1)

𝑅𝑅𝐴𝐴 e1  e2  e3  e4  
u1 (0.7, 0) (0.8, 0) (0.1, 0) (0, 0) 
u2  (0.1, 0) (0.6, 0) (0.2, 0) (0, 0) 
u3  (0.2, 0) (0.1, 0) (0.7, 0) (0, 0) 
u4  (0.6, 0) (0.5, 0) (0.3, 0) (0, 0) 
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(ii)(𝐴𝐴𝑐𝑐 + 𝐵𝐵𝑐𝑐)𝑇𝑇  = (𝐴𝐴𝑇𝑇 )𝑐𝑐  +(𝐵𝐵𝑇𝑇 )𝑐𝑐     (2) 

Proof: 
To show (i) 
(𝐴𝐴𝑐𝑐 )𝑇𝑇   = (𝐴𝐴𝑇𝑇 )𝑐𝑐  

We have, let A ∈ 𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚×𝑛𝑛 , then 
A= [(𝜇𝜇𝑗𝑗1(𝑐𝑐𝑗𝑗) ,𝜇𝜇𝑗𝑗2(𝑐𝑐𝑗𝑗)] 
𝐴𝐴𝑐𝑐  = [1 ,𝜇𝜇𝑗𝑗1(𝑐𝑐𝑗𝑗)] 

(𝐴𝐴𝑐𝑐 )𝑇𝑇  = [1 ,𝜇𝜇𝑗𝑗1(𝑐𝑐𝑗𝑗 )] 
For 𝐴𝐴𝑇𝑇  = [(𝜇𝜇𝑗𝑗1(𝑐𝑐𝑗𝑗 ) ,𝜇𝜇𝑗𝑗2(𝑐𝑐𝑗𝑗 )], 

we have 
(𝐴𝐴𝑇𝑇 )𝑐𝑐  = [1 ,𝜇𝜇𝑗𝑗1(𝑐𝑐𝑗𝑗 )] 

Hence (𝐴𝐴𝑐𝑐 )𝑇𝑇   = (𝐴𝐴𝑇𝑇 )𝑐𝑐  

The proof of (ii) follows similar lines as above. 

3.4. Example 
Let A=�(𝟎𝟎.𝟐𝟐,𝟎𝟎)(𝟎𝟎.𝟑𝟑,𝟎𝟎)

(𝟎𝟎.𝟏𝟏,𝟎𝟎)(𝟎𝟎.𝟒𝟒,𝟎𝟎)�, B=�(𝟎𝟎.𝟓𝟓,𝟎𝟎)(𝟎𝟎.𝟒𝟒,𝟎𝟎)
(𝟎𝟎.𝟔𝟔,𝟎𝟎)(𝟎𝟎.𝟐𝟐,𝟎𝟎)� 

𝐴𝐴𝑐𝑐  =�(𝟏𝟏,𝟎𝟎.𝟐𝟐)(𝟏𝟏,𝟎𝟎.𝟑𝟑)
(𝟏𝟏,𝟎𝟎.𝟏𝟏)(𝟏𝟏,𝟎𝟎.𝟒𝟒)�, 𝐵𝐵

𝑐𝑐=�(𝟏𝟏,𝟎𝟎.𝟓𝟓)(𝟏𝟏,𝟎𝟎.𝟒𝟒)
(𝟏𝟏,𝟎𝟎.𝟔𝟔)(𝟏𝟏,𝟎𝟎.𝟐𝟐)� 

(𝐴𝐴𝑐𝑐 )𝑇𝑇 =�(1, 0.2)(1,0.1)
(1, 0.3)(1,0.4)�, (𝐵𝐵

𝑐𝑐 )𝑇𝑇=�(1, 0.5)(1, 0.6)
(1, 0.4)(1, 0.2)�, (𝐴𝐴

𝑇𝑇 )𝑐𝑐 +(𝐵𝐵𝑇𝑇)𝑐𝑐=
�(𝟏𝟏,𝟎𝟎.𝟐𝟐)(𝟏𝟏,𝟎𝟎.𝟏𝟏)
(𝟏𝟏,𝟎𝟎.𝟑𝟑)(𝟏𝟏,𝟎𝟎.𝟐𝟐)� 

𝐴𝐴𝑐𝑐  + 𝐵𝐵𝑐𝑐 = �(𝟏𝟏,𝟎𝟎.𝟐𝟐)(𝟏𝟏,𝟎𝟎.𝟑𝟑)
(𝟏𝟏,𝟎𝟎.𝟏𝟏)(𝟏𝟏,𝟎𝟎.𝟐𝟐)�, (𝐴𝐴

𝑐𝑐 + 𝐵𝐵𝑐𝑐)𝑇𝑇 = �(𝟏𝟏,𝟎𝟎.𝟐𝟐)(𝟏𝟏,𝟎𝟎.𝟏𝟏)
(𝟏𝟏,𝟎𝟎.𝟑𝟑)(𝟏𝟏,𝟎𝟎.𝟐𝟐)� 

Then  
(𝐴𝐴𝑐𝑐 + 𝐵𝐵𝑐𝑐)𝑇𝑇  = (𝐴𝐴𝑇𝑇 )𝑐𝑐  +(𝐵𝐵𝑇𝑇 )𝑐𝑐. 

IV. TRACE OF FUZZY SOFT MATRIXBASED ON
REFERENCE FUNCTION 

In this section we extend the concept of trace of fuzzy  
square matrix proposed M. Dhar[26] to fuzzy soft square  
matrix based on reference function, and we prove some 
formal properties. 

4.1. Definition 
Let A be a square matrix. Then the trace ofthe matrix A is 
denoted by tr A and is defined as: 

trA= (max(𝜇𝜇𝑗𝑗𝑗𝑗),min(𝑟𝑟𝑗𝑗𝑗𝑗 ))       (3)  

where μii stands for the membership functions lying 
along the principal diagonal and rii refers to the reference  
function  of  the  corresponding  membership  functions. 

4.2. Proposition 
Let  A and B be two fuzzy softsquare matrices each of 
order  n. 
Then  
tr (A+B) =t rA+ trB   (4)  

proof. 
We have fro m the p roposed  defin it ion  o f trace o f 

fuzzy soft matrices  
trA= (max 𝑎𝑎𝑗𝑗𝑗𝑗  ,min 𝑟𝑟𝑗𝑗𝑗𝑗  ) 

and 
trB= (max 𝑏𝑏𝑗𝑗𝑗𝑗  ,min 𝑟𝑟𝑗𝑗𝑗𝑗′  ) 

then 
A+B= C where C=[𝑐𝑐𝑗𝑗𝑗𝑗 ] 

Following the defin it ion  o f add it ion of twofuzzy  soft  
matrices, we have 

𝐶𝐶𝑗𝑗𝑗𝑗= (max(𝑎𝑎𝑗𝑗𝑗𝑗 , 𝑏𝑏𝑗𝑗𝑗𝑗),min(𝑟𝑟𝑗𝑗𝑗𝑗 ,𝑟𝑟𝑗𝑗𝑗𝑗′ )) 

According to definition 4.1 the trace of fuzzy soft 
matrixbased on reference function would be: 

tr (C)  = [  max {max( 𝑎𝑎𝑗𝑗𝑗𝑗  , 𝑏𝑏𝑗𝑗𝑗𝑗   ) }, min {min( 𝑟𝑟𝑗𝑗𝑗𝑗  ,𝑟𝑟𝑗𝑗𝑗𝑗′ )}] 
=  [ max {max(𝑎𝑎𝑗𝑗𝑗𝑗 ) ,max( 𝑏𝑏𝑗𝑗𝑗𝑗)} , min {min(𝑟𝑟𝑗𝑗𝑗𝑗 ), min(𝑟𝑟𝑗𝑗𝑗𝑗′ )}] 
= trA+trB, 
Conversely, 
trA+trB = [ max {max(𝑎𝑎𝑗𝑗𝑗𝑗 ) ,max( 𝑏𝑏𝑗𝑗𝑗𝑗)} , min {(min(𝑟𝑟𝑗𝑗𝑗𝑗 ), 
min(𝑟𝑟𝑗𝑗𝑗𝑗′ ))}] 
 = [ max {max(𝑎𝑎𝑗𝑗𝑗𝑗 , 𝑏𝑏𝑗𝑗𝑗𝑗), min (min(𝑟𝑟𝑗𝑗𝑗𝑗 ,𝑟𝑟𝑗𝑗𝑗𝑗′ )}] 
=tr(A+B) 
hence the resulttrA+trB =tr(A+B) 

4.3. Example: 

Let us consider  the  following  two fuzzy soft  matrices 
A and Bbased on reference function for illustration 
purposes 

A =�
(𝟎𝟎.𝟑𝟑,𝟎𝟎)(𝟎𝟎.𝟕𝟕,𝟎𝟎)(𝟎𝟎.𝟖𝟖,𝟎𝟎)
(𝟎𝟎.𝟒𝟒,𝟎𝟎)(𝟎𝟎.𝟓𝟓,𝟎𝟎)(𝟎𝟎.𝟑𝟑,𝟎𝟎)
(𝟎𝟎.𝟔𝟔,𝟎𝟎)(𝟎𝟎.𝟏𝟏,𝟎𝟎)(𝟎𝟎.𝟒𝟒,𝟎𝟎)

�andB= �
(𝟏𝟏,𝟎𝟎)(𝟎𝟎.𝟐𝟐,𝟎𝟎)(𝟎𝟎 .𝟑𝟑,𝟎𝟎)

(𝟎𝟎 .𝟖𝟖,𝟎𝟎)(𝟎𝟎.𝟓𝟓,𝟎𝟎)(𝟎𝟎.𝟐𝟐,𝟎𝟎)
(𝟎𝟎.𝟓𝟓,𝟎𝟎)(𝟏𝟏,𝟎𝟎)(𝟎𝟎 .𝟖𝟖,𝟎𝟎)

�

The addition of two soft matrices would be: 

A+B =�
(𝟏𝟏,𝟎𝟎)(𝟎𝟎.𝟕𝟕,𝟎𝟎)(𝟎𝟎.𝟖𝟖,𝟎𝟎)

(𝟎𝟎.𝟖𝟖,𝟎𝟎)(𝟎𝟎.𝟓𝟓,𝟎𝟎)(𝟎𝟎.𝟑𝟑,𝟎𝟎)
(𝟎𝟎.𝟔𝟔,𝟎𝟎)(𝟏𝟏,𝟎𝟎)(𝟎𝟎.𝟖𝟖,𝟎𝟎)

�

Using  the defin it ion  of trace of fuzzy  soft  matrices, 
we see the following results: 

tr A = { max(0.3, 0.5, 0.4), min (0, 0, 0)}=(0.5 , 0) 
tr B  = {  max(1, 0.5, 0.8), min (0, 0, 0)}=(1 , 0) 

Thus we have 

trA+trB = { max(1, 0.5, 0.8) , min (0, 0, 0)}=(1 , 0) 

And  
tr (A+B) = {  max(1, 0.5, 0.8) , min (0, 0, 0)}= (1, 0) 

Hence the result 
trA+trB =tr(A+B) 

4.4.Proposition 
Let A= [𝑎𝑎𝑗𝑗𝑗𝑗 , 𝑟𝑟𝑗𝑗𝑗𝑗 ] ∈ FSM𝑚𝑚 ×𝑛𝑛 be fuzzy soft squarematrix 
of order n, if 𝜆𝜆  is a scalar such that 0  ≤ 𝜆𝜆 ≤    1 . Then  
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tr(𝜆𝜆 A)= 𝜆𝜆 tr(A)   (5)  

proof. 
to prove 
tr(𝜆𝜆 A)   =  𝜆𝜆trA0  ≤ 𝜆𝜆 ≤   1 
we have 
tr(𝜆𝜆 A) ={  max(𝜆𝜆𝑎𝑎𝑗𝑗𝑗𝑗  ), min  (𝜆𝜆𝑟𝑟𝑗𝑗𝑗𝑗 )} 
=𝜆𝜆{  max(𝑎𝑎𝑗𝑗𝑗𝑗  ), min(𝑟𝑟𝑗𝑗𝑗𝑗 )} 
= 𝜆𝜆tr (A) 

4.5. Example 

Let A =�
(𝟎𝟎.𝟑𝟑,𝟎𝟎)(𝟎𝟎.𝟕𝟕,𝟎𝟎)(𝟎𝟎.𝟖𝟖,𝟎𝟎)
(𝟎𝟎.𝟒𝟒,𝟎𝟎)(𝟎𝟎.𝟓𝟓,𝟎𝟎)(𝟎𝟎.𝟑𝟑,𝟎𝟎)
(𝟎𝟎.𝟔𝟔,𝟎𝟎)(𝟎𝟎.𝟏𝟏,𝟎𝟎)(𝟎𝟎.𝟒𝟒,𝟎𝟎)

�and 𝜆𝜆 =0.5 

Then 

𝜆𝜆A =�
(𝟎𝟎.𝟏𝟏𝟓𝟓,𝟎𝟎)(𝟎𝟎.𝟑𝟑𝟓𝟓,𝟎𝟎)(𝟎𝟎.𝟒𝟒𝟎𝟎,𝟎𝟎)
(𝟎𝟎.𝟐𝟐𝟎𝟎,𝟎𝟎)(𝟎𝟎.𝟐𝟐𝟓𝟓,𝟎𝟎)(𝟎𝟎.𝟏𝟏𝟓𝟓,𝟎𝟎)
(𝟎𝟎.𝟑𝟑𝟎𝟎,𝟎𝟎)(𝟎𝟎.𝟎𝟎𝟓𝟓,𝟎𝟎)(𝟎𝟎.𝟐𝟐𝟎𝟎,𝟎𝟎)

�

tr(𝜆𝜆 A) = {  max(0.15, 0.25, 0.20), min ( (0, 0, 0)} 
= (0.25,0) 
Again 
tr A=(0.5,0) 
and hence  
tr(𝜆𝜆 A) =0.5 (0.5, 0) = (0.25,0) 

4.6. Proposition: 
Let A=[ 𝑎𝑎𝑗𝑗𝑗𝑗 , 𝑟𝑟𝑗𝑗𝑗𝑗 ]  ∈ FSM𝑚𝑚 ×𝑛𝑛 be fuzzy soft square 
matrices each of order n . 
Then  

trA=tr(𝐴𝐴𝑡𝑡 ),where𝐴𝐴𝑡𝑡  is the transpose of A 

4.7.Example 

Let 𝐴𝐴𝑡𝑡  =�
(𝟎𝟎.𝟑𝟑,𝟎𝟎)(𝟎𝟎.𝟒𝟒,𝟎𝟎)(𝟎𝟎.𝟔𝟔,𝟎𝟎)
(𝟎𝟎.𝟕𝟕,𝟎𝟎)(𝟎𝟎.𝟓𝟓,𝟎𝟎)(𝟎𝟎.𝟏𝟏,𝟎𝟎)
(𝟎𝟎.𝟖𝟖,𝟎𝟎)(𝟎𝟎.𝟑𝟑,𝟎𝟎)(𝟎𝟎.𝟒𝟒,𝟎𝟎)

�

Then  
tr(𝐴𝐴𝑡𝑡 )= { max(0.3, 0.5, 0.4) , min (0, 0, 0)} 
=(0.5, 0) 
HencetrA=tr( 𝐴𝐴𝑡𝑡 ) 

The same result will hold if we consider the complements 
of fuzzy soft square matrices. 

𝐴𝐴𝑐𝑐   =�
(𝟏𝟏 ,𝟎𝟎.𝟑𝟑)(𝟏𝟏 ,𝟎𝟎.𝟕𝟕)(𝟏𝟏,𝟎𝟎.𝟖𝟖)
(𝟏𝟏 ,𝟎𝟎.𝟒𝟒)(𝟏𝟏 ,𝟎𝟎.𝟓𝟓)(𝟏𝟏,𝟎𝟎.𝟑𝟑)
(𝟏𝟏 ,𝟎𝟎.𝟔𝟔)(𝟏𝟏 ,𝟎𝟎.𝟏𝟏)(𝟏𝟏,𝟎𝟎.𝟒𝟒)

�

tr 𝐴𝐴𝑐𝑐  ={max (1, 1, 1), min (0.3, 0.5, 0.4)}=(1, 0.3) 
If we consider another fuzzy soft matriceB: 

B =�
(𝟏𝟏 ,𝟎𝟎)(𝟎𝟎.𝟐𝟐,𝟎𝟎)(𝟎𝟎.𝟑𝟑,𝟎𝟎)

(𝟎𝟎.𝟖𝟖,𝟎𝟎)(𝟎𝟎.𝟓𝟓,𝟎𝟎)(𝟎𝟎 .𝟐𝟐,𝟎𝟎)
(𝟎𝟎 .𝟓𝟓,𝟎𝟎)(𝟏𝟏 ,𝟎𝟎)(𝟎𝟎.𝟖𝟖,𝟎𝟎)

� 

𝐵𝐵𝑐𝑐  =�
(𝟏𝟏,𝟏𝟏)(𝟏𝟏,𝟎𝟎.𝟐𝟐)(𝟏𝟏,𝟎𝟎.𝟑𝟑)

(𝟏𝟏,𝟎𝟎.𝟖𝟖)(𝟏𝟏,𝟎𝟎.𝟓𝟓)(𝟏𝟏,𝟎𝟎.𝟐𝟐)
(𝟏𝟏,𝟎𝟎.𝟓𝟓)(𝟏𝟏,𝟏𝟏)(𝟏𝟏,𝟎𝟎.𝟖𝟖)

�

Then the trace of 𝐵𝐵𝑐𝑐 will be the following: 
tr(𝐵𝐵𝑐𝑐)={max(1,1,1),min (1, 0.5, 0.8)}=(1, 0.5) 

Following the definition 2.13 of addition of two fuzzy 

soft matrices based on reference function, we have. 

𝐴𝐴𝑐𝑐   +𝐵𝐵𝑐𝑐    =�
(𝟏𝟏,𝟎𝟎.𝟑𝟑)(𝟏𝟏,𝟎𝟎.𝟐𝟐)(𝟏𝟏,𝟎𝟎.𝟑𝟑)
(𝟏𝟏,𝟎𝟎.𝟒𝟒)(𝟏𝟏,𝟎𝟎.𝟓𝟓)(𝟏𝟏,𝟎𝟎.𝟐𝟐)
(𝟏𝟏,𝟎𝟎.𝟓𝟓)(𝟏𝟏,𝟎𝟎.𝟏𝟏)(𝟏𝟏,𝟎𝟎.𝟒𝟒)

�

tr (𝐴𝐴𝑐𝑐   +𝐵𝐵𝑐𝑐) ={max(1,1,1),min (0.3, 0.5, 0.4)} 
= (1, 0.3) 

V. NEW FUZZY SOFT MATRIX THEORY IN 
DECISION MAKING 

In th is section we adopted  the defin it ion o f fuzzy  
soft matrix decis ion method proposed by P. 
Rajarajes wari,P. Dhanalaks hmi in [30] to the case of 
fuzzy  soft matrix based on  reference funct ion  in o rder 
to define a new fuzzy soft matrix decis ion method  
based on reference funct ion . 

5.1. Definition: (Value Matrix) 
Let  A=[ aij , 0 ] ∈ [FSM] m ×n .Then  we define the 

value matrix of fuzzy  soft  matrix A  based  on  
reference funct ion  as V(A)=[ aij ] =[ aij  - rij ], i=1, 
2, ,….,m , j= 1,2,3,…, n, where rij   = [0] m ×n . 

5.2. Definition:(Score Matrix) 
If A=[ aij ]  ∈  FSM,B=[ bij ]  ∈ [FSM] m ×n .Then we 

define score matrix of A and B as : 

sA ,B =[dij ]mxn where [dij ]=V(A)-V(B) 

5.3. Definition:(Total Score) 
If A=[ aij , 0 ]  ∈ [FSM] m ×n ,B=[ bij , 0 ]  ∈

[FSM] m ×n .Let  the corresponding value matrices be  
V(A),V(B) and their score matrix is sA,B =[dij ]mxnthen 
we define total score fo r eachci  in U as si =∑ dij

n
j=1 . 

Methodology  and  algorithm  
Assume that there is a set o f 

candidates( p rogrammer), U={c1  , c2 , ,…,cn } is a set  
of cand idates to be recru ited by software 
development  organizat ion in p rogrammer post.Let E 
is a set of parameters related to innovat ive att itude o f 
the programmer. We construct fuzzy soft set  
(F,E)over U represent the select ion  o f cand idate by  
field expert X,where F is a mapping  F:E→ Fu ,Fu  is  
the collection o f all fuzzy  subsets of U. We further 
construct another fuzzy  soft set (G,E)over Urepresent  
the select ion o f cand idate by  field  expert Y,where G 
is a mapping  G:E→ 𝐹𝐹𝑢𝑢   ,𝐹𝐹𝑢𝑢 is the co llection  of all 
fuzzy subsets of U.The matricesA and  B 
corresponding to the fuzzy  softsets (F,E) and  (G,E)  
are constructed,we compute the complementsand  
theirmatrices 𝐴𝐴𝑐𝑐  and 𝐵𝐵𝑐𝑐 corresponding to  (F, E) 𝑐𝑐  
and (G, E) 𝑐𝑐 respectively . Compute A+B which is 
themaximum membersh ip o f select ion  of cand idates 
by the judges.  Compute 𝐴𝐴𝑐𝑐 + 𝐵𝐵𝑐𝑐 which is the 
maximum membership  o f non  selection  o f cand idates 
by the judges. us ingdef (5.1) ,Compute 
V(A+B),V( 𝐴𝐴𝑐𝑐 + 𝐵𝐵𝑐𝑐  ) 𝑠𝑠((𝐴𝐴+𝐵𝐵),( 𝐴𝐴𝑐𝑐+𝐵𝐵𝑐𝑐 )) and the total 
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score 𝐹𝐹𝑗𝑗 for each  cand idate in  U.Finally  find 𝐹𝐹𝑗𝑗 = 
max( 𝐹𝐹𝑗𝑗 ),then  conclude that  the cand idate 𝑐𝑐𝑗𝑗 has  
selected  by  the judges.If 𝐹𝐹𝑗𝑗has more than one value 
the process is repeated  by reassessing the parameters. 

Now, us ing defin it ions 5-1, 5-2 and 5-3 we can  
construct a  fuzzy  soft  matrix decis ion making  method  
based on reference funct ion by the fo llowing  
algorithm. 

Algori thm 

Step1 :Input the fuzzy  soft set (F, E), (G,E) and  obtain  
the fuzzy soft matrices A ,B  corresponding  to  
(F,E) and (G, E) respectively. 

Step2:W rite the fuzzy  soft complement set  
(F, E) c , (G, E) c and obtain  the fuzzy soft  
matrices Ac  , Bc corresponding   to (F, E) c ,and  
(G, E) c respect ively. 

Step3:Compute (A+B),(Ac +Bc),  V(A+B),V( Ac +Bc  ) 
and s((A +B),( Ac + Bc )) . 

Step4:Compute the total score Si for each  ci inU. 
Step5:Find ci  fo r which max ( Si ) . 

Then we conclude that  the cand idate 𝑐𝑐𝑗𝑗 is selected  
for the post. 

Incase max 𝐹𝐹𝑗𝑗occurs for more than  one value, then 
repeatthe process by reassessing the parameters. 

Case S tudy  

Let  (F,E) and (G,E) be two  fuzzy soft set based 
on reference funct ion representing the select ion o f 
four cand idates from the un iversal set U= {c1 ,c2 ,c3 ,c4} 
by the experts X,and Y.Let  E = {e1, e2 ,e3} be the set  
of parameters which stand fo r intelligence,innovat ive 
and analysis . 

(F,E)={F(𝑒𝑒1)={(𝑐𝑐1 ,0.1, 0) ),(𝑐𝑐2 ,0.5, 0), (𝑐𝑐3 , 0.1, 0), 
(𝑐𝑐4 ,0.4,0)},F(𝑒𝑒2)={(𝑐𝑐1 ,0.6, 0) ),(𝑐𝑐2 ,0.4, 0), (𝑐𝑐3 , 0.5, 0),  
(𝑐𝑐4 ,0.7,0)},F(𝑒𝑒3)={(𝑐𝑐1 ,0.5, 0) ),(𝑐𝑐2 ,0.7, 0), (𝑐𝑐3 , 0.6, 0),  
(𝑐𝑐4 , 0.5, 0)}}. 

(G,E)={G(𝑒𝑒1)={(𝑐𝑐1 ,0.2, 0) ),(𝑐𝑐2 ,0.6, 0), (𝑐𝑐3 , 0.2, 0),  
(𝑐𝑐4 ,0.3,0)}, G(𝑒𝑒2)={(𝑐𝑐1 ,0.6, 0) ),(𝑐𝑐2 ,0.5, 0), (𝑐𝑐3 , 0.6, 
0), (𝑐𝑐4 ,0.8,0)}, ,G(𝑒𝑒3)={(𝑐𝑐1 ,0.5, 0) ),(𝑐𝑐2 ,0.8, 0), (𝑐𝑐3 , 
0.7, 0), (𝑐𝑐4 ,0.5,0)}}. 

These two fuzzy soft sets based on reference 
funct ion are represented by the following  fuzzy soft  
matrices based on  reference funct ion  respect ively  

A =
⎢
⎢
⎢
⎢
⎡
(𝟎𝟎 .𝟏𝟏,𝟎𝟎)(𝟎𝟎.𝟔𝟔,𝟎𝟎)(𝟎𝟎.𝟓𝟓,𝟎𝟎)
(𝟎𝟎 .𝟓𝟓,𝟎𝟎)(𝟎𝟎.𝟒𝟒,𝟎𝟎)(𝟎𝟎.𝟕𝟕,𝟎𝟎)
(𝟎𝟎 .𝟏𝟏,𝟎𝟎)(𝟎𝟎.𝟓𝟓,𝟎𝟎)(𝟎𝟎.𝟔𝟔,𝟎𝟎)
(𝟎𝟎 .𝟒𝟒,𝟎𝟎)(𝟎𝟎.𝟕𝟕,𝟎𝟎)(𝟎𝟎.𝟓𝟓,𝟎𝟎)

⎥
⎥
⎥
⎥
⎤
B=

⎢
⎢
⎢
⎢
⎡
(𝟎𝟎.𝟐𝟐,𝟎𝟎. )(𝟎𝟎.𝟔𝟔,𝟎𝟎)(𝟎𝟎.𝟓𝟓,𝟎𝟎)
(𝟎𝟎 .𝟔𝟔,𝟎𝟎)(𝟎𝟎 .𝟓𝟓,𝟎𝟎)(𝟎𝟎.𝟖𝟖,𝟎𝟎)
(𝟎𝟎 .𝟐𝟐,𝟎𝟎)(𝟎𝟎 .𝟔𝟔,𝟎𝟎)(𝟎𝟎.𝟕𝟕,𝟎𝟎)
(𝟎𝟎 .𝟑𝟑,𝟎𝟎)(𝟎𝟎 .𝟖𝟖,𝟎𝟎)(𝟎𝟎.𝟓𝟓,𝟎𝟎)

⎥
⎥
⎥
⎥
⎤
 

Then, the fuzzy soft complement  matricesbased on 
reference funct ion  are 

𝐴𝐴𝑐𝑐=
⎢
⎢
⎢
⎢
⎡
(𝟏𝟏,𝟎𝟎.𝟏𝟏)(𝟏𝟏,𝟎𝟎.𝟔𝟔)(𝟏𝟏,𝟎𝟎.𝟓𝟓)
(𝟏𝟏,𝟎𝟎.𝟓𝟓)(𝟏𝟏,𝟎𝟎.𝟒𝟒)(𝟏𝟏,𝟎𝟎.𝟕𝟕)
(𝟏𝟏,𝟎𝟎.𝟏𝟏)(𝟏𝟏,𝟎𝟎.𝟓𝟓)(𝟏𝟏,𝟎𝟎.𝟔𝟔)
(𝟏𝟏,𝟎𝟎.𝟒𝟒)(𝟏𝟏,𝟎𝟎.𝟕𝟕)(𝟏𝟏,𝟎𝟎.𝟓𝟓)

⎥
⎥
⎥
⎥
⎤
,𝐵𝐵𝑐𝑐=

⎢
⎢
⎢
⎢
⎡
(𝟏𝟏,𝟎𝟎.𝟐𝟐)(𝟏𝟏,𝟎𝟎.𝟔𝟔)(𝟏𝟏,𝟎𝟎.𝟓𝟓)
(𝟏𝟏,𝟎𝟎.𝟔𝟔)(𝟏𝟏,𝟎𝟎.𝟓𝟓)(𝟏𝟏,𝟎𝟎.𝟖𝟖)
(𝟏𝟏,𝟎𝟎.𝟐𝟐)(𝟏𝟏,𝟎𝟎.𝟔𝟔)(𝟏𝟏,𝟎𝟎.𝟕𝟕)
(𝟏𝟏,𝟎𝟎.𝟑𝟑)(𝟏𝟏,𝟎𝟎.𝟖𝟖)(𝟏𝟏,𝟎𝟎.𝟓𝟓)

⎥
⎥
⎥
⎥
⎤

Then the add it ion matrices are 

A+B=
⎢
⎢
⎢
⎢
⎡
(0.2, 0)(0.6, 0)(0.5, 0)
(0.6, 0)(0.5, 0)(0.8, 0)
(0.2, 0)(0.6, 0)(0.7, 0)
(0.4, 0)(0.8, 0)(0.5, 0)

⎥
⎥
⎥
⎥
⎤
,𝐴𝐴𝑐𝑐+𝐵𝐵𝑐𝑐 =

⎢
⎢
⎢
⎢
⎡
(1, 0.1)(1, 0.6)(1, 0.5)
(1, 0.5)(1, 0.4)(1, 0.7)
(1, 0.1)(1, 0.5)(1, 0.6)
(1, 0.3)(1, 0.7)(1, 0.5)

⎥
⎥
⎥
⎥
⎤
 

V(A+B) =
⎢
⎢
⎢
⎢
⎡
𝟎𝟎.𝟐𝟐     𝟎𝟎.𝟔𝟔    𝟎𝟎.𝟓𝟓  
𝟎𝟎.𝟔𝟔   𝟎𝟎.𝟓𝟓    𝟎𝟎.𝟖𝟖  
𝟎𝟎.𝟐𝟐    𝟎𝟎.𝟔𝟔    𝟎𝟎.𝟕𝟕

 𝟎𝟎.𝟒𝟒    𝟎𝟎.𝟖𝟖    𝟎𝟎.𝟓𝟓 
⎥
⎥
⎥
⎥
⎤
 ,V(𝐴𝐴𝑐𝑐+𝐵𝐵𝑐𝑐) =

⎢
⎢
⎢
⎢
⎡
𝟎𝟎.𝟗𝟗     𝟎𝟎.𝟒𝟒   𝟎𝟎.𝟓𝟓  
𝟎𝟎.𝟓𝟓     𝟎𝟎.𝟔𝟔    𝟎𝟎.𝟑𝟑   
𝟎𝟎.𝟗𝟗    𝟎𝟎.𝟓𝟓    𝟎𝟎.𝟒𝟒
 𝟎𝟎.𝟕𝟕    𝟎𝟎.𝟑𝟑    𝟎𝟎.𝟓𝟓 

⎥
⎥
⎥
⎥
⎤
 

Calcu late the score matrix and the total score for 
select ion  

𝑠𝑠( (𝐴𝐴+𝐵𝐵),( 𝐴𝐴𝑐𝑐+𝐵𝐵𝑐𝑐 )) = 
⎢
⎢
⎢
⎢
⎡
−𝟎𝟎.𝟕𝟕       𝟎𝟎.𝟐𝟐     𝟎𝟎  
𝟎𝟎.𝟏𝟏   − 𝟎𝟎.𝟏𝟏     𝟎𝟎.𝟓𝟓   
−𝟎𝟎.𝟕𝟕      𝟎𝟎.𝟏𝟏     𝟎𝟎.𝟑𝟑
−𝟎𝟎.𝟑𝟑    𝟎𝟎.𝟓𝟓      𝟎𝟎

⎥
⎥
⎥
⎥
⎤

Total score =
⎢
⎢
⎢
⎢
⎡
  −𝟎𝟎.𝟓𝟓  

  𝟎𝟎.𝟓𝟓   
  −𝟎𝟎.𝟑𝟑
  𝟎𝟎.𝟐𝟐

⎥
⎥
⎥
⎥
⎤

We see that the second candidate has the maximum 
value and thus conclude that from both the expert’s 
opinion, candidate𝑐𝑐2is selected for the post. 

VI. CONCLUSIONS

In our work, we have put  fo rward  some new 
concepts such as complement , t race o f fuzzy  soft  
matrix based on reference function . Some related  
properties have been  established with example. 
Finally an applicat ion of fuzzy soft matrix based on  
reference funct ion in decis ion making p roblem is 
given . It ‘s hoped  that ou r work will enhance th is 
study in fuzzy  soft matrix. 
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Neutrosophic Parametrized Soft Set Theory and Its Decision Making 

Said Broumi, Irfan Deli and Florentin Smarandache

Abstract: In this work, we present definition of neutrosophic parameterized (NP) soft set and its 
operations. Then we define NP-aggregation operator to form NP-soft decision making method which 
allows constructing more efficient decision processes. We also dive an example which shows that 
they can be successfully applied to problem that contain indeterminacy. 

Keywords: Soft set, neutrosophic set, neutrosophic soft set, neutrosophic parameterized soft set, 
aggregation operator. 

1. Introduction

In 1999, Smarandache firstly proposed the theory of neutrosophic set (NS) [28], which is the 
generalization of the classical sets, conventional fuzzy set [30] and intuitionistic fuzzy set [5]. After 
Smarandache, neutrosophic sets has been successfully applied to many fields such as;control theory 
[1],  databases [2,3], medical diagnosis problem [4], decision making problem [21], topology [22], 
and so on. 

In 1999 a Russian researcher [27] firstly gave the soft set theory as a general mathematical tool for 
dealing with uncertainty and vagueness and how soft set theory is free from the parameterization 
inadequacy syndrome of fuzzy set theory, rough set theory, probability theory. Then, many 
interesting results of soft set theory have been studied on fuzzy soft sets [8,12,23], on intuitionistic 
fuzzy soft set theory [14,25], on possibility fuzzy soft set [7], on generalized fuzzy soft sets [26,29], 
on generalized intuitionistic fuzzy soft [6], on interval-valued intuitionistic fuzzy soft sets [20], on 
intuitionistic neutrosophic soft set [9], on generalized neutrosophic soft set [10], on fuzzy 
parameterized soft set theory [17,18], on fuzzy parameterized fuzzy soft set theory [13], on 
intuitionistic fuzzy parameterized soft set theory [15], on IFP−fuzzy soft set theory [16],on 
neutrosophic soft set [24].interval-valued neutrosophic soft set [11,19]. 

In this paper our main objective is to introduce the notion of neutrosophic parameterized soft set 
which is a generalization of fuzzy parameterized soft set and intuitionistic fuzzy parameterized soft 
set.The paper is structured as follows. In section 2, we first recall the necessary background on 
neutrosophic and soft set. In section 3, we give neutrosophic parameterized soft set theoryand their 
respective properties. In section 4, we present a neutrosophic parameterized aggregation operator. In 
section 5,a neutrosophic parameterized decision methods is presented with example. Finally we 
conclude the paper. 

Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

399



2. Preliminaries

Throughout this paper, let U be a universal set and E be the set of all possible parameters under 
consideration with respect to U, usually, parameters are attributes, characteristics, or properties of 
objects in U.  

We now recall some basic notions of neutrosophic set and soft set. For more details, the reader could 
refer to [33, 37].  

Definition 1.[37] Let U be a universe of discourse then the neutrosophic set A is an object 
having the form  

A = {< x: A(x), A(x), A(x)>,x ∈ U} 

where the functions , ,  : U→]−0,1+[ define respectively the degree of membership, the degree of
indeterminacy, and the degree of non-membership of the element x ∈ X to the set A with the 
condition.  

−0 ≤ A(x) + A(x) + A(x) ≤ 3+. (1) 

From philosophical point of view, the neutrosophic set takes the value from real standard or non-
standard subsets of ]−0,1+[. So instead of ]−0,1+[ we need to take the interval [0,1] for technical
applications, because ]−0,1+[ will be difficult to apply in the real applications  such as in scientific
and engineering problems. 

For two NS, 

= {<x, , > |  } 

and 

= {<x, , > |  } 

Then, 

if and only if 

 ,  . 

, 

 =  ,  =  ,  =  for any . 

The complement of  is denoted by  and is defined by 

= {<x, |  } 

Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

400



A B = {<x, min max , max >:  } 

A B = {<x, max min , min >:  } 

As an illustration, let us consider the following example. 

Example 1.Assume that the universe of discourse U= { , , , }. It may be further assumed that 
the values of x1, x2, and are in [0, 1] Then, A is a neutrosophic set (NS) of U, such that, 

A={< , 0.4, 0.6, 0.5>, < , 0.3, 0.4, 0.7>, < , 0.4,0.4, 0.6] >,< , 0.5,0.4, 0.8 >} 

Definition 2.[33] 

Let U be an initial universe set and E be a set of parameters. Let P(U) denotes the power set of U. 
Consider a nonempty set A, A ⊂ E. A pair (K, A) is called a soft set over U, where K is a mapping 
given by K: A → P(U). 

As an illustration, let us consider the following example. 

Example 2.Suppose that U is the set of houses under consideration, say U= { , , }. Let E 
be the set of some attributes of such houses, say E = { , , , }, where , , , stand for 
the attributes “beautiful”, “costly”, “in the green surroundings”, “moderate” and technically, 
respectively. In this case, to define a soft set means to point out expensive houses, beautiful houses, 
and so on. For example, the soft set (K, A) that describes the “attractiveness of the houses” in the 
opinion of a buyer, says Thomas, and may be defined like this:  

A= { , , , }; 

K( ) = { , , }, K( ) = { , }, K( ) = { }, K( ) = U, K( ) = { , }. 

3. Neutrosophic Parameterized Soft Set Theory

In this section, we define neutrosophic parameterized soft set and their operations. 

Definition 3.1. Let U be an initial universe, P (U) be the power set of U,E be a set of all parameters 
and K be a neutrosophic set over E. Then a neutrosophic parameterized soft sets 

 =

:E [0, 1], :E [0, 1], :E [0, 1] and :E P(U) such that =Φ if  
. 

Here, the function   , and called membership function, indeterminacy function and non-
membership function of neutrosophic parameterized soft set (NP-soft set), respectively. 

Example 3.2.Assume that U= { , } is a universal set and E= { , } is a set of parameters.If 
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K= {< ,0.2, 0.3, 0.4> , < ,0.3, 0.5, 0.4>} 

and 

= {  , }, =U 

Then a neutrosophic parameterized soft set is written by 

={(< ,0.2, 0.3, 0.4>,{ , }),(< ,0.3, 0.5, 0.4>,U)} 

Definition 3.3.Let  NP-soft set.  if  = U ,  =0 ,  =  and =   all x  E. 
then  is called  K-empty NP-soft set, denoted by . 

If K= ,then the K-emptyNP-soft set is called empty NP-soft set, denoted by . 

Definition 3.4. Let  NP-soft set.  if  = U ,  =1 ,  =0and =0 all x  E. 
then  is called  K-universal NP-soft set, denoted by . 

If K= E, then the K-universal NP-soft set is called universal NP-soft set, denoted by . 

Definition 3.5. and  are two NP-soft set. Then,   is NP-subset of , denoted by  if 
and only if   ,  and  and  for all x  E. 

Definition 3.6. and  are two NP-soft set. Then, = , if and only if  and 
for all x  E. 

Definition 3.7. Let   NP-soft set. Then, the complement of , denoted by  , is defined by 

=

Where   =

Definition 3.8.Let   and  are two NP-soft set. Then ,union of  and ,denoted by 
, is defined by  

=

where  = . 

Definition 3.9. Let   and  are two NP-soft set. Then, intersection of and ,denoted by 
 , is defined by  
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=

where  = . 

Example 3.10.LetU = { , , , }, E={ , , }. Then, 

= {(< ,0.2, 0.3, 0.4>,{  , }),(< ,0.3, 0.5, 0.4>,{  , })} 

= {(< ,0.1, 0.2, 0.4>,{ , }),(< ,0.5, 0.2 0.3>,{ })} 

Then 

={(< ,0.2, 0.3, 0.4>,{  , }),(< ,0.3, 0.2, 0.4>,{  , ,  }),(< ,0.5, 0.2 0.3>,{  })} 

= { (< ,0.1, 0.5, 0.4>,{ , }) }. 

={(< ,0.4, 0.3, 0.2>,{  , }),(< ,0.4, 0.5, 0.3>,{  ,  })} 

Remark 3.11. does not imply that every element of  is an element of  as in the 
definition of classical subset. For example assume that U= { , , , }is a universal set of objects 
and E ={ , , }is a set of all parameters, if NP-soft sets  and  are defined as 

= {(< ,0.2, 0.3, 0.4>,{ , }),(< ,0.3, 0.5, 0.4>,{ })} 

= {(< ,0.1, 0.2, 0.4>,U),(< ,0.5, 0.2 0.3>,{ , })} 

It can be seen that , but every element of  is not an element of

Proposition 3.12.Let ,  NP-soft set .Then 

Proof .It is clear from Definition 3.3-3.5. 

Proposition 3.13.Let ,  and  NP-soft set, Then 

 =  and = = 

and 
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 and 

Proof .It can be proved by Definition 3.3-3.5 

Proposition 3.14 Let  NP-soft set. Then 

 =

 =

=

Proposition 3.15.Let ,  and  NP-soft set, Then 

=

=

=

=

( ) = ( ) 

Proof.It is clear 

Proposition  3.16.Let ,  and  NP-soft set, Then 

=

=

=

=

( ) = ( ) 

Proof.It is clear 

Proposition 3.17.Let ,  and  NP-soft set, Then 

( )= ( ) ( ) 
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( =( ) ( ) 

Proof .It can be proved by definition 3.8 and 3.9 

Proposition 3.18.Let ,  NP-soft set, Then 

=

=

Proof.It is clear. 

Definition  3.19. Let  NP-soft set, Then 

OR-product of  and  denoted by  ,is defined as following 

= (<(x,y),(max{ , },min{ , },min{ , }>, (x,y)) :x,y

where = . 

AND-product of  and  denoted by  is defined as following 

= (<(x,y),(min{ , },max{ , },max{ , }>, (x,y)) :x,y 

where = . 

Proposition 3.20.Let ,  and  NP-soft set, Then 

=

( ) = ( ) 

( ) = ( ) 

Proof .It can be proved by definition 3.15 

4. NP-aggregation operator

In this section, we define NP-aggregation operator of an NP-soft set to construct a decisionmethod 
by which approximate functions of a soft set are combined to produce a single neutrosophic set that 
can be used to evaluate each alternative. 
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Definition  4.1.  NP-soft set. Then a NP-aggregation operatorof  , denotedby , is 
definedby 

=  (<u, , , : u 

which is a neutrosophic set over U, 

:U , 

::U

and 

:U

And where 

is the cardinality of U. 

Definition  4.2Let  NP-soft set and  an aggregation neutrosophic parameterized soft set 
,then a reduced fuzzy set of  is a fuzzy  set over U denoted by 

 = 

where  : U = + - . 

NP-Decision Methods 

Inspired by the decision making methods regard in [12-19].In this section, we also present NP-
decision method to neutrosophic parameterized soft set. Based on definition 4.1 and 4.2 we construct 
an  NP-decision  making  method by the following algorithm. 

Now, we construct a NP-soft decision making method by the following algorithm to produce a 
decision fuzzy set from a crisp set of the alternatives. 

According to the problem, decision maker 
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i. constructs a feasible Neutrosophic subsets K over the parameters set E,

ii. constructs a NP-soft set  over the alternatives set U, 

iii. computes the aggregation neutrosophic parameterized soft set  of , 

iv. computes the reduced fuzzy set of , 

v. chooses the element of that has maximum membership degree. 

Now, we can give an example for the NP-soft decision making method 

Example. Assume that a company wants to fill a position. There are four candidates who fill in a 
form in order to apply formally for the position. There is a decision maker (DM) that is from the 
department of human resources. He wants to interview the candidates, but it is very difficult to make 
it all of them. Therefore, by using the NP-soft decision making method, the number of candidates are 
reduced to a suitable one. Assume that the set of candidates U={ , , , } which may be 
characterized by a set of parameters E={ , , } For i=1,2,3 the parameters i stand for 
experience, computer knowledge and young age, respectively. Now, we can apply the method as 
follows: 

Step i. Assume that DM constructs a feasible neutrosophic subsets K over the parameters set E as 
follows; 

K={< ,0.2, 0.3, 0.4>,< ,0.3, 0.2, 0.4>,< ,0.5, 0.2 0.3>} 

Step ii. DM constructs an NP-soft set  over the alternatives set U as follows; 

={(< ,0.2,0.3,0.4>,{ }),(< ,0.3,0.2,0.4>,{ , , }),(< ,0.5,0.2,0.3>,{ })} 

Step iii. DM computes the aggregation neutrosophic parameterized soft set of as follows; 

={< ,0.05, 0.075, 0.1>,< ,0.1, 0.125, 0.2>,< ,0.2, 0.1 0.175>,< ,0.125, 0.05 0.075>} 

Step iv .computes the reduced fuzzy set of as follows; 

=0.025 

=0.025 

=0.125 

=0.1 
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Step v .Finally, DM chooses  for the position from  since it has the maximum degree 
0.125 among the others. 

Conclusion 

In this work, we have introduced the concept of neutrosophic parameterized soft set and studied 
some of its properties. The complement, union and intersection operations have been defined on the 
neutrosophic parameterized soft set. The definition of NP-aggregation operator is introduced with 
application of this operation in decision making problems. 
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Interval Valued Neutrosophic Parameterized Soft Set 
Theory and its Decision Making 

Said Broumi

Irfan Deli 

Florentin Smarandache 

Abstract – In this work, we present definition of interval valued neutrosophic 
parameterized (IVNP-)soft set and its operations. Then we define parameter reduction 
method for IVNP-soft set.We also give an example which shows that they can be 
successfully applied to problem that contains indeterminacy. 

Keywords –  
soft set, neutrosophic set, 
neutrosophic soft set. 

1. Introduction

In 1999, Smarandache firstly proposed the theory of neutrosophic set (NS) [34], which is the 
generalization of the classical sets, conventional fuzzy set [40] and intuitionistic fuzzy set 
[5]. In recent years, neutrosophic sets has been successfully applied to many fields such 
as;control theory [1],  databases [3,4], clustering [36], medical diagnosis problem [2], 
decision making problem [25,37], topology [26],and so on. 

Presently work on the neutrosophic set theory is progressing rapidly such as; Bhowmik 
and Pal defined intuitionistic neutrosophic set [9] and intuitionistic neutrosophic relations 
[10]. Later on Salam, Alblowi [33] introduced another concept called generalized 
neutrosophic set. Wang et al. [38] proposed another extension of neutrosophic set which is 
single valued neutrosophic. Also Wang etal. [39] introduced the notion of interval valued 
neutrosophic set which is an instance of neutrosophic set. It is characterized by an interval 
membership degree, interval indeterminacy degree and interval non-membership 
degree.Many applications of neutrosophic theory have been worked by Geogiev [23],Ye 
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[36,37], Majumdar and Samanta [31], P.D. Liu [41,42] and Broumi and Smarandache  [14] 
and so on. 

In 1999 a Russian researcher [32] firstly gave the soft set theory as a general mathematical 
tool for dealing with uncertainty and vagueness and how soft set theory is free from the 
parameterization inadequacy syndrome of fuzzy set theory, rough set theory, probability 
theory. Then, many interesting results of soft set theory have been studied on fuzzy soft sets 
[15,,27], on FP-soft sets [20,21], on intuitionistic fuzzy soft set theory [8,17,28], on 
intuitionistic fuzzy parameterized soft set theory [18], oninterval valued intuitionistic fuzzy 
soft set [24], on generalized fuzzy soft sets [30,35], on generalized intuitionistic fuzzy soft 
[6], on possibility intuitionistic fuzzy soft set [7], on intuitionistic neutrosophic soft set [11], 
on generalized neutrosophic soft set [12], on fuzzy parameterized fuzzy soft set theory [16], 
on IFP−fuzzy soft set theory [19], on neutrosophic soft set [29]. Recently, Deli [22] 
introduced the concept of interval valued neutrosophic soft set as a combination of interval 
neutrosophic set and soft sets. 

In this paper our main objective is to introduce the notion of interval valued neutrosophic 
parameterized soft set which is a generalization of neutrosophic parameterized soft sets 
[13].The paper is structured as follows. In Section 2, we first recall the necessary 
background on neutrosophic sets, interval neutrosophic sets and soft sets. In Section 3,we 
present interval valued neutrosophic parameterized soft set theory and examines their 
respective properties. In section 4, we present a interval valued neutrosophic parameterized 
aggregation operator. Section 5, interval valued neutrosophic parameterized decision 
methods is presented with example. Finally we conclude the paper. 

2. Preliminaries

Throughout this paper, let U be a universal set and E be the set of all possible parameters 
under consideration with respect to U, usually, parameters are attributes, characteristics, or 
properties of objects in U.  

We now recall some basic notions of neutrosophic set, interval valued neutrosophic set and 
soft set. For more details, the reader could refer to [29, 32, 34, 39].  

Definition 2.1. [34] Let U be a universe of discourse then the neutrosophic set A is an object 
having the form  

A = {< x: A(x), A(x), A(x)>,x ∈ U} 

where the functions , ,  : U→]−0,1+[ define respectively the degree of membership, the
degree of indeterminacy, and the degree of non-membership of the element x ∈ X to the set 
A with the condition.  

−0 ≤ A(x) + A(x) + A(x) ≤ 3+. (1) 

From philosophical point of view, the neutrosophic set takes the value from real standard 
or non-standard subsets of ]−0,1+[. So instead of ]−0,1+[ we need to take the interval [0,1] for
technical applications, because ]−0,1+[ will be difficult to apply in the real applications  such
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as in scientific and engineering problems. 

Definition 2.2. [39] Let X be a space of points (objects) with generic elements in X denoted 
by x. An interval valued neutrosophic set (for short IVNS) A in X is characterized by truth-
membership function  , indeteminacy-membership function  and falsity-
membership function    . For each point x in X, we have 
that      ,     , ∈[0,1]. 

For two IVNS 

= {<x, [  ,  ] ,  > |  ∈   } 

and 

= {<x, [  ,  ] ,  > |  ∈   } 

Then, 

1. if and only if 

 ,  ,  , 
,  . 

2.  , 

 =  ,  =  ,  =  for any ∈  . 

3. The complement of  is denoted by  and is defined by 

={<x,  >,  , [  ,  ] |  ∈   } 

4. A B = { <x, [min(  ,  ), min(  ,  )], [max(  ,  ),   
max(  ,  [max(  ,  ), max(  ,  )] >:  ∈   } 

5. A B = {<x, [max(  ,  ), max(  ,  )], [min(  ,  ), 
min (  ,  [min(  ,  ), min(  ,  )] >:  ∈   } 

As an illustration, let us consider the following example. 

Example 2.3. Assume that the universe of discourse U= { }. Then, A is a 
interval valued neutrosophic set (IVNS) of U such that, 

A = {< x1, [0.1 0.8], [0.2 0.6], [0.8 0.9] >, < x2, [0.2 0.5], [0.3 0.5], [0.6 0.8]>, 
< x3, [0.5 0.8], [0.4 0.5], [0.45 0.6] >, < x4, [0.1 0.4], [0.1 0.5], [0.4 0.8] >} 

Definition 2.4. [32] Let U be an initial universe set and E be a set of parameters. Let P(U) 
denotes the power set of U. Consider a nonempty set A, A ⊂ E. A pair (K, A) is called a soft 
set over U, where K is a mapping given by K: A → P (U). 



Journal of New Results in Science 7 (2014) 58-71    61 

As an illustration, let us consider the following example. 
Example 2.5 .Suppose that U is the set of houses under consideration, say U = {  ,  . . 
.,  }. Let E be the set of some attributes of such houses, say E = {e1, e2, . . ., e4}, where e1, e2, 
. . ., e4 stand for the attributes “beautiful”, “costly”, “in the green surroundings’”, “moderate”, 
respectively.  

In this case, to define a soft set means to point out expensive houses, moderate houses, and 
so on. For example, the soft set (K, A) that describes the “attractiveness of the houses” in the 
opinion of a buyer, saysMr. X, and may be defined like this:  

A= E,(K, A) ={(  , {  ,  }), (  , {  }), (  , {  ,  .  }), (  , U)}. 

3. Interval Neutrosophic Parameterized Soft Set Theory

In this section, we define interval neutrosophic parameterized soft set and their operations. 

Definition 3.1. Let U be an initial universe, P(U) be the power set of U,E be a set of all 
parameters and  K be an interval valued neutrosophic set over E . Then an interval 
neutrosophic parameterized soft sets(IVNP-soft sets), denoted by             ; 

 = ∈
:E   [0, 1],   :E   [0, 1],  :E   [0, 1] and  :E  P(U) such that  =Φ if  

 . 

Here, the  ,   and called truth-membership function  indeteminacy-membership 
function and falsity-membership function of (IVNP-soft set), respectively. 

Example 3.2.Assume that U= {  , } is a universal set and E= {  ,  } is a set of 
parameters. If 

K= {(<  , [0.2, 0.3],[0.3,0.5],[0.4 ,0.5]>) , (<  ,[0.3 ,0.4], [0.5,0.6],[0.4 ,0.5]>)} 

and 

 = {   ,  },  =U 

then a IVNP-soft set is written by 

 = {(<  , [0.2, 0.3], [0.3,0.5], [0.4 ,0.5]>,{  ,  }),(<  ,[0.3 ,0.4], [0.5,0.6],[0.4 ,0.5]>, 
U)} 

Definition 3.3. Let  ∈IVNP-soft sets.  If  =  ,  =  =0 ,  = 
 and   

    =  =1 all x ∈ E. then  is called  empty IVNP-soft set, denoted by . 

Definition 3.4.Let    ∈IVNP-soft sets. If  =U,  =  =1,  =  and 
 =  

    =0 all x ∈ E. Then  is called  K-universal IVNP-soft set, denoted by   . 
If K= E, then the K-universal IVNP-soft set is called universal IVNP-soft set, denoted 
by    . 
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Definition 3.5.  and  are two IVNP-soft set. Then, =  ,if and only if  
and for all x ∈ E. 

Definition 3.6.  and  are two IVNP-soft set. Then,   is IVNP-subset of , denoted 
by  if and only if ,    ,   , 

 ,  ,  and  for all x ∈ E. 

Definition 3.7. Let ∈IVNP-soft set. Then, the complement of , denoted by  , is 
defined by 

={(<x,  , ∈   } 

where  = 

Definition 3.8. Let    and   are two IVNP-soft set. Then ,union of   and ,denoted 
by  , is defined by 

= {(<x, [max {  max {  , [min { 
min {  , [min{  min{  >, 

∈  } 

Where  = 

Definition 3.9. Let    and   are two IVNP-soft set. Then, intersection of  
and  ,denoted by , is defined by   

= {(<x, [min {  min {  , [max { 
max {  , [max{  max{  >, 

∈  } 

where  = 

Example 3.10. Let U = {  ,  ,   ,   }, E={   ,  ,  }. Then, 
 = {(<  ,[0.1,0.5], [ 0.4, 0.5] ,[0.2 ,0.3]>,{  ,  }), 
(<  ,[0.2,0.3], [ 0.5, 0.7] ,[0.1 ,0.3]>,{  ,  })} 
 = {(<   ,[0.1,0.6], [ 0.2, 0.3] ,[0.2 ,0.4]>,{   ,  }), 
(<   ,[0.4,0.7], [ 0.1, 0.2] ,[0.3 ,0.4]>,{   })} 

Then  

={(<   , [0.1,0.5], [ 0.4, 0.5] ,[0.2 ,0.3]>,{   ,   }),(<  ,[0.2,0.6], [0. 2, 0.3] 
,[0.1 ,0.3]>,{   ,   ,  }),(<   ,[0.4,0.7], [ 0.1, 0.2] ,[0.3 ,0.4]>,{   })} 

= { (<   , [0.1,0.3], [ 0.5, 0.7] ,[0.2 ,0.4]>,{   })}. 
 ={(<    ,[0.2,0.3], [ 0.4, 0.5] ,[0.1 ,0.5]>,{   ,   }), 
(<   ,[0.1,0.3], [ 0.5, 0.7] ,[0.2 ,0.3]>,{    ,   })} 
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Remark 3.11.      does not imply that every element of    is an element of    as in 
the definition of classical subset. For example assume that U={  ,  ,  ,  }is a universal set 
of objects and E={  ,  ,  }is a set of all parameters, if IVNP-soft sets    and    are 
defined as 

 = {(<  ,[0.1,0.3], [ 0.5, 0.5] ,[0.2 ,0.3]>,{  ,  }),(<  , [0.3,0.4], [ 0.4, 0.5] , 
[0.3, 0.5]>,{  })} 
 = {(<  ,[0.2,0.6], [ 0.3, 0.4] ,[0.1 ,0.2]>,U),(<  , [0.4,0.7], [ 0.1, 0.3] , 
[0.2, 0.3]>,{  ,  })} 

It can be seen that , but every element of  is not an element of . 

Proposition 3.12. Let  , ∈IVNP-soft set .Then 
i. 

ii. 
iii. 

Proof. It is clear from Definition 3.3-3.5. 

Proposition 3.13. Let  ,  and ∈IVNP-soft set. Then 
i.    =  and = =  

ii. and = 
iii.  and 

Proof. It can be proved by Definition 3.3-3.5 

Proposition 3.14 Let ∈ IVNP-soft set. Then 
i.    

    = 
ii.  = 

iii. = 

Proposition 3.15. Let ,  and ∈IVNP-soft set. Then 
i. = 

ii. = 
iii. = 
iv. = 
v. ( ) =  ( ) 

Proof. It is clear 

Proposition  3.16. Let ,  and ∈IVNP-soft set, Then 
i. = 

ii. = 
iii. = 
iv. = 
v. ( ) =  ( ) 
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Proof. It is clear 

Proposition 3.17.Let  ,  and ∈IVNP-soft set, Then 
i.  ( )= (  )   (      ) 

ii.  ( =( )  (      ) 

Proof. It can be proved by definition 3.8 and 3.9 

Proposition 3.18.Let  , ∈IVNP-soft set, Then 
i. = 

ii. = 

Proof. It is clear. 

Definition 3.19. Let ∈IVNP-soft set, Then 
i. OR-product of  and  denoted by  ,is defined as following 

(x, y)=  (<(x,y),([max {  ,   (y)},max{  ,   (y)}], 
[min {  ,   (y)},min{  ,   (y)],[min{  ,  

 (y)}, 
min {  , (y)]) >, (x,y)) :x,y ∈
where (x,y)= (x) (y) 

ii. AND-product of and  denoted by  is defined as following 
(x,y)=  (<(x,y), ([min{     ,   (y)},min{     ,   (y)}], 

[max {  ,   (y)},max{  ,   (y)], [max{  ,  
 (y)}, 

max {  , (y)]) >, (x,y)) :x,y ∈
where (x,y)= (x) (y) 

Proposition 3.20.Let  ,  and ∈IVNP-soft set. Then 
i. = 

ii. = 
iii. = 
iv. ( )  =   ( ) 
v. ( ) =  ( ) 

Proof . It can be proved by definition 3.15 

4. Parameter Reduction Method

In this section, we have defined a parameter reduction method of an IVNP-soft set, that 
produce a soft set from an IVNP-soft set. For this, we define level set for IVNP-soft set. 
This concept presents an adjustable approach to IVNP–soft sets based decision making 
problems.  

Throughout this section we will accept that the parameter set E and the initial universe U are 
finite sets.  

Definition 4.1 Let ∈ IVNPS. Then for a = [  ,  ],  = [  ,  ], = [  ,  ]  [0, 1],  the 
(s, t, q) –level soft set of   is a crisp soft set,denoted by (  ; ( ,   ,  )), defined by 
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( ; ( ,  , )) = {((  , (  )) :  ∈ E} 
where 

 ,  ,  ,    and   , 

Remark In Definition 4.1, s   [0,1] can be viewed as a given least threshold on degrees of 
truth-membership, t [0, 1] can be viewed as a given greatest threshold on degrees of 
indeterminacy-membership and q  [0, 1] can be viewed as a given greatest threshold on 
degrees of falsity-membership. If  ,     

     ,     
     ,     

        and  
 ,  , it shows that the degree of the truth-membership of x with 

respect to the u is not less than s, and the degree of the indeterminacy-membership of u with 
respect to the parameter x is not more than t and the degree of the falsity-membership of u 
with respect to the parameter x is not more than q. In practical applications of IVNP-soft 
sets, the thresholds s,t,q [0, 1] is pre-established by decision makers and reflect decision 
makers requirements on “truth-membership levels”, “indeterminacy-membership levels ”and 
“falsity-membership levels”. 

Definition 4.2 Let ∈ IVNPS and an = [ , ], = [ , ], 
= [    

 , ] [0, 1] which is called a threshould of IVNSP-soft set. The level soft set 
of  with respect to ( ,     ,    ) is a crisp soft set , denoted by 

(  ; ( ,  , )) , 

defined by; 
(  ; ( ,  , )) = {((  , (  )) :  ∈ E} 

where, 
 ,  ,   ,    and   , 

 = inf {  :  ∈ E},  = inf {  :  ∈ E} 
 = inf {  :  ∈ E},  = inf {  :  ∈ E} 
 = inf {  :  ∈ E},  = inf {  :  ∈ E} 

The (    ,    ,     ) is called the mmm-threshold of the IVNP-soft set    . In the 
following discussions, the mmm-level decision rule will mean using the mmm-threshold and 
considering the mmm-level soft set in IVNP-soft sets based decision making. 

Definition 4.3 Let ∈ IVNPS and an = [ , ], = [ , ], 
= [    

 , ]  [0,1] which is called a threshould of IVNSP-soft set . The level soft set 
of  with respect to ( ,    ,    ) is a crisp soft set, denoted by 
(  ; ( ,    , )),defined by; 

( ; ( ,  , )) = {((  , (  )) :  ∈ E} 
where, 

 ,  ,  ,  and   , 

 =   ∈ ,   =  ∈

 =   ∈ ,  =  ∈
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  =   

     
    

  ∈  ,     
  =   

     
    

  ∈   

For all   ∈   , where if   ∈ E/   then   (     . 
The (    ,     ,    ) is called the mmm-threshold of the IVNP-soft set   . In the 
following discussions, the mid-level decision rule will mean using the mid-threshold and 
considering the mid-level soft set in IVNP-soft sets based decision making. 
 
Definition 4.4 Let   ∈ IVNPS and an     = [     

  ,    
  ],     = [     

  ,    
  ], 

    = [     
  ,    

  ]  [ 0, 1] which is called a threshould of IVNSP-soft set . The level soft 
set of    with respect to (    ,     ,    ) is a crisp soft set, denoted by  
(   ; (    ,     ,    )),defined by; 
 

(   ; (    ,     ,    )) = {((  ,   (  )) :  ∈ E} 
where,  
    
    

      ,    
    

      ,    
    

       ,    
    

        and      
    

      
,    

    
      

    
  = sup{        :  ∈ E},     

  = sup{         :  ∈ E} 
    
  = inf{        :  ∈ E},     

  = inf{         :  ∈ E} 
    
  = inf{  

      :  ∈ E},     
  = inf{   

      :  ∈ E} 
 
The (    ,     ,    ) is called the Mmm-threshold of the IVNP-soft set    . In the 
following discussions, the Mmm-level decision rule will mean using the Mmm-threshold 
and considering the Mmm-level soft set in IVNP-soft sets based decision making. 
 
Definition 4.5 Let   ∈ IVNPS. The threshold based on median could be expressed as a 
function  
     : A→      , i.e.     =[    

 ,    
 ],     = [    

 ,    
 ],    = [    

 ,    
 ]   [0,1] 

for all ε ∈ A, where for ∀ε ∈ A,    
 ,    

  is the median by ranking the degree of interval 
truth membership of all alternatives according to order from large to small (or from small to 
large), namely 

    
  = 

 
  
 

  
   

   
 
     

 
 
                                                     

    
   

 
   

 
 
    

   
 
   

 
   

  

 
 

                  

  

    
  = 

 
  
 

  
   

   
 
     

 
 
                                                     

    
   

 
   

 
 
    

   
 
   

 
   

  

 
 

                  

  

    
  ,    

 is the median by ranking the degree of interval indeterminacy membership of all 
alternatives according to order from large to small (or from small to large), namely 
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 = 

 = 

And     
  ,  is the median by ranking the interval  degree of falsity membership of all 

alternatives according to order from large to small (or from small to large), namely 

 = 

 = 

The (    ,     ,    ) is called themed-threshold of the IVNP-soft set    . In the following 
discussions, the Med-level decision rule will mean using the Med-threshold and considering 
the Med-level soft set in IVNP-soft sets based decision making. 

Example 4.6   = {(<   ,[0.1,0.5], [ 0.4, 0.5] ,[0.2 ,0.3]>,{  ,   }),(<   ,[0.2,0.3], [ 0.5, 
0.7], [0.1, 0.3]>,{   ,   }),(<  ,[0.1,0.3], [ 0.1, 0.7] ,[0.3 ,0.4]>,{   ,  ,   })} 
Then  

= [0.13, 0.36], = [0.33, 0.63],  = [0.2 0.43] 
= [0.1, 0.3], = [0.1, 0.5],   = [0.1,0.3] 
= [0.2, 0.5], = [0.1, 0.5],  = [0.1,0.3] 

= [0.2, 0.3],  = [0.5, 0.7],   = [0.1, 0.3] 

Theorem 4.7.  Let ∈ IVNP-soft set (  ; (    ,     ,    )), (   ; (    ,     ,    ))and  
( ; ( ,     ,    ))  be the mid-level soft set, max –level soft set and min –level soft 
set of   ,respectively. Then, 
1. ( ; ( ,  , ))   ( ; ( ,  , )) 
2. ( ; ( ,  , ))   ( ; ( ,  , )) 

Proof. Let ∈ IVNPSS.From definition, definition and definition,it can be seen that   
,     

      
      

  and      
      

      
 . 



Journal of New Results in Science 7 (2014) 58-71    68 

Thus 
i. for all ∈ E which providing the inequalities  

, (   ,  (  )   (   ; (    ,  , ))  . 

So, (  ; ( ,  , ))   ( ; ( ,  , )) 
ii. it can be proved similar way
Now, we construct an IVNP –soft sets decision making method by the following algorithm; 

Algorithm: 

Step 1. Input the IVNP –soft sets -soft set    
Step 2.Input a threshold (     ,     ,    ) ( or (     ,     ,    ),(    ,     ,    )) by 
using mid –level decision rule ( or Mmm-level decision rule, mmm-level decision rule) for 
decision making. 
Step 3. Compute mid-level soft set ( ; ( ,  , )) ( or Mmm-level soft set ( ; 
( ,  , )) ,mmm –level  soft set ( ; ( ,  ,    ), Med –level  soft set ( ; 
( ,  , )) 
Step 4. Present the level soft set (  ;( , , )) (or the level soft set (  ; 
( , , )), the level soft set (  ;( , , ), Med–level  soft set (  ; 
( ,  , )))in tabular form. 
Step 5. Compute the choice value     of   for any    ∈ U , 
Step 6. The optimal decision is to select   if    =        ∈ 

Remark If k has more than one value then any one of    may be chosen. If there are too 
many optimal choices in Step 6, we may go back to the second step and change the 
threshold (or decision rule) such that only one optimal choice remains in the end. 

Example 4.8. Assume that a company wants to fill a position. There are 4 candidates who 
fill in a form in order to apply formally for the position. There is a decision maker (DM) that 
is from the department of human resources. He wants to interview the candidates, but it is 
very difficult to make it all of them. Therefore, by using the parameter reduction method, the 
numbers of candidates are reduced to a suitable one. Assume that the set of candidates 
U={  ,   ,   ,   ,  ,   ,   } which may be characterized by a set of parameters E={  ,   , 
  ,  ,   ,   } For i=1,2,3,4,5,6 the parameters i stand for experience, computer knowledge, 
training, young age, diction and flexible working hours compatible, respectively. Now, we 
can apply the method as follows: 

Step 1. After thinking thoroughly, he/she evaluates the alternative according to choosing 
parameters and constructs an IVNP-soft set   as follows 

= {<  , ([0.6, 0.8], [0.1, 0.2], [0.3, 0.5])>,{  ,  ,  ,  }), (<  ,([0.5, 0.6], [0.3, 0.4], 
[0.2, 0.3])>,{  ,  ,  ,  }),(<  , ([0.4, 0.5], [0.3, 0.4], [0.1 ,0.4])>, 
{  ,  ,  ,  }), (<  , ([0.1, 0.2], [0.4, 0.8], [0.4 ,0.5])>, {  ,  ,  ,  }}, 
(<  , ([0.4, 0.5], [0.2, 0.4], [0.3, 0.6])>, {  ,  ,  })},(<  , ([0.7, 0. 7],  
[0.1, 0.3], [0.1, 0.5])>, {  ,  ,  }})} 

Step 2. Then, we have 
, = [0.45, 0.655],  = [0.23, 0.41] ,   = [0.23, 0.46] 

, = [0.7, 0.8],  = [0.1, 0.2] ,   = [0.1, 0.3] 
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, = [0.1, 0.2],       = [0.1, 0.2],    = [0.1, 0.3] 
, = [0.25, 0.35],    = [0.35, 0.6] ,   = [0.25, 0.45] 

Step 3. Thus, the ( ,    ,    )-level soft set of is (after the necessary calculations, 
they can be seen that ( , ,    )-level soft set,( , , )-level soft set, and 
(    ,  , )- level soft set of  are not suitable for decision making in this problem.) 
(  ; ( ,  , )) = {(<  ,([0.5, 0.6], [0.3, 0.4], [0.2 ,0.3])>,{  ,  ,  ,  }), 

  (<  , ([0.4, 0.5], [0.3, 0.4], [0.1, 0.4])>, {  ,  ,  ,  })} 

Step 4. Tabular form of (  ; ( ,  , )) is 

u 
0 1 0 0 1 1 0 1 
0 1 1 0 0 1 1 0 

Step 5. Then, we have the choice value    for i = 1, 2, 3,…,8 
= 0,  = 2,  = 1,  = 0,  = 1,  = 2,  = 1 and  =1 

Step 6. So,the optimal decision is   or  
Note that this decision making method can be applied for group decision making easily with 
help of the definition 3.19. 

5. Conclusions

In this work, we have introduced the concept of interval valued neutrosophic parameterized 
soft set and studied some of its properties. The complement, union and intersection 
operations have been defined on the interval valued neutrosophic parameterized soft set. The 
definition of parameter reduction method is introduced with application of this operation in 
decision making problems. 
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To be and Not to be – An introduction to Neutrosophy: 

A Novel Decision Paradigm 

Florentin Smarandache, Sukanto Bhattacharya 

The Need for a Novel Decision Paradigm in Management 

 The process of scientific decision-making necessarily follows and input-output system

 The primary input is in the form of raw data (quantitative, qualitative, or both)

 This raw data is subsequently “cleaned”, “filtered”, and “organized” to yield information

 The available information is then processed accordingly to either (a) very well-structures,

“hard” rules, or (b) partially-structured “semi-soft” rules, or (c) almost completely

unstructures “soft” rules

 The output is the final decision which may be a relatively simple and routine one such as

deciding on an optimal inventory re-ordering level of a much more complex and involved

such as discounting a product line or establishing a new SBU. It has been observed that

most of these complex and involved decision problems are those that need to be worked

out using the “soft” rules of information processing

 Besides being largely subjective, “soft” decision rules are often ambiguous, inconsistent

and even contradictory

 The main reason is that the event spaces governing complex decision problems are not

completely known. However, the human mind abhors incompleteness when it comes to

complex cognitive processing. The mind invariably tries to “fill in the blanks” whenever

it encounters incompleteness

 Therefore, when different people form their own opinions from a given set of incomplete

information, it is only to be expected that there will be areas of inconsistency, because

everybody will try to „complete the set” in their own individual ways, governed by their

own subjective utility preferences
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 Looking at the following temporal trajectory of the market price of a share in ABC Corp.

over the past thirty days, would it be considered advisable to invest in this asset?

 The “hard” decision rule applicable in this case is that “one should buy and asset when its

price is going up and one should sell an asset when its price is going down”

 The share price as shown above is definitely trending in a particular direction. But will

the observred trend over the past thirty days continue in the future? It is really very hard

to say because most financial analysts will find this information rather inadequate to

arrive at an informal judgement

 Although this illustration is purely anecdotal, it is nevertheless a matter of fact that the

world of managerial decision-making is fraught with such inadequacies and „complete

information” is often an unaffordable luxury

 The more statiscally minded decison-takers would try to forecast the future direction of

the price trend of a share in ABC Corp. from the given (historical) information

 The implied logic is that the more accurate this forecast the more profitable will be the

oucome resulting from the decision

 Let us take two financial analyst Mr. X and Ms Y trying to forecast the price of a share in

ABC Corp. To fit their respective trendlines, Mr. X considers the entire thirty days of

data while Ms Y (who knows about Markovian property of stock prices) considers only

the price movement over a single day

Mr. X’s forecast trend 

Ms. Y’s forecast trend 
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 Who do you think is more likely to make the greater profit?

 Most people will have formed their opinions after having made spontaneous assumption

about the orientation of the coordinate axes i.e. the temporal order of the price data! This

is an example of how our minds sub-consciously complete an “incomplete set” of

information prior to cognitive processing

 Obviously, without a definite knowledge about the orientatopm of the axws it is

impossible to tell who is more likely to make a greater profit. This has nothing to do with

which one of Mr. X or Ms. Y has the better forecasting model. In fact it is a somewhat

paradoxical situation – we may know who among Mr. X and Ms. Y has a technically

better forecasting model and yet not know who will make more profit! That will remain

indeterminate as long as the exact orientation of the two coordinate axes is unknown!

 The neutrosophic probability approach makes a distinction between “relative sure event”,

event that is true only in certain world(s) and “absolute sure event”, event that is true for

all possible world(s)

 Similar relations can be drawn for “relative impossible event” / “absolute impossible

event” and “relative indeterminate event” / “absolute indeterminate event”

 In case where the truth- and falsity- components are complimentary i.e. they sum up the

unity and there is no indeterminacy, then one is reduced to classical probability.

Therefore, neutrosophic probability may be viewed as a three-way generalization of

classical and imprecise probabilities
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 In our little anecdotal illustration, we may visualize a world where stock prices follow a

Markovian path and Ms. Y knows the correct orientation of the coordinate axes. That Ms.

Y will make a greater profit thereby becomes a relative sure event and that Mr. X will

make a greater profit becomes a relative impossible event.

 Similarly we may visualize a different world where stock prices follow a linear path and

Mr. X knows the correct orientation of the coordinate axes. That Mr. X will make a

greater profit thereby becomes a relative sure event and that Ms. Y will make a greater

profit becomes a relative impossible event

 Then there is our present world where we have no knowledge at all as to the correct

orientation of the coordinate axes and hence both become relative indeterminate events!

 Because real-life managers have to mostly settle for “incomplete sets” of information, the

arena of managerial decision-making is replete with such instances of paradoxes and

inconsistencies. This is where neutrosophy can play a very significant role as a novel

addition to the managerial decision paradigm!

Neutrosophy 

A new branch of philosophy which studiues the origin, nature, and scope of neutralities, as well 

as their interactions with different ideational spectra (1995); 

Extension of dialectics; 

The Fundamental Theory: Every idea <A> tends to be neutralized, diminished, balanced by 

<NonA> ideas (not only <AntiA> as Hegel asserted) – as a state of equilibrium 

<NonA> = what is not <A> 

<AntiA> = the opposite of <A> 

<NeutA> = what is neither <A> nor <AntiA>; 

Basement for Neutrosophical Logic, Neutrosophic Set, Neutrosophic Probability 
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Applications of Neutrosophy to Indian Philosophy 

In India’s VIIIth – IXth centuries one promulgated the Non-Duality (Advaita) through the non-

differentiation between Individual Being (Atman) and Supreme Being (Brahman). The 

philosopher Sankaracharya (782-814 AC) was then considered the savior of Hinduism, just in the 

moment when the Buddhism and the Jainism were in a severe turmoil and India was in a spiritual 

crisis. Non-Duality means elimination of ego, in order to blend yourself with the Supreme Being 

(to reach the happiness). 

Or, arriving to the Supreme was done by Prayer (Bhakti) or Cognition (Jnana). It is part of 

Sankaracharya’s huge merit (charya means teacher) the originality of interpreting and 

synthesizing the Source of Cognition (Vedas, IVth century BC), the Epic (with many stories), and

the Upanishads (principles of Hindu philosophy) concluding in Non-Duality. 

Then Special Duality (Visishta Advaita) follows, which asserts that Individual Being and 

Supreme Being are different in the beginning, but end to blend themselves (Ramanujacharya, 

XIth century).

And later, to see that the neutrosophic scheme perfectly functions, Duality (Dvaita) ensues, 

through whom the Individual Being and Supreme Being were differentiated (Madvacharya, 

XIIIth – XIVth centuries).

Thus, Non-Duality converged to Duality, i.e. <NonA> converges through <NeutA> to <A>. 
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Introduction to Nonstandard Analysis 

Operations with Classical Sets 

S1 and S2 two real standard or nonstandard sets. 

Addition: 

Substraction: 

Multiplication: 

Division of a set by a non-null number: 
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Neutrosophic Logic 

Differences between Neutrosophic Logic and Intuitionistic Fuzzy Logic 

Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

430



Neutrosophic Logic generalizes many Logics - | 
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Neutrosophic Logic Connectors 
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Neutrosophic Set (NS) 
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Neutrosophic Set Operators 

Differences between Neutrosophic Set and Intuitionistic Fuzzy Set 
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Applications of Neutrosophic Logic - | 
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Applications of Neutrosophic Sets 

More Applications of Neutrosophic Logic and Neutrosophic Set 
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A few specific applications of neutrosophics in business and economics 

Neutrosophics as a situation analysis tool 
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Applications of Neutrosophics in the reconciliation of financial market 
information 
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Applications of Neutrosophics in Production Facility Layout Planning 

and Design 
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Dialectics and the Dao: 
On Both, A and Non-A in Neutrosophy and Chinese Philosophy 

Feng Liu 

Florentin Smarandache 

This paper introduces readers to a new approach to dialectical logic: neutrosophy.  Specifically it 
proposes a multi-valued logic in which the statement “both A and Non-A,” historically rejected as logically
incoherent, is treated as meaningful. This unity of opposites constitutes both the objective world and the 
subjective world –a view with deep roots in Buddhism and Daoism, including the I-Ching. This leads in 
turn to the presentation of a framework for the development of a contradiction oriented learning 
philosophy inspired by the Later Trigrams of King Wen in the I-Ching. We show that although A and Non-
A are logically inconsistent, they can be understood to be philosophically consistent. Indeed, recognition 
of their consistency is the basis for freeing ourselves from the mental confusion which results from taking 
as real what are in fact just mental impressions.  

1. Neutrosophy

Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as 
well as their interactions with different ideational spectra.  It is the basis of neutrosophic logic, a multi-
valued logic that generalizes fuzzy logic and deals with paradoxes, contradictions, antitheses, and 
antinomies. The characteristics of this mode of thinking are as follows: Neutrosophy  

 reveals that world is full of indeterminacy;
 interprets the uninterpretable;
 regards, from many different angles, old concepts and systems, showing that an idea which is true

in a given system of reference , may be false in another one, and vice versa,
 attempts to make peace in the war of ideas and to make war on peaceful ideas, and
 measures the stability of unstable systems the and instability of stable systems.

Let's denote by <A> an idea, or proposition, theory, event, concept, entity, by <Non-A> what is not <A>, 
and by <Anti-A> the opposite of <A>.  Also, <Neut-A> means what is neither <A> nor <Anti-A>, i.e. 
neutrality in between the two extremes. <A'> is a version of <A>. Note that <Non-A> is different from 
<Anti-A>.   

The Main Principle of Neutrosophy: 

Between an idea <A> and its opposite <Anti-A>, there is a continuum-power spectrum of neutralities 
<Neut-A>. 

The Fundamental Thesis of Neutrosophy: 

Any idea <A> is T% true, I% indeterminate, and F% false, where T, I, F are subsets in ] -0, 1+ [.

The Main Laws of Neutrosophy: 
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Let < > be an attribute, and (T, I, F) belongs to ] -0, 1+ [3.  Then:

 There is a proposition <P> and a referential system {R}, such that <P> is T% <α>, I%
indeterminate or <Neut-α >, and F% <Anti-α >.

 For any proposition <P>, there is a referential system {R}, such that <P> is T% <α >, I%

indeterminate or <Neut-α >, and F% <Anti-α >.

 <α > is at some degree <Anti-α >, while <Anti-α > is at some degree <α >.

2. The Objective world and subjective world

These ideas can shed light on the relationship between the objective world and our subjective 
impressions, leading to insights which, we shall see, find important echoes in the Buddhist and Daoist 
traditions. It is commonly assumed that the objective world consists simply of the totality of things which 
we can see or otherwise experience. This is, however, very wrong. In fact, this is rather a belief than an 
objective reflection, and cannot be proven. In his paper “To be or not to be, A multidimensional logic
approach” Carlos Gershenson [2] has generalized proofs for the following claims:

 Everything both is and is not to a certain degree (i.e., there is no absolute truth or falsehood).

 Nothing can be proven definitively to exist or not exist, i.e., no one can prove that his
consciousness is right.

 I believe, therefore I am (i.e., I take it true, because I believe so).

What I believe is something, but it is not the figure I have in my mind. 

This is, interestingly enough, the starting point in Daoism (F. Liu [2]). The Daodejing begins with the 
following saying:  

Dao, Daoable, but not the normal Dao; name, namable, but not the normal name. 

We can say that something is Dao, but this doesn’t mean what we intend for it to mean. Whenever we
mention the Dao, it somehow slips beyond the limits of what we meant in mentioning it. 

The Daodejing deals with the common problem: “What/who creates everything in the world we see and
feel?” It is Dao: like a mother that bears things with shape and form. But what/who is the Dao? It is just 
unimaginable, because whenever we try to imagine it, our imagination can never be it. We can never 
completely describe it. The more we describe it, more wrong we are. It is also unnamable, because 
whenever we name it, our concept based on the name can never be adequate to it. 

Daoism illustrates the origin of everything in a form which doesn’t show in any form we can perceive. This 
is the reason why it says that everything comes from nothingness, or that nothingness creates every form 
through dynamic change. Whatever we can perceive is merely the created form, rather than its genuine 
nature, as if we were to distinguish people by their outer clothing. Even great scientists like Einstein are 
far from really understanding nature.  

3. Creativity and implementation

Once we have understood the inconceivability of the Dao, we can model our mind in the alternation of yin 
and yang that is universal in everything (Feng Liu): Yang pertains to dynamic change, and directs great 
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beginnings of things; yin to relatively static stage, and gives those exhibited by yang their completion. In 
the course of development and evolution of everything yang acts as the creativity (Feng Liu) that brings 
new beginnings to it, whereas yin implements it in the forms as we perceive as temporary states. It is in 
this infinite parallelism that things inherit modifications and adapt to changes. 

If, when asked what the figure at the left represents, we answer that is a circle, we are inhibiting our 
creativity. Nor should we hold that it is a cake, a dish, a bowl, a balloon, the moon, or the sun, for 
we also spoil our creativity in this way. Then, what is it?  “It is nothing.” Is it correct? It is, if we do 
not hold on to the assumption “it is something”. It is also wrong, if we persist in the doctrine that 
“the figure is something we call nothing.” This nothing has in this way become something that 

inhibits our creativity. How ridiculous! 

Whenever we hold the belief “it is …”, we are loosing our creativity. Whenever we hold that “it is not …”,
we are also loosing our creativity. Our true intelligence requires that we completely free our mind — that 
we adhere neither to any extremity nor to “adhering to no assumption or belief”. This is a kind of genius or 
gift rather than a logical rule, acquired largely after birth, e.g., through Buddhist practice. Note that our 
creativity lies just between intentionality and unintenationality  (F. Liu [2]). 

Not (it is) and not (it is not), 
It seems nothing, but creates everything, 

Including our true consciousness, 
The power of genius to understand all. 

Considerable insight regarding contradiction-compatible learning philosophy 
can be garnered from the Later Trigrams of King Wen in the I-Ching. When 
something (controversial) is perceived (in Zhen), it is referred (in Xun) to various 
knowledge models and, by assembling the fragments perceived from these 
models, we reach a general pattern to which fragments attach (in Li), as leading 
to the formation of an hypothesis, which needs to be nurtured and to grow up 
(Kun) in a particular environment. When the hypothesis is mature enough, it 
needs to be represented (in Dui) in diverse situations, and to expand and 
contradict older knowledge (in Qian) to update, renovate, reform or even 
revolutionize the existing knowledge base. In this way the new thought is verified, 
modified and substantialized. When the novel thought takes the principal role 
(dominant position) in the conflict, we should have a rest (in Kan) to avoid being trapped into depth (it 
would be too partial of us to persist in any kind of logic, to adapt to the outer changes). Finally, we reach 
the end of the cycle (in Gen). 

I-Ching [in Chinese: Yi Jing] means: Yi = change, Jing = scripture.  It deals with the creation and evolution 
(up and down) of everything in such a perspective that everything is an outer form of a void existence, 
and that everything always exists in the form of a unity of opposites, whether that unity is understood as 
compensatory or complementary. This philosophy shows that contradiction acts as the momentum or 
impetus to learning and evolution. Without controversy there is no innovation. This is essentially the 
principal thesis of neutrosophy (Florentin Smarandache). In the cycle there is unintentionality implied 
throughout it: 

 Where do the reference models relating to the present default model come from? They are
different objectively.

 How can we assemble the model from different or even incoherent or inconsistent fragments?

 If we always do it intentionally, how does the hypothesis grow on its own, as if we study something
without sleep?

 How can our absolute intention be complemented without contradiction?
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 Is it right that we always hold our intention?

 There is only one step between truth and prejudice — when the truth is overbelieved regardless of
constraint in situations, it becomes prejudice.

 Is there no end for the intention? Then, how can we obtain a concept that is never finished? If
there is an end, then it should be the beginning of unintentionally, as yin and yang in the Tai Chi
figure.

4. Completeness and incompleteness: knowledge and practice

There always is contradiction between completeness and incompleteness of knowledge. Various papers 
presented by Carlos Gershenson prove this point. The same point is developed in the Daoist and 
Buddhist traditions. This contradiction is shown by the fact that people are satisfied with their knowledge 
relative to a default, well-defined domain. But later on, they get fresh insight in it. They face contradictions 
and new challenges in their practice and further development. As a result of this we are forced to ask: 

 Do we understand ourselves?

 Do we understand the universe?

 What do we mean by knowledge, complete whole or incomplete?

Our silliness prompts us to try to find complete specifications, but where on earth are they (Gershenson 
[1])? Meanwhile, our effort would be nothing more than a static imitation of some dynamic process (Liu 
[1]), since humans understand the world through the interaction of the inter-contradictory and inter-
complementary effects of two kinds of knowledge: perceptual knowledge and rational knowledge - they 
can’t be split apart.

 In discovering knowledge there are merely strictly limited conditions that focus our eyes to a local
domain rather than on a open extension, therefore our firsthand knowledge is only relative to our
default referential system, and possibly extremely subjective.

 Is it possible to reach a relatively complete piece at first? No, unless we are gods.

 Then we need to perceive the rightness, falseness, flexibility, limitation, etc. of our ideas and arrive at
a more realistic conception --and an understanding the real meaning of our previous knowledge.

 Having done that, we may have less subjective minds, based on which our original concept is
modified, revised, and adapted as further proposals.

 Again through practice, proposals are verified and improved.

 This cycle recurs to the infinite, in each of which our practice is extended in a more comprehensive
way. The same is true of our knowledge.

 We discover the truth through practice, and again through practice verify and develop the truth. We
start from perceptual knowledge and actively develop it into rational knowledge; then start from
rational knowledge and actively guide revolutionary practice to change in both the subjective and the
objective world. Practice, knowledge, again practice, and again knowledge. This form repeats itself in
endless cycles, and with each cycle the content of practice and knowledge rises to a higher level.
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 Through practice, we can verify our knowledge, find the inconsistencies and incompleteness in it, and
face new problems, and new challenges as well, maintaining a  critical outlook. Knowledge is based
on an infinite cycle of critiques and negations(partial or revolutionary) which constantly transform our
subjective world. We are never too old to learn.

5. Conclusion

Whenever we say “it is”, we refer it to both subjective and objective worlds. We can creatively use the 
philosophical expression “both A and non-A” to describe both our subjective world and the objective
world, and possibly the neutrality of both. Whenever we say “it is”, there is a subjective world, in the sense 
that concepts always include subjectivity. So our problem becomes: is “it” really “it”? A real story from the
Chinese Tang dynasty recorded in a sutra (adapted from Yan Kuanhu Culture and Education Fund) 
illustrates this principle nicely: 

Huineng arrived at a Temple in Guangzhou where a pennant was being blown by wind. Two monks 
who happened to see the pennant were debating what was in motion, the wind or the pennant. Huineng 
heard their discussion and said: “It was neither the wind nor the pennant. What actually moved were 
your own minds.” Overhearing this conversation, the assembly (a lecture was to begin) were startled at 
Huineng’s knowledge and outstanding views.

When we see the pennant and wind we will naturally believe we are right in our consciousness, however 
it is subjective. In other words, what we call “the objective world” can never absolutely be objective at all. 
Whenever we believe we are objective, this belief is subjective too. In fact, all these things are merely our 
mental creations (called illusions in Buddhism) that in turn cheat our consciousness: There is neither 
pennant nor wind, but only our mental creations. The world is made up of our subjective beliefs that in 
turn cheat our consciousness. This is in fact a cumulative cause-effect phenomenon.  

Everyone can extricate himself out of this maze, said Sakyamuni and all the Buddhas. Bodhisattvas 
abound in the universe. Their number is as many as that of the sands in the Ganges (Limitless Life 
Sutra). 
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The Fifth Function of University:  
“Neutrosophic E-function” of Communication-Collaboration-Integration 

of University in the Information Age 

Stefan Vladutescu Florentin Smarandache

The study is based on the following hypothesis with practical foundation: 
- Premise 1 - if two members of university on two continents meet on the Internet 
and initiate interdisciplinary scientific communication; 
- Premise 2 - subsequently, if within the curricular interests they develop an 
academic scientific collaboration; 
- Premise 3 - if the so-called collaboration integrates the interests of other members 
of the university; 
- Premise 4 - finally, if the university allows, accepts, validates and promotes such 
an approach; 
- Conclusion: then it means the university as a system (the global academic 
system) has, and it is, exerting a potential function to provide communication, 
collaboration and integration of research and of academic scientific experience. 

We call this function of the university “neutrosophic e-function” because it 
mixes heterogeneous notions. It is specialized, according to the functions of 
“teaching-learning, researching, the public interest and entrepreneurial interest,” as 
the fifth function. As the other four have structured and shaped university 
paradigms, this one configures one as well. E-function makes visible a functional 
structure in a scientific scan: the communicative-collaborative-integrative 
paradigm. 

Beyond the practical and inferential logic arguments, the research bases the 
hypothesis on historical and systemic-operational arguments. The foundation 
consists of the fundamental contributions of some academics (Y. Takahara, C. 
Brătianu, M. Păun, R. Carraz, Y. Harayama, I. Jianu, A. Marga, M. Castells, H. 
Etzkowitz, A. Ghicov, T. Callo, and S. Naidu), and our contribution is 
apprehending the strong tendency of the university system to exercise an e-
function and to move toward a global university e-system. 
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I. The concept of university. Axis 1 

In relation to the requirements of accuracy, the side resonances turn the idea 
of university into an elusive and vague concept. This does not come from the 
specialists’ lack of concern for the radiography of such a major social agent. 
University is, from all existing institutions, the organization with the oldest, most 
solid and most thorough history. As a place of knowledge, it is also a medium of 
self-understanding. From this perspective, it is paradoxical that in the house of 
knowledge is not found a thorough and robust self-understanding. It seems that the 
university does not have a clear and lucid self-awareness. Epistemologically, the 
university is the fountain, the criteria and the archive of knowledge. Any 
knowledge, it appears, implies a lack of knowledge. And maybe, once the status of 
knowledge is accepted, ignorance can be considered as the foundation of 
knowledge. Therefore, an explanation of the elusiveness of the concept of 
universality comes from the uncertainty about the content of the ignorance. In a 
way, the meaning of university is the unknown. The awareness of the unknown and 
the awareness of the need for developing knowledge forms the energetic poles that 
feed the university system. 

Another line of explanation is to understand current university as moving 
quickly in relation to the subject of knowledge and to the actors of knowledge. 
University is the most agile, insidious and versatile of all the institutions of 
knowledge. 

Thirdly, the fact that it knows itself better and better, while rapidly changing, 
makes visible knowledge variable itself. Variability is the subject of entropy and 
thus of negentropy and information. Therefore, the accuracy of self-knowledge 
induces an effect of vagueness that reinforces the impression of elusiveness. 

Practically and conceptually, the university is all right. The first axis of 
understanding the university is this conceptual elusive understanding. 

II. University as an organization. Axis 2

On a second axis of preliminary understanding-explaining, the university is 
specialized, as shown by Professor Constantin Brătianu as “a very complex 
organization” (2005, pp. 43-55). Generically, the organization is founded as a 
social group dedicated to a specific task. Subsequently, Norman Goodman shows it 
has a “formal structure that tries to accomplish the task” (1998, p. 71). In 
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accomplishing the defining task, it exploits some of the statutes and potential roles 
of its members. Related, it generates status and roles arising from the title of 
member and of organizational actor. 

The genesis of organization is not conceptual, but social. Through it, society 
solves social problems. Essentially, traditionally, university solves two categories 
of problems: knowledge and education. The first category includes the production 
and transfer of knowledge. The other includes ethical, political, medical, 
economic-entrepreneurial education etc. 

Organizations are defined not by the tasks they propose, by the objectives 
they set or by the mottos they are acting under, but by the problems they solve. 
They are not ends but means. Organization is a social tool for solving problems. 
The word organization comes from the French vocable “organisation” and 
etymologically comes from the Greek “organon” which means “instrument.” 
Basically, the organization carries out activities that lead to solving social 
problems. The first feature of the organization is to be an association of people 
interacting in the idea of preparing a group engaged in cultural, social, educational, 
and administrative activities. Underlying features are linked to it. Members related 
to a set of values, are subjected to rules and accomplish shared tasks when 
performing roles and statutes. 

Organizations may be firms, companies, associations, governmental or non-
governmental entities, foundations, etc. The most important organizations have 
legal grounds. When the activities of an organization and the social relations 
established by it acquire state importance, they are regulated by law. The 
organizations that acquire state importance or have national or supranational 
interest are legally recognized as institutions. 

University is a fundamental scientific and educational institution of a state. 
Organizations have a social profile not because of the accomplishment of “specific 
objectives,” as S.P. Robbins, D. A. DeCenzo and M. Coulter deem (2010), but due 
to the problems they solve. In our opinion, the role of the organization as an 
intelligent operator is to perform activities that solve problems. 

III. University as a system. Axis 3

3.1. A third axis of comprehension is to address the university as a system. 
As shown by Yasuhito Takahara, “An organizational system is a complex of 
interconnected human and nonliving machines” (2004, p. 3).   

As a system, the organization has inputs and outputs. The inputs would be of 
two kinds: “The first type is a resource input such as personnel, material, money, 
energy, and information. The second is external managerial information related to 
customer demands, consumer behaviors, marketing conditions, economic 
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situations, etc.“ (Takahara Y., 2004, p. 4). The organizational mechanism 
“transforms the resource inputs into products or services and transmits them to 
environments as an output” (Takahara Y., 2004, p. 4). The Japanese specialist 
understands the organization as being “formed for a purpose” (Takahara Y., 2004, 
p. 3) and as performing activities in this regard. About the transformation of input 
resources into output products or services is stated: “The transformation, which 
usually requires support of a specific technology, is the primary activity of an 
organization” (Takahara Y., 2004, p. 4). The professors Constantin Brătianu, 
Simona Vasilache and Ionela Jianu conceive the organization similarly. They 
emphasize that any organization is made up of “resources,” “processes” and 
“products” (Brătianu C., S. Vasilache, Jianu I., 2006). In a later article, Constantin 
Brătianu highlights: “In any organization all activities can be grouped together in 
two basic processes: the production process and the management process” (2007, 
p. 376). The production process (technological process) leads to achieving tangible
final results of the organization that can be “objects or services” (as Y. Takahara 
asserted in 2004). The organizational system develops management activities as 
well: “management activity is to control the primary activity of transformation so 
that the organizational goal is realized” (Takahara Y., 2004, p. 4). The 
management process is connected with the production process and together they 
made up a systemic unit. It is focused on ensuring the production performing 
“effectively and efficiently”: the fulfillment of tasks correctly and obtaining 
products with a minimum allocation of resources and execution of those activities 
that lead to achieving goals. In the same context, Professor Constantin Brătianu 
explains: “The process of management can be performed through its main 
functions: planning, organizing, leading and controlling” (2007, p. 376). 

3.2. Topologically, the organization as a system is defined by several 
modules. The above mentioned specialists identify the input, the output and the 
processes (Constanin Brătianu) or the transformation (Yasuhito Takahara). 
Collaterally, in order to designate activities performed between the input module 
and the output module we will use the concept of throughput. David Besanko, 
David Dranove, Mark Stanley and Scott Schaefer use the term “throughput” to 
conceptualize a phenomenon that conditions the successful businesses. Throughput 
is “the movement of inputs and outputs through the production process” (2010, p. 
100).              

So by throughput it is understood the module of activities which ensures the 
conversion of input (resources) to output (products and/or services). 

3.3. Besides the topological coordinate the system has two more coordinates: 
the structural and the functional. 

The entirety, the “multitude of elements” of a system with the connections, 
the “relations between them” “form the system structure” (Dima I.C. Cucui I., 
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Petrescu M., Stegăroiu I., Năbârjoiu N., 2007, p. 11). The structure is emerging as 
a configuration of the moment. The system has potential for structural changes. It 
remains valid even when structural changes occur. In this coordinate, the system 
seems to be capable of allowing the evolution of elements and relationships, of 
components. At one point, the system has a structure, a state and a set of 
possibilities for transformation and development. The structure is the specific 
internal way of organizing the system elements. It is a configuration currently 
stable and qualitatively determined of the connections between elements. 

3.4. The functional coordinate of the system is inextricably linked to the 
structural coordinate. Between the system structure and the functions performed by 
the system, a strong connection exists. The structure determines the function and 
the functioning modifies the structure. As the functioning is the prerogative of 
managers, it is at the same time, subjected to the power of the management 
strategies. As Peter F. Drucker shows, “structure follows strategy” (2010, p. 94). 
The functional connections, on the other hand, determine in time the variations in 
input and output. The state system is a functional problem. It appears as a constant 
of the connection’s parameters within certain time. State is the measure of the 
system characteristics of the moment. The functional coordinate consists of the 
processes by which the system performs its functions. The transition from one 
functional state to another is the transformation. 

The components of an organization are employees, managers, leaders, 
clients, beneficiaries etc. This is the structural capital of the organization. Systemic 
social connections appear as relations. In its relational capital, a system may 
include relationships of cooperation, collaboration, exchange, determination, 
influence, and communication. They may be hierarchical, vertical, horizontal, etc. 
Relations are those that ensure the system stability and allow its operation and 
adaptation to internal and external environments (natural, social, financial, 
economic, strategic, etc.). Relationships vary in time and give the dynamic 
character of the system. Effective systems seek to maintain stability. In general, 
however, systems have a strong inertia. As S.P. Robbins argues, “Organizations, 
by their very nature, are conservative” (2008, p. 187). 

Structural-functional internal stability can be maintained in two ways. 
Adapting to the environment, systems tend to preserve internal steady states and 
perform its functions. First of all, W. R. Ashby states, the actions of the system “as 
varied as they are have one goal, to maintain constant conditions in the internal 
environment” (1958, p. 121). The more structurally elements are more independent 
of each other the more each one develops a greater capability to adapt. A better 
flexibility of the elements, namely a lower interdependence, is a premise for higher 
functional stability of the system. The second manner that the system preserves its 
stability in is feedback. Yasuhito Takahara speaks of two types of stability: 
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“behavior stability and structural stability” (2004, p. 4). “Behavior stability” is 
achieved through “feedback mechanism” and “structural stability” (or “the practice 
of keeping characteristic parameters of an organization constant”) is achieved ”by 
higher level management activities” (2004, p. 4). 

In the article “Interactions among components of the university system,” 
Mihaela Păun (from Louisiana Tech University) and Miltiade Stanciu (from ASE 
Bucharest) start from the assumption of the university as system and institution. 
Zetetic stake is finding a revealing answer to the question: “Which is the most 
important component/resource in a university?” (2008, p. 94). Research is moving 
toward the components/resources of the university. The perspective is, implicitly, 
topological, structural and functional. The referred components are students, 
teachers and infrastructure. Resources are put into the equation to conclude about 
an intangible resultant. The unknown is defined: the human components (students, 
teachers) and the infrastructure are crucial in the university performance and 
competitiveness. They are equally important. From other perspective, we mention 
that there are “teaching oriented” universities and “researching oriented” 
universities. It is also recalled the existence of components of “teaching” and 
“researching” in most universities (Păun M., Stanciu M., 2008, p. 98). 

Students and teachers appear to be defining systemic academic components 
(M. Trow, 1975). Professor Constantin Brătianu considers that “professors and 
students represent the most important resources” (2009, p.67). In higher education, 
teachers and students are defined as actors who have specific functions. Social 
actors exercising functions become system factors. Functional actors, ontological 
factors of the university, are the students and teachers (including teachers who 
have managerial responsibilities). They are engaged in an academic contract of 
didactic communication. The rights and obligations of the academic actors bear the 
mark of university functions. In turn, academic institution exists through its factors 
and through didactic teaching and research actions carried out in the university. 

IV. The four institutionalized functions of the university

4.1. The first functions: “Teaching-learning” and “Researching.”  

Generations of universities, the Humboldtian university paradigm: 

Today, university is at the end of an evolution and in a transformation 
process that takes into account the forecasting, the foresight and the normative 
future. The functioning of the system means conducting specific activities. This 
happens within some processes. As Yasuhito Takahara (2004), Constantin 
Brătianu, S. Vasilache and Ionela Jianu (2006) argue, any organization runs two 
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types of processes: processes of production (or technology) and management 
processes. The set of academic technological processes is subsumed to some 
functions undertaken by the university institutions. On the other hand, an effective 
university management process will be in line with technological processes, first of 
all and defining, regarding the functions of the university system. This university 
management process is supported by a structure with a clear profile, which Yuko 
Harayama and René Carraz would call “the university management structure” 
(2008, p. 93). 

In 2003, Parliament of Australia retained that the “core functions of 
university” are “teaching, learning, and research” (2003, p. 21440). The one who 
diachronically has implemented this academic and functional model was Wilhelm 
von Humboldt, founder of the University of Berlin. “His university model,” 
professor Gerd Hohendorf (Hohendorf G., 1993, pp. 617-618) argues, “is 
characterized by the unity of teaching and research. It was to be a special feature of 
the higher science establishments that they treated science as a problem which is 
never completely solved and therefore engaged in constant research.” 

Professor Constantin Brătianu and professor Yuko Harayama agree with the 
idea that Wilhelm von Humboldt introduced a “new university paradigm” 
(incidentally in Greek “paradigm” meant “modeled”). In addition, the Romanian 
specialist found that the two functions were also complementary. “The new 
university paradigm... is founded on the unity and the complementarity of the 
functions of teaching and research” (Brătianu C., 2009, p. 63). 

The core of the functional Humboldtian model is that scientific issues are 
never “completely solved” and that, therefore, the university must remain 
“engaged in constant research.” Understanding the Humboldtian model as a third 
generation of universities, Yuko Harayama emphasizes that within it the situation 
of the academic subjects is a situation of constant discovery. This means that “the 
teaching and learning process” occurs through “research activities” (Harayama Y., 
1997, p. 13). In other words, the discoveries occur in university; possibly even in 
the teaching process. To reach this stage, the university has gone through, Yuko 
Harayama asserts, two models. 

The first of university system emerges in the eleventh century and the 
twelfth century. Its elements are the teachers and students. The function of the 
system is one of knowledge transfer (knowledge is validated and scientific 
information is consecrated and preserved). The teachers do not create, do not 
innovate, do not discover. They take knowledge and new knowledge elements and 
they teach them. The new elements of knowledge are generated outside academia. 
The function of this university is one of “teaching.” 

A second generation of universities, according to Professor Yuko Harayama, 
keeps the non-investigative character and guides the teaching act only toward the 
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elites of the religious and political spectrum. We would say that this model is 
focused on “teaching” too, its characteristic being the limitation induced by the 
religious or political pressures. 

The third model, introduced by Wilhelm von Humboldt, is bi-functional: 
“teaching and research.” 

Today the university model is based on the Humboldtian model. The 
technological university process is essentially a “teaching-learning process.” Over 
time this process has always been the focus of academic management in order to 
increase its efficiency and effectiveness. On the other hand, he was doubled at a 
time by the research process. The opinion of Professor Constantin Brătianu is 
similar: “The fundamental competences of a generic university are: teaching, 
learning and research. All of these are knowledge dynamic processes”(2009, p. 
69). These two key functions have been multiplied in the policies developed in 
universities. Thus the universities are no longer limited today to the two functions. 
As Howard Newby argues “Today's universities are expected to engage in lifelong 
learning (not just teaching), research, knowledge transfer, social inclusion (via 
widening participation or access for non-traditional students), local and regional 
economic development, citizenship training and much more”( 2008, pp. 57-58). 

4.2. The third function: utility and social engagement 

During the early twentieth century, the external environment required that 
universities have a stronger orientation toward utility. University transfer generates 
a system of high education that should acquire a more remarkable social, 
economic, financial and moral utility. He who brings in this practical necessity is 
John Henry Cardinal Newman. In his “The Idea of University,” he considers 
theology as a “branch of knowledge” (1999, p. 19) and militates for “useful 
knowledge” and for “usefulness” (1999, pp. 102-109). Through the knowledge 
provided, the university must exercise a function of utility and social involvement, 
locally, regionally or nationally. The transferred knowledge is required to acquire 
utility and practical involvement. 

4.3. Entrepreneurial function. Entrepreneurial Paradigm 

The functional development of the university has as its main purpose the 
performance and the competitiveness. Modern and post-modern universities are 
financed either by public funds or private funds and sometimes have a double 
funding. Private universities were the first who raised the question of self-
financing. Related, the research function included an economic efficiency criterion. 
Therefore, having at least this double causality, the commercial, and economic 

Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

452



entrepreneurial function has enforced in the set of functions. This remodeled the 
principal functions too, the ones of “teaching, learning and researching.” High 
education institutions have also assumed the entrepreneurial task function. In 1983, 
in the article “Entrepreneurial Scientists and Entrepreneurial Universities in 
American Academic Science,” Henry Etzkowitz launched the concept of 
“entrepreneurial university.” He argued that Thorstein Veblen had admitted at the 
beginning of the twentieth-century the possibility “that American universities 
would increasingly take on commercial characteristics.” Then, Henry Etzkowitz 
noted that “universities... are considering the possibilities of new sources of funds 
to come from patenting the discoveries made by holding academic appointments        
from the sale of knowledge gained by research done under the contract with 
commercial firms, and from entry into partnerships with private business 
enterprises” (1983, p. 198). A university exerting such an entrepreneurial function 
is an entrepreneurial university. In 2000, Henry Etzkowitz and his colleagues 
would find that “entrepreneurial university is a global phenomenon” and 
understand that it was “the triple helix model of academic-industry-government 
relations.” They speak, in this case, of the “entrepreneurial paradigm” (H. 
Etzkowitz, A. Webster, C. Gebhardt, Cantisano, Terra BR, 2000, p. 313). The 
concept of “entrepreneurial university” was considered lucrative and was 
developed so that, in 2007, David Woollard, Oswald Jones and Michael Zhang 
realized that this feature (generally accepted as a function) is, along with “teaching 
and researching the third mission” (2007, p. 1), meaning “commercialization of 
science .” 

However, the concept also keeps a dose of lack of understanding and a dose 
of misunderstanding (Stanciu. Şt., 2008, pp. 130-134). However, in Romania the 
concern for an entrepreneurial university is already solid. Since 1998, professor 
Panaite Nica has taken scientifically into account the entrepreneurial function. 
Subsequently, Professor Valentin Mureşan (2002) brought in convergence opinions 
of university entrepreneurial specialists from France, England and Romania. For 
now, the concept of “Entrepreneurial University is still fuzzy and culturally 
dependent” (Brătianu C., Stanciu Şt., 2010, p. 133). 

V. Collaborative-Communications Paradigm, the fifth function: 
function of communication, collaboration-integration 

The functions of the university system are related to the mending demands 
required by the internal environment and by the needs to adapt to the external 
environment. These functions are initially mission assumed by the management 
structure. Once proven, the practical validity and the mission effectiveness, for a 
longer period and in several universities, it becomes a function of the global 
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university system. 
Functions are ways of permanent structural changing-transforming of the 

university system in relation to the internal requirements and external needs. As 
specified by Andrei Marga, university functions in society and fulfills “functions 
which develop along with the changes around them” (2009, p. 152). Following the 
same line of ideas, Andrei Marga takes into account “the multiple functions of 
university” (2004, p. 13). In exercising these functions, the university is presented 
“as a powerful scientific research center… for acquiring and applying knowledge,” 
and “as a source of technological innovation, as an intellectual authority in 
critically examining situations; as a space for commitment to civil rights, social 
justice and reforms“ (Marga A., 2004, p. 13). 

Functions are, in general, “institutionalized” by the laws that give the 
university the character of institution. Thus, for example, social utility missions or 
entrepreneurial plans that were undertaken by some universities 25 years ago are 
now a function of the university system in general. Moreover, supranational 
authorities currently allow future university functions. 

“The Bologna Declaration” (1999) mentions many of the functions of the 
university, teaching, research and a predicted communication-dissemination 
function. “The University functions in the societies having differing organization 
being the consequence of different geographical and historical conditions, and 
represents an institute that critically interprets and disseminates culture by the way 
of research and teaching.” 

Nowadays, the environment university develops is one it has contributed to. 
This environment is not one in which the university decides. It must adapt to it. 

The globalization of economic, financial, social phenomena is, on the one 
hand, the result of knowledge development, of creativity and innovation, and on 
the other, of their putting into practice. The world is in the Information Age. There 
has been a digital revolution that has succeeded everywhere. Interaction, 
networking, connectivity that is always the engine of society acquires new values 
in the new context. Social relations are digitally imprinted. Some of them even 
develop completely or partially, as mediated by computers. Many social relations 
have a virtual component. 

The Information Age began after 1970 with the first personal computers, 
expanded after 1990 with the introduction of the Internet and strengthened after 
2000 with the generalization of the Internet, with its use widely and globally. 

In his trilogy, Information Age (1996, 1997, 1998, second edition 2000, 
2001, 2004), Manuel Castells states: “Toward the end of second millenium of the 
christian era several events of historical significance transformed the social 
landscape of human life. A technological revolution, centered around information 
technologies, began to reshape, at accelerated peace, the material basis of society. 
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People increasingly organize their meaning not around what they do but on the 
basis of what they are. Meanwhile, on the other hand, global networks of 
instrumental exchanges selectively switch on and off individuals, groups, regions 
and even countries. “Our societies are increasingly structured around a bipolar 
opposition between the Net and the Self” (Castells M ., 1996, p. 1 p. 2 and p. 3). 
Taking ideas expressed in the late 1980s, Manuel Castells formulates and sets in 
trilogy the concept of the “Information Age.” “Prologue: the Net and the Self” 
opens the first volume “The Rise of the Network Society.” Here with the idea of 
the Information Age, two more ideas are displayed, that of the “network society” 
and that of the opposition between “Net” and “Self.” Later, in his book, 
Communication Power (2009), Manuel Castells will talk about the Information 
Age as the “digital age” or “network age.” The Information Age is the era of 
information society, information economy, information policy, etc. It is not a 
change of vision, but a transformation of substance, a historic turning point 
transformation. There is the digitization, globalization and putting in interaction to 
the components of the global social system. 

Illustrating for the practical impact of digitization is the banks case. The 
globalization and interdependence brought by digitization went beyond any 
boundaries. They induced significant changes, major changes, namely functional 
changes. Banks, like all other operators, actors, and factors of the social, economic, 
and political systems, found themselves confronted with their own limits: some 
uncontrollable limits. In this respect, Lloyd Darlington points out: “For the first 
time in 300 years, the very nature of banking has changed. We still handle money, 
but information, not money, is now the lifeblood of our industry. From what was 
essentially a transaction-based business, where customers come to you (or didn’t), 
banking has to make the leap into what is essentially a sale-and-marketing culture” 
(1998, p. 115). 

The Information era has induced significant changes in the internal 
environment and external environment of the university system. It has generated 
changes in the way the system should respond to the challenges and opportunities 
generated by the digital revolution, the technological revolution. The university 
system must adapt to external processes. To the external environmental changes, 
the university management must respond adaptively. The technological revolution 
has brought not only the transformation of the external environment, but it has also 
brought new tools for the university system to adapt. The challenge is primarily 
one of the university system functioning as a management coordinate and, 
secondly, in its “production” coordinate. The vision, missions and academic values 
are going through changes. In their content, strategic management includes 
adaptive tasks to respond to exogenous factors induced by digitization: extended or 
sometimes generalized computing and Internet communication, as well as rapid 
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globalization of knowledge, discoveries, innovations, etc. 
University is becoming more and more a place for creative knowledge. In 

visions, missions and values, functional commitments begin to transpire. In other 
words, on their own some universities assume new functions. In time, through their 
inter-university resonance, similar commitments in visions, mission and values go 
national. They are institutionalized and become functions of any university system. 

For example, in his strategic document, Oxford Brooks University mentions 
the traditional, modern and postmodern functions and it involves performing 
activities we think will become functions specific to the Information Age. In “Our 
strategy for 2020,”Oxford Brooks University stated: “Oxford Brooks University 
occupies a strong position in UK higher education. We have a sound and growing 
international reputation for the quality of our teaching, learning and research and 
we are a vital part of and contributor to the local and national economy and 
society.” 

Remain fundamental nuclear functions of the university: “teaching, learning 
and researching.” 

Public interest and entrepreneurial functions were institutionalized: “we are 
a vital part of and contributor to the local and national economy and society.” The 
strategy states: “We also need to ensure that our organizational structures support 
staff and students in their activities, that they facilitate the integration of research 
and teaching and promote inter-disciplinarity and diversity. We are international in 
our orientation: in our curriculum, our staff, our student body and our increasingly 
interdependent world partnership in an increasingly interdependent world. We 
aspire to be a university which makes a commitment to an educational culture 
where mentorship is valued and teaching is integrated with both research and 
cutting-edge practice from the professions.” 

In the space it exists, the university must place itself as the main generator 
and supplier of knowledge. The relevant context of the current university system is 
structured mainly by the action of three factors. These factors-buoys of the context 
are:  

a) Computing, technology, rapid innovation (prefigured by and currently
under development by Gordon Moore's law: “the computing power of microchips 
doubles every 18 months”); 

b) Accelerated extension of the information-communication systems,
(categories of users increase, diversify and amplify their importance: according to 
Robert Metcalfe’s postulate: “a network's value grows proportionally with the 
numbers of users” and according to George Gilder’s law “the total bandwidth of 
communication systems triple every 12 months”); 

c) Development and accreditation of a collaborative and disseminating
academic environment (the transition from unilateral projects to international and 
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multilateral projects, the application of the principle of “shared knowledge,” the 
liberalization of flows of knowledge and the setting of new dissemination 
channels). 

The fundamental phenomena taking place in the internal environment are a 
permissive-adaptive and intelligent replication of those from the external 
environment: tech-digitization, globalization and interdependence. They have a 
direct impact on the activities carried out in the university and indirectly (mediated 
by management) on the functions of the university system. 

According to the strategy Oxford - 2020, management assures (“ensure”) in 
connection with the involvement in reforming the functions of “teaching” and 
“research”: “facilitate the integration of research and reaching” and “commitment 
to”... “teaching integrated with both research and cutting-edge practice.” 

Related, we mention a commitment to “promote inter-disciplinarity and 
diversity.” A direction with a functional touch is the decision that the university 
should be “international in our orientation: in our curriculum, our staff, our student 
body and our partnership.” If at first already accredited four functions are 
mentioned, this latter functional commitment is specific to the Information Age 
world: “an increasingly interdependent world.” 

Manuel Castells considers “globalisation and digitization” as “the two most 
profound social and economic trends of our age” (2009, p. 70). The main feature of 
globalization is reflected in the fulminant emergence of networks. A “Global 
Network Society” emerges. “Network society is to the Information Age,” Castells 
states, “what the industrial society was to the Industrial Age” (2009, p. 12). In the 
“Global Network Society” image, universities are characterized as academic 
institutions with a recognizable profile. They “are at the cutting edge of research 
and teaching on the global network society.” Keeping in mind two of the functions 
of the university “teaching” and “research,” we may notice the acceptance of a 
commitment project: “project of situation the university within the technological 
and intellectual conditions of the Information Age” (Castells M., 2009, p. 3). 
Manuel Castells is not concerned with how the university should develop in the 
Information Age. 

Our thesis is that in the context of the “Digital Age,” the university system 
must assume new functions adaptively. These functions are not surprising 
occurrences. They have been preliminarily mentioned in the university strategies, 
either incidentally as vision, mission and values or as precise missions. In the 
context of separation of functions the university system had to institutionalize, we 
mention Professor Andrei Marga’s point of view. He has argued that the twenty-
first century university is forced to face many challenges, listing ten: “the 
implementation of the Bologna Declaration (1999), globalization, the sustainability 
and the identity of a university, the autonomy, the quality assurance, the 
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Phenomenon of “brain drain,” the issue of multiculturalism of leadership, the 
climate of change, the overcoming of relativism, and the recuperation of the vision 
based on knowledge “(Marga A., 2008). 

Smart organizations are characterized, among other things, by flexibility, 
learning and a high potential for change. As the most important pole of knowledge 
and as a decisive development pole, the university is among the most intelligent 
organizations. Therefore, we anticipate that university systems will even take on 
new functions according to the Digital Age opportunities. They will not expect that 
from opportunities, the challenges should become necessities. The new paradigm 
of a pure specificity for the Information Age will be a collaborative-
communicational paradigm. 

We predict that the current university system will connect into a single 
network under a title like “Universities Global Network.” It is already mentioned, 
as Professor Adrian Ghicov does, about the “matching network” for an “efficient 
learning” (2008, p. 29) and about the “idea of integration and completeness” (Callo 
T., 2005, p. 49). Following the same line of ideas, Bogdan Danciu, Margaret Dinca 
and Valeria Savu consider communication and collaboration as concepts of 
adaptation in the “academic field” (2010, p. 87). 

University collaborative platforms will be open in areas and disciplines. 
Yuko Harayama and René Carraz count on “scientific collaboration,” a feature 
found in the Japanese university system; see Harayama Y., R. Carraz, 2008.) Thus, 
“teaching” and “researching” could be carried out in the network. In this respect, 
Ilie Bădescu, Radu Baltasiu and Cristian Bădescu talk about “research networks” 
(2011, p. 248). IT infrastructure will enable the exchange of lectures held by 
teachers, live, interactively, in the videoconferencing system. Teachers specialize 
in certain subjects or who have important contributions on specific topics will be 
able to teach, using computer highways, the students from other universities in 
different regions or even other continents. As Ana Maria Marhan argues, cognitive 
players have not only become users of information technology, but they have 
mentally adjusted with the computer tools for learning, research, knowledge: a 
lucrative relationship between man and computer has been established (2007, pp. 
12-14). Moreover, the teaching-learning in the network will capitalize improving 
the effect of “social facilitation” discovered by Robert B. Zajonc; “the mere 
presence of others” improves performance (1965, p. 274). The presence of students 
and teachers from other universities in videoconferencing will enhance the 
performance of teaching-learning knowledge and information. Students, as stated 
by Gheorghe Iosif, Ştefan Trăuşan-Matu, Ana-Maria Marhan, Ion Juvină şi 
Gheorghe Marius (2001), will be involved in designing cooperatively, with 
teachers, educational objectives; the training-educational process will be 
accomplished in relation to the “learning needs” and the “learning tasks,” using 
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computer technology, especially the Internet. 
The integration of university research will start by regional, national projects 

and will expand globally. Collaborative platforms will allow the dissemination and 
unification of knowledge in areas and disciplines. In this manner, a knowledge 
base will arise for each discipline to avoid knowledge, research, parallel 
investigation or discovery in some places of old discoveries made in other units of 
knowledge. On the platforms, virtual research teams may rise which can synthesize 
all relevant knowledge on a specific subject and to continue research on behalf of 
the entire community of specialists. Researchers from different universities will 
work on joint projects in virtual teams in collaboration platforms. Interdependence 
of the world will be so fully visible regarding the interdependence of research and 
learning too. Research will be better and more equitable and professional and 
student performance indicators will gain a unique and relevant basis for reporting 
and evaluation. At this moment it has already achieved the digitization of some of 
the activities induced by the use and occurrence in university of the traditional 
university-canonical function. Decisive steps were taken to implement computer 
strategies concerning the “learning-teaching” function. Well-known Australian 
specialist, Som Naidu, notes that today student should learn in a new context, one 
“of e-learning; open, distant, and flexible learning environments” (2003, p. 362). 
Naidu says that “In the midst of all this interest in the proliferation of e-learning, 
there is a great deal of variability in the quality of e-learning and teaching.” (2003, 
p. 354). On this basis and related, the professor at the University of Melbourne
develops a guide of principles and procedures. The study requires the idea of 
digitization by “e-learning and teaching” and other processes undertaken by the 
university system (S. Naidu, 2003). 

We value and fight for strengthening and developing the communicative-
collaborative-integrative functions of the global university system. If the Digital 
Age brings, however, globalization and interdependence, we should not expect that 
they be imposed, but we should welcome them. It is good to settle all opportunities 
from challenges. It would be a beneficial and wonderful feed-forward response. In 
fact, some steps toward this emerging fifth function have already been taken. 

Finally, it is arguable that it is about a global e-university in a global e-
system and that e-communication and collaboration function applies not only to 
universities, but to all institutions, and even to individuals entering the electronic 
global communication system. 
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Análisis  de textos de José Martí utilizando  mapas 

cognitivos neutrosóficos 

Maikel Leyva-Vazquez, Karina Perez-Teruel, 
Florentin Smarandache 

Yo vengo de todas partes, 

Y hacia todas partes voy: 

Arte soy entre las artes, 

Y en los montes, montes 
soy. 

José Martí 

Palabras clave: José Martí, mapas cognitivos neutrosóficos, causalidad  

1. Introducción

Martí, el más universal de los cubanos, fue un autor preocupado y con fe en la 

utilidad de la virtud. En este aspecto merece especial atención su artículo 

Maestros Ambulantes publicado en Nueva York, mayo de 1884 [1]. En el 

presente trabajo se presenta una propuesta para facilitar el análisis de su obra 

haciendo uso de los mapas cognitivos neutrosóficos (MCN) [2].  

El trabajo está motivado por la importancia de interpretar las relaciones causales 

en los textos escritos por José Martí. La causalidad es una elemento fundamental 

para el entendimiento del mundo[3], y juega un papel  fundamental en el 

aprendizaje especialmente en niños [4].  
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El artículo continúa de la siguiente forma. En la Sección 2 se aborda la tema tica 

de los Mapas Cognitivos Difusos/Neutrosóficos, En la Sección 3 se desarrolla la 

propuesta y en la Sección 4 se presentan las conclusiones y recomendaciones 

de trabajos futuros. 

2. Mapas cognitivos difusos/neutrosóficos.

La causalidad es un tipo de relación entre dos entidades, causa y efecto. Es un 

proceso directo  cuando A causa B y B es el efecto directo de A, o indirecto 

cuando A causa C a través de B y C es un efecto indirecto de A [3]. A pesar de 

la dificultad de desarrollar una definición de la causalidad los humanos poseen 

una comprensión de esta que permite elaborar modelos mentales de la 

interacción entre los fenómenos existentes a su alrededor [5]. 

En  el mundo cotidiano los enlaces entre causa y efecto son frecuentemente 

imprecisos o imperfectos por naturaleza [6]. Este tipo de causalidad, es 

denominada causalidad imperfecta, desempeña un papel importante en el 

análisis de textos [7].  

Los mapas cognitivos difusos (MCD) fueron  introducidos por Kosko [8] como 

una mejora de los mapas cognitivos [9]. Los MCD extienden los mapas cognitivos 

describiendo la fortaleza de la relación mediante el empleo de valores difusos en 

el intervalo [-1,1]. Los nodos son conceptos causales y pueden representar 

distintos elementos [14].  
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Constituyen una estructura de grafo difuso con retroalimentación empleados 

para representar causalidad. Los MCD ofrecen un marco de trabajo flexible para 

representar el conocimiento humano y para el razonamiento automático [10].  

Los MCN constituyen una extensión de los MCD basado en la lógica 

neutrosófica.  La lógica neutrosófica es una extensión de la lógica difusa que 

permite representar la indeterminación en las relaciones causales [2].  

3. Desarrollo

El texto martiano Maestros Ambulantes [1]  se encuentra cargado de expresiones 

simbólicas. A continuación se analizan un fragmento y se buscan posibles 

relaciones causales. 

“Ser bueno es el único modo de ser dichoso.  Ser culto es el único modo de ser 

libre. Pero, en lo común de la naturaleza humana, se necesita ser próspero para 

ser bueno.” 

Como posibles nodos son los siguientes: bondad (N1), dicha (N2), cultura (N3), 

libertad (N4), prosperidad (N5). A continuación se representa las relaciones 

causales existentes en el texto (Figura 1). 

N1

N3

N2

N5

N4
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Figura 1. Mapa Cognitivo Difuso. 

A continuación se muestra la matriz de adyacencia obtenida (Figura 2). 

= 0 1 0 0 0 00 0 0 0 0 00 0 0 1 0 00 0 0 0 0 01 0 0 0 0 0 

Figura 2. Matriz de adyacencia del MCD 

Se puede introducir el concepto de indeterminación entre los nodos y obtener a 

partir  de expertos la interpretación en este caso la relación libertad (N4) y 

prosperidad (N5) (Figura 3). 

N1

N3

N2

N5

N4

Figura 3. Mapa Cognitivo Neutrosófico. 

A continuación se muestra la matriz de adyacencia obtenida mostrado la relación 

de indeterminación entre N5 y N4 (figura 4).  

= 0 1 0 0 00 0 0 0 00 0 0 1 00 0 0 01 0 0 0 
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Figura 4. Matriz de adyacencia del MCN 

Este modelo puede ser utilizado en la enseñanza contribuyendo a la 

interpretación de los textos. Sobre el modelo se puede desarrollar análisis 

estático y dinámico.  

4. Conclusiones

En el trabajo se presenta la posibilidad de interpretar los textos martianos a partir 

de mapas cognitivos neutrosóficos y su posibilidad de ser empleado en la 

enseñanza de su obra. Como trabajos futuros se encuentran el desarrollo de 

procedimientos semiautomáticos para el análisis de oraciones causales en 

textos[3]. Otra área de futuros trabajos es desarrollar la creación de un 

repositorio de modelos causales.  
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Neutrosofia, o Nouă Ramură a Filosofiei 

     Abstract: 
     În această lucrare este prezentată o nouă ramură a filosofiei, numită neutrosofie, 
care studiază originea, natura, şi scopul neutralităţilor, precum şi interacţiunile lor cu 
diferite spectre de ideatic.  Teza fundamentală: Orice idee <A>  este T% adevărată, 
I% nedeterminată şi F% falsă, unde T, I, F sunt submulţimi standard sau non-standard 
incluse în intervalul non-standard ]-0, +1 [. 
     Teoria fundamentală:  
Fiecare idee <A> tinde să fie neutralizată, diminuată, echilibrată de idei <Non-A> (nu 
numai <Anti-A>, cum a susţinut Hegel) - ca o stare de echilibru. 
      Neutrosofia stă la baza logicii neutrosofice, o logică cu valoare multiplă care 
generalizează logica fuzzy, la baza mulţimii neutrosofice care generalizează mulţimea 
fuzzy, la baza probabilităţii neutrosfice şi a statisticilor neutrosofice, care 
generalizează probabilitatea clasică şi imprecisă şi respectiv statisticile. 

     Cuvinte cheie şi expresii: analiza non-standard, număr hiper-real, infinitezimal, 
monadă, interval unitar real non-standard, operaţiuni cu mulţimi.  

     1991 MSC: 00A30, 03-02, 03B50 

1.1. Cuvînt înainte.  
     Pentru că lumea este plină de nedeterminare, o imprecizie mai precisă este 
necesară. De aceea, în acest studiu este introdus un nou punct de vedere în filosofie, 
care ajută la generalizarea ‘teoriei probabilităţilor’, ‘mulţimii fuzzy’, şi ‘logicii fuzzy’ 
la < probabilitate neutrosofică>, <mulţime neutrosofică> , şi respectiv <logică 
neutrosofică>. Ele sunt utile în domeniul inteligenţei artificiale, reţelelor neuronale, 
programării evoluţionare, sistemelor neutrosofice dinamice, şi mecanicii cuantice.  

În special în teoria cuantică există o incertitudine cu privire la energie şi la momentul  
particulelor, deoarece particulele nu au poziţii exacte în lumea subatomică, vom 
calcula mai bine probabilităţile lor neutrosofice la unele puncte (adică implicȃnd un 
procentaj de incertitudine şi nedeterminare - în spatele procentajelor de adevăr şi 
respectiv de falsitate) decȃt probabilităţile lor clasice.  

     În afară de matematică şi de filosofia inter-relaţională, se caută Matematica în 
conexiune cu Psihologia, Sociologia, Economia, şi Literatura.  

     Acesta este un studiu de bază al filosofiei neutrosofice, deoarece consider că un 
întreg colectiv de cercetători ar trebui să treacă prin toate şcolile / mişcările/ tezele / 
ideile filozofice şi să extragă caracteristici pozitive, negative, şi neutre. 
Filosofia este supusă interpretării.  
Prezentăm o propedeutică şi o primă încercare de astfel de tratat.  
[ O filozofie neutrosofică exhaustivă (dacă aşa ceva este posibil) ar trebui să fie o 
sinteză a tuturor filozofiilor dintr-un sistem neutrosofic. ] 

Acest articol se compune dintr-o colecţie de fragmente concise, scurte observaţii, 

Florentin Smarandache 
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diverse citate, aforisme, unele dintre ele într-o formă poetică. (Referinţele principale 
sunt enumerate după mai multe fragmente individuale.) De asemenea, articolul 
introduce şi explorează noi termeni în cadrul avangardei şi al metodelor filozofice 
experimentale sub diverse logici valorice. 

1.2. Neutrosofie, o nouă ramură de Filosofie 

A) Etimologie:
Neutru-sofie [Din francezul neutre <latinul neuter, neutru, şi grecescul sophia, 
calificare / înţelepciune] înseamnă cunoaştere a gândirii neutre. 

B) Definiţie:
Neutrosofia este o nouă ramură a filosofiei, care studiază originea, natura, şi scopul 
neutralităţilor, precum şi interacţiunile lor cu diferite spectre ideatice.   

C) Caracteristici:
Acest mod de gȃndire: 
- propune noi teze filozofice, principii, legi, metode, formule, mişcări; 
- arată că lumea este plină de nedeterminare; 
- interpretează neinterpretabilul; 
- tratează din unghiuri diferite concepte şi sisteme vechi, 
aratȃnd că o idee, care este adevărată într-un sistem de referinţă dat, poate fi falsă în 
altul -- şi invers; 
- încearcă să atenueze războiul de idei, şi să se războiască  cu ideile paşnice; 
- măsoară stabilitatea sistemelor instabile, şi instabilitatea sistemelor stabile. 

D) Metode de Studiu Neutrosofic:
matematizare (logica neutrosofică, probabilitatea neutrosofică şi statisticile  
neutrosofice, dualitate), generalizare, complementaritate, contradicţie, paradox, 
tautologie, analogie, reinterpretare, asociere, interferenţă, aforistic, lingvistic, 
transdisciplinaritate. 

E) Formalizarea:
Să notăm cu <A> o idee, sau propunere, teorie, eveniment, concept, entitate, cu 
<Non-A> ceea ce nu este <A>, şi cu <Anti-A> opusul <A>. De asemenea, <Neut-A> 
simbolizează ceea ce nu este nici <A> nici <Anti-A> şi anume neutralitatea dintre 
cele două extreme. Şi <A'> o versiune a <A>. 
      <Non-A> este diferit de <Anti-A>. 
De exemplu: 
      Dacă <A> = alb, apoi <Anti-A> = negru (antonim), 
dar <Non-A> = verde, roşu, albastru, galben, negru, etc. (orice culoare, mai putin 
albul), 
în timp ce <Neut-A> = verde, roşu, albastru, galben, etc. (orice culoare, cu excepţia 
albului şi negrului), 
şi <A'> = alb închis, etc. (orice nuanţă de alb). 

Într-un mod clasic: 
<Neut-A>   <Neut-(Anti-A)>, adică neutralităţile lui <A> sunt identice cu 
neutralităţile lui <Anti-A>. 
      <Non-A> <Anti-A> şi <Non-A>   <Neut-A> precum şi, 
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      <A> ∩ <Anti-A> =  , 
      <A> ∩ <Non-A> =  , 
ori <A>, <Neut-A> şi <Anti-A> sunt disjuncte două câte două. 
<Non-A> este completarea lui <A> cu privire la mulţimea universală. 
     Dar pentru că în multe cazuri frontierele dintre noţiuni sunt vagi, imprecise, este 
posibil ca <A>, <Neut-A>, <Anti-A> (şi bineinţeles <Non-A>) să aibă părţi comune, 
două cîte două. 

F) Principiul fundamental:
Între o idee <A> şi opusul ei <Anti-A>, există un spectru continuu de putere a 
neutralităţilor <Neut-A>. 

G) Teza fundamentală:
Orice idee <A> este T% adevărată, I% nedeterminată, şi F% falsă, unde T, I, F    
] -0, 1+ [. 

H) Legi principale:
Să luăm < > ca atribut şi (T, I, F) în ]-0, 1+ [3.  Atunci: 
- Există o propunere <P> şi un sistem de referinţă {R}, astfel că <P> este T% < >, 
I% nedeterminat sau <Neut- >, şi F% <Anti- >. 
- Pentru orice propunere <P>, există un sistem de referinţă {R}, astfel că <P> este 
T% < >, I% nedeterminat sau <Neut- > şi F% <Anti- >. 
- < > este într-o anumită măsură <Anti- >, în timp ce <Anti- > este într-o 
anumită măsură < >. 

Prin urmare: 
      Pentru fiecare propoziţie <P> există sisteme de referinţă {R1}, {R2}, ..., astfel că 
<P> arată diferit în fiecare dintre ele - obţinand toate stările posibile de la <P> la 
<Neut-P> până la <Anti-P>. 
Şi ca o consecinţă, pentru oricare două propoziţii <M> şi <N>, există două sisteme 
de referinţă {RM} şi respectiv {RN}, astfel că <M> şi <N> arată la fel. 
Sistemele de referinţă sunt ca nişte oglinzi de curburi diferite care reflectă 
propoziţiile. 

I) Motto-uri:
- Totul este posibil chiar şi imposibilul! 
- Nimic nu este perfect, nici chiar perfecţiunea! 

J) Teorie Fundamentală:
      Fiecare <A> idee tinde să fie neutralizată, diminuată, echilibrată de idei <Non-A> 
(nu numai <Anti-A>, cum a sustinut Hegel) - ca o stare de echilibru. Între <A> şi 
<Anti-A> există infinit de multe idei <Neut-A>, care pot echilibra <A> fără a fi 
necesare versiuni <Anti-A>. 
Pentru a neutraliza o idee trebuiesc descoperite toate cele trei laturi ale sale: de sens 
(adevărul), de nonsens (falsitate), şi de imprecizie (nedeterminare) – apoi trebuiesc 
inversate  / combinate. Ulterior, ideea va fi clasificată ca neutralitate. 

K) Delimitarea de alte concepte şi teorii filozofice:
1. Neutrosofia se bazează nu numai pe analiza de propuneri opuse, aşa cum face
dialectica, ci de asemenea pe analiza neutralităţilor dintre ele. 
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2. În timp ce epistemologia studiază limitele cunoaşterii şi ale raţionamentului,
neutrosofia trece de aceste limite şi ia sub lupă nu numai caracteristicile definitorii şi 
condiţiile de fond ale unei entităţi <E> - dar şi tot spectrul <E'> în legătură cu 
<Neut-E> . 
Epistemologia studiază contrariile filozofice, de exemplu <E> versus <Anti-E>, 
neutrosofia studiaza <Neut-E> versus <E> şi versus <Anti-E> ceea ce înseamnă 
logică bazată pe neutralităţi. 
3-4. Monismul neutru afirmă că realitatea ultimă nu este nici fizică nici mentală. 
Neutrosofia constă într-un punct de vedere pluralist: o infinitudine de nuanţe separate 
şi ultime conturează lumea. 
5. Hermeneutica este arta sau ştiinţa interpretarii, în timp ce neutrosofia creează idei
noi şi analizează o gamă largă de câmp ideatic prin echilibrarea sistemelor instabile şi 
dezechilibrarea sistemelor stabile. 
6. Filozofia Perennis spune adevărul comun al punctelor de vedere contradictorii,
neutrosofia combină cu adevărul de asemenea şi neutralele. 
7. Falibilismul atribuie incertitudine fiecărei clase de convingeri sau propuneri, în
timp ce neutrosofia acceptă afirmaţii 100% adevărate precum şi afirmaţii 100% false, 
- în plus, verifică în care sisteme de referinţă procentajul incertitudinii se aproprie de 
zero sau de 100. 

L) Limitele filozofiei:
     Întreaga filozofie este un tautologism: adevărat în virtutea de formă, pentru că 
orice idee lansată pentru prima oară este dovedită ca adevărată de către iniţiatorul(ii) 
său(i). Prin urmare, filozofia este goală sau dezinformativă, 
şi reprezintă a priori cunoaşterea. 
Se poate afirma: Totul este adevărat, chiar si falsul! 
      Şi totuşi, întreaga filozofie este un nihilism: pentru ca orice idee, odată dovedită 
adevarată, este mai târziu dovedită ca falsă de către urmaşi. Este o contradicţie: fals în 
virtute de formă. Prin urmare, filozofia este supra-informativă şi o cunoaştere a 
posteriori. 
Atfel, se poate afirma: Totul este fals, chiar şi adevărul! 

Toate ideile filozofice care nu au fost încă contrazise vor fi mai devreme sau mai 
târziu contrazise deoarece fiecare filozof încearcă să găsească o breşă în sistemele 
vechi. Chiar şi această nouă teorie (care sunt sigur că nu este sigură!) va fi inversată ... 
Şi mai târziu alţii o vor instala inapoi ... 

Prin urmare, filozofia este logic necesară şi logic imposibilă. Agostoni Steuco din 
Gubbio a avut dreptate, diferenţele dintre filozofi sunt de nediferenţiat. 
Expresia lui Leibniz <adevarat în orice lume posibilă> este de prisos, peiorativă, 
întrucat mintea noastră poate construi de asemenea o lume imposibilă, care devine 
posibilă în imaginaţia noastră. 
(F. Smarandache, "Sisteme de axiome inconsistente", 1995.) 
- În această teorie nu se poate dovedi nimic! 
- În această teorie nu se poate nega nimic! 
Filosofism = Tautologism + nihilism. 

M) Clasificarea de idei:
a) acceptate cu uşurinţă, uitate repede;
b) acceptate cu uşurinţă, uitate greu;
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c) acceptate greu, uitate repede;
d) acceptate greu, uitate greu.

Şi versiuni diferite între orice două categorii. 

N) Evoluţia unui idei <A> în lume nu este ciclică (dupa cum a afirmat Marx),
dar discontinuă, înnodată, fără margini: 
<Neut-A> = fond ideatic existent, înainte de apariţia lui <A>; 
<Pre-A> = o pre-idee, un precursor al lui <A>; 
<Pre-A'> = Spectru de versiuni <Pre-A>; 
<A> = Ideea în sine, care dă naştere implicit la: 
<Non-A> = ceea ce este în afara lui <A>; 
<A'> = Spectru de versiuni <A> după interpretări / înţelegeri (greşite) de către 
persoane, şcoli, culture diferite; 
<A/Neut-A> = Spectru de derivate /deviaţii <A>, deoarece <A> se amestecă parţial 
mai întâi cu idei neutre; 
<Anti-A> = Opusul direct al <A>, dezvoltat în interiorul lui 

      <Non-A>; 
<Anti-A'> = Spectru de versiuni <Anti-A> după interpretări / întelegeri (greşite) de 
către persoane, şcoli, culture diferite; 
<Anti-A/Neut-A> = Spectru de derivate /deviaţii <Anti-A>, 

             ceea ce înseamnă <Anti-A> parţial şi  
             <Neut-A> partial combinate în procentaje diferite; 

<A'/Anti-A'> = Spectru de derivate /deviaţii după amestecarea spectrelor <A'> şi 
<Anti-A'>; 
<Post-A> = După <A>, o post-idee, o concluzie; 
<Post-A'> = Spectru de versiuni <Post-A>; 
<Neo-A> = <A> reluat într-un mod nou, la un alt nivel, în 
condiţii noi, ca într-o curbă iregulată cu puncte inflexiune, în perioade evolute şi 
evolvente, într-un mod de recurent, viaţa lui <A> re-începe. 

"Spirala" evoluţiei, a lui Marx, este înlocuita cu o curbă diferenţială complexă, cu 
urcuşurile şi coborâşurile sale, cu noduri - pentru că evoluţia înseamnă şi cicluri de 
involuţie. 
Aceasta este dinafilozofia = studiul drumului infinit al unei idei. 
<Neo-A> are o sferă mai largă (incluzînd, în afară de părţi vechi ale <A> şi părţi ale 
<Neut-A> rezultate din combinaţii anterioare), mai multe caracteristici, este mai 
eterogen (după combinaţii cu diferite idei <Non-A> ). Dar, <Neo-A>, ca un întreg în 
sine, are tendinţa de a-şi omogeniza conţinutul şi apoi de a dezomogeniza prin 
alaturarea cu alte idei. 
Şi aşa mai departe, până cȃnd <A>-ul anterior ajunge la un punct în care încorporează 
în mod paradoxal întregul <Non-A>, fiind nedesluşit de ansamblu. Şi acesta este 
punctul în care ideea moare, nu poate fi distinctă de altele. Întregul se destramă, 
pentru că mişcarea îi este caracteristică într-o pluralitate de idei noi (unele dintre ele 
conţinȃnd părţi din orginalul <A>), care îşi încep viaţa lor într-un mod similar. Drept 
un imperiu multinaţional. 
Nu este posibil să se treacă de la o idee la opusul său, fără a trece peste un spectru de 
versiuni ale ideii, de abateri sau idei neutre între cele două. 
Astfel, în timp, <A> ajunge să se amestece cu <Neut-A> şi <Anti-A>. 
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Nu am spune că "opusele se atrag", dar <A> şi <Non-A> (adică interiorul, exteriorul 
şi neutrul ideii). 

      Prin urmare, rezumatul lui Hegel a fost incomplet:  o teză este înlocuită de alta, 
numită anti-teză; contradicţia dintre teză şi anti-teză este depăşită şi astfel rezolvată 
printr-o sinteză. Deci Socrate la început, sau Marx şi Engels (materialismul dialectic). 
Nu este un sistem triadic: 
  - Teză, antiteză, sinteză (Hegelieni); 
sau 
  - Afirmaţie, negare, negaţie a negaţiei (Marxişti); 
ci un sistem piramidal pluradic, aşa cum se vede mai sus. 

Antiteza <Anti-T> a lui Hegel şi Marx nu rezultă pur şi simplu din teza <T>. 
<T> apare pe un fond de idei preexistente, şi se amestecă cu ele în evoluţia sa. 
<Anti-T> este construit pe un fond ideatic similar, nu pe un câmp gol, şi foloseşte în 
construcţia sa, nu numai elemente opuse <T>, dar şi elementele de <Neut-T>, 
precum şi elemente de <T >. 
Căci o teză <T> este înlocuită nu numai de către o antiteză <Anti-T>, dar şi de 
diferite versiuni ale neutralităţilor <Neut-T>. 
Am putea rezuma astfel: teză-neutră (fond ideatic înainte de teză), pre-teză, teză, pro-
teză, non-teză (diferită, dar nu opusă), anti-teză, post-teză, neo-teză. 
Sistemul lui Hegel a fost purist, teoretic, idealist. A fost necesară generalizarea. De la 
simplism la organicism. 

O) Formule filozofice:
      De ce există atât de multe şcoli filozofice distincte (chiar contrare)? 
De ce, concomitent cu introducerea unei noţiuni <A>, rezulta inversul ei <Non-A>? 
      Acum, sunt prezentate formule filozofice numai pentru că în domeniul spiritual 
este foarte dificil să obţii formule (exacte). 

a) Legea Echilibrului:
Cu cît <A> creşte mai mult, cu atat scade <Anti-A>. Relatia este urmatoarea: 

      <A><Anti-A> = k<Neut-A>,  
unde k este o constantă care depinde de <A> şi <Neut-A> este un punct de sprijin 
pentru echilibrarea celor două extreme. 

În cazul în care punctul de sprijin este centrul de greutate al neutralităţilor, atunci 
formula de mai sus este simplificată: 
          <A><Anti-A> = k, 
unde k este o constantă care depinde de <A>. 

      Cazuri particulare interesante: 
      Industrializare   Spiritualizare = constant, pentru orice societate. 
Cu cît o societate este mai industrializată, cu atȃt scade nivelul spiritual al cetăţenilor 
săi. 
      Ştiinţa   Religie = constant. 
      Alb   Negru = constant. 
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      Plus   Minus = constant. 
      Împingînd limitele, în alte cuvinte, calculȃnd în spaţiul absolut, se obţine: 
      Totul   Nimic = universal constan. 

      Ne îndreptăm către o matematizare a filozofiei, dar nu în sens Platonian. 

      Graficul 5. O.a.1: 
      Materialism  Idealism = constant, pentru orice societate. 

Axele carteziene verticale şi orizontale sunt asimptote pentru curba M I = k. 

b) Legea Anti-reflexivitate:
<A> în oglindă cu <A> dispare treptat. 
Sau <A>-ul lui <A> se poate transforma într-un <A> distorsionat. 

      Exemple: 
      Căsătoria între rude dă naştere la descendenţi anoşti (de multe ori cu handicap).  
      De aceea, amestecȃnd specii de plante (şi uneori, rase de animale şi oameni), 
obţinem hibrizi cu calităţi şi / sau cantităţi mai bune. Teoria biologică a amestecării 
speciilor. 
      De aceea, emigrarea este benignă întrucat aduce sȃnge proaspat într-o populaţie 
statică. 
      Nihilismul, propovăduit după romanul "Părinţi şi copii" de Turgeniev în 1862 
drept o negare absolută, neagă totul, prin urmare, se neagă pe sine! 
      Dadaismul dadaismului dispare. 

c) Legea de Complementaritate:
<A> simte nevoia să se completeze prin <Non-A> cu scopul de a forma un întreg. 

      Exemple: 
      Persoanele diferite simt nevoia să se completeze reciproc şi să se asocieze. 
(Barbatul cu femeia.) 
      Culorile complementare (care, combinate la intensităţile potrivite, produc albul). 

d) Legea Efectului Invers:

  S 
  P 
  I 
 R 
  I 
 T 
 U 
 A 
 L 

  M A T E R I A L
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Atunci când este încercată convertirea cuiva la o idee, credinţă, sau religie prin 
repetiţii plictisitoare sau prin forţă, acea persoana ajunge să o urască. 

 Exemple: 
     Cu cȃt rogi pe cineva să facă ceva, cu atȃt persoana vrea mai puţin să o facă. 
      Dublȃnd regula, ajungi la înjumătăţire. 
      Ce e mult, nu e bine ... 
(invers proporţional). 
      Când esti sigur, nu fii! 

      Atunci când forţăm pe cineva să facă ceva, persoana va avea o reacţie diferită (nu 
necesar opusă, precum afirma axioma legii a treia a mişcării a lui Newton): 

   R 
 E 

        A 
   G     C 

 Ț 
  I 

    U 
     N 
 F   E 

   ACȚIUNE 

e) Legea Identificării Intoarse:
<Non-A> este un <A> mai bun decȃt <A>. 

      Exemplu: 
      Poezia este mai filozofică decât filozofia. 

f) Legea Întreruperii Conectate:
<A> şi <Non-A> au elemente în comun. 

      Exemple: 
      Există o distincţie mică între "bine" şi "rău". 
      Raţionalul şi iraţionalul funcţionează împreună inseparate. 
      Conştiinţa şi inconştienţa în mod similar. 
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      "Vino, sufletul mi-a spus, haide să scriem poezii pentru corpul meu, căci suntem 
Unul" (Walt Whitman). 
      Finitul este infinit [vezi microinfinitatea]. 

g) Legea Întreruperii de Identităţi:
Lupta permanentă între <A> şi <A'> (unde <A’> sunt diferite nuanţe de <A>).

Exemple:
Lupta permanentă între adevărul absolut şi adevărul relativ.
Distincţia dintre falsul clar şi falsul neutrosofic (cea de doua noţiune reprezintă o

combinaţie de grade de falsitate, nedeterminare, şi adevăr). 

h) Legea Compensaţiei:
      Dacă acum <A>, atunci mai tîrziu <Non-A>. 

      Exemple: 
      Orice pierdere are un cȃstig. 
[ceea ce înseamnă că mai târziu va fi mai bine, pentru că ai învăţat ceva din pagubă]. 
      Nu există niciun succes fără eşec 
[aveţi răbdare!]. 

i) Legea Stării Stabilite:
      Nu pot fi depăşite limitele proprii. 
(Ne învȃrtim în cercul propriu.) 

j) Legea Gravitaţiei Ideaţionale:
      Fiecare idee <A> atrage şi respinge altă idee <B> cu o forţă direct proporţională 
cu produsul măsurilor lor neutrosofice şi exponenţialul distanţei lor. 
      (În opoziţie cu reafirmarea modernă a Legeii lui Newton cu privire la gravitaţia 
particulelor de materie, distanţa influenţează direct proporţional - nu indirect: cu cȃt 
sunt ideile mai opuse (distanţate), cu atȃt se atrag mai puternic.) 

k) Legea Gravitaţiei Universale Ideaţionale:
      <A> tinde către <Non-A> (nu către <Anti-A> cum a spus Hegel) şi reciproc. 
Există forţe care acţionează asupra lui <A>, orientȃnd-o către <Non-A>, până cȃnd 
un punct critic este atins, iar apoi <A> se întoarce. 
<A> şi <Non-A> sunt în continuă mişcare, iar limitele lor se schimbă în consecinţă. 

Exemple: 
      Perfecţiunea duce la imperfecţiune. 
      Ignoranţa este mulţumitoare. 

      Caz particular: 
      Fiecare persoană tinde să se apropie de nivelul său de… incompetenţă! 
Aceasta nu este o glumă, ci purul adevăr: 
Să spunem că X obţine un loc de muncă la nivelul L1; 
dacă este bun, este promovat la nivelul L2; 
daca este bun în noua sa poziţie, este promovat mai departe la L3; 
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şi aşa mai departe ... până când el nu mai este bun şi prin urmare, nu mai este 
promovat; 
astfel, el a ajuns la nivelul său de incompetenţă. 
<A> tinde catre <Non-A>. 
Prin urmare, idealul fiecăruia este de a tinde către ceea ce nu poate face. 

Dar mişcarea este neliniară. 
<Non-A> dispune de o gamă largă (continuum de putere), de versiuni care "nu sunt 
<A>"   (<A> exterior), să le indexăm în mulţimea{<Non-A>i}i. 

(Toate versiunile{<Anti-A>i}i sunt incluse în <Non-A>.) 
Prin urmare, infinit de multe versiuni <Non-A>i gravitează, precum planetele în jurul 
unui atru, pe orbitele lui <A>. Şi între fiecare versiune <Non-A>i şi centrul de 
greutate al "astrului" <A>, există forţe de atracţie şi de respingere. Se apropie una de 
alta pȃnă când se ajunge la anumite limite critice minime: Pm(i) pentru <A> şi Qm(i) 
pentru <Non-A>i şi apoi se departează una de cealaltă până la atingerea anumitor 
limite maxime: PM(i) pentru <A> şi QM(i) pentru <Non-A>i. 
Prin ecuaţii diferenţiale putem calcula distanţele minime şi maxime (spirituale) dintre 
<A> şi <Non-A>i, coordonatele carteziene ale punctelor critice şi status quo-ul 
fiecărei versiuni. 
Am putea spune că <A> şi o versiune <Non-A>i se întȃlnesc într-un punct absolut / 
infinit. 
Când toate versiunile <Non-A>i cad sub categoria <A> avem o catastrofă! 

Bibliografie 

Florentin Smarandache, “A Unifying Field in Logics: Neutrosophic Logic. 
Neutrosophy, Neutrosophic Set, Neutrosophic Probability and Statistics”, 1995. 

Published in Constelaţii diamantine, Craiova, Romania, Anul III, Nr. 7 (23), pp. 39-42, 27 July 2012.

Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

477



Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

478



Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

479



Florentin Smarandache Neutrosophic Theory and Its Applications. Collected Papers, I

480



Neutrosophic Theory means Neutrosophy applied in many 

fields in order to solve problems related to indeterminacy. 

Neutrosophy considers every entity <A> together with its 

opposite or negation <antiA>, and with their spectrum of 

neutralities <neutA> in between them (i.e. entities 

supporting neither <A> nor <antiA>). Where <neutA>, 

which of course depends on <A>, can be indeterminacy, 

neutrality, tie (game), unknown, vagueness, contradiction, 

ignorance, incompleteness, imprecision, etc. 

Hence, in one hand, the Neutrosophic Theory is based on 

the triad <A>, <neutA>, and <antiA>. 

In the other hand, Neutrosophic Theory studies the 

indeterminacy in general, labelled as I, with In = I for n ≥ 

1, and mI + nI = (m+n)I, in neutrosophic structures 

developed in algebra, geometry, topology etc. 

This volume contains 45 papers, written by the author 

alone or in collaboration with the following co-authors: 

Mumtaz Ali, Said Broumi, Sukanto Bhattacharya, Mamoni 

Dhar, Irfan Deli, Mincong Deng, Alexandru Gal, Valeri 

Kroumov, Pabitra Kumar Maji, Maikel Leyva-Vazquez, Feng 

Liu, Pinaki Majumdar, Munazza Naz, Karina Perez-Teruel, 

Rıdvan Sahin, A. A. Salama, Muhammad Shabir, Rajshek-
har Sunderraman, Luige Vladareanu, Magdalena Vladila, 

Stefan Vladutescu, Haibin Wang, Hongnian Yu, Yan-Qing 

Zhang. 
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