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Abstract

Teaching quality evaluation (TQE) can not only improve teachers’ teaching skills, but also provide an important ref-
erence for school teaching management departments to formulate teaching reform measures and strengthen teaching
management. TQE is a process of grading and ranking a given teachers based on the comprehensive considera-
tion of multiple evaluation criteria by expert. The Maclaurin symmetric mean (MSM), as a powerful aggregation
function, can capture the correlation among multiple input data more efficient. Although multitude weighted MSM
operators have been developed to handle the Pythagorean fuzzy decision issues, these above operators do not possess
the idempotency and reducibility during the procedure of information fusion. To conquer these defects, we present
the Pythagorean fuzzy reducible weighted MSM (PFRWMSM) operator and Pythagorean fuzzy reducible weighted
geometric MSM (PFRWGMSM) operator to fuse Pythagorean fuzzy assessment information. Meanwhile, several
worthwhile properties and especial cases of the developed operators are explored at length. Afterwards, we develop a
novel Pythagorean fuzzy entropy based upon knowledge measure to ascertain the weights of attribute. Furthermore,
an extended weighted aggregated sum product assessment (WASPAS) method is developed by combining the PFR-
WMSM operator, PFRWGMSM operator and entropy to settle the decision problems of unknown weight information.
The efficiency of the proffered method is demonstrated by a teaching quality evaluation issue, as well as the discussion
of sensitivity analysis for decision outcomes. Consequently, a comparative study of the presented method with the
extant Pythagorean fuzzy approaches is conducted to display the superiority of the propounded approach.

Keywords: Teaching quality evaluation, Pythagorean fuzzy set, information fusion, Reducible weighted MSM,
WASPAS

1. Introduction

With the vigorous development and continuous reform of China’s higher education, China’s higher education has
stepped into the connotative development road with the core concept of improving quality. Based on the new situ-
ation of China’s economic development, paying attention to the development of high-quality connotative education
has gradually become an inevitable requirement of economic and social development. Therefore, it is necessary for5

colleges and universities to think actively and constantly innovate the way of education and teaching reform to further
improve the quality of education and teaching. As an important measure to measure the quality of higher education,
the level of education quality greatly influences the comprehensive development level of schools. At present, central-
ized curriculum teaching is still the main development mode of education in our country. One of the core of improving
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education and teaching quality is to improve teachers’ teaching quality. Through the effective evaluation of teachers’10

teaching quality, we can find the problems in the teaching process of teachers and lay a solid foundation for constantly
improving the teaching quality and promoting the reform and development of education and teaching quality. There-
fore, scientific and reasonable evaluation of education and teaching is of great significance for improving the quality
of higher education. In the process of education and teaching quality assessment, schools determine different attribute
value indicators by analyzing the differences of different disciplines and teaching environment, and make a scientific15

and reasonable assessment of the teaching quality of teachers according to these attributes. This process can be re-
garded as an assessment process for coping with multi-attribute decision-making (MADM) problems. Nevertheless,
because of the sophisticated decision environment and experts’ cognitive psychology, experts usually can not provide
an appropriate number to effectively express their assessment opinions during the procedure of the aforementioned
MADM issues. This greatly leads to the irrationality of the final evaluation results. In view of this, it is worthwhile for20

the education department or expert to come up with an innovative approach to evaluate the teaching quality efficiently.
In light of the complexity of decision setting and evaluation information, the fuzzy set (FS) [1] is originally

developed to express uncertain and ambiguous information through a membership grade from the interval [0, 1].
Since its introduction, FS has been employed to various aspects by multitude investigators and gained a series of
research achievements [2, 3, 4, 5, 6, 7, 8, 9, 10]. However, the FS only utilizes a membership grade to portray25

the ambiguous and ill-defined information, which cannot satisfy the demand of decision experts to fully express
their assessment viewpoint. For making up this defect of FS, the intuitionistic fuzzy set (IFS)[11], as an efficient
extension of FS, is exhibited through adding a nonmembership grade and the sum of them is restricted in [0, 1].
Since the outstanding ability of IFS for describing indeterminacy and ambiguous information, multitude researchers
have successfully investigated it and attained achievement in various aspects including intuitionistic fuzzy logic [12],30

intuitionistic fuzzy control [13, 14], decision analysis [15, 16] and so forth. Among them, decision analysis, as an
important investigation direction in decision science and management engineering, has received numerous attentions
through constructing different decision approaches. Xu and Yager [17] contemplated a series of aggregation operators
of IFS to fuse intuitionistic fuzzy preference information. In addition, to take into consideration the correlation of
criterions, several operators generated by some special functions are propounded to efficient aggregate intuitionistic35

fuzzy evaluation information, such as generalized Bonferroni mean (BM) [18], MSM [19] Hamy mean [20], Muirhead
mean [21] and so on. Apart from these, some decision methodologies are contemplated to deal with decision issues
in diverse situations. Rani et al. [22] proposed an extended TODIM (an acronym in Portuguese for Interactive Multi-
Criteria Decision Making) method on the basis of shapley weighted divergence measure. Mishra et al. [23] presented
the divergence measure of IFS and propounded additive ratio assessment method to select the IT personnel. Mishra et40

al. [24] proffered an integration decision technique by combining the complex proportional assessment and step-wise
weight assessment ratio analysis method for evaluating the bioenergy production process.

Although IFS has been successfully employed to different domains, the range of information expression also pos-
sess limitations. When the sum of membership and nonmembership grade is greater than one, IFS is invalid to portray
this kind of information. In view of this shortcoming, Yager [25, 26] built up the theory of Pythagorean fuzzy set45

(PFS) through changing the limitation condition of membership and nonmembership grade, which makes the sum of
squares of membership garde and nonmembership grade is less than 1. It is obvious that PFS provides more space
and selections for experts to give their assessment viewpoint than IFS. Hence, various scholars have devoted to the
research of decision approaches under Pythagorean fuzzy circumstances and achieved a series of important investiga-
tion outcomes. Among these achievements, the information aggregation, as a straightforward and significant decision50

method, has been paid close attention to fix decision issues. The presented works of PFS on aggregation operator can
be divided as the following two categories: (1) Suppose that the fused data are independent of each other. For this
category, Zhang [27] developed several frequent aggregation operators to aggregae preference information including
the weighted averaging(WA)operator, weighted geometric (WG) operator and their ordered weighted forms. Further-
more, based on different operational laws, the Einstein WA operator [28], Einstein WG operator [29], Choquet-Frank55

operators [30], logarithmic WA and WG operator [31], Dombi WA and WG operator [32] and neutrality geometric
operator [33] of PFS are propounded to rich Pythagorean fuzzy information fusion theory. The more research for
this type can be studied in [34, 35, 36, 37, 38, 39, 40]. (2) Suppose that the fused data possesses interactive and
interdependent of each other. For this category, Liang et al.[41] developed the geometric BM operator and combined
it with projection model to set up group decision approach. Li et al. [42] advanced some Pythagorean fuzzy Hamy60

mean operators to select optimal supplier. Because the BM and HM operator can only consider the relevance between
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two input parameters, it fails to settle the situation that considers the relevance among multiple input parameters. For
this, Li et al. [43] brought forward the power Muirhead mean operator of PFS to fully ponder the interrelationship
and support degree of input data. Wei et al. [44] introduced the Pythagorean fuzzy MSM (PFMSM) operators and its
application in decision analysis. Further, Qin [45] propounded the generalized PFMSM operator and combined the65

SIR method to construct group decision model. Yang and Pang [46] developed several novel PFMSM operator on the
basis of interactive operations. To date, a series of MSM operators and its extension are investigated under diverse
vague settings [47, 48, 49, 50, 51].

The WASPAS approaches, as an efficient generalization of weighted product model (WPM) and weighted sum
model(WSM), was initially propounded by Zavadskas et al [52]. The WASPAS method showed better accuracy in70

dealing with MADM problems than the application of WPM or WSM. In light of its merits, the increasingly research
on WASPAS method is investigated in various utilizations. Zavadskas et al. [53] extended the WASPAS method
to interval-valued intuitionistic fuzzy context and applied it to MADM. Zavadskas et al. [54] presented the single-
valued neutrosophic WASPAS method and utilized it to choose the construction of a waste incineration Plant address.
Ghorabaee et al. [55] built up a novel decision model with the aid of WASPAS method and combinative weight method75

to select a satisfied green supplier under interval-2 fuzzy environment. Pend and Dai [56] counseled hesitant fuzzy
soft WASPAS method and used it to MADM. Moreover, the WASPAS method is integrated with other traditional
approaches to better develop decision analysis [57, 58, 59, 60]. The above-mentioned investigations illustrate that the
WASPAS method has the powerful capability in settling decision issues under uncertainty environments.

Based upon the aforementioned investigation of weighted MSM operator and WASPAS method in different fuzzy80

circumstances, we find several defects in previous works: (1)The extant weighted MSM operators [44, 45, 46, 47, 48,
49, 50, 51] fail to degenerate into their correspond MSM operators when the important degree of fused data is equal.
(2) The extant weighted MSM operators [44, 45, 46, 47, 48, 49, 50, 51] do not have the characteristic of idempotency,
which will produce an irrational fusion outcomes. (3) The traditional WASPAS method fails to take into the interre-
lationship of diverse criterions consideration and produce much effect from the awkward data. (4)In most extensions85

of WASPAS method, the weight information of attributes are provided through decision experts. Nevertheless, it is
difficult for experts to directly ascertain the importance of attributes. Accordingly, most practical problems can not
gain weight in advance. Encouraged by the reducible weighted MSM (RWMSM) operator propounded by Shi and
Xiao [63], by considering the merit of PFS and WASPAS method, we design an innovative MADM methodology
through combining the PFS, PFRWMSM operator and PFRWGMSM operator and WASPAS method for handling90

decision problems with unknown weight information. Accordingly, the innovations and contribution of this article
can be summarized as below:

(1) To present two novel integration operators including PFRWMSM operator and PFRWGMSM operator and
prove several valuable properties of them;

(2) To present an entropy measure based on knowledge measure of PFS for ascertaining the attribute weights95

information;
(3) To design a novel MADM methodology through combining the WASPAS method and the advanced operators

to deal with the decision issues with unknown weight information;
(4) To build a comprehensive assessment model to develop teacher TQE;
(5) To explicitly expound the feasibility and superiority of the created approach through an example and compar-100

ison studying, severally.
To accomplish the aforementioned objectives, the overall structure of the essay is allocated as below. In section 2,

we succinctly retrospect several fundamental concepts including PFS and MSM operators. Section 3 propounds the
notion of PFRWMSM and PFRWGMSM operator and also studies several worthwhile features and particular cases of
them. Section 4 presents an innovative knowledge measure and entropy of PFS to determine the weight information.105

Section 5 is concerned with the novel MADM methodology on the basis of PFRWMSM, PFRWGMSM operator
and WASPAS method. In section 6, a teaching quality assessment problem is utilized to show the efficiency and a
contrastive study is performed to highlight the merits of the developed method. Several conclusion remarks are listed
in the end.
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2. Preliminaries110

Several necessary definitions involving notion and comparison approach of PFS are briefly retrospect. In addition,
the MSM operator and it extension formations are concrete introduced.

2.1. PFS
The PFS propounded by Yager [25] is a more powerful information expression technique than FS and IFS, which

provides more space for experts to portray their viewpoint under uncertain and ambiguous setting. The detailed115

definition of PFS is exhibited as below.

Definition 1. [26] Assume X is a domain of discourse. A PFS P̄ on X is represented as

P̄ = {⟨x, µ̄P̄(x), ν̄P̄(x)⟩|x ∈ X} (1)

where µ̄P̄(x) : X → [0, 1] and ν̄P̄(x) : X → [0, 1] severally signify the grade of membership and non-membership of the

element x to P̄with the restriction that
(
µ̄P̄(x)

)2
+
(
ν̄P̄(x)

)2 ≤ 1. The hesitancy grade π̄P̄(x) =
√

1 − (
µ̄P̄(x)

)2 − (
ν̄P̄(x)

)2.
The pair P̄ = (

µ̄P̄(x), ν̄P̄(x)
)

is usually utilized to signified a Pythagorean fuzzy number (PFN)[64] and simplified as
(µ̄, ν̄) with 0 ≤ µ̄2 + ν̄2 ≤ 1.120

Yager and Abbasov [25] also utilized another geometric manner to represent the PFN, namely, P̄ = (
rP̄(x), dP̄(x)

)
,

in which rP̄(x) signifies the strength of commitment and dP̄(x) signifies the strength of the direction of commitment,
respectively. The relations between

(
µ̄P̄(x), ν̄P̄(x)

)
and

(
r̄P̄(x), d̄P̄(x)

)
are described as µ̄P̄(x) = r̄P̄(x) · cos

(
θ̄P̄(x)

)
,

ν̄P̄(x) = r̄P̄(x) · sin
(
θ̄P̄(x)

)
, r̄P̄(x) =

√(
µ̄P̄(x)

)2
+

(
ν̄P̄(x)

)2, dP̄(x) = 1 − 2
(
θ̄P̄(x)/π

)
, where θ̄P̄(x) indicates the radian

with the range [0, π/2].125

Definition 2. [25, 64] Suppose P̄ = (µ̄, ν̄) , P̄1 = (µ̄1, µ̄1) and P̄2 = (µ̄2, µ̄2) be three PFNs. The associated operations
are defined as:

(1) P̄1 ⊕ P̄2 =

(√(
1 −

(
1 − (µ̄1)2

) (
1 − (µ̄2)2

))
, ν̄1ν̄2

)
;

(2) P̄1 ⊗ P̄2 =

(
µ̄1µ̄2,

√(
1 −

(
1 − (ν̄1)2

) (
1 − (ν̄2)2

)))
;

(3) λP̄ =

√

1 −
(
1 − (µ̄)2

)λ
, (ν̄)λ

 , λ > 0;

(4) P̄λ =
(µ̄)λ ,

√
1 −

(
1 − (ν̄)2

)λ , λ > 0;

(5) P̄c = (ν̄, µ̄) ;
(6) P̄1 ∪ P̄2 = (max {µ̄1, µ̄2} ,min {ν̄1, ν̄2}) ;
(7) P̄1 ∩ P̄2 = (min {µ̄1, µ̄2} ,max {ν̄1, ν̄2}) .

To compare and rank PFNs, Zhang and Xu [64] firstly developed the score function. However, the score function
is invalid to differentiate two PFNs for the situation that the the membership degree is equal to nonmembership degree.
For this, Peng and Yang [65] presented the accuracy function of PFNs and given the comparison method to rank PFNs.

Definition 3. [64, 65] Suppose that P̄ = (µ̄, ν̄) be a PFN. Then the score and accuracy function are defined as

S
(
P̄
)
= µ̄2 − ν̄2, S

(
P̄
)
∈ [−1, 1]. (2)

H
(
P̄
)
= µ̄2 + ν̄2, H

(
P̄
)
∈ [0, 1]. (3)

Definition 4. [65] Given two PFNs P̄1 = (µ̄1, ν̄1) and P̄2 = (µ̄2, ν̄2), then the comparison algorithm of P̄1 and P̄2 is
given as:130
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1. If S(P̄1) > S(P̄2), then P̄1 > P̄2

2. If S(P̄1) = S(P̄2), then

• If H(P̄1) < H(P̄2), then P̄1 < P̄2

• If H(P̄1 = H(P̄2), then P̄1 = P̄2.

2.2. MSM135

The MSM operator, as a significant aggregation function, can valid integrate the input data and take into account
the correlation among the input data. The definition of MSM is stated as follows.

Definition 5. [61] Let ϱi(i = 1, 2, · · · , n) be a family of positive real-number, and set κ = 1, 2, · · · , n. Then the MSM
operator is stated as

MSM(κ) (ϱ1, ϱ2, · · · , ϱn) =


∑

1≤i1<···<iκ≤n

(
κ∏
ȷ=1
ϱi ȷ

)
Cκn


1
κ

(4)

where i1, i2, · · · , iκ traverses all the κ-permutations of {1, 2, · · · , n}, Cκn stands for the binomial coefficient whose ex-
pression is Cκn =

n!
κ!(n−κ)! .

Based upon the definition of MSM operator, the dual form of MSM operator is propounded by Qin and Liu [62],140

which is stated as below.

Definition 6. [62] Let ϱi(i = 1, 2, · · · , n) be a family of positive real-number, and set κ = 1, 2, · · · , n. Then the DMSM
operator is stated as

DMSM(k) (ϱ1, ϱ2, · · · , ϱn) =
1
κ

 ∏
1≤i1<···<iκ≤n

 κ∑
ȷ=1

ϱi ȷ


1

Cκn

 . (5)

where i1, i2, · · · , iκ traverses all the κ-permutations of {1, 2, · · · , n}, Cκn stands for the binomial coefficient whose ex-
pression is Cκn =

n!
κ!(n−κ)! .

Because the extant weighted MSM operators fail to deal with the problem of idempotency and reducibility. For
this, Shi and Xiao [63] proffered the reducible weighted MSM (RWMSM) and the reducible weighted geometric145

MSM(RWGMSM)operator as follows.

Definition 7. [63] Let ϱi(i = 1, 2, · · · , n) be a family of positive real-number, and κ = 1, 2, · · · , n.W = (ω1, ω2, · · · , ωn)T

with ωi ∈ [0, 1] and
∑n

i=1 ωi = 1. Then reducible weighted MSM (RWMSM)operator is given as below:

RWMSM(κ) (ϱ1, ϱ2, · · · , ϱn) =


∑

1≤i1<···<iκ≤n

(
κ∏
ȷ=1
ωi ȷ

) (
κ∏
ȷ=1
ϱi ȷ

)
∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ


1
κ

. (6)

Definition 8. [63] Let ϱi(i = 1, 2, · · · , n) be a family of positive real-number, and κ = 1, 2, · · · , n.W = (ω1, ω2, · · · , ωn)T

with ωi ∈ [0, 1] and
∑n

i=1 ωi = 1. Then reducible weighted MSM (RWMSM)operator is given as below:

RWGMSM(κ) (ϱ1, ϱ2, · · · , ϱn) =

∏
1≤i1<···<iκ≤n

(
κ∑
ȷ=1
ϱi ȷ

) k∑
ȷ=1
ωi ȷ

∑
1≤i1<···<iκ≤n

k∑
ȷ=1
ωi ȷ

κ
. (7)
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3. Pythagorean fuzzy reducible weighted Maclaurin symmetric means

In this part, on the basis of the RWMSM and RWGMSM operator and operational laws of PFNs, the Pythagorean
fuzzy RWMSM (PFRWMSM) operator and Pythagorean fuzzy RWGMSM (PFRWGMSM) operator are propound-
ed to fuse Pythagorean fuzzy information. In addition, several worthwhile properties and especial instances of the150

PFRWMSM and PFRWGMSM operator are investigated at length.

3.1. Pythagorean fuzzy reducible weighted Maclaurin symmetric mean operator

Definition 9. Assume P̄i = (µ̄i, ν̄i) be a family of “n” PFNs, and letW = (ω1, ω2, · · · , ωn)T be the weights vector
with ωi ∈ [0, 1] and

∑n
i=1 ωi = 1. The PFRWMSM operator is a mapping PFRWMSM: Γn → Γ stated as

PFRWMSM(κ)
(
P̄1, P̄2, · · · , P̄n

)
=


∑

1≤i1<···<iκ≤n

(
κ∏
ȷ=1
ωi ȷ

) (
κ∏
ȷ=1
P̄i ȷ

)
∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ


1
κ

(8)

where Γ is the collection of PFNs. Then PFRWMSM is called Pythagorean fuzzy reducible weighted MSM operator.

With the assistance of the operational rules of PFNs depicted in Definition 2, based on Eq. (8), we can attain the
fusion outcome displayed in Theorem 1.155

Theorem 1. Let P̄i = (µ̄i, ν̄i) be a family of “n” PFNs, and letW = (ω1, ω2, · · · , ωn)T be the weights vector with
ωi ∈ [0, 1] and

∑n
i=1 ωi = 1. The fusion outcome via the PFRWMSM operator is also a PFN and

PFRWMSM(κ)
(
P̄1, P̄2, · · · , P̄n

)

=





√√√√√√√√√√√
1 −


∏

1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(
µ̄i ȷ

)2


κ∏
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ



1
κ

,

√√√√√√√√√√√√√√√1 −

1 −


∏
1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(
1 −

(
ν̄i ȷ

)2
)
κ∏
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ


1
κ


. (9)

Proof. In light of the operational rules of PFNs depicted in Definition 2, one has

κ∏
ȷ=1

P̄i ȷ =

 κ∏
ȷ=1

µ̄i ȷ ,

√√
1 −

κ∏
ȷ=1

(
1 −

(
ν̄i ȷ

)2
)

and

 κ∏
ȷ=1

ωi ȷ


 κ∏
ȷ=1

P̄i ȷ

 =

√√√√√√

1 −
1 − κ∏

ȷ=1

(
µ̄i ȷ

)2

κ∏
ȷ=1
ωi ȷ

,


√√

1 −
κ∏
ȷ=1

(
1 −

(
ν̄i ȷ

)2
)

κ∏
ȷ=1
ωi ȷ

 .
Then

∑
1≤i1<···<iκ≤n

 κ∏
ȷ=1

ωi ȷ


 κ∏
ȷ=1

P̄i ȷ

 =

√√√√√√√

1 −
∏

1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(
µ̄i ȷ

)2

κ∏
ȷ=1
ωi ȷ

,
∏

1≤i1<···<iκ≤n


√√√

1 −
κ∏
ȷ=1

(
1 −

(
ν̄i ȷ

)2
)
κ∏
ȷ=1
ωi ȷ

 .
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Thus ∑
1≤i1<···<iκ≤n

 κ∏
ȷ=1
ωi ȷ

  κ∏
ȷ=1
P̄i ȷ


∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ

=



√√√√√√√√√√√
1 −


∏

1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(
µ̄i ȷ

)2

κ∏
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ

,


∏

1≤i1<···<iκ≤n


√√√

1 −
κ∏
ȷ=1

(
1 −

(
ν̄i ȷ

)2
)
κ∏
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ

 .
Accordingly,


∑

1≤i1<···<iκ≤n

(
κ∏
ȷ=1
ωi ȷ

) (
κ∏
ȷ=1
P̄i ȷ

)
∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ


1
κ

=





√√√√√√√√√√√
1 −


∏

1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(
µ̄i ȷ

)2


κ∏
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ



1
κ

,

√√√√√√√√√√√√√√√1 −

1 −


∏
1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(
1 −

(
ν̄i ȷ

)2
)
κ∏
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ


1
κ


.

Consequently, the Eq. (9) is correct. Next, we shall testify the integrated outcome is also a PFN.
Let

η =



√√√√√√√√√√√
1 −


∏

1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(
µ̄I ȷ

)2


κ∏
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ



1
κ

,

ϕ =

√√√√√√√√√√√√√√√√√1 −

1 −


∏
1≤i1<···<iκ≤n


√√√

1 −
κ∏
ȷ=1

(
1 −

(
ν̄i ȷ

)2
)
κ∏
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ



1
κ

.

Then, we need to prove the fusion outcome meeting the following conditions:
(i) 0 ≤ η ≤ 1, 0 ≤ ϕ ≤ 1;
(ii) 0 ≤ η2 + ϕ2 ≤ 1.
Since 0 ≤ µ̄i ȷ ≤ 1, then one has

0 ≤
(
µ̄i ȷ

)2 ≤ 1, 0 ≤ 1 −
κ∏
ȷ=1

(
µ̄i ȷ

)2 ≤ 1,

and

0 ≤
1 − κ∏

ȷ=1

(
µ̄i ȷ

)2

κ∏
ȷ=1
ωi ȷ

≤ 1, 0 ≤
∏

1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(
µ̄i ȷ

)2

κ∏
ȷ=1
ωi ȷ

≤ 1.
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Furthermore, based upon 0 ≤ 1∑
1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ

≤ 1 and 0 < 1
κ
≤ 1. we have

0 ≤ 1 −


∏

1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(
µ̄i ȷ

)2

κ∏
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ

≤ 1.

Then,

0 ≤


√√√√√√√√√

1 −


∏

1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(
µ̄i ȷ

)2

κ∏
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ


1
κ

≤ 1.

Accordingly, 0 ≤ η ≤ 1.160

We can homologous acquired 0 ≤ ϕ ≤ 1.
Hence, the condition (i) is valid.
Since 0 ≤

(
µ̄i ȷ

)2
+

(
ν̄i ȷ

)2 ≤ 1, then
(
µ̄i ȷ

)2 ≤ 1 −
(
ν̄i ȷ

)2

0 ≤ η2 + ϕ2

=





√√√√√√√√√√√
1 −


∏

1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(
µ̄i ȷ

)2


κ∏
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ



1
κ


2

+



√√√√√√√√√√√√√√√1 −

1 −


∏
1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(
1 −

(
ν̄i ȷ

)2
)
κ∏
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ


1
κ



2

=

1 −


∏
1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(
µ̄i ȷ

)2


κ∏
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ


1
κ

+ 1 −

1 −


∏
1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(
1 −

(
ν̄i ȷ

)2
)
κ∏
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ


1
κ

≤

1 −


∏
1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(
1 −

(
ν̄i ȷ

)2
)
κ∏
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ


1
κ

+ 1 −

1 −


∏
1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(
1 −

(
ν̄i ȷ

)2
)
κ∏
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ


1
κ

= 1

Therefor, condition the condition (i) is true. Accordingly, Theorem 1 is proved.

Theorem 2. (Idempotency) Let P̄ = (µ̄, ν̄) be a family of “n” PFNs. If P̄1 = P̄2 = · · · = P̄n = P̄ for each i. Then

PFRWMSM(κ)
(
P̄1, P̄2, · · · , P̄n

)
= P̄. (10)
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Proof.

PFRWMSM(κ)
(
P̄1, P̄2, · · · , P̄n

)

=





√√√√√√√√√√√
1 −


∏

1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(
µ̄i ȷ

)2


κ∏
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ



1
κ

,

√√√√√√√√√√√√√√√1 −

1 −


∏
1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(
1 −

(
ν̄i ȷ

)2
)
κ∏
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ


1
κ



=





√√√√√√√√√√√
1 −


∏

1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(µ̄)2


κ∏
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ



1
κ

,

√√√√√√√√√√√√√√√1 −

1 −


∏
1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(
1 − (ν̄)2

)
κ∏
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ


1
κ



=




√√√√√√√√

1 −

 ∏
1≤i1<···<iκ≤n

(
1 − (µ̄)2×κ

) κ∏
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ



1
κ

,

√√√√√√√√√√√√
1 −

1 −
 ∏

1≤i1<···<iκ≤n

(
1 −

(
1 − (ν̄)2

)κ) κ∏
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ


1
κ



=




√√√√√√√√

1 −

(1 − (µ̄)2×κ
) κ∏
ȷ=1
ωi ȷ


1
κ∏
ȷ=1
ωi ȷ


1
κ

,

√√√√√√√√√√√√
1 −

1 −
(1 − (

1 − (ν̄)2
)κ) κ∏
ȷ=1
ωi ȷ


1
κ∏
ȷ=1
ωi ȷ


1
κ


=

(√1 −
(
1 − (µ̄)2×κ

)) 1
κ
,

√
1 −

(
1 −

(
1 −

(
1 − (ν̄)2

)κ)) 1
κ

 = (
µ̄,

√
1 −

(
1 − (ν̄)2

))
= (µ̄, ν̄) .

Theorem 3. (Monotonicity) Let P̄i = (µ̄i, ν̄i) and P̄i =
(
µ̄
′

i , ν̄
′

i

)
be two families of “n” PFNs. If µ̄i ≤ µ̄

′

i , ν̄i ≥ ν̄
′

i fir all
i. Then

PFRWMSM(κ)
(
P̄1, P̄2, · · · , P̄n

)
≤ PFRWMSM(κ)

(
P̄′1, P̄

′

2, · · · , P̄
′

n

)
. (11)

Proof. Assume that PFRWMSM(κ)
(
P̄1, P̄2, · · · , P̄n

)
= P̄ = (µ̄, ν̄) and PFRWMSM(κ)

(
P̄′1, P̄

′

2, · · · , P̄
′
n

)
= P̄′ =(

µ̄
′
, ν̄
′)

. Then

µ̄ =



√√√√√√√√√√√
1 −


∏

1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(
µ̄i ȷ

)2


κ∏
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ



1
κ

, µ̄
′
=



√√√√√√√√√√√
1 −


∏

1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(
µ̄
′
i ȷ

)2

κ∏
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ



1
κ

,

ν̄ =

√√√√√√√√√√√√√√√1 −

1 −


∏
1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(
1 −

(
ν̄i ȷ

)2
)
κ∏
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ


1
κ

, ν̄
′
=

√√√√√√√√√√√√√√√1 −

1 −


∏
1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(
1 −

(
ν̄
′
i ȷ

)2
)
κ∏
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ


1
κ

.

165

For testifying the monotonicity, we shall prove it through computing their score values S
(
P̄
)

and S
(
P̄′

)
and further

attain P̄ ≤ P̄′ . Next, we divide two steps to achieve the goal, namely, (1) derive the comparison outcomes of their
degree of membership and nonmembership; (2) compute and discuss their score values.

(1) In view of the known conditions µ̄i ≤ µ̄
′

i , ν̄i ≥ ν̄
′

i , we can deduce the following comparison relation:
For µ̄ and µ̄

′
, one has



√√√√√√√√√√√
1 −


∏

1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(
µ̄i ȷ

)2


κ∏
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ



1
κ

≤



√√√√√√√√√√√
1 −


∏

1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(
µ̄
′
i ȷ

)2

κ∏
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ



1
κ

,

which is µ̄ ≤ µ̄′ .170

9



For ν̄ and ν̄
′
, one has

√√√√√√√√√√√√√√√1 −

1 −


∏
1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(
1 −

(
ν̄i ȷ

)2
)
κ∏
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ


1
κ

≥

√√√√√√√√√√√√√√√1 −

1 −


∏
1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(
1 −

(
ν̄
′
i ȷ

)2
)
κ∏
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ


1
κ

,

which is ν̄ ≥ ν̄′ .
(2) With the help of the above comparison outcomes, we can easily get S (Ξ) = (µ̄)2− (ν̄)2 ≤ S

(
P̄′

)
=

(
µ̄
′)2−

(
ν̄
′)2

.
Afterward, we discuss the following circumstances.
(a) When S

(
P̄
)
< S

(
P̄′

)
, then P̄ < P̄′ via the Definition 2;

(b) When S
(
P̄
)
= S

(
P̄′

)
, then P̄ = P̄′ , i.e., µ̄ = µ̄

′
and ν̄ = ν̄

′
, by the accuracy function defined in Definition 3, we

can derive P̄ = P̄′ .
Accordingly, we can attain P̄ ≤ P̄′ , namely,

PFRWMSM(κ)
(
P̄1, P̄2, · · · , P̄n

)
≤ PFRWMSM(κ)

(
P̄′1, P̄

′

2, · · · , P̄
′

n

)
.

Theorem 4. (Boundedness) Let P̄i = (µ̄i, ν̄i) be a family of “n” PFN, and P̄+i =
(

n
max

i
µ̄i,

n
min

i
ν̄i

)
, P̄−i =

( n
min

i
µ̄i,

n
max

i
ν̄i

)
.

Then

P̄+i ≤ PFRWMSM(κ)
(
P̄1, P̄2, · · · , P̄n

)
≤ P̄−i . (12)

Proof. With the aid of the monotonicity the PFRWMSM operator, we have

PFRWMSM(κ)
(
P̄1, P̄2, · · · , P̄n

)
≤ PFRWMSM(κ)

(
P̄+1 , P̄+2 , · · · , P̄+n

)
;

PFRWMSM(κ)
(
P̄1, P̄2, · · · , P̄n

)
≥ PFRWMSM(κ)

(
P̄−1 , P̄−2 , · · · , P̄−n

)
.

In light of the idempotency of the PFRWMSM operator, we have

PFRWMSM(κ)
(
P̄+1 , P̄+2 , · · · , P̄+n

)
= P̄+i ;

PFRWMSM(κ)
(
P̄−1 , P̄−2 , · · · , P̄−n

)
= P̄−i .

Accordingly, we can attain P̄+i ≤ PFRWMSM(κ)
(
P̄1, P̄2, · · · , P̄n

)
≤ P̄−i .

Theorem 5. (Commutativity) Let
(
P̄′1, P̄

′

2, · · · , P̄
′
n

)
is any permutation of

(
P̄1, P̄2, · · · , P̄n

)
. Then

PFRWMSM(κ)
(
P̄′1, P̄

′

2, · · · , P̄
′

n

)
= PFRWMSM(κ)

(
P̄1, P̄2, · · · , P̄n

)
. (13)

Proof. Since the known condition, we have
∑

1≤i1<···<iκ≤n

(
κ∏
ȷ=1
ωi ȷ

) (
κ∏
ȷ=1
P̄i ȷ

)
∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ


1
κ

=


∑

1≤i1<···<iκ≤n

(
κ∏
ȷ=1
ω
′

i ȷ

) (
κ∏
ȷ=1
P̄′i ȷ

)
∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ω
′
i ȷ


1
κ

.

Consequently, we can acquire PFRWMSM(κ)
(
P̄′1, P̄

′

2, · · · , P̄
′
n

)
= PFRWMSM(κ)

(
P̄1, P̄2, · · · , P̄n

)
.

In the next, several peculiar instances of PFRWMSM operator are explored through assigning diverse parameter
κ.175

Case 1. When κ = 1, the presented PFRWMSM operator is degenerated into Pythagorean fuzzy weighted averaging
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(PFWA) operator, exhibited as below:

PFRWMSM(1)
(
P̄1, P̄2, · · · , P̄n

)

=



√√√√√√

1 −

 ∏
1≤i1≤n

(
1 −

(
µ̄i ȷ

)2
)ωi ȷ


1∑

1≤i1≤n
ωi ȷ


1
1

,

√√√√√√√√
1 −

1 −
 ∏

1≤i1≤n

(
1 −

(
1 −

(
ν̄i ȷ

)2
))ωi ȷ


1∑

1≤i1≤n
ωi ȷ


1
1


=


√

1 −
∏

1≤i1≤n

(
1 −

(
µ̄i ȷ

)2
)ωi ȷ
,

∏
1≤i1≤n

(
ν̄i ȷ

)ωi ȷ


= PFWA

(
P̄1, P̄2, · · · , P̄n

)
. (14)

Case 2. When κ = 2, the developed PFRWMSM operator is degraded into Pythagorean generalized weighted Hero-
nian mean (PFGWHM) operator, exhibited as below:

PFRWMSM(2)
(
P̄1, P̄2, · · · , P̄n

)

=





√√√√√√√√√√√√
1 −


∏

1≤i1<i2≤n

1 − 2∏
ȷ=1

(
µ̄i ȷ

)2


2∏
ȷ=1
ωi ȷ


1∑

1≤i1<i2≤n

2∏
ȷ=1
ωi ȷ



1
2

,

√√√√√√√√√√√√√√√√√1 −

1 −


∏
1≤i1<i2≤n

1 − 2∏
ȷ=1

(
1 −

(
ν̄i ȷ

)2
)

2∏
ȷ=1
ωi ȷ


1∑

1≤i1<i2≤n

2∏
ȷ=1
ωi ȷ



1
2


= PFGWHM(1,1)

(
P̄1, P̄2, · · · , P̄n

)
. (15)

Case 3. When κ = n, the presented PFRWMSM operator is transformed into Pythagorean fuzzy geometric (PFWG)
operator, exhibited as below:

PFRWMSM(1)
(
P̄1, P̄2, · · · , P̄n

)

=





√√√√√√√√√√√
1 −


1 − n∏

ȷ=1

(
µ̄i ȷ

)2


n∏
ȷ=1
ωi ȷ


1

n∏
ȷ=1
ωi ȷ



1
n

,

√√√√√√√√√√√√√√
1 −

1 −

1 − n∏

ȷ=1

(
1 −

(
ν̄i ȷ

)2
)

n∏
ȷ=1
ωi ȷ


1

n∏
ȷ=1
ωi ȷ


1
n


=


 n∏
ȷ=1

µ̄i ȷ


1
n

,

√√√
1 −

n∏
ȷ=1

(
1 −

(
ν̄i ȷ

)2
) 1

n


= PFG

(
P̄1, P̄2, · · · , P̄n

)
. (16)

3.2. Pythagorean fuzzy reducible weighted geometric Maclaurin symmetric mean operator

Definition 10. Assume P̄i = (µ̄i, ν̄i) be a family of “n” PFNs, and letW = (ω1, ω2, · · · , ωn)T be the weights vector
with ωi ∈ [0, 1] and

∑n
i=1 ωi = 1. The PFRWGMSM operator is a mapping PFRWGMSM: Γn → Γ stated as

PFRWGMSM(κ)
(
P̄1, P̄2, · · · , P̄n

)
=

∏
1≤i1<···<iκ≤n

(
κ∑
ȷ=1
P̄i ȷ

) k∑
ȷ=1
ωi ȷ

∑
1≤i1<···<iκ≤n

k∑
ȷ=1
ωi ȷ

κ
, (17)

where Γ is the collection of PFNs. Then PFRWGMSM is called Pythagorean fuzzy reducible weighted geometric MSM
operator.

Theorem 6. Let P̄i = (µ̄i, ν̄i) be a family of “n” PFNs, and letW = (ω1, ω2, · · · , ωn)T be the weights vector with

11



ωi ∈ [0, 1] and
∑n

i=1 ωi = 1. The fusion outcome via the PFRWGMSM operator is also a PFN and

PFRWGMSM(κ)
(
P̄1, P̄2, · · · , P̄n

)

=



√√√√√√√√√√√√√√√1 −

1 −


∏
1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(
1 −

(
µ̄i ȷ

)2
)
κ∑
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∑
ȷ=1
ωi ȷ


1
κ

,



√√√√√√√√√√√
1 −


∏

1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(
ν̄i ȷ

)2


κ∑
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∑
ȷ=1
ωi ȷ



1
κ

. (18)

Proof.

κ∑
ȷ=1

P̄i ȷ =


√√

1 −
κ∏
ȷ=1

(
1 −

(
µ̄i ȷ

)2
)
,

κ∏
ȷ=1

ν̄i ȷ


and

 κ∑
ȷ=1

P̄i ȷ


k∑
ȷ=1
ωi ȷ

∑
1≤i1<···<iκ≤n

k∑
ȷ=1
ωi ȷ
=




√√√

1 −
κ∏
ȷ=1

(
1 −

(
µ̄i ȷ

)2
)

k∑
ȷ=1
ωi ȷ

∑
1≤i1<···<iκ≤n

k∑
ȷ=1
ωi ȷ
,

√√√√√√√√√√√√√√√
1 −

1 − κ∏
ȷ=1

(
ν̄i ȷ

)2


k∑
ȷ=1
ωi ȷ

∑
1≤i1<···<iκ≤n

k∑
ȷ=1
ωi ȷ



∏
1≤i1<···<iκ≤n

 κ∑
ȷ=1

P̄i ȷ


k∑
ȷ=1
ωi ȷ

∑
1≤i1<···<iκ≤n

k∑
ȷ=1
ωi ȷ
=


∏

1≤i1<···<iκ≤n


√√√

1 −
κ∏
ȷ=1

(
1 −

(
µ̄i ȷ

)2
)

k∑
ȷ=1
ωi ȷ

∑
1≤i1<···<iκ≤n

k∑
ȷ=1
ωi ȷ
,

√√√√√√√√√√√√√√√√√√√√√√√√√√1 −
∏

1≤i1<···<iκ≤n



1 − κ∏
ȷ=1

(
ν̄i ȷ

)2


k∑
ȷ=1
ωi ȷ

∑
1≤i1<···<iκ≤n

k∑
ȷ=1
ωi ȷ




180

∏
1≤i1<···<iκ≤n

(
κ∑
ȷ=1
P̄i ȷ

)
k∑
ȷ=1
ωi ȷ

∑
1≤i1<···<iκ≤n

k∑
ȷ=1
ωi ȷ

κ

=



√√√√√√√√√√√√√√√1 −

1 −


∏
1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(
1 −

(
µ̄i ȷ

)2
)
κ∑
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∑
ȷ=1
ωi ȷ


1
κ

,



√√√√√√√√√√√
1 −


∏

1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(
ν̄i ȷ

)2


κ∑
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∑
ȷ=1
ωi ȷ



1
κ

.

Accordingly, Theorem 6 is proved.

Analogous to the PFRWMSM operator, we expound the following characteristics of the propounded PFRWGMSM
operator.

Theorem 7. (Idempotency) Let P̄ = (µ̄, ν̄) be a family of “n” PFNs. If P̄1 = Ξ2 = · · · = P̄n = P̄ for each i. Then

PFRWGMSM(κ)
(
P̄1, P̄2, · · · , P̄n

)
= P̄. (19)

Theorem 8. (Monotonicity) If µ̄i ≥ µ̄
′

i , ν̄i ≥ ν̄
′

i for all i. Then

PFRWGMSM(κ)
(
P̄1, P̄2, · · · , P̄n

)
≥ PFRWGMSM(κ)

(
P̄′1, P̄

′

2, · · · , P̄
′

n

)
. (20)
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Theorem 9. (Boundedness) Let P̄i = (µ̄i, ν̄i) be a family of “n” PFNs, and P̄+i =
(

n
max

i
µ̄i,

n
min

i
ν̄i

)
, P̄+i =

( n
min

i
µ̄i,

n
max

i
ν̄i

)
.

Then

P̄+i ≤ PFRWGMSM(κ)
(
P̄1, P̄2, · · · , P̄n

)
≤ P̄−i . (21)

Theorem 10. (Commutativity) Let
(
P̄′1, P̄

′

2, · · · , P̄
′
n

)
is any permutation of

(
P̄1, P̄2, · · · , P̄n

)
. Then

PFRWGMSM(κ)
(
P̄′1, P̄

′

2, · · · , P̄
′

n

)
= PFRWGMSM(κ)

(
P̄1, P̄2, · · · , P̄n

)
. (22)

Since the process of proof monotonicity, boundedness and commutativity of the developed PFRWGMSM operator
are analogous with procedure of PFRWMSM operator, we are not going to repeat it.185

Analogously, we possess the following several peculiar instances of PFRWMSM operator through assigning di-
verse values of parameter κ.

Case 4. When κ = 1, the presented PFRWGMSM operator is degenerated into Pythagorean fuzzy weighted geometric
(PFWG) operator, exhibited as below:

PFRWGMSM(1)
(
P̄1, P̄2, · · · , P̄n

)

=



√√√√√√√√√√√√√√√1 −

1 −


∏
1≤i1≤n

1 − 1∏
ȷ=1

(
1 −

(
µ̄i ȷ

)2
)

1∑
ȷ=1
ωi1


1∑

1≤i1≤n

1∑
ȷ=1
ωi1



1
1

,



√√√√√√√√√√√
1 −


∏
1≤≤n

1 − 1∏
ȷ=1

(
ν̄Ξi1

)2

κ∑
ȷ=1
ωi1


1∑

1≤≤n

1∑
ȷ=1
ωi1



1
1


=

 ∏
1≤i1≤n

(
µ̄i1

)ωi1 ,

√√√√
1 −

1 − ∏
1≤i1≤n

(
ν̄i1

)2

ωi1


= PFWG

(
P̄1, P̄2, · · · , P̄n

)
. (23)

Case 5. When κ = n, the presented PFRWGMSM operator is transformed into Pythagorean fuzzy averaging operator,
exhibited as below:

PFRWGMSM(n)
(
P̄1, P̄2, · · · , P̄n

)

=



√√√√√√√√√√√√√√√1 −

1 −


∏
1≤i1<···<iκ≤n

1 − n∏
ȷ=1

(
1 −

(
µ̄i ȷ

)2
)

n∑
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

n∑
ȷ=1
ωi ȷ


1
κ

,



√√√√√√√√√√√
1 −


∏

1≤i1<···<iκ≤n

1 − n∏
ȷ=1

(
ν̄i ȷ

)2


n∑
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∑
ȷ=1
ωi ȷ



1
κ


=


√√√

1 −
n∏
ȷ=1

(
1 −

(
µ̄i ȷ

)2
) 1

n
,

n∏
ȷ=1

(
ν̄i ȷ

) 1
n


= PFA

(
P̄1, P̄2, · · · , P̄n

)
. (24)

4. Novel entropy-based knowledge measure for PFS

Knowledge measure originated by Szmidt et al.[66] is a efficient technique for depicting the amount of information
of fuzzy set. It is of importance tool measure the fuzziness of a fuzzy set. Motivated by the think of the knowledge190

measure of IFS propounded by Szmidt et al.[67], we present a novel Pythagorean fuzzy knowledge measure (PFKM)
and further define a entropy of PFS based upon the knowledge measure.

Definition 11. Let X is a universe of discourse and P̄ = {⟨x, µ̄(x), ν̄(x)} be a PFS. The knowledge measure of P̄ is
defined as follows:

PFKM
(
P̄
)
= 1 − 1

2n

n∑
i=1

(
1 −

∣∣∣µ̄2 (xi) − ν̄2 (xi)
∣∣∣) (1 + π̄2 (xi)

)
. (25)
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As we see, the proposed knowledge can valid measure the amount of knowledge through taking into account the
fuzziness and intuitionism of PFS. In what follows, we shall prove that the presented PFKM PFKM

(
P̄
)

is a valid
knowledge measure if it fulfills the following axiomatic properties.195

Theorem 11. Suppose P̄ = {⟨x, µ̄(x), ν̄(x)} be a PFS. The PFKM PFKM (Ξ) defined in Eq.(25) fulfills the following
axiomatic properties.

(P1) PFKM
(
P̄
)
= 1 iff µ̄(xi) = 1 or ν̄(xi) = 1;

(P2) PFKM
(
P̄
)
= 0 iff π̄(xi) = 1;

(P3) PFKM
(
P̄1

)
≥ PFKM

(
P̄2

)
iff P̄1 is less fuzzy than P̄2, i.e., P̄1 ⊆ P̄2 for µ̄1(xi) ≤ µ̄2(xi) or ;200

(P4) PFKM
(
P̄
)
= PFKM

(
P̄c

)
.

Proof. (P1) Since PFKM
(
P̄
)
= 1. Then 1

2n
∑n

i=1

(
1 −

∣∣∣µ̄2 (xi) − ν̄2 (xi)
∣∣∣) (1 + π̄2 (xi)

)
= 0, namely,

(
1 −

∣∣∣µ̄2 (xi) − ν̄2 (xi)
∣∣∣) (1 + π̄2 (xi)

)
=

0. Since, 1 + π̄2 ∈ [1, 2]. Then
(
1 −

∣∣∣µ̄2 (xi) − ν̄2 (xi)
∣∣∣) = 0 for each xi ∈ X. Hence, we have µ̄(xi) = 1 or ν̄(xi) = 1. In

addition, if µ̄(xi) = 1 or ν̄(xi) = 1, it is easy to obtain PFKM
(
P̄
)
= 1.

(P2) If π̄(xi) = 1, then µ̄(xi) = ν̄(xi) = 0. Thus, PFKM(P̄) = 0. On the other hand, if PFKM(P̄) = 0, then

1
2

((
1 −

∣∣∣µ̄2 (xi) − ν̄2 (xi)
∣∣∣)) (1 + π̄2 (xi)

)
= 0

⇒
(
1 + π̄2 (xi)

) (
1 −

∣∣∣µ̄2 (xi) − ν̄2 (xi)
∣∣∣) = 2

⇒ π̄2 (xi) −
(
1 + π̄2 (xi)

) (
1 −

∣∣∣µ̄2 (xi) − ν̄2 (xi)
∣∣∣) = 1

⇒
(
1 + π̄2 (xi)

) (
1 −

∣∣∣µ̄2 (xi) − ν̄2 (xi)
∣∣∣) = π̄2 (xi) − 1.

Since the range of µ̄2 (xi) , ν̄2 (xi) , π̄(xi), then we can attain π̄(xi) = 1.205

(P3) Aiming at the proposed knowledge measure PFKM
(
P̄
)
, we ponder the following function:

f (µ̄, ν̄) = 1 − 1
2

(
2 −

(
µ̄2 + ν̄2

)) (
1 −

∣∣∣µ̄2 − ν̄2
∣∣∣) .

in which µ̄, ν̄ ∈ [0, 1] and 0 ≤ µ̄2 (xi) + ν̄2 (xi) ≤ 1. Then we have

PFKM (Ξ) =
1
n

n∑
i=1

f (µ̄ (xi) , ν̄ (xi)) .

For the first situation that P̄1 ⊆ P̄2 for µ̄1(xi) ≤ µ̄2(xi), it is obvious that µ̄1(xi) ≤ µ̄2(xi) ≤ ν̄2(xi) ≤ µ̄1(xi). Simply
write as µ̄ ≤ ν̄. The the function can be rewritten as:

f (µ̄, ν̄) = 1 − 1
2

(
2 −

(
µ̄2 + ν̄2

)) (
1+ | µ̄2 − ν̄2 |

)
.

In the following, we research the partial derivatives of the function f (µ̄, ν̄). Then for µ̄, we have

∂ f (µ̄, ν̄)
∂µ̄

= µ̄
(
2µ̄3 − 1

)
,

since 0 ≤ µ̄ ≤ ν̄ ≤ 1 and 0 ≤ µ̄2 + ν̄2 ≤ 1, then µ̄ ≤
√

2
2 . Then

∂ f (µ̄, ν̄)
∂µ̄

≤ 0.
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which signifies the function f (µ̄, ν̄) is monotonically decreasing in term of µ̄. Furthermore,

∂ f (µ̄, ν̄)
∂µ̄

= ν̄
(
3 − 2ν̄3

)
≥ 0.

which signifies the function f (µ̄, ν̄) is monotonically increasing in term of ν̄.
In light of the above results and the relation µ̄1(xi) ≤ µ̄2(xi) ≤ ν̄2(xi) ≤ µ̄1(xi). It is known that f (µ̄1 (xi) , ν̄1 (xi)) ≥

f (µ̄2 (xi) , ν̄2 (xi)). for all xi ∈ X.
That further indicates

1
n

n∑
i=1

f (µ̄1 (xi) , ν̄1 (xi)) ≥
1
n

n∑
i=1

f (µ̄2 (xi) , ν̄2 (xi)) ,

which means PFKM
(
P̄1

)
≥ PFKM

(
P̄2

)
holds.

The second situation is similar to the first one, the illustration process is omitted here.210

(P4) Since P̄c = {⟨x, ν̄(x), µ̄(x)}. we can get

PFKM
(
P̄
)
= 1 − 1

2n

n∑
i=1

(
1 −

∣∣∣µ̄2 (xi) − ν̄2 (xi)
∣∣∣) (1 + π̄2 (xi)

)
,

PFKM
(
P̄c

)
= 1 − 1

2n

n∑
i=1

(
1 −

∣∣∣ν̄2 (xi) − µ̄2 (xi)
∣∣∣) (1 + π̄2 (xi)

)
.

Accordingly, PFKM
(
P̄
)
= PFKM

(
P̄c

)
.

Definition 12. Assume that P̄ = (µ̄, ν̄) be a PFN. The entropy measure of P̄ on the basis of the knowledge measure is
depicted as:

PFE
(
P̄
)
= 1 − PFKM

(
P̄
)
=

1
2

(
1 + π̄2

) (
1 −

∣∣∣µ̄2 − ν̄2
∣∣∣) . (26)

The propounded Pythagorean fuzzy entropy in Definition 11 fulfills the conditions in Theorem 12.

Theorem 12. Assume that P̄ = (µ̄, ν̄) be a PFN. Then
(P1) 0 ≤ PFE

(
P̄
)
≤ 1;

(P2) PFE
(
P̄
)
= 1 iff π̄(xi) = 1;215

(P3) PFE
(
P̄
)
= 0 iff µ̄ = 1 or ν̄ = 1.

(P4) PFE
(
P̄
)
= PFE

(
P̄c

)
.

The proof of Theorem 12 is analogous Theorem 11, so it is omitted.

5. The MADM approach based upon the PFRWMSM and PFRWGMSM operator with unknown weight in-
formation220

In this part, we employ the PFRWMSM and PFRWGMSM operator to fuse the Pythagorean fuzzy information and
further design a sorting approach on the basis of the extended WASPAS method. Firstly, we give the general statement
of PF-MADM issue. Secondly, with the assistance of the PFRWMSM and PFRWGMSM operator to integrate the
expert opinions and devise an expanded WASPAS method for handling PFMADM issues. Ultimately, we sketch the
devised decision algorithm of PFMADM.225
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5.1. Depiction of the MADM issues

Aiming at a traditional MADM issue, it possess the following elementary elements including the set of attributes
and alternatives and attributes weight information. Suppose that T = {T1,T2, · · · ,Tn} be family of alternatives,
ℑ = {ℑ1,ℑ2, · · · ,ℑm} be a set of attributes, andW = {ω1, ω1, · · · , ωm}T is the weight information of attributes with
ω ȷ ∈ [0, 1],

∑m
ȷ=1 ω ȷ = 1. We suppose that the specialist provides his(her) assessment viewpoint for the alternatives230

in their of diverse attributes in the form of PFNs and further build-up the Pythagorean fuzzy evaluation matrix D =(
Pi ȷ

)
n×m
=

(
µ̄i ȷ, ν̄i ȷ

)
n×m

.

Table 1: Pythagorean fuzzy evaluation matrix P =
(
Ξi ȷ

)
n×m

.

ℑ1 ℑ2 · · · ℑ ȷ · · · ℑn

T1 (µ̄11, ν̄11) (µ̄12, ν̄12) · · ·
(
µ̄1 ȷ, ν̄1 ȷ

)
· · · (µ̄1m, ν̄1m)

T2 (µ̄21, ν̄21) (µ̄22, ν̄22) · · ·
(
µ̄2 ȷ, ν̄2 ȷ

)
· · · (µ̄2m, ν̄2m)

...
...

...
. . .

...
. . .

...

Ti (µ̄i1, ν̄i1) (µ̄i2, ν̄i2) · · ·
(
µ̄i ȷ, ν̄i ȷ

)
· · · (µ̄im, ν̄im)

...
...

...
. . .

...
. . .

...

Tm (µ̄n1, ν̄m1) (µ̄n2, ν̄m2) · · ·
(
µ̄m ȷ, ν̄n ȷ

)
· · · (µ̄nm, ν̄nm)

Table 2: Linguistic terms for experts to assess the alternatives.

Linguistic term Abbreviation Pythagorean fuzzy element

Extremely Low EL (0.15, 0.95 )
Very Low VL (0.25, 0.85 )

Low L (0.35, 0.75 )
Middle low ML (0.45, 0.65 )

Below middle BL (0.50, 0.60 )
Middle M (0.55, 0.55 )

Above middle AM (0.60, 0.50 )
Middle hight MH (0.65, 0.45 )

Hight H (0.75, 0.35 )
Very hight VH (0.85, 0.25 )

Extremely hight EH (0.95, 0.15 )

5.2. The propounded PF-WASPAS decision approach

The WASPAS is an effectual assessment method propounded by Zavadskas et al. [52], which can more exact
deal with actual issues by combines the weighted product and weighted sum model. To efficient process the afore-235

mentioned PF-MADM problem, we device an PF-WASPAS approach by combining the the PFRWMSM operator,
PFRWGMSM operator and WASPAS method to cope with the above PF-MADM problem with unknown attribute
weight information.

Determining assessment information. Based upon the depiction of decision problems, decision experts provide
their opinion for the alternatives with respect to the pondered attributes. In light of the complexity of decision expert’s240

cognition, they usually give the linguistic terms to express their judgement rather than utilize the Pythagorean fuzzy
information directly. Hence, the assessment matrix can be ascertained through decision experts based on the linguistic
terms listed in Table 2.

Transforming assessment information. The Pythagorean fuzzy assessment matrix D =
(
Pi ȷ

)
m×n

can be derived
through the Table 2.245
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Standardized the Pythagorean fuzzy assessment matrix. In light of the diverse types of the attributes, we need to
normalize the assessment matrix D =

(
Pi ȷ

)
n×m

to standardized Pythagorean fuzzy assessment matrix D =
(
Pi ȷ

)
n×m

through the Eq. (27):

Pi ȷ =
(
¯̄µi ȷ, ¯̄νi ȷ

)
=


(
µ̄i ȷ, ν̄i ȷ

)
, ℑi is benefit attribute;(

ν̄i ȷ, µ̄i ȷ

)
, ℑi is cost attribute.

(27)

Ascertaining the weights of attributes. The weight information of criterion is an crucial index during the decision
process. In this essay, the weight vector of attribute is determined on the basis the developed Pythagorean fuzzy
entropy. The concrete computation steps ar shown as below:

(1): The Pythagorean fuzzy entropy matrix PFEM =
(
PFEi ȷ

)
n×m

is built-up through the Eq. (26).

PFEM =
(
PFEi ȷ

)
n×m
=


PFE11 PFE12 · · · PFE1m

PFE21 PFE22 · · · PFE2m
...

...
. . .

...
PFEn1 PFEn2 · · · PFEnm


(2): Calculating the standardized Pythagorean fuzzy entropy matrix PFENM =

(
PFNEi ȷ

)
n×m

with the aid of the
following formulation:

PFNE ȷ =
∑n

i=1 PFEi ȷ∑n
i=1

∑m
ȷ=1 PFEi ȷ

.

(3): Ascertaining the weights of attribute through the following formulation,

ω ȷ =
1 − PFNE ȷ∑m
ȷ=1

(
1 − PFNE ȷ

) . (28)

The Computation of the WSM and WPM model. As mentioned before, the WASPAS method is made up of the
weighted sum model (WSM) and weighted product model (WSM). The final value the the optimal alternative is
calculated by combining the aggregated value of WSM and WPM. In this essay, we employ the PFRWMSM operator
and PFRWGMSM operator to determine the WSM and WPM, severally.
Ascertaining weighted sum of alternative Ti through the developed PFRWMSM operator, the value Q1

i of weighted
sum is computed by the Eq. (29)

Q1
i = PFRWMSM(κ) (Pi1,Pi2, · · · ,Pim)

=





√√√√√√√√√√√
1 −


∏

1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(
¯̄µi ȷ

)2


κ∏
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ



1
κ

,

√√√√√√√√√√√√√√√1 −

1 −


∏
1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(
1 −

(
¯̄νi ȷ

)2
)
κ∏
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∏
ȷ=1
ωi ȷ


1
κ


. (29)

Ascertaining weighted prod of alternative Ti through the developed PFRWGMSM operator, the value Q2
i of weighted

prod is computed by the Eq. (30),

Q2
i = PFRWGMSM(κ) (Pi1,Pi2, · · · ,Pim)

=



√√√√√√√√√√√√√√√1 −

1 −


∏
1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(
1 −

(
¯̄µi ȷ

)2
)
κ∑
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∑
ȷ=1
ωi ȷ


1
κ

,



√√√√√√√√√√√
1 −


∏

1≤i1<···<iκ≤n

1 − κ∏
ȷ=1

(
¯̄νI ȷ

)2


κ∑
ȷ=1
ωi ȷ


1∑

1≤i1<···<iκ≤n

κ∑
ȷ=1
ωi ȷ



1
κ

. (30)

Calculating the comprehensive assessment value. The comprehensive assessment value Ki of alternative is calcu-
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lated through the Eq. (31),

Ki = σQ(1)
i ⊕ (1 − σ) Q(2)

i , (31)

where σQ1
i =

√1 −
(
1 −

(
µ̄Q1

i

)2
)σ
,
(
ν̄Q1

i

)σ, (1 − σ) Q2
i =

√1 −
(
1 −

(
µ̄Q2

i

)2
)(1−σ)

,
(
ν̄Q2

i

)(1−σ)
 . The coefficient σ250

takes from the interval [0, 1], which can be ascertain according to risk preference of experts.
Ascertaining the order relation of alternatives. The alternative ranks with the help of the score values of S (Ki), in

which the optimal alternative possess the most value of S (Ki).

5.3. The developed PF-WASPAS decision procedure
With the help of the aforementioned statement, we summarize the steps of the designed PF-WASPAS decision to255

resolve the actual problems with Pythagorean fuzzy information.
Pondering an empirical decision problem, let T = {T1,T2, · · · , Tn} be set of alternatives, ℑ = {ℑ1,ℑ2, · · · ,ℑm} be

a set of attributes, andW = {ω1, ω1, · · · , ωm}T is the weight information of attributes with ω ȷ ∈ [0, 1],
∑m
ȷ=1 ω ȷ = 1.

The experts provide their assessment information by the linguistic terms displayed in Table 2. The following decision
procedure will determine the optimal alternative and rank the alternatives in a declining order.260

Step 1: Determining assessment information for alternatives with the aid of Table 2.
Step 2: Transforming the linguistic assessment matrix to Pythagorean fuzzy assessment matrixD =

(
Pi ȷ

)
n×m

.

Step 3: Obtaining the standardized Pythagorean assessment matrixD =
(
Pi ȷ

)
n×m

through the Eq. (27).
Step 4: Ascertaining the weight vectorW = {ω1, ω2, · · · , ωm}T with the aid of the Eq. (28).
Step 5: Working out the value of weighted sum Q(1)

i and weighted product Q(2)
i for every alternative Ti through265

the Eq. (29) and Eq. (30).
Step 6: Calculating the comprehensive assessment value Ki for each alternative Ti through Eq. (31).
Step 7: Computing the score values S (Ki) of alternative Ti.
Step 8: Finally, the order relation of alternatives is fixed by the score values of S (Ki).
By means of the above-mentioned progresses, we create a diagrammatic sketch to outline the diverse steps. The270

diagrammatic sketch is portrayed in Figure 1.
In what follows, we shall employ an real-life example to illustrate the feasibility and practicability of the designed

decision algorithm.

6. Numerical example

This section first utilizes the presented decision algorithm to assess the teaching quality of teachers in university.275

Then, we implement the sensitivity analysing of the propounded approach. Finally, we conduct a comprehensive
comparative study to highlight the merits and validity of the developed approach in this essay.

6.1. Background introduction
In the report of the 19th National Congress of the Communist Party of China, Chinese leaders clearly put forward

that improving the quality of education should be placed in an important strategic position of the country. The report280

points out that we should always make the construction of a powerful education country the party’s basic project
and always take precedence to develop the business of education. In addition, it sets clear requirements for the
key improvement of the quality of higher education, insists on deepening educational reform and modernization,
speeds up the construction of first-class universities and disciplines, and realizes the connotative development of
higher education. At the same time, the state has implemented a number of measures to comprehensively improve285

the quality of education, such as the quality of teachers and curriculum reform. Among them, the teaching quality
assessment project will be the key to improving and guiding the quality of school education. Hence, the construction
of teaching quality assessment model is a crucial research topic for enhancing the education quality of university.
After investigating several teaching indexes and evaluation numerical examples, we summed up several important
evaluation indicators as decision-making attributes to effectively carry out teaching quality evaluation. The concrete290

judgement illustrations are depicted as follows.
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Figure 1: The framework of the propounded approach.
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Teaching attitude ℑ1.Teachers’ teaching attitude is an extremely important factor to ensure students’ learning. A
correct teaching attitude should include the following aspects: preparation before class, teachers’ appearance and un-
derstanding of the current scientific research situation of the subject. The preparation before class is mainly reflected
in the formulation of a clear teaching plan, the preparation of a complete course plan and the preparation of teach-295

ing course-ware. Teachers’ dignified appearance is determined by their proper clothes, strict adherence to teachers’
professional quality and rigorous teaching style. The degree of scientific research understanding of the discipline is
reflected in whether the knowledge learned can be combined with the latest scientific research knowledge, so as to
improve students’ innovative thinking.

Teaching content ℑ2.Teaching content refers to the dynamically generated materials and information that interact300

with teachers and students in the teaching process and serve the purpose of teaching. How to make reasonable teaching
content and make students quickly grasp knowledge is an important factor to measure the teaching quality of teachers.
It mainly involves three aspects: (a) whether the selection of teaching content is reasonable; (b) whether the teaching
content highlights the cultivation of practice and application skills; (c) whether to add relevant extension content to
expand students’ horizons.305

Teaching method and technique ℑ3.Teaching method is the general term of the methods and means used by
teachers and students in the teaching process in order to achieve the common teaching objectives and complete the
common teaching tasks. It includes teachers’ teaching methods, students’ learning methods, teaching and learning
methods. It is mainly reflected in the following aspects: (a) whether to innovate unique teaching methods to improve
students’ initiative and enthusiasm and to use the learned knowledge to mine new knowledge; (b) whether to adopt the310

teaching method of combining seminar, example, heuristic and theme teaching method; (c) whether to design unique
teaching course-ware according to the teaching content and combine with practical cases to improve the cognition of
students of teaching content.

Teaching effect ℑ4.Teaching effect is the result of teaching, it is the concentrated embodiment of teaching qual-
ity. It is mainly reflected in the following aspects: (a) whether the expected teaching objectives are achieved and the315

content of knowledge acquired by students is detected through classroom testing; (b) whether the feedback and sug-
gestions of students on classroom teaching are rectified; (c) whether students are committed to student management
to improve students’ enthusiasm and thus enhance their interest in the subject.

Teaching characteristics ℑ5.Teaching characteristics are the concrete manifestation of teachers’ teaching ability
and a deep-seated element of improving teaching quality. It mainly includes the following aspects: (a) whether320

to make full use of body language to organize the classroom; (b) whether to design novel and interesting ways of
introduction to stimulate learning desire; (c) whether the teaching process is progressive and effective.

Evaluation experts provide a comprehensive assessment viewpoint with the aid of the aforementioned decision
attributes to conduct assessment activity efficiently.

6.2. Decision analysis325

Example 1. Assume that the colleges and universities will develop the teaching quality assessment for a group of
full-time teachers. The group possesses six teachers to take part in the assessment. The assessment criterion set is
ℑ = {ℑ1,ℑ2,ℑ3,ℑ4,ℑ5}, which ℑ1 (signified as teaching attitude), ℑ2 (signified as teaching content), ℑ3 ( signified
as teaching method and technique), ℑ4 (signified as teaching effect), ℑ5 (signified as teaching characteristics). The
above criterions are all deemed as benefit criteria and their weight information is entirely unknown. The assessment330

expert gives his(her) judgement for the six teachers with respect to the aforementioned criterions after listening their
course carefully. The assessment information provided through the linguistics terms is displayed in Table 3.

In what follows, the optimal teacher is selected through employing the designed approach under Pythagorean
fuzzy context.

Step 1: The assessment information for teachers by expert is determined in Table 3.335

Step 2: Transforming the linguistic assessment matrix to Pythagorean fuzzy assessment matrixD =
(
Pi ȷ

)
n×m

.
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Table 3: Pythagorean fuzzy evaluation matrix.

ℑ1 ℑ2 ℑ3 ℑ4 ℑ5

T1 VH M H MH AM
T2 VH AM MH H M
T3 MH AM VH H M
T4 VH M H AM MH
T5 VH AM MH H H
T6 H MH VH MH AM

D =
(
Pi ȷ

)
n×m
=



(0.85, 0.25) (0.55, 0.55) (0.75, 0.35) (0.65, 0.45) (0.60, 0.50)
(0.85, 0.25) (0.60, 0.50) (0.65, 0.45) (0.75, 0.35) (0.55, 0.55)
(0.65, 0.45) (0.60, 0.50) (0.85, 0.25) (0.75, 0.35) (0.55, 0.55)
(0.85, 0.25) (0.55, 0.55) (0.75, 0.35) (0.60, 0.50) (0.65, 0.45)
(0.85, 0.25) (0.60, 0.50) (0.65, 0.45) (0.75, 0.35) (0.75, 0.35)
(0.75, 0.35) (0.65, 0.45) (0.85, 0.25) (0.65, 0.45) (0.60, 0.50)


Step 3: Obtaining the standardized Pythagorean assessment matrixD =

(
Pi ȷ

)
n×m

through the Eq. (27).

Because all attributes are considered benefit type, thus the procedure of normalization is omitted, i.e.,D = P.
Step 4: Ascertaining the weight vectorW = {ω1, ω1, · · · , ωm}T with the aid of the Eq. (28).
(1) The Pythagorean fuzzy entropy matrix is calculated as below:

PFEM =
(
PFEi ȷ

)
6×5
=



0.7935 0.3025 0.6318 0.4638 0.3815
0.7935 0.3815 0.4638 0.6318 0.3025
0.4638 0.3815 0.7935 0.6318 0.3025
0.7935 0.3025 0.6318 0.3815 0.4638
0.7935 0.3815 0.4638 0.6318 0.6318
0.6318 0.4638 0.7935 0.4638 0.3815


(2) The normalized Pythagorean fuzzy entropy values are obtained as follows:340

PFNE1 = 0.2680, PFNE2 = 0.1389, PFNE3 = 0.2372, PFNE4 = 0.2012, PFNE5 = 0.1547.

(3) By utilizing the Eq. (28), we can acquire the weights of all attributes displayed as :

ω1 = 0.1830, ω2 = 0.2153, ω3 = 0.1907, ω4 = 0.1997, ω5 = 0.2113.

Step 5: By using the PFRWMSM operator and PFRWGMSM operator, the values of weighted sum Q(1)
i and

weighted product Q(2)
i for each alternative (for simplicity, let κ = 2) are worked out shown as:

Q(1)
1 = (0.6832, 0.4306), Q(1)

2 = (0.6841, 0.4298), Q(1)
3 = (0.6853, 0.4287),

Q(1)
4 = (0.6837, 0.4302), Q(1)

5 = (0.7238, 0.3854), Q(1)
6 = (0.7026, 0.4074);

Q(2)
1 = (0.6843, 0.4311), Q(2)

2 = (0.6848, 0.4306), Q(2)
3 = (0.6855, 0.4300),

Q(2)
4 = (0.6845, 0.4308), Q(2)

5 = (0.7241, 0.3867), Q(2)
6 = (0.7033, 0.4079).
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Step 6: The comprehensive assessment value Ki for each alternative Ti (for convenience σ = 0.5) is computed as:

K1 = (0.6838, 0.4308), K2 = (0.6844, 0.4302), K3 = (0.6854, 0.4294),
K4 = (0.6841, 0.4305), K5 = (0.7239, 0.3860), K6 = (0.7029, 0.4077).

Step 7: The score S (Ki) of alternative Ti are computed as below:

S (K1) = 0.2819, S (K2) = 0.2834, S (K3) = 0.2854,
S (K4) = 0.2826, S (K5) = 0.3751, S (K6) = 0.3279.

Step 8: The order relation of alternatives is fixed based upon the values of Ki, which shown as below: T5 ≻ T6 ≻
T3 ≻ T2 ≻ T4 ≻ T1. Accordingly, the teaching quality of the fifth teacher is optimal.

6.3. Parameter discussions

The subsection 6.2 shows the decision analysis procedure of the developed approach with a precondition κ = 2
and σ = 0.5, which fails to illustrate the flexibility and variation trend of our method. For this, this subsection shall345

conduct a comprehensive analysis about the parameter κ and σ and explore the effect of final decision outcomes by
utilizing diverse parameter values.

First of all, we analyze the changes of the ultimate order relation of teachers from two versions. One is the changes
of final orders based on the diverse values of parameter κ = 2, the scores and ranks of different teachers are computed
in Table 4. From it, we can know that the final order relationship of the six teachers attained by utilizing the presented350

approach based upon diverse values of parameter σ are all the same, the optimal option is the fifth teacher T5, which
demonstrates that the developed methodology is stable for parameter σ. In addition, we can find that the score of each
teacher decreases monotonically with the increase of parameter σ. The parameter σ can be deemed as a preference
index of decision expert to control the information fusion manner. When σ is taken the maximum value, the expert
shall use the PFRWMSM operator to integrate preference information. When σ is taken the minimum value, experts355

utilize the PFRWGMSM operator.

Table 4: The impact of σ for the ultimate decision results (κ = 2).

Parameter σ
Score values

SortingS (K1) S (K2) S (K3) S (K4) S (K5) S (K6)

0 0.2825 0.2835 0.2849 0.2829 0.3747 0.3282 T5 ≻ T6 ≻ T3 ≻ T2 ≻ T4 ≻ T1

0.1 0.2824 0.2835 0.2850 0.2829 0.3748 0.3281 T5 ≻ T6 ≻ T3 ≻ T2 ≻ T4 ≻ T1

0.2 0.2822 0.2835 0.2851 0.2828 0.3749 0.3281 T5 ≻ T6 ≻ T3 ≻ T2 ≻ T4 ≻ T1

0.3 0.2821 0.2834 0.2852 0.2827 0.3749 0.3280 T5 ≻ T6 ≻ T3 ≻ T2 ≻ T4 ≻ T1

0.4 0.2820 0.2834 0.2853 0.2827 0.3750 0.3280 T5 ≻ T6 ≻ T3 ≻ T2 ≻ T4 ≻ T1

0.5 0.2819 0.2834 0.2854 0.2826 0.3751 0.3279 T5 ≻ T6 ≻ T3 ≻ T2 ≻ T4 ≻ T1

0.6 0.2818 0.2834 0.2855 0.2826 0.3751 0.3278 T5 ≻ T6 ≻ T3 ≻ T2 ≻ T4 ≻ T1

0.7 0.2817 0.2834 0.2856 0.2825 0.3752 0.3278 T5 ≻ T6 ≻ T3 ≻ T2 ≻ T4 ≻ T1

0.8 0.2816 0.2833 0.2857 0.2825 0.3753 0.3277 T5 ≻ T6 ≻ T3 ≻ T2 ≻ T4 ≻ T1

0.9 0.2814 0.2833 0.2857 0.2824 0.3753 0.3277 T5 ≻ T6 ≻ T3 ≻ T2 ≻ T4 ≻ T1

1.0 0.2813 0.2833 0.2858 0.2824 0.3754 0.3276 T5 ≻ T6 ≻ T3 ≻ T2 ≻ T4 ≻ T1

Secondly, we explore the influence of parameter κ for the decision procedure. For this, we first fix the parameter
σ = 0.5 and work out the scores and orders of the selected six teachers on the basis of dissimilar values of parameter
κ, the outcomes are displayed in Table 5 and Figure 2. With the assistance of Table 5 and Figure 2, we can attain the
following summarizations:360

(1) The order relationship of the selected six teachers is slightly diverse, but the optimal choice is all the fifth
teacher. The main reason is that the value of parameter κ signifies the relationship between different numbers of
attributes. When κ = 1, the PFRWMSM and PFRWGMSM operator degenerate into the PFWA and PFWG operator
severally, thus the PFRWMSM and PFRWGMSM operator fail to ponder the mutuality of diverse attributes in such
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situation. Furthermore, the PFRWMSM and PFRWGMSM operator also ignore the correlation of attribute because365

they simplify to the PFG and PFA operator when κ = 5. In particular, we give the following illustration for the
ranking obtained by the propounded method κ = 5. The first reason is that PFG and PFA operator fail to consider the
importance of aggregated information. Another reason is that the selections of the linguistic term are relatively lesser.
This makes experts have certain limitations in providing evaluation information through the given linguistic terms.

(2) For the proffered method, the score values of six teachers are first monotonically increasing when κ ∈ [1, 2] and370

then decreasing monotonically when κ ∈ [2, 5]. The PFRWMSM and PFRWGMSM operator undergo the transfor-
mation from averaging operator to geometric operator and geometric operator to averaging operator when parameter
κ changes from 1 to 5, severally.

(3) The parameter κ can provide more preference selections for experts, an expert possessing optimistic attitude
can select a larger value of κ and an expert possessing pessimistic attitude can select a smaller value of κ. Moreover,375

experts also select appropriate value of parameter κ to fully take into the consideration the mutuality of criterions
through practical situation.

Table 5: The impact of κ for the ultimate decision results(σ = 0.5).

Parameter κ
Score values

Order relationS (K1) S (K2) S (K3) S (K4) S (K5) S (K6)

1 0.3355 0.4021 0.4052 0.3075 0.4743 0.3753 T5 ≻ T3 ≻ T2 ≻ T6 ≻ T1 ≻ T4

2 0.2819 0.2834 0.2854 0.2826 0.3751 0.3279 T5 ≻ T6 ≻ T3 ≻ T2 ≻ T4 ≻ T1

3 0.2861 0.2869 0.2880 0.2865 0.3765 0.3308 T5 ≻ T6 ≻ T3 ≻ T2 ≻ T4 ≻ T1

4 0.2911 0.2915 0.2920 0.2913 0.3785 0.3343 T5 ≻ T6 ≻ T3 ≻ T2 ≻ T4 ≻ T1

5 0.2986 0.2986 0.2986 0.2986 0.3826 0.3402 T5 ≻ T6 ≻ T1 ∼ T2 ∼ T3 ∼ T4

Figure 2: The change of scores obtained through diverse values of parameter κ.

Furthermore, to better show the changes of parameter κ and σ during the decision procedure, we compute the
eventual decision results on the basis of different combination of parameter κ and σ, which are displayed in Figure 3.

6.4. Validation test380

Since it is impossible to ascertain which methodology is most satisfied with provided decision-making issues,
the diverse methodologies may produce different preference ordering of alternatives for the same decision issue.
Accordingly, we utilize the following test criteria set up by Wang and Triantaphyllou [68] to examine the availability
and dependability of our approaches.
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(a) κ = 1

(b) κ = 2 (c) κ = 3

(d) κ = 4 (e) κ = 5

Figure 3: The change of scores obtained through diverse values of parameter κ.
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Test Standard 1: If the decision value of the non optimal scheme is replaced by the decision value of the worse385

scheme, the decision value of the best scheme should not be changed.
Test Standard 2: An efficient MCDM method should meet transitivity.
Test Standard 3: When an MCDM issue is decomposed into several sub-issues, and the same MCDM method is

applied to these sub-issues to sort the alternatives, the various ranks of the alternative should be the same as the rank
of original decision issue.390

In what follows, we shall execute the aforementioned three text standards to validate the proposed extended WAS-
PAS approach under Pythagorean fuzzy circumstance.

6.4.1. The validity text on standard 1
Aiming at the test standard 1, we interchange the membership degree and nonmembership degree of attribute

{T6,T3,T2,T4} (non-optimal scheme) and T1 (worse scheme )in assessment matrixD, then shifted assessment matrix

D′ is formed and shown as

D′ =



(0.25, 0.85) (0.55, 0.55) (0.35, 0.75) (0.45, 0.65) (0.50, 0.60)
(0.25, 0.85) (0.50, 0.60) (0.45, 0.65) (0.75, 0.35) (0.55, 0.55)
(0.45, 0.65) (0.50, 0.60) (0.25, 0.85) (0.35, 0.75) (0.55, 0.55)
(0.25, 0.85) (0.55, 0.55) (0.35, 0.75) (0.50, 0.60) (0.45, 0.65)
(0.85, 0.25) (0.60, 0.50) (0.65, 0.45) (0.75, 0.35) (0.75, 0.35)
(0.35, 0.75) (0.45, 0.65) (0.25, 0.85) (0.45, 0.65) (0.50, 0.60)


Based upon the shifted assessment matrix D′ and the presented approach, we obtain the novel order relation of

teachers, the optimal selection is also the fifth teacher T5, which is consistent with the initial ranking of teachers.395

Accordingly, the designed method is practicable for the test standard 1.

6.4.2. Validation via utilizing the Examine Standard 2 and Examine Standard 3
With the help of test standard 2 and standard 3, the decision issues can be disintegrated as the following sub-

issues {T1,T2,T3,T4}, {T2,T3,T4,T5} and {T3,T4,T5, T6}. Then we utilize the designed Pythagorean fuzzy WASPAS
method to resolve the above three sub-problems, the corresponding decision outcomes are T3 ≻ T2 ≻ T4 ≻ T1,400

T5 ≻ T3 ≻ T2 ≻ T4 and T5 ≻ T6 ≻ T3 ≻ T4, severally. Hence, through combining the test standard 2 and standard 3,
we can acquire the entire order relation of alternatives as T5 ≻ T6 ≻ T3 ≻ T2 ≻ T4 ≻ T1, which is same as the original
decision result. Consequently, the proposed Pythagorean fuzzy WASPAS method is practicable for the test standard 2
and standard 3.

6.5. Comparison study405

In this subsection, to validate the availability and the superiority of the designed innovative approach, we will
execute a detailed comparison analysing between the designed method with the extant decision methodologies.

Firstly, we employ the previous methods involving PFWA operator [27], Pythagorean fuzzy Einstein (PFEWA)
operator [28], Pythagorean fuzzy geometric BM (PFGBM) operator [41] Pythagorean fuzzy TOPSIS (PF-TOPSIS)
method proposed by Zhang and Xu [64] to handle the issue of this manuscript and attain the corresponding deci-410

sion outcomes, which are displayed in Table 6. From it, we can see that the order relations acquired from diverse
Pythagorean fuzzy decision approaches are basically the same as the developed WASPAS method. The optimal selec-
tions are all T5 which further validate the efficiency of the designed approach. In what follows, we ulteriorly expound
the superiority with the aid of a detailed comparison analysis.

X Compared with the TOPSIS method Zhang and Xu [64]. The PF-TOPSIS is presented by Zhang and Xu [64]415

based upon the classical TOPSIS method and distance measure, which ascertains the optimal selection through the
closeness degree of alternative. It is obvious that the PF-TOPSIS method lacks the flexibility and the ability to ponder
correlation of attributes. What’s more, the weight information of criterions in PF-TOPSIS method is provided by
expert committee according to their knowledge and experience, which has a certain subjectivity. Nevertheless, the
presented Pythagorean fuzzy WASPAS method based upon the PFRWMSM and PFRWGMSM operator can efficiently420

conquer the mentioned shortcomings in the aspect of flexibility and attribute relevance. Further, the developed method
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can deal with the decision issues with unknown weight information and determine weights through the weight entropy
approach. Consequently, the propounded Pythagorean fuzzy WASPAS approach is more workable and applicability
for work out decision problems.

X Compared with the PFWA operator presented by Zhang and Xu. [27]. As the most frequently used operator in425

fusing information, the advantage of PFWA operator that the computation procedure is simple and its defects is that
it is invalid when the real situation needs to consider the relevance of dissimilar data and it fails to reflect the decision
preference of experts. By comparison the developed method in this essay, the presented WASPAS method based
upon the PFRWMSM and PFRWGMSM operator can not only ponder the correlation of different attributes but also
adjust the risk preference of experts with the aid of changeable parameter. Moreover, the propounded approach can430

resolve the issues with complete unknown weight information which is more rational than other methods in which the
weights of attributes are straightforward given from experts. Hence, the presented WASPAS method is more flexible
and general for developing decision analysis.

X Compared with the PFWGBM operator proposed by Liang et al. [41]. The PFWGBM operator possess several
defects in aggregating fuzzy information: (1) it only takes into the correlation between any two attributes consideration435

and produces the redundancy phenomenon during the fusion process; (2) it has two adjustable parameters to control the
preference of experts, although it can make the aggregation procedure more flexible, it is hard for experts to ascertain
appropriate combination of parameter p and q and it shall increase the complexity of integration procedure; (3) it
does not have the reducibility, namely, when the wights of PFWGBM operators are all equal, the PFWGBM operator
fails to degenerate to the PFGBM operator. Nevertheless, the proposed WASPAS method based upon the PFRWMSM440

operator can ponder the relevance of multiple attributes in MADM process and it only possess an alterable parameter to
be ascertained according to expert’s preference. Further, the PFRWMSM and PFWGMSM operator have the property
of reducibility, which can more comprehensive resolve the actual decision issues, especially the weights of aggregated
data are equal. Accordingly, the developed method is more validity and powerful to settle real-life issues.

Table 6: A comparison with the previous approaches

Approaches Score values SortingS (K1) S (K2) S (K3) S (K4) S (K5) S (K6)
The method based on
PFWA operator [27] 0.5018 0.5688 0.5718 0.4745 0.6227 0.5308 T5 ≻ T3 ≻ T2 ≻ T6 ≻ T1 ≻ T4

The method based on
PFEWA operator [28] 0.3104 0.3128 0.3170 0.3115 0.3939 0.3502 T5 ≻ T6 ≻ T3 ≻ T2 ≻ T4 ≻ T1

The method based on
PFGBM operator [41] 0.8151 0.8121 0.8166 0.8320 0.8424 0.8332 T5 ≻ T6 ≻ T4 ≻ T3 ≻ T1 ≻ T2

PF-TOPSIS method [64] -0.2603 -0.2563 -0.2507 -0.1804 -0.1037 -0.1797 T5 ≻ T6 ≻ T4 ≻ T3 ≻ T2 ≻ T1
The proposed Pythagorean

fuzzy WASPAS method 0.2819 0.2834 0.2854 0.2826 0.3751 0.3279 T5 ≻ T6 ≻ T3 ≻ T2 ≻ T4 ≻ T1

Secondly, by the above-mentioned analysis, we summarize the distinct features of the extant methods and the445

presented WASPAS approach. These characteristics are outlined in Table 7. In light of Table 7, the outstanding merits
of the presented method are highlighted, which can further help decision experts to choose an appropriate approach
to more effective cope with diverse practical issues.

Thirdly, for highlighting the dominant advantage of the propounded MSM operators with the previous MSM
operators under dissimilar fuzzy environment, we implement a summarization about several MSM operators, which450

are exhibited in Table 8. From it, we can find that the existing weighted MSM operators do not have the feature of
idempotency in information fusion. In addition, another defect of extant weighted MSM operators is that they fail to
yield to the MSM operators when they possess an identical weight information, which implies the previous weighted
MSM operators do not possess the reducibility. Nevertheless, the presented MSM operators in this research have the
idempotency and reducibility, which illustrates that the developed operators can better fusion assessment information455

and further attain a reasonable decision result.

7. Conclusion

Teaching quality evaluation plays a vital role during the process of improving the quality of education. This
research propounds a novel evaluation model based on the WASPSA method, PFRWMSM and PFRWGMSM operator
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Table 7: Characteristic comparison with existing approaches

Approaches
Capture correlation

between two
attributes

Capture correlation
among multiple

attributes

Flexibility of
decision procedure

Solving the issues
of unknown

weight information
The method based on
PFWA operator [27] × × × ×

The method based on
PFWG operator [27] × × × ×
The method based on
PFEWA operator [28] × × × ×
The method based on
PFEWG operator [29] × × × ×
The method based on
PFDWA operator [32] × × X ×
The method based on
PFDWG operator [32] × × X ×

The method based on
geometric BM operator [41] X × X ×

Pythagorean fuzzy TOPSIS method [64] × × × ×
The proposed Pythagorean

fuzzy WASPAS method X X X X

Table 8: Comparison with existing MSM operator based upon dissimilar fuzzy settings.

Settings Integration operators Whether has the
feature of idempotency

Whether has the
feature of reducibility

PFS PFWMSM operator [44] × ×
PFS PFWGMSM operator [44] × ×
PFS PFIWMSM operator [46] × ×
PFS PFIWGMSM operator [46] × ×
HPFS HPFWMSM operator [47] × ×
HPFS HPFWGMSM operator [47] × ×
IVPFS IVPFWMSM operator [48] × ×
IVPFS IVPFWGMSM operator [48] × ×
PFLS PFLWPMSM operator [49] × ×
PFLS PFLWPGMSM operator [49] × ×
LNS LNWPGMSM operator [50] × ×
DHFS DHFWMSM operator [51] × ×
DHFS DHFWGMSM operator [51] × ×
PFS PFRWMSM operator in this essay X X
PFS PFRWGMSM operator in this essay X X
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and knowledge measure under Pythagorean fuzzy setting. Firstly, we present two innovative types of integration460

operators including PFRWMSM operator and PFRWGMSM operator and to investigate several worthwhile properties
and especial instances of the developed operators. Then we present a knowledge measure and entropy measure of
PFS for ascertaining the attribute weight information. Hereafter, we design a novel MADM methodology through
combining the WASPAS method and the advanced operators to deal with the decision issues with unknown weight
information. In addition, we build-up a comprehensive assessment model for teachers teaching quality evaluation465

and apply the example to testify applicability and effectiveness. Consequently, we execute the parameter analysing
and comparison study to show the flexibility and significant merits of the developed approach, respectively. The
apparent advantage of the developed approach is that (a) it can handle flexible ponder the correlation of any number
of attributes during the process of information integration; (b) it can do with decision issues with complete unknown
weight information and objective ascertain the weights of attributes; (c) it can deal with decision problems more470

accurately with the aid of combining the weighted sum and weighted product model method than a single information
aggregation method. Furthermore, the essay also possesses several limitations that evaluator ignores subjective weight
information and the preference information expressed by linguistic assessment words maybe more in line with experts’
cognition and expression.

In future, we will focus on the following three aspects of research: (1) the designed approaches can be applied to475

settle other decision or assessment issues such as risk investment, big data assessment and project management; (2) the
RWMSM and RWGMSM operator can be efficient generalized to other fuzzy contexts, for instance, Complex q-rung
orthopair fuzzy 2-tuple linguistic setting [69], picture fuzzy set [70] and so forth; (3) the novel decision techniques
will go on developing with the aid of combining the classic approaches and powerful integration operators.
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