10,892 research outputs found

    A Finite-Time Cutting Plane Algorithm for Distributed Mixed Integer Linear Programming

    Get PDF
    Many problems of interest for cyber-physical network systems can be formulated as Mixed Integer Linear Programs in which the constraints are distributed among the agents. In this paper we propose a distributed algorithm to solve this class of optimization problems in a peer-to-peer network with no coordinator and with limited computation and communication capabilities. In the proposed algorithm, at each communication round, agents solve locally a small LP, generate suitable cutting planes, namely intersection cuts and cost-based cuts, and communicate a fixed number of active constraints, i.e., a candidate optimal basis. We prove that, if the cost is integer, the algorithm converges to the lexicographically minimal optimal solution in a finite number of communication rounds. Finally, through numerical computations, we analyze the algorithm convergence as a function of the network size.Comment: 6 pages, 3 figure

    New observables in topological instantonic field theories

    Full text link
    Instantonic theories are quantum field theories where all correlators are determined by integrals over the finite-dimensional space (space of generalized instantons). We consider novel geometrical observables in instantonic topological quantum mechanics that are strikingly different from standard evaluation observables. These observables allow jumps of special type of the trajectory (at the point of insertion of such observables). They do not (anti)commute with evaluation observables and raise the dimension of the space of allowed configurations, while the evaluation observables lower this dimension. We study these observables in geometric and operator formalisms. Simple examples are explicitly computed; they depend on linking of the points. The new "arbitrary jump" observables may be used to construct correlation functions computing e.g. the linking numbers of cycles, as we illustrate on Hopf fibration.Comment: 16 pages, accepted to Journal of Geometry and Physic

    On the relationship between standard intersection cuts, lift-and-project cuts, and generalized intersection cuts

    Get PDF
    We examine the connections between the classes of cuts in the title. We show that lift-and-project (L&P) cuts from a given disjunction are equivalent to generalized intersection cuts from the family of polyhedra obtained by taking positive combinations of the complements of the inequalities of each term of the disjunction. While L&P cuts from split disjunctions are known to be equivalent to standard intersection cuts (SICs) from the strip obtained by complementing the terms of the split, we show that L&P cuts from more general disjunctions may not be equivalent to any SIC. In particular, we give easily verifiable necessary and sufficient conditions for a L&P cut from a given disjunction D to be equivalent to a SIC from the polyhedral counterpart of D. Irregular L&P cuts, i.e. those that violate these conditions, have interesting properties. For instance, unlike the regular ones, they may cut off part of the corner polyhedron associated with the LP solution from which they are derived. Furthermore, they are not exceptional: their frequency exceeds that of regular cuts. A numerical example illustrates some of the above properties. © 2016 Springer-Verlag Berlin Heidelberg and Mathematical Optimization Societ
    • …
    corecore