10 research outputs found

    A Finite-Time Cutting Plane Algorithm for Distributed Mixed Integer Linear Programming

    Get PDF
    Many problems of interest for cyber-physical network systems can be formulated as Mixed Integer Linear Programs in which the constraints are distributed among the agents. In this paper we propose a distributed algorithm to solve this class of optimization problems in a peer-to-peer network with no coordinator and with limited computation and communication capabilities. In the proposed algorithm, at each communication round, agents solve locally a small LP, generate suitable cutting planes, namely intersection cuts and cost-based cuts, and communicate a fixed number of active constraints, i.e., a candidate optimal basis. We prove that, if the cost is integer, the algorithm converges to the lexicographically minimal optimal solution in a finite number of communication rounds. Finally, through numerical computations, we analyze the algorithm convergence as a function of the network size.Comment: 6 pages, 3 figure

    Disjunctive programming and relaxations of polyhedra

    Get PDF
    Given a polyhedron LL with hh facets, whose interior contains no integral points, and a polyhedron PP , recent work in integer programming has focused on characterizing the convex hull of PP minus the interior of LL . We show that to obtain such a characterization it suffices to consider all relaxations of PP defined by at most n(h1)n(h-1) among the inequalities defining PP . This extends a result by Andersen, Cornuéjols, and Li

    Relaxations of mixed integer sets from lattice-free polyhedra

    Get PDF
    This paper gives an introduction to a recently established link between the geometry of numbers and mixed integer optimization. The main focus is to provide a review of families of lattice-free polyhedra and their use in a disjunctive programming approach. The use of lattice-free polyhedra in the context of deriving and explaining cutting planes for mixed integer programs is not only mathematically interesting, but it leads to some fundamental new discoveries, such as an understanding under which conditions cutting planes algorithms converge finitel

    On the relationship between standard intersection cuts, lift-and-project cuts, and generalized intersection cuts

    Get PDF
    We examine the connections between the classes of cuts in the title. We show that lift-and-project (L&P) cuts from a given disjunction are equivalent to generalized intersection cuts from the family of polyhedra obtained by taking positive combinations of the complements of the inequalities of each term of the disjunction. While L&P cuts from split disjunctions are known to be equivalent to standard intersection cuts (SICs) from the strip obtained by complementing the terms of the split, we show that L&P cuts from more general disjunctions may not be equivalent to any SIC. In particular, we give easily verifiable necessary and sufficient conditions for a L&P cut from a given disjunction D to be equivalent to a SIC from the polyhedral counterpart of D. Irregular L&P cuts, i.e. those that violate these conditions, have interesting properties. For instance, unlike the regular ones, they may cut off part of the corner polyhedron associated with the LP solution from which they are derived. Furthermore, they are not exceptional: their frequency exceeds that of regular cuts. A numerical example illustrates some of the above properties. © 2016 Springer-Verlag Berlin Heidelberg and Mathematical Optimization Societ

    Intersection disjunctions for reverse convex sets

    Get PDF
    We present a framework to obtain valid inequalities for optimization problems constrained by a reverse convex set, which is defined as the set of points in a polyhedron that lie outside a given open convex set. We are particularly interested in cases where the closure of the convex set is either non-polyhedral, or is defined by too many inequalities to directly apply disjunctive programming. Reverse convex sets arise in many models, including bilevel optimization and polynomial optimization. Intersection cuts are a well-known method for generating valid inequalities for a reverse convex set. Intersection cuts are generated from a basic solution that lies within the convex set. Our contribution is a framework for deriving valid inequalities for the reverse convex set from basic solutions that lie outside the convex set. We begin by proposing an extension to intersection cuts that defines a two-term disjunction for a reverse convex set. Next, we generalize this analysis to a multi-term disjunction by considering the convex set's recession directions. These disjunctions can be used in a cut-generating linear program to obtain disjunctive cuts for the reverse convex set.Comment: 24 page

    Local cuts and two-period convex hull closures for big-bucket lot-sizing problems

    Get PDF
    Despite the significant attention they have drawn, big bucket lot-sizing problems remain notoriously difficult to solve. Previous work of Akartunali and Miller (2012) presented results (computational and theoretical) indicating that what makes these problems difficult are the embedded single-machine, single-level, multi-period submodels. We therefore consider the simplest such submodel, a multi-item, two-period capacitated relaxation. We propose a methodology that can approximate the convex hulls of all such possible relaxations by generating violated valid inequalities. To generate such inequalities, we separate two-period projections of fractional LP solutions from the convex hulls of the two-period closure we study. The convex hull representation of the two-period closure is generated dynamically using column generation. Contrary to regular column generation, our method is an outer approximation, and therefore can be used efficiently in a regular branch-and-bound procedure. We present computational results that illustrate how these two-period models could be effective in solving complicated problems

    Generalized Intersection Cuts and a new cut generating paradigm

    No full text
    Intersection cuts are generated from a polyhedral cone and a convex set S whose interior contains no feasible integer point. We generalize these cuts by replacing the cone with a more general polyhedron C. The resulting generalized intersection cuts dominate the original ones. This leads to a new cutting plane paradigm under which one generates and stores the intersection points of the extreme rays of C with the boundary of S rather than the cuts themselves. These intersection points can then be used to generate in a non-recursive fashion cuts that would require several recursive applications of some standard cut generating routine. A procedure is also given for strengthening the coefficients of the integer-constrained variables of a generalized intersection cut. The new cutting plane paradigm yields a new characterization of the closure of intersection cuts and their strengthened variants. This characterization is minimal in the sense that every one of the inequalities it uses defines a facet of the closure

    Valid Inequalities and Reformulation Techniques for Mixed Integer Nonlinear Programming

    Get PDF
    One of the most important breakthroughs in the area of Mixed Integer Linear Programming (MILP) is the characterization of the convex hull of specially structured non-convex polyhedral sets in order to develop valid inequalities or cutting planes. Development of strong valid inequalities such as Split cuts, Gomory Mixed Integer (GMI) cuts, and Mixed Integer Rounding (MIR) cuts has resulted in highly effective branch-and-cut algorithms. While such cuts are known to be equivalent, each of their characterizations provides different advantages and insights. The study of cutting planes for Mixed Integer Nonlinear Programming (MINLP) is still much more limited than that for MILP, since characterizing cuts for MINLP requires the study of the convex hull of a non-convex and non-polyhedral set, which has proven to be significantly harder than the polyhedral case. However, there has been significant work on the computational use of cuts in MINLP. Furthermore, there has recently been a significant interest in extending the associated theoretical results from MILP to the realm of MINLP. This dissertation is focused on the development of new cuts and extended formulations for Mixed Integer Nonlinear Programs. We study the generalization of split, k-branch split, and intersection cuts from Mixed Integer Linear Programming to the realm of Mixed Integer Nonlinear Programming. Constructing such cuts requires calculating the convex hull of the difference between a convex set and an open set with a simple geometric structure. We introduce two techniques to give precise characterizations of such convex hulls and use them to construct split, k-branch split, and intersection cuts for several classes of non-polyhedral sets. We also study the relation between the introduced cuts and some known classes of cutting planes from MILP. Furthermore, we show how an aggregation technique can be easily extended to characterize the convex hull of sets defined by two quadratic or by a conic quadratic and a quadratic inequality. We also computationally evaluate the performance of the introduced cuts and extended formulations on two classes of MINLP problems
    corecore