Disjunctive programming and relaxations of polyhedra

Michele Conforti • Alberto Del Pia

Received: 27 April 2012 / Accepted: 16 January 2013 / Published online: 7 February 2013
© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2013

Abstract

Given a polyhedron L with h facets, whose interior contains no integral points, and a polyhedron P, recent work in integer programming has focused on characterizing the convex hull of P minus the interior of L. We show that to obtain such a characterization it suffices to consider all relaxations of P defined by at most $n(h-1)$ among the inequalities defining P. This extends a result by Andersen, Cornuéjols, and Li .

Keywords Mixed integer programming • Disjunctive programming • Polyhedral relaxations

Mathematics Subject Classification (2000) 90C10 • 90C11 • 90C57 • 52B11

1 Introduction

Given polyhedra $P, L \subseteq \mathbb{R}^{n}$, we denote with

$$
\begin{equation*}
P \backslash L:=\overline{\operatorname{conv}}(P-\operatorname{int} L), \tag{1}
\end{equation*}
$$

[^0]where "conv" indicates the closed convex hull, "-" the set difference, and "int" the topological interior. Let $A x \leq b$ be a system of inequalities defining P. We denote by $\mathcal{R}^{q}(A, b)$ the family of the polyhedral relaxations of P that consist of the intersection of the half-spaces corresponding to at most q inequalities of the system $A x \leq b$. In this note we prove the following theorem:

Theorem 1 Let $P=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ and L be polyhedra in \mathbb{R}^{n} and let $h \geq 2$ be the number of facets of L. Then

$$
P \backslash L=\bigcap_{R \in \mathcal{R}^{n(h-1)}(A, b)} R \backslash L .
$$

In the next section we provide a proof of this theorem, and we sketch a construction showing that the result does not hold if one considers polyhedra in $\mathcal{R}^{n(h-1)-1}(A, b)$. We now motivate it by providing an application to mixed integer programming.

Let $P=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ be a polyhedron and let $S=\mathbb{Z}^{p} \times \mathbb{R}^{n-p}$, for some $p, 1 \leq p \leq n$. A mixed-integer set \mathcal{F} is a set of the form $\{x \in P \cap S\}$. Most of the research has focused on obtaining inequalities that are valid for \mathcal{F}, or equivalently, for $\operatorname{conv} \mathcal{F}$, where "conv" indicates the convex hull. The operator defined in (1) was first considered in the mixed integer programming community by Andersen et al. [2], and it may be viewed as a special case of the disjunctive programming approach invented by Balas [3]. A convex set L is S-free if int L does not contain any point in S. Given a mixed-integer set \mathcal{F} in the form described above and an S-free polyhedron L, \mathcal{F} is obviously contained in $P \backslash L$. It follows that any valid inequality for $P \backslash L$ is also valid for \mathcal{F}. The converse is also true: If P is a rational polyhedron and $a x \leq \beta$ is a valid inequality for \mathcal{F}, then $a x \leq \beta$ is valid for $P \backslash L$, for some S-free polyhedron L [13,7]. This provides a motivation for the study of valid inequalities for $P \backslash L$ when L is a polyhedron, a setting that is receiving extensive interest from the community (see for example [4,6,10-13]).

Theorem 1 shows that in order to derive the inequalities that are essential in a description of $P \backslash L$, it is necessary and sufficient to consider inequalities that are valid for a relaxation of P comprising a number of inequalities that is a function of the dimension of the ambient space and of the number of facets of L.

Let $S=\mathbb{Z}^{p} \times \mathbb{R}^{n-p}$, for some $p, 1 \leq p \leq n$. A split is a set L such that $L=\left\{x \in \mathbb{R}^{n}: \pi_{0} \leq(\pi, 0) x \leq \pi_{0}+1\right\}$, for some $\pi \in \mathbb{Z}^{p}, \pi_{0} \in \mathbb{Z}$. Clearly a split is an S-free convex set. Balas and Perregaard [5] prove Theorem 1 when P is contained in the unit cube and L is a split of the form $\left\{x \in \mathbb{R}^{n}: 0 \leq x_{i} \leq 1\right\}, 1 \leq i \leq p$. Andersen et al. [1] prove Theorem 1 when L is a split, and they pose as an open question if their result generalizes to other polyhedra L. A shorter proof of the same result has been recently provided by Dash et al. [9], and uses the equivalence between split cuts and mixed-integer rounding (MIR) cuts. All these proofs do not seem to be extendable to a more general case.

Andersen et al. [1] also prove that, if L is a split in \mathbb{R}^{n}, in Theorem 1 it is enough to consider polyhedra in $\mathcal{R}^{n}(A, b)$ defined by linearly independent inequalities. Furthermore they show that if L is defined by only two inequalities, one cannot generally restrict to polyhedra in $\mathcal{R}^{n}(A, b)$ defined by linearly independent inequalities.

2 Proof of main result

The following lemma is well-known, as it is an equivalent formulation of Carathéodory's theorem (see for example [14]).

Lemma 1 Let G be a matrix of size $m \times d$ and let \bar{r} be an extreme ray of the cone $\left\{r \in \mathbb{R}^{m}: r \geq 0, r G=0\right\}$. Then \bar{r} has at most $d+1$ positive components.

Corollary 1 Let $A^{i}, i=1, \ldots, k$ be $m^{i} \times n$ matrices and let $b^{i}, i=1, \ldots, k$ be vectors of dimension m^{i}. Let $\left(\bar{r}^{i} \in \mathbb{R}^{m^{i}}, \bar{s}^{i} \in \mathbb{R}: i=1, \ldots, k\right)$ be an extreme ray of the cone defined by the system

$$
\begin{aligned}
& -r^{1} A^{1}+r^{i} A^{i}=0 \\
& r^{1} b^{1}-r^{i} b^{i}+s^{1}-s^{i}=0 \\
& i=2, \ldots, k \\
& i=2, \ldots, k \\
& r^{i} \geq 0 \\
& i=1, \ldots, k \\
& s^{i} \geq 0 \\
& i=1, \ldots, k \text {. }
\end{aligned}
$$

Then $\left(\bar{r}^{i}, \bar{s}^{i}: i=1, \ldots, k\right)$ has at most $n(k-1)+k$ positive components.
Proof The system

$$
\begin{aligned}
-r^{1} A^{1}+r^{i} A^{i} & =0 & & i=2, \ldots, k \\
r^{1} b^{1}-r^{i} b^{i}+s^{1}-s^{i} & =0 & & i=2, \ldots, k
\end{aligned}
$$

comprises of $(n+1)(k-1)$ equations. By Lemma $1,\left(\bar{r}^{i}, \bar{s}^{i}: i=1, \ldots, k\right)$ has at most $(n+1)(k-1)+1=n(k-1)+k$ positive components.
(In the above proof, if $k=1$ we intend the set of indices $i=2, \ldots, k$ to be empty.)
For $i=1, \ldots, k$ consider polyhedra $P^{i}=\left\{x \in \mathbb{R}^{n}: A^{i} x \leq b^{i}\right\}$ and cones $C^{i}:=\left\{x \in \mathbb{R}^{n}: A^{i} x \leq 0\right\}$. So C^{i} is the recession cone of P^{i} if P^{i} is nonempty. By Minkowski-Weil's theorem (see for example [14]) there exist polytopes Q^{i}, for $i=1, \ldots, k$, such that

$$
P^{i}=Q^{i}+C^{i}, \quad i=1, \ldots, k,
$$

where $P^{i}=\emptyset$ if and only if $Q^{i}=\emptyset$. Let

$$
\begin{equation*}
\tilde{P}:=\operatorname{conv} \bigcup_{i=1}^{k} Q^{i}+\operatorname{cone} \bigcup_{i=1}^{k} C^{i}, \tag{2}
\end{equation*}
$$

where "cone" denotes the conic hull. Again, $\tilde{P}=\emptyset$ if and only if $\bigcup_{i=1}^{k} Q^{i}=\emptyset$.

Let S^{\prime} be the following system of inequalities:

$$
\begin{align*}
A^{i} x^{i}-b^{i} \lambda^{i} & \leq 0 \quad i=1, \ldots, k \tag{3}\\
x-\sum_{i=1}^{k} x^{i} & =0 \tag{4}\\
\sum_{i=1}^{k} \lambda^{i} & =1 \tag{5}\\
\lambda^{i} & \geq 0 \quad i=1, \ldots, k \tag{6}
\end{align*}
$$

Given a polyhedron $P=\left\{(x, y) \in \mathbb{R}^{n+d}: A x+G y \leq b\right\}$, we denote with $\operatorname{proj}_{x} P \subseteq \mathbb{R}^{n}$ the orthogonal projection of P onto the space of the x-variables. More precisely $\operatorname{proj}_{x} P:=\left\{x \in \mathbb{R}^{n}, \exists y \in \mathbb{R}^{d}: A x+G y \leq b\right\}$. The following theorem is similar to Balas' theorem on union of polyhedra [3].

Theorem 2 [8] Given k polyhedra $P^{i}=\left\{x \in \mathbb{R}^{n}: A^{i} x \leq b^{i}\right\}=Q^{i}+C^{i}$, let \tilde{P} defined as in (2), and let $Y^{\prime} \subset \mathbb{R}^{n+(n+1) k}$ be the polyhedron defined by the system (3)-(6). Then $\tilde{P}=\operatorname{proj}_{x} Y^{\prime}$.

Furthermore, if either $P^{i}=\emptyset, i=1, \ldots, k$, or if $P^{i} \neq \emptyset, i=1, \ldots, k$, then $\tilde{P}=\overline{\mathrm{conv}} \bigcup_{i=1}^{k} P^{i}$.

We now prove Theorem 1.
Proof Clearly $P \backslash L \subseteq \bigcap_{R \in \mathcal{R}^{n(h-1)}(A, b)} R \backslash L$, thus we need to show the reverse inclusion.

Every inequality in the system $A x \leq b$ is valid for some $R \in \mathcal{R}^{1}(A, b)$. Since $h \geq 2, R \in \mathcal{R}^{n(h-1)}(A, b)$ and therefore $P \supseteq \bigcap_{R \in \mathcal{R}^{n(h-1)}(A, b)} R \backslash L$.

If L is not full-dimensional, int $L=\emptyset, P \backslash L=P \supseteq \bigcap_{R \in \mathcal{R}^{n(h-1)}(A, b)} R \backslash L$, and the theorem follows. So we assume that L is a full-dimensional polyhedron with h facets. Hence $L=\left\{x \in \mathbb{R}^{n}: c^{i} x \leq \delta^{i}, i=1, \ldots, h\right\}$, where each inequality $c^{i} x \leq \delta^{i}$ defines a facet of L.

For $i=1, \ldots, h$, let $A^{i} x \leq b^{i}$ be the system obtained from $A x \leq b$ by adding inequality $-c^{i} x \leq-\delta^{i}$ and let $P^{i}:=\left\{x \in \mathbb{R}^{n}: A^{i} x \leq b^{i}\right\}$. Let k be defined as follows. If $P^{i}=\emptyset$ for every $i=1, \ldots, h$, let $k=h$. Otherwise let $k \geq 1$ be the number of nonempty polyhedra among $P^{i}, i=1, \ldots, h$, and we assume that the nonempty polyhedra are P^{1}, \ldots, P^{k}. It follows from the definition of $P \backslash L$ that

$$
P \backslash L=\overline{\operatorname{conv}} \bigcup_{i=1}^{k} P^{i} .
$$

Let S be the following system, obtained from (3)-(6) by using Eqs. (4) and (5) to eliminate vector x^{1} and scalar λ^{1} :

$$
\begin{aligned}
A^{1} x-A^{1} \sum_{i=2}^{k} x^{i}+b^{1} \sum_{i=2}^{k} \lambda^{i} & \leq b^{1} \\
A^{i} x^{i}-b^{i} \lambda^{i} & \leq 0 \quad i=2, \ldots, k \\
\sum_{i=2}^{k} \lambda^{i} & \leq 1 \\
\lambda^{i} & \geq 0 \quad i=2, \ldots, k
\end{aligned}
$$

Let Y be the polyhedron defined by S. Note that Y is a polyhedron in $\mathbb{R}^{n+(n+1)(k-1)}$ involving vectors x, x^{2}, \ldots, x^{k} and scalars $\lambda^{2}, \ldots, \lambda^{k}$. Furthermore Theorem 2 implies that

$$
P \backslash L=\operatorname{proj}_{x} Y
$$

Let U be the set of the extreme rays $\left(r^{i}, s^{i}: i=1, \ldots, k\right)$ of the cone defined by the system

$$
\begin{array}{rlrl}
-r^{1} A^{1}+r^{i} A^{i} & =0 & & i=2, \ldots, k \\
r^{1} b^{1}-r^{i} b^{i}+s^{1}-s^{i} & =0 & & i=2, \ldots, k \\
r^{i} & \geq 0 & & i=1, \ldots, k \\
s^{i} \geq 0 & & i=1, \ldots, k . \tag{10}
\end{array}
$$

Since $P \backslash L=\operatorname{proj}_{x} Y$, it is well-known that

$$
\begin{equation*}
P \backslash L=\left\{x \in \mathbb{R}^{n}: r^{1} A^{1} x \leq r^{1} b^{1}+s^{1}, \forall\left(r^{i}, s^{i}: i=1, \ldots, k\right) \in U\right\} \tag{11}
\end{equation*}
$$

Let $\left(\bar{r}^{i}, \bar{s}^{i}: i=1, \ldots, k\right)$ be a ray in U, and let $a x \leq \beta$ be the corresponding valid inequality for $P \backslash L$, where $a=\bar{r}^{1} A^{1}, \beta=\bar{r}^{1} b^{1}+\bar{s}^{1}$. To prove $P \backslash L \supseteq \bigcap_{R \in \mathcal{R}^{n(h-1)}(A, b)} R \backslash L$, it suffices to show that there exists a polyhedron $\bar{R} \in$ $\mathcal{R}^{n(h-1)}(A, b)$ such that $a x \leq \beta$ is valid for $\bar{R} \backslash L$. Since $P \supseteq \bigcap_{R \in \mathcal{R}^{n(h-1)}(A, b)} R \backslash L$, we assume that the inequality $a x \leq \beta$ is not valid for P. We now construct a polyhedron $\bar{R} \in \mathcal{R}^{n(h-1)}(A, b)$ such that $a x \leq \beta$ is valid for $\bar{R} \backslash L$.

For $i=1, \ldots, k$, let R^{i} be the polyhedron defined by the inequalities in $A x \leq b$ corresponding to positive components of \bar{r}^{i}.

Note that when $k<h$, by definition of $k, P \neq \emptyset$ and for $i=k+1, \ldots, h, P^{i}=$ $P \cap\left\{x \in \mathbb{R}^{n}: c^{i} x \geq \delta^{i}\right\}=\emptyset$. Since $P \neq \emptyset$, it follows by Carathéodory's theorem (see for example [14]) that, for $i=k+1, \ldots, h$, there exist a polyhedron R^{i} defined by at most n linearly independent inequalities in $A x \leq b$ such that $R^{i} \cap\left\{x \in \mathbb{R}^{n}\right.$: $\left.c^{i} x \geq \delta^{i}\right\}=\emptyset$.

We now show that for $i=1, \ldots, h$, inequality $a x \leq \beta$ is valid for $R^{i} \cap\left\{x \in \mathbb{R}^{n}\right.$: $\left.c^{i} x \geq \delta^{i}\right\}$. For $i=1, \ldots, k$, by (7)-(11) we have that $a=\bar{r}^{i} A^{i}, \beta=\bar{r}^{i} b^{i}+\bar{s}^{i}$, and $\bar{r}^{i}, \bar{s}^{i} \geq 0$, thus $a x \leq \beta$ is valid for $R^{i} \cap\left\{x \in \mathbb{R}^{n}: c^{i} x \geq \delta^{i}\right\}$. Moreover for $i=k+1, \ldots, h, a x \leq \beta$ is valid for $R^{i} \cap\left\{x \in \mathbb{R}^{n}: c^{i} x \geq \delta^{i}\right\}=\emptyset$. Now
let $\bar{R}=\bigcap_{i=1}^{h} R^{i}$. Hence $a x \leq \beta$ is valid for $\bar{R} \cap\left\{x \in \mathbb{R}^{n}: c^{i} x \geq \delta^{i}\right\}$ for every $i=1, \ldots, h$. This shows that $a x \leq \beta$ is valid for $\bar{R} \backslash L$.

We finally show $\bar{R} \in \mathcal{R}^{n(h-1)}(A, b)$. For $i=1, \ldots, k$, since $a x \leq \beta$ is not valid for P and $P \subseteq R^{i}, a x \leq \beta$ is not valid for R^{i}. Since by (7)-(11) we have that $a=\bar{r}^{i} A^{i}, \beta=\bar{r}^{i} b^{i}+\bar{s}^{i}$, and $\bar{r}^{i}, \bar{s}^{i} \geq 0$, it follows that the component of \bar{r}^{i} corresponding to $c^{i} x \geq \delta^{i}$ must be positive. By Corollary 1 the positive components of the vector ($\bar{r}^{i}: i=1, \ldots, k$) are at most $n(k-1)+k$, and by the previous argument, the k components of $\left(\bar{r}^{i}: i=1, \ldots, k\right)$ corresponding to the inequalities $c^{i} x \geq \delta^{i}, i=1, \ldots, k$, are all positive. This shows that $\bigcap_{i=1}^{k} R^{i}$ is defined by at most $n(k-1)$ inequalities of $A x \leq b$. Moreover for $i=k+1, \ldots, h, R^{i}$ is defined by at most n inequalities of $A x \leq b$. It follows that \bar{R} is defined by at most $n(k-1)+n(h-k)=n(h-1)$ inequalities of $A x \leq b$, hence $\bar{R} \in \mathcal{R}^{n(h-1)}(A, b)$.

We conclude this paper showing that the bound given in Theorem 1 is tight. For $n=1$ the result is trivial since L has at most 2 facets, so assume $n \geq 2$. For every $n \geq 2$ and $h \geq 2$, we sketch the construction of a polyhedron P in \mathbb{R}^{n} and a polyhedron L with h facets such that

$$
P \backslash L \subset \bigcap_{R \in \mathcal{R}^{n(h-1)-1}(A, b)} R \backslash L
$$

Figure 1 illustrates the construction for $n=2, h=3$.
Let $L^{\prime}=\left\{x \in \mathbb{R}^{n}: c^{i} x \leq \delta^{i}, i=1, \ldots, h\right\}$ be a full dimensional polyhedron, where inequalities $c^{i} x \leq \delta^{i}$ are in one to one correspondence with the $h \geq 2$ facets F^{i} of L^{\prime}. For every $i=1, \ldots, h$, let f^{i} be a point in the relative interior of F^{i}. Let $\epsilon>0$ be such that for every $i=1, \ldots, h$

Fig. 1 Construction for $n=2, h=3$
i) the strict inequalities $c^{j} x<\delta^{j}$ are valid for $f^{i}+\epsilon B$, for $j=1, \ldots, h$ with $j \neq i$, where B is the unit ball in \mathbb{R}^{n}.

For every $i=2, \ldots, h$, let $A^{i} x \leq b^{i}$ be a system of n linearly independent inequalities, such that:
ii) $A^{i} f^{i}=b^{i}$,
iii) $c^{i} x \leq \delta^{i}$ is valid for $R^{i}:=\left\{x \in \mathbb{R}^{n}: A^{i} x \leq b^{i}\right\}$, and $R^{i} \cap\left\{x \in \mathbb{R}^{n}: c^{i} x=\right.$ $\left.\delta^{i}\right\}=f^{i}$,
iv) $f^{j}+\epsilon B \subseteq R^{i}$, for $j=1, \ldots, h$ with $j \neq i$.
(The existence of such systems follows from the definition of $f^{i}, i=1, \ldots, h$, and by i)). For $i=2, \ldots, h$ and $j=1, \ldots, n$, let $a^{i_{j}} x \leq \beta^{i_{j}}$ be the j th inequality of the system $A^{i} x \leq b^{i}$, and let $A^{i_{j}} x \leq b^{i_{j}}$ be the system obtained from $A^{i} x \leq b^{i}$ by removing $a^{i_{j}} x \leq \beta^{i_{j}}$.

Since for $i=2, \ldots, h$, the polyhedra R^{i} are translate of polyhedral cones and by ii) R^{i} has apex f^{i}, it follows from iii) that for every $i=2, \ldots, h, j=1, \ldots, n$, and $\delta>0$, there exists a unique point $x^{i_{j}}$ that satisfies
v) $A^{i_{j}} x^{i_{j}}=b^{i_{j}}$ and $c^{i} x^{i_{j}}=\delta^{i}+\delta$.

Let $\delta>0$ be small enough such that $x^{i_{j}} \in f^{i}+\epsilon B$ for every $i=2, \ldots, h$ and $j=1, \ldots, n$.

Let $L:=\left\{x \in \mathbb{R}^{n}: c^{1} x \leq \delta^{1}, c^{i} x \leq \delta^{i}+\delta, i=2, \ldots, h\right\}$ and let $P=\bigcap_{i=2}^{h} R^{i}$. Note that P is defined by the system $A x \leq b$ consisting of all inequalities in systems $A^{i} x \leq b^{i}, i=2, \ldots, h$. Since by iii), for $i=2, \ldots, h$, inequalities $c^{i} x \leq \delta^{i}$ are valid for P and $\delta>0$, then $P \cap\left\{x \in \mathbb{R}^{n}: c^{i} x \geq \delta^{i}+\delta\right\}=\emptyset$ for every $i=2, \ldots, h$. This shows that $P \backslash L=P \cap\left\{x \in \mathbb{R}^{n}: c^{1} x \geq \delta^{1}\right\}$. Since by i), $c^{1} f^{2}<\delta^{1}$ and by ii), iv), $f^{2} \in P$, the inequality $c^{1} x \geq \delta^{1}$ is not valid for P, and so $c^{1} x \geq \delta^{1}$ is irredundant for the system defining $P \backslash L$.

We now show that for every $R \in \mathcal{R}^{n(h-1)-1}(A, b)$, the inequality $c^{1} x \geq \delta^{1}$ is not valid for $R \backslash L$.

Let $R \in \mathcal{R}^{n(h-1)-1}(A, b)$. Since the system $A x \leq b$ contains $n(h-1)$ inequalities, R contains the polyhedron defined by the system $A x \leq b$ deprived of a single inequality. We assume without loss of generality that this inequality is $a^{2_{1}} x \leq \beta^{2_{1}}$, and so is the first inequality of the system $A^{2} x \leq b^{2}$. By v), the point $x^{2_{1}}$ is such that $A^{2_{1}} x^{2_{1}}=b^{2_{1}}$ and $c^{2} x^{2_{1}}=\delta^{2}+\delta$. By the choice of $\delta, x^{2_{1}} \in f^{2}+\epsilon B$, so it follows by iv) that $x^{2_{1}} \in R^{i}$ for every $i=3, \ldots, h$. Hence $x^{2_{1}} \in R$.

Since $c^{2} x^{2_{1}}=\delta^{2}+\delta$, and $c^{2} x \leq \delta^{2}+\delta$ is valid for $L, x^{2_{1}}$ does not belong to the interior of L. This shows that $x^{2_{1}}$ belongs to $R \backslash L$. Since $x^{2_{1}}$ belongs to $f^{2}+\epsilon B$, then by i), $c^{1} x^{2_{1}}<\delta^{1}$. Hence $c^{1} x \geq \delta^{1}$ is not valid for $R \backslash L$.

References

1. Andersen, K., Cornuéjols, G., Li, Y.: Split closure and intersection cuts. Math. Program. A 102(3), 457-493 (2005)
2. Andersen, K., Louveaux, Q., Weismantel, R.: An analysis of mixed integer linear sets based on lattice point free convex sets. Math. Oper. Res. 35(1), 233-256 (2010)
3. Balas, E.: Disjunctive programming: properties of the convex hull of feasible points. Discret. Appl. Math. 89(1-3), 3-44 (1998)
4. Balas, E., Margot, F.: Generalized intersection cuts and a new cut generating paradigm. Math. Program. A 137(1-2), 19-35 (2013)
5. Balas, E., Perregaard, M.: A precise correspondence between lift-and-project cuts, simple disjunctive cuts, and mixed integer gomory cuts for $0-1$ programming. Math. Program. 94(2-3), 221-245 (2003)
6. Basu, A., Cornuéjols, G., Margot, F.: Intersection cuts with infinite split rank. Math. Oper. Res. 37(1), 21-40 (2012)
7. Conforti, M., Cornuéjols, G., Zambelli, G.: Eqivalence between intersection cuts and the corner polyhedron. Oper. Res. Lett. 38(3), 153-155 (2010)
8. Conforti, M., Cornuéjols, G., Zambelli, G.: Integer programming. In preparation, (2012)
9. Dash, S., Günlük, O., Raack, C.: A note on the MIR closure and basic relaxations of polyhedra. Oper. Res. Lett. 39(3), 198-199 (2011)
10. Del Pia, A.: On the rank of disjunctive cuts. Math. Oper. Res. 37(2), 372-378 (2012)
11. Del Pia, A., Weismantel, R.: On convergence in mixed integer programming. Math. Program. A 135(1), 397-412 (2012)
12. Dey, S.S.: A note on the split rank of intersection cuts. Math. Program. A 130(1), 107-124 (2011)
13. Jörg, M.: k-disjunctive cuts and cutting plane algorithms for general mixed integer linear programs. PhD thesis, Technische Universität München, München, (2008)
14. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)

[^0]: Supported by the Progetto di Eccellenza 2008-2009 of the Fondazione Cassa Risparmio di Padova e Rovigo.
 M. Conforti

 Dipartimento di Matematica Pura ed Applicata, Universitá degli Studi di Padova, Via Trieste 63, 35121 Padova, Italy
 e-mail: conforti@math.unipd.it
 A. Del Pia (\boxtimes)

 IFOR, Department of Mathematics, ETH Zürich, 8092 Zürich, Switzerland
 e-mail: alberto.delpia@math.ethz.ch

