394 research outputs found

    Voronoi languages: Equilibria in cheap-talk games with high-dimensional types and few signals

    Get PDF
    We study a communication game of common interest in which the sender observes one of infinite types and sends one of finite messages which is interpreted by the receiver. In equilibrium there is no full separation but types are clustered into convex categories. We give a full characterization of the strict Nash equilibria of this game by representing these categories by Voronoi languages. As the strategy set is infinite static stability concepts for finite games such as ESS are no longer sufficient for Lyapunov stability in the replicator dynamics. We give examples of unstable strict Nash equilibria and stable inefficient Voronoi Languages. We derive efficient Voronoi languages with a large number of categories and numerically illustrate stability of some Voronoi languages with large message spaces and non-uniformly distributed types.Cheap Talk, Signaling Game, Communication Game, Dynamic stability, Voronoi tesselation

    Conditional Gradient Algorithms for Rank-One Matrix Approximations with a Sparsity Constraint

    Full text link
    The sparsity constrained rank-one matrix approximation problem is a difficult mathematical optimization problem which arises in a wide array of useful applications in engineering, machine learning and statistics, and the design of algorithms for this problem has attracted intensive research activities. We introduce an algorithmic framework, called ConGradU, that unifies a variety of seemingly different algorithms that have been derived from disparate approaches, and allows for deriving new schemes. Building on the old and well-known conditional gradient algorithm, ConGradU is a simplified version with unit step size and yields a generic algorithm which either is given by an analytic formula or requires a very low computational complexity. Mathematical properties are systematically developed and numerical experiments are given.Comment: Minor changes. Final version. To appear in SIAM Revie

    Conic Optimization Theory: Convexification Techniques and Numerical Algorithms

    Full text link
    Optimization is at the core of control theory and appears in several areas of this field, such as optimal control, distributed control, system identification, robust control, state estimation, model predictive control and dynamic programming. The recent advances in various topics of modern optimization have also been revamping the area of machine learning. Motivated by the crucial role of optimization theory in the design, analysis, control and operation of real-world systems, this tutorial paper offers a detailed overview of some major advances in this area, namely conic optimization and its emerging applications. First, we discuss the importance of conic optimization in different areas. Then, we explain seminal results on the design of hierarchies of convex relaxations for a wide range of nonconvex problems. Finally, we study different numerical algorithms for large-scale conic optimization problems.Comment: 18 page

    Modeling stochastic reaction-diffusion via boundary conditions and interaction functions

    Full text link
    In this thesis, we study two stochastic reaction diffusion models - the diffusion limited reaction model of Smoluchowski, and a second approach popularized by Doi. Both models treat molecules as points undergoing Brownian motion. The former represents chemical reactions between two reactants through the use of reactive boundary conditions, with two molecules reacting instantly upon reaching the boundary of a properly embedded open set, termed the reaction region (or more generally some fixed lower dimensional sub-manifold). The Doi model uses reaction potentials, supported in the reaction region, whereby two molecules react with a fixed probability per unit time, λ, upon entering the reaction region. The problem considered is that of obtaining estimates for convergence rates, in λ, of the Doi model to the Smoluchowski model. This problem fits into the theory of singular perturbation or optimization, depending on which reactive boundary conditions one considers, and we solve it - at least for the bimolecular reaction with one stationary target

    Sliding Mode Control Design Using Canonical Homogeneous Norm

    Get PDF
    International audienceThe problem of sliding mode control design for nonlinear plant is studied. Necessary and sufficient conditions of quadratic-like stability (stabi-lizability) for nonlinear homogeneous (control) system are obtained. Sufficient conditions of robust stability/stabilizability are deduced. The results are supported with academic examples of sliding mode control design

    Characterization of Information Channels for Asymptotic Mean Stationarity and Stochastic Stability of Non-stationary/Unstable Linear Systems

    Full text link
    Stabilization of non-stationary linear systems over noisy communication channels is considered. Stochastically stable sources, and unstable but noise-free or bounded-noise systems have been extensively studied in information theory and control theory literature since 1970s, with a renewed interest in the past decade. There have also been studies on non-causal and causal coding of unstable/non-stationary linear Gaussian sources. In this paper, tight necessary and sufficient conditions for stochastic stabilizability of unstable (non-stationary) possibly multi-dimensional linear systems driven by Gaussian noise over discrete channels (possibly with memory and feedback) are presented. Stochastic stability notions include recurrence, asymptotic mean stationarity and sample path ergodicity, and the existence of finite second moments. Our constructive proof uses random-time state-dependent stochastic drift criteria for stabilization of Markov chains. For asymptotic mean stationarity (and thus sample path ergodicity), it is sufficient that the capacity of a channel is (strictly) greater than the sum of the logarithms of the unstable pole magnitudes for memoryless channels and a class of channels with memory. This condition is also necessary under a mild technical condition. Sufficient conditions for the existence of finite average second moments for such systems driven by unbounded noise are provided.Comment: To appear in IEEE Transactions on Information Theor

    Numerical approximation of boundary conditions with applications to inviscid equations of gas dynamics

    Get PDF
    A comprehensive overview of the state of the art of well-posedness and stability analysis of difference approximations for initial boundary value problems of the hyperbolic type is presented. The applicability of recent theoretical development to practical calculations for nonlinear gas dynamics is examined. The one dimensional inviscid gas dynamics equations in conservation law form are selected for numerical experiments. The class of implicit schemes developed from linear multistep methods in ordinary differential equations is chosen and the use of linear extrapolation as an explicit or implicit boundary scheme is emphasized. Specification of boundary data in the primitive variables and computation in terms of the conservative variables in the interior is discussed. Some numerical examples for the quasi-one-dimensional nozzle are given
    • …
    corecore