4,606 research outputs found

    DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pairs

    Full text link
    We present a novel deep learning architecture for fusing static multi-exposure images. Current multi-exposure fusion (MEF) approaches use hand-crafted features to fuse input sequence. However, the weak hand-crafted representations are not robust to varying input conditions. Moreover, they perform poorly for extreme exposure image pairs. Thus, it is highly desirable to have a method that is robust to varying input conditions and capable of handling extreme exposure without artifacts. Deep representations have known to be robust to input conditions and have shown phenomenal performance in a supervised setting. However, the stumbling block in using deep learning for MEF was the lack of sufficient training data and an oracle to provide the ground-truth for supervision. To address the above issues, we have gathered a large dataset of multi-exposure image stacks for training and to circumvent the need for ground truth images, we propose an unsupervised deep learning framework for MEF utilizing a no-reference quality metric as loss function. The proposed approach uses a novel CNN architecture trained to learn the fusion operation without reference ground truth image. The model fuses a set of common low level features extracted from each image to generate artifact-free perceptually pleasing results. We perform extensive quantitative and qualitative evaluation and show that the proposed technique outperforms existing state-of-the-art approaches for a variety of natural images.Comment: ICCV 201

    Spectral unmixing of Multispectral Lidar signals

    Get PDF
    In this paper, we present a Bayesian approach for spectral unmixing of multispectral Lidar (MSL) data associated with surface reflection from targeted surfaces composed of several known materials. The problem addressed is the estimation of the positions and area distribution of each material. In the Bayesian framework, appropriate prior distributions are assigned to the unknown model parameters and a Markov chain Monte Carlo method is used to sample the resulting posterior distribution. The performance of the proposed algorithm is evaluated using synthetic MSL signals, for which single and multi-layered models are derived. To evaluate the expected estimation performance associated with MSL signal analysis, a Cramer-Rao lower bound associated with model considered is also derived, and compared with the experimental data. Both the theoretical lower bound and the experimental analysis will be of primary assistance in future instrument design

    Exposure Fusion for Hand-held Camera Inputs with Optical Flow and PatchMatch

    Full text link
    This paper proposes a hybrid synthesis method for multi-exposure image fusion taken by hand-held cameras. Motions either due to the shaky camera or caused by dynamic scenes should be compensated before any content fusion. Any misalignment can easily cause blurring/ghosting artifacts in the fused result. Our hybrid method can deal with such motions and maintain the exposure information of each input effectively. In particular, the proposed method first applies optical flow for a coarse registration, which performs well with complex non-rigid motion but produces deformations at regions with missing correspondences. The absence of correspondences is due to the occlusions of scene parallax or the moving contents. To correct such error registration, we segment images into superpixels and identify problematic alignments based on each superpixel, which is further aligned by PatchMatch. The method combines the efficiency of optical flow and the accuracy of PatchMatch. After PatchMatch correction, we obtain a fully aligned image stack that facilitates a high-quality fusion that is free from blurring/ghosting artifacts. We compare our method with existing fusion algorithms on various challenging examples, including the static/dynamic, the indoor/outdoor and the daytime/nighttime scenes. Experiment results demonstrate the effectiveness and robustness of our method

    Segmentation Of Ultisequence Medical Images Using Random Walks Algorithm And Rough Sets Theory

    Get PDF
    Segmentasi imej Magnetic Resonance (MR) merupakan satu tugas klinikal yang mencabar. Selalunya, satu jenis imej MR tidak mencukupi untuk memberikan maklumat yang lengkap mengenai sesuatu tisu patologi atau objek visual dari imej Accurate Magnetic Resonance (MR) image segmentation is a clinically challenging task. More often than not, one type of MRI image is insufficient to provide the complete information about a pathological tissue or a visual object from the imag

    Active Contours and Image Segmentation: The Current State Of the Art

    Get PDF
    Image segmentation is a fundamental task in image analysis responsible for partitioning an image into multiple sub-regions based on a desired feature. Active contours have been widely used as attractive image segmentation methods because they always produce sub-regions with continuous boundaries, while the kernel-based edge detection methods, e.g. Sobel edge detectors, often produce discontinuous boundaries. The use of level set theory has provided more flexibility and convenience in the implementation of active contours. However, traditional edge-based active contour models have been applicable to only relatively simple images whose sub-regions are uniform without internal edges. Here in this paper we attempt to brief the taxonomy and current state of the art in Image segmentation and usage of Active Contours

    Localization of protein aggregation in Escherichia coli is governed by diffusion and nucleoid macromolecular crowding effect

    Get PDF
    Aggregates of misfolded proteins are a hallmark of many age-related diseases. Recently, they have been linked to aging of Escherichia coli (E. coli) where protein aggregates accumulate at the old pole region of the aging bacterium. Because of the potential of E. coli as a model organism, elucidating aging and protein aggregation in this bacterium may pave the way to significant advances in our global understanding of aging. A first obstacle along this path is to decipher the mechanisms by which protein aggregates are targeted to specific intercellular locations. Here, using an integrated approach based on individual-based modeling, time-lapse fluorescence microscopy and automated image analysis, we show that the movement of aging-related protein aggregates in E. coli is purely diffusive (Brownian). Using single-particle tracking of protein aggregates in live E. coli cells, we estimated the average size and diffusion constant of the aggregates. Our results evidence that the aggregates passively diffuse within the cell, with diffusion constants that depend on their size in agreement with the Stokes-Einstein law. However, the aggregate displacements along the cell long axis are confined to a region that roughly corresponds to the nucleoid-free space in the cell pole, thus confirming the importance of increased macromolecular crowding in the nucleoids. We thus used 3d individual-based modeling to show that these three ingredients (diffusion, aggregation and diffusion hindrance in the nucleoids) are sufficient and necessary to reproduce the available experimental data on aggregate localization in the cells. Taken together, our results strongly support the hypothesis that the localization of aging-related protein aggregates in the poles of E. coli results from the coupling of passive diffusion- aggregation with spatially non-homogeneous macromolecular crowding. They further support the importance of "soft" intracellular structuring (based on macromolecular crowding) in diffusion-based protein localization in E. coli.Comment: PLoS Computational Biology (2013

    Automatic Detection and Segmentation of Lentil Breeding Plots from Images Captured by Multi-spectral UAV-Mounted Camera

    Get PDF
    Automatic Detection and Segmentation of Lentil Breeding Plots from Images Captured by Multi-spectral UAV-Mounted Camer

    Automatic Detection and Segmentation of Lentil Breeding Plots from Images Captured by Multi-spectral UAV-Mounted Camera

    Get PDF
    Automatic Detection and Segmentation of Lentil Breeding Plots from Images Captured by Multi-spectral UAV-Mounted Camer
    corecore