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Spectral Unmixing of Multispectral Lidar Signals
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Abstract—In this paper, we present a Bayesian approach for
spectral unmixing of multispectral Lidar (MSL) data associated
with surface reflection from targeted surfaces composed of several
known materials. The problem addressed is the estimation of the
positions and area distribution of each material. In the Bayesian
framework, appropriate prior distributions are assigned to the
unknown model parameters and a Markov chain Monte Carlo
method is used to sample the resulting posterior distribution.
The performance of the proposed algorithm is evaluated using
synthetic MSL signals, for which single and multi-layered models
are derived. To evaluate the expected estimation performance
associated with MSL signal analysis, a Cramer-Rao lower bound
associated with model considered is also derived, and compared
with the experimental data. Both the theoretical lower bound and
the experimental analysis will be of primary assistance in future
instrument design.

Index Terms—Bayesian estimation, estimation performance,
Markov chain Monte Carlo, multispectral lidar, remote sensing,
spectral unmixing.

I. INTRODUCTION

ASER altimetry (or Lidar) is an acknowledged tool for

extracting spatial structures from three-dimensional (3D)
scenes, including forest canopies [1], [2]. Using time-of-flight
to create a distance profile, signal analysis can recover tree and
canopy heights, leaf area indices (LAls) and ground slope by an-
alyzing the reflected photons from a target. Conversely, passive
multispectral (MSI) (dozen of wavelengths) and hyperspectral
images (HSI) (hundreds of wavelengths) are widely used to ex-
tract spectral information about the scene which, for forest mon-
itoring, can also provide useful parameters about the canopy
composition and health (tree species, leaf chlorophyll content,
water content, stress, among others) [3], [4]. The most natural
evolution to extract spatial and spectral information from sensed
scenes is to couple Lidar data and multi/hyperspectral images
[5], [6]. Although the fusion of Lidar data and HSIs can improve
scene characterization, there are problems of data synchroniza-
tion in space (alignment, resolution) and time (dynamic scene,
change of observation conditions, etc). For these reasons, mul-
tispectral Lidar (MSL) has recently received attention from the
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remote sensing community for its ability to extract both struc-
tural and spectral information from 3D scenes [7], [8].

The key advantage of MSL is the ability to provide informa-
tion on the vertical distribution of spectra, used to infer phys-
iological processes directly linked to actual carbon sequestra-
tion as well as carbon stocks [9]. For example, a key capability
is to directly measure and classify ground-based shrub infes-
tation, which is difficult with conventional HSI as the lower
spectral response is obscured by the ‘first” signals returned from
the top of the canopy. Preliminary trials with existing commer-
cial LIDAR systems with three operational wavelengths have
already taken place [10], but as we shall demonstrate here, such
systems cannot yet provide all the necessary spectral and struc-
tural discrimination to directly measure these processes.

Another motivation for MSL is that HSI, even when fully
synchronised, can only integrate the spectral response along the
path of each optical ray, not measure the spectral response as a
function of distance, e.g., depth into a forest canopy. Multiple
scattering effects cannot be neglected in some scenes with
relief or containing multi-layered objects (such as trees), which
complicates surface detection and quantification. Most existing
spectral unmixing (SU) techniques rely on a linear mixture
assumption [11]-[15] to identify the components (so-called
endmembers) of an image and their proportions (abundances).
However, it has been shown that the classical linear mixing
model (LMM) can be inaccurate when multiple scattering
effects occur [16], [17]. Although polynomial models [18],
[19] (including bilinear models [20]-[23]) can be adapted
for “long range” multiple scattering (in contrast to intimate
mixtures models [24]), motivating the additional parameter
constraints and designing accurate nonlinear unmixing methods
are still challenging problems [25]. Since MSL data present
an additional dimension when compared to HSIs, we can
expect a reduction of the SU problem complexity and thus an
improvement in the target characterization performance.

In [26], the authors proposed a Bayesian algorithm to estimate
the positions and amplitudes in Lidar signals associated with a
multi-layer target. This method has been extended in [9], [27]
to MSL by first estimating the positions of the peaks (i.e., the
layers), which were assumed to be the same in all spectral bands,
then estimating the amplitudes of the peaks for each wavelength,
and finally relating the estimated amplitude peaks to areas as-
sociated with each material that make up the target based on a
linear mixing model. The method has been applied to real MSL
signals (four wavelengths) to analyze a conifer structure and has
been shown to aid the recovery of bark and needle areas of the
tree assuming it is modeled as a set of irregularly spaced layers.

In this paper, we propose to investigate a SU problem applied
to single- and multi-layered targets to estimate the positions and
proportions of each (known) material. This problem extends the
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supervised SU problem of HSIs by also estimating the target po-
sition. Estimating the spectral variation of material signatures
(unsupervised SU problem) is also of interest. For example, the
estimation of physiological content, such as Chlorophyll con-
centration, in forest canopies is of key concern, and this re-
sults in variable spectra for leaves and needles. Extracting these
spectra from MSL signals is a more challenging problem (prob-
ably more difficult than in HSIs due to the statistical properties
of the noise and observation model) which is out of scope of this
paper, but will require particular attention in future work.

In contrast with the classical additive Gaussian noise assump-
tion used for HSIs, a Poisson noise model is more appropriate
for MSL signals. Indeed, Lidar and thus MSL systems usually
record, for each pixel/region of the scene, a histogram of time
delays between emitted laser pulses and the detected photon
arrivals. Within each histogram bin, the number of detected
photons follows a discrete distribution which can be approx-
imated by a Poisson distribution due to the particle nature of
light. Using a Bayesian approach, appropriate prior distribu-
tions are chosen for the unknown parameters of the model con-
sidered here, i.e., the material areas, the surface positions and
the background parameters. The joint posterior distribution of
these parameters is then derived. Since the classical Bayesian
estimators cannot be easily computed from this joint posterior
(mainly due to the model complexity), a Markov chain Monte
Carlo (MCMC) method is used to generate samples according
to the posterior of interest.

More precisely, following the principles of the Gibbs
sampler, samples are generated according to the conditional
distributions of the posterior. Due to the possibly high corre-
lations between the material proportions/areas, we propose to
use a Hamiltonian Monte Carlo (HMC) [28] method to sample
according to some of the conditional distributions. HMCs are
powerful simulation strategies based on Hamiltonian dynamics
which can improve the convergence and mixing properties
of classical MCMC methods (such as the Gibbs sampler and
the Metropolis-Hastings algorithm) [29], [30]. These methods
have received growing interest in many applications, espe-
cially when the number of parameters to be estimated is large
[31], [32]. Classical HMC can only be used for unconstrained
variables. However, new HMC methods have been recently
proposed to handle constrained variables [29, Chap. 5], [33],
[34] which allow HMCs to sample according to the posterior of
the Bayesian model proposed for SU. Finally, as in any MCMC
method, the generated samples are used to compute minimum
mean square error (MMSE) estimators as well as measures of
uncertainties such as confidence intervals.

Predicting the parameter estimation performance is of prime
interest for designing an estimation procedure but also assists
with the instrument design. Indeed, since MSL is a recent
modality, it is important to identify the key parameters that
have an influence on the material estimation performance (such
as the necessary signal to background levels, the number of
bands to be considered and the associated wavelengths). To
guide future instrument design, we consider a Cramer-Rao
lower bound (CRLB) associated with the observation model
and show that it can be used to approximate the estimation
errors of the proposed Bayesian algorithm.
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The remainder of the paper is organized as follows.
Section II introduces the observation model associated with
MSL returns for a single-layered object to be analyzed.
Section III presents the hierarchical Bayesian model associated
with the proposed model and its posterior distribution. The
hybrid MCMC method used to sample from the posterior of
interest is detailed in Section IV. Section V investigates the
expected SU performance using Cramer-Rao lower bounds.
Experimental results are shown and discussed in Section VI.
Conclusions are reported in Section VII.

II. PROBLEM FORMULATION

This section introduces the observation statistical model as-
sociated with MSL returns for a single-layered object which
will be used in Sections III and IV to solve the SU problem
of MSL data. Precisely, we consider a set of L observed Lidar
waveforms y¢ = [ye1,.--,ye1)",¢ € {1,...,L} where T
is the number of temporal (corresponding to range) bins. To
be precise, ye; is the photon count within the ¢th bin of the
(th spectral band considered. Let £y be the position of a com-
plex object surface or surfaces at a given range from the sensor,
composed of R materials whose spectral signatures (observed
at L wavelengths) are denoted as m, = [my ,...,me, |7, 7
€ {1,...,R}. According to [26], each photon count y; ; is as-
sumed to be drawn from the following Poisson distribution

R
Yer ~ P <Z wymg.rgo.e(t) + bz)

r=1

(1)

where gg ¢(-) is the photon impulse response whose shape can
differ between wavelength channels, w, denotes the area of the
rth material composing the object (relative to a reference area)
and b, is a background and dark photon level, which is constant
in all bins at a given wavelength. Without loss of generality
the photon impulse responses are assumed to be the same and
modeled by the following piece-wise exponential

T Ty .
exp 22X exp ! ift —tg < -1
(5 .
exp 202 if Ty <t—ty<Ts
goy[(t):ﬁ T22 t-T9 -tg
exp 277 exp 2 ifTh <t—tg <1}
- TQ2 Ty Ty t—Tg—tg
exp 27 exp 2 exp 73 else
where ¢ = [T1,Ts, T3, 71,72, 73,02, )7 is a positive hyper-

parameter vector. In this study, we assume that the shape pa-
rameters of the model (which is appropriate for our own lidar
sensors) are fixed and known from the instrumental response.
As seen later in Fig. 3 the shape is slightly asymmetrical when
compared to the more common Gaussian model [35] which is
used for higher power, longer pulse duration lidar systems. The
consideration of a piece-wise exponential approximation is mo-
tivated by the actual shape of our instrumental impulse response
but it is worth mentioning that any positive analytical approx-
imation, even different approximations for the different wave-
lengths, could be used instead without modifying the proposed
Bayesian estimation procedure. The consideration of a single
impulse response model is done only for ease of reading. While
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Fig. 1. DAG for the parameter and hyperparameter priors (the fixed parameters
appear in boxes).

a Gaussian approximation can lead to a slight bias in depth esti-
mation, we shall use a Gaussian approximation in Section V to
compute the Cramer-Rao bounds since the Gaussian approxi-
mation is twice differentiable (in contrast to the piece-wise ex-
ponential approximation), which simplifies the derivation of the
bounds.

Due to physical considerations, the relative areas are assumed
to satisfy the following positivity constraints

w, >0, r=1,... R 2)
Similarly, the average background level in each channel satisfies
by > 0, =1,...,L. Spectral unmixing of the MSL data con-
sists of estimating the position (i.e., ty) of the target, the area
w, of each component m,. of the target, as well as the back-
ground levels from the observed datain Y = [y1,...,yr]. The
next section studies a Bayesian model to estimate the unknown
parameters in (1) while ensuring the positivity constraints men-

tioned above.

III. BAYESIAN MODEL

The unknown parameter vector associated with (1) contains
the relative areas w = [wy, ..., wg|?, the position of the target
to and background levels b = [b1,...,b1]7 (satisfying posi-
tivity constraints). This section summarizes the likelihood and
the parameter priors associated with these parameters.

A. Likelihood

Assuming that the detected photon counts/noise realizations,
conditioned on their mean in all bins and for all wavelengths,
are independent, (1) leads to

L T )\yét

1816

éltl

P(Y|M,w,b, %) exp A 3)
where M = [my, ..., mpg], Agy = my Wy ¢(t) + by and my
denotes the £th row of M.

B. Prior for the Target Position

Since we don’t have prior information about the position of
the target, the following uniform distribution

to ~ Ua,r)(to) 4
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is assigned to . Note that the position %, is a real variable that
is not restricted to the integer values in (1; 7).

C. Prior for the Relative Areas

To reflect the lack of prior knowledge about the areas, the
following truncated Gaussian prior

'wr|a2 ~ NR*(w'r; 0, aZ)

(&)

is assigned to each area w,, where N+ (-;0,a?) denotes the
Gaussian distribution restricted to R*, which hidden mean
and variance 0 and o2, respectively. The hyperparameter o
is shared by all the parameters w, and is arbitrarily fixed to a
large value to ensure a weakly informative prior. Assuming
prior independence for the unknown areas yields

R
1 2
f(wla?) o <_2> exp TV W
[83

where o means “proportional to” and 1 g+y= (-) is the indicator
function defined on (R*)%

1g+yr(W) (6)

D. Prior for the Background Level

Similarly, assigning a truncated Gaussian prior to each back-
ground level and assuming prior independence between these
parameters leads to

sl (%)

where the hyperparameter ~% is shared by all the parameters
by and is arbitrarily fixed to a large value to ensure a weakly
informative prior.

In this paper, we assume that prior knowledge about the rel-
ative areas and background levels is limited. We use weakly in-
formative Gaussian priors restricted to the positive orthant to re-
flect this lack of knowledge and reduce the estimation bias while
ensuring the positivity constraints are satisfied. However any
proper weakly informative prior distributions could have been
used, leading to similar estimation results. Similarly, if useful
information about the unknown parameters is available, more
informative (possibly physics-based) priors can be used instead
of (4) and (6) (target position and composition) and (7) (back-
ground levels).

e

T

1
exp 777 11 (b) ™)

E. Joint Posterior Distribution

The resulting directed acyclic graph (DAG) associated with
the proposed Bayesian model is depicted in Fig. 1. The joint
posterior distribution of the unknown parameter vector § =
{w,b, o} can be computed using

fOY M, a,8) x P(Y|M,w,b, 1) f(8|a, B)  (8)

where P(Y|M,w,b,%;) has been defined in (3) and
F(6la, 8) = F(wla?) £ (bl f (t).

Unfortunately, it is difficult to obtain closed form expres-
sions for standard Bayesian estimators associated with (8). In
this paper, we propose to use efficient Markov Chain Monte
Carlo (MCMC) methods to generate samples asymptotically
distributed according to (8), employing a Gibbs sampler.
The principle of the Gibbs sampler is to sample according to
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the conditional distributions of the posterior of interest [30,
Chap. 10]. Due to the high correlation between the elements
of w (which will be discussed later in the paper), we use an
Hamiltonian Monte Carlo (HMC) method which improves
the mixing properties of the sampling procedure (compared to
a classical Metropolis-within-Gibbs sampler using Gaussian
random walks). This method is detailed in the next section.

IV. BAYESIAN INFERENCE USING A CONSTRAINED
HAMILTONIAN MONTE CARLO METHOD

In this Section, we develop an HMC-within Gibbs sampler
to generate samples according to (8) and estimate the unknown
parameters involved in (1) in order to solve the SU problem
of MSL data for a single-layered object. The proposed sampler
consists of three steps to update sequentially w, ¢y and b and is
summarised in Algo. 1.

Algorithm 1: Gibbs Sampling Algorithm (single layer)

1 Fixed input parameters: M, ¢, &2, v%, number of burn-in
iterations /Vy;, total number of iterations Nyic:

2 Initialization (i = 0)

Set w(®), t((]o) , b0

Iterations (1 < i < Nuc)

Sample W_(i) from the pdf in (9) and CHMC

5 Sample t((]’) from the pdf in (11) and a Gaussian random
walk

6 Sample b(¥) from the pdfs in (13) and Gaussian random
walks

7 Seti=1i+41.

B W

A. Sampling the Areas

The full conditional distribution of w is given by
f(W|Y7M7t07b7a2) X P(Y‘M7W7b7t0)f(w|a2) (9)

and is not a standard distribution which is easy to sample. Con-
sequently, it is the norm to use an accept/reject procedure to
update b. A classical and simple approach would use a mul-
tivariate Gaussian random walk. However, in practice the ele-
ments of w can be highly correlated, especially when the ma-
terials present similar spectral signatures (which will be the
case for vegetation targets). Consequently, a Hamiltonian Monte
Carlo method [29, Chap. 5] is preferred to improve the mixing
properties of the sampler. The principle of HMCs is to introduce
auxiliary, or momentum, variables, and perform a Metropolis-
Hastings move in a higher dimensional parameter space. The
proposal distribution is then built to take into account the shape
of the target distribution (9). Due to the area constraints (2), a
constrained HMC must be used. In this paper, we used a con-
strained HMC (CHMC) scheme similar to that described in [19]
and thus consider the following potential energy function

wlw
202

U(w) = - Z yerlog(Ae) + Ao +
4t

(10)

to simulate Hamiltonian dynamics and compute the ap-
propriate acceptance ratio (see [19], [29] for technical de-
tails). This choice of potential energy function ensures that
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U(w) = —log (f(w|Y,M,tg,b,a?)) + c where c is a posi-
tive constant. Note that the proposed CHMC step can be applied
for any differentiable relative area prior. Metropolis-Hastings
or more complex HMC moves should be used instead when
considering non-differentiable priors instead of (6).

B. Sampling the Target Position
It can be shown from (8) that

ft]Y, M, w,b,a?) x P(YM,w,b,t0)f(t0)  (11)
is not a standard distribution and an accept/reject procedure
must be used to update the target position £y. We use a Gaussian
random walk to update this parameter. More precisely, a doubly
truncated Gaussian proposal is considered to ensure each candi-
date belongs to the admissible set (1; T') and the variance of the
proposal is adjusted during the burn-in period of the sampler to
obtain an acceptance rate close to 0.45, as recommended in [36,

p. 8].

C. Sampling the Background Levels

It can be shown from (8) that

L
f(b|Y7M7 W, to, OCQ) = H f(beb% my ., W,1o, 012), (12)
=1

where

flbelyeme,, w,to, o)
T 02
o [T A exp et exp 27 1gs (b).  (13)
t=1

Sampling from (13) is again not straightforward and Gaussian
random walks are used to update the background levels, similar
to the position ¢y. However the background levels are a poste-
riori independent and can be updated in parallel. Similar to the
target position update, the variances of the L parallel Gaussian
random walk procedures are set during the burn-in period of the
sampler to obtain an acceptance rate close to 0.45.

After generating Ny samples using the procedures detailed
above and removing Vy,; iterations associated with the burn-in
period of the sampler (/V; has been set from preliminary runs),
the MMSE estimator of the unknown parameters can be approx-
imated by computing the empirical averages of the remaining
samples. The minimal length of the burn-in period can be de-
termined using several convergence diagnostics [36] but the
number of initial samples to be discarded generally varies be-
tween data sets and can be thus difficult to adjust in advance
without overestimating it. In previous work on parallel acceler-
ation of RIMCMC algorithms we have investigated the applica-
tion of such diagnostics to our monochromatic LiDAR signals
[37], but as absolute speed of processing is not a major concern
here, the length of the burn-in period is assessed visually from
the preliminary runs and fixed to ensure that the sampler has
converged. The total number of iterations has then been set to
obtain accurate approximations (computed over 4000 samples
in Section VI) of the MMSE estimators.
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V. PREDICTING UNMIXING PERFORMANCE

This section studies a Cramer-Rao lower bound associated
with the observation model (1) which can be used to assess
the performance of methods that aim to solve the SU problem
of MSL data considered in this paper as well as to assist with
the future instrument design. Precisely, Section V-A recalls
the definition of the CRLB for the problem of interest and
Section V-B discusses the impact of several key parameters on
the expected parameter estimation performance of SU methods.

A. Cramer-Rao Lower Bound

Prediction of the unmixing performance is necessary to assist
in the design of a lidar system for a specific application, iden-
tifying those parameters that have the most significant impact.
In deriving a CRLB, we propose firstly to relax the impulse re-
sponse model in (2) by considering the following Gaussian ap-
proximation

(-

- _ tg)?
Joe(t) = Bexp 207 = goe(t) (14)

This simplifies the CRLB derivation and does not significantly
bias the prediction as the piece-wise exponential impulse re-
sponse can be accurately approximated by a Gaussian function.
The CRLB associated with any unbiased estimator 8 of the pa-
rameter vector 8 involved in the mixing model (1) (having re-
placed gg ¢(¢) by §o.¢(%)) and constructed from Y is given by

CRLB(8) = J' (15)

where Jy is the Fisher information matrix whose elements are!
& log f(Y|6)

[ F]‘l’] Yié [ 801(9(%

The ith diagonal element of the CRLB matrix in (15) provides
a lower bound for the variance of @, given that @ is an unbi-
ased estimator of 8. Of course, the Bayesian estimation proce-
dure proposed in Sections I1I and I'V does not provide a strictly
unbiased estimator of 8 and a Bayesian CRLB should have been
considered instead of (15). However, due to the weakly informa-
tive priors chosen in Section III, when the actual vector 8 is far
enough from the boundaries of the admissible set (defined by the
positivity constraints), the bias of the proposed estimation pro-
cedure can be neglected and the resulting estimator achieves the
CRLB (as will be shown in Section VI). Moreover, the CRLB
in (15) can also provide information about the estimation perfor-
mance of a potential optimization method that could be proposed
to estimate # based on maximum likelihood estimation (MLE).

vt € (1,T), Ve

}mj—L”wR+L+L

B. Performance Analysis

We first investigate the performance of spectral unmixing
of MSL signals for a single layered, artificial target composed
of R = 3 materials, specifically needles, bark and soil. These
materials have been chosen because of our interests in forest
canopy monitoring using MSL signals [9]. The reflectance
spectra of these materials, observed at equally spaced spectral
bands ranging from 400 nm to 2500 nm are depicted in Fig. 2.
It is interesting to note the strong similarity between the bark
and needles spectral signatures, which can make their discrimi-
nation difficult and highlights the need of multiple wavelengths

IThe Fisher information matrix Jr is derived in the Appendix
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Fig. 2. Spectral signatures of needle (red), bark (blue) and soil (green) consid-
ered in the synthetic data.
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Fig. 3. Real normalized photon impulse response (red dots) and approxi-
mations using piece-wise exponential (blue line) and Gaussian (black line)
functions.

to quantify these materials. The maximum number of spectral
bands considered in this paper has been set to Ly,x = 32,
which is a realistic value for a short-term real measurement
campaign (the current instrument uses only 4 wavelengths).
The relative area of needles (resp. bark and soil) has been
arbitrarily set to w,, = 0.2 (resp. wp = 0.3 and w; = 0.4).
These relative areas do not necessarily sum to one as we
consider that part of the laser light can penetrate through the
target (semi-transparent target or a significant gap fraction) and
may not be further reflected (single hit assumption). The fixed
model parameters have been fixed from experiments to

T = 2500
3 = 3000

to = 1000 (16)
be=b=10, V¢

These parameters will be fixed in the remainder of the paper un-
less otherwise specified. The impulse response parameters have
been set to 7Ty = 402, T, = 12.5, Ty = 239, 4 = 395,
T = 7.9, 74 = 1595 and ¢2 = 105.82 for the piece-wise
exponential approximation in (2) and 02> = 105.68 for the
Gaussian approximation in (14). These parameters have been
obtained by fitting the experimental impulse response measured
in [26]. Fig. 3 shows that the Gaussian approximation provides
a good estimate of the experimental impulse response, although
the piece-wise exponential better fits the experimental curve.
Fig. 4 shows an example of MSL data generated using the pa-
rameters in (16) and the impulse response approximation in (2).
Table I shows the predicted estimation performance for the un-
known parameters of interest (i.e., W = [wy,, wp, w,]T and to)
assuming the Gaussian approximation of the photon impulse re-
sponse (14). The relative errors provided in the bottom row of
Table I are computed by dividing the square root of the CRLBs
by the actual values of the parameters. The relative estimation
errors of the background levels (not presented here) are lower
than 1%.

These results show that the estimation errors associated with
the target position are usually much lower than those associ-
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Fig. 4. Example of MSL signals for . = 32 spectral bands and a target located
at to = 1000 (the bottom subplot is a zoom around the actual target location).
The different colors correspond to different spectral bands.

TABLE I
ESTIMATION PERFORMANCE (L = 32).

Wn, Wp Ws to
Actual value 0.2 0.3 0.4 1500
CRLB 2.6x107% | 0.001 | 3.6x107° | 1.8 x 104
Rel. err. (%) 8.0 10.7 1.5 <10°°

bark
soil

4 - T T

-5 needle
5 ,\ to

7F

-8

9

log(CRLB)

#bands

Fig. 5. Evolution of the CRLB for w and %, as a function of the number of
bands L(8 = 3000,b, = 10,V{).

ated with the material areas. Moreover, although the amplitude
of the peak for each wavelength is much larger than the back-
ground level (see Fig. 4), the CRLB predicts possibly large es-
timation errors, especially for the needle and bark areas. This
can be partially explained by the fact that the soil reflectance
spectrum presents an average energy which is higher than those
of needles and bark (and thus ws; > wp > w,) but also and
mainly because of the high correlation between the bark and
needle spectra, which complicates their quantification. Fig. 5 to
Fig. 7 show the predicted estimation errors for different values
of the key parameters /3 (which is related to the number of pho-
tons emitted by the laser sources), the number of spectral bands
(equally spaced between 400 nm and 2500 nm) and the average
background level b (assumed to be the same in all spectral bands
and bins). Fig. 5 shows that the estimation performance gener-
ally increases with the number of spectral bands. This result is
well known for SU of multispectral and hyperspectral images
and is here demonstrated for MSL signals. However, the perfor-
mance improvement can vary, depending on the additional spec-
tral bands considered. For instance, additional bands containing
similar spectral information may not significantly improve the
unmixing results (e.g., several wavelengths between 2000 nm
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Fig. 7. Evolution of the CRLB for w and o as a function of b = b,, V(L =
32,8 = 3000).

and 2500 nm for the three materials in Fig. 2). Fig. 6 shows
that the parameter 3 has a significant impact on the SU per-
formance. This parameter increases with the amplitude and the
number of laser source pulses used to acquire the data and de-
creases with the average distance between the source and the
target (as the probability of recording a reflected photon de-
creases). Increasing 3 leads to better area estimation but can
require a longer target exposure (which can be problematic for
airborne sensors for instance). Finally, Fig. 7 shows that for rel-
atively small values of background levels (compared to 3), the
SU performance is not significantly degraded when the back-
ground increases. This background level (which depends pri-
marily on the background (e.g., solar) radiation as well as the
instrument design) is expected to be quite small in practice.

VI. EXPERIMENTS

In this section, we first apply (Section VI-A) the proposed SU
method to synthetic MSL data associated with a single-layered
target and compare its estimation performance to that predicted
by the CLRB presented in Section V and to that of a state-of-the
art method [9]. In Section VI-B, we investigate the case of a
multi-layered target whose layer positions are assumed to be
known. Although the current algorithm does not estimate the po-
sitions of multiple surfaces, Section VI-B aims to illustrate how
the proposed method can be extended to analyze more complex
objects. The main steps of the methodology (proposed to ana-
lyze single and multi-layer target) are summarised in Fig. 8.

A. Single Layer Target

In this section, we evaluate the performance of the proposed
spectral unmixing algorithm on synthetic MSL signals gener-
ated using the parameters used in Section V-B ((16)) and im-
pulse response approximation (2).

The number of spectral bands has been chosen as
L = 4,8,16,32, equally spaced between 400 nm and 2500
nm. For each scenario, the number of iterations has been set to
Nyre = 8000 (including Np; = 4000 burn-in samples). The
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Fig. 8. Main steps of the method proposed for spectral unmixing of MSL data
associated with single and multi-layer targets.

TABLE II
ESTIMATION PERFORMANCE: MSE.

TS TS PR

Actual parameter value | 0.2 | 0.3 | 0.4 |
CRLB 2.6 x 102 1.0 x 10~ 3 3.6 x 10 °
L =32 Proposed Algo. 2.7 x 10 % 1.1 x 10°9 3.8 x 10 °
State-of-the-art 3.0 x 10— % 1.2 X 10~ 3 4.1 x 10— °
CRLB 4.6 x 10 2% 1.9x 109 6.8 x 102
L — 16 Proposed Algo. 4.8 x 10— % 2.0 x 103 7.0 x 10 °
State-of-the-art 5.3 x 10 * 2.2 x 10~ 9 7.8 x 10 °
CRLB 5.8 x 10 % 2.6 x 10~ 9 1.0 x 10~ 7
L_s Proposed Algo. 5.7 x 10 % 2.5 x 109 1.0 x 10— %
State-of-the-art 6.1 x 10— % 2.7 x 1079 1.1 x 10~ 2
CRLB 1.8 x 10~ 9 8.0 x 105 3.0x 101
L —4 Proposed Algo. 1.6 x 109 7.4 x 109 2.9 x 10 7
State-of-the-art 1.8 x 10~ 9 8.6 x 10~ 5 3.3 x 10 %

hyperparameters have been fixed to (a2, v?) = (10%,10°). The
estimation performance of the proposed algorithm is evaluated
by comparing the CRLB defined in Section V to the mean
square error (MSE) defined as

R 2
MSEZ-:E{(QZ-—(%) } i=1,...,R+L+1 (17

where 0; and 9i are the actual and estimated ith element of
the unknown parameter vector 8 and the expectation is approx-
imated using 900 Monte Carlo runs. The performance of the
proposed algorithm is compared to the CRLB (including the
Gaussian approximation (14)) and to the performance of the
algorithm developed in [9], denoted as “State-of-the-art” and
which consists of estimating sequentially the position, ampli-
tudes of the peaks for each wavelength and finally the relative
areas.

Table II shows that the MSEs obtained for L € {4, 8,16, 32}
by the two algorithms are close to the CLRBs, although the pro-
posed algorithm generally outperforms the method proposed in
[9] due to the joint estimation of the target position and the ma-
terial areas. Note that for L = 4, the variance of the proposed
estimator is slightly lower than the CRLB. This can be mainly
explained by the fact that the estimator is no longer unbiased in
that case. Table III compares the average relative estimation er-
rors obtained by the two algorithms and computed by dividing
the square root of the MSEs by the actual values of the param-
eters. These results show that increasing the number of spectral
bands from L = 4 to L = 32 almost divides the area estima-
tion errors by three (e.g., from a2 30% to = 10% for the bark
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TABLE III
ESTIMATION PERFORMANCE: AVERAGE RELATIVE ERRORS (IN %).

W, w, Wg

Actual parameter value 0.2 0.3 0.4
Theo. (%) 8.0 10.7 1.5

L = 32 Proposed Algo. 8.2 11.0 1.5
State-of-the-art 8.6 115 1.6

Theo. (%) 10.8 14.6 2.0

L =16 Proposed Algo. 11.0 14.8 2.1
State-of-the-art 11.6 15.7 2.2

Theo. (%) 12.1 16.8 2.5

L =8 Proposed Algo. 12.0 16.8 2.5
State-of-the-art 12.4 17.4 2.6

Theo. (%) 21.0 29.9 4.3

L =4 Proposed Algo. 20.0 28.8 4.2
State-of-the-art 21.4 30.8 4.5

area), which highlights the benefits of increasing the number of
wavelengths.
B. Extension to a Multi-Layer Target

In this section we extend the model (1) by considering a target
composed of D layers, leading to

D
Yer ~ P (Z my . Waga,e(t) + bz)

d=1

(18)

where g4 ¢(-) is the photon impulse response of the dth layer
located at t4 and wg = [w1,4,...,wr4]” > 0 is the relative
area vector associated with the dth layer. In this scenario, we
assume that the number and positions of the layers are known.
Consequently, the unmixing problem reduces to estimating the
relative areas of the R known components for the D layers
(and the background levels). The joint spectral and spatial
unmixing problem is more challenging and will be discussed in
Section VI-C. The Bayesian model presented in Section IIT has
been extended by considering the same prior (6) for the area
vectors of each layer. The sampling procedure studied in
Section IV has been modified in order to update sequentially
the D area vectors and the target position update step has been
removed since the surface positions are assumed to be fixed in
this paragraph (see Algo. 2).

Algorithm 2: Gibbs Sampling Algorithm (multi-layer)

1 Fixed input parameters : M, ¢, o>, 4%, number of layers
D, layer positions {¢4}4=1.....p, number of burn-in
iterations Vy;, total number of iterations Ny

2 Initialization (i = 0)

,b©

Set {WEIO)}
d=1,...D
Iterations (1 < i < Nyg)

ford =1:Ddo

Sample ng) from its conditional distribution and CHMC
end for

Sample b(*) from its conditional distribution and Gaussian
random walks

8 Seti =1+ 1.

NN kW
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Fig. 9. Artificial 3-layered target composed of needles (red), bark (green), soil
(blue) and pure reflective material (black).
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Fig. 10. MSL signals (L = 32) associated with the artificial 3-layered target
(t1 = 1000,t» = 1500,¢t; = 2000). The different colors correspond to
different spectral bands.

1) Target Description: We evaluate the unmixing perfor-
mance of the extended Bayesian algorithm using an artificial
target composed of D = 3 layers. More precisely, the multi-
layer target is assumed to be far enough from the source to en-
sure that the laser rays hitting the target have the same incident
direction. Thus the photons reflected onto the dth layers lead to
the same impulse response (i.e., same ¢4). The first two layers
are located at {; = 1000 and ¢, = 1500 and are composed
of needles, bar and soil. It is important to note that the 3 ma-
terials composing the first two layers are assumed to randomly
distributed, without overlap. The third layer modeling the refer-
ence spectralon is located at ¢3 = 2000. The associated relative
areas are presented in Table IV and the location of the D = 3
layers is depicted in Fig. 9. Note that in this particular scenario,
the relative areas correspond to areas visible by the source (no
occlusion) and satisfy Zfil 25:1 wyq = 1. However, this
constraint is not ensured by the proposed estimation procedure.
MSL data associated with this scene have been generated ac-
cording to (18) with 3 = 10%,b, = b = 10,V and L = 32 and
are depicted in Fig. 10

2) Estimation Performance: The proposed Bayesian algo-
rithm extended to account for multiple layers has been applied
to the MSL signals with Ny = 8000 (including NVy,; = 4000
burn-in samples). The layer positions have been fixed to their
actual values. Table IV shows the estimated relative areas for
each layer and L € {4, 8,16, 32}. This table shows that the pro-
posed algorithm provides accurate area estimates for each layer
and the more wavelengths the better the estimation, as already
observed with the single-layered target in Section VI-A.
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TABLE IV
ESTIMATION PERFORMANCE: MULTI-LAYER TARGET.
W, wWp Ws spectralon
Layer 1 | 0.099 | 0.099 | 0.102 0
Actual [ Layer 2 | 0.080 | 0.200 | 0.120 0
Layer 3 0 0 0 0.30

. Layer 1 | 0.0928 | 0.0780 | 0.1185 | 0.0004
Estimated T ayer 2 | 0.0669 | 0.1953 | 0.1161 | 0.0006
Layer 3 | 0.0019 | 0.0011 | 0.0011 | 0.3274
‘ Layer 1 | 0.0932 | 0.0773 | 0.1181 | 0.0006
Estimated "[ayer 2 | 0.0620 | 0.1961 | 0.1179 | 0.0006
Layer 3 | 0.0024 | 0.0018 | 0.0014 | 0.3270
. Layer 1 | 0.0957 | 0.0764 | 0.1166 | 0.0008
Estimated T ayer 2 | 0.0640 | 0.1954 | 0.1172 | 0.0006
Layer 3 | 0.0024 | 0.0028 | 0.0016 | 0.3268
. Layer 1 | 0.1286 | 0.0687 | 0.1013 | 0.0015
Estimated T ayer 2 [ 0.0975 | 0.1863 | 0.1014 | 0.0016
Layer 3 | 0.0023 | 0.0019 | 0.0015 | 0.3271

C. Towards Real Data Analysis

Due to the current limitations of the instrument, the proposed
algorithm has only been applied to synthetic MSL signals whose
underlying model has been shown to be in good agreement with
our previous real MSL measurements using fewer wavelengths
[9], [26]. Using this real data, we have managed to investigate
the precision of area estimation in a multi-layer model; ground
truth was available for the endmembers, but unfortunately we
did not have structural truth. As stated above, real MSL signal
acquisition campaigns are underway with 3 wavelengths [10]
but we need to extend these and have simultaneous ground truth
measurements to better evaluate the accuracy of the model and
the estimation algorithm presented in this paper. Moreover, the
number and positions of the layers which the multi-layer target
is composed of were assumed to be known in Section VI-B. Es-
timating these parameters, especially the number of layers, for
MSL data is a challenging problem that can be addressed in the
Bayesian framework using reversible jump MCMC methods, in
a similar fashion to [26]. This issue is however out of scope of
this work and will also be addressed in a future paper.

VII. CONCLUSION

In this paper, we have proposed and developed a Bayesian
model and an MCMC method for spectral unmixing of multi-
spectral Lidar data. First, we evaluated our method on a single
layer simulated target composed of known materials so that the
MSL returns consisted of the sum of the individual contribu-
tions of the different components. The algorithm estimated the
target position, the relative areas of the materials and the noise
statistical properties.

The Cramer-Rao lower bound associated with the observa-
tion model was derived to identify the key parameters involved
in the expected performance of the SU algorithm. It was shown
that this bound can be used to help design future multispec-
tral/hyperspectral Lidar systems (e.g., number of spectral bands
and associated wavelengths, laser power ...) for specific applica-
tions. It was also shown that the performance of the proposed SU
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strategy is close to the results provided by the Cramer-Rao lower
bound, although the bound considered in the paper only holds
for deterministic parameters. The proposed Bayesian model was
then extended to handle multi-layer targets (assuming the layer
positions are known) and the simulation results provided inter-
esting results for solving the more challenging joint spectral and
spatial unmixing problem.

The model use in this paper does not take into account pos-
sible multiple scattering effects (which are likely to occur when
analyzing multi-layer scenes). Such effects have already been
observed in HSIs and Lidar signals over canopies. Developing
non-linear models for MSL signal analysis is a challenging
problem to be addressed in future studies.

APPENDIX
FISHER INFORMATION MATRIX

The likelihood of the observation matrix Y can be expressed
as

T L )\ yl t
F(Y|w, M, to,b) = HH ) o 19)
=1 ¢ Yei!
where \¢; = my . Wi ¢(t) + by. The corresponding log-likeli-
hood P = log f(Y\w, M, ty, b) is given by
P= Z Yo log(Ng 1) —log(yes!) — Nes- (20)
t=1 =1

The partial derivatives of P with respect to (w.r.t.) the unknown
model parameters are

oP L& Yerdoe(t) .
aw Z Z (T - go,e(ﬂ) my,

£=11=1
T
P
9P _ Sy
Oby = Ay
T L
0P Yot > - t—t()
— = — = m; . w t)——.
) (et 1) e i)'
Straightforward computations lead to
&P - 35,6 (0)
E|l—|=- = my my,
o[ 7| L[ e
Ob, 0y 0 else
8P ] T Goe(t)
E = — :
|:8W(9bg ; Aet e
9*P] T [t — to)my wioe(1)]
o[20] iy
a2 | ;; oty
o[ 0P ] ii (t — to)my.wgg ,(t)
Otodw | - e 0'2)\£,t e
g 7P ] _ 7% t — to)my. Wi (1)
Modhe| = = P

using the fact fact E[y, ;] = m, . wgo ¢(¢) + be
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