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ABSTRACT

Unmanned Aerial Vehicles (UAVs) can be used to extract phenotypic information of plants of individual breeding

or research plots if equipped with image detection and segmentation techniques. In our research data set, which are

aerial images of lentil fields, each plot contains plants of a single genetic line. Plant researchers are interested in

selecting lines with preferred physical traits that increase crop yield. Automatic detection and segmentation of lentil

plots will enable plant breeders to monitor and quantify plot phenotypes more frequently and with less effort.

A detection algorithm based on Laplacian of Gaussian (LoG) blob detection and a segmentation algorithm based on

a combination of K-means clustering and the random walker algorithm are proposed to detect and segment lentil plots

from aerial images captured by multi-spectral cameras mounted on UAVs. Our proposed method is independent of

the camera used. Our detection and segmentation algorithm detects and segments lentil plots from contrast-enhanced

normalized difference vegetative index (NDVI) images. The accuracy of the detection algorithm was measured using

precision and recall, for the detection algorithm the average precision and recall was 96.4% and 97.2% respectively. The

accuracy of segmentation algorithm was measured using Dice similarity coefficient, mean squared distance, sensitivity,

and specificity. The average Dice similarity coefficient between a detected segmented plot and its ground truth was

0.90, sensitivity was 0.912 and specificity was 0.959.
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1 INTRODUCTION

Since the commercialization of unmanned aerial vehicles (UAVs), their utilization in precision agriculture has

become more common. UAVs combined with image acquisition, detection, and segmentation techniques can give

information on physical plant properties empowering plant researchers to assess phenotypic traits. The purpose of this

thesis is to develop a computer tool to automatically detect and segment lentil plots from aerial images.

1.1 Motivation

Canada led the production of lentils in 2017 [1] with 65% of the world’s total and 95% of these are produced in the

prairie province of Saskatchewan. Because the economy of Saskatchewan is linked with agriculture, this production of

lentils plays a major role in Saskatchewan’s economy. Having an extreme continental climate which contributes severe

winters throughout the province from early November to mid-April, the breeders of Saskatchewan must plant lentils

in early May and then harvest in mid-August [35]. As they get little time to grow lentils, continuous monitoring of the

lentil fields is required for healthy gross production in shorter period of time. Ordinarily, there are more than 950 plots

containing 324 different varieties in a typical Saskatchewan breeding trial and to check each physically is prohibitively

time-consuming. These trials are used in early generations of breeding when less seed is available and the number of

varieties is large. The goal of breeding is to select varieties with beneficial phenotypic traits, thus, a high-throughput

method for image analysis and phenotyping is extremely beneficial at this stage. Automating the process of observing

lentil plots can help the agriculturists or plant researchers to screen lentils significantly faster without visiting every

one of the plots physically. Figure 1.1 shows an RGB image of a breeding trial captured in 2016.

1.2 Problem Description

Phenotypic analysis of plants from images by plant breeders has received increasing attention in the last few years.

As production of lentils play a major role in Saskatchewan economy, University of Saskatchewan has hosted a major

lentil breeding program where the goal is to select varieties of lentils with beneficial phenotypic traits. That is why

monitoring and phenotyping each individual lentil plot physically is an important but time-consuming task performed

by plant breeders. An automatic high-throughput method for lentil plot monitoring would realize significant time

savings. Automating this process is challenging due to high diversity in appearance of different lentil plots at growth

stages.

Modern UAVs are equipped with high resolution multi-spectral cameras to capture images of any region of interest
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for further analysis. Capturing multi-spectral plant images using UAVs and using them for agricultural analysis is one

of the popular techniques for plant phenotyping using imaging. Our problem is to accurately detect and segment lentil

plots which are diverse in size and shape because of different genotypes, semi-regular spacing of plots, and variable in

appearance at different stages of growth.

1.3 Objective

The objective of our research is to automate the detection and segmentation of lentil breeding plots, such as those

shown in figures 1.1 and 1.2, from aerial images for the purposes of extracting phenotypic information. These aerial

images are orthomosaics stitched from many individual images. The plots are quite small, semi-regularly spaced, and

contain varying amounts of space between them. Segmentation of individual plots is necessarily the first step in any

high-throughput pipeline for phenotype analysis from aerial imagery.

Figure 1.1: Orthomosaic image (RGB) of lentil plots captured on July 13, 2016.

1.4 Proposed Solution

Our algorithm is generalized to work on the images captured by two different cameras. It can detect and segment any

lentil plot at different growth stages. The detection algorithm is based on blob detection. The segmentation algorithm

is based on a combination of unsupervised clustering and the random walker algorithm for image segmentation. First,

we create a normalized difference vegetation index (NDVI) or green NDVI (gNDVI) image depending on whether

the input image is from the Micasense camera or Sony α5100, respectively. NDVI evaluates vegetation by estimating

the contrast between near infrared and red light. gNDVI quantifies vegetation by measuring difference between near

infrared and green light.

The detection algorithm is run on a specified region of interest of the orthomosaic consisting only of the lentil

trial so that plots from neighboring trials around the periphery of the orthomosaic are not detected. Once the plots are

detected we crop the plot patches based on the scale of the blobs. Finally, we run our segmentation algorithm on each

of the cropped patches. The workflow of our entire algorithm can be divided into two phases:
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Figure 1.2: Orthomosaic image (NIR-G-B) of lentil plots captured by Sony α5100 camera on July 11, 2017

1. Use of LoG blob detection to determine the location of the plots and crop plot patches using the scale of the

blobs.

2. Segmentation of plots from cropped patches using K-means clustering and random walker algorithm.

These phases are discussed in detail in Chapter 4.

1.5 Research Challenges

In the development of the method of detection and segmentation of lentil plots from aerial images, we faced a number

of research challenges.

• The first obstacle we faced was when the lentils grow, the plants can grow into adjacent plots which makes the

detection of individual lentil plots harder.

• Another challenge we faced in our research is that discriminating between shadows within plots and shadows

outside plots. As all the shadows both inside and outside plants had same intensity value, it was very difficult

to differentiate between them as we only wanted to keep the shadows within the plot region and discard the

shadows outside the plots. The shadows within the plot region are very small in appearance compared to the

vegetation within the plot, and hard to distinguish, that is why we planned to keep the shadows within the plots.
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• The aerial images we worked with were low contrast, the color of soil and lentil is almost same within individual

channel images, which made the segmentation problem harder. This is overcome by using the NDVI metric.

• Another challenge we faced was that the plots were small, semi-regularly spaced, and irregular in size and shape.

If the shapes of the plots were all the same it would have been much easier to detect and segment a plot.

• Another difficulty in our research was to generate ground truths for hundreds of plots to validate both the seg-

mentation and detection accuracy of our proposed algorithm.

From the above-mentioned challenges, it is apparent that detecting lentil plots from aerial images which appears

in different shapes and segmenting them in different growth stages is fairly a difficult problem to solve and required a

dynamic solution.

1.6 Thesis Outline

The rest of the thesis is arranged as follows:

• Chapter 2 presents background material related to this research including image processing.

• Chapter 3 reviews papers related to this thesis.

• Chapter 4 will describe the methodology of our proposed algorithm, will describe the dataset and evaluation

methods.

• Chapter 5 presents the results and discussion of detection and segmentation algorithm.

• Chapter 6 presents the conclusion and the future work of this research.
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2 BACKGROUND

2.1 Aerial Imaging

The images used in this research are aerial images. If an image is taken from an aircraft or other flying object then

we call it aerial imaging. Platforms for aerial photography can be fixed wing aircraft, UAVs, helicopters or even

parachutes. Cameras mounted on these platforms can be triggered remotely and automatically. We have used images

captured by cameras mounted on UAVs for our research. Figures. 1.1 and 1.2 show aerial images of lentil plots used

in this research.

2.2 Multi-spectral Image

In our research, we have used multi-spectral aerial images. A multi-spectral image is one that catches image informa-

tion at two or more electromagnetic wavelengths. It is a combination of several monochrome images. Two or more

monochrome images can be stacked up to make a multi-spectral image. A good example of a multi-spectral imaging

are the 5-channel images acquired from a Micasense Red-Edge camera (Micasense Inc., Seattle, WA). Figure 2.1 shows

plot images of 5 different channels captured by Micasense camera.

Blue Green NIR Red Edge Red

Figure 2.1: Multi-spectral cropped plot images from original orthomosaic captured by Micasense camera; (Left
to right) blue, green, NIR, RE, and red channel images. Original image from Professor Kirsten E. Bett and team,
P2IRC.

2.3 Down-sampling of an Image

When an image has very high resolution, it takes time to process. Down-sampling that image reduces processing time

at the cost of reduced spatial resolution. A digital image can be down-sampled with a certain sampling factor which

performs a re-sampling resulting in a shrinked image. Down-sampling of an image can be done by replacing a group of

pixel values by one value within a neighborhood. That certain value within the neighborhood can either be the minimum

5



value in the neighborhood which is known as down-sampling with single pixel selection or the average pixel value of

the neighborhood known as down-sampling with interpolation. Figure 2.2 shows an example of down-sampling.

Original Image Down-sampled Image

Figure 2.2: Original image and corresponding down-sampled image. Original image from Professor Kirsten E.
Bett and team, Plant Phenotyping and Imaging Research Centre (P2IRC).

2.4 Contrast Enhancement

Contrast enhancement is an image enhancement technique for improving the contrast by stretching the range of in-

tensity values to a larger range of values. An 8-bit gray-level high contrast image contains the full range of intensity

values. So, a low contrast image can be transformed into a high contrast image by stretching the intensity values in

such a way that the intensity histogram of the image spans the full range. In a normal contrast enhancement of an

image the lowest gray value GLmin is mapped to 0 and the highest gray value GLmax is mapped to 255 for an 8-bit

image. The remaining gray values are re-mapped linearly between 0 to 255. If I0 is output pixel value, Ii input pixel

value, Mini is minimum pixel value in the input image, Maxi is maximum pixel value in the input image, Min0 is

minimum pixel value in the output image, and Max0 is maximum pixel value in the output image then following is the

formula for linearly contrast stretching of an image.

I0 = (Ii −Mini) ∗ (Max0 −Min0)/(Maxi −Mini) + Min0 (2.1)

The ultimate goal of contrast enhancement is to have an image where details are more clearly visible. But linear

contrast enhancement is insufficient when the image has a lot of noise and/or when different regions in the image require

different amounts of contrast enhancement. In such case, linear contrast enhancement fails to enhance important details

from the image and/or over-enhances noise. To overcome the problem of over-enhancement, non-linear methods have

evolved which are briefly described below.
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2.4.1 Local Contrast Enhancement

Local contrast enhancement of an image is done to extract finer detail from that image. In local contrast enhance-

ment, the image is divided into sub-images for block processing. Based on the statistical properties, suitable contrast

enhancement such as that described above in Section 2.4 is applied to each block of the image.

Histogram Equalization

Histogram equalization (HE) is an image-dependent contrast enhancement technique. Mathematically the best pos-

sible contrast of an image is when there are an equal number of pixels of each possible intensity which is a uniform

histogram. Histogram equalization transforms an image such that the new intensity of pixel g(x, y) is determined by

the cumulative density function of the original image’s histogram. Histogram equalization enhances the contrast of an

image so that details are visible that were not before [16].

Adaptive Histogram Equalization (AHE)

In AHE, the HE mapping is applied to small pixel neighborhoods. In AHE, each pixel is mapped to an intensity

proportional to its rank in the pixel neighborhood. Under certain conditions, AHE over-enhances an image in a way

that the enhanced image shows undesirable features and can be a slow process [40].

AHE is different from ordinary HE in that AHE does enhancement to each distinct constituent section of an image.

That is why AHE is suitable for local contrast improvement of the image. But when an image has fairly homogeneous

region causing the pixels intensity values to be similar, AHE over-amplifies noise in such cases. A variant of AHE

named Contrast Limited Adaptive Histogram Equalization (CLAHE) prevents and controls over-enhancement, that is

why CLAHE has been used for image enhancement in this research. A brief description of CLAHE is given in next

section [28].

Contrast Limited Adaptive Histogram Equalization

CLAHE is used to enhance the contrast of an image while limiting the enhancement of noise. In CLAHE, the slope

of the mapping function which maps input intensity values to output intensity values defines contrast enhancement.

CLAHE limits the height of a histogram by clipping it at a predefined value [29]. Figure 2.3 shows contrast enhance-

ment of an image using both classic Histogram Equalization and CLAHE.

In CLAHE, an image is divided into several non-overlapping regions of almost equal size. First, histogram of each

region is calculated, then based on the desired limit of contrast expansion, a clip limit for clipping the histogram is

obtained. Second, the histogram of each region is redistributed in such a way that the height does not go beyond the

clip limit. Finally, the cumulative distribution functions of the resultant contrast-limited histograms are determined for

grayscale mapping. The estimate of the CDF is the sum of histogram of each grayscale scaled by the dimension of the

image. [33].
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Figure 2.3: (Left) Original image, (Right) Corresponding contrast enhanced image of (a) using CLAHE. Orig-
inal image from Professor Kirstin Bett and Team, Plant Phenotyping and Imaging Research Centre (P2IRC).

2.5 gNDVI

The normalized difference vegetation index (NDVI) and green NDVI (gNDVI) are graphical indicators. They are used

to analyze remote sensing measurements and evaluate whether the object being observed contains live green vegetation

or not. NDVI evaluates vegetation by estimating the contrast between near infrared and red light.

NDVI =
NIR − Red

NIR + Red
(2.2)

gNDVI specifies vegetation by measuring the difference between near infrared and green light.

gNDVI =
NIR −Green

NIR + Green
(2.3)

We used both NDVI and gNDVI in our proposed algorithm, depending on the source of the input image. For the

Micasense camera we used NDVI, but if the input image was from Sony α500 camera, then we used gNDVI because

the Sony camera does not capture a red channel (our Sony α500 camera is modified to capture NIR instead of red).

2.6 Object Detection

In computer vision, object detection is a set of techniques which deals with the detection of instances of semantic

objects of a certain class in digital images or videos.

2.6.1 Blob Analysis

In computer vision, blob is a region of an image where the region has some constant properties such as brightness

or color, compared to surrounding regions. Blob analysis is used to obtain any region of interest [19, 20, 22]. Blob

detection methods detect areas from an image which have different brightness or color than the rest of the image.

Objects which appear as bright on dark or dark on bright regions having a compact shape in an image are considered

blobs. The regions obtained using blob analysis are used for further processing.
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The Laplacian of Gaussian

This is a simple approach for blob detection. The idea of this approach is to filter the image with a Gaussian filter with

standard deviation σ, and then by a Laplacian filter. A Laplacian filter estimates the second derivative of an image

function. A Gaussian function G can be represented as:

G (x, y, σ) =
1√

2πσ2
e−

x2+y2

2σ2 (2.4)

where σ is the standard deviation. The Gaussian scale-space volume L (x, y;σ) of image f (x, y) is

L (x, y;σ) = G (x, y, σ) ∗ f (x, y) (2.5)

where * is the convolution operator. Then, the Laplacian operator 52 can be applied to the Gaussian scale-space

representation of an image. So the scale-space representation will be-

52L (x, y;σ) = [52G (x, y, σ)] ∗ f (x, y) (2.6)

Here, L (x, y;σ) is the scale-normalized response at point (x, y) to the LoG filter with scale σ. The Gaussian

filtering step before the Laplacian is to smooth an image and to reduce noise. Points of extreme intensity change

are highlighted by the Laplacian filter. The scale σ of LoG controls the convergence of blob-like structures to local

extrema. LoG filter exhibits strong positive response to bright blobs of radius σ
√

2, and a strong negative response

to dark blobs of the same size. To automatically capture blobs of different size, a multi-scale approach is adopted. A

three-dimensional scale-space volume L (x, y;σ) shown in Equation 2.6 is computed to detect multi-scale blobs with

automatic scale selection. Blobs are detected at the 3D extrema in this scale-space volume which means if a voxel

(x, y, σ) is larger than any of its 26 neighbors, then (x, y) is the centre of a blob in the original image. 3D extrema of

scale space determine the position and scale of blobs and the magnitude of the extrema can be thresholded to eliminate

insignificant blobs [19].

This method has been used in this thesis as a part of the detection algorithm because it works well when objects

of interest are compact, blob-like regions. The lentil plots from aerial view looked like blobs and it seemed they had

similar color, brightness, texture, size and shape. Moreover, the soil region had different brightness and color than the

plot regions. LoG blob detection technique performs well when there exists a good contrast between a foreground and

a background region.

2.7 Linear Filtering

In linear filtering, the new value of a pixel is a linear combination of its neighbors. A linear combination of x1, x2,

and x3 is ax1 + bx2 + cx3 for real numbers a, b, and c. Coefficients are specified by a filter mask which also defines

the neighborhood. The neighborhood is also called mask, or kernel. The filter mask can be represented by an m × n

matrix. Linear filtering operates in a ’sliding window’ fashion. The mask of the linear filter is centred over each pixel,
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and the sum of the products of mask coefficients and underlying pixels are computed. In this research, an averaging

filter has been used as there was no prominent noise in the images and this filter was fast which could serve the purpose

of noise attenuation.

Average Filtering

Average filtering is used to smooth an image. The primary use of smoothing an image is to suppress noise. Image

smoothing blurs sharp edges of objects that are not noise. In average smoothing, each pixel is replaced with the

average intensity of its neighbors. Usually, the neighborhood is an n × n matrix. For a 3 × 3 neighborhood, a filter

mask h can be defined as shown below. Figure 2.4 shows an image and its corresponding average filtered image. The

sharp edges of the plot region are blurred in the average filtered image.

M = 1
9 ×


1 1 1

1 1 1

1 1 1


Original Image Average filtered Image

Figure 2.4: Original image and corresponding average filtered image. Original image from Professor Kirsten
E. Bett and team, Plant Phenotyping and Imaging Research Centre (P2IRC)

2.8 Image Segmentation

When an image is partitioned into semantically meaningful regions then it is called image segmentation. We say an

image segmentation is successful or failure by determining the segmentation accuracy [32]. There are many types of

image segmentation, such as:

• Edge based segmentation: In this method, segmentation is done by detecting and linking edge pixels to form

a contour. For example, the Hough transformation can be used for implementing edge-based segmentation [43].

• Graph Theoretic Approach: In this segmentation technique, images are considered as graphs, pixels are

represented as nodes and adjacent pixels are connected by an edge. Then the segmentation is done by determining
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which nodes correspond to foreground/background pixels with edge weights and node weights encoding image

pixel information. Graph cuts [3] and random walker are [26] graph theoretic methods for image segmentation.

• Region based segmentation: In this group of methods, segmentation is done by constructing a region by

grouping pixels with similar properties such as color, grey levels or texture into regions [18].

• Split and Merge: In this method, an image is recursively divided into a quadrants. The image blocks are split

into quadrants if they are not similar; they are merged if they are similar. Quadtree decomposition method for

image segmentation can be considered as split and merge technique [27].

• Watershed Segmentation: This is a hybrid method described with topographic notions of ’watersheds’ and

’catchment basins’. In this method, a gradient magnitude image is interpreted as a topographic surface. Local

maxima are ’watersheds’ and are the region boundaries and areas with low gradient are catchment basins [7].

Random Walker for Image Segmentation

Random Walker is a method where the user has to give certain seeds and based on these seeds one can have a very

good segmented image. Grady et. al. proposed the random walk approach for image segmentation. In his approach,

he treated an image like a weighted graph [11].

Let G be a weighted graph where G = (V,E) consists of node set V and edge set E ⊂ V × V where each edge

e = (i, j) has a weight wij . The outgoing weights of a node in the graph can be treated as probabilities if, for each

node v ∈ V , the weights of the outgoing edges are non-negative and sum to 1.

In random walk, the sequence of nodes visited in the graph G is determined by the probabilities of the outgoing

edges from one vertex to another. A random walk starting at node v0 ∈ V on the above-mentioned graph G is a

sequence of nodes v0, v1, . . . , vn where each successive node is connected by edges (i.e. (vi, vi+1) ∈ E, i = 0 . . . n−1)

and each subsequent vertex starting from v0 is determined by previous node’s outgoing edge probabilities. If p1 is the

weight of one outgoing edge e1 involving vertices (v0, k1) and p2 is the weight of another outgoing edge e2 involving

vertices (v0, k2) then v1 = k1, and v2 = k2 with probabilities p1 and p2 respectively. The v2 is determined by the

probabilities of the outgoing edges. The same procedure is followed for other vertices as well.

Grady et. al [11] solved image segmentation by encoding the problem as random walks on a weighted graph. He

considered each pixel as a node, and an created an edge between each pair of adjacent pixels in either a 4-connected or

8-connected fashion. The weight wij is assigned to each node according to the similarity between two adjacent pixels

i and j. The weights are assigned based on equation 2.7.

wij = exp(−β(gi − gj)2) (2.7)

Equation 2.7 is a Gaussian function of intensity difference between pixel i and j, where β is inversely proportional

to the standard deviation of the Gaussian and controls how quickly the weight decreases with increasing intensity

difference. Larger β implies a more rapid decay of the weight function with increasing intensity difference thus larger

difference between gi and gj means lower edge weight which means a random walker is less likely to traverse that
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edge. Intuitively, β controls how different the intensity of two regions must be to be considered belonging to different

segmented regions.

The random walker algorithm requires input labels of certain pixels as foreground and background for a binary

segmentation. Let, F and B be the foreground- and background-labeled sets of pixels respectively. F and G are

disjoint. For each pixel v, the random walker algorithm calculates the probability p that a random walk starting from

that pixel v and will arrive at a pixel in foreground F . If p > 0.5 then pixel v is assigned the foreground label otherwise

it is assigned the background label in the segmentation.

Grady et. al. [11] in his implementation of random walker did not simulate random walks for computational ef-

ficiency. The author simulated the algorithm using electric potential. He computed probability p for each pixel by

computing electric potential. He let the pixels with initial foreground label have electric potential 1.0, and background-

labeled pixels are ground with potential 0.0. The edge weights were interpreted as electrical conductivity. Then the

potential (coinciding with the probability p) at all of the unlabeled nodes can be computed quickly and efficiently. De-

tails of this reformulation and proof of equivalence to the problem of finding the probability of random walk arrival, as

well as generalization to more than two segmentation labels, can be found in [11]. The random walker implementation

in the Python scikit-image package that was used in this thesis uses the electric potential problem formulation and

solution.

2.9 Unsupervised Learning

Unsupervised learning is a kind of machine learning algorithm which can learn the possible outcomes (classes) from the

unlabeled data, and also can predict outcomes on new samples. In unsupervised learning, a system is given unlabeled

and uncategorized data; but the system will still be able to group that unsorted information according to similarities

and differences of the given data.

K-means

K-means clustering is an unsupervised learning algorithm used to categorize unlabeled data. It segments n data points

into exactly K groups in which every data point lies in a cluster or group with the closest mean which is the main idea

of a cluster. The goal of this algorithm is to find the groups of the input data provided. There are two results of the

K-means clustering algorithm:

1. The centroids of clusters and

2. Labels for the input data.

If [x1, x2, ..., xn] is a given set of data points then the goal of K-means clustering is to partition the n data points into

k ≤ n sets.

There are few ways to implement the K-means algorithm. Lloyd’s algorithm is one of the popular techniques to

implement K-means clustering. In Lloyd’s algorithm [21], if an initial set of K means [m1, ...,mk] is given (which

can be generated or selected randomly), then the algorithm proceeds by alternating between following two steps.

12



1. Assignment Step: In this step, each data point is assigned to the closest mean vector.

2. Update step: Update each cluster mean by recomputing the mean from the vectors assigned to that cluster in

step 1.

The algorithm converges when a stopping criterion is met. The stopping criteria can be no data points change clus-

ters, the sum of the distances is minimized, or maximum number of iterations is reached. In this thesis, minimization of

the sum of the distances was considered to be the stopping criteria. This K-means algorithm is easy to implement and

computationally much faster than hierarchical clustering. K-means provide tighter cluster than hierarchical clustering.

2.10 Basic Morphological Operations

This section discusses the basic morphological operations. These operations process images based on shapes. In

morphological operations, a structuring element (a matrix used to identify the pixels in the image being processed and

defines the neighborhood used in the processing) is applied to an input image and generates an output image of the

same size of the input image. The value of each individual pixel in the output image is determined by comparing a

pixel with its corresponding neighbors. Based on the size and shape of both the structuring element and neighborhood,

a morphological operation can be done which will be sensible to specific shapes in the input image.

2.10.1 Morphological Dilation and Erosion

Morphological dilation and erosion are done based on a structuring element (SE). A structuring element is a binary

matrix defining a neighborhood. The structuring element can be of any shape and the centre of the structuring element

is usually the actual centre of the shape. In dilation, the structuring element scans over the binary input image. Dilation

“rubber stamps” the SE shape in the output image when the centre of the SE is on a white pixel in the input image.

In this process, the input image remains unchanged, the output image gets stamped. Dilation thickens the foreground

region in an image. In erosion, the pixel of the output image under the centre of the structuring element changes to

black if there is at least one black pixel in the structuring element’s neighborhood. Erosion shrinks foreground regions

and removes small holes.

2.10.2 Morphological Opening

If an image A is eroded by a structuring element B, and that output is dilated with the same structuring element, then

it is called opening.

A ◦B = (A	B)⊕B, (2.8)

where 	 and ⊕ denote erosion and dilation respectively.
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The morphological opening is used to remove the small objects from the image that do not completely enclose the

structuring element while not moving or changing the properties of objects. It is mainly used to remove the connection

between two objects in an image.

2.10.3 Morphological Closing

In morphological closing, the dilated image A with structuring element B is eroded with the same structuring element.

A •B = (A⊕B)	B, (2.9)

where 	 and ⊕ denote erosion and dilation respectively.

Closing is used to connect the objects that are closer, and fill in small holes protecting the properties of the object.

The closing operation fills in the parts of background holes which are smaller than the structuring element.
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3 LITERATURE REVIEW

For this research, the literature review was divided into two phases. First, the pieces literature on object detection

from aerial and other images were reviewed. Then, we reviewed unsupervised approaches to segment regions of

interest from an image. The reason for reviewing such kinds of literature was to find a solution to automatically detect

and segment lentil plots from multi-spectral images. We were not able to use any deep learning based models for our

problem because of lack of data. We had only 7 images from 3 different growing seasons which is not enough to

train a deep model. There are also no public datasets of such kind. So, we focused our literature review on traditional

approaches.

3.1 Review on Object Detection

In image processing, object detection means identifying and locating objects of interest from images or videos. In our

research, we had to identify lentil plots from multi-spectral aerial images. There were many pieces of literature found

on object detection but we prioritized the pieces literature using aerial imagery and having agricultural applications.

Popescu et. al. proposed an approach for detection, localization, segmentation, and size evaluation of flood areas

from aerial images which combined a sliding box technique and texture feature analysis [30]. In their method, they

acquired the input images with the help of a hybrid system consisting of a mobile part and a fixed part. The mobile part

is a UAV and the fixed part consists of a ground control station, a ground data transmitter, and a launcher. The authors

classified their input images in two classes: flood and non-flood areas. They used a sliding box technique with 64× 64

box dimension to check if each of the boxes has flood or non-flood region with the help of texture analysis. They used

mean intensity in red, energy on hue, homogeneity on saturation, and mass fractal dimension on green features for the

texture analysis. They calculated the performance of each tested feature for measuring the correctness of classification.

A novel algorithm for detection of buildings using local feature vectors and probabilistic frameworks from very

high resolution aerial and satellite images was proposed by Sirmacek and Unsalan [38]. The authors’ first local feature

vector was Harris-corner-based local feature vectors [15]. Secondly, they used gradient magnitude based support

regions (GMSR)-based local feature vectors [42]. They used this feature to extract structural and conditional statistical

features to classify land. Thirdly, the authors have used Gabor-filtering based local feature vectors. The authors used a

median filter to smooth the image and remove small noises. Then they applied Gabor filtering in different orientations

to obtain their local feature vector. Finally, they used FAST (Features from Accelerated Segment Test) based local

feature vectors. FAST is a corner detection method, also used for feature extraction [34]. They picked the corner pixels

extracted using the FAST algorithm to make a local feature vector. Each of these local feature vectors help to identify a
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building to be detected. Lastly, they detect tentative building locations as a discrete joint random variable, and estimate

their probability density function by those local feature vectors. The authors here used Kernel-based density estimation.

Barrero et. al. [2] have used neural networks (NN) to detect weed plants in rice fields from stitched aerial images

captured by UAV at an altitude of 50 meters. The rice field used for this paper was approximately 10 hectares. The

authors built a knowledge database based on texture and color descriptors. For texture descriptors, they have used

GLCM (Gray Level Co-occurrence Matrix) along with the following Haralick descriptors: Contrast, Correlation, En-

ergy, Entropy, and Homogeneity. For color descriptors, they have used NDI (Normalized Difference Index), where

NDI = Green−Red
Green+Red . For their neural network (NN), they have used one hidden layer containing a sigmoid activation

function, and one linear output layer. They trained the neural network with an increasing number of neurons. They

used 70% data for training, 15% for validation, and 15% for testing. They got 99% accuracy in detecting weeds.

Rabatel et. al. [31] introduced a recursive process using Fast Fourier Transform (FFT) along with a selective Gabor

filtering-based algorithm for frequency analysis to detect vineyards in aerial images. To make the Gabor filter work

efficiently on large aerial images, the authors have done some extra processing on the input image. First, they have

normalized the original input image and then Gabor-filtered the image which was then partitioned into 500× 500 sub-

images for FFT computation. Finally, to find the vine plot in the input image, they iteratively searched for frequency

peaks which indicates the presence of vine plots.

Guerrero et. al. [14] automatically detected crop rows of maize fields from images acquired by a mobile agricul-

tural vehicle by segmenting the image by identifying greenness and then applying Otsu’s thresholding. Their image

segmentation was focused on the separation of green plants. First, they normalized the input RGB image and then

they simply fragmented with Otsu’s method. For tracing the crop lines, they have adjusted a straight line for specific

pixel alignment that are expected to be as crop rows. They verified the correctness of their detection by matching the

equations of an expected straight line and an adjusted straight line. They also used a Theil-Sen estimator to correct the

expected crop line. This estimator robustly fits a line to some sample points in a plane by choosing the median of the

slopes of all the lines through pairs of points.

Gée et. al. [9] did blob coloring analysis and region-based segmentation from perspective wide-view images

from ground-fixed cameras to distinguish between weed and crop. Their algorithm was based on the double Hough

transform. They identified a vanishing point using perspective geometry of the scene to detect crop rows. The authors

in this study have developed a discrete statistical analysis with the assumption that the weed spatial distribution is a

random process. They color-transformed the input image. To detect only the crop rows they have run a double Hough

transform.

Yamamoto et. al. [44] proposed an approach for the detection of intact on-plant tomatoes using machine learning

on images from a conventional RGB digital camera. In their training phase of the proposed method, they classified the

pixels into four different classes: fruits, leaves, stems, and backgrounds. Then they calculated 15 color features and

generated a decision tree. The generated decision tree was then applied to the input image. Then they extracted the

pixels of fruit class; extracted blobs and classified them into 3 classes: single fruit, multi-fruit, and non-fruit. Finally,

they calculated the color, texture, and size feature of the blobs and generated decision trees. In the testing phase, they
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tried to find the class of the blob.

From our review of pieces of literature on object detection, we have seen that many applications using detection

of certain plants from aerial images have been found, but no work was found to detect lentil plots from multi-spectral

images captured by UAV-mounted camera.

3.2 Review on Image Segmentation

Segmentation is the process of breaking an image into its meaningful constituent regions. It is an important task in

computer vision in a sense to uniquely separate and identify an image region so that the region can further be analyzed

or post-processed. Segmentation can be done using both the supervised and unsupervised approach. In our problem, we

did not have any labeled images of lentil plots. So, we had to segment images in this research using the unsupervised

approach.

Eduardo et. al [23] detected and segmented grapes from images of cluster grapes in vineyard. They considered

individual grape shape as a sphere to apply Hough transform for detecting circles. They placed a solid background

behind the cluster of interest to avoid confusion from other clusters. They also used a circular reference which was

detected by the Hough transform. The Hough transform was also used to measure the radius of the reference and all the

existing circles were scaled using the radius. Before applying the Hough transform, the authors enhanced the contrast

of the image using contrast-limited adaptive histogram equalization (CLAHE).

Frank Y. Shih and Shuoxian Cheng [36] proposed a method for color image segmentation. Their method was based

on automatic seeded region growing algorithm. Their entire algorithm can be divided into 4 steps. First, they converted

the input RGB images into Y CbCr color space. Second, they automatically select seeds; seed pixels had similarity to

their neighbor and seeds for different regions were disconnected. Third, the color image was segmented in such a way

where each segmented portion corresponded to a seed. Finally, region-merging was used to merge similar segmented

regions.

John R. Smith and Shi-Fu Chang segmented images using quad-tree decomposition [39]. The authors extracted

texture features using quad-tree decomposition. Their proposed method performs segmentation on the frequency do-

main. Qingbing Zeng et. al. segmented overlapping plant fruit images using marker-controller watershed transform

[46]. The authors extracted markers automatically using K-means clustering. Then they extracted contour of the fruits

using watershed transform.

There exist so many kinds of literature on segmenting different images but we did not find any specific solution to

segment lentil plots from multi-spectral aerial images.

3.2.1 Review on K-means Clustering

We came to know from our literature review that, K-means clustering is the most frequently used unsupervised ap-

proach for image segmentation for its speedy convergence. It is one of the most popular techniques among unsupervised

clustering algorithms because of its robustness and simplicity [6]. Moreover, we have found that the random walker
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algorithm results in high quality image segmentation with proven accuracy if good seed labels of the image can be

found [11]. So, we wanted to incorporate both the approaches to solve our problem which lead us to specifically focus

our literature review on K-means clustering and random walker for image segmentation.

Dhanachandra et. al [6] segmented images using the K-means algorithm, but they used subtractive clusters to

generate the initial centres to be used in the K-means algorithm for the image segmentation. To get rid of unwanted

regions, a median filter was applied to the segmented region. After loading the input image, they applied partial contrast

stretching, then initialized the number of clusters k. Then they calculated the maximum potential pixel of the image to

be used as the first cluster centre. They updated the potential pixel of other remaining pixels based on the first cluster

centre. Then again found the second maximum potential point based on the first technique and continue the process

until a certain number of iterations. Then they separated the pixels using k-means. They repeated these steps until

a certain error value. Finally, they applied median filter into the reshaped cluster to get the segmented region. They

evaluated their segmentation by analyzing the values of Root Mean Square Error (RMSE) and Peak to Signal Noise

Ratio (PSNR).

Ng et. al. [24] used K-means and watershed algorithm on the gradient magnitude and they reduced the number

of false edges and over-segmentation for medical image segmentation. In their proposed method, they clustered the

input image using K-means clustering; then they used Sobel filter in the clustered image to get an edge map. They

used their own automated thresholding [25] to create an improved edge map. To get an initial segmentation map they

used an improved watershed transform. Their segmentation algorithm was on the gradient magnitude image, which is

different from the watershed algorithm. The initial segmentation map was obtained using rainfall simulation. Their

most important part of the proposed method is their post-segmentation merging. From the initial partitions obtained

from watershed segmentation Ri whose size is Ni, they calculated the mean intensity of each partition. Then they

calculated the difference between mean intensities of partition i and j; and then the difference. Finally they measure

the similarity using a similarity measure criterion. They evaluated their proposed algorithm by comparing the number

of partitions in the segmentation map. They ran their method on 44 images which obtained 90-95% accuracy when the

initial partitions were merged.

Dubuisson-Jolly, and Gupta in [8] segmented aerial images using maximum likelihood classification combined with

a certainty based fusion criterion. In their proposed method, they first considered color features based on SAR model

and texture feature separately. They computed the likelihood for each class in each feature space independently. The

candidate segmentation classes a and b for each pixel was defined based on a machine learning rule. They evaluated

their proposed method with three measures. First, τ1 the percentage of pixels classified as unknown; second, τ2 the

percentage of correctly classified pixels among the known pixels and third, τ3 the average distance between ground

truth and segmented image.

Deng and Clausi [5] tried to avoid estimating parameters for training data. They proposed a new implementation

scheme of two-component Markov Random Field (MRF) model by introducing a function-based weighting parameter

between the two components. They were able to segment different images using their MRF model which is even able

to estimate its parameters. The authors found that the most important criteria for implementing a MRF model is the
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maximum a posteriori (MAP) criterion. To maximize the posteriori conditional probability distribution, they mini-

mized a certain energy function. The Gibbs sampler and the Metropolis sampler are the two sampling methods used to

implement the MAP criterion. They used an annealing scheme in the Gibbs sampler. In their implementation, they es-

timated four parameters: mean, and standard deviation of each class, weighting parameter for determining contribution

of energy function, and a constant for specifying a priori. They used three methods for image segmentation.

1. Simple MRF model with a variable weighting parameter.

2. Simple MRF model with a constant weighting parameter.

3. the K-means clustering method.

Jain and Farrokhnia [17] proposed a segmentation algorithm based on texture analysis and multi-channel filtering

theory. The channels are described by a bank of Gabor filters. They proposed a deliberate filter determination scheme

which depends on the recreation of the input image from the filtered images. Each of the filtered images was obtained

using a blob detector, even different texture was appeared in different regions lying within a blob. A statistical approach

was used in a small window within a blob region. Finally, to incorporate the feature images and to produce the

segmentation, they utilized an unsupervised square-error clustering algorithm.

3.2.2 Review on Random Walker

Yen et. al. proposed a method to compute a new distance metric called “Euclidean Commute Time” based on a random

walk model to be used in the K-means algorithm to generate separate data clusters [45]. They modeled a random

walk based on a weighted graph. He represented each observation with a node and connected to k nearest neighbors

according to the Euclidean distance. Moreover, they computed the minimum spanning tree to obtain a connected graph

[41]. They computed the adjacency matrix A from that graph where aij = wij if node i is connected to node j. Then

they calculated the Euclidean Commute Time (ECT) distance. They used the derivation of the Laplacian matrix of

the graph to get the ECT distance. Finally, they used this ECT distance in K-means clustering, each data point was

assigned to a certain cluster using this distance. They compared their result with classical k-means.

Grady et. al. in his another work [13] used random walks for interactive organ segmentation in two and three

dimensions. In this work, they mainly focused on the time required to perform the interactive segmentation in CPU

and GPU. Grady also showed that, though the random walker algorithm for image segmentation requires a user to

specify labels, inclusion of a prior nonparametric probability density model can be used instead of user-labeled pixels

[10]. This algorithm can also be represented in four steps.

• Use a simple kernel estimation to produce the probability densities to label each node based on intensities.

• Generate edge nodes.

• Solve the system equation defined in [11].

• Finally, assign each node to the label with highest probability.
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Sinop and Grady presented a new image segmentation technique where a certain norm is minimized using a certain

method which is related to graph cuts and random walker but different from them [37]. In their work, they explore

the segmentation algorithm with a newly defined l∞ norm, provided a method for optimization and showed that their

algorithm produces accurate segmentation. For detailed equations and calculations, see [37]. They have proved in their

work that their proposed algorithm produces tighter segmentation than Random Walker.

From our literature review on image segmentation, we have found many authors have adopted many image seg-

mentation techniques but no specific solution on lentil plot segmentation from multi-spectral aerial images.
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4 METHODOLOGY, DATASET, AND EVALUATION METHODS

Our solution to the problem of segmenting lentil plots has two parts: a detection step and a segmentation step.

We designed a generalized algorithm which can detect and segment lentil plots from aerial view even if the input

image is from either Micasense camera or Sony α500 camera. We measured the success of the detection algorithm by

comparing the number of detected plots using our algorithm with manually counted number of plots. Segmentation

accuracy was measured by comparing the segmented image by our segmentation algorithm with hand drawn ground

truths.

4.1 Our Proposed Method

Our proposed algorithm is a generalized algorithm to work on the images captured by both the Sony α500 and Micas-

ense cameras. Our algorithm can detect and segment lentil plots from images captured at different growth stages. The

blob detection technique was adopted in the detection algorithm. A combination of unsupervised clustering and the

random walker algorithm was used to develop the segmentation algorithm. First, we created a normalized difference

vegetation index (NDVI) image if the input image is from the Micasense camera or a green NDVI (gNDVI) image

if the input image is from the Sony α500 camera, because the Sony camera does not capture a red channel which is

mandatory to make an NDVI image. The contrast between near infrared channel and a red channel is estimated to

evaluate vegetation by NDVI. gNDVI quantifies vegetation by measuring the contrast between near infrared and green

channels.

Our proposed detection algorithm was run on a specified region of interest within the orthomosaic images consisting

only the lentil trials so that the different plots from other neighboring trials around the periphery of the orthomosaic are

not detected. Once the plots are detected, the detected plots were cropped from the orthomosaic as a rectangular patch

based on the scales of the corresponding blobs. Finally, our proposed segmentation algorithm was run on each of the

cropped patches. The workflow of our entire algorithm can be divided into two phases:

• Use of LoG blob detection technique to determine the location of the plots and crop the plot patches using the

scale of the blobs.

• Segmentation of plots from cropped patches using K-means clustering and random walker algorithm for image

segmentation.

The above-mentioned phases are discussed in detail in the next two sections. The brief overview of our proposed

algorithm has been shown in figure 4.1.
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Figure 4.1: Overview of the proposed method.

4.1.1 Lentil Plots Detection

The datasets we used for this research had lentil trials with plots of different breeds having different size and shape. The

plots were fairly compact in shape and semi-regularly spaced. We used Laplacian of Gaussian (LoG) blob detection to

detect the plots because this algorithm excels at locating compact blob-like regions by detecting extrema in a Gaussian

scale-space. In LoG blob detection, the input image f(x, y) is convolved by a Gaussian kernel,

G (x, y, σ) =
1√

2πσ2
e−

x2+y2

2σ2 (4.1)

at a specific scale σ which brings about a scale-space representation L (x, y;σ) = 52[G (x, y, σ)] ∗ f (x, y). The

Laplacian operator exhibits strong positive responses to dark blobs of radius r = σ
√

2 and strong negative response

for bright blobs. [19]. The overview of our detection algorithm is shown on figure 4.2.

The step by step procedure for our detection algorithm is given below:

• Load the input image.

• Check the type of the input image by checking the number of channels. If the input image has more than 3

channels then the image is from Micasense camera because the Sony α500 camera does not capture more than 3

channels. We check the type of the input image because based on the type we either make NDVI or gNDVI for

further processing of the input images.

• After getting the type of the input image we break the image into its constituent channels.

• We down-sampled the Sony images to 1
16 of its original size and Micasense images to 1

4 of its original size. The

reason for down-sampling the two different images from two different cameras is their different sizes. Both types
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Figure 4.2: Overview of the detection algorithm.

of images were down-sampled with different ratio so both type of images down-sample to a similar size image

so that any post-processing with some fixed parameters can be performed.

• The contrast of the channels needed to compute NDVI was enhanced using Contrast Limited Adaptive Histogram

Equalization (CLAHE) to intensify the local detail of the image [28]. The reason for using CLAHE is, it improves

the contrast of an image while avoiding over enhancement. Figure 2.2 showed an example of cropped plot patch

enhanced contrast using CLAHE. We wanted to enhance local contrast so that we can obtain tiny detail of the

plot region to be included in the segmented plot.

• The NDVI or gNDVI was created based on the input image. Figure 4.4 shows an NDVI image made from using

NIR and red channels shown in figure 2.1. The image shown here is a false color representation of 2D NDVI.

• Then to reduce noise, a 5 × 5 averaging filter on the gNDVI was applied because the images are only lightly

corrupted by noise and the averaging filter is fast.

• The LoG blob detection algorithm was run to detect the plots. The minimum and maximum standard deviation

for the Sony camera was 6 and 12; for Micasense 8 and 12. Table 4.1 shows the parameters used for the LoG

detection. Figure 4.5 shows a sample LoG detection output.

In table 4.1, the values of minimum and maximum standard deviation, and the mask size of noise removal filter

which we used are mentioned. These values were selected based on the scale of the original image, the height

of the capturing distance of the image with drone, known plot size, known inter-plot distance, and the image
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Figure 4.3: NIR channel of a lentil field captured using Micasense camera on 27th July, 2016.

Figure 4.4: NDVI of image in figure 4.3 and its corresponding red channel.

Table 4.1: Table of parameters for detection algorithm.

Parameter Name Sony Micasense

Down-sampling factor 0.0625 0.25

Average filter mask size 5x5 5x5

Minimum sigma 6 8

Maximum sigma 12 12

Threshold 0.6 0.6

Overlap 0.1 0.1
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down-sampling factor. These static quantities let us obtain a very good estimate of the approximate number

pixels contained within a plot and hence the expected blob scale. The down-sampling factors for the images

from both the cameras were selected in a way so that images are down-sampled in such dimension on which

static values for different parameters can be used for the proposed algorithm. The motivation for selecting the

mentioned down-sampling factors was to keep the images smaller to perform faster post-processing operations

without losing much detail of the images. Once the images were down-sampled, the rest of the parameter values

were static for images from both cameras. The reason for choosing a smaller filter mask for the averaging filter

was the presence of a low amount of noise in the images. Minimum sigma is the minimum standard deviation and

maximum sigma is the maximum standard deviation for Gaussian kernel in the scale space. We chose the values

shown on table to capture all the plots with minimum number of false positives. Threshold is the absolute lower

bound for the magnitude of scale space extrema. Any extrema with magnitude smaller than that threshold are

ignored. Overlap defines the maximum amount of overlap of two detections which must have to be considered

different detections. We kept the overlap small to avoid any blobs overlapping each other by more than 0.1%.

Before we crop the plot patches using the scale of the blobs, we scale up the blob by the down-sampling factor

so that we have the plot patches from the original dimension of the image and we do not loose any detail of the

patch.

Figure 4.5: Detected plots using our proposed algorithm on image shown in figure 4.4

4.1.2 Lentil Plots Segmentation

For high quality segmentation, we used the random walker for segmenting the plots as random walker for image

segmentation results in high quality segmentation even if the image is a low contrast image [12]. If a random walker

can be provided with good seed labels, it results in extremely good segmentation, which the authors in [12] proved in

their work. We automated the process of labeling the seed pixels using the simple and fast K-means clustering. This

algorithm in our research problem was considered suitable because there was a good contrast between the foreground

which is the plot and the background which is the soil in the gNDVI images. So, it was reasonable for us to expect

intensities of the lentil images to form two reasonably well separated clusters which led us to choose K = 2 for K-

means clustering. The centroids of the 2-clusters are used to label the pixels for random walker algorithm as they are
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not likely to be drawn from the range of any overlap of the clusters’ distribution. In K-means algorithm, the distance

between observations and centroids are minimized.

The step by step procedure of segmentation algorithm is given below:

• For a given cropped patch obtained using the detection algorithm from original input image, the patch is then

contrast enhanced using CLAHE and again converted either to the NDVI or gNDVI image based on the camera

captured the original image. Figure 4.6 shows a cropped patch and its corresponding contrast enhanced gNDVI.

The gNDVI thus gets normalized to have values between −1 to +1. gNDVI is a 2D grayscale image. The figure

shows a false color representation of the gNDVI.

Original Image gNDVI

Figure 4.6: Cropped patch from Sony camera and its’ corresponding contrast enhanced gNDVI.

• K-means clustering with K = 2 is then run on the resulting image with 50 different random initializations.

The selection of initial mean strongly influences the performance of K-means. So, we tried different initial

mean values to enhance the accuracy of K-means clustering. The initial mean values were randomly chosen 50

times and we made sure no initial mean is repeated more than twice. After running K-means clustering with 50

different initializations. The cluster centroids which resulted in the smallest within-cluster variance, are retained

as the final centroids.

• The centroids are then used to choose the brightest and darkest pixels markers. The pixels in the gNDVI im-

age having value larger of two centroids is used as foreground and value smaller of two centroids is used as

background seed. Figure 4.7 shows markers obtained using darkest and brightest pixels in each cluster.

• The random walker segmentation algorithm is run to get a binary segmentation. We chose β = 130 for the

random walker. Figure 4.8 shows the output of random walker.

• We extract the largest connected component from the segmentation we get using random walker. The largest con-

nected component was extracted by finding the largest cluster of pixels with the same value which are connected

to each other through 4-pixel connectivity.

• We decided the size of the structuring element (SE) for subsequent morphological operations based on the num-

ber of pixels in the largest connected component. If the number of white pixels is smaller than 34, 000 then we
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Figure 4.7: Markers of figure 4.6

Figure 4.8: Foreground after random walker.
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take a radius 27 disk structuring element regardless of the camera that acquired the image. Otherwise a radius 9

disk structuring element is used for Sony camera images. This number of pixels was chosen empirically. On the

other hand, we have used a radius 5 disk structuring element for all the Micasense camera images. These radii

of structuring elements were derived from the known spatial resolution or scale of the image.

• We run morphological opening and closing with the selected structuring element on the result of random walker.

Figure 4.9 shows the output after morphological operation.

Figure 4.9: Output after morphological operation.

• Any remaining holes within the region is filled.

• Finally, we kept the largest connected component which is our final segmentation. Figure 4.10 shows final

segmentation.

Figure 4.10: Final Segmentation

• The parameters used in this segmentation algorithm are shown in the table 4.2.
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Table 4.2: Table of parameters for segmentation algorithm.

Parameter Name Sony Micasense

No of inits (K-means) 50 50

β (Random Walker) 130 130

Size of SE 27 and 9 5

In the segmentation phase, we used different sized structuring element for different camera images and for different

stages to aid in the processing of plots from early-season images where canopy closure was not confirmed. The

main purpose of the post-processing steps in the segmentation phase was to remove regions that were not part of

lentil plots and eradicate unwanted plot regions from the neighborhood which were included within the bounding box

while cropping the plot patches using the scale of the blobs. The complete flow chart of our proposed detection and

segmentation algorithm is shown in figure 4.11.

4.2 Dataset Description

Images used in this research were acquired using Draganfly Commander and X4P models (Draganfly Innovations

Inc. Saskatoon, SK, Canada). The UAV carried a consumer-grade Sony α5100 (Sony Corporation, Tokyo, Japan)

camera which is actually an RGB camera with a modified sensor to capture NIR instead of red channel for image

acquisition in 2017 and a Micasense Red-Edge camera (Micasense Inc. Seattle, WA, USA) to gather blue, green,

red, red edge, and near infrared bands for image acquisition in 2016. The cameras were mounted on a stabilizing

gimbal. Draganfly surveyor software was utilized to create a pre-programmed flight-plan which produced a minimum

of 70% front and side image overlap. The 2017 images were then stitched into orthomosaics using Agisoft (Agisoft,

St. Petersburg, Russia) and 2016 images were stitched using Pix4D software (Pix4D, Lausanne, Switzerland) by the

Research Assistant Mr. William van der Kamp.

We had 7 orthomosaic images of lentil plot fields from 2 locations. Among those 7 images, 2 were captured in 2016

with Micasense camera and the remaining 5 images were captured in 2017 with Sony α500 camera from the locations

of Sutherland and Rosthern, Saskatchewan, Canada. Table 4.3 shows the dates on which images were collected, on

which growth period the lentils were at the time of capture, number of images from each capturing date, number of

plots on each captured field, camera used to capture each image, and the field locations of each image.

We had 2 images from early season, 3 from mid-season and 2 from late-season. In this research, the images

captured on 24 June and 4 July, 2017 were considered early season images, images captured on 13 July, 2016, 18

July and 20 July, 2017 were considered mid-season images and images captured on 26 July, 2017 and 27 July, 2016

were considered as late season images because lentils on those dates were on those corresponding growth periods.

Orthomosaic images from the Micasense camera had dimension of 3000 × 9000 on average and the images from the

Sony α500 had dimension of 30000 × 20000 on average. Micasense camera captured 972 plots altogether lying in

the same lentil field and the 2017 images captured with the Sony camera had 1410 lentil plots. Figure 4.12 and figure
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Figure 4.11: Workflow of the proposed detection and segmentation algorithm.
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Table 4.3: Data collection details

Capture Date Growth Season No. of Image(s) No. of Plots Name of the Camera Field Location

24 June 2017 Early 1 1410 Sony Sutherland

4 July 2017 Early 1 1410 Sony Sutherland

13 July 2016 Mid 1 972 Micasense Rosthern

18 July 2017 Mid 1 1410 Sony Sutherland

20 July 2017 Mid 1 1410 Sony Sutherland

26 July 2017 Late 1 1410 Sony Sutherland

27 July 2016 Late 1 972 Micasense Rosthern

4.13 shows orthomosaic images captured by Sony camera on early and late growth stage of lentils. Figure 1.2 shown

in chapter 1 shows a mid-season orthomosaic image.

Figure 4.12: Early seaosn orthomosaic image (NIR-G-B) of lentil plots captured by Sony α5100 camera.

4.3 Evaluation Methods

The performance of our detection algorithm was evaluated using precision and recall. We manually counted the number

of detected plots detected by the proposed detection algorithm. The known number of rows and plots seeded per row

worked as ground truths for the detection algorithm to be evaluated. We computed precision and recall to measure the

accuracy of our detection algorithm. Precision is the proportion of objects detected that are relevant. So, in our case,

precision was the proportion of detected regions that were actually plots. When an actual lentil plot was detected using
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Figure 4.13: Late seaosn orthomosaic image (NIR-G-B) of lentil plots captured by Sony α5100 camera.

our detection algorithm we considered that as a true positive. If the algorithm detected any place other than the actual

plots, then that was taken as false positive. Any plot remaining undetected was considered as false negative. Recall is

the proportion of lentil plots that were actually detected. We have shown a Precision-Recall (PR) curve for evaluating

the performance of our detection algorithm which was created by varying the extrema magnitude threshold parameter.

Precision =
True Positive

True Positive + False Positive
(4.2)

Recall =
True Positive

True Positive + False Negative
(4.3)

The overall performance of the segmentation algorithm is characterized by computing the average Dice similarity

coefficient (DSC), mean squared distance (MSD) of the plot boundary, sensitivity, and specificity. DSC is used to

compare the similarity of two samples. If B is a set of pixels making up the region resulting from the segmentation

algorithm and G be the set of pixels making up the ground truth region then the DSC is:

DSC =
2|B ∩G|
|B|+ |G|

(4.4)

Mean squared distance measures the average minimum deviation of the segmented region’s boundary from the

ground truth region’s boundary. If G = g1, g2, ..., gN the points in ground truth boundary and B = b1, b2, ...bM the

points in the segmented boundary then

MSD =

∑
bεB(mingεG d

2(b, g))

M
(4.5)
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Sensitivity is the same as recall and in this context is the proportion of detected foreground pixels that are correctly

labeled as foreground. Specificity is proportion of detected background pixels correctly labeled as background:

Specificity =
True Negative

True Negative + False Positive
(4.6)

Greater DSC means the segmentation overlaps more with the ground truth; MSD indicates how closely the bound-

aries of the segmented and ground truth regions agree. Sensitivity and specificity are measures of an algorithm’s

performance to correctly classify a plot (in this research) having plot pixels only and discard non-plot pixels. Sensitiv-

ity refers to the algorithm’s ability to designate all the plot pixels as plot. A high sensitivity means there are few false

negative pixels in the segmentation. The specificity indicates the ability of an algorithm to designate pixels which are

not part of plot. A high specificity indicates there are few false positive pixels in the segmentation.

4.3.1 Ground Truth Generation Process

We used ’Color Range’ and ’Refine Edge’ tools of Adobe Photoshop CC 2017.1.1 (18.1.1) to generate ground truth

(GT) label images from lentil plot images captured by multispectral UAV-mounted Sony α500 and Micasense cameras.

Ground truths of the Micasense camera images were made from NDVI image and ground truths of the Sony α500

camera images were made from gNDVI images because (g)NDVI image gives exposure to the vegetation.

The ’Color Range’ tool lets us automatically contour the plots using a mouse click. This automatic selection was

not 100% precise as the plots are heterogeneous in size and shape. So, human interaction was mandatory to define the

GT. The ’Refine Edge’ tool let manually correct the selection of plot region. To generate the ground truths, following

steps were followed by the ground truth raters:

• Opening the input image using Adobe Photoshop (CS6 Extended 13.0) for which the rater wants to generate the

GT.

• Choosing ’Select’, and then ’Color Range’.

• Select any plot region by mouse click and the ’Color Range’ command automatically selects all identical colors,

partially select similar colors and completely ignore dissimilar colors.

• Use the ’Shift Edge’ control bar of the ’Refine Edge’ tool to shift the automatically selected boundary points

inwards or outwards based on need. Adjustment of edge shifting was based on the plant pixels. We did not want

to miss any plant pixel and liked to keep the largest connected component. The goal was to try to keep the entire

plot region and avoid background region as much as possible.

• Save the image.

Finally, the saved plot images were passed to a Python script to make a labeled Ground Truth. These GT images

were used to evaluate segmentation algorithm. However, segmentation performed solely by one person is too much

work for a single person. So, we involved three people with good domain experience to make the ground truths of

randomly selected individual plots. Since segmentations done by individual people will have individual biases, to find
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out how close the different groups of manual segmentations are we measured Generalized Tanimoto Coefficient (GTC).

We had fields of lentil plots from 2 locations. One from Sutherland and other from Rosthern. Images of each field were

captured approximately at minimum once every two weeks. We had seven orthomosaic images in total. We used all

the images from fields of both the locations to generate ground truths. A Python script was written to generate random

(x, y) coordinates located within the source aerial image. If the randomly generated coordinates fell within a plot

region, we took a square patch consisting of that plot into consideration for making ground truth from that. We picked

at least 29 plot images from each image. Each observer was given 200 plot images to generate ground truths. Among

the 200 patches, 100 plot images were common to each observer to measure inter-rater-agreement. We measured the

GTC of the common 100 ground truths generated by each individual person. Specifically, GTC was chosen because

it is not sensitive to segmentation group size [4]. GTC has a range of 0 to 1 with 1 representing perfect agreement of

all segmentations. The acceptance criteria for ground truths was: the inter-rater GTC will have to be greater than 0.75.

The ground truths which were used in this research had average inter-rater GTC of 0.96.
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5 RESULTS AND DISCUSSION

We used Python to run our algorithm and executed both the detection and segmentation algorithms on an Intel Core

i7-2600 CPU @ 3.40 GHz processor with 16.0GB RAM. The detection algorithm took 0.03 seconds on average to

run on the entire orthomosaic image of its original dimension. The detection algorithm includes the steps of taking

input image, breaking the image into its constituent channels, down-sampling them, enhancing their local contrast,

generating gNDVI, average filtering, and running the blob detection algorithm. This average time was calculated over

7 orthomosaic images. The average time for running the segmentation algorithm on each plot patch was 1.39 seconds.

The average time of running the segmentation algorithm was calculated over 400 plot patches. Making gNDVI from the

cropped patch, re-sampling the gNDVI, running K-means, running random walker, determining the mask size using

pixel count of largest connected component, and finally the post-processing which includes morphological operations

are the steps included in the segmentation phase. The evaluation of our algorithm had two aspects. First, to test the

number of lentil plots correctly and incorrectly detected, second, to test the closeness of the automatically segmented

plots with the segmentation drawn by the raters.

5.1 Results

5.1.1 Results of Detection Algorithm

The precision values for the 2 early season images were 0.971 and 0.968, and the recall values were 0.989 and 0.978.

The average precision of the detection algorithm on early season image is 0.97 and average recall value is 0.984. For

the 3 mid season images, the precision values were 0.99, 0.97, and 0.973; and recall values were 0.98, 0.983, and 0.978.

The average precision and recall for the mid season images are 0.98. The precision and recall values for late season

images are comparatively low. The precision values for 2 late season images were 0.93 and 0.94, the recall values

were 0.965 and 0.95. Their average precision value is 0.94 and average recall value is 0.95. The average precision

over 7 orthomosaic images was 0.963 and recall was 0.973. Table 5.1 shows the results of our detection algorithm with

information of capturing camera, date and growth season.

Figure 5.1 and figure 5.2 shows that the detection algorithm worked for both Sony and Micasense camera images

captured at different stages of the growing season. The figures show detected plots as black circles super-imposed over

the plots. The figure is cropped portion from an original NDVI or gNDVI image. From the figures it can be seen that,

our proposed detection algorithm could detect plots of various shapes and sizes.

We have also run our algorithm on other images captured by the Sony camera mounted on a UAV from different

height and captured with a different angle than the actual setup used in this research. These images did not capture

35



Sony

Early

Season

Mid

Season

Late

Season

Figure 5.1: Output of detection algorithm, black circles overlaid on plots are detected using proposed algorithm.
Image is a cropped gNDVI from Sony orthomosaic.
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Table 5.1: Precision-Recall Table for Detection Algorithm

Growth Season of Image Capture Date Camera Precision Recall

Early Season 24 June 2017 Sony 0.971 0.989

Early Season 4 July 2017 Sony 0.968 0.978

Mid Season 13 July 2016 Micasense 0.99 0.98

Mid Season 18 July 2017 Sony 0.97 0.983

Mid Season 20 July 2017 Sony 0.973 0.978

Late Season 26 July 2017 Sony 0.93 0.965

Late Season 27 July 2016 Micasense 0.94 0.94

AVERAGE 0.963 0.973

Micasense

Mid

Season

Late

Season

Figure 5.2: Output of detection algorithm, black circles overlaid on plots are detected using proposed algorithm.
Image is a cropped NDVI from Micasense orthomosaic.
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the entire lentil field rather it captured a certain portion of the field from lower height and from different angle. Our

algorithm performed well in these images. The overall accuracy of our proposed detection algorithm sustained with

average 97% precision and recall over 10 images. Figure 5.3 shows that our detection algorithm captured almost all

the plots in these images as well.

Original Image Detected Plots

Figure 5.3: Output of detection algorithm on new images.

5.1.2 Results of Segmentation Algorithm

We evaluated the overall performance of the segmentation algorithm by measuring average Dice similarity coefficient

(DSC), Mean squared distance (MSD), sensitivity, and specificity. When we designed our segmentation algorithm, we

prioritized higher specificity rate while at the same time maintaining the DSC over 85%. We prioritized specificity

because for plant phenotyping, it was preferable by the plant breeders to have segmentation include only plants at the

cost of small part of the plot not being included compared to soil being included as part of the plot. The average DSC,
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MSD, sensitivity, and specificity for early season images were 0.876, 10.243, 0.863, and 0.974 respectively over 132

plot images. The average DSC, MSD, sensitivity and specificity for mid season images were 0.92, 6.875, 0.94, and

0.96 respectively over 135 plot images. The average DSC, MSD, sensitivity, and specificity for late season images

were 0.89, 10.374, 0.93, and 0.95 respectively over 132 images.

Over all growth stages, the average DSC was 0.90, MSD was 8.13, sensitivity was 0.919, and specificity was 0.948

pixels which demonstrated the high accuracy of our proposed segmentation algorithm. These averages were made

on individual 400 plot patches and these 400 patches were unique and randomly selected from different lentil fields

captured in different growth stages. The table 5.2 shows the result of our segmentation algorithm.

Table 5.2: Results of the Segmentation Algorithm

Growth Season Capture Date Camera No. Plots Avg. DSC Avg. MSD Avg. Sens. Avg. Spec.

Early 24 June 2017 Sony 66 0.899 8.556 0.886 0.966

Early 4 July 2017 Sony 66 0.856 11.93 0.840 0.982

Mid 13 July 2016 Micasense 45 0.905 8.086 0.915 0.967

Mid 18 July 2017 Sony 45 0.925 6.669 0.940 0.956

Mid 20 July 2017 Sony 46 0.92 5.87 0.95 0.946

Late 26 July 2017 Sony 66 0.89 9.01 0.943 0.937

Late 27 July 2016 Micasense 66 0.889 11.738 0.912 0.957

AVERAGE 0.898 8.837 0.912 0.959

5.2 Discussion

5.2.1 Discussion of Detection Results

From the result of our detection algorithm shown in table 5.1, it is apparent that our detection algorithm works well

and performs consistently over all the growth seasons of the lentils when the images were captured with any of the two

multi-spectral cameras. No image had a precision lower than 93% or recall lower than 96%.

The highest overall accuracy of the proposed detection algorithm was for a mid-season image captured in 2016

having precision and recall of 99% and 98% respectively. The average precision and recall for mid season images

was better than for early or late season images, which can be seen in figure 5.4. However, the detection accuracy for

images captured in the late growth season of lentils was less than both the mid and early-season images. The reason

for worse detection accuracy in late season images was the overlapped growth of neighboring plots. It is often in late

season images that lentils grow large and expand and the plots overlap, making it very hard for the detection algorithm

to detect each lentil plot individually. The average precision and recall for late season images was 94% and 95.3%

respectively. The precision and recall were 94% for the latest season image captured in 2016 and with Micasense
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Figure 5.4: Bar plot of average Precision and Recall for different growth stages of images.

camera, this was the lowest accuracy among all the available orthomosaic images from every growth season. If the late

season images are not considered, the overall accuracy of our detection algorithm is increased. The average precision

is 97% and recall is 98% for early and mid season images. The average precision and recall may well be above 97%

for a specific growth season but the accuracy for detection failing to capture 100% of the plots will not let the plant

breeders track all the 1410 lentil plots. But with 97% accuracy, the plot monitoring becomes mostly automated and

looking at the image of detected plots, the non-detected plots can be easily identified and can be monitored in person.

The 98% plot detection accuracy was sustained for images captured by Sony camera from a different height and

angle. The camera being used for capturing images from different height and angle made the plots appear different

from the setup used in this research. Angled lower height of the camera make the plots closer to the camera look large

and the plots distant from camera look smaller than the actual size. But our proposed detection algorithm successfully

detected most of the plots.

Figure 5.5 shows the PR curve of our proposed detection algorithm for different thresholds. This threshold is the

absolute lower bound for scale space maxima. Table 4.1 shows the threshold we used for our detection algorithm.

The PR curve will allow us to show the rate of detected plots that are relevant plots and the rate of detected plots to

all relevant plots. We have ignored any extrema below 0.64 for precision in the curve because below that value the

curve does not change. From the figure 5.5, it can be seen that the curve is steep and flat around 0.97 and 0.98 in

precision axis against 1 − recall axis which is the x-axis. Moreover, a flat curve constantly nearing the value 1 in a

PR curve means all the objects identified are consistently relevant as precision is the number of true positives over the
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Figure 5.5: PR curve for different threshold values of blob detection of lentil plots.

summation of true positives and false positives; and recall is true positives over the summation of true positives and

false negatives. So the curve being flat means all the plots captured are mostly relevant which indicates a very good

and consistent classification.

Our proposed detection algorithm works for images captured in any season of the growth stage of the lentils. But

sometimes, in the late season images it can be seen that quite a few plots have come closer to each other which made

the detection harder. The Laplacian of Gaussian kernel while scanning like a sliding window, excels at the location of

blob like regions and captures everything which falls within the kernel radius. If a plot is connected with another one,

and one of the connected plots have less intensity and does not fit within the Gaussian kernel radius, then our detection

algorithm cannot detect that plot. Such scenario is shown on figure 5.6.

Figure 5.6: Scenerio when the algorithm failed to detect individual plot accurately. The plot in the middle,
having no black circle indicates undetected plot.
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5.2.2 Discussion of Segmentation Results

From figure 5.8 it is clear that, our segmentation algorithm works constantly well for the plot patches acquired from

different times during the growth season. The average DSC, sensitivity and specificity was always more than 0.90,

0.91 and 0.94 respectively for mid and late season images. The highest segmentation accuracy was obtained for mid-

season images. Because, in mid season, the plots are compact and well shaped and easier to segment. The accuracy

for mid-season images was 0.91 average DSC, 0.96 average specificity, and 0.93 average sensitivity. Such sensitivity

is good enough for bulk analysis of plots but 96% specificity means 4% of the plant pixels are labeled as background

which may affect any further analysis but not much as non-plant pixels would lie on the boundary of the plots. We

could not obtain good results for early season images because in early season, the plots are not matured enough, very

little plant appears beyond soil, the color is almost the same as soil making it harder to segment them. Figure 5.7 shows

such a case. The white boundary overlaid on the plot region indicates the segmentation boundary obtained using our

algorithm. Our segmentation algorithm was unable to segment the yellow marked region. The region inside the yellow

boundary is disjoint from the main plot region and is not matured enough to be recognized as part of the plot region.

But the loosely connected plot region below the segmented plot was possible to include within the segmentation as that

part is close to the main plot region and the morphological operation could easily capture it within the plot region.

Figure 5.7: Scenerio when the algorithm failed to completely segment a plot.

Figure 5.9 shows our segmentation results. The results in the figure are shown for 5 different plots. The first 3 plots

were captured by Sony camera and from 3 different growth stages. The last 3 plot images were captured by Micasense

camera from 2 different growth stages. The plots shown in the figure are plots whose segmentation accuracy was best

among all the plots. In the figure, the first segmentation was on early season plot image. As it can be seen, the plant

pixels are scattered, not bound together which made challenging to segment images from early season images. The mid

and late season images were comparatively easy to segment. As you will see on the figure 5.9, the mid and late season

plots are compact and easy to segment but the problem with late season plots is they are very close to neighboring plots

making it harder to segment individual plots.

In conclusion, our algorithm detects 96% of the plots accurately and also helps to identify the physical location

of non-detected plots and segments each of the plot with more than 95% accuracy. Moreover, our algorithm detects
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Figure 5.8: Average DSC, Sensitivity and Specificity of plot images from 3 growth stages.

and segments all the plots from a single multi-spectral image with less than couple of seconds to gather bulk of plots

altogether for phenotypic analysis by plant breeders thus our proposed method will completely automate the process

of monitoring the lentil plots though some scope of improvement in the method still exists.
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Figure 5.9: Segmentation Results of plots from 3 different seasons and 2 capturing cameras.
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6 CONCLUSION

We have proposed an automatic detection algorithm based on blob detection and an automatic segmentation algo-

rithm based onK-means clustering and random walker from aerial images captured by multi-spectral cameras mounted

on drone. We derived contrast enhanced gNDVI from input images so that we have the apparent live green vegeta-

tion for better post-processing. Later, we processed the gNDVI to detect plots as blobs and segment cropped patches

obtained using blob ratio. This entire process takes only 1.003 seconds on average. Our proposed method is the first

detection and segmentation solution for lentil plots in aerial images. Our proposed detection method performed ex-

ceptionally well for images captured both in early and mid season of the crop’s growth period. And our proposed

segmentation method worked well for all 3 growth season but performed best for mid-season images. The advantage

of our algorithm is that the algorithm works for multi-spectral images independent of the capturing camera and is an

algorithm which works for image captured in every growth season of lentils. Moreover, our algorithm is unsupervised

and requires no training to detect and segment the lentil plots. Automation of detection and segmentation of different

lentil plots reduces the amount of time spent by plant breeders in the field to collect phenotypic information. Manually

collecting a single trial in large research trials involves hundreds of man hours. Moreover, manual data collection is

tedious, monotonous, and boring. Our algorithm is totally automatic and requires no human intervention.

The overall performance of our proposed detection algorithm depends on the maturity of the lentil plots. In this

research, we have considered images captured with different angle and height other than the aerial images which were

used to train and test the model. Our algorithm performed well for those images as well.

Since, gNDVI is commonly acquired in many breeding programs, our detection and segmentation method should

be effective for other crops as well if the crops are blob-like in appearance. Our algorithm can detect and segment aerial

lentil plot images with any number of channels of any multi-spectral camera if the camera captures the required chan-

nels to make NDVI or gNDVI. With the growing need of remote sensing and absence of detection and segmentation

technique for automatically detecting and segmenting lentil plots from images, our proposed method will be proven

most desired tool for helping in monitoring phenotypes of lentil breeding plots. This research of ours have already

contributed to the literature as our work has been published in WACV 2019.
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6.1 Future Work

Some of the potential future works of our proposed method are mentioned below:

• In later growth stage of lentils, the plots expand too much and grow together with neighboring plots. Though our

detection algorithm can detect them uniquely, cropping them using blob ratio leads to inclusion of neighboring

plot portions within the cropped patch. In future, this kind of scenario can be dealt with watershed segmentation.

• Our algorithm cannot distinguish between guard plots, which are in between two trials of lentils . In future,

distinguishing between guard plot and lentil plot can be done.

• Sometimes, our detection algorithm failed to detect individual plots when two or three plots expanded so much

and grew together. In that case, geospatial information can be used to uniquely identify each plot.

• Our algorithm works in a region of interest specified by user. In future, automatically determining the region of

interest can be done and our proposed approach can be applied in other kind of crop images as well.
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