65 research outputs found

    Generalized Quantifiers and Logical Reducibilities

    Get PDF
    We consider extensions of first order logic (FO) and least fixed point logic (LFP) with generalized quantifiers in the sense of Lindström [Lin66]. We show that adding a finite set of such quantifiers to LFP fails to capture all polynomial time properties of structures, even over a fixed signature. We show that this strengthens results in [Hel92] and [KV92a]. We also consider certain regular infinite sets of Lindström quantifiers, which correspond to a natural notion of logical reducibility. We show that if there is any recursively enumerable set of quantifiers that can be added to FO (or LFP) to capture P, then there is one with strong uniformity conditions. This is established through a general result, linking the existence of complete problems for complexity classes with respect to the first order translations of [Imm87] or the elementary reductions of [LG77] with the existence of recursive index sets for these classes

    The prospects for mathematical logic in the twenty-first century

    Get PDF
    The four authors present their speculations about the future developments of mathematical logic in the twenty-first century. The areas of recursion theory, proof theory and logic for computer science, model theory, and set theory are discussed independently.Comment: Association for Symbolic Logi

    On Measuring Non-Recursive Trade-Offs

    Full text link
    We investigate the phenomenon of non-recursive trade-offs between descriptional systems in an abstract fashion. We aim at categorizing non-recursive trade-offs by bounds on their growth rate, and show how to deduce such bounds in general. We also identify criteria which, in the spirit of abstract language theory, allow us to deduce non-recursive tradeoffs from effective closure properties of language families on the one hand, and differences in the decidability status of basic decision problems on the other. We develop a qualitative classification of non-recursive trade-offs in order to obtain a better understanding of this very fundamental behaviour of descriptional systems

    Embedding Theorem for the automorphism group of the α-enumeration degrees

    Get PDF
    It is a theorem of classical Computability Theory that the automorphism group of the enumeration degrees D_e embeds into the automorphism group of the Turing degrees D_T . This follows from the following three statements: 1. D_T embeds to D_e , 2. D_T is an automorphism base for D_e, 3. D_T is definable in D_e . The first statement is trivial. The second statement follows from the Selman’s theorem: A ≀e B ⇐⇒ ∀X ⊆ ω[B ≀e X ⊕ complement(X) implies A ≀e X ⊕ complement(X)]. The third statement follows from the definability of a Kalimullin pair in the α-enumeration degrees D_e and the following theorem: an enumeration degree is total iff it is trivial or a join of a maximal Kalimullin pair. Following an analogous pattern, this thesis aims to generalize the results above to the setting of α-Computability theory. The main result of this thesis is Embedding Theorem: the automorphism group of the α-enumeration degrees D_αe embeds into the automorphism group of the α-degrees D_α if α is an infinite regular cardinal and assuming the axiom of constructibility V = L. If α is a general admissible ordinal, weaker results are proved involving assumptions on the megaregularity. In the proof of the definability of D_α in D_αe a helpful concept of α-rational numbers Q_α emerges as a generalization of the rational numbers Q and an analogue of hyperrationals. This is the most valuable theory development of this thesis with many potentially fruitful directions

    Approximate solution of NP optimization problems

    Get PDF
    AbstractThis paper presents the main results obtained in the field of approximation algorithms in a unified framework. Most of these results have been revisited in order to emphasize two basic tools useful for characterizing approximation classes, that is, combinatorial properties of problems and approximation preserving reducibilities. In particular, after reviewing the most important combinatorial characterizations of the classes PTAS and FPTAS, we concentrate on the class APX and, as a concluding result, we show that this class coincides with the class of optimization problems which are reducible to the maximum satisfiability problem with respect to a polynomial-time approximation preserving reducibility

    Definability of linear equation systems over groups and rings

    Get PDF
    Motivated by the quest for a logic for PTIME and recent insights that the descriptive complexity of problems from linear algebra is a crucial aspect of this problem, we study the solvability of linear equation systems over finite groups and rings from the viewpoint of logical (inter-)definability. All problems that we consider are decidable in polynomial time, but not expressible in fixed-point logic with counting. They also provide natural candidates for a separation of polynomial time from rank logics, which extend fixed-point logics by operators for determining the rank of definable matrices and which are sufficient for solvability problems over fields. Based on the structure theory of finite rings, we establish logical reductions among various solvability problems. Our results indicate that all solvability problems for linear equation systems that separate fixed-point logic with counting from PTIME can be reduced to solvability over commutative rings. Moreover, we prove closure properties for classes of queries that reduce to solvability over rings, which provides normal forms for logics extended with solvability operators. We conclude by studying the extent to which fixed-point logic with counting can express problems in linear algebra over finite commutative rings, generalising known results on the logical definability of linear-algebraic problems over finite fields

    Game Comonads & Generalised Quantifiers

    Get PDF

    Definability of second order generalized quantifiers

    Get PDF
    • 

    corecore