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Abstract 

This paper presents the main results obtained in the field of approximation algorithms in a 

unified framework. Most of these results have been revisited in order to emphasize two basic 
tools useful for characterizing approximation classes, that is, combinatorial properties of problems 
and approximation preserving reducibilities. In particular, after reviewing the most important 
combinatorial characterizations of the classes PTAS and FPTAS, we concentrate on the class 
APX and, as a concluding result, we show that this class coincides with the class of optimization 
problems which are reducible to the maximum satisfiability problem with respect to a polynomial- 
time approximation preserving reducibility. 
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0. Introduction 

It is well known that for several important optimization problems, such as the trav- 

eling salesman problem or the graph coloring problem, determining an optimal solution 

is extremely time consuming due to the inherent complexity of such problems. In fact, 

no algorithm running in polynomial time is known for them and, even if a precise 

characterization of their complexity has not yet been established, for a large class of 

problems, usually called NP-hard optimization problems, the existence of polynomial- 

time algorithms would imply a positive answer to the famous question P = NP, a fact 

which is generally considered to be extremely unlikely. 

For this reason when we have to solve problems of this kind we must restrict 

ourselves to compute an approximate solution, especially when we have to deal with 

large instances of the problems. In particular, we are interested in the so-called E- 

approximate solutions, i.e., solutions whose relative error with respect to the optimal 

solution is guaranteed to be bounded by a constant, independently from the size of the 

instance of the problem [28]. 

Unfortunately, for many NP-hard optimization problems even to calculate such ap- 

proximate solutions is computationally hard. Therefore the issue of determining under 

what conditions and by means of what methods we can design polynomial-time al- 

gorithms that provide s-approximate solutions for NP-hard optimization problems is 

widely recognized as being very relevant both from the practical point of view and 

from the point of view of complexity theory. 

Currently, the class of problems that allow a polynomial-time s-approximation algo- 

rithm at least for one value of E is called APX while the class of problems that allow 

an a-approximate solution for every value of E (otherwise called a polynomial-time 
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approximation scheme) is denoted as PTAS. When an approximation scheme exists 

which is uniformly polynomial both in the instance size and in the inverse of the relative 

error the problem is said to allow a fully polynomial-time approximation scheme and 

the class of such problems is called FPTAS. 

Since the late 1970s the effort of providing a precise characterization of APX, 

PTAS, and FPTAS has been extensively tackled [3,5,27,37,48]. These first results 

were mainly concentrated on attempts to establish formal relationships between the 

combinatorial structure of the problems and their approximability properties and to 

provide necessary and/or sufficient conditions for membership in APX, PTAS, and 

FPTAS. 

Subsequently natural notions of approximation preserving reducibilities have been 

introduced [20,42] with the aim of establishing hardness and completeness results in 

approximation classes and of deriving proofs of intractability of approximation from 

them. 

At the end of the 1980s a new approach to the study of approximable NP-hard op- 

timization problems has been developed [46], based on the characterization of feasible 

solutions in logical terms and this approach led to the definition of various classes 

of maximization and minimization problems [35,43] whose relationships to APX and 

PTAS were thoroughly analyzed. In particular, two classes of problems defined in 

[46] have been extensively studied for their numerous interesting properties: the class 

MAX NP and the class MAX SNP, properly contained in the former, both contained 

in APX. 

More recently an important breakthrough in the theory of approximability of NP-hard 

optimization problems has been determined by the application of techniques based on 

interactive protocols [ 1,2,26]. Along this line, on the basis of a new characterization 

of NP languages, it has been shown that problems such as the maximum clique and 

the maximum independent set problems cannot be approximated within any E (unless 

P = NP). At the same time, by means of similar arguments, the fact that several 

problems, such as the maximum cut and the maximum satisfiability problems, do not 

allow polynomial-time approximation schemes and, hence, are not contained in PTAS 

(unless P = NP), has been proved. 

This paper presents the main results obtained in this research field in a unified 

framework. Most of these results have been revisited in order to emphasize two basic 

tools useful for characterizing approximation classes, i.e. combinatorial properties of 

problems and approximation preserving reducibilities. In particular, after reviewing the 

most important combinatorial characterizations of the classes PTAS and FPTAS, we 

concentrate on the class APX and, as a concluding result, we show that this class 

coincides with the class of optimization problems which are reducible to the maxi- 

mum satisfiability problem with respect to a polynomial-time approximation preserving 

reducibility. 

The paper is organized as follows. After presenting an introduction to the complexity 

of NP optimization (NPO) problems and to the classification of NPO problems with 

respect to approximability, in Section 2 necessary and/or sufficient conditions for the 
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existence of polynomial-time approximation schemes are discussed. In Section 3 an ap- 

proximation preserving reducibility is defined, the notion of completeness in approxima- 

tion classes is introduced, and problems with such property are shown. Section 4 is de- 

voted to the paradigmatic satisfiability problem and to its relationships with the syntactic 

characterization of NPO problems in terms of logical formulae. In particular, an approx- 

imation class, called OPT NP, is defined in terms of approximation preserving reducibil- 

ity with the aim of letting the maximum satisfiability problem play a similar role as 

satisfiability plays in NP. Successively, a sufficient condition based on the logical defin- 

ability of optimization problems is given for membership in OPT NP. Finally, in Section 

5 the results based on the concept of probabilistically checkable proof and on their neg- 

ative consequences in terms of approximability for a large class of NPO problems are 

presented. Moreover, the APX-completeness of the maximum satisfiability problem is 

presented. 

Throughout this paper we assume the readers to be familiar with the basic con- 

cepts of the theory of computational complexity as developed in text books such as 

[8, 14,28,44]. Apart from this, we tried to make the paper as self-contained as possi- 

ble. Moreover, due to the lack of space, we could not present many other interesting 

results: a good pointer to further literature in this field, before 1990, is the survey by 

Bruschi, et al. [15]. Finally, we considered out of the scope of the paper the presenta- 

tion of positive and negative results concerning specific NPO problems and we limited 

ourselves to refer to paradigmatic problems which are listed in the appendix. In any 

case, we are confident that these and future results fit well in the framework that we 

propose so that this paper can represent an appropriate point of departure for following 

the upcoming literature. 

1. NPO problems: definitions and preliminaries 

The basic ingredients of an optimization problem are the set of instances or input 

objects, the set of feasible solutions or output objects associated to any instance, and 

the measure defined for any feasible solution. On the analogy of the theory of NP- 

completeness, we are interested in studying a class of optimization problems whose 

feasible solutions are short and easy-to-recognize. To this aim, suitable constraints 

have to be introduced. We thus give the following defiition. 

Definition 1. An NP optimization (NPO) problem A is a fourtuple (I,sol,m, goal) such 

that 

1. I is the set of the instances of A and it is recognizable in polynomial time. 

2. Given an instance x of I, sol(x) denotes the set of feasible solutions of x. A 

polynomial p exists such that, for any x and for any y E sol(x), ly] < ~(1x1). Moreover, 

for any x and for any y such that ]y] < p( /xl), it is decidable in polynomial time whether 

y E sol(x). 
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begin 

guess y E (0, l}P(lXl); 

if y is a feasible solution of x then output m(x, y) 

else abort 

end. 

Algorithm 1. The nondeterministic algorithm of an NPO problem. 

3. Given an instance x and a feasible solution y of x, m(x,y) denotes the positive 

integer measure of y (often also called the value of y). The function m is computable 

in polynomial time and is also called the objective function. 

4. goal E {max,min}. 

The class NPO is the set of all NPO problems. 

The goal of an NPO problem with respect to an instance x is to find an optimum 

solution, i.e. a feasible solution y such that 

m(x, y) = goaZ{m(x, y’): y’ E sol(x)}. 

In the following sol* will denote the multi-valued function mapping an instance x to 

the set of optimum solutions, while m* will denote the function mapping an instance 

x to the measure of an optimum solution. 

Observe that, according to Definition 1, a nondeterministic Turing machine N can be 

associated to any NPO problem A that, for any instance x of A, performs Algorithm 1. 

An NPO problem is said to be polynomially bounded if a polynomial q exists such 

that, for any instance x and for any solution y of x, m(x, y) <q( 1x1). 

In the appendix several examples of NPO problems are given which will be used in 

the following sections. 

1.1. Three Problems in One 

The definition of an optimization problem naturally leads to three ways of solving 

the problem itself. 

1. Constructive problem: given an instance x, derive an optimum solution, i.e., com- 

pute an element of sol*(x). 

2. Evaluation problem: given an instance x, compute the measure of an optimum 

solution, that is, compute m*(x). 

3. Decision problem: given an instance x and an integer k, decide whether the 

measure of an optimum solution is greater than (less than, for minimization problems) 

or equal to k. 

Example 1. Let us consider the problem MAX CLIQUE. In this case, we can either derive 

a maximum clique, or compute the size of a maximum clique, or decide whether the 

size of a maximum clique is at least k. 

In the case of NPO problems, the relationship among these three problems is sum- 

marized in Fig. 1. For example, since the value of the measure function is bounded by 
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? Binary Search 

I I r I I 
Constructive Evaluation Decision 

Problem Problem Problem 

1 I L I 
Trivial Tkivial 

Fig. 1. The relationship among the three problems. 

2q(lXl) for a suitable polynomial q, the evaluation problem can be solved by deciding 

the answer to at most q( 1x1) instances of the corresponding decision problem. 

As shown in the figure, the relation between computing the measure of an optimum 

solution and deriving such a solution is not clear. Intuitively, an optimum solution 

seems to be harder to obtain since it yields additional information. 

The next theorem, however, shows that, whenever the decision problem is NP- 

complete, the constructive and the evaluation problems are computationally equivalent. 

Theorem 1 (Crescenzi and Silvestri [21] and Paz and Moran [48]). Let A be an NPO 

problem whose corresponding decision problem is NP-complete. Then the constructive 
problem associated with A is solvable by a polynomial-time Turing machine with 
oracle rn; (notice that the answer of the oracle to a query x is the value m:(x)). 

Proof. Assume A is an NPO maximization problem whose corresponding decision 

problem is NP-complete (the proof is similar for minimization problems). Since the 

decision problem associated with A is NP-complete, in order to prove the theorem it 

suffices to derive an NPO problem B such that the constructive problem associated 

with A is polynomial-time solvable by a Turing machine with oracle mi. 
Such a new problem B is the same as A apart from the measure function ms which 

is an “injective version” of mA. Formally, let p be the polynomial bounding the length 

of the solutions of A and let n(y) denote the position of solution y in the lexicographic 

order. Then, for any instance x and for any solution y, we define: 

mB(x, y) = 2P(‘X’)+1mA(x, y) + n(y). 

Clearly, for any instance x and for any two distinct solutions yi and y2 of x, 

ms(x, yi) # mB(x, y2), i.e., sol,*(x) is a singleton. Let y;(x) denote the unique el- 

ement of sol,*(x). Observe that if m&x, yi) > ms(x, ~2) then mA(x, yi) >rnA(x, y2), so 

that y;(x) E sol,*(x). Finally, y;(x) is polynomial-time computable by a Turing ma- 

chine with oracle m;l, since the position of the optimum solution in the lexicographic 

order can be obtained by computing the remainder of the division between m;(x) and 
2P(IXI )fi. q 

It still remains open the question whether an NPO problem exists whose correspond- 

ing constructive problem is harder to solve than the corresponding evaluation problem. 
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The following theorem gives some evidence that the answer to this question may be 

affirmative. 

Theorem 2 (Crescenzi and Silvestri [21]). 1f P # NP n coNP, then an NPO problem 

exists such that m+ E FP and it sol* & FP. ’ 

Proof. Let L E NP II coNP - P. Thus a nondeterministic Turing machine N exists such 

that, for any x: 

1. If x E L, then an accepting computation path of N(x) exists and any computation 

path either accepts or does not halt. 

2. If x # L, then a rejecting computation path of N(x) exists and any computation 

path either rejects or does not halt. 

Let A be the NP maximization problem such that, for any x, the feasible solutions 

of x are all halting computation paths of N(x) and they all have measure equal to 1. 

It thus follows that m*(x) = 1 for any x so that m* E FP. Moreover, if sol* E FP, 

then x E L can be decided in polynomial time as follows: compute an optimum solution 

y and accept if and only if y is an accepting computation path. Cl 

1.2. Approximate algorithms and approximation classes 

We have already seen that if an NPO problem can be solved in polynomial time, 

then its corresponding decision problem can also be solved in polynomial time. As 

a consequence, if P # NP, then any NPO problem whose corresponding decision 

problem is NP-complete is not solvable in polynomial time. In these cases we sacrifice 

optimality and start looking for approximate solutions computable in polynomial time. 

Several notions of approximability have been introduced (see, for example, [5,41]). In 

this paper, we will use the most widely applied. 

Definition 2. Let A be an NPO problem. Given an instance x and a feasible solution 

y of x, we define: 

1. Relative error of y with respect to x the ratio 

ax, Y > = 
b*(x) - mky)l 

max{m*(x), 4x, Y )I. 

2. Performance ratio of y with respect to x the ratio 

1 m(x, y) m*(x) R(x,y)=min - - . 
m*(x) ’ 4x, y) I 

’ The class FP is usually defined as the class of polynomial-time computable single-valued functions. How- 

ever, we can extend this definition to multi-valued functions as follows: a multi-valued function f belongs 

to FP if a polynomial-time Turing machine T exists such that. for any input x, T(x) E f(x). 
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Of course a strict relationship exists between relative error and performance ratio 

of a feasible solution. Indeed: E(x, y) = 1 - R(x, y). Both the relative error and the 

performance ratio range between 0 and 1: the relative error is as close to 1 (i.e., the 

performance ratio is as close to 0) as the feasible solution is far from the optimum 

one. In the following we will mainly use the notion of relative error. * 

Definition 3. Let A be an NPO problem and let T be an algorithm that, for any instance 

x of A, returns a feasible solution T(x). Given an arbitrary rational E E (0, l), we say 

that T is an E-approximate algorithm for A if, for any instance x, the relative error of 

the feasible solution T(x) with respect to x verifies the following inequality: 

E(x, T(x)) <a 

(equivalently, T is an s-approximate algorithm if R(x, T(x)) 3 1 - E). 

For brevity’s sake, we will sometimes speak of approximate algorithm instead of 

s-approximate algorithm. 

Definition 4. An NPO problem A belongs to the class APX if an c-approximate poly- 

nomial-time algorithm T for A exists, for some E with 0 < E < 1. 

Example 2. Let us consider MIN NODE COVER and let us consider Algorithm 2. Clearly, 

the subset V’ & V computed by the algorithm is a vertex cover corresponding to a set 

of disjoint edges whose cardinality is IV’l/2 ( . since for any edge both its endpoints 

have been added to V’). Since, by definition, any cover must ‘touch’ all the edges of 

such set, then it must contain at least IV/l/2 nodes. Thus, the cardinality of I” is at 

most twice the cardinality of a minimum cover, that is, Algorithm 2 $-approximates 

MIN NODE COVER. 

Definition 5. Let A be an NPO problem. An algorithm T is said to be an approxima- 
tion scheme for A if, for any instance x of A and for any rational E E (0, l), T(x, E) 

returns a feasible solution whose relative error is at most E. 

Definition 6. An NPO problem A belongs to the class PTAS if it admits a polynomial- 

time approximation scheme, i.e. an approximation scheme whose time complexity is 

bounded by qE(IxI), where qE is a polynomial. 

Observe that the time complexity of an approximation scheme in the above definition 

may be exponential in the rational E, i.e. it may be of the type 21’Ep(IxI) or [xl”‘, 

where p is a polynomial. Thus, computations with small E values may turn out to be 

practically unfeasible. This leads us to the following definition. 

* Another measure of approximation that has often appeared in the literature is the inverse of the performance 

ratio: this quantity ranges behveen 1 and DJ and is as close to 1 as the feasible solution is close to the 
optimum one. 
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begin 
V’ := 0; 
E’ := E; 

while E’ # 0 do 

begin 
pick any edge (u, v) E E’; 

E’ := E’ - {(u, u)}; 

if u $2 V’ A t’ $Z V’ then 
V’ := V’ u {u, u}; 

end; 
end. 

Algorithm 2. A i-approximate algorithm for MIN NODE. COVER 

MIN TSP 
NPC 

MAX CLIQUE 

Mu SAT 
APX 

Mw NODE COVER 

MIN PLANAR NODE COVER 
PTAS 

MAX PLANAR INDEPENDENT SET 

MAX {O,l}-KNAPSACK 
FPTAS I I I 

Fig. 2. The NPO world. 

Definition 7. An NPO problem A belongs to the class FPTAS if it admits a fully 

polynomial-time approximation scheme, i.e. an approximation scheme whose time com- 

plexity is bounded by q( 1x1, l/s), where q is a polynomial. 

We shall see examples of problems in PTAS and in FPTAS in the next section 

Clearly, the following inclusions hold: 

FPTAS C PTAS c APX c NPO. 

It is also easy to see that these inclusions are strict if and only if P # NP. In Fig. 2 

we present the world of NPO problems with a few well-known examples of members 

of the above defined approximation classes (in the figure PO denotes the class of NPO 

problems that are solvable in polynomial time). 
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2. Necessary and sufficient conditions for PTAS and FPTAS 

The investigation of the approximability properties of NPO problems can be carried 

on in two directions. On the one hand, we try to find approximation algorithms that 

guarantee good performances with respect to approximability showing that a problem 

belongs either to APX, to PTAS, or to FPTAS. On the other hand, when a problem does 

seem difficult to approximate, we are interested in formally finding negative results. 

In few cases it is possible to show that a problem does not belong to PTAS us- 

ing the so-called “gap technique”. Let us consider MIN GRAPH COLORING. It is easy 

to show that no polynomial-time approximation algorithm can exist tiishing a per- 

formance ratio greater than i unless P = NP. Actually an algorithm with such a 

performance would be able to color any 3-colorable graph with no more than 3 colors. 

So we would be able to solve the NP-complete 3-colorability problem in polynomial 

time. 

More generally, the gap technique can be expressed in the following way. Assume 

that a reduction from an NP-complete problem (say, SAT) to a minimization problem 

A exists creating a gap in the measure function, i.e. the optimum solution has measure 

c if the Boolean formula is satisfiable, otherwise it has measure at least c/( 1 - g) for 

some gap g (0 < g < 1). Then, unless P = NP, no polynomial-time approximation 

algorithm can exist with performance ratio greater than 1 - g. In fact, in case such an 

algorithm exists, we would be able to solve SAT in polynomial time. In conclusion, we 

can rule out the existence of a polynomial-time approximation scheme for problem A. 

Of course a similar condition holds for maximization problems. Unfortunately, this 

technique has not been applied to many problems because it is very difficult to find 

such gaps. In Section 5, we will see how to use this technique in connection with 

probabilistic checkable proofs. 

In this section we present some necessary and sufficient conditions that guarantee 

that an NPO problem belongs either to the class PTAS or to the class FPTAS. Since 

finding approximation schemes is a difficult task, we investigate whether it is possible 

to prove that a problem has a nice approximability performance by using structural 

properties that do not immediately rely on a computational approach. In particular, we 

will show that combinatorial properties of the instances of the problems exist that assure 

the existence of either a polynomial-time approximation scheme or a fully polynomial- 

time approximation scheme. 

2.1. History 

The study of general properties that explain the good or bad performance of NPO 

problems with respect to approximability started at the end of the 1970’s and at the 

beginning of the 1980’s. 

Korte and Schrader [37] proved that, under very general assumptions, every poly- 

nomial-time approximation scheme (and every fully polynomial-time scheme) can be 

reduced to the same kind of algorithmic procedure so showing that we can design a sort 
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of prototypal algorithm for every problem in PTAS and FPTAS. Further generalizations 

were shown by Marchetti-Spaccamela and Roman0 [40]. 

Another important line of research regarded the study of combinatorial properties 

that characterize the membership of a problem in PTAS or in FPTAS. In this setting 

the approach consisted in studying particular subsets of the set of instances of an NPO 

problem. In one case, a sequence {II} of subsets of this set was introduced in such 

a way that, for any j, Ij 2 I,+, . A set Ij includes any instance whose optimum value 

is bounded by j. It happens that, for many NPO problems, every Ij is decidable in 

polynomial time while, for some NPO problems, there are Z/‘s that are NP-complete. 

Paz and Moran [48] introduced such a kind of characterization. Garey and Johnson 

[27], instead, divided the set of instances according to another criterion. Namely, they 

put some bound on the size of the integers occurring in the input of the problem. The 

equivalence, under some general conditions, of these two approaches was proved in 

Ausiello et al. [5]. 

2.2. General algorithmic procedures for PTAS and FPTAS 

In this subsection, we present a general algorithmic procedure that, when applicable, 

guarantees that a problem belongs to PTAS. Moreover, we will see that, for a very 

large class of problems, every s-approximate algorithm can be always replaced by such 

procedure, still preserving the same level of approximability. 

Let us start from a paradigmatic problem, that is, MAX {O,l}-KNAPSACK. Actually, it 

is well known that this problem belongs to FPTAS. However, we will show a weaker 

property, namely, that it belongs to PTAS since the approximation scheme we introduce 

allows to capture the typical technique for proving that a problem is in PTAS. Indeed, 

after considering this problem, the approximation procedure we will present is just a 

generalization of the algorithm applied to this example. 

An obvious way of solving MAX {O,l}-KNAPSACK consists in applying a total enu- 

meration algorithm that examines all possible subsets of the instance. In this case we 

get the optimum solution but, at the same time, the algorithm takes exponential time. 

On the other hand, if we use a greedy algorithm, we have a very efficient algorithm but 

unfortunately instances exist for which the approximate solution we find has a value 

arbitrarily far from the optimum one. This greedy approach with some modifications 

can be improved but even in this case the approximation ratio is bounded by i. An 

approximation scheme for this problem has then been devised by putting together the 

efficiency of the greedy approach and the correctness of the enumeration technique. 

Let us consider an arbitrary instance, that is a finite set I = { 1,. . . , n} (for each i E I 

we have an integer size ai and an integer profit pi) and an integer b, and let J be a 

subset of I. Let us denote by greedy(J) the solution found by the greedy algorithm 

applied to the subinstance corresponding to I - J with bound b - CiEJ ai. 

We now define a sequence of algorithms that provides an approximation scheme: 

the kth approximation algorithm in the sequence works in the following way. We 

consider all sets J such that IJI <k and CiCJ ai c b, and, for each of these sets J, we 
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{the feasible solution and its measure are stored in SMAX and PMAX, respectively} 

begin 

order the items by nonincreasing profit densities pi/ai; 

SikUx := 0; 
PA4Ax := ii; 

for all JG{l,..., n} such that (JI <k and CiEJ ai d b do 

begin 

S := J U greedy(J); 

p := CiES Pi; 

if PM4X < P then 

begin 

SMAX := s; 

PM4x := P 

end 

end 

end. 

Algorithm 3. A polynomial-time approximation scheme for MAX{O,I}-KNAPSACK. 

get a feasible solution by combining J and the solution greed’(J). The value of the 

approximate solution is then found looking for the maximum over all these sets J. 

More formally, for any k, let us consider Algorithm 3. 

Observe that, since the cycle in the algorithm is repeated O(kd) times and the 

computation of greedy(J) requires O(n) time, globally the algorithm has O(knkf’ )- 

time complexity. 

3 (Sahni MAX {O,l}-KNAPSACK belongs to PTAS. 

Proof. The theorem is proved by showing that, for any E > 0, Algorithm 3 with 

k = l/e - 1 is s-approximate. 

Let us assume that the optimum solution is given by {ii,. . . , ii}. If j < k, the algo- 

rithm finds the optimum solution because every set of size at most k (and therefore 

also the optimum solution) is tried. So we make the hypothesis j > k. 

Assume that the pi,, pi2,. . . k largest 

j k items 

(1) 

Let us then consider the step in the execution of the algorithm in which J = 

{iI,. . . , ik} and let SJ be the corresponding solution. Let i, be the first index in the 

optimum solution which is not included in S J. If no such profit exists we obtain the 

optimum solution and we are done. Otherwise, we have that SJ must contain s indices 
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m*(x) :I This part of the knapsack certainly contains: 

il, .(> i,_l and at least one index which 

is in SJ but not in the optimum solution 

Fig. 3. Comparison among the measures of the approximate and optimum solution 

I 1, . . . , i^, with s 3 1 that are not in the optimum solution and such that: 

and 

Thus, 

This, in turn, implies that (see Fig. 3) 

m*(x)=2pi,+ f: Pi, < ~pi,+~P~,=m~‘Pi,+~P,+p’ I, Gm(x,SJ>+ pi,. 
!=I 1=m+l f=l I= I f=l f=I 

From (1 ), it finally follows that 

m*(x) m*(x) - rn(X,SJ) < - 
k+l’ 

i.e. the relative error of the algorithm is at most l/(k + 1) = E. fl 

The same approach can be generalized to a large class of problems, thus giving 

a first necessary and sufficient approximation criterion. In the following, we refer to 

the family of maximum independent subset problems. For each of these problems, an 

instance is formed by a finite set I = { 1,. . . , n} and, for each i E I, an integer profit p,. 

For any instance x, the set sol(x) of feasible solutions is an independence system, i.e. 

sol(x) is a set of subsets of I such that, for any S E sol(x), every subset of S is also a 

feasible solution. The goal is to find a feasible solution S which maximizes the value 

xiEs pi. Observe that, according to the above definition, we are not guaranteed that all 

members of this family of problems belong to NPO. Indeed, the definition of feasible 

solution does not assure that we can decide in polynomial time whether a subset of 

I belongs to sol(x). In the following, however, we restrict ourselves to consider only 
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those problems which are in NPO even though the results can be easily extended to 

any maximum independent subset problem [37]. 

Recall now that, in the case of MAX {O,l }-KNAPSACK, we have used a partial enu- 

meration algorithm plus a greedy procedure in order to develop a polynomial-time 

approximation scheme. The basic idea behind the generalization of this approach is to 

combine an enumeration technique with a completion procedure. While the enumera- 

tion part is similar to what we did for the knapsack problem, the key step consists in 

finding a general filling-up procedure which is able to guarantee the approximation. 

Definition 8. Let x be an instance of a maximum independent subset problem and let 

S be a feasible solution of x with (SI = k. A feasible solution S’ 2 S is said to be a 

k-completion of S if 

m(x, S’) 2 
k-l 
Fm(x,S*) - $*(x) - p,,,(s,s*), 

where S* 2 S is any feasible solution such that 

111(x, S* ) = max{,(x, S’) : S C S’ and S’ is a feasible solution} 

and p,,,(S,S*) = max{pi : i E S* -S}. 

A polynomial-time k-completion algorithm for a maximum independent subset prob- 

lem is an algorithm T such that, for any instance x and for any S, 

a k-completion S’ of S if S is a feasible solution and ISI = k, 

S if S is a feasible solution and IS1 < k (in 

T(x, S, k) = this case the k-completion of S is S itself), 

undefined otherwise (in this case it makes no sense 

to find a k-completion). 

Moreover, for any fixed k, the running time of T is polynomial with respect to (xl. 

Theorem 4 (Korte and Schrader [37]). A maximum independent subset problem is in 
PTAS if and only if, for any k, it admits a polynomial-time k-completion algorithm. 

Proof. Let A be a maximum independent subset problem that admits a polynomial-time 

k-completion algorithm T and, for any k, let us consider Algorithm 4. 

We now prove that the output of this algorithm is a feasible solution SMAX such 

that 

k-3 
m(x, SMAX) 2 - k m*(x). 

In this way we get a polynomial-time approximation scheme for A. 
Let S,,r, E sol*(x). Since, in the algorithm, we find the k-completion for every set 

S with ISI <k, if ]&,,I <k, then we obtain the optimum solution. Therefore, we can 
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{the feasible solution and its measure are stored in SMXi and PMAX, respectively} 

begin 
sA4Ax := 0; 
PMAX := 0; 

for all feasible solution S with ISI dk do 

begin 
S’ := T(x,S, k); 

if PMAX < m(x,S’) then 
begin 

sA4Ax := S’; 
PMAX := m(x,S’) 

end 
end 

end. 

Algorithm 4. A polynomial-time approximation scheme for the maximum independent subset problem. 

restrict ourselves to the case &,,I > k. Among all subsets of S,,, of cardinal&y k, a 

set S exists such that pi > pj for every i E S and i E Sopt - S. This implies that 

(2) 

By applying T to x, S, and k, by definition, we obtain 

m(x,W,S,k))> k-$m(x,Sapt) - $m*(x) - P~~~(S,&~~). 

Since m(x,,&) = m*(x) and because of (2) we have that 

m(x, SMAX) > 
k-l 
Tm*(x) - tm*(x) - 

1 
-m*(x) > 

k-3 

k+l 
---m*(x). 

k 

Conversely, let A be a maximum independent subset problem having a polynomial- 

time approximation scheme T. By using T, we show how to build a polynomial-time 

k-completion algorithm T’ for A. 

Given an instance x = (I, ~1,. . . , p,,) and given a subset S of I, let us distinguish 

the following three cases: 

1. ISI > k: in this case T/(x,&k) is undefined. 

2. ISI < k: in this case T’ has just to decide whether S is a feasible solution. Since 

A is in NPO, this can be done in polynomial time. 

3. /S/ = k: in this case, T’ first decides whether S is a feasible solution. Successively 

it has to build a k-completion of S (without loss of generality, we can assume that 

k < n- 1). 

In order to do this, we apply the scheme T to x and E = (2k - 1)/4k 

approximate solution whose measure d verifies the following inequality: 

obtaining an 

2k + 1 
m*(x)ad>,- 4k m*(x). 
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Let us define a new instance x’ of the problem in which the profits are changed as 

follows: 

where b = min{pj: i @ S and S U { ‘} . I IS a feasible solution} (observe that if b does 

not exist then the k-completion of S is S itself). 

Again we apply the scheme T to x’ and a’ = l/k(2k + 1) obtaining an approximate 

solution S’ which is the k-completion of S. Indeed, SC S’ since otherwise: 

in contradiction to the fact that the polynomial-time approximation scheme guarantees: 

m(x’,S’) a(1 - +z*(x’)>(l - s’)2k 
n-k 

i 1 hd +(l -E’)(n-k) 

> (1 - &‘)2k 
n-k 

I 1 hd +1 

where the last inequality is due to the fact that, for any k < n - 1, (1 - &‘)(n -k) > 1. 

To prove that 

m(x, s’ ) 3 
k-l 
,-m(x,S*) - im*(x) - pmax(S,S*), 

we first observe that the following inequality holds: 

m(x’, s’ - S) = 112(x’, S’) - m(x’, S) > ( 1 --‘&‘)m*(X’) - m(x’, S) 

> ( 1 - &‘)172(X’, s* ) - m(x’, S) 

= ( 1 - E’)M(X’, s* - S) + (1 - E’)rn(X’, S) - m(x’, S) 

= (1 - E’)M(X’,S* - S) - &‘Wr(X’,S). 
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We then have 

3 A(1 - &‘)m(x’,S* -S) - &E’m(x’.S) 

3 A( 1 - &‘)nz(X’, s* - S) - b 
n-k 

E’2k 
n-k 
pd 

h 

= A( 1 - E’)WZ(X’,S* - s) - E’2kd 

3 (1 - E’)WZ(X, s* - s) - (1 - E’)b - E’2kd 

k-l 
3 -m(x, S’ 

k 
4-h-&d 

k-l 
3 - m(x, s* 

k 
- S) - km*(x) - p,,,(S,S*) 

that implies the desired inequality. 

From the above three cases we have that T’ is a polynomial-time k-completion 

algorithm for A and the theorem thus follows. 0 

A similar approach for providing a characterization for the class FPTAS can be 

applied, again generalizing the properties that show that MAX {O,l }-KNAPSACK has a 

fully polynomial-time approximation scheme. In this case the algorithm for this latter 

problem is based on a dynamic programming approach together with a dominance rule. 

The dominance rule is exploited to get a better solution, once a feasible one has been 

achieved. In this general setting we are able to find a necessary and sufficient condition 

for a problem being in FPTAS introducing the so-called s-dominance test. It is possible 

to show that a maximum independent subset problem admits a fully polynomial-time 

approximation scheme if and only if an s-dominance test exists running in time bounded 

by a polynomial in the lenght of the input and l/s. 

We have presented necessary and sufficient conditions for maximum independent 

subset problems. Actually the results still hold for a larger set of problems. In fact, 

instead of trying to maximize the sum of the profits, we can consider instances in 

which we are interested in maximizing the product of the profits. Also in this case 

the theorems still hold [40]. This generalization allows, for instance, to show that the 

product version of MAX {O,l}-KNAPSACK belongs to FPTAS. 

2.3. Simplicity and approximation 

Another important approach tries to characterize the problems in PTAS and FPTAS 

from a combinatorial point of view. In this case, the aim is to find structural proper- 

ties that assure the approximability of a problem not in terms of the existence of an 
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algorithmic procedure but exploiting the combinatorial and computational aspects of 

several decision problems associated to an optimization problem. The approach intro- 

duced by Paz and Moran [48] is based on the idea of considering the complexity of 

subsets of instances of the problems obtained by putting some bounds on the objective 

function. Once we consider suitable subsets, it is possible to divide the class of NPO 

problems in various subclasses that share different approximability properties. 

We start by defining a general and abstract way of dividing all the instances of an 

NPO problem in subsets. 

Definition 9. Let A be an NPO problem and g be an arbitrary function. The set A, is 

defined as follows: 

A, = {x:m*(x)d&l)~. 

By applying this general definition to particular functions g it is possible to introduce 

important distinctions inside the class of NPO problems. 

Definition 10. An NPO problem A is simple if, for every positive integer k, Ak is 

decidable in polynomial time. 

Example 3. An example of simple problem is MAX CLIQUE. In order to decide if the 

optimum value is at most k, it is sufficient to consider all the sets of k + 1 nodes and 

to verify whether at least one of them is complete. This can be done in time O(nkf ’ ), 
where n is the number of nodes. 

Instead MIN GRAPH COLORING is an example of problem that is not simple. If we 

consider the set AJ, we obtain an NP-complete problem so contradicting the definition 

of simplicity (if P # NP). 

The notion of simple problem introduces an interesting subdivision inside the class of 

NPO problems. From a combinatorial point of view we can consider a simple problem 

“easier” to solve than another one which is not. The concept of simple problem can 

be immediately related to the approximability properties. 

Theorem 5 (Paz and Moran [48]). Zf an NPO problem belongs to the class PTA& 

then it is simple. 

Proof. Let A be an NP maximization problem in PTAS (the other case is similar). By 

definition, a polynomial-time approximation scheme T exists such that, for any instance 

x and for any integer k, 

1 
Rx, m@, y)) d ~ k+2’ 

where y = T(x, l/(k + 2)). 
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Since A is a maximization problem, m(x,y) > k implies m*(x) > k. On the other 

hand, from the above inequality it follows that 

rn(x, y) k + 1 

-‘k+2 m*(x) 

and, for m(x, y) <k, this inequality is possible only if m*(x) < k. It follows that 

m*(x) < k if and only if m(x, y) < k. In other words, the set Ak is polynomial-time 

decidable. 0 

We note that simplicity is a necessary but not sufficient condition for a problem to 

be in PTAS. For instance, the problem MAX CLIQUE is simple but not only it does not 

belongs to PTAS but it has a very bad approximation behavior (see the last section). 

We can conclude that the definition of simplicity is shared by a very large (too large!) 

subclass of NPO problems. On the other hand, the concept of simplicity is quite inter- 

esting because together with another condition it allows to characterize the class PTAS 

in a complete way. 

Definition 11. An NPO problem A satisfies the boundedness condition if an algorithm 

ri, and a positive integer constant E exist such that the following hold: 

1. For every instance x of A and for every positive integer c, Tb(x,c) is a solution 

y of .r such that 

m*(x) d m(x, y) + cE if A is a maximization problem, 

m*(x) 2 m(x, y) - cE otherwise. 

2. The time complexity of Tb(X,c) is a polynomial in Ix/ whose degree depends only 

on the value m(x, Tb(X,c))/c. 

Theorem 6 (Paz and Moran [48]). An NPO problem A admits a PTAS if and only ij 
it is simple and satisjies the boundedness condition. 

Proof. The proof will be given for maximization problems and it is similar in the case 

of minimization ones. 

Let A be a problem that admits a polynomial-time approximation scheme 7’. From 

the proof of Theorem 5 it follows that A is simple. We now prove the boundedness 

condition. For any instance x of A, let t = m(x, T(x, i)). This means that 

t<m*(x)d2t. 

For any integer c, if c> t/2 then we define Tb(X,c) = T(x, i), otherwise we define 

Tb(X, c) = T(x, E/( 1 + E)) where E = c/t. In the first case, we have that 

m*(x)62tdm(x,Tb(x,c))+2c, 
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while, in the second case, 

m*(x) d m(& Tb(x, c))( 1 + 8) = m(x, Tb(x, c)) + c 
m(x, Tb(x, C)) 

t 

< m(x, Tb(x, c)) + 2c 
m(x, Tb(x, c>> 

m*(x) 
< m(x, Tb(X, c)) + 2C. 

By choosing E = 2, in both cases we then have 

m*(x) Qm(x, Tb(x, c)) + cE. 

For what concerns the time complexity of Tb(&c), observe that, in the first case, this 

complexity is a polynomial in 1x1 with constant degree, while, in the second case, it is 

a polynomial in 1x1 whose degree may depend on 

1+s t+c 3t 9 m(-? Tb(X, c)) -=- 

E C %?4 C 

where the last inequality is due to the fact that m(x, Tb(X, c)) > gt. 

Conversely, let A be a simple NPO problem satisfying the boundedness condition. 

Given any input x and any E > 0, we will find an a-approximate solution for x. This 

solution will be achieved in time polynomial in 1x1 and it will be equal to T&,2k) 

for a suitable k. 

First of all we note that, because of the boundedness condition, a suitable constant 

E exists such that 

m*(x) dm(x, ?“b(x,zk)) + 2kE 

for any integer k. This implies that 

m*(x) - 4x, Tb(x, 2k)) 6 m*(x) - m(x, Tb(x, zk)) ~ 2kE 

m*(x) m(-? Tb(Xt2k)) m(& Tb(X, zk >> ’ 

Therefore, it suffices to find a value of k such that 

m(x Tb(x 2”)) E 2 2 

2k 
a- > 1. 

E 

Since the problem is simple, we can decide whether m*(x) <~E/E in time bounded 

by a polynomial in 1x1. If this is the case, we can exactly compute m*(x) again in 

time bounded by a polynomial in 1x1 and we are done. Therefore, in the following, we 

assume that m*(x) > ~E/E. 
Since m*(x) < 2r(lXl) for some polynomial r, we have that 

m(x, Tb(x, 2’(“‘))) d m*(x) < 1 

2’(14) 2’(lXl) . 

On the other hand, by exploiting the boundedness condition and the assumption on 

m*(x), we obtain m(x, Tb(X, 1)) > E/E (note that Computing Tb(X, 1) may require a 
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time greater than a polynomial in 1x1). Taking into account these two conditions we 

can deduce that an integer k exists with 06 k < r( 1x1) such that: 

m(x, Tb(X, Iik+l 1) ,< g < m(x, Tb(.T 2” 1) 
2kf' \ 

& 2k . 

Such an integer k can be found in the following way: for each i = Y( Ix]), . . , 1, we 

compute Tb(X, 2’) and we verify whether E/E <m(x, Tb(x, 2’))/2’. The first time this 

happens we can stop. In order to verify that the time complexity of the procedure is 

polynomial in 1x1, it suffices to observe that, for any integer k satisfying the above 

condition, the following inequalities hold: 

m(x, Tbkzk)) <2m*(X) <2 m(x, Tb(X,2k+')) 
2” ‘2k+l’ 2ktl 

+E 
> 

<2(1 +E)” 
E 

and since & < 1, m(x, Tb(x, 2k))/2k <~E/E. 

From the second property of the boundedness condition it thus follows that the time 

complexity of the procedure is polynomial in 1x1 and this concludes the proof of the 

theorem. 0 

Using a similar approach we can find a necessary and sufficient condition for a 

problem to admit a fully polynomial-time approximation scheme. In this case, we 

modify the two conditions on simplicity and boundedness. For what concerns the first 

definition, we use the concept of p-simplicity in which, for every positive integer k, 

Ak has to be decidable in time bounded by a polynomial in the lenght of the instance 

and in k. For what regards the boundedness condition the constant E is substituted by 

a suitable polynomial, thus obtaining a polynomial boundedness condition. 

The study of structural properties that characterize the approximability of NPO prob- 

lems is worthwhile for two reasons. First of all, we are interested in discovering what 

kind of combinatorial structure influences approximation and computational properties 

of this class of problems. Secondly, since finding and exhibiting a polynomial-time 

approximation scheme or proving that a problem does not belong to PTAS are dif- 

ficult tasks, a combinatorial characterization could be very useful in answering such 

questions. In fact, instead of exhibiting a polynomial-time approximation scheme, we 

could produce the equivalent conditions of simplicity and boundedness. So we could 

hope, in such a way, to enlarge the list of problem which are well-approximable or, 

from a negative point of view, to add new items to the list of problems which are 

not efficiently approximable. Unfortunately, Theorem 6 is not very useful in achieving 

such an aim. In fact, generally speaking, proving that an NPO problem satisfies the 

conditions of the theorem does not appear easier than directly proving that the problem 

either has or has not a polynomial-time approximation scheme. In particular, to find 

an algorithm Tt, that satisfies the boundedness condition, is rather similar to find an 

algorithmic scheme that ensures the good approximability of the problem. 
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2.4. Strong NP-completeness and pseudo-polynomiality 

The considerations developed at the end of the last section push to find other results, 

still based on the combinatorial structure of the problems, but more directly linked to 

the problem itself. To reach this aim, we present another approach due to Garey and 

Johnson [27] that exploits some properties of the inputs in a direct way and surely 

permits a more intuitive treatment. However, in order to have simpler characterizations, 

a price is paid: in fact, the new approach is less powerful and we will not be able to 

provide necessary and sufficient conditions for the approximability of NPO problems 

but only partial answers. 

In this case we start from another way of considering subsets of instances of a 

problem. In particular, we are now interested in studying the different ways in which 

numbers play a role in an NPO problem. 

Let us consider, for example, MAX CUT. This problem is NP-complete and remains 

NP-complete even if we restrict the instances to graphs having unitary weights. This 

fact suggests that MAX CUT is computationally hard independently on the size of the 

numbers which occur in the instances. Therefore we have a strong hint that it is the 

combinatorial structure, i.e. the property that the graph has to satisfy, that makes the 

problem hard. 

On the other hand, if we consider other problems the situation is rather different. Let 

us consider, again, MAX {O,l}-KNAPSACK. Using a dynamic programming algorithm, we 

can solve this problem in time O(n’b) but b is an integer contained in the instance 

and thus this algorithm is not a polynomial-time one. In fact the complexity of the 

algorithm has to be evaluated with respect to the size of the instance. The integers ai 

and pi in the input are codified with O(logai) and O(log pi) bits, respectively, and the 

same holds for b. This means that the size of the instance is O(n log b) and this implies 

that no polynomial function of this quantity exists bounding O(n2b). Equivalently, we 

can say that the algorithm is not polynomial-time computable because the bound b 
can assume values which are exponential in the size of the instance. However, if we 

restrict ourselves to instances in which the numbers ai, pi, and b have values bounded 

by a polynomial in the length of the instance, we obtain a polynomial-time algorithm. 

In this case, therefore, the fact that MAX {O,l}-KNAPSACK is NP-complete is strongly 

related to the presence of very large numbers in the input. 

These considerations can be generalized and formalized in the following way. 

Definition 12. For any NPO problem A and for any instance x of A, max(x) denotes 

the value of the largest number occurring in x. 

Example 4. In the case of MAX CUT, given a weighted graph G, ma-x(G) is the value 

of the maximum edge weight. Instead, for MAX {O,l}-KNAPSACK, given an instance x, 

m&x) = max{at,. . . ,a,, pl,. . . , pn, b}. 

We note that, from a formal point of view, the function max depends on the encod- 

ing of the instance. However, we can repeat for the function max the same kind of 



G. Ausiello et al. I Theoretical Computer Science 150 (1995) 1-55 23 

considerations that are usually made when considering the computational complexity 

of a problem assuming the length of the instance as the main parameter. In fact, if 

we choose two different functions max and max’ for the same problem, the results we 

are going to present do not change in the case that these two functions are polyno- 

mially related, i.e. two polynomials p and q exist such that, for any instance X, both 

ma(x) d p(mux’(x)) and max’(x) <q(max(x)) hold. 

For the NPO problems we are interested in, all the intuitive mu.x functions we can 

think of are polynomially related. Thus, the concept of mux is sufficiently flexible to 

be used in practice without any limitation. 

Definition 13. An NPO problem A is pseudo-polynomial if it can be solved by a 

pseudo-polynomial algorithm, i.e. an algorithm that, on any instance x, runs in time 

bounded by a polynomial in 1x1 and in mux(x). 

Example 5. The dynamic programming algorithm for MAX {O,l }-KNAPSACK proves that 

this problem is pseudo-polynomial. 

Definition 14. Let A be an NPO problem and let AmUxJ’ denote the problem obtained 

by restricting A to only those instances x for which mux(x) < p( 1x1) where p is a 

polynomial. A is said to be strongly NP-hard if a polynomial p exists such that the 

decision problem associated with Amax,p is NP-complete. 

Example 6. MAX CUT is an example of strongly NP-hard problem. Indeed, it is suffi- 

cient to consider the polynomial p(n) = 1. 

Theorem 7 (Garey and Johnson [27]). A strongly NP-hardproblem cannot be pseudo- 

polynomial unless P = NP. 

Proof. Let us assume that A is a pseudo-polynomial problem. This means that an 

algorithm exists that solves A in time q(JxJ,mux(x)) for a suitable polynomial q. Then, 

for any polynomial p, A max,p could be solved in time q(lx\, p(lxl)) and therefore in 

polynomial time contrary to the hypothesis that a polynomial p exists such that the 

decision problem associated with Amax.p is NP-complete. 0 

Example 7. Unless P = NP, MAX CUT is not solvable in pseudo-polynomial time. 

It is possible to prove an interesting relationship between the concepts of strong 

NP-hardness and full approximability. In order to do this, we first need to prove the 

following result. 

Theorem 8 (Garey and Johnson [27] and Papadimitriou and Steiglitz [45]). Let A be 

un NPO problem in FPTAS. If a polynomial p exists such that, for every input x, 

m*(x) d p( 1x1, mar(x)), then A is a pseudo-polynomial problem. 
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Proof. Let T be a fully polynomial-time scheme for A. We shall exhibit a pseudo- 

polynomial algorithm T’ that solves A. This algorithm is simply defined as 

T’(x) = T ( 

1 

x, ~(~X],rnu.X(X)) + 1 > . 

Since the optimum measure is bounded by p(( x , mux(x)), only an optimum solution of 1 

x can be approximate, and hence T’ solves A. To show that T’ is pseudo-polynomial, 

recall that T operates within time O(q(Ixl, l/s)) for some polynomial q. Therefore, 

T’ operates in time O(q( 1x1, p(j ) x , mux(x)) + 1)) that is a polynomial in both 1x1 and 

mm(x). 0 

Corollary 1 (Garey and Johnson [27]). Let A be a strongly NP-hard problem that 
admits a polynomial p such that m*(x)< p(I I x ,max(x)) for every input x. Then A 
does not belong to FPTAS unless P = NP. 

Proof. The proof derives from Theorems 7 and 8. Cl 

We can immediately derive an interesting consequence from this result. Since a 

polynomially bounded NPO problem verifies the hypothesis of the theorem, we have 

that such a kind of problem does not belong to FPTAS. 

The concepts of pseudo-polynomiality and strong NP-hardness allow to classify NPO 

problems in different classes. Once we have shown that an NPO problem is pseudo- 

polynomial, we can think that it is computationally easier than a problem that is strongly 

NP-hard. On the other hand, Corollary 1 allows to capture some connections of these 

concepts with the approximability properties. Also from this point of view, even if we 

only have partial relationships, it is clear that pseudo-polynomiality is linked to well- 

approximable problems while strong NP-hardness seems to be one of the characteristics 

of problems which have a bad behaviour with respect to approximability. 

Considering the global framework studied until now in this section, it is quite nat- 

ural to try to compare all the introduced concepts. From an intuitive point of view 

the notions of simplicity and p-simplicity on the one hand and the notions of pseudo- 

polynomiality and strong NP-hardness on the other appear to be possibly related be- 

cause in both approaches there is the common idea of bounding subsets of instances 

of a problem. Actually strict relationships between the two different approaches can be 

formally proved. 

Theorem 9 (Ausiello et al. [5]). Given an NPO problem A whose corresponding de- 
cision problem is NP-complete, if m* and max are polynomially related, then A is 
p-simple if and only if A is a pseudo-polynomial problem. 

Proof. Let A be a pseudo-polynomial problem and let q be a polynomial such that, 

for every instance x, max(x)dq(m*(x)). Since A is pseudo-polynomial, m*(x) is com- 

putable within time p(Ixj,max(x))<p(Jx),q(m*(x))), where p is a polynomial. Given 

an integer k, to decide in polynomial time whether an instance x belongs to Ak we 
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apply the pseudo-polynomial algorithm for p(lxl,q(k)) steps. If the algorithm halts, 

then we have computed m*(x) and we thus can decide whether x E Ak. Otherwise, we 

can conclude that m*(x) > k, i.e. x $! Ak. 

Conversely, let A be a p-simple problem and let q be a polynomial such that, for 

every instance x, m*(x) <q(max(x)). For every x and for every k, since A is p-simple 

we can decide whether x E Ak in time ~(1x1, k), where p is a polynomial. In order to 

compute m*(x) we can then apply a binary search technique between the values 1 and 

q(max(x)) requiring at most log(q(mux(x)))p( 1x1, q( max(x))) time. Since the decision 

problem corresponding to A is NP-complete, the pseudo-polynomiality of A follows 

from Theorem 1. 0 

The above theorem guarantees that whenever there are polynomial relationships be- 

tween m* and max, the two approaches coincide. Since this happens for most prob- 

lems (for instance, MAX {O,l}-KNAPSACK), p-simplicity and pseudo-polynomiality can 

be indifferently used in various settings. However, there are problems for which the 

hypothesis of the theorem are not satisfied. 

Example 8. Let us consider a particular version of }-KNAPSACK in which 

the constraint b has to be exactly reached. It is possible to prove that this problem 

is pseudo-polynomial but not p-simple (unless P = NP). We also note that there are 

instances for which max and m* are not polynomially related. Since this problem is 

not p-simple we can derive that it is not fully approximable, while this property cannot 

directly be inferred using the concept of pseudo-polynomiality. 

The concept of strong NP-hardness can also be compared with a different kind of 

simplicity, as shown in [5]. 

Finally we note that, for maximum independent subset problems, the inheritance and 

the existence of a k-completion algorithm are equivalent to the properties of simplicity 

and boundedness because in both cases we have a necessary and sufficient condition to 

be in the class PTAS. A similar consideration also holds for the class FPTAS, i.e. the 

inheritance and the existence of an &-dominance test are equivalent to the conditions 

of p-simplicity and polynomial boundedness. 

3. Completeness in approximation classes 

The major open problem in the theory of approximation complexity is whether the 

inclusions among the four classes NPO, APX, PTAS, and FPTAS are strict. We have 

already observed that this is the case if and only if P # NP so that answering this 

question seems to be very hard. 

Parallelizing the development of the theory of NP-completeness, we can then look for 

the “hardest” problems in the above classes, i.e. problems which cannot have stronger 

approximation properties unless P = NP. 
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Problem A Problem B 

Fig. 4. Reducibility between optimization problems. 

In complexity theory, saying that a problem is the hardest one in a class is equivalent 

to saying that it is complete for that class with respect to a suitable reducibility. Clearly, 

the many-to-one polynomial-time reducibility is inadequate to study the approximability 

properties of optimization problems. Indeed, if we want to map an optimization problem 

A into an optimization problem B then we need not only a function mapping instances 

of A into instances of B but also a function mapping back solutions of B into solutions 

of A (see Fig. 4). 

In this section we define a natural approximation preserving reducibility and show 

the existence of complete problems both in NPO and in APX. 

3. I. History 

In order to derive lower-bounds concerning the approximability of NPO problems, 

various concepts of completeness have been introduced (see, for example, [3,4,11, 

38,42,46,48,50]) In particular, in Orponen and Mannila several problems are shown 

to be complete with respect to a given kind of approximation preserving reducibility. 

In this section we mainly present the results obtained in Crescenzi and Panconesi [20] 

and in Crescenzi and Trevisan [24] along this line of research. 

3.2. Approximation preserving reducibilities 

In order to introduce the notion of completeness for our classes we define the follow- 

ing reducibility between optimization problems which serves two purposes: it preserves 

membership both in APX and in PTAS. 

Definition 15. Let A and B be two NPO problems. A is said to be PTAS-reducible to 

B, in symbols A <PTA~ B, if three functions f, g, and c exist such that: 

1. For any x E IA, f(x) E ZB is computable in polynomial time. 
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2. For any x E Z,, for any y E sol&-(x)), and for any E E (0, l)~,~ g(x,y,a) E 

soZ~(x) is computable in time polynomial with respect to both 1x1 and 1~1. 

3. c: (0,l)~ -+ (0,l)~ is computable and surjective. 

4. For any x E IA, for any y E soZ~(f(x)), and for any E E (0, l)~, 

KU(x), Y) <c(s) implies &(x, g(x, Y, s)) 6 8. 

The triple (f,g,c) is said to be a PTAS-reduction from A to B. 

Remark 1. The previous definition is a slight but relevant modification of the definition 

of PTAS-reducibility given in [20]. Such modification essentially consists in introducing 

the dependency of g on E. Even though such dependency has been seldom used in the 

literature, it turns out to be necessary for proving completeness results that will be 

discussed in the following. 

It is easy to show that the previous 

Proposition 1. The PTAS-reducibility 

definition satisfies the following fact. 

is reflexive and transitive. 

The following two results show that the PTAS-reducibility indeed preserves mem- 

bership both in APX and in PTAS and thus allows us to define the notion of both 

NPO-completeness and APX-completeness. 

Proposition 2. If A d PTAS B and B E APX, then A E APX. 

Proof. Let TB be a S-approximate algorithm for B and let (f, g, c) be a PTAS-reduction 

from .4 to B. Since c is surjective, an E exists such that C(E) = 6. Then 

G(x) = g(x, 7”(f(x)),s), 

is an a-approximate algorithm for A. 0 

Proposition 3. Zf A<PTASB and B E PTAS, then A E PTAS. 

Proof. Let TS be a polynomial-time approximation scheme for B and let (f,g,c) be 

a PTAS-reduction from A to B. Then 

TAX,&) = dx, TB(~(x),c(E)),E) 

is a polynomial-time approximation scheme for A. 0 

Definition 16. A problem A E NPO (respectively, A E APX) is NPO-complete (re- 

spectively, APX-complete) if, for any B E NPO (respectively, B E APX), B<PTA~ A. 

3 (0, I )Q denotes the set of positive rational numbers smaller than 1 
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Remark 2. Papadimitriou and Yannakakis [46] defined a different kind of reducibility 

between optimization problems which is similar to the PTAS-reducibility and is called 

L-reducibility. Indeed, an L-reduction turns out to be essentially a PTAS-reduction 

with C(E) = E/C@, where a and B are constants. Observe that in this case the function 

c is not surjective so that the L-reducibility is not assured to preserve membership 

in APX. However, whenever A is L-reducible to B and A E APX, it is possible to 

prove that A <PTA~ B [23]. More recently, Khanna et al. [34], proposed a variant of the 

L-reducibility, called E-reducibility. An E-reduction turns out to be a PTAS-reduction 

with C(E) = E/[E + /?( 1 - E)], where p is a constant. In this case the function c is 

surjective. 

In order to simplify the proof of most of the completeness results of the following 

sections, we will make use of a technical lemma that has been more or less explicitly 

hinted in [34]. Indeed, this lemma formally states that an E-reduction is a PTAS- 

reduction. 

Lemma 1. Let A and B be two NPO problems, let xA (respectively, xe) be an instance 
of A, and let yA (respectively, yB) be a solution of xA (respectively, xB). IA for any 
rational E > 0, 

dB(xB, YB) = 
&9(XE, YE) I@(xB) - mB(xB, YB)l 

1 - EB(xB, YB) = min{m~(xB),mB(xB,yB)} ‘E 

implies 

dA(XA,YA) = 
EA(xA, YA) I$@A) - mA(xA, YA)I 

1 - EA(xA, YA) = min{mi;(xA),mA(XA,YA)} 
G BE, 

where /3 is a constant, then, for any E E (0, l)p, 

EB(XB, ys)<C(E) implies EA(XA,YA)<E. 

where C(E) = E/[E + b( 1 - a)] and hence is surjectiue. 

Proof. Given E E (0, l)p, let us assume that EB(XB, YB) <E/[E + P(1 - E)]. Then 

From the hypothesis of the lemma, it follows that 

E 
d.&A,YA)<-, 

l--E 

which in turn implies that EA(XA,YA) de. 0 

Remark 3. Observe that the function d defined in the previous lemma measures the 

distance of the inverse of the performance ratio from 1. Formally, for any instance x 

and for any solution y of x, d(x, y) = l/R(x, y) - 1. 
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Remark 4. In [20] Crescenzi and Panconesi define also a reducibility for the class 

PTAS, called FPTAS-reducibility. In the following, however, we preferred to focus our 

attention on the class APX whose properties have been, until recently, less “understood” 

than those of the classes PTAS and FPTAS (see the previous section). 

3.3. NPO-completeness 

The aim of this section is to show completeness results in the class NPO. In the 

following MAX NPO and MIN NPO will denote the class of NPO maximization 

problems and the class of NPO minimization problems, respectively. 

Theorem 10 (Ausiello et al. [4] and Orponen and Mannila [42]). MAX WEIGHTED SAT 

is MAX NPO-complete. 

Proof. Let A be a maximization problem in NPO and let us consider the corresponding 

nondeterministic Turing machine N (see Algorithm 1). From Cook’s Theorem we can 

derive, for any x, a Boolean formula cpx whose satisfying truth-assignments are in a 

one-to-one correspondence with the halting computation paths of N(x). Let yl, , Y, 

be the Boolean variables describing the solution y and let ml,. ,m, be the Boolean 

variables which correspond to the tape cells on which N prints the value m~(x,y). We 

then assign a zero weight to all variables excluding the mi’s which instead receive the 

weight 2’-‘. 

For any truth-assignment which satisfies (px, we then recover a solution y for A by 

simply looking at the values of yi’s variables. It is clear that m~(x, y) is exactly equal 

to the sum of the weights of the true variables. Hence we have proved that A <PJ-,Q 

MAX WEIGHTED SAT with C(E) = E invertible. 0 

In a similar way, we can prove the following result. 

Theorem 11. MIN WEIGHTED SAT is MIN NPO-complete. 

In Orponen and Mannila [42] other MIN NPO-completeness results are proved: for 

instance, both the traveling salesman problem and the (0, 1 }-integer programming prob- 

lem are shown to be MIN NPO-complete. Recently, Crescenzi et al. [19] proved that 

any NPO minimization (respectively, maximization) problem can be PTAS-reduced 

to any MAX NPO-complete (respectively, MIN NPO-complete) problem. This re- 

sult implies that both MAX WEIGHTED SAT and MIN WEIGHTED SAT are, indeed, NPO- 

complete. 

It is also unknown whether a polynomially bounded optimization problem exists 

which is complete for NPO (indeed, a result of Crescenzi et al. [19] gives strong 

evidence that this is not the case). However, Berman and Schnitger [ 1 l] proved the 

existence of complete problems for the class of polynomially bounded maximization 

problems and several problems are now known to be complete for this class [30,3 I]. 
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begin 
guess y E {O,l}P(IxI); 
if y is a feasible solution of x such that m~(x, JJ) 2 t(x) then 

output m‘4 (4 Y > 
else abort 

end. 

Algorithm 5. The nondeterministic algorithm of an APX problem. 

Successively, Kann [32] proved analogous results for the class of polynomially bounded 

minimization problems. In Crescenzi et al. [19], finally, it has been shown that all these 

problems are indeed complete for the whole class of polynomially bounded optimization 

problems. 

3.4. APX-completeness 

Let us consider MAX BOUNDED WEIGHTED SAT which is a variant of MAX WEIGHTED 

SAT such that the weights of the variables satisfy the following constraint: 

W&w;<2W, 
i=l 

where W is an integer given in input, any truth assignment is a feasible solution, and 

the measure function is modified as follows: 

mMBWS(% 7) = 
IllaX( W, 2 WiT(Xi)) if z satisfies cp, 

i=l 
otherwise. 

Theorem 12 (Crescenzi and Panconesi [20]). MAX BOUNDED WEIGHTED SAT is APX- 

complete. 

Proof. Observe that MAX BOUNDED WEIGHTED SAT can be trivially approximated with 

error i since the assignment xi = 1, 1 < i Q n, has measure either W or Cy= I Wi. 

In order to understand the difficulties in proving the APX-hardness of this prob- 

lem, notice that, given a problem in APX, no nontrivial bounds can be imposed on 

the measure of its solutions so that the technique of Theorem 10 cannot be directly 

applied. However, a problem A belongs to APX if A E NPO and a polynomial-time 

approximation algorithm exists for A. The right idea is then to use the approximation 

algorithm in order to consider only those solutions whose measure is bounded in the 

desired way. 

Let A be a maximization problem in APX and let T be the corresponding 6- 

approximate algorithm. For any input x, let t(x) = mA(x, T(x)) and let us consider 

the nondeterministic machine N that performs Algorithm 5. 
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Clearly, for any input x and for any halting computation path of N(x), the output of 

this computation is a value between t(x) and k(x), where k is the least integer greater 

than l/(1 - 6). 

Let us now define the PTAS-reduction from A to MAX BOUNDED WEIGHTED SAT in 

the following way (observe that in this case g does not depend on E). 

1. For any instance x, f(x) = cpx A z, where cpx is the Boolean formula associated 

to N(x) as in the proof of Theorem 10 and z is a new variable whose weight is equal 

to (k - 2)4x). Observe that 

(k_l)t(x)<~wi<kt(x)+(k_2)t(x)=2(k_l)t(~), 
i=l 

so that f(x) is indeed an instance of MAX BOUNDED WEIGHTED SAT. 

2. For any instance x and for any truth assignment z to the variables of f(x), 

g(x, v) = 
{ 

;(x) 
if z satisfies f(x), 

otherwise, 

where yr denotes the feasible solution for A recovered from z as in the proof of 

Theorem 10. 

3. For any E, 

C(E) = 
E 

c+(k- 1)(1 -E)’ 

Clearly, c is smjective. 

From the above definitions, it follows that, for any truth assignment z, 

mMBWS(f(x),z) = F&,C?kY)) + (k - 2)0), 

so that 

m;(x) - m4(% gtx, Y)) <(k _ 1) mhBWS(f(X)) - mMBWS(ftx), z, 

w&&~ Y)) mMBWS(f(x), 5) 

From Lemma 1, we have that f, g, and c yield a PTAS-reduction from A to MAX 

BOLJNDED WEIGHTED SAT. 

In a similar way, we can prove that, for any minimization problem A in APX, 

A<PTAS MAX BOUNDED WEIGHTED SAT. Indeed, we can first PTAS-reduce A to a max- 

imization problem B in APX and, successively, reduce B to MAX BOUNDED WEIGHTED 

SAT. Let T be the S-approximate algorithm for A and, for any x, let t(x) = I?ZA(X, T(x)). 

The problem B is then identical to A apart from the measure function which is defined 

as follows: 

me(x, Y) = 
4x>+ k(G) - P4tx, Y)> if w4tx.y)<4x), 

0) otherwise, 

where k is the least integer greater than l/( 1 - 6). The reduction between A and B is 

defined in the following way (once again g does not depend on E). 
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1. For any instance x, f(x) = x. 

2. For any instance x and for any solution y of f(x), 

if w~(x,.Y)<~(x), 
F(x) otherwise. 

3. For any E, 

C(E) = 
& 

E+k(l -E)’ 

Clearly, c is sujective. 

By making use of Lemma 1, it is easy to see that the above reduction is a PTAS- 

reduction so that Ad PT*S B<PTA~ MAX BOUNDED WEIGHTED SAT. 

Since A was an arbitrary APX problem, it follows that MAX BOUNDED WEIGHTED SAT 

is APX-complete. Cl 

Remark 5. An interesting result proved by Crescenzi and Panconesi [20] states that, 

unless P = NP, in both classes NPO and APX “intermediate” problems exist which 

are neither complete nor in the lower class. Recently, in Crescenzi et al. [ 191 it has 

been proved that the bin packing problem is APX intermediate. The significance of 

this result can be explained in the following way; usually a problem A in a class, say 

APX, is proved not to be in a lower class, say PTA& by proving a statement like “if 

F E PTAS then P = NY. The existence of incomplete problems shows that a proof of 

nonapproximability within any E does not imply completeness in APX. Thus the notion 

of completeness introduced in this section captures a deeper level of structure than the 

notion of NP-completeness. In fact, an NP-complete problem, when considered in its 

optimization version, can be approximable within any E or not, complete or incomplete. 

At the end of the previous section, we observed that no polynomially bounded NPO- 

complete problem is known. On the contrary, APX contains polynomially bounded 

complete problems. 

MAX POLYNOMIALLY BOUNDED WEIGHTED SAT is equal to MAX BOUNDED WEIGHTED SAT 

apart from the measure function which is defined as follows: 

mMPBWS(& 7) = n + 
~(~MBws(& T) - WI 

W 

where n denotes the number of variables. 

Observe that according to the above definition, for any instance x of MAX 

POL~TJOMIALLY BOUNDED WEIGHTED SAT and for any truth-assignment z, n 6 mMpBWS(x, z) 
<2n, i.e. this problem is indeed polynomially bounded (even though the values of the 

numbers that appear in the instance may not be polynomially bounded). 

Theorem 13 (Crescenzi and Trevisan [24]). MAX BOUNDED WEIGHTED SAT is PTAS- 

reducible to MAX POLYNOMIALLY BOUNDED WEIGHTED SAT. 
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Proof. Let x = (cp, wl, . . . , w,, W) denote an arbitrary instance of MAX BOUNDED 

WEIGHTED SAT. The reduction is then defined as follows (at last we are using the 

fact that g may depend on E! ). 
1. f(x) = x. 

2. For any r and for any E E (0, l)p, 

g(x, r, a) = 
{ 

;* 
if E > l/n, 

otherwise, 

where r* denotes an optimum solution for MAX BOUNDED WEIGHTED SAT. 

3. For any E E (O,l)Q, 

C(E) = 
E 

&+2(1-E)’ 

Clearly, c is surjective. 

Observe that, according to the definition of the PTAS-reducibility, the running time 

of g can be exponential in 11~. If E < 1 fn then g has enough time to compute r* so 

that, in this case, the fourth condition in the definition of PTAS-reducibility is clearly 

satisfied. 

Assume now that E > l/n and that r is any truth assignment. Let 

i, = 
L 

~~MBWS@, z> - W) 

W 1. 

Observe also that 

m!vrsws(x,r)~ W(1 + k/n). 

Then 

$,lFJBws(x) - mMPBWS& 7) _ i,. - i, . 

while 

mMPBWS(& z) 

m$aws(x) - mMBWS(& z, 

mMBW& 7) 

n+i,’ 

< mMBWS&~) f tiT* - iT + 1 )w/n - mMBW& z> 
. 

mMBWdX, 7) 

(i7* - i, + l)W/n 

mMBWS(x, 7) 

,< (if* -i, + l)W/n 
W( 1 + i,/n) 

1,. - i, + 1 
= 

nfi, ’ 

If i,. - i, = 0 then 

EMBwS(X, 7) G 
$$Bws(x) - mMBW& z> 1 1 

mMBWS& T) 

<------<- <E. 
n+i, n 
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Otherwise 

&nws(x) -mMBWS(X, r) G k* - i, -k 1 c2i”_ = 2mhpBWS(X) - QfpBWS(X, T) 

mMBWS(X, 7) n + i, n + i, mMPBWS(X, z) . 

From Lemma 1 it thus follows that, in both cases, the fourth condition in the definition 
of PTAS-reducibility is satisfied and this concludes the proof. 0 

As a consequence of the previous two theorems, we have the following result. 

Corollary 2. MAX POLYNOMIALLY BOUNDED WEIGHTED SAT is APX-complete. 

In Section 5 we will use this result in order to prove the existence of “natural” 
APX-complete problems. 

4. Reducibilities, satisfiability, and logical definability 

In Section 2 the approximation properties of NPO problems have been discussed and 
their relationship with the combinatorial structure of the problems has been analyzed 
with the aim of understanding from what intrinsic, structural properties of problems the 
complexity of achieving approximate solution originates. The previous section, instead, 
can be seen as an attempt to characterize the approximation classes in terms of hardest 
problems with respect to suitable reducibilities. Unfortunately, neither of the two ap- 
proaches turns out to be sufficient in characterizing the class APX. On the one hand, 
no combinatorial properties have been found so far that are specific for problems in 
this class, on the other hand the only NPO problems that we have been able to prove 
APX-complete so far are in a certain sense “artificial”. 

In this section we shall pursue a different aim. Let us first remember that Cook’s 
theorem allows us to define NP as the class of decision problems that are polynomial- 
time reducible to the satisfiability problem. Moreover, it is well-known that this is true 
even if we restrict the instances of this problem to formulae with at most three literals 
in each clause. If we consider the maximization version of the 3-satisfiability problem, 
it seems reasonable to define a class analogous to NP, i.e. the class of NPO problems 
that are reducible to MAX ~-SAT. In particular, we first shall prove that MAX ~-SAT 

is i-approximable and we will then define the class OPT NP as the class of NPO 
problems that are PTAS-reducible to MAX ~-SAT. 

Successively, an interesting sufficient condition for NPO problems to be in OPT NP 
will be given in terms of logical definability. We will finally conclude with several 
OPT NP-completeness and hardness results. 

4.1. History 

This section is an elaboration of the line of research that started in Papadimitriou 
and Yannakakis [46] where the characterization of optimization problems by means 
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begin 
for any variable u in U do 
begin 

pi(u) := fraction of truth assignments for the remaining variables 

which satisfy the jth clause with u true; 

nj(u) := fraction of truth assignments for the remaining variables 

which satisfy the jth clause with u false; 

if xi pj(u) 2 cj ai then 
assign the value true to u 

else assign the value false to u; 

update the clauses 

end 
end. 

Algorithm 6. An approximation algorithm for MAX ~-SAT. 

of logical formulae has been initially proposed. Building on the work of Papadim- 

itriou and Yannakakis a more systematic approach has been developed in Kolaitis and 

Thakur [35], leading to the definition of two hierarchies of maximization and mini- 

mization problems, respectively. Such hierarchies are indeed shallow and consist of 

a few coarse levels. Refinements have been proposed in Panconesi and Ranjan [43] 

and in Behrendt et al. [9]. In Kann [31] more classes based on logical definability are 

introduced and an extensive survey of results in the area is presented. 

Our elaboration mainly consists of focusing our attention on the role played by MAX 

~-SAT in order to develop an analogy with the class NP in terms of approximation 

preserving reducibilities instead of logical definability, and on presenting the logical 

definability results as a tool for proving approximability properties of optimization 

problems. 

4.2. The class OPT NP 

Let us first recall that MAX ~-SAT is the same as MAX SAT with at most three literals 

per clause. The first result of this section shows that this problem is easily approximable 

by means of a greedy technique. 

Theorem 14 (Johnson [29]). MAX ~-SAT belongs to APX. 

Proof. We will prove that Algorithm 6 &approximates MAX ~-SAT. 

Firstly, we show that at each iteration of the algorithm the value cj[pj(U) + nj(U)] 

cannot decrease. Suppose that the value of variable u must be determined and q vari- 

ables are still unassigned. Then the number of truth assignments to these q variables 

that satisfy the jth clause is equal to 24-‘[pi(u) + nj(u)]. Without loss of generality, 

we can assume that u has been assigned the value true, i.e. Cj pj(u) > xi nj(U). Thus, 

after this assignment, the number of truth assignments to the remaining q - 1 variables 
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satisfying the jth clause is equal to 24-l pj(U). Let U’ be the variable considered at the 

next iteration. Then, for any j, pj(U’) + nj(U’) is equal to 2’J-‘pj(u)/24-* = 2pj(u) 

and 

Cbj(U’) + nj(U’)l = 2CPj(u) 2 C[PjC”) + nj(U)l- 
j j j 

Secondly, let uf be the first variable considered by the algorithm. Then, for any j, 

pj(Ur) + nj(uf) is twice the fraction of truth assignments to all variables satisfying the 

jth clause which, in turn, is at least i (since each clause contains at least one literal, 

see also Example 17). Thus, cj[pj(Ur)+nj(Uf)] is at least m, where m is the number 

of clauses. 

Thirdly, let ue be the last variable considered by the algorithm. Then, for any j, 

0 if the jth clause is already not satisfied, 

Pj(W) + nj(W) = 
1 

1 if the jth clause is either ue or lue, 

2 if the jth clause is already satisfied or it is ue V 7~. 

Thus, Cj[Pj(u/) + nj(Us)] is at most twice the number of satisfied clauses at the end 

of the algorithm. 

In conclusion, the truth assignment computed by the algorithm satisfies at least m/2 
clauses. Clearly, the relative error of this solution is at most i. 0 

Remark 6. The previous theorem clearly holds for MAX SAT as well. 

Since the satisfiability decision problem is a paradigmatic example of an NP problem 

which is difficult to solve in polynomial time and since no polynomial-time approx- 

imation scheme is known for MAX ~-SAT, one can hope that this latter problem is a 

paradigmatic example of an NPO problem which is approximable but not in PTAS. 

We thus give the following definition. 

Definition 17. An NPO problem A belongs to the class OPT NP if it is PTAS- 

reducible to MAX ~-SAT. 

In the following section we will show examples of OPT NP problems. 

4.3. Logical characterization of NPO problems 

In this section, we show a sufficient condition based on the logical definability of 

optimization problems for membership in OPT NP. In order to understand what logic 

has to do with optimization, let us observe that, taking into account that given an input 

instance x, the search space of x (in symbols, search(x)) consists of a combinatorial 

structure (e.g. power set, permutation group, etc.), the set of feasible solutions y may 

be defined as a subspace of the search space satisfying a suitable property ~1, depending 

both on the instance x and on the feasible solution y. That is, 

sol(x) = {y: y E search(x) A 7~1 (x, y)} 
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and, consequently, 

m*(x) = goal{m(x, y): y E search(x) A rci(x, y)}. 

Example 9. In the case of MAX CLIQUE, we have that, given a graph G = (V,E), the 

search space consists of all subsets of V and the set of feasible solutions (i.e. the 

cliques) is 

sol(G) = {V’: V’ C V A (vu, u)[(u E V’ A u E V’) + (u = 0 v (% u) E E)]), 

i.e. 

nl(G, V’) = (‘d’u, u)[(u E V’ A u E V’) ---f (u = u V (u, u) E E)]. 

The optimum measure is then equal to: 

m*(G) = max{IV’( : V’C VA TCI(G, V’)}. 

In many cases (and the previous example is one), the measure function m consists 

of the cardinality of a set of elements z satisfying a given property 7~2, depending on 

x, y, and z. That is, 

m*(x) = go&search(x) l{z:~l(x,Y)A~z(x,Y,z)}l. 

Example 10. From the previous example we have that, for MAX CLIQUE, n2(G, V’,z) = 

z E V’ so that 

m*(G) = p?xv ({z: nl(G, V’) A 7t2(G, V’,z)}l. 
_ 

Example 11. Let us consider MAX SAT. In this case, an instance may be described by 

the set of variables U, by the set of clauses C and by two sets P, N C U x C such 

that (z,c) E P (respectively, (z,c) E N) if the variable z occurs positive (respectively, 

negative) in clause c. The search space coincides with the set of feasible solutions 

(i.e. ~1 is always true) and consists of all subsets of U of variables which have been 

assigned the value true. For any feasible solution (i.e. truth assignment r), any clause 

c satisfied by r must satisfy the following property: 

~~~((U,C,P,N),T,C) = c E C A dz[((z,c) E P AZ E r) v ((z,c) E N AZ @ r)]. 

Consequently, the optimum measure is 

m*(U,C,P,N) = 71; I{c:~~~((U,C,P,N),Z,C)}I. 
_ 

According to this approach a natural way of characterizing optimization problems 

may be based on the structure of the logical definition of the property x = ni A 772. It 

can immediately be perceived that the structure of the logical definition of this predicate 

is different in the two above examples, being universally quantified in the first case 

and existentially quantified in the second. 
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Since we are interested in the class characterized by MAX ~-SAT, let us see how 
this problem can be expressed in logical terms. First observe that an instance of MAX 
~-SAT can be described by means of four subsets of the set C of clauses. In particular, 
for any i with 0 <i ~3, clause c belongs to the set Ci if the first 3 - i literals of c 
are positive and the remaining i literals are negative. For any truth assignment z, any 
clause c satisfied by T must satisfy the following property: 

712((u, C, Co,. * f , C3),Z,C)=CECA (CECO-tCl ETVC2EOVC3ET) 

A (c E c, --) Cl E z v c2 E z v c3 $! 7) 

A (c E c2 -+ Cl E 7 v c2 @ 7 v c3 $z 7) 

A (c E c3 + Cl # z v c2 g f v c3 6 z), 

where, for every i with 1 <i <3, ci is the ith literal of clause c. Consequently, the 
optimum measure is 

m*(U,C,Co ,..., c3)=fncaxUI{C:n2((u,C,cO,...,c3),z,C)}l. 
_ 

We thus have that the logical definition of MAX ~-SAT is even simpler than the previ- 
ous examples. Indeed, property n is expressible as an unquantified first-order formula. 
This suggests a sufficient condition that guarantees that an NPO problem belongs to 
OPT NP. In order to formulate this condition let us give the following definitions. 

Definition 18. A jnite similarity type is a pair of finite sequences of nonnegative 
integers. Given a finite similarity type T = (nl , . . . , nk; ml,. . . , mh ), a finite T-structure 

is a (k+h+ l)-tuple S = (X;pl,...,pk;fl,...,fh) where X is a nonempty finite set, 
calledthedomainofS,pi~X”~fori=l ,..., k,andfi:Xmi-+Xfori=l ,..., h. 

Remark 7. Intuitively a finite T-structure is the interpretation of a finite similarity 

type T. 

Example 12. Given a set V, a graph over V with set E of edges is a finite T-structure 
(V; E; ), where T = (2;). In other words, in this case k = 1, h = 0, and nl = 2. 

Definition 19. Let a &formula (respectively, a fl,-formula) be a prefix first-order 
formula with n alternating blocks of quantifiers beginning with 3 (respectively, V). The 
class MAX-C, (respectively, MAX-ZZ,) consists of maximization problems A whose 
instances and solutions are finite structures I and S, respectively, and the optimum 
measure on input I is definable by the expression 

m*(I) = ms= 1(x: cp(x,SJ)}I, 

where cp is a &formula (respectively, a n,-formula) and x is a tuple of fixed dimen- 
sion whose components range over the domain of I. 

Example 13. From the above examples we have that MAX ~-SAT belongs to MAX-Co, 
MAX SAT belongs to MAX-Cl, and MAX CLIQUE belongs to MAX-nl. 
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Remark 8. From the syntactic point of view, the class MAX-& and the class MAX- 

Cl coincide with the classes MAX SNP and MAX NP, respectively, defined by Papa- 

dimitriou and Yannakakis [46]. The first one contains problems that may be character- 

ized by unquantified first-order formulae while the second one contains problems that 

can be characterized by means of existentially quantified formulae. 

Beside MAX ~-SAT other interesting problems belong to the class MAX-Co. Here are 

a few examples. 

Example 14. Let us consider MAX CUT with unitary weights. In this case, the optimum 

measure can be represented in the following way: 

m*(G) = Vm~xV ]{(u, u): (u,u) E E A ((u E V’ A v 6 V’) V (u E V’ A u $ V’))}\. 
- 

Example 15. Let us consider MAX INDEPENDENT SET-B, i.e. a restriction of MAX 

INDEPENDENT SET in which the degree of the graph is bounded by B. Any instance 

of this problem can be represented as the set V of nodes and the set A & VB+’ where 

(&VI,..., 0~) E A means that Q,..., us are adjacent to U. Note that for every u there 

must be exactly one tuple ~1,. . . , ujj (possibly with dummy nodes if the degree of 

u is smaller than B) such that (u, ~1,. . . ,ug) E A. The optimum value can then be 

represented in the following way: 

m*( V,A) = ymFxV ( {(u,u,, . . .,ug): (u, UI,. . .) ug) E A 
- 

Au E v’ A VI $2 v’ A.. . A us 6 V’}I. 

Analogously, we can show problems that belong to MAX-Z, beside MAX SAT. 

Example 16. Let MAX GSAT-B be the generalized satisfiability problem where the for- 

mulae are conjunctions of clauses and the clauses are disjunctions of conjunctive sub- 

formulae which may be composed of up to B conjuncts (for example, the formula 

is a satisfiable MAX GSAT-2 formula). Note that MAX SAT coincides with MAX GSAT-I 

We leave to the reader the easy task to prove that, for any constant B, MAX GSAT-B 

belongs to MAX-C,. 

Remark 9. On the basis of Definition 19 a hierarchy of classes of optimization prob- 

lems syntactically defined in terms of logical formulae can be studied whose properties 

are the following [35]: 

MAX-Co c MAX-C, c MAX-II, c MAX-II*. 

Moreover, as a consequence of a result of Fagin [25], MAX-II2 coincides with the 

class of all NPO polynomially bounded maximization problems. 
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It is now time to relate the logical definability of an NPO problem with the class OPT 

NP. To this aim, we will first show that all problems in MAX-Cc have the following 

property: the average value of the feasible solutions has a guaranteed constant ratio 

with respect to the value of the optimum solution. 

Definition 20. Let A be an NPO problem. The average measure of an instance x is 

defined in the following way: 

E(x) = 
c yEsol(x) m(x, Y) 

W(x)l . 

Definition 21. A maximization problem A in NPO is said to have guaranteed average 
measure if a positive constant k exists such that, for any instance x, 

m*(x) [E(x)> -. 
k 

Interesting problems have guaranteed average measure: in our context, the following 

example is maybe one of the most interesting. 

Example 17. Let us consider once again MAX ~-SAT and let x be a formula with n 

variables and m clauses. Let T be the set of all possible truth assignments (i.e. feasible 

solutions). Clearly (TI = 2”. If we now compute the average measure we obtain 

E(x) = CrET cj”=, d(rycj) 

= cj”=, cfr &?Cj) 

where 

6(T, Cj) = 
1 if r satisfies Cj, 

0 otherwise. 

Hence MAX ~-SAT has guaranteed average measure with constant 2. 

By a suitable generalization of the previous example we can show the following 

result. 

Theorem 15 (Crescenzi and Silvestri [22] and Papadimitrion and Yannakakis [46]). 

Any NPO problem in MAX-& has guaranteed average measure. 

Proof. The proof is based on the logical characterization of the problems belonging to 

the class MAX-Co and mimics the proof of the previous example. The only difference 

is that the constant is not 2 anymore but depends on the length of formula cp. 0 

Beside being interesting for its own combinatorial meaning, the above theorem sug- 

gests that problems in MAX-Co are easy to approximate since a randomly chosen 
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feasible solution is a “good” solution with high probability. Indeed, by simply general- 

izing the approximation algorithm for MAX ~-SAT it is possible to prove the following 

result. 

Theorem 16 (Papadimitriou and Yannakakis [46]). Every problem in MAX-& 

belongs to APX. 

The next theorem shows that any problem in MAX-CO not only is approximable but 

it also belongs to OPT NP. 

Theorem 17 (Papadimitriou and Yannakakis [46]). Every problem in MAX-Co is 

PTAS-reducible to MAX ~-SAT. 

Proof. Suppose we are given a problem A in MAX-Co. By definition, its optimum 

measure satisfies, for every instance x, the following equality: 

m*(x) = yx I{z: ‘p(z,x,S)}(, 

where cp is a quantifier-free first-order formula, z is a tuple of fixed dimension whose 

components range over the domain of x, and S is the structure corresponding to a 

feasible solution. Moreover, from the previous theorem it follows that A admits a 

&approximate algorithm T for some 6. 

Let us denote with cpi, (~2,. . . , cpm the formulae corresponding to the possible val- 

ues of z. Hence the problem of maximizing the set of values of z which satisfy cp 

is transformed into the problem of maximizing the set of formulae vi that can be 

simultaneously satisfied by a suitable truth assignment. 

We now transform any formula vi into a set Ci of clauses with at most three literals 

each. The transformation is obtained by considering the Boolean circuit corresponding 

to the formula vi (whose inputs are the original variables of qi) and by describing all 

gates by 3-clauses, with the help of auxiliary variables. In particular, for each gate g 

of the circuit: 

1. If g is a NOT gate with input a, Ci includes the clauses 

g V a, 7g V ~a. 

2. If g is an AND gate with input a and b, Ci includes the clauses 

3. If g is an OR gate with input a and b, C’i includes the clauses 

4. If g is the output gate, Ci includes the clause g. 
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For example, the formula a A (b V T) is transformed by means of the auxiliary 
variables gi,g2, and g3 into the following set of clauses: 

This transformation guarantees that any truth assignment z to the variables of cpi can 
be extended to the auxiliary variables in such a way that all clauses belonging to C; 
are satisfied except, possibly, the variable corresponding to the output gate (in case vi 
is not satisfied by r). 

The overall instance f(x) of MAX ~-SAT is then the union of all the sets of clauses 
C ,,..., C,. 

Clearly, any truth assignments r to the variables of f(x) can be improved in order 
to satisfy m2 = m(k - 1) + ml clauses and to identify a solution g(x, 7) of A whose 
measure is equal to ml. In particular, m*(f(x)) = m(k- l)+m*(x). Then the following 
inequality holds: 

m*(x) - m(x,&r))<m*(f(x)) - W(x),7). 

Moreover, we can assume that m(x, g(x, 7)) 2 m(x, T(x)) > ( 1 - @m*(x). Finally, from 
the proof of Theorem 15 it easily follows that a constant h exists such that m*(x) > m/h, 
so that 

m*(x) - m(xTdx97)) <(l + h(k _ 1)(1 _ ,))m*(/(~~~~x~~~)~7). 
3 

From Lemma 1, we then have that the above reduction is a PTAS-reduction if we 
define: 

C(E) = 
E 

E + B(1 - E) 

with B = 1 + h(k - 1 )( 1 - 6). In conclusion, A is PTAS-reducible to MAX ~-SAT. 0 

The above two theorems thus state a sufficient condition for an NPO problem to 
be in OPT NP (and hence to be approximable) based only on its logical definability. 
Clearly, this condition is not necessary since all problems in MAX-Co are polynomially 
bounded while OPT NP contains problems, such as MAX {O,l}-KNAPSACK, which are not 
polynomially bounded. Moreover, OPT NP contains minimization problems as shown 
in the following example. 

Example 18. MIN NODE COVER-B, i.e. Mm NODE COVER restricted to graphs of degree 
at most B, belongs to OPT NP since it is easy to see that MIN NODE COVER-B is 
PTAS-reducible to MAX INDEPENDENT SET-B which is in MAX-Co (see Example 15). 

Remark 10. The relationship between the logical definability of NP minimization prob- 
lems and their approximation properties has also been studied but it seems to be some- 
what different than that in the case of maximization ones (see [36]). 
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4.4. OPT NP-hardness 

The class OPT NP captures the basic idea that was behind its definition, i.e., to 

characterize a class of problems which are no more difficult to approximate than MAX 

~-SAT. It is then natural to look for optimization problems which are at least as hard 

as MAX ~-SAT. Once again, the comparison between pairs of optimization problems is 

formally defined by means of the notion of reducibility. 

Definition 22. An NPO problem A is OPT NP-hard if MAX 3-&T <PTA~A. 

Example 19. Let us prove that MAX ~-SAT is PTAS-reducible to MAX CLIQUE [8, 171. 

Given an instance (U, C) of MAX ~-SAT, we define a graph G = (V,E) such that 

V = {(f,c): 1 E c} 

and 

E = {((l1,~1),(12,~2)):11 # 712 ACI # ~21, 

where I denotes a variable or the negation of a variable in U and c is a clause. Clearly, 

any clique V’ in G correspond to a truth assignment satisfying at least 1 V’I clauses. 

Thus, the above reduction is a PTAS-reduction with C(E) = E. 

Many other problems can be shown to be OPT NP-hard: MAX SAT, MAX GSAT-B 

(see Example 16), and MIN NODE COVER [46], MIN 8-TSP , that is, MIN TSP restricted 

to distance values satisfying the triangle inequality [47], MIN STEINER TREE [12], MIN 

SUPERSTRING [13], and MAX PATH [33]. For each of them, the following thus holds: if 

it belongs to PTAS then OPT NP is contained in PTAS. In the following section we 

shall see that this latter event is unlikely to happen. 

Finally, among the problems which are OPT NP-hard, those who are equivalent to 

MAX ~-SAT, i.e. belong to OPT NP and thus are OPT NP-complete, are of particular 

interest since they belong to PTAS if and only if OPT NP is contained in PTAS. This 

is clearly analogous to the concept of APX-complete problem, but this time we are 

able to find “natural” completeness results. 

Indeed, examples of OPT NP-complete problems are provided by Papadimitriou and 

Yannakakis [46] such as MAX ~-SAT, MAX CUT, MAX INDEPENDENT SET-B, MIN NODE 

COVER-B. 

5. Probabilistically checkable proofs and approximation 

We have already observed in Section 2 that a well-known technique for showing 

negative approximability results is the gap technique and that very few nontrivial gaps 

were obtained since a couple of years ago. The creation of a gap in the measure of 

an optimization problem has been recently connected with another kind of gap origi- 

nating from the probabilistic model of computation. This connection can be intuitively 
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described as follows: a probabilistic algorithm for an NP-complete language requires a 
large gap in the probability of acceptance of correct and incorrect inputs. Such algo- 
rithms can then be used to construct a family of instances of an optimization problem 
with a large gap in the measure function thus proving its nonapproximability unless 
P=NP. 

Unfortunately, no NP-complete problem is known to admit a “simple” probabilistic 
algorithm but it has been recently shown that any NP-complete problem admits an 
“efficient” probabilistically checkable prooJ Intuitively, such proofs allow to prove 
whether an instance belongs to a given language by using few random coin tossing 
and by checking a constant number of bits of the proof! 

In this section we see in a very sketched way how this can be obtained and we 
subsequently show how this per se interesting result can be applied in order to prove 
that no OPT NP-hard problem admits a polynomial-time approximation scheme. Finally, 
we conclude by showing that OPT NP indeeed coincides with APX. 

5.1. History 

The theory of probabilistic checking of proofs started with the work by Babai, 
et al. [7] where the notion of transparent proof was introduced: informally, a transpar- 
ent proof either is correct or mistakes will appear almost everywhere, thus enabling 
a probabilistic verifier to check it by a cursory examination. The results of Feige et 
al. [26] then triggered the successive important results of Arora and Safra [2] and of 
Arora et al. [l], part of which are summarized in this section. Other results along this 
line of research have been obtained by Bellare et al. [lo], Condon et al. [16], and 
Lund and Yannakakis [39]. The fact that OPT NP is equal to APX is a consequence 
of the results obtained by Khanna et al. [34] and Crescenzi and Trevisan [24]. 

5.2. Probabilistically checkable proofs 

Even though the notion of a proof is an intuitive one, theorem-proving procedures 
may substantially differ one from the other. The most natural procedure consists in 
writing down the proof in a book, while a more general way of communicating a 
proof is based on the notion of interaction and consists in explaining the proof to 
some recipients as in the case of a teacher-students environment. 

In this section, we shall consider book-writing alike procedures, called probabilisti- 
tally checkable proofs, in which a prover writes the proof on a book and the verifier 
checks its correctness so that if the theorem is true, then a proof exists convincing 
the verifier to accept, otherwise no proof can convince the verifier with better than 
negligible probability. 

In particular, we shall consider such theorem-proving procedures from the following 
point of view: having assumed that the proof is available somewhere (e.g. as an oracle 
of a Turing machine), how much of it does the verifier have to know in order to be 
convinced that the proof is correct? Clearly, if the verifier is deterministic, the proof 
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has to be read entirely. However, if it is probabilistic, then we shall see that a sublinear 

number of random and query bits is sufficient to characterize NP. 

Definition 23. A language L admits a probabilistically checkable proof if an oracle 

probabilistic Turing machine T exists such that 

1. For every x E L, an oracle XX exists such that TxX accepts x with probability 1. 

2. For every x $ L and for every oracle X, TX accepts x with probability at most 

l/3. 

Definition 24. The class PCP(r(n),q(n)) is the set of languages which admit a prob- 

abilistically checkable proof such that the corresponding machine T operates in poly- 

nomial time and generates at most O(r(n)) random bits and at most O(q(n)) queries. 

Theorem 18 (Arora et al. [l]). NP C PCP(log n, 1). 

Proof (sketch). Informally the proof can be summarized as follows. 

1. Define a restricted version of probabilistically checkable proof (rPCP) in which 

both the input and the proof are “segmented” into at most 2’(‘(“)) segments of length 

at most O(q(n)), the verifier only accesses a constant number of these segments, and 

its output can be computed by a circuit whose size is polynomial with respect to q(n). 

Moreover, the verifier uses the random bits simply to determine the addresses of the 

segments to be read and does this in a nonadaptive way, that is, before receiving any 

of the answers. 

2. Composition Lemma. Show that if NP is contained both in rPCP(r’(n), ql(n)) and 

in rPCP(rz(n), qz(n)), then NP is contained in rPCP(r’(n)+r2(qp(‘)(n)), qz(qy(‘)(n))). 
3. Show that NP is contained in rPCP(logn,log’(‘) n). By applying the composition 

lemma, we then obtain that NP is contained in rPCP(logn, (loglogn)“(“). 

4. Show that NP is contained in rPCP(n’(“, 1). 

5. By applying the composition lemma to the previous two results, we obtain that 

NP is contained in rPCP(log n, 1). 

While the proof of the composition lemma follows in a quite straightforward way, 

the last three steps borrow significantly from results on polynomial checking, proof 

verification, program result checking, and coding theory. Giving the details of these 

results goes far beyond the scope of this survey and we thus refer the interested reader 

to the papers that originated them. 0 

5.3. The hardness of approximation 

The areas of proof checking and of approximation seem quite unrelated at a first 

glance. However, as stated at the beginning of this section, the existence of proba- 

bilistically checkable proofs for NP implies that the membership question for any NP 

language can be converted to an NPO problem which has a gap associated with it. 

Theorem 19 (Arora et al. [l]). MAX ~-SAT does not belong to PTAS, unless P = NP. 
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l =reject 

0 accept 

Fig. 5. A query-tree of depth 3. 

Proof. Let L be a language in NP. From Theorem 18 it then follows that an oracle 

probabilistic Turing machine T exists such that 

1. For every x E L, an oracle X, exists such that TX accepts x with probability 1. 

2. For every x $! L and for every oracle X, TX accepts x with probability at most f. 

Moreover, T generates at most hi logn random bits and at most h2 queries where hi 

and hi are constants. 

We shall now derive a Boolean formula cpx such that if x E L then (px is satisfiable, 

otherwise at most 1 -g of all clauses of cpx can be satisfied simultaneously, where g is 

a suitable constant. This clearly implies that MAX ~-SAT does not admit a polynomial- 

time approximation scheme unless P = NP. 

In order to construct cpx, observe that, for any possible string y of length at most 

hi logn, the computation T(x) when using y as its random string can be represented as 

a “query-tree” of depth at most h2 whose nodes correspond to the queries performed 

by the computation (see Fig. 5). This tree, in turn, can be translated into a constant 

size Boolean formula (pxY which is satisfiable if and only if T(x) accepts and whose 

variables are the queried bits (referring to the example shown in Fig. 5, we have 

c’xY = (41 A qY2 A IqyY3 ) V (91 A lqy2 A qvns) V (‘41 A qn2 A lqnys) 

V(% A 7qn2 A qnns )). 

The formula cpx is then the conjunction of the m = nhl formulae qxpxy (possibly 

rewritten in conjunctive normal form with at most three literals per clause). 

Clearly, if x E L then a truth assignment exists satisfying cpx so that opt(x) = km 

for a suitable constant k. But if x 6 L then any truth assignment will be unable to 

satisfy more than a constant fraction of all clauses of cpx. In particular, since T accepts 

with probability at most i, then at least two out of three formulae ‘pxY contain at least 

one unsatisfied clause. Then, opt(x)<km - trn = (1 - 2/3k)km. This concludes the 

proof. 0 
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Corollary 3. No OPT NP-hard problem belongs to PTAS, unless P = NP. 

Corollary 4. MAX CLIQUE does not belong to APX, unless P = NP. 

Proof. First observe that, for any graph G, it is possible to compute in polynomial 

time a graph G’ such that G contains a clique of size k if and only if G’ contains a 

clique of size k*. Indeed, G’ contains a copy of G for any node of G itself. Given a 

copy corresponding to a node u, we connect any node of such a copy to each node of 

the copies corresponding to nodes adjacent to u. 

This observation implies that if, for some E < 1, an e-approximate algorithm for MAX 

CLIQUE exists, then this problem admits a b-approximate algorithm, for any 6 < 1. That 

is, if MAX CLIQUE belongs to APX then it belongs to PTAS. 

The result thus follows from the OPT NP-hardness (see Example 19) and from the 

above corollary. q 

Remark 11. The previous corollary can indeed be strengthened. In fact, it has been 

proved that, for some E, MAX CLIQUE cannot be n&-approximated, unless P = NP [ 11. 

5.4. OPT NP versus APX 

In this section we show that MAX ~-SAT is APX-complete. This result thus settles the 

question of the relationship between OPT NP and APX posed in the previous section. 

We already know that OPT NP is contained in APX. An immediate consequence of 

the APX-completeness of MAX ~-SAT is that the two classes indeed coincide. 

Recall that, for any language L in NP, a polynomial p and a polynomial-time de- 

cidable binary relation R exist such that 

In order to prove the main result of this section, we first state a stronger version of 

Theorem 19. 

Theorem 20 (Khanna et al. [34]). Let L = (p, R) be a language in NP. Then a 
polynomial-time computable function f and a positive rational 6 < 1 exist such 
that, for any x, the following hold. 

1. f(x) is an instance of MAX ~-SAT with c clauses, where c is dependent only on 

1x1. 
2. (1 - 6)c clauses off(x) are satisfiable by some truth-assignment. 
3. If x E L then f(x) is satisjable. 
4. Jf x $! L then no truth-assignment satisjies more than (1 - 6)~ clauses of f(x). 
5. Given a truth-assignment which satisfies f(x), a word y such that ly( < p( 1x1) A 

R(x, y) can be costructed in polynomial time. 
6. Given a truth-assignment which satisJes more than (1 - 6)~ clauses off(x), a 

truth-assignment which satisjes f(x) can be constructed in polynomial time. 
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Proof (sketch). Properties 1, 3, and 4 are immediately obvious from the proof of 

Theorem 19. Property 6 is based on simple considerations on error-correcting codes 

while properties 2 and 5 are obtained by reconsidering and slightly modifying the proof 

of Theorem 18. 0 

Theorem 21 (Khanna et al. [34]). MAX POLYNOMIALLY BOUNDED WEIGHTED SAT is 

PTAS -reducible to MAX ~-SAT. 

Proof. Given an instance x of MAX POLYNOMIALLY BOUNDED WEIGHTED SAT, let d = 2n 

where n denotes the number of variables. Then, for any truth-assignment z, d/2< 

MMPBWS(X, Z) 6 d. For any i with 1 < i 6 d, let Li = {u: %[m~pnws(y, T) 2 i]}. Clearly, 

Li is in NP. Let Cpi be the instance of MAX ~-SAT which is obtained from Theorem 20 

when applied to the instance x of Li. Consider now the Boolean formula cp = l\tzd,2 cpi. 

Clearly, m*( cp) = (1 -@cd + Gcm~pBws( x ) . Moreover, given an assignment z, let j, be 

the maximum i such that 5 satisfies more than (1 - 6)c clauses of vi. From properties 

5 and 6 of Theorem 20, it follows that a truth-assignment z’ can be constructed in 

polynomial time such that k%Mpaws(X, z’) aj,. We thus have that 

+3s((P) - mM3S(% z) = (1 - @cd + Gcm&?wS(x) - mM3s(% 7) 

mM3S(% z) mM3S(% 7) 

3 (1 - 6)cd + km h3WS(x) - (1 - @cd - Jcj, 

(1 - 6)cd + &j, 

mhPBWs(x) - jT 

=’ (1 -6)d+6j, 

> 6 44pews(x) - .A 

(1 - 6)2j, + Sj, 

’ mit4PBWS(x) - _iT _ 
2-6 j, 

6 M;Paws(X) - mMPBWS(X, 7’) 

>2-6 mMPBWS(X, 7’) ’ 

From Lemma 1, it then follows that 

EM~s( Cp, T) <C(E) implies E~paws(X, z’) < 8. 

where C(E) = E/(E + [(2 - S)/S]( 1 - E)). That is, we have obtained a PTAS-reduction 

from MAX POLYNOMIALLY BOUNDED WEIGHTED SAT to MAX ~-SAT and this concludes the 

proof. 0 

An immediate consequence of the above theorem is the following result. 

Corollary 5. MAX 3-SAT is APX-complete. 
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Combining this corollary with the results presented in Section 4 yields the following 

results. 

Corollary 6. OPT NP coincides with APX. 

Corollary 7. The following NPO problems are APX-complete. 

1. MAX SAT, 

2. MAX ~-SAT, 

3. MAX GSAT-B, 

4. MIN NODE COVER, 

5. MAX INDEPENDENT SET-B, 

6. MAX CUT, 

7. MIN A-TSP, 

8. MIN STEINER TREE, 

9. MIN SUPERSTRING. 

We have thus shown that MAX SAT indeed plays the same role with respect to 

NPO problems in APX as the satisfiability decision problem plays with respect to NP 

problems. This positively answers the question that motivated the definition of OPT 

NP. 

As a concluding remark, we observe that any optimization problem in APX which 

has been or will be shown to be hard for OPT NP is indeed APX-complete. 

6. Conclusion 

In this paper we presented in a unified and updated approach the main results 

concerning the characterization of approximation classes of optimization problems. In 

particular, we reviewed the algorithmic and combinatorial characterizations of classes 

PTAS and FPTAS and, successively, we concentrated on the study of the properties of 

class APX. With respect to this latter issue, the most successful tools have been approx- 

imation preserving reducibilities and probabilistically checkable proofs. Indeed, on the 

ground of several recent results, we have been able to show that APX coincides with 

the class of optimization problems which are PTAS-reducible to MAX SAT. As a con- 

sequence of this result, many well-known problems that are known to be approximable 

turn out to be APX-complete and hence do not allow a polynomial-time approximation 

scheme unless P = NP. Our presentation of these APX-completeness results is essen- 

tially based on two steps. In the first step we have introduced the class OPT NP as an 

analog of the class NP in the world of optimization problems while in the second step 

we have shown that OPT NP coincides with APX. This kind of presentation allows 

the reader to easily understand the historical path that led to the final results. However, 

the equivalence between OPT NP and APX implies that, in the future, it will suffice 
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to use the notion of APX-completeness: indeed, any result of OPT NP-hardness or, 

equivalently, MAX SNP-hardness will turn out to be a statement of APX-hardness. 

As a consequence of these recent developments, we expect that in the near future 

it will be possible to prove that many approximable problems do not belong to PTAS 

unless P = NP. Indeed, this can be done by making use of techniques similar to those 

applied in the world of decision problems. 

Moreover, many technical problems are still open. Among them we believe that the 

following are the most interesting. 

1. To characterize the class APX in terms of algorithmic procedures and/or combi- 

natorial properties in analogy with the results of Section 2. Indeed, in [6,34,46] it is 

shown that the “core” of APX can be characterized either by a greedy strategy or by 

a local search strategy. 

2. To compare different notions of approximation preserving reducibilities. For exam- 

ple, it is easy to see that the L-reducibility is strictly stronger than the PTAS-reducibility 

unless P = NP. 

3. To study classes of problems which are approximable within a nonconstant 

ratio. In particular, given a family F of functions, let F-APX denote the class of 

NPO problems which are (g(n) - 1)/g(n)-approximable for a given g E F. It is then 

worth looking for completeness results with respect to F-APX: indeed, in [34] such 

results have been obtained for the classes of NPO problems which have poly- 

nomial-time algorithms with performance ratio bounded either polynomially or log- 

arithmically. 

4. To provide a proof of the APX-completeness of MAX ~-SAT without making use 

of the notion of probabilistically checkable proof. 
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SectionAppendix A 

Appendix A. A list of NPO problems 

In this section we give the formal definition of all NPO problems that have been 

used throughout the survey (a more extensive list containing approximately 150 prob- 

lems along with their approximability properties is presented in [ 181). For the sake 

of simplicity, we avoid to specify the goal of a problem since it can be immediately 

derived from the name of the problem itself. 
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MAX CLIQUE 

Instance: Graph G = (V, E). 

Solution: Subset V’ C V such that every two nodes in V’ are joined by an edge in 

E. 

Measure: 1 V’I . 

MAX CUT 

Instance: Graph G = (V, E) and weight w(e) for each e E E. 

Solution: Subset V’ C V. 

Measure: Sum of the weights of the edges from E that have one endpoint in V’ 

and one endpoint in V - V’. 

MAX INDEPENDENT 
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Solution: Subset S C I such that CiEs a; d b. 

Measure: CiEs pi. 

m execution-time functions li : T --+ N, one for each 

of m available processors. 

Solution: A task-assignment function f : T + { 1,. . . , m} that specifies to which 

processor a given task is assigned. 

Measure: maxiE{t,...,m) CtEr:f(t+i ii(t). 

MIN NODE COVER 

Instance: Graph G = (V, E). 

Solution: Subset V’c V such that, for each edge (u,u) E E, at least one of u and u 

belongs to V’. 

Measure: 1 I”[. 

MIN PLANAR NODE COVER 

Instance: Planar graph G = (V, E). 

Solution: Subset V’ & V such that, for each edge (u, o) E E, at least one of u and u 

belongs to V’. 

Measure: 1 V’ I. 

MIN SPANNING TREE 

Instance: Weighted graph G = (V, E). 

Solution: A spanning tree for G, i.e., a subgraph G’ = (V, E’) of G that is connected 

and has no cycles. 

Measure: C eEE, w(e) where w(e) denotes the weight of edge e. 

MIN STEINER TREE 

Instance: Weighted complete graph G = (V,E) and a subset SC V of required 

nodes. 

Solution: A subtree T of G that includes all the nodes in S. 

Measure: CeE T w(e) where w(e) denotes the weight of edge e. 

MIN SUPERSTRING 

Instance: A finite set S of words over an alphabet C. 

Solution: A word y E C’ such that each s E S is a substring of y. 

Measure: (yl. 
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MIN TSP 

Instance: Complete weighted graph G = (V, E). 

Solution: A permutation 7~ of V. 

Measure: Cl:!-’ W(“n(r)2 nz(i+l))+ W(Un(~V])~ ~~(1)) where w(e) is the weight of edge 

e. 

MIN WEIGHTED SAT 

Instance: Boolean formula cp with variables xl,. ., x, of weights wI,. ,w,!. 

Solution: Truth assignment z to the variables that satisfies cp. 

Measure: max( 1, cy=, w&i)). 
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