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Abstract
Game comonads, introduced by Abramsky, Dawar and Wang and developed by Abramsky and Shah,
give an interesting categorical semantics to some Spoiler-Duplicator games that are common in
finite model theory. In particular they expose connections between one-sided and two-sided games,
and parameters such as treewidth and treedepth and corresponding notions of decomposition. In
the present paper, we expand the realm of game comonads to logics with generalised quantifiers.
In particular, we introduce a comonad graded by two parameter n ≤ k such that isomorphisms in
the resulting Kleisli category are exactly Duplicator winning strategies in Hella’s n-bijection game
with k pebbles. We define a one-sided version of this game which allows us to provide a categorical
semantics for a number of logics with generalised quantifiers. We also give a novel notion of tree
decomposition that emerges from the construction.
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1 Introduction

Model-comparison games, such as Ehrenfeucht-Fraïssé games and pebble games, play a
central role in finite model theory. Recent work by Abramsky et al. [3, 4] provides a category-
theoretic view of such games which yields new insights. In particular, the pebbling comonad
Pk introduced in [3] reveals an interesting relationship between one-sided and two-sided
pebble games. The morphisms in the Kleisli category associated with Pk correspond exactly
to winning strategies in the existential positive k-pebble game. This game was introduced by
Kolaitis and Vardi [18] to study the expressive power of Datalog. A winning strategy for
Duplicator in the game played on structures A and B implies that all formulas of existential
positive k-variable logic true in A are also true in B. The game has found widespread
application in the study of database query languages as well as constraint satisfaction
problems. Indeed, the widely used k-local consistency algorithms for solving constraint
satisfaction can be understood as computing the approximation to homomorphism given by
such strategies [19]. At the same time, isomorphisms in the Kleisli category associated with
Pk correspond to winning strategies in the k-pebble bijection game. This game, introduced
by Hella [16], characterises equivalence in the k-variable logic with counting. This gives
a family of equivalence relations (parameterised by k) which has been widely studied as
approximations of graph isomorphism. It is often called the Weisfeiler-Leman family of
equivalences and has a number of characterisations in logic, algebra and combinatorics (see
the discussion in [13]).
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16:2 Game Comonads & Generalised Quantifiers

The bijection game introduced by Hella is actually the initial level of a hierarchy of
games that he defined to characterise equivalence in logics with generalised (i.e. Lindström)
quantifiers. For each n, k ∈ N we have a k-pebble n-bijection game that characterises
equivalence with respect to an infinitary k-variable logic with quantifiers of arity at most n.
In the present paper, we introduce a graded comonad associated with this game. Our comonad
Gn,k is obtained as a quotient of the comonad Pk and we are able to show that isomorphisms
in the associated Kleisli category correspond to winning strategies for Duplicator in the
k-pebble n-bijection game. The morphisms then correspond to a new one-way game we
define, which we call the k-pebble n-function game. We are able to show that this relates
to a natural logic: a k-variable positive infinitary logic with n-ary homomorphism-closed
quantifiers.

This leads us to a systematic eight-way classification of model-comparison games based on
what kinds of functions Duplicator is permitted (arbitrary functions, injections, surjections
or bijections) and what the partial maps in game positions are required to preserve: just
atomic information or also negated atoms. We show that each of these variations correspond
to preservation of formulas in a natural fragment of bounded-variable infinitary logic with
n-ary Lindström quantifiers. Moreover, winning strategies in these games also correspond to
natural restrictions of the morphisms in the Kleisli category of Gn,k that are well-motivated
from the category-theoretic point of view.

Another key insight provided by the work of Abramsky et al. is that coalgebras in the
pebbling comonad Pk correspond exactly to tree decompositions of width k. Similarly,
the coalgebras in the Ehrenfeucht-Fraïssé comonad introduced by Abramksy and Shah
characterise the treedepth of structures. This motivates us to look at coalgebras in Gn,k and
we show that the yield a new and natural notion of generalised tree decomposition.

In what follows, after a review of the necessary background in Section 2, we introduce the
various games and logics in Section 3 and establish the relationships between them. Section 4
contains the definition of the comonad Gn,k and shows that interesting classes of morphisms
in the associated Kleisli category correspond to winning strategies in the games. Section 5
defines a new class of extended tree decompositions and traversals and relates them to the
coalgebras of the comonad Gn,k. Proofs are omitted due to lack of space and may be found
in the appendix.

2 Background

In this section we introduce notation that we use throughout the paper and give a brief
overview of background we assume.

For a positive integer n, we write [n] for the set {1, . . . , n}.
A tree T is a set with a partial order ≤ such that for all t ∈ T , the set {x | x ≤ t} is

linearly ordered by ≤ and such that there is an element r ∈ T called the root such that r ≤ t
for all t ∈ T . If t < t′ in T and there is no x with t < x < t′, we call t′ a child of t and t the
parent of t′.

For X a set, we write X∗ for the set of lists over elements of X and X+ for the set of
non-empty lists. We write the list with elements x1, . . . xm in that order as [x1, . . . xm]. For
two lists s1, s2 ∈ X∗ we write s1 · s2 for the list formed by concatenating s1 and s2. For
x ∈ X and s ∈ X∗ we write x; s for the list [x] · s and s;x for the list s · [x]. We occasionally
underline the fact that s1 · s2, x; s, and s;x are lists by writing them enclosed in square
brackets, as [s1 · s2], [x; s], and [s;x].
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2.1 Logics
We work with finite relational signatures and assume a fixed signature σ. Unless stated
otherwise, the structures we consider are finite σ-structures. We write A,B, C etc. to denote
such structures, and the corresponding roman letters A,B,C etc. to denote their universes.

We assume a standard syntax and semantics for first-order logic (as in [20]), which we
denote FO. We write L∞ for the infinitary logic that is obtained from FO by allowing
conjunctions and disjunctions over arbitrary sets of formulas. We write ∃+L∞ and ∃+FO for
the restriction of L∞ and FO to existential positive formulas, i.e. those without negations or
universal quantifiers. We use natural number superscripts to denote restrictions of the logic
to a fixed number of variables. We write C to denote the extension of L∞ with counting
quantifiers. We are mainly interested in the k-variable fragments of this logic Ck.

2.2 Generalised quantifiers
We use the term generalised quantifer in the sense of Lindström [21]. These have been
extensively studied in finite model theory (see [16, 8, 5]). In what follows, we give a brief
account of the basic variant that is of interest to us here. For more on Lindström quantifiers,
consult [11, Chap. 12]. We only consider quantifiers without relativisation, vectorisation or
taking quotients in the interpretation.

Any isomorphism-closed class of structures K over a signature τ gives rise to a generalised
quantifier QK . For a logic L, we write L(QK) for its extension with the quantifier QK . We
define the arity of the quantifier QK to be the maximum arity of any relation in τ . For QK
with arity m, the formula QKx1, . . . xm.(ψR(xR1 , . . . xRl , zR))R∈τ where xRi ∈ x and zR ⊂ z
is true on A,a if the τ -structure 〈A, (ψR(·,aR))R∈τ 〉 is in K. We write Lk∞(Qn) for the
extension of Lk∞ with all quantifiers of arity n. This is only of interest when n ≤ k. Kolaitis
and Väänänen [17] showed that Lk∞(Q1) is equivalent to Ck. However, allowing quantifiers
of higher arity gives logics of considerably more expressive power. In particular, if σ is a
signature with all relations of arity at most n, then any property of σ-structures is expressible
in Ln∞(Qn). Thus, all properties of graphs, for instance, are expressible in L2

∞(Q2).

2.3 Games
For a pair of structures A and B and a logic L, we write A VL B to denote that every
sentence of L that is true in A is also true in B. When the logic is closed under negation, as
is the case with FO and L∞, for instance, AVL B implies B VL A. In this case, we have
an equivalence relation between structures and we write A ≡L B. When A and B are finite
structures, AVFO B implies AVL∞ B, and the same holds for the k-variable fragments of
these logics (see [10]).

The relations VL are often characterised in terms of games which we generically call
Spoiler-Duplicator games. For instance, the existential-positive k-pebble game introduced
by Kolaitis and Vardi [18], which we denote ∃Pebk, characterises the relation V∃+Lk

∞
. In

this game, Spoiler and Duplicator each has a collection of k pebbles indexed 1, . . . , k. In
each round Spoiler places one of its pebbles on an element of A and Duplicator responds by
placing its corresponding pebble (i.e. the one of the same index) on an element of B. Note
the game can go on for more than k rounds and pebbles can be repositioned throughout. If
the partial map taking the element of A on which Spoiler’s pebble i sits to the element of B
on which Duplicator’s pebble i is, fails to be a partial homomorphism, then Spoiler has won
the game. Duplicator wins by playing forever without losing. We get a game characterising
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16:4 Game Comonads & Generalised Quantifiers

≡Lk
∞

if (i) Spoiler is allowed to choose, at each move, on which of the two structures it places
a pebble and Duplicator is required to respond in the other structure; and (ii) Duplicator is
required to ensure that the pebbled positions form a partial isomorphism.

Hella [16] introduced a bijection game which characterises the equivalence ≡Ck . We write
Bijk(A,B) for the bijection game played on A and B. At each move, Spoiler chooses an
index i ∈ [k] and Duplicator is required to respond with a bijection f : A→ B. Spoiler then
chooses an element a ∈ A and pebbles indexed i are placed on a and f(a). If the partial
map defined by the pebbled positions is not a partial isomorphism, then Spoiler has won.
Duplicator wins by playing forever without losing.

In Hella’s original work, the bijection games appear as a special case of the n-bijective
k-pebble game, which we denote Bijkn(A,B) when played on structures A and B. This
characterises the equivalence relation ≡Lk

∞(Qn). Once again, we have a set of k pebbles
associated with each of the structures A and B and indexed by [k]. At each move, Duplicator
is required to give a bijection f : A → B and Spoiler chooses a set of up to n pebble
indices p1, . . . , pn ∈ [k] and moves the corresponding indices to elements a1, . . . , an ∈ A and
f(a1), . . . , f(an) in B. If the partial map defined by the pebbled positions is not a partial
isomorphism, then Spoiler has won. Duplicator wins by playing forever without losing. Note,
in particular, that for Duplicator to have a winning strategy it is necessary that the reducts
of A and B to relations of arity at most n are isomorphic. For example, on graphs Spoiler
wins any game on non-isomorphic graphs with n, k ≥ 2.

2.4 Comonads
We assume that the reader is familiar with basic definitions from category theory, in particular
the notions of category, functor and natural transformation. For a finite signature σ, we are
interested in the category R(σ) of relational structures over σ. The objects of the category
are such structures and the maps are homomorphisms between structures.

Comonads on a category C are triples (T, ε, δ) where T is an endofunctor on C and ε and
δ are natural transformations of type T → 1 and TT → T respectively, satisfying certain
comonad laws. The Kleisli category K(T ) is the category with the same objects as C where
K(T )-morphisms are C-morphisms of type TA→ B. Composition is defined with the help of
δ. A T -coalgebra on an object A ∈ C is a C-map α : A→ TA such that εA ◦ α = 1A.

Abramsky et al. [3] describe the construction of a comonad Pk, graded by k, on the
category R(σ) which exposes an interesting relationship between the games ∃Pebk(A,B)
and Bijk(A,B). Specifically, this construction shows that Duplicator winning strategies in
the latter are exactly the isomorphisms in a category in which the morphisms are winning
strategies in the former.

For any A, PkA is an infinite structure (even when A is finite) with universe (A× [k])+.
The counit εA takes a sequence [(a1, p1), . . . , (am, pm)] to am, i.e. the first component of the
last element of the sequence. The comultiplication δA takes a sequence [(a1, p1), . . . , (am, pm)]
to the sequence [(s1, p1), . . . , (sm, pm)] where si = [(a1, p1), . . . , (ai, pi)]. The relations are
defined so that (s1, . . . , sr) ∈ RPkA if, and only if, the si are all comparable in the prefix
order of sequences, RA(εA(s1), . . . , εA(sr)) and whenever si is a prefix of sj and ends with
the pair (a, p), there is no prefix of sj properly extending si which ends with (a′, p) for any
a′ ∈ A.

It is convenient to consider structures over a signature σ ∪ {I} where I is a new binary
relation symbol. An I-structure is a structure over this signature which interprets I as
the identity relation. Note that even when A is an I-structure, PkA is not one. The key
results from [3] relating the comonad with pebble games can now be stated as establishing a
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precise translation between (i) K(Pk)-morphisms A - B for I-structures A and B; and
(ii) winning strategies for Duplicator in ∃Pebk(A,B); and similarly a precise translation
between (i) isomorphisms in K(Pk) between A and B for I-structures A and B; and (ii)
winning strategies for Duplicator in Bijk(A,B).

A key result from the construction of the comonad Pk is the relationship between the
coalgebras of this comonad and tree decompositions. In particular, it is shown that a structure
A has a Pk-coalgebra if, and only if, the treewidth of A is at most k − 1. This relationship
between coalgebras and tree decompositions is established through a definition of a tree
traversal which we review in Section 5 below.

3 Games and Logic with Generalised Quantifers

Hella’s n-bijective k-pebble game, Bijkn is a model-comparison game which captures
equivalence of structures over the logic Lk∞(Qn), i.e. k-variable infinitary logic where the
allowed quantifiers are all generalised quantifiers with arity ≤ n. This game generalises
the bijection game Bijk which captures equivalence over Ck, k-variable infinitary logic with
counting quantifiers (which is equivalent to Lk∞(Q1) as shown by Kolaitis and Väänänen[17]).
In this section, we introduce a family of games which relax the rules of Bijkn and show their
correspondence to different fragments of Lk∞(Qn). In particular, we introduce a “one-way”
version of Bijkn which is crucial to our construction of a generalised version of the Pk comonad.

3.1 Relaxing Bijkn
Recall that each round of Bijkn(A,B) involves Duplicator selecting a bijection f : A → B

and ends with a test of whether for the pebbled positions (ai, bi)i∈[k] it is the case that, for
any {i1, . . . ir} ⊂ [k], (ai1 , . . . air ) ∈ RA ⇐⇒ (bi1 , . . . bir ) ∈ RA where Duplicator loses if
the test is failed. For the rest of the round, Spoiler rearranges up to n pebbles on A with
the corresponding pebbles on B moved according to f .

So, to create from Bijkn a “one-way” game from A to B we need to relax the condition
that f be a bijection and the ⇐⇒ in the final test. The following definition captures the
most basic such relaxation:

I Definition 1. For two relational structures A, B, the positive k-pebble n-function game,
+Funkn(A,B) is played by Spoiler and Duplicator. Prior to the jth round the position consists
of partial maps πaj−1 : [k] ⇀ A and πnj−1 : [k] ⇀ B. In Round j

Duplicator provides a function hj : A → B such that for each i ∈ [k], hj(πaj−1(i)) =
πbj−1(i).
Spoiler picks up to n distinct pebbles, i.e. elements p1, . . . pm ∈ [k](m ≤ n) and m

elements x1, . . . xm ∈ A.
The updated position is given by πaj (pl) = xl and πbj(pl) = hj(xl) for l ∈ [m]; and
πaj (i) = πaj−1(i) and πbj(i) = πbj−1(i) for i 6∈ {p1, . . . , pm}.
Spoiler has won the game if there is some R ∈ σ and (i1, . . . ir) ∈ [k]r with
(πaj (i1), . . . , πaj (ir)) ∈ RA but (πbj(i1), . . . , πbj(ir)) 6∈ RB.

Duplicator wins by preventing Spoiler from winning.

As this game is to serve as the appropriate one-way game for Bijkn, it is worth asking why
this game is a reasonable generalisation of ∃Pebk (the one-way game for Bijk). The answer
comes in recalling Abramsky et al.’s presentation of a (deterministic) strategy for Duplicator
in ∃Pebk(A,B) as a collection of branch maps φs,i : A→ B for each s ∈ (A× [k])∗, a history

CSL 2021



16:6 Game Comonads & Generalised Quantifiers

of Spoiler moves and i ∈ [k] a pebble index. These branch maps tell us how Duplicator would
respond to Spoiler moving pebble i to any element in A given the moves s that Spoiler has
played in preceding rounds. The functions hj in Definition 1 serve as just such branch maps.

In addition to this game, we now define some other relaxations of Bijkn which are important.
In particular we define the following positive games by retaining that the pebbled position
need only preserve positive atoms at the end of each round but varying the condition on f .

I Definition 2. For two relational structures A, B, the positive k-pebble n-injection (resp.
surjection, bijection) game, +Injkn(A,B) (resp. +Surjkn(A,B), +Bijkn(A,B)) is played by
Spoiler and Duplicator. Prior to the jth round the position consists of partial maps πaj−1 :
[k] ⇀ A and πnj−1 : [k] ⇀ B. In Round j

Duplicator provides an injection (resp. a surjection, bijection) hj : A→ B such that for
each i ∈ [k], hj(πaj−1(i)) = πbj−1(i).
Spoiler picks up to n distinct pebbles, i.e. elements p1, . . . pm ∈ [k](m ≤ n) and m

elements x1, . . . xm ∈ A.
The updated position is given by πaj (pl) = xl and πbj(pl) = hj(xl) for l ∈ [m]; and
πaj (i) = πaj−1(i) and πbj(i) = πbj−1(i) for i 6∈ {p1, . . . , pm}.
Spoiler has won the game if there is some R ∈ σ and (i1, . . . ir) ∈ [k]r with
(πaj (i1), . . . , πaj (ir)) ∈ RA but (πbj(i1), . . . , πbj(ir)) 6∈ RB.

Duplicator wins by preventing Spoiler from winning.

Strengthening the test condition in each round so that Spoiler wins if there is some R ∈ σ
and (i1, . . . ir) ∈ [k]r with (πaj (i1), . . . , πaj (ir)) ∈ RA if, and only if, (πbj(i1), . . . , πbj(ir)) 6∈ RB,
we get the definitions for the games Funkn, Injkn, Surjkn and Bijkn where the latter is precisely
the n-bijective k-pebble game of Hella. We recap the poset of the games we’ve just defined
ordered by strengthening of the rules/restrictions on Duplicator in the leftmost Hasse diagram
in Figure 1. Here a game G is above G′ if a Duplicator winning strategy in G is also one in
G′.

Bijk
n

Injk
n +Bijk

n Surjk
n

+Injk
n Funk

n +Surjk
n

+Funk
n

Lk(Qb
n)

Lk(Qi
n) +Lk(Qb

n) Lk(Qs
n)

+Lk(Qi
n) Lk(Qh

n) +Lk(Qs
n)

+Lk(Qh
n)

(1, 1, 1)

(1, 0, 1) (1, 1, 0) (0, 1, 1)

(1, 0, 0) (0, 0, 1) (0, 1, 0)

(0, 0, 0)

Figure 1 Hasse Diagrams of Games and Logics with Labels For Reference.

3.2 Logics with generalised quantifiers
In Section 2, we introduce for each n, k ∈ N the logics, Lk∞(Qn) as the infinitary logic
extended with all generalised quantifiers of arity n. For n = 1 this logic leads somewhat of a
double life. Kolaitis and Väänänen [17] show that this logic is equivalent to Ck, the infinitary
logic with counting quantifiers and at most k variables.
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In this section we explore fragments of Lk∞(Qn) defined by restricted classes of generalised
quantifiers, which we introduce next.

I Definition 3. A class of σ-structures K is homomorphism-closed if for all homomorphisms
f : A → B we have that A ∈ K =⇒ B ∈ K. Similarly, we say K is injection-closed
(resp. surjection-closed, bijection-closed) if for all injective homomorphisms (resp. surjective,
bijective homomorphisms) f : A → B, we have A ∈ K =⇒ B ∈ K.

We write Qh
n for the class of all generalised quantifiers QK of arity n where K is

homomorphism-closed. Similarly, we write Qi
n, Qs

n and Qb
n for the collections of n-ary

quantifiers based on injection-closed, surjection-closed and bijection-closed classes.

In order to define logics which incorporate these restricted classes of quantifiers, we first
define a base logic without quantifiers or negation.

I Definition 4. We denote by +Lk the class of positive infinitary k-variable quantifier-free
formulas. That means the k-variable fragment of the class of formulas +L[σ] (for any
signature σ), given by the grammar

φ ::= R(x1, . . . xm) |
∧
I
φ |

∨
J
φ

for R ∈ σ. We use Lk to denote a similar class of formulas but with negation permitted on
atoms.

This basic set of formulas can be extended into a logic by adding some set of quantifiers
as described here:

I Definition 5. For Q some collection of generalised quantifiers, we denote by +Lk(Q) the
smallest extension of +Lk to include the all quantifiers QK ∈ Q, closed under quantification
and ordinary boolean operations (excluding negation). Lk(Q) is the same logic but with
negation on atoms. Note that ∃+Lk∞ ≡ +Lk(∃) and, as we can always push negation down
to the level of atoms in Lk∞, Lk∞ ≡ Lk(∃,∀).

With this definition we are ready to introduce our logics. These are Lk(Qh
n), Lk(Qi

n),
Lk(Qs

n) and Lk(Qb
n) and their positive counterparts +Lk(Qh

n), +Lk(Qi
n), +Lk(Qs

n) and
+Lk(Qb

n). The obvious inclusion relationships between these logics are given by the middle
Hasse diagram in Figure 1. As we shall see, these logics are governed exactly by the games
pictured in the leftmost diagram in Figure 1.

Here we highlight two results relating this family of logics with more familiar infinitary
logics. These results classify the two extreme logics in the diagram from Figure 1, namely
Lk(Qb

n) and +Lk(Qh
n).

I Lemma 6. For all n, k ∈ N, Lk(Qb
n) ≡ Lk∞(Qn).

I Lemma 7. +Lk(Qh
1) ≡ +Lk(∃)

3.3 Games and logics correspond
So far we have introduced a series of games and logics which are all variations on Hella’s
n-bijection k-pebble game, Bijkn, and the corresponding logic Lk∞(Qn). Here we show that
these games and logics match up in the way as one would expect looking at the respective
refinement posets in Figures 1.

CSL 2021



16:8 Game Comonads & Generalised Quantifiers

In order to present the proof of this in a uniform fashion, we label the corners of these
cubes by three parameters xi, xs, xn ∈ {0, 1}, standing for injection, surjection and negated
atoms respectively. This can be seen in Figure 1.

Now we define the aliases of each of the games which modify Funkn as follows, with the
games defined lining up with the games defined in Section 3.1.

I Definition 8. For two σ-structures A and B, the game (xi, xs, xn)-Funkn(A,B) is played
by Spoiler and Duplicator in the same fashion as the game Funkn(A,B) with the following
additional rules:
1. When Duplicator provides a function f : A→ B at the beginning of a round, f is required

to be injective if xi = 1 and surjective if xs = 1.
2. If xn = 1, Spoiler wins at move j if the partial map taking πaj (i) to πbj(i) fails to preserve

negated atoms as well as atoms.

Similarly, we define parameterised aliases for the logics introduced in Section 3.2. To
lighten our notational burden, we use Hn,k to denote the logic +Lk(Qh

n) throughout this
section.

I Definition 9. We define Hn,kx to be the logic Hn,k extended by
1. all n-ary generalised quantifiers closed by all homomorphisms which are injective, if

xi = 1; and surjective, if xs = 1.
2. if xn = 1, negation on atoms.
For example, Hn,k001 extendsHn,k with negation on atoms but contains no additional quantifiers
as all n-ary quantifiers closed under homomorphisms are already in Hn,k. On the other
hand, Hn,k110 does not allow negation on atoms but allows all quantifiers that are closed under
bijective homomorphisms.

Now to prove the desired correspondence between x-Funkn and Hn,kx , we adapt a proof
from Hella[16] to work for this parameterised set of games. For this we need the language of
back-and-forth systems which Hella uses as an explicit representation of a Duplicator winning
strategy. We provide the appropriate generalised definition here:

I Definition 10. Let Partkxn
(A,B) be the set of all partial functions A ⇀ B which preserve

atoms (i.e. are partial homomorphisms) and, if xn = 1 additionally preserve negated atoms.
A set S ⊂ Partkxn

(A,B) is a back-and-forth system for the game (xi, xs, xn)-Funkn(A,B)
if it satisfies the following properties:

Closure under subfunction: If f ∈ S then g ∈ S for any g ⊂ f
(xi, xs)-forth property For any f in S s.t. |f | < k, there exists a function φf : A→ B,
which is injective if xi = 1 and surjective if xs = 1 s.t. for every C ⊂ dom(f), D ⊂ A

with |D| ≤ n we have (f � C) ∪ (φf � D) ∈ S.

As this definition is essentially an unravelling of a Duplicator winning strategy for the
game (xi, xs, xn)-Funkn(A,B) we see that

I Lemma 11. There is a back-and-forth system S containing the empty partial homomorphism
∅ if, and only if, Duplicator has a winning strategy for the game (xi, xs, xn)-Funkn(A,B)

Following Hella, we define the canonical back-and-forth system for a game as follows:

I Definition 12. The canonical back-and-forth system for (xi, xs, xn)-Funkn(A,B) is denoted
In,kx (A,B) and is given by the intersection

⋂
m I

n,k,m
x (A,B), whose conjuncts are defined

inductively by setting In,k,0x (A,B) := Partkxn
(A,B) and letting In,k,m+1

x (A,B) be the set
of ρ ∈ In,k,mx (A,B) such that ρ satisfies the (xi, xs)-forth condition with respect to the set
In,k,mx (A,B)
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It is not difficult to see that for any back-and-forth system S for x-Funkn(A,B) we have
S ⊂ In,kx (A,B). This means that there is a winning strategy for Duplicator in the game
x-Funkn(A,B) if, and only if, In,kx (A,B) is not empty.

To complete the vocabulary needed to emulate Hella’s proof in this setting we introduce
the following generalisations of Hella’s definitions.

I Definition 13. Denote by Jn,kx (A,B) the set of all ρ ∈ Partkxn
(A,B) which preserve the

validity of all Hn,kx formulas in elements of dom(ρ). Let ∃+FOn,k
x denote the fragment of

Hn,kx with only finitary conjunctions and disjunctions. Denote by Kn,k
x (A,B) the set of all

ρ ∈ Partkxn
(A,B) which preserve the validity of all ∃+FOn,k

x formulas in elements of dom(ρ).

An adaptation of Hella’s argument yields the following Lemma:

I Lemma 14. For A,B finite relational structures, In,kx (A,B) = Jn,kx (A,B) = Kn,k
x (A,B)

We conclude this section by showing the desired correspondence for the whole family of
games and logics we have introduced.

I Theorem 15. For x ∈ {0, 1}3 and all n, k ∈ N the following are equivalent:
Duplicator has a winning strategy for x-Funkn(A,B)
AVHn,k

x
B

AV∃+FOn,k
x
B

The case of n = 1 for this correspondence is particularly interesting as we can show
that unary injection-closed and surjection-closed quantifiers are generated by all counting
quantifiers and the quantifiers {∃,∀} respectively.

4 The Comonad and Kleisli Category

In this section, we show how to construct a game comonad Gn,k which captures the strategies
of +Funkn in the same way that Pk captures the strategies of ∃Pebk. We do this using a
new technique for constructing new game comonads from old based on strategy translation.
We then show that different types of morphism in the Kleisli category of this new comonad
correspond to Duplicator strategies for the games introduced in Section 3.

4.1 Translating between games
The pebbling comonad is obtained by defining a structure PkA for each A whose universe
consists of (non-empty) lists in (A × [k])∗ which we think of as sequences of moves by
Spoiler in a game Pebk(A,B), with B unspecified. With this in mind, we call a sequence
in (A × [k])∗ a k-history (allowing the empty sequence). In contrast, a move in the game
+Funkn(A,B) involves Spoiler moving up to n pebbles and therefore a history of Spoiler
moves is a sequence in ((A× [k])≤n)∗. We call such a sequence an n, k-history. With this
set-up, (deterministic) strategies are given by functions ((A × [k])∗ × [k]) → (A → B) for
Pebk(A,B) and ((A× [k])≤n)∗ → (A→ B) for +Funkn(A,B).

A winning strategy for Duplicator in +Funkn(A,B) can always be translated into one in
Pebk(A,B). We aim now to establish conditions when a translation can be made in the
reverse direction. For this, it is useful to establish some machinery.

There is a natural flattening operation that takes n, k-histories to k-histories. We denote
the operation by F , so F ([s1, s2, . . . , sm]) = s1 · s2 · · · sm, where s1, . . . sm ∈ (A× [k])≤n. Of
course, the function F is not injective and has no inverse. It is worth, however, considering
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16:10 Game Comonads & Generalised Quantifiers

functions G from k-histories to n, k-histories that are inverse to F in the sense that F (G(t)) =
t. One obvious such function takes a k-history s1, . . . , sm to the n, k-history [[s1], . . . , [sm]],
i.e. the sequence of one-element sequences. This is, in some sense, minimal in that imposes
the minimal amount of structure on G(t). We are interested in a maximal such function. For
this, recall that the sequences in (A× [k])≤n that form the elements of an n, k-history have
length at most n and do not have a repeated index from [k]. We aim to break a k-history t
into maximal such blocks. This leads us to the following definition.

I Definition 16. A list s ∈ (A× [k])∗ is called basic if it contains fewer than or equal to n
pairs and the pebble indices are all distinct.

The n-structure function Sn : (A× [k])∗ → ((A× [k])≤n)∗ is defined recursively as follows:
Sn(s) = [s] if s is basic
otherwise, Sn(s) = [a];Sn(t) where s = a · t such that a is the largest basic prefix of s.

It is immediate from the definition that F (Sn(t)) = t. It is useful to characterise the range
of the function Sn, which we do through the following definition.

I Definition 17. An n, k-history t is structured if whenever s and s′ are successive elements
of t, then either s has length exactly n or s′ begins with a pair (a, p) such that p occurs in s.

It is immediate from the definitions that Sn(s) is structured for all k-histories s and that
an n, k-history is structured if, and only if, Sn(F (s)) = s.

We are now ready to characterise those Duplicator winning strategies for ∃Pebk that can
be lifted to +Funkn. First, we define a function that lifts a position in ∃Pebk that Duplicator
must respond to, i.e. a pair (s, p) where s is a k-history and p a pebble index, to a position
in +Funkn, i.e. an n, k-history.

I Definition 18. Suppose s is a k-history and s′ is the last basic list in Sn(s), so Sn(s) = t; [s′].
Let p ∈ [k] be a pebble index.

Define the n-structuring αn(s, p) of (s, p) by

αn(s, p) =
{
t; [s′] if |s′| = n or p occurs in s′

t otherwise.

I Definition 19. Say that a Duplicator strategy Ψ : ((A× [k])∗ × [k])→ (A→ B) in ∃Pebk
is n-consistent if for all k-histories s and s′ and all pebble indices p and p′:

αn(s, p) = αn(s′, p′) ⇒ Ψ(s, p) = Ψ(s′, p′).

Intuitively, an n-consistent Duplicator strategy in the game ∃Pebk(A,B) is one where
Duplicator plays the same function in all moves that could be part of the same Spoiler move
in the game +Funkn(A,B). We are then ready to prove the main result of this subsection.

I Lemma 20. Duplicator has an n-consistent winning strategy in ∃Pebk(A,B) if, and only
if, it has a winning strategy in +Funkn(A,B).

4.2 Lifting the comonad Pk to Gn,k

Central to Abramsky et al.’s construction of the pebbling comonad is the observation that
for I-structures (defined in Section 2), maps in the Kleisli category K(Pk) correspond to
Duplicator winning strategies in ∃Pebk(A,B).
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I Lemma 21 ([3]). For A and B I-structures over the signature σ, there is a homomorphism
PkA → B if and only if there is a (deterministic) winning strategy for Duplicator in the game
∃Pebk(A,B)

The relation to strategies is clear in the context of elements s ∈ PkA representing histories
of Spoiler moves up to and including the current move in the game ∃Pebk(A,B). The
relational structure given to this set by Abramsky, Dawar and Wang ensures that pebbled
positions preserve relations in σ, while the caveat here about I-structures is a technicality to
ensure that the pebbled positions when “playing” according to a map f all define partial
homomorphisms, in particular they give well defined partial maps from A to B.

As we saw in Lemma 20 a Duplicator winning strategy in +Funkn(A,B) is given by an
n-consistent strategy in ∃Pebk(A,B). The n-consistency condition can be seen as saying
that the corresponding map f : PkA → B must, on certain “equivalent” elements of PkA
give the same value. We can formally define the equivalence relation as follows.

I Definition 22. For n ∈ N and A a relational structure. Define ≈n on the universe of PkA
as follows:

[s; (a, i)] ≈n [t; (b, j)] ⇐⇒ a = b and αn((s, i)) = αn((t, j))

In general, for any structured n, k-history t, we write [t|a] to denote the ≈n-equivalence class
of an element [s; (a, i)] ∈ PkA with αn(s, i) = t.

This allows us to define the main construction of this section as a quotient of the
relational structure PkA. Note that the relation ≈n is not a congruence of this structure, so
there is not a canonical quotient. This is because don’t have that a ≈n b does not imply
a ∈ RA ⇐⇒ b ∈ RA. Given an arbitrary equivalence relation ∼ over a relational structure
M, there are two standard ways to define relations in a quotientM/∼. We could say that a
tuple (c1, . . . cr) of equivalence classes is in a relation RM/∼ if, and only if, every choice of
representatives is in RM or if some choice of representatives is in RM. The latter definition
has the advantage that the quotient map fromM toM/∼ is a homomorphism.

I Definition 23. For n, k ∈ N, k ≥ n and σ a relational signature, we define the functor
Gn,k : R(σ)→ R(σ) by:

On objects Gn,kA := PkA/≈n.
On morphisms Pkf/≈n is well-defined as Pkf only changes the elements not the pebble
indices.

Writing qn : PkA → Gn,kA for the quotient map enables us to establish the following
useful property.

I Observation 24. f : Gn,kA → B is a homomorphism if, and only if, f ◦ qn : PkA → B is
a homomorphism.

Combining this with Lemma 20, we have the appropriate generalisation of Lemma 21.

I Lemma 25. For I-structures A and B, there is a homomorphism f : Gn,kA → B if, and
only if, there is a winning strategy for the Duplicator in the game +Funkn

Furthermore, we can see that

I Lemma 26. The counit ε and comultiplication δ for Pk lift to well-defined natural
transformations for Gn,k
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We will call these lifted natural transformations εn,k : Gn,k → 1 and δn,k : Gn,k →
Gn,kGn,k. As qn ◦ Pkqn = Gn,kqn ◦ qn, we have that for any t ∈ (Pk)mA the notion of
“the” equivalence class of t, qn(t) ∈ (Gn,k)mA is well-defined. So for any term T built from
composing ε, δ and Pk we have that the term T̃ , obtained by replacing ε by εn,k, δ with δn,k
and Pk with Gn,k satisfies qn(T (t)) = T̃ (qn(t)) by the above proof. Now as the counit and
coassociativity laws are equations in ε and δ which remain true on taking the quotient we
have the following result.

I Theorem 27. (Gn,k, εn,k, δn,k) is a comonad on R(σ)

4.3 Classifying the morphisms of K(Gn,k)
In Abramsky et al.’s treatment of the Kleisli category of Pk [3] they classify the morphisms
according to whether their branch maps are injective, surjective or bijective. We extend this
definition to the comonad Gn,k. This gives us a way of classifying the morphisms to match
the classification of strategies given in Section 3.

I Definition 28. For f : Gn,kA → B a Kleisli morphism of Gn,k, the branch maps of f are
defined as the following collection of functions A→ B, indexed by the structured n, k-histories
t ∈ ((A× [k])≤n)∗ and defined as φft (x) := f([t|x]). We say that such an f is branch-bijective
(resp. branch-injective, -surjective) if for every t φft is bijective (resp. injective, surjective).
We denote these maps by A →b

n,k (resp. B A →i
k B and A →s

k B)

Informally, the branch map φgs is the response given by Duplicator in the +Funkn(A,B)
when playing according to the strategy represented by g after Spoiler has made the series of
plays in s. This gives us another way of classifying the Duplicator winning strategies for the
games from Section 3.

I Lemma 29. There is a winning strategy for Duplicator in the game +Bijkn(A,B) (resp.
+Injkn(A,B), +Surjkn(A,B)) if and only if A →b

n,k B (resp. A →i
n,k B, A →s

n,k B).

Expanding this connection between Kleisli maps and strategies, we define the following:

I Definition 30. We say a a Kleisli map f : Gn,kA → B is strongly branch-
bijective (resp. strongly branch-injective, -surjective) if the strategy for +Bijkn(A,B) (resp.
+Injkn(A,B),+Surjkn(A,B) ) is also a winning strategy for the game Bijkn(A,B) (resp.
Injkn(A,B),Surjkn(A,B)) and we denote these maps by A _b

n,k (resp. B A _i
k B and

A_s
k B)

Now we generalise a result of Abramsky, Dawar and Wang to the Kleisli category K(Gn,k).

I Lemma 31. For A,B finite relational structures,

A�i
n,k B ⇐⇒ A�s

n,k B ⇐⇒ A_b
n,k B ⇐⇒ A ∼=K(Gn,k) B

This lemma allows us to conclude that the isomorphisms in the category K(Gn,k)
correspond with equivalence of structures up to k variable infinitary logic extended by
all generalised quantifiers of arity at most n and thus with winning strategies for Hella’s
n-bijective k-pebble game.

I Theorem 32. For two finite relational structures A and B the following are equivalent:
A ∼=K(Gn,k) B
Duplicator has a winning strategy for Bijkn(A,B)
A ≡Lk(Qn) B

Proof. Immediate from Lemma 31 and Hella [15]. J
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5 Coalgebras and Decompositions

Abramsky et al. [3] show that the coalgebras of the comonad Pk are, in fact, objects of
great interest to finite model theorists. That is, a coalgebra α : A → PkA gives a tree
decomposition of A of width at most k − 1. Moreover, any such tree decomposition can be
turned into a coalgebra. This result works, in essence, because PkA has a treelike structure
where any pebble history, or branch, s ∈ PkA only witnesses the relations from the ≤ k

elements of A which make up the pebbled position on s. So a homomorphism A → PkA
witnesses a sort of treelike k-locality of the relational structure of A and the extra conditions
of being a Pk-coalgebra ensure this can be presented as a tree decomposition (of width < k).

In generalising this comonad to Gn,k, we have given away some of the restrictive k-local
nature of Pk which makes this argument work. For example, we note that the substructure
induced on elements of the form {[ε|x] | x ∈ A} witnesses all relations in A which have arity
≤ n. So, in particular, if the maximum arity of σ the signature of A is less than n, then it
is not hard to see how to construct a homomorphism, indeed a coalgebra, A→ Gn,kA. So
our notion of n-generalised tree decomposition should clearly be more permissive than the
notion of tree decomposition, collapsing for n ≥ arity(σ) and otherwise allowing a controlled
amount of non-locality (parameterised by n). The correct definition, as we prove in this
section, is the following.

I Definition 33. An extended tree decomposition of a σ-structure A is a triple (T, β, γ)
with β, γ : T → 2A such that:
1. (T,B) with B : T → 2A given by B(t) = β(t) ∪ γ(t) is a tree-decomposition of A; and
2. if a ∈ γ(t) and a ∈ B(t′) then t ≤ t′.

Thus, we can see an extended tree decomposition as a tree decomposition (T,B) where,
additionally, at each node t we pick out a subset γ(t) of B(t) with the property that every
element a of A appears in at most one γ(t) and when it does, this t is the root of the
subtree of T in which a appears. We next define the width and arity of an extended tree
decomposition.

I Definition 34. The width of an extended tree decomposition (T, β, γ) is maxt∈T |β(t)|.
The arity of an extended tree decomposition (T, β, γ) of width k is the least n ≤ k such

that:
1. if t < t′ then |β(t′) ∩ γ(t)| ≤ n; and
2. for every tuple (a1, . . . , am) in every relation R of A, there is a t ∈ T such that
{a1, . . . , am} ⊆ B(t) and |{a1, . . . , am} ∩ γ(t)| ≤ n.

Any extended tree decomposition T (β, γ) of a structure A can be transformed into one
in which each a ∈ A appears in exactly one γ(t). Indeed, suppose there is some a for which
this is not true and let t be the order minimal element such that s ∈ B(t). We simply
split t into two nodes adding a parent ta (with no other children) with γ(ta) = {a} and
β(ta) = β(t) \ {a}. This is easily seen to be an extended tree decomposition with the same
width and arity. We call such a tree decomposition one in normal form.

We are particularly interested in extended tree decompositions that are further well-
structured, in the sense that is related to the definition of structured n, k-histories in Section 4.

I Definition 35. An extended tree decomposition with width k and arity n is structured if
for every a ∈ A there is a t ∈ T s.t. a ∈ γ(t), for every node t, γ(t) 6= ∅, for any child t′ of t
β(t′) ∩ γ(t) 6= ∅ and for any t′′ a child of t′ we have that either:
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|β(t′) ∩ γ(t)| = n; or
|β(t′)| < k; or
γ(t) ∩ β(t′) \ β(t′′) 6= ∅

For a node t in an extended tree decomposition, we call β(t) the fixed bag at t and γ(t)
the floating bag at t.

In general, extended tree decompositions of width k and arity 1 correspond exactly with
tree decompositions of width k.

I Lemma 36. A relational structure A has a tree decomposition of width k if, and only if, it
has an extended tree decomposition of width k and arity 1

Relating extended tree decompositions to our construction in Section 4, we note the
following easy but important result.

I Lemma 37. For any finite A, there is a structured extended tree decomposition of Gn,kA
of width k and arity n for some k, n ∈ N

We now prove the main claim of this section, that the Gn,k-coalgebras are in
correspondence with structured extended tree decompositions of width k and arity n. The
correspondence between tree decompositions and coalgebras of Pk was established in [3]
through a partial order on a structure A called a tree traversal. We now introduce an
analogous traversal structure to link Gn,k-coalgebras and extended tree decompositions of
width k and arity n. The following definitions provide precisely such a structure.

I Definition 38. An n-tree order is a triple (X,<,∼) where < is a partial order and ∼ an
equivalence relation, both on the set X, such that:
1. for all x, y, z ∈ X, x < y and y ∼ z implies x < z;
2. (X/∼, <) is a tree order; and
3. for each x ∈ X and each ∼-equivalence class η, there are at most n elements y ∈ η such

that y < x.

An n-tree order provides the order structure allowing us to define the traversals we need.

I Definition 39. For a σ-structure A, let (A,<,∼) be an n-tree order and ι : O → 2[k] a
function, where O = {(a, b) | a < b} such that
1. if b < b′ or b ∼ b′, then ι(a, b) = ι(a, b′); and
2. if a 6= a′ and a ∼ a′ then ι(a, b) ∩ ι(a′, b) = ∅.
3. if C is a ∼-equivalence class then |

⋃
a∈C ι(a, b)| ≤ n

This is an n, k-traversal of A if, for each tuple (a1, . . . , am) in any relation R of A, we have:
1. for each i, j ∈ [m] either ai < aj, aj < ai or ai ∼ aj;
2. no more than n elements of {a1, . . . , am} belong to any one ∼-equivalence class; and
3. if ai < aj, there exists pi ∈ ι(ai, aj) such that for all c ∈ A with ai < c < aj then

pi 6∈ ι(c, aj).

An n, k-traversal is structured if for any a < b < c such that there is no d with a < d < b,
we have that either:
|
⋃
{a′|a∼a′and a′<c} ι(a′, c)| = n; or⋃
{a′|a∼a′and a′<c} ι(a′, c) ∩

⋃
{b′|b∼b′and b′<c} ι(b′, c) 6= ∅

We establish the relationship between extended tree decompositions and n, k-traversals
in the following lemma.
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I Lemma 40. For a finite structure A, if A has an extended tree decomposition of width k
and arity n then it has an n, k-traversal. Furthermore, if the extended tree decomposition is
structured then there is a structured n, k-traversal.

We are ready to establish the relationship between n, k traversals and coalgebras of Gn,k.

I Lemma 41. There is a coalgebra α : A → Gn,kA if, and only if, there is a structured
n, k-traversal of A

We finish this section by putting together these results into a single theorem.

I Theorem 42. For A a finite relational structure the following are equivalent:
1. there is a Gn,k-coalgebra α : A → Gn,kA
2. there is a structured extended tree decomposition of A with width k and arity n
3. there is a structured n, k-traversal of A

6 Concluding Remarks

The work of Abramsky et al., giving comonadic accounts of pebble games and their relationship
to logic has opened up a number of avenues of research. It raises the possiblilty of studying
logical resources through a categorical lens and introduces the notion of coresources. This
view has been applied to pebble games [3], Ehrenfeucht-Fraïssé games, bisimulation games [4]
and also to quantum resources [1, 2]. In this paper we have extended this approach to logics
with generalised quantifiers.

The construction of the comonad Gn,k introduces interesting new techniques to this
project. The pebbling comonad Pk is graded by the value of k which we think of as a
coresource increasing which constrains the morphisms. The new parameter n provides
a second coresource, increasing which further constrains the moves of Duplicator. It is
interesting that the resulting comonad can be obtained as a quotient of Pk and the strategy
lifting argument developed in Section 4 could prove useful in other contexts. The morphisms
in the Kleisli category correspond to winning strategies in a new game we introduce which
characerises a natural logic: the positive logic of homomorphism-closed quantifiers. The
isomorphisms correspond to an already established game: Hella’s n-bijective game with k
pebbles. This relationship allows for a systematic exploration of variations characterising a
number of natural fragments of the logic with n-ary quantifiers. One natural fragment that
is not yet within this framework and worth investigating is the logic of embedding-closed
quantifiers of Haigora and Luosto [14].

This work opens up a number of perspectives. Logics with generalised quantifiers have
been widely studied in finite model theory. They are less of interest in themselves and more
as tools for proving inexpressibility in specific extensions of first-order or fixed-point logic.
For instance, the logics with rank operators [7, 12], of great interest in descriptive complexity,
have been analysed as fragments of a more general logic with linear-algebraic quantifiers [6].
It would be interesting to explore whether the comonad Gn,k could be combined with a
vector space construction to obtain a categorical account of this logic.

More generally, the methods illustrated by our work could provide a way to deconstruct
pebble games into their component parts and find ways of constructing entirely new forms of
games and corresponding logics. The games we consider and classify are based on Duplicator
playing different kinds of functions (i.e. morphisms on finite sets) and maintaining different
kinds of homomorphisms (i.e. morphisms in the category of σ-structures). Could we build
reasonable pebble games and logics on other categories? In particular, can we bring the
algebraic pebble games of [9] into this framework?
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