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Abstract

It is a theorem of classical Computability Theory that the automorphism group of
the enumeration degrees De embeds into the automorphism group of the Turing
degrees DT . This follows from the following three statements:

1. DT embeds to De,

2. DT is an automorphism base for De,

3. DT is definable in De.

The first statement is trivial. The second statement follows from the Selman’s
theorem: A ≤e B ⇐⇒ ∀X ⊆ ω[B ≤e X ⊕X =⇒ A ≤e X ⊕X]. The third
statement follows from the definability of a Kalimullin pair in the α-enumeration
degrees De and the following theorem: an enumeration degree is total iff it is
trivial or a join of a maximal Kalimullin pair.

Following an analogous pattern, this thesis aims to generalize the results above
to the setting of α-Computability theory. The main result of this thesis is Em-
bedding Theorem: the automorphism group of the α-enumeration degrees Dαe
embeds into the automorphism group of the α-degrees Dα if α is an infinite reg-
ular cardinal and assuming the axiom of constructibility V = L. If α is a gen-
eral admissible ordinal, weaker results are proved involving assumptions on the
megaregularity.

In the proof of the definability of Dα in Dαe a helpful concept of α-rational
numbers Qα emerges as a generalization of the rational numbers Q and an ana-
logue of hyperrationals. This is the most valuable theory development of this
thesis with many potentially fruitful directions.
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Chapter 1

Conventions

We state global conventions sometimes locally violated.

1.1 Notational conventions

Facts and proofs

Facts do not have proofs. If a proof for some other logical statement such as
a proposition, lemma, theorem, corollary is not included, the statement will be
marked with a box � at the end.

Binding strength of arithmetical operators

Σii+ x := (Σii) + x.

Binding strength of logical symbols

The equally strongest symbols are ¬ ∀ ∃. Then continued from the strongest to
the weakest: ∧ ∨ =⇒ ⇐⇒ . Brackets override the binding strength. Thus for
example ∀x.φ(x) ∨ ψ =⇒ χ ≡ ((∀x.φ(x)) ∨ ψ) =⇒ χ.

Bounded quantifiers over several variables

A bounded quantifier over several variables bounds all of them. Thus ∀a, b, c >
0.a+ b+ c = z abbreviates ∀a > 0∀b > 0∀c > 0.a+ b+ c = z which is different
from ∀a∀b∀c > 0.a+ b+ c = z where only the third variable c is bounded.

Evaluation of the logic formulas

Brackets are used as a function [] : PROP→ 2 to give a valuation of a logic formula
in PROP with the valuation for the atoms as [false] := 0 and [true] := 1.



2 1.2. Metatheory

Ordinals

In the context of α-Computability Theory, the ordinal α always denotes an admis-
sible ordinal, i.e. Lα satisfies the axioms of Kripke-Platek set theory. Similarly,
the ordinal β denotes a limit ordinal.

1.2 Metatheory

Proofs in this thesis are carried out in ZFC - Zermelo-Fraenkel set theory with the
axiom of choice. See appendix A.1 for the list of ZFC axioms.
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Chapter 2

Thesis summary

The central focus of this thesis is to generalize the embedding theorem 2.1.17 that
the automorphism group of the enumeration degrees embeds into the automor-
phism group of the Turing degrees to the setting of α-Computability Theory.

The enumeration reducibility and degrees are a major research area in Com-
putability Theory with first investigations at least as early as 1961 [19] and 1974
[3].

A generalized notion of α-enumeration degrees in α-Computability Theory
has been investigated by the author for the first time1. To generalize the major
recent result meant on one hand the development of many notions and proving of
many intermediate results. On the other hand this required a careful selection of
the results and notions to be generalized.

2.1 Embedding Theorem in classical Computability
Theory

We present some essential concepts first, including enumeration reducibility,
semicomputability, Kalimullin pair and degree structures. Then we state and
outline the proof of the embedding theorem in classical Computability Theory.

For a more detailed background in classical Computability Theory consult
the Cooper’s book Computability Theory [5] which includes the material on the
following, but not limited to:

• Turing machines, computability, reducibility, degrees and jump,

• computably enumerable sets and degrees,

• Peano arithmetic, arithmetical hierarchy and sets,
1The only publication that the author is aware of and which treats α-enumeration reducibility

briefly is [6]. However, α-enumeration degrees remain there untouched.
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• the enumeration reducibility, degrees and jump,

• total sets and degrees,

• many-one reducibility and degrees,

• priority arguments.

2.1.1 Basic notions

In remark 2.1.1 below we recall the classes of the formulas in the arithmetical
hierarchy. For a full definition, see [5].

Remark 2.1.1. (Arithmetical hierarchy)

• A formula φ belongs to the classes Σ0 and Π0 iff it is equivalent to a formula
with bounded quantifiers only.

• A formula φ belongs to the class Σn+1 iff it is equivalent to a formula of the
form ∃x1∃x2 . . . ∃xnψ where ψ belongs to the class Πn.

• A formula φ belongs to the class Πn+1 iff it is equivalent to a formula of the
form ∀x1∀x2 . . . ∀xnψ where ψ belongs to the class Σn.

• A formula φ belongs to the class ∆n iff φ belongs to both Σn and Πn.

We use remark 2.1.1 further to define the definability classes over some set
M .

Definition 2.1.2. (Definability classes over M )
Let C be a class of first-order formulas in the language of ZF. Specifically, let
C ∈ {Σn,Πn,∆n} for some n ∈ N. Let M be a set, e.g. the domain of the model
of computation. Then C(M) denotes the subsets of M which are definable with
some formula from C with parameters in M .

Note 2.1.3. For the subsequent concepts in classical Computability Theory, we
use the least infinite ordinal ω in place of the natural numbers N. This does not
introduce any problems since ω = N and has a benefit of an easier generalization
of the notation to the context of α-Computability Theory introduced later.

Definition 2.1.4. (Computability and computable enumerability)

• The set A ⊆ ω is computable iff A is definable over ω with some ∆1 for-
mula, i.e. A ∈ ∆1(ω).
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• The set A ⊆ ω is computably enumerable (c.e.) iff A is definable over ω
with some Σ1 formula, i.e. A ∈ Σ1(ω).

Definition 2.1.5. (Canonical index of a finite set)
Let D ⊆ ω be a finite set. Then its canonical index n is defined as n :=

∑
k∈D 2k.

Denote a finite set with the canonical index n as Dn. In other words, Dn is the set
that contains an element k < ω iff the kth digit of the binary expansion of n is 1.

Definition 2.1.6. (Reducibilities)

• The set A ⊆ ω is enumerable from B ⊆ ω denoted as A ≤e B iff there is a
c.e. set W such that:

∀a < ω[a ∈ A ⇐⇒ ∃n < ω[〈a, n〉 ∈ W ∧Dn ⊆ B]]

where Dn is the finite set given by the canonical index n and 〈a, b〉 is a
natural number coding the pair (a, b).

• The set A ⊆ ω is computable from B ⊆ ω denoted as A ≤T B iff there is a
Turing machine with an oracle B that computes the characteristic function
of A.

A general r-reducibility such as the Turing or the enumeration reducibility
gives rise to the ordered structure of the r-degrees as in definition 2.1.7 below.

Definition 2.1.7. (r-Degrees)
Let ≤r∈ {≤e,≤T} be the enumeration or Turing reducibility. Then ≤r induces
the equivalence relation ≡r⊆ P(ω)× P(ω) as follows:

A ≡r B ⇐⇒ A ≤r B ∧B ≤r A

for any sets A and B which are subsets of ω. The r-degree of the set A ⊆ ω

denoted as degr(A) is its equivalence class given by the equivalence relation ≡r.
In notation,

degr(A) := {B ∈ P(ω) : A ≡r B}.

The set of r-degrees denoted as Dr is the set of the partitions of P(ω) partitioned
by the equivalence relation≡r induced by the reducibility relation≤r. In notation,

Dr := {degd(A) : A ⊆ ω}.

The reducibility relation ≤r induces the order ≤ on the set of r-degrees Dr as
follows:

∀A,B ∈ P(ω)[degr(A) ≤ degr(B) ⇐⇒ A ≤r B].

Using the general definition definition 2.1.7, we can specifically define the
structures of the enumeration and Turing degrees in definition 2.1.8.
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Definition 2.1.8. (Degrees)

• The enumeration degrees are De := P(ω)/ ≡e where ≡e is the equivalence
relation induced by the enumeration reducibility ≤e. In detail,

De := {dege(A) : A ⊆ ω} = {{B ∈ P(ω) : A ≤e B∧B ≤e A} : A ⊆ ω}.

• The Turing degrees are DT := P(ω)/ ≡T where ≡T is induced by ≤T . In
detail,

DT := {degT (A) : A ⊆ ω} = {{B ∈ P(ω) : A ≤T B∧B ≤T A} : A ⊆ ω}.

Definition 2.1.9. (Computable join)
Let A,B ⊆ ω. Then the computable join of A and B is defined as

A⊕B := {2a : a ∈ A} ∪ {2b+ 1 : b ∈ B}.

Definition 2.1.10. (Set complement)
Let A ⊆ ω. Then the complement of A in ω is A := ω − A.

Fact 2.1.11. 2 For any total functions f, g : ω → ω we have:

f ≤e g ⇐⇒ f ≤T g.

Remark 2.1.12. (Correspondence between DT and De)

• Using fact 2.1.11 for any A,B ⊆ ω we have:

A ≤T B ⇐⇒ A⊕ A ≤e B ⊕B.

• There is an embedding ι : DT ↪→ De from the Turing degrees into the
enumeration degrees given by A 7→ A⊕ A.

• The set ι[DT ] ⊆ De is called total enumeration degrees and is denoted by
T OT e.

Definition 2.1.13. (Semicomputability)
A setA ⊆ ω is semicomputable iff there is a computable function sA : ω×ω → ω

such that for all x, y ∈ ω:

• sA(x, y) ∈ {x, y}

• x ∈ A ∨ y ∈ A =⇒ sA(x, y) ∈ A.

Definition 2.1.14. (Kalimullin pair)

• Let U ⊆ ω. The pair of sets A,B ⊆ ω is a U -Kalimullin pair denoted3 as
KU(A,B) iff there is a setW ≤e U such thatA×B ⊆ W andA×B ⊆ W .

2[20] Corollary XXIV p153.
3Here the notation KU (A,B) has two meanings: the first is the reference to the pair object

(A,B), the second is the statement that this pair object (A,B) is a U -Kalimullin pair.
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• The pair of sets A,B ⊆ ω is a Kalimullin pair denoted as K(A,B) iff there
is a c.e. set W such that A×B ⊆ W and A×B ⊆ W .

• A Kalimullin pair K(A,B) is non-trivial denoted as Knt(A,B) iff both A
and B are not c.e.

• A Kalimullin pair K(A,B) is maximal denoted as Kmax(A,B) iff for
any Kalimullin pair K(C,D) if A ≤e C and B ≤e D, then A ≡e C and
B ≡e D.

Example 2.1.15. Let A ⊆ ω be a semicomputable set. Then K(A,A).

Definition 2.1.16. (Kalimullin pair in the enumeration degrees De)
Let a, b, u ∈ De be some enumeration degrees.

• Then the pair of the degrees a and b is a u-Kalimullin pair denoted as
Ku(a, b) iff

∃A ∈ a∃B ∈ b∃U ∈ u.KU(A,B).

• The pair of the degrees a and b is a Kalimullin pair denoted as K(a, b) iff

∃A ∈ a∃B ∈ b.K(A,B).

2.1.2 Embedding Theorem

Induce ≤ by ≤e and ≤T on De and DT respectively.

Theorem 2.1.17. (Embedding theorem [24][10][25][2] 4)

∃η : Aut(〈De,≤〉) ↪→ Aut(〈DT ,≤〉)

Proof. This follows from the following 3 statements:

• DT degrees are embeddable in De, i.e. ∃ι : DT ↪→ De, see remark 2.1.12.

• DT are an automorphism base for De, i.e.

∀f ∈ Aut(De)[f|ι(DT ) = 1ι(DT ) =⇒ f = 1De ]

This is implied by Selman’s theorem 2.1.18 below.

• The total degrees T OT e := ι[DT ] are definable in De (theorem 2.1.20).

Then η(f) := ι−1 ◦ f ◦ ι is the required embedding.

Theorem 2.1.18. (Selman’s theorem[24])

A ≤e B ⇐⇒ ∀X ⊆ ω[B ≤e X ⊕X =⇒ A ≤e X ⊕X].

4The last paper with which the proof of the Embedding Theorem was completed is [2]. See [2]
p13.
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Definability of the total degrees [10][25][2]

Theorem 2.1.19. (Definability of a Kalimullin pair [25])
The Kalimullin pair is definable in the enumeration degrees De:

∀a, b ∈ De[K(a, b) ⇐⇒ ∀x ∈ De.x = (a ∨ x) ∧ (b ∨ x)]

where ∨ denotes lattice join and ∧ lattice meet.

Theorem 2.1.20. (Definability of the total degrees [10] [25] [2] 5)
An enumeration degree total iff it is trivial or a join of a maximal Kalimullin pair,
i.e.

∀d ∈ De[d ∈ T OT e ⇐⇒ d = 0 ∨ ∃a, b ∈ De[(d = a ∨ b) ∧ Kmax(a, b)]].

Proof. ⇐ direction follows from theorem 2.1.21. ⇒ direction follows from theo-
rem 2.1.22.

Theorem 2.1.21. (Semicomputable cut existence [2])
Let A,B ⊆ ω and Knt(A,B). Then there is semicomputable cut C ⊆ Q such that
A ≤e C and B ≤e C.

Theorem 2.1.22. (Maximal Kalimullin pair for a total set [10] [25])
Suppose that D ⊆ ω is total, i.e. D ≡e D ⊕D and that D >T ∅. Then there are
sets A,B ⊆ ω such that D ≡e A⊕B and Kmax(A,B).

2.1.3 Dependency tree

We provide a dependency tree of the Embedding Theorem.

A node in the dependency tree is a statement or a mathematical area of devel-
opment which depends upon all of its children as follows. If a node is a statement,
then the proof of this statement requires the assumption of all the statements at
the child nodes and the assumption of some of the statements achieved within all
the mathematical areas of development at the child nodes. If a node is a mathe-
matical area, then it to develop this area it is essential to require the assumption of
all the statements at the child nodes and the assumption of some of the statements
achieved within all the mathematical areas of development at the child nodes.

If a node and all its children are mathematical statements, this simplifies to
saying that a node in the dependency tree is a statement implied by the conjunction
of all its children.

For example, the root node is the Embedding Theorem stating Aut(De) ↪→
Aut(DT ) which follows from the three statements at the child nodes (namely

5The last paper with which the proof of the definability of the total degrees was completed is
[2].
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DT ↪→ De, DT is definable in De and DT is an automorphism base for De) as
shown in the proof of theorem 2.1.17.

Aut(De) ↪→ Aut(DT )

DT ↪→ De DT definable in De DT aut. base for De

Selman’s theorem [24]

semicomputable

cut C ⊆ Q
existence

(Cai et al. [2])

K-pair definability

(Kalimullin [25])

Semicomputability

(Jockush [10])

2.2 Generalization to α-Computability Theory

We introduce intuitively α-Computability Theory, its methods and differences
with classical Computability Theory. Then we present the main results of this
thesis including the main result Embedding Theorem in α-Computability Theory.
Finally, we provide a dependency tree of the Embedding Theorem which on one
hand serves as a proof outline, on the other hand shows dependencies between the
chapters of this thesis.

2.2.1 α-Computability Theory [23][4][17][6]

α-Computability Theory is the study of the definability theory over Gödel’s Lα
where α is an admissible ordinal, i.e. Lα satisfies the axioms of Kripke-Platek set
theory. One can think of equivalent definitions on Turing machines with transfinite
tape and time [12] [13] [14] [15] or on generalized register machines [16].

The α-degrees Dα are the generalization of the Turing degrees. The α-
enumeration degrees Dαe are the generalization of the enumeration degrees. Note
that ω-Computability Theory coincides with the classical Computability Theory.
Similarly, the Turing degrees are the ω-degrees, the enumeration degrees are the
ω-enumeration degrees.

In this summary we omit many basic definitions in α-Computability The-
ory. To get a glimpse of the next material, one should use the intuitions from
ω-Computability Theory. For a proper introduction to α-Computability Theory,
consult chapter 3.
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2.2.2 Differences with classical Computability Theory and sep-
aration of notions

Limit stages

If α > ω, then limit stages of an algorithm for an extended Turing machine with
the tape and time α have to be defined appropriately. Similarly, constructions and
priority arguments at limit stages have to be specified.

Regularity and megaregularity

In α-Computability Theory one studies the definability properties of the subsets
of α. In classical Computability Theory, the subsets of ω have nice properties -
the central ones are regularity and megaregularity defined below.

Definition 2.2.1. (Regularity and megaregularity)

• A subset A ⊆ α is regular iff ∀γ < α.A ∩ γ ∈ Lα.

• A subset A ⊆ α is megaregular iff for every function f : α → α which is
Σ0

1 definable over Lα with a parameter A we have:

∀K ∈ Lα.f [K] ∈ Lα.

Enumeration and Turing reducibility

Another major difference is that the enumeration reducibility in a generalized set-
ting can be one of the three different reducibilities: Σ1 definability with a positive
parameter, weak α-enumeration reducibility and α-enumeration reducibility de-
noted as A ∈ Σ1(Lα, B

+), A ≤wαe B, A ≤αe B respectively for the parameters
A and B.

Similarly the Turing reducibility corresponds to the following three notions:
∆1 definability with a parameter, weak α-reducibility and α-reducibility, denoted
as A ∈ ∆1(Lα, B), A ≤wα B, A ≤α B respectively.

The exact relationship between the reducibilities is given below:

A ∈ Σ1(Lα, B
+) A ≤wαe B A ≤αe B

if B regular if B megaregular

A ∈ ∆1(Lα, B) A ≤wα B A ≤α B

if B regular if B megaregular
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Projectum emerged

A well-known notion of a projectum in α-Computability Theory is a new concept
relative to classical Computability Theory since in classical Computability Theory
the notion of a projectum is trivial and thus not manifested.

Definition 2.2.2. (Projectum)6

α∗ := min{γ < α : ∃ total injection i : α� γ that is Σ1 definable over Lα}

Example 2.2.3. α = ωCK1 is an admissible ordinal. Its projectum is α∗ = ω.

Note that α many requirements can be given indices from α∗ instead. Hence
one uses projectum α∗ to carry out a construction in only α∗ many stages to sat-
isfy α-many requirements. This technique enables one to bypass some of the
difficulties caused by the lack of the megaregular and regular sets.

Summary

In summary the following are the major obstacles in generalization:

• Existence of limit stages in algorithms and constructions.

• Existence of non-regular and non-megaregular sets.

• Multiple generalized notions of reducibility.

To tackle these, one uses new notions such as projectum α∗ of α.

2.3 Results

Let degαe(Y ) denote an α-enumeration degree that contains a set Y ⊆ α. Let
K(U) denote an α-jump of U . The following are the major results presented in
this thesis.

Theorem 4.3.6. (α-U -Kalimullin pair definability correspondence)
Assume V = L and let α be an infinite regular cardinal. Let A,B, U ⊆ α. Then

KU(A,B) ⇐⇒ ∀X ⊆ α.degαe(X ⊕ U) = degαe(A⊕X ⊕ U)∧degαe(B ⊕X ⊕ U).

Corollary 4.3.8. (Definability of an α-U -Kalimullin Pair)
Assume V = L and let α be an infinite regular cardinal. Then

∀a, b, u ∈ Dαe[Ku(a, b) ⇐⇒ ∀x ∈ Dαe.(a ∨ x ∨ u) ∧ (b ∨ x ∨ u) = x ∨ u].

6Definition 6.1 in [1] on p174 or Theorem 1.20 in [4].
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Proof. Follows from theorem 4.3.6.

Corollary 4.4.2. (Maximal α-Kalimullin pair for a total set, see 2.1.22)
Assume V = L and let α be an infinite regular cardinal. Then every nontrivial
total degree is a join of a maximal K-pair, i.e.

∀a ∈ T OT αe − {0}∃b, c ∈ Dαe[(a = b ∨ c) ∧ Kmax(b, c)].

Proof. Follows from corollary 4.3.8 and the results on semicomputable sets in
chapter 4.

The proof of the next statement required a development of a new notion of
α-rational numbers Qα, see chapter 5.

Theorem 6.0.1. (Semicomputable Cut Existence Theorem, see 2.1.21)
Let A and B form a nontrivial α-Kalimullin pair, then there exists an α-
semicomputable cut C ⊆ Qα ∩ Lα such that A ≤wαe C and B ≤wαe C.

Theorem 6.3.7. (Definability of total degrees)
Assume V = L and let α be an infinite regular cardinal. A degree of Dαe is total
iff it is trivial or a join of a maximal K-pair.

Proof. Follows from corollary 4.3.8, corollary 4.4.2 and theorem 6.0.1.

Theorem 7.1.5. (Selman’s theorem, see 7.1.5)
Let α be an admissible ordinal. Let A,B ⊆ α and let A⊕B⊕K(U) be megareg-
ular. Then

A ≤αe B ⇐⇒ ∀X[X ≡αe X ⊕X ∧B ≤αe X ⊕X =⇒ A ≤αe X ⊕X].

The main result of this thesis is the embedding theorem in α-Computability
Theory.

Theorem 7.3.1. (Embedding Theorem, see 2.1.17)
Assume V = L. Let α be an infinite regular cardinal. Then Aut(Dαe) ↪→ Aut(Dα).

Proof. Follows from theorem 6.3.7 and theorem 7.1.5.

2.4 Dependency tree

We provide a dependency tree for the Embedding Theorem in α-Computability
Theory.

A node in the dependency tree is a statement or a mathematical area of devel-
opment which depends upon all of its children. If a node and all its children are
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mathematical statements, this simplifies to saying that a node in the dependency
tree is a statement implied by the conjunction of all its children.

Aut(Dαe) ↪→ Aut(Dα)

(section 7.3)

Dα ↪→ Dαe
Dα definable in Dαe

(section 6.3)

Dα aut. base for Dαe
(section 7.2)

Selman’s theorem

(section 7.1)

α-semicomputable

cut C ⊆ Qα
existence

(chapter 6)

K-pair definability

(section 4.3)

Semicomputability

(section 4.1)

α-rational numbers Qα
(chapter 5)

2.5 Established and new material

In section 2.3 we presented the major new results in this thesis. Here we summa-
rize in more detail which results and notions in this thesis are new and which ones
were introduced prior to this thesis. The greatest detail about the first appearance
of the results themselves can be found in the text.

2.5.1 Classical Computability Theory

The new results in this thesis in α-Computability Theory are well-established in
classical Computability Theory. This thesis does not introduce anything new in
classical Computability Theory. Most of the used material from classical Com-
putability Theory can be found in [5, 2, 10, 24, 25] .
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2.5.2 Chapter 3: α-Computability Theory

Section 3.1: Set Theory

The definition of the ordinal sum 3.1.7 and its related result proposition 3.1.28
are new. Other material is well-established and most of it can be found in
[1][4][8][23].

Section 3.2: Basic concepts in α-Computability Theory

This section contains introductory material about α-Computability all of which
can be found in [4] and [23]. Some statements without the references (i.e.
3.2.11,3.2.12,3.2.13,3.2.14) are usually considered too trivial to be even stated
explicitly outside of this thesis, yet are widely used implicitly.

Section 3.3: Higher Order Definability

Well-established material discussed in [23].

Section 3.4: Relativization

The parametrized definability or the definability with a parameter is very common
and widely used in [1][4][23] for example. On the other hand, the restriction to a
positive or a negative parameter seems to be introduced in this thesis for the first
time, although it is a very natural direction to explore.

This section contains some new results introduced in this thesis, however, not
significant as they are usually a straight-forward generalization, adaptation or con-
sequence of other well-established statements with a general parameter or without
it.

Section 3.5: α-computable index of a set

The material in this section is wisely used, but usually implicitly assumed in α-
Computability Theory on the grounds of a generalized Church-Turing thesis. See
the remark in [4] at the bottom of the page 7 for example.

Section 3.6: Projectum

A projectum is a well-established notion in α-Computability Theory, see [4][23].
The statements about the projectum in section 3.6 are well-known and often im-
plicitly assumed in the literature (without a proof or a reference) as they are trivial
to prove. Explicit proofs were given for the statements for which no reference was
found. However, nothing in this section is new in this thesis.
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Section 3.7.1: Reducibility

This section generalizes to α-Computability Theory the enumeration reducibility
and its relationships with the Turing reducibility which are well-known in classical
Computability Theory.

The weak enumeration operator and reducibility were introduced in [6]
and easily seen equivalent definitions used in this thesis. Definition 3.7.2 and
definition 3.7.3 are new in this thesis, but equivalent. The definition of the
α-enumeration reducibility (definition 3.7.7) is different from the definitions in
[6] and the relationships were not investigated as the focus of this thesis was
different from the focus in [6].

Although this section contains new material, it is usually straight-forward to
prove and see from the existing results in classical Computability Theory or the
results in α-Computability Theory about the α-reducibility. The later is true by
realizing that the original definition of the (weak) α-reducibility just copies the
new definition of the (weak) α-enumeration reducibility twice - once for the posi-
tive part of the set and once for the positive part of the complement of the set. See
fact 3.7.16 for a formal correspondence.

Section 3.8: Regularity

This section investigates the following notions of the regularity: regularity,
quasiregularity, hyperregularity, megularity; and compares them with the notions
of α-finiteness, α-computability and boundedness. Regularity and hyperregular-
ity are well-established and investigated notions in α-Computability Theory, see
[4][23].

Quasiregularity is a new notion which is slightly weaker than regularity.
Megaregularity is a new notion which is slightly stronger than hyperregularity.
The material which concerns quasiregularity and megaregularity in this thesis
is new. The remaining material can be considered as well-known and is often
assumed and used implicitly in the literature. Some explicit proofs are given in
this thesis.

Section 3.9: Reducibilities and definability

This section explores mostly the relations between the Σ1-definability with a pos-
itive parameter, weak α-enumeration reducibility and α-enumeration reducibility
on general, regular and megaregular sets. An analogous exploration is present in
[4] between the ∆1-definability with a general parameter, weak α-reducibility and
α-reducibility on general, regular and hyperregular sets, see [4] propositions 1.15,
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1.30, 1.32. Hence the general ideas of making such comparisons between the no-
tions of the definability is not new. However, the exact results concerned with the
Σ1-definability with a positive parameter and (weak) α-enumeration reducibility
in this section are new. Their proof may be inspired by analogous results, but
often differs as the definability with a positive parameter behaves quite differently
from the definability with a general parameter.

Section 3.10: Degree Theory

The α-degrees are well-established and studied, see [4][23]. The α-enumeration
degrees are newly introduced in this thesis. And so the results about them are new.
Similarly, α-join operator is a new concept introduced in this thesis, but possibly
general and useful enough to have been discovered somewhere before.

Section 3.11: Computability with infinite cardinal and assumption V = L

The well-established material of this section can be found in some standard texts
on Set Theory that include material on regular cardinals, replacement axiom and
constructive universe such as [21]. Some material in this section can be thought
of as new, but it rather puts the well-established material from Set Theory into
a perspective of α-Computability Theory through direct observations or simple
proofs.

Section 3.12: α-enumeration jump

This section generalizes a well-known notion of the enumeration jump from clas-
sical Computability Theory (E.g. see [25].) unseen in α-Computability Theory
before. Therefore all the material including definitions and results in this section
is new.

Section 3.13: Simple construction

In this section a simple construction is presented which is new in this thesis.

2.5.3 Chapter 4: Kalimullin pair and semicomputability

All the material in this chapter except lemma 4.1.13 is new in α-Computability
Theory and generalizes well-established material from classical Computability
Theory. Section 4.1 generalizes the classical notion of semicomputability and
some related results from [10]. Section 4.2 and section 4.4 generalize the re-
sults on the definability of a Kalimullin pair [25] and the results about maximal
Kalimullin pairs [2] in classical Computability Theory.
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2.5.4 Chapter 5: α-rational numbers Qα

An idea to extend or generalize rational or real numbers is not new. Conway’s
field of the surreal numbers is a good example which extends the field of the
real numbers into transfinite. However, the definition of the β-rational numbers
Qβ is new and is well-suited for the application within this thesis. Just as the
real numbers can be defined in many different ways (e.g. through Dedekind cuts,
equivalence classes of Cauchy sequences or infinite decimal representations), and
each is better suited for a different application, so also β-rational numbers and
their definition can turn out to be more suitable in some applications than other
well-established concepts.

Qβ is defined as a set of α-strings. An α-string is a new concept in this thesis
which is a generalization of a string. A string is a well-known concept in the field
of Computer Science. An α-rational is represented by a binary α-string. Binary
representations are common in Computer Science. Transfinite binary representa-
tions are less common, but not new in this thesis, e.g. they are very useful (but
usually implicit) in general priority arguments in α-Computability Theory.

As Qβ is a new concept in this thesis, also all results specific to it. The chapter
uses a general well-known result from the model theory about the infinite count-
able dense orders (theorem 5.3.1).

2.5.5 Chapter 6: Semicomputable cut in Qα

All the material in this chapter is new in α-Computability Theory and generalizes
the labelling algorithm and the definability of the total enumeration degrees in the
enumeration degrees from the classical Computability Theory [2]. The general-
ization is not straight-forward and it is claimed that the most creative and novel
work of the thesis is present in this chapter.

2.5.6 Chapter 7: Embedding Theorem

All the material in this chapter is new in α-Computability Theory and generalized
from classical Computability Theory. The Selman’s Theorem is generalized from
[24][30]. The Embedding Theorem is generalized from [2] p13.
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Chapter 3

α-Computability Theory

α-Computability Theory is the study of the definability theory over Gödel’s Lα
where α is an admissible ordinal. In this thesis, α always denotes an admissible
ordinal. One can think of equivalent definitions on Turing machines with a trans-
finite tape and time [12] [13] [14] [15] or on generalized register machines [16].
Recommended references for α-Computability Theory are [23], [4], [17] and [6].
Classical Computability Theory is α-Computability Theory restricted to α = ω.

In this chapter we introduce key notions and topics in α-Computability The-
ory relevant to this thesis including admissibility, α-finiteness, α-computability,
α-computable enumerability, relativization, projectum, regularity, quasiregularity,
hyperregularity and megaregularity, α-enumeration reducibility and α reducibil-
ity, degrees and an α-enumeration jump. We observe that α-Computability Theory
behaves more like classical Computability Theory when α is an infinite regular
cardinal. Finally, we perform a simple construction involving a pattern central to
more complex arguments presented later in this thesis.

A lot of content in this chapter is essential to read the main results in chapter 4,
chapter 5, chapter 6 and chapter 7. Many statements in this chapter are invoked in
later proofs so frequently that their use is often implicit.

3.1 Set Theory

We mainly introduce Gödel’s constructible hierarchy, Kripke-Platek set theory
and admissible ordinals. Background on Set Theory can found in [8]. The material
on admissible sets is mainly in [1].

Everything in this section is well-known except the notion of the ordinal sum
(definition 3.1.7).
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3.1.1 Ordinals and cardinals

Definition 3.1.1. (Ordinal and cardinal [8])

• The relation <⊆ X×X is a well-order on X iff it is a total order and every
non-empty subset of X has a least element wrt <.

• The set X is transitive iff ∀Y ∈ X∀Z ∈ Y.Z ∈ X .

• An ordinal is a transitive set well-ordered by ∈.

• A cardinal is an ordinal which is equal to its own cardinality.

Definition 3.1.2. (Cofinality of an ordinal [8])
The cofinality of an ordinal α is denoted as cf(α) and defined as:

• cf(0) := 0,

• cf(γ + 1) := 1,

• cf(δ) := min{γ ≤ δ : ∃f : γ → δ[∀ε < δ∃β < γ.f(β) > ε]} if lim(δ).

Definition 3.1.3. (Regular and singular cardinal [8])
A regular cardinal is a cardinal that is equal to its own cofinality. Otherwise the
cardinal is called singular.

Example 3.1.4. [8] ℵ0 and ℵγ+1 are regular cardinals. ℵωn is a singular cardinal
for n ∈ N.

3.1.2 Ordinal arithmetic

Fact 3.1.5. [8] An ordinal α is a limit ordinal iff there exists an ordinal β s.t.
α = ω · β.

Theorem 3.1.6. (Cantor Normal Form - CNF [8])
For every positive ordinal α there exist unique positive integers a1, . . . , ak and
ordinals α1, . . . , αk satisfying α1 > . . . > αk ≥ 0 s.t.

α = ωα1 · a1 + . . .+ ωαk · ak.

We define the ordinal sum. In α-Computability, the computations are per-
formed within α time where α is an ordinal strong enough to be closed under the
ordinal sum. This property is exploited in chapter 6.

Definition 3.1.7. (Ordinal sum1)
For an ordinal γ we define the ordinal sum

∑
β<γ β recursively:

1Introduce in this thesis.
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•
∑

β<0 β := 0,

•
∑

β<γ+1 β :=
(∑

β<γ β
)

+ γ,

•
∑

β<δ β := sup{
∑

β<γ β : γ < δ} if lim(δ).

Proposition 3.1.8. 2 Let α = ωα1 · a1 + . . . + ωαk · ak be an ordinal greater than
ω expressed in CNF where α1 > . . . > αk ≥ 0. Then

i) ∀β < α(β + α = α) ⇐⇒ ∀β, γ < α(β + γ < α) ⇐⇒ ∃δ(α = ωδ),

ii) ∀β < α(β · α = α) ⇐⇒ ∀β, γ < α(β · γ < α) ⇐⇒ ∃ε
(
α = ωω

ε),
iii)

∑
β<α β = α ⇐⇒ ∃δ(lim(δ) ∧ α = ωδ),

iv) 1 + α = α ⇐⇒ αk ≥ 1,

v) ω · α = α ⇐⇒ αk ≥ ω,

vi) lim(δ) =⇒ α · δ = ωα1 · δ.

3.1.3 Gödel’s Constructible Universe

Definition 3.1.9. (Gödel’s Constructible Universe [4][23])
Let Ord represent the class of all ordinals. Gödel’s constructible universe is de-
noted by L and defined by transfinite recursion as follows:

• L0 := ∅,

• Lγ+1 := Def(Lγ) := {x|x ⊆ Lγ and x is first-order definable over Lγ} for
any γ ∈ Ord,

• Lδ :=
⋃
γ<δ Lγ for a limit ordinal δ ∈ Ord,

• L :=
⋃
β∈Ord Lβ .

3.1.4 Kripke-Platek set theory

Definition 3.1.10. (Kripke-Platek set theory axioms [1])

• Extensionality: ∀a, b[a = b ⇐⇒ ∀x[x ∈ a ⇐⇒ x ∈ b]]

• Empty set: ∃a∀x.x 6∈ a
2Some of these facts can be found as exercises to the course Axiomatic Set Theory taught by

Peter Holy [7].
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• Pairing: ∀a∀b∃c.c = {a, b}

• Union: ∀a∃b∀x[x ∈ b ⇐⇒ ∃y[x ∈ y ∧ y ∈ a]]

• Induction: For any formula φ(x) the following holds:

∀x[∀y ∈ x.φ(y) =⇒ φ(x)] =⇒ ∀x.φ(x).

• Σ0-separation: For any Σ0 formula φ(x) the following holds:

∀a∃b∀x[x ∈ b ⇐⇒ x ∈ a ∧ φ(x)].

• Σ0-collection: For any Σ0 formula φ(x, y) the following holds:

∀u[∀x ∈ u∃y.φ(x, y) =⇒ ∃z∀x ∈ u∃y ∈ z.φ(x, y)].

3.1.5 Admissible ordinal

Definition 3.1.11. (Admissible ordinal [4][1])

• An ordinal α is Σn admissible iff α is a limit ordinal and Lα satisfies Σn-
collection:

∀φ(x, y) ∈ Σn(Lα).Lα |= ∀u[∀x ∈ u∃y.φ(x, y) =⇒ ∃z∀x ∈ u∃y ∈ z.φ(x, y)]

where Lα is the α-th level of the Gödel’s Constructible Hierarchy (defini-
tion 3.1.9).

• An ordinal α is admissible iff α is Σ1 admissible.

Throughout the rest of the thesis, the ordinal α is always an admissible ordinal
unless a weaker assumption is made explicitly.

Definition 3.1.12. (Stable ordinal [1])
An ordinal β is stable iff Lβ ≺Σ1 L, i.e. Lβ is a Σ1 elementary substructure of L.

Example 3.1.13. (Examples of admissible ordinals [4] [31])

• ωCK1 - the Church-Kleene ordinal, the first non-computable ordinal,

• every stable ordinal α, e.g. δ1
2 - the least ordinal which is not an order type

of a ∆1
2 subset of N, 1st stable ordinal,

• every infinite cardinal in a transitive model of ZF 3.

Lemma 3.1.14. 4 Let α be an admissible ordinal. If A ∈ ∆1(Lα) and A ⊆ K ∈
Lα, then A ∈ ∆0(Lα).

3[1] p53 Corollary 3.4.
4The relativization of lemma 3.1.14 is proposition 3.4.18.
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Proof. This follows from the basic fact that KP ` ∆1-separation.

Lemma 3.1.15. [1] Let α be an admissible ordinal. If δ ≤ α, then Lδ �Σ0 Lα.

Proof. This follows from the fact that Lδ is transitive.
For a detailed proof of the relativized statement see proposition 3.4.21.

Lemma 3.1.16. [4] Let α be an admissible ordinal. If A ∈ ∆1(Lα) and A ⊆ K ∈
Lα, then A ∈ Lα.

Proof. Assume A ∈ ∆1(Lα) and A ⊆ K ∈ Lα. By lemma 3.1.14 A ∈ ∆0(Lα).
Note that since the formula defining A is finite, it uses only a finite number of
parameters from Lα. Thus there is some δ < α s.t. all these Lα parameters are
in Lδ. As Lδ �Σ0 Lα by lemma 3.1.15 and A ∈ ∆0(Lα), so A ∈ ∆0(Lδ) and
A ∈ Def(Lδ). Therefore A ∈ Lα as required.

Definition 3.1.17. (Replacement axiom [8])
Let C be a class of formulas, e.g. Σn. Then Lα satisfies C-replacement axiom iff
we have the following: for any total function f : α → α definable with some
formula in C and parameters from Lα and for any K ∈ Lα it is true that f [K] ∈
Lα,

Lemma 3.1.18. If Lα |= Σ1-collection, then Lα |= Σ1-replacement.

Proof. Assume Lα |= Σ1-collection. Assume f ∈ Σ1(Lα), K ∈ Lα and
f [K] ⊆ K̂ ∈ Lα. Note f [K] ∈ ∆1(Lα). Thus f [K] ∈ Lα by lemma 3.1.16.
Therefore Lα |= Σ1-replacement as required.

Proposition 3.1.19. (Equivalent notions of admissibility5)
Let α be a limit ordinal. TFAE:

• α is admissible,

• Lα satisfies Σ1-collection,

• Lα satisfies Σ0-collection,

• Lα |= KP where KP is Kripke-Platek set theory,

• Lα |= Σ1-replacement for total functions: for any total Σ1(Lα) definable
function f : α→ α and for any K ∈ Lα it is true that f [K] ∈ Lα,

• Lα |= Σ1-replacement for partial function: for any partial Σ1(Lα) defin-
able function f : α ⇀ α and for any K ∈ Lα: if f [K] is defined (i.e.
∀x ∈ K.f(x) ↓), then f [K] ∈ Lα.

5Uses [23] Chapter VII: Admissibility and Regularity, Section 1.1 and Proposition 1.5. More
material on this can be also found in [1].
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Proof. To prove the proposition note the following facts. By Proposition VII.1.5
of [23] we have: α is admissible iff Lα |= Σ0-Collection. Note that Lα |= Σ1-
collection implies Lα |= Σ1-replacement by lemma 3.1.18.

If Lα |= Σ1-replacement, then imply that Lα |= Σ0-collection by constructing
a total function f : α→ α ∈ Σ1(Lα) from Σ0(Lα) formula φ(x, y).

Admissibility and cofinality

Definition 3.1.20. (Σn(Lα) cofinality6)
Let ρ ≤ α. Σn(Lα) cofinality of ρ is defined as

σncfα(ρ) := min{β ≤ ρ : ∃f : β → ρ ∈ Σn(Lα)[∀δ < ρ∃γ < β.f(γ) > δ]}.

Abbreviate σncfα(α) as σncf(α).

The ordinal σncf(α) measures the extend to which α is not admissible:

Proposition 3.1.21. 7 α is Σn admissible iff σncf(α) = α.

Proof. α is Σn admissible iff Lα |= Σn-collection iff σncf(α) = α.

Corollary 3.1.22. 8 If α is not admissible, then σ0cf(α) < α.

Proof. Assume that α is not admissible. Then α is not Σ0 admissible by proposi-
tion 3.1.19. Hence σ0cf(α) < α by proposition 3.1.21.

Computably inaccessible ordinal

Remark 3.1.23. A limit of admissible ordinals may not be an admissible ordinal.
An ordinal which is admissible and a limit of admissible ordinals is called to be
computably inaccessible.

Fact 3.1.24. 9 If α > ω is admissible and Lα |= Σ1-separation, then α is com-
putably inaccessible.

Proposition 3.1.25. 10 Let α > ω be an admissible ordinal.

1. IfLα |= Σ2-replacement, then there exists C ⊆ α s.t. ∀β ∈ C.Lβ |= Σ1-replacement
and α = sup(C).

2. Therefore if an admissible ordinal α has a maximal admissible predecessor,
then Lα cannot satisfy Σ2-replacement.

6[4] Definition 1.24
7[4] 1.24
8This statement was discussed with Robert Lubarsky.
9Follows from [1] p175 Theorem 6.3. and p176 Theorem 6.8.

10The proof pointed out by Michael Rathjen.
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Proof. As Lα |= Σ2-replacement, so Lα |= Σ1-separation. Hence α is com-
putably inaccessible by fact 3.1.24. Therefore the statement 1 is true.

The statement 2 follows from the statement 1.

Closure under ordinal operations

The strength of an admissible ordinal reflects in the strength of its closure under
ordinal operations. Every admissible ordinal α > ω, is also an ε ordinal, i.e.
ωα = α. Hence proposition 3.1.8 implies proposition 3.1.26 below.

Proposition 3.1.26. 11 Let α be an admissible ordinal and β, γ < α, then

i) β + γ < α,

ii) β · γ < α,

iii) βγ < α.

Proposition 3.1.27. [9] If α is an admissible ordinal, then α = ω or ω · α = α.

Proof. For α = ω both statements clearly hold. So suppose that α > ω. By
proposition 3.1.26 an admissible ordinal is closed under ordinal multiplication.
Hence by the proposition 3.1.8ii there exists an ordinal ε s.t. α = ωω

ε .
The proposition 3.1.27 is true since ωε ≥ ω and hence by the proposition

3.1.8v we have ω · α = α.

Proposition 3.1.28. 12 If α is an admissible ordinal, then
∑

β<α β = α.

Proof. Recall the definition of the ordinal sum
∑

β<α β for an ordinal α (defi-
nition 3.1.7). Let δ := ωε, then δ is a limit ordinal and α = ωδ and so by the
proposition 3.1.8iii we have

∑
β<α β = α.

3.2 Basic concepts in α-Computability Theory

The statements in this section are very common in α-Computability Theory and
can be found or used in [4][23].

Assume that α is an admissible ordinal. In α-Computability Theory, sets in
Lα play a similar role that finite sets play in the classical Computability Theory.

Definition 3.2.1. [4] A set K ⊆ α is α-finite iff K ∈ Lα.
11[1] p274 Corollary 3.5.
12Introduced in this thesis.
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Proposition 3.2.2. [4] There exists a Σ1(Lα) definable bijection b : α→ Lα.

Hence we can index α-finite sets with an index in α. LetKγ denote an α-finite
set b(γ).

Proposition 3.2.3. [17][4] For every n, there is a Σ1(Lα) definable bijection

pn : α→ α× α× . . .× α (n-fold product).

By proposition 3.2.3 we can also index pairs and other finite vectors from
αn by an index in α. Moreover, by proposition 3.2.3 one can consider a partial
function f : α× α× . . .× α ⇀ α and its graph to be subsets of α.

Remark 3.2.4. [4] If K1 and K2 are α-finite subsets of α, then using the admis-
sibility of α and proposition 3.2.3 the set p−1

2 [K1 ×K2] is α-finite. Thus we can
encode products of α-finite sets as α-finite subsets of α using pn. This fact will be
used implicitly.

Recall definition 2.1.2 that A is Σ1(Lα) definable iff A ∈ Σ1(Lα) iff A is
definable with a Σ1 formula with parameters in Lα.

Definition 3.2.5. (α-computability and computable enumerability [4])

• A function f : α → α is α-computable iff the graph of f is Σ1(Lα) defin-
able.

• A set A ⊆ α is α-computably enumerable (α-c.e.) iff A ∈ Σ1(Lα).

• A set A ⊆ α is α-computable iff A ∈ ∆1(Lα) iff A ∈ Σ1(Lα) and
α− A ∈ Σ1(Lα).

Instead of using the definability over Lα, an alternative approach to
α-Computability Theory studies computation on extended Turing machines.

Remark 3.2.6. (α-Computability on an extended Turing machine [14]))
Let an α-machine be a Turing machine with time α and tape length α.

• f : α→ α is α-computable iff f is α-machine computable,

• A is α-computable iff A is α-machine computable,

• A is α-c.e. iff A is α-machine c.e.

Proposition 3.2.7. 13 For every set A ⊆ α we have:

A ∈ Lα iff A ∈ ∆1(Lα) and A is bounded by some β < α.

13Proposition 1.12b in [4].
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Proof. This follows from the fact that Lα |= ∆1-separation.
For a detailed proof of a more general result, see lemma 3.4.13.

Fact 3.2.8. 14 TFAE:

i) A is α-c.e.,

ii) ∃f : α ⇀ α s.t. f ∈ Σ1(Lα) ∧ A = dom(f),

iii) ∃f : α→ α s.t. f ∈ Σ1(Lα) ∧ A = rng(f).

Theorem 3.2.9. (Uniformization Theorem15)
Let n ≥ 1. For each Σn(Lα) relation R(x, y) there is a Σn(Lα) function f satis-
fying

∀x < α[ if ∃y < α.Lα |= R(x, y), then Lα |= R(x, f(x))].

Proposition 3.2.10. (α-finite union of α-finite sets16)
α-finite union of α-finite sets is α-finite, i.e. if K ∈ Lγ , then

⋃
γ∈K Kγ ∈ Lα.

Proof. Follows from lemma 3.5.4 i).

Proposition 3.2.11. Let A,B ⊆ α. If A is unbounded and B ∈ Lα, then
A−B 6∈ Lα.

Proof. As B ∈ Lα, so B is bounded. Thus A−B has to be unbounded and hence
cannot be α-finite.

Note 3.2.12. Suppose that A ⊆ α and f : α→ α are α-computable. Is it true that
f [A] is also α-computable?

Not in general using fact 3.2.8 and the fact that there are α-computably enu-
merable sets which are not α-computable.

Fact 3.2.13. For any A ⊆ α, it must hold [A 6∈ Lα ∨ A 6∈ Lα].

Proposition 3.2.14. ∀f ∈ Σ1(Lα)[dom(f) ∈ Lα =⇒ f ∈ Lα].

Proof. Define g : x 7→ 〈x, f(x)〉. Note g ∈ Σ1(Lα) since

z ∈ g ⇐⇒ ∃x∃y[z = 〈x, 〈x, y〉〉 ∧ (x, y) ∈ f ]

and f ∈ Σ1(Lα). But then f = g[dom(f)] ∈ Lα as required since dom(f) ∈ Lα,
g ∈ Σ1(Lα) and α is admissible.

The computable join turns out to be very useful to encode within one set the
information from two sets.

14From Proposition 1.12a in [4].
15Theorem 1.27 in [4].
16From [23] p162.
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Definition 3.2.15. 17 The computable join of sets A,B ⊆ α denoted A ⊕ B is
defined to be

A⊕B := {2a : a ∈ A} ∪ {2b+ 1 : b ∈ B}.

The computable join satisfies the usual properties of the case α = ω.

3.3 Higher Order Definability

Recall that Lα is defined using the first order definability possibly transfinitely
many times. The first order definability over such Lα relates to the higher order
definability for a suitable α. Thus α-Computability Theory in one way is a study
of the higher order definability too.

Let HYP denote the class of the hyperarithmetic sets. Recall Σ1
n, Π1

n, ∆1
n are

second order definable classes. Let n : O ⇀ ωCK1 take a computable notation in
Kleene’s O ⊆ ω to the ordinal represented by it. Then:

Theorem 3.3.1. (Correspondence with second-order definability[4][23])

i) ∀A ⊆ ω[A ∈ HYP ⇐⇒ A ∈ ∆1
1 ⇐⇒ A ∈ LωCK1

],

ii) ∀A ⊆ ωCK1 [A ∈ LωCK1
⇐⇒ n−1[A] ∈ ∆1

1],

iii) ∀A ⊆ ωCK1 [A ∈ Σ0
1(LωCK1

) ⇐⇒ n−1[A] ∈ Π1
1],

iv) ∀A ⊆ ω[A ∈ Lδ12 ⇐⇒ A ∈ ∆1
2],

v) ∀A ⊆ ω[A ∈ Σ0
1(Lδ12)⇐= A ∈ Σ1

2].

3.4 Relativization

We study the definability over Lα with a parameterB ⊆ α. This can be thought of
as an analogue of the oracle computation with the oracle B. Once we generalize
the Turing and enumeration reducibilities later in section 3.7.1, we will compare
them in section 3.9 with this parametrized definability of section 3.4 in a useful
way.

The definability with a parameter is very common and widely used in
[1][4][23] for example. Hence the results with a general parameter in this section
are not new.

On the other hand, the restriction to a positive or a negative parameter seems
to be introduced in this thesis for the first time, although it is a very natural direc-
tion to explore. Consequently, the results concerned with the definability with a
positive parameter are assumed to be new in this thesis.

17From [4] p8.
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3.4.1 Model with a parameter

We parametrize the arithmetical hierarchy and define a model Lα with a parameter
B ⊆ α.

Definition 3.4.1. (Arithmetical hierarchy with a parameter18)
Let B ⊆ α. We call the expression B+ a positive parameter and the expression
B− a negative parameter. Let QF(A) denote the class of quantifier free formulas
with parameters fromA. We define recursively QF(Lα,B) - the class of quantifier
free formulas with B ∈ {B,B+, B−} as a parameter as follows:

• if K,M ∈ Lα, then xi = xj , xi = M , K = xj and K = M are in QF(Lα),

• if K ∈ Lα, then x ∈ K is in QF(Lα),

• if φ(x) is in QF(Lα), then ¬φ(x) is in QF(Lα),

• if φ(x) is in QF(Lα), then φ(x) is in QF(Lα,B) for B ∈ {B,B+, B−},

• x ∈ B is in QF(Lα, B
+),

• ¬x ∈ B is in QF(Lα, B
−),

• if φ(x) is in QF(Lα, B
+) or in QF(Lα, B

−), then φ(x) is in QF(Lα, B),

• if φ(x) and ψ(x) are both in QF(A), then both φ(x)∧ψ(x) and φ(x)∨ψ(x)

are in QF(A).

We define ∆0(Lα,B) - the class of formulas with bounded quantifiers with
B ∈ {B,B+, B−} as a parameter as follows:

• if φ(x) is in QF(Lα,B), then φ(x) is in ∆0(Lα,B),

• if K ∈ Lα and φ(x) is in ∆0(Lα,B), then both ∃xi ∈ K.φ(x) and
∀xi ∈ K.φ(x) are in ∆0(Lα,B).

• if φ(x) is in ∆0(Lα, B
+) or in ∆0(Lα, B

−), then φ(x) is in ∆0(Lα, B).

Let Σ0(Lα,B) := Π0(Lα,B) := ∆0(Lα,B). Then Σ1(Lα,B) is the class of
formulas with an existential quantifier and with B as a parameter. More precisely
we define Σn+1(Lα,B) as follows:

• if φ(x) is in Πn(Lα,B), then ∀xi.φ(x) is in Πn(Lα,B) and ∃xi.φ(x) is in
Σn+1(Lα,B),

18Introduced in this thesis.
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• if φ(x) is in Σn(Lα,B), then ∃xi.φ(x) is in Σn(Lα,B) and ∀xi.φ(x) is in
Πn+1(Lα,B),

• if φ(x) is in Θn(Lα, B
+) or in Θn(Lα, B

−), then φ(x) is in Θn(Lα, B) for
Θ ∈ {Σ,Π},

• close the classes Σn,Πn under the equivalence of the formulas.

Finally, define ∆n+1(Lα,B) as follows:

• ∆n(Lα,B) := Σn(Lα,B) ∩ Πn(Lα,B),

• if φ(x) is in ∆n(Lα, B
+) or in ∆n(Lα, B

−), then φ(x) is in ∆n(Lα, B),

• close the classes ∆n under the equivalence of the formulas.

Proposition 3.4.2. 19 Let f be a partial function. Let A ⊆ α. Then

i) dom(f) ∈ Π0
n(Lα, A) =⇒ [f ∈ Σ0

n(Lα, A) ⇐⇒ f ∈ ∆0
n(Lα, A)],

ii) dom(f) ∈ ∆1
n =⇒ [f ∈ Σ1

n ⇐⇒ f ∈ Π1
n ⇐⇒ f ∈ ∆1

n].

Proof. As f is a function,

f(x) = y ⇐⇒ ∀z[y = z ∨ f(x) 6= z] ∧ x ∈ dom(f).

Proposition 3.4.3. 20 The following are true:

i) if φ(x,B) ∈ Σ1(Lα, B
+), then φ(x,B) ∈ Σ1(Lα, B),

ii) If φ(x,B) ∈ Σ1(Lα, B), then φ(x,K) ∈ Σ1(Lα) for K ∈ Lα.

Proof. The statement i is clearly true as the definability with the positive parame-
ter B+ is just the definability with the parameter B with some additional restric-
tions on what reference to B can be made.

To prove the statement ii, note that if φ(x,B) ∈ Σ1(Lα, B), then for any K
we have φ(x,K) ∈ Σ1(Lα, K) by applying syntactic substitution of B with K.
However, if in addition K ∈ Lα, then φ(x,K) ∈ Σ1(Lα) as K is included as a
parameter in Lα already.

Proposition 3.4.4. (Properties of arithmetic definability21)

i) Θn(Lα, (B ⊕B)+) = Θn(Lα, B) where Θ ∈ {∆,Σ,Π} and n ∈ N+,

19Adapted from proposition 1.7 in [23].
20Introduced in this thesis.
21Introduced in this thesis.
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ii) A ∈ ∆1(Lα, B) ⇐⇒ A⊕ A ∈ Σ1(Lα, B) ⇐⇒ A⊕ A ∈ Π1(Lα, B).

Proof. i) We would like to show that for any formula φ and for any n ∈ N+ we
have

φ ∈ Θn(Lα, (B ⊕B)+) ⇐⇒ φ ∈ Θn(Lα, B)

up to the equivalence of φ. By expressing the formula φ in a prenex form
we reduce the problem to proving only the following two statements for any
formula φ:

φ ∈ Σ1(Lα, (B ⊕B)+) ⇐⇒ φ ∈ Σ1(Lα, B), (3.1)

φ ∈ Π1(Lα, (B ⊕B)+) ⇐⇒ φ ∈ Π1(Lα, B). (3.2)

Assume φ ∈ Σ1(Lα, (B ⊕B)+) and let φ ≡ ∃xφ′ for φ′ ∈ ∆0(Lα, (B ⊕B)+).
Obtain the formula φ′′ from the formula φ′ by replacing every atom
x ∈ B ⊕B for every variable x with the equivalent α-computable sub-
formula ∃y ≤ x[(x = 2y ∧ y ∈ B) ∨ (x = 2y + 1 ∧ y 6∈ B)]. Observe
φ′ ≡ φ′′. Note that φ′′ ∈ ∆1(Lα, B) and so φ ≡ ∃xφ′′ ∈ Σ1(Lα, B). Hence
φ ∈ Σ1(Lα, (B ⊕B)+) =⇒ φ ∈ Σ1(Lα, B) up to the equivalence of φ.

For the other direction, assume φ ∈ Σ1(Lα, B) and let φ ≡ ∃xφ′ for
φ′ ∈ ∆0(Lα, B). Use De Morgan’s law to move the negations to
the literals. To obtain the formula φ′′ from φ′, replace every literal
¬x ∈ B with the subformula 2x+ 1 ∈ B ⊕B and afterwards every literal
x ∈ B with the subformula 2x ∈ B ⊕B. Observe φ′ ≡ φ′′. Note that
φ′′ ∈ ∆1(Lα, (B ⊕B)+) and so φ ≡ ∃xφ′′ ∈ Σ1(Lα, (B ⊕B)+). Hence
φ ∈ Σ1(Lα, B) =⇒ φ ∈ Σ1(Lα, (B ⊕ B)+) up to the equivalence of
φ. Thus statement (3.1) is true. Statement (3.2) follows from a similar
proof where Σ1 and ∃ are replaced by Π1 and ∀ respectively. Therefore
Θn(Lα, (B ⊕ B)+) = Θn(Lα, B) where Θ ∈ {∆,Σ,Π} and n ∈ N+ as
required.

ii) Note A ∈ ∆1(Lα, B) ⇐⇒ A ∈ Σ1(Lα, B) ∧ A ∈ Π1(Lα)

⇐⇒ A ∈ Σ1(Lα, B) ∧ A ∈ Σ1(Lα, B) ⇐⇒ A⊕ A ∈ Σ1(Lα, B).

Similarly, A ∈ ∆1(Lα, B) ⇐⇒ A ∈ Σ1(Lα, B) ∧ A ∈ Π1(Lα)

⇐⇒ A ∈ Π1(Lα, B) ∧ A ∈ Π1(Lα, B) ⇐⇒ A⊕ A ∈ Π1(Lα, B).

Remark 3.4.5. (Model with a parameter22)
If B ∈ {B,B−, B+} is a parameter in a formula φ(x,B), we face a difficulty of
interpreting the literal x ∈ B (or x 6∈ B) in the model Lα if B 6∈ Lα.

22This should not be confused with a relativized model 〈Lα, B〉 in [4] p18 with the same nota-
tion.



Chapter 3. α-Computability Theory 31

For this purpose we define an extended model 〈Lα,B〉 which is a pair of Lα
and a set B ⊆ α. The language of the interpretable formulas over the model
〈Lα,B〉 is extended by a predicate B and has restrictions on the formulas depend-
ing on B to comply with definition 3.4.1.

Note the definability over Lα with a parameter B is equivalent to the definabil-
ity over 〈Lα,B〉. Hence we use them interchangeably.

3.4.2 Bounded quantifier rearrangement

When having a formula with bounded quantifiers in front of the unbounded quan-
tifiers, it is possible to rearrange it to an equivalent formula where the bounded
quantifiers are behind the unbounded quantifiers. This rearrangement is the source
of many statements in this subsection about the arithmetical hierarchy of the for-
mulas with the unbounded quantifiers.

Proposition 3.4.6. [23] Assume that φ(x, y, z) is a ∆0(Lα)-formula. Then the
formula ∀y ∈ K∃z.φ(x, y, z) is equivalent to some Σ1(Lα) formula.

Proof. It is sufficient to prove the claim

∀y ∈ K∃z.φ(x, y, z) ⇐⇒ ∃H∀y ∈ K∃z ∈ H.φ(x, y, z).

The⇐= direction is clear. For the =⇒ direction assume ∀y ∈ K∃z.φ(x, y, z).
Define a partial function

f = {(y, z) ∈ α× α : y ∈ K ∧ φ(x, y, z) ∧ ∀z′ < z.¬φ(x, y, z′)}.

The function f is ∆0 definable with K as a parameter from Lα. Thus f is Σ1-
definable over Lα. By the admissibility of α and the α-finiteness of K, the set
H := f [K] must by α-finite. Furthermore, note that ∀y ∈ K∃z ∈ H.φ(x, y, z).
Hence ∃H∀y ∈ K∃z ∈ H.φ(x, y, z) as required.

We generalize proposition 3.4.6 to proposition 3.4.7 and proposition 3.4.9.

Proposition 3.4.7. 23 Let B ∈ {B,B+, B−}. Assume 〈Lα,B〉 |= Σ0-
collection. Assume that φ(x, y, z) is a ∆0(Lα,B) formula. Then the formula
∀y ∈ K∃z.φ(x, y, z) is equivalent to some Σ1(Lα,B) formula.

Proof. It is sufficient to prove the claim

∀y ∈ K∃z.φ(x, y, z) ⇐⇒ ∃H∀y ∈ K∃z ∈ H.φ(x, y, z).

The⇐= direction is clear. For the =⇒ direction assume ∀y ∈ K∃z.φ(x, y, z).
Note 〈Lα,B〉 |= Σ0-collection and φ(x, y, z) ∈ ∆0(Lα,B). Therefore
∃H∀y ∈ K∃z ∈ H.φ(x, y, z) as required.

23Introduced in this thesis.
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Fact 3.4.8. Suppose that the collection axiom holds for the formula φ. Then:

i) ∀y1 ∈ K1∃y2.φ(y1, y2) ⇐⇒ ∃K2∀y1 ∈ K1∃y2 ∈ K2.φ(y1, y2)

ii) ∃y1 ∈ K1∀y2.¬φ(y1, y2) ⇐⇒ ∀K2∃y1 ∈ K1∀y2 ∈ K2.¬φ(y1, y2)

Proposition 3.4.9. (Bounded quantifier rearrangement24)
LetB ⊆ α, n ∈ N andK ∈ Lα. Define Π−1 := ∅. Assume 〈Lα, B〉 |= Πn−1-collection
or 〈Lα, B〉 |= ∆n-collection. Then:

i) φ ∈ Σn(Lα, B) =⇒ ∃ψ ∈ Σn(Lα, B)[ψ ≡ ∀y ∈ K.φ(y)]

ii) φ ∈ Πn(Lα, B) =⇒ ∃ψ ∈ Πn(Lα, B)[ψ ≡ ∃y ∈ K.φ(y)]

Proof. First note that 〈Lα, B〉 |= ∆n-collection or 〈Lα, B〉 |= Πn−1-collection
implies 〈Lα, B〉 |= Πm-collection for any m < n.

We prove the statements by the induction on n ∈ N. The base case when n = 0

is trivial. For the inductive case, assume IH that the statements hold for some n.
Let φ ∈ Σn+1(Lα, B). Then φ ≡ ∃y′.φ′(y, y′) for some φ′(y, y′) ∈ Πn(Lα, B).
We have

∀y ∈ K∃y′.φ′(y, y′) ⇐⇒ ∃K ′∀y ∈ K∃y′ ∈ K ′.φ′(y, y′)

by Πn(Lα, B)-collection and fact 3.4.8i. By IH the formula ∃y′ ∈ K ′.φ′(y, y′) is
equivalent to some Πn(Lα, B) formula. Hence ∃K ′∀y ∈ K∃y′ ∈ K ′.φ′(y, y′) is
equivalent to some formula ψ ∈ Σn+1(Lα, B). Therefore using the equivalence,

∀y ∈ K.φ(y) ≡ ∀y ∈ K∃y′.φ′(y, y′) ≡ ∃K ′∀y ∈ K∃y′ ∈ K ′.φ′(y, y′) ≡ ψ

as required.
The second statement for the formula φ ∈ Πn+1(Lα, B) holds by applying the

first statement on the formula ¬φ which is Σn+1(Lα, B) up to equivalence. This
completes the induction.

3.4.3 Transitivity for the arithmetical definability

If A is definable from the parameter B and B is definable from the parameter C,
then A is definable from the parameter C. This subsection explorers the exact
first-order definability class of A with the parameter C given the definability class
of A with the parameter B and the definability class of B with the parameter C.

Proposition 3.4.10. (Transitivity for the arithmetical definability25)
Assume 〈Lα, C〉 |= ∆n-collection. Then:

i) φ ∈ Σ1(Lα, B), B ∈ ∆n(Lα, C) =⇒ ∃ψ[φ ≡ ψ and ψ ∈ Σn(Lα, C)].
24Introduced in this thesis.
25No reference known. Possibly new in this thesis.
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ii) A ∈ Σ1(Lα, B), B ∈ ∆n(Lα, C) =⇒ A ∈ Σn(Lα, C)

iii) φ ∈ Π1(Lα, B), B ∈ ∆n(Lα, C) =⇒ ∃ψ[φ ≡ ψ and ψ ∈ Πn(Lα, C)].

iv) A ∈ Π1(Lα, B), B ∈ ∆n(Lα, C) =⇒ A ∈ Πn(Lα, C)

v) A ∈ ∆1(Lα, B), B ∈ ∆n(Lα, C) =⇒ A ∈ ∆n(Lα, C)

Proof. As B ∈ ∆n(Lα, C), so x ∈ B ⇐⇒ θ(x,C) for some formula
θ(x,C) ∈ ∆n(Lα, C).

For the first statement, let φ(x,B) ∈ Σ1(Lα, B) be a formula where x is a list
of variables. WLOG let φ(x,B) be in a prenex normal form, i.e. have all the nega-
tions, conjunctions and disjunctions in its quantifier-free subformula. Replace an
atom x′ ∈ B in the formula φ(x,B) by the subformula θ(x′, C). Denote the new
formula by ψ(x,C). We will prove by the structural induction on the formula
that ψ(x,C) ∈ Σn(Lα, C). Note that φ(x,B) and ψ(x,C) are equivalent. This
implies φ ≡ ψ and ψ ∈ Σn(Lα, C) as required.

For the second statement, let φ(x,B) ∈ Σ1(Lα, B) be a formula defining A.
Note that φ(x,B) and ψ(x,C) define the same setA. This impliesA ∈ Σn(Lα, C)

as required.

The third and the fourth statements follow by the duality from the first and the
second respectively.

The statement v follows from the statements ii and iv.

Proof of ψ(x,C) ∈ ∆n(Lα, C) if φ(x,B) ∈ QF(Lα, B) by induction

• If φ(x,B) ∈ QF(Lα), then ψ(x,C) ∈ ∆n(Lα, C) trivially.

• If φ(x,B) = xi ∈ B, then ψ(x,C) = θ(xi, C) ∈ ∆n(Lα, C).

• If φ(x,B) = ¬φ′(x,B), then by IH φ′(x,B) ≡ ψ′(x,C) for some for-
mula ψ′(x,C) ∈ ∆n(Lα, C). Thus ψ(x,C) = ¬ψ′(x,C) ≡ φ(x,B) and
ψ(x,C) ∈ ∆n(Lα, C) as required.

• Let φ(x,B) = φ0(x,B)�φ1(x,B) where� ∈ {∧,∨} and φi(x,B) ∈ Σ1(Lα, B).
Then ψ(x,C) = ψ0(x,C)�ψ1(x,C). By IH ψi(x,C) ∈ ∆n(Lα, C). Hence
ψ(x,C) ∈ ∆n(Lα, C).

Proof of ψ(x,C) ∈ Σn(Lα, C) by induction

• If φ(x,B) ∈ QF(Lα, B), then ψ(x,C) ∈ ∆n(Lα, C) by the argument
above. Thus ψ(x,C) ∈ Σn(Lα, C).
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• Let φ(x,B) = ∀y ∈ K.φ′(x, y, B). By IH φ′(x, y, B) ≡ ψ′(x, y, C) for
some ψ′(x, y, C) ∈ Σn(Lα, C). Then

ψ(x, y, C) = ∀y ∈ K.ψ′(x, y, C) ≡ φ(x, y, C).

Since 〈Lα, C〉 |= ∆n-collection, so ψ(x,C) ∈ Σn(Lα, C) up to equivalence
by proposition 3.4.9.

• If φ(x,B) = ∃y.φ′(x, y, B) or φ(x,B) = ∃y ∈ K.φ′(x, y, B), then
φ′(x, y, B) ≡ ψ′(x, y, B) for some formula ψ′(x,B) ∈ Σn(Lα, C) by IH.
Thus ψ(x,C) ∈ Σn(Lα, C) trivially as required.

As all induction steps are covered, this concludes the proof.

Corollary 3.4.11. 26 Assume 〈Lα, C〉 |= ∆n-collection. If B ∈ ∆n(Lα, C), then
〈Lα, B〉 |= ∆1-collection.

Proof. Let φ ∈ ∆1(Lα, B) and let B ∈ ∆n(Lα, C). Then by proposition 3.4.10v
φ ∈ ∆n(Lα, C) up to equivalence using 〈Lα, C〉 |= ∆n-collection. As
〈Lα, C〉 |= ∆n-collection and φ ∈ ∆n(Lα, C) up to equivalence, so the collection
holds for φ ∈ ∆1(Lα, B). Therefore 〈Lα, B〉 |= ∆1-collection.

3.4.4 Relativized Uniformization Theorem

We prove the relativization of theorem 3.2.9 for the case n = 1.

Lemma 3.4.12. 27 If 〈Lα, B〉 |= Σ0-replacement, then 〈Lα, B〉 |= Σ0-collection.

Proof. Assume 〈Lα, B〉 |= Σ0-replacement. Let φ(x, y) ∈ Σ0(Lα, B). Define f
by

(x, y) ∈ f ⇐⇒ φ(x, y) ∧ ∀y′ < y.¬φ(x, y).

Then f ∈ Σ0(Lα, B) up to equivalence trivially.

Let K ∈ Lα and assume ∀x ∈ K∃y.φ(x, y). Then f [K] ∈ Lα as
〈Lα, B〉 |= Σ0-replacement. Furthermore, ∀x ∈ K∃y ∈ f [K].φ(x, y). Therefore
〈Lα, B〉 |= Σ0-collection as required.

Lemma 3.4.13. 28 Let A ⊆ α, B ⊆ α, B ∈ {B,B+, B−} and n ∈ N.

i) Assume that 〈Lα,B〉 |= Σn-replacement. Then

A ∈ Lα iff A⊕ A ∈ Σn(Lα,B) and ∃β < α.A ⊆ β.

26No reference known. Possibly new in this thesis.
27A straight-forward generalization of a well-known statement without a parameter, found in

[23]VII for example.
28Introduced in this thesis.
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ii) Assume that 〈Lα, B〉 |= Σn-replacement. Then

A ∈ Lα iff A ∈ ∆n(Lα, B) and ∃β < α.A ⊆ β.

.

Proof. We prove the statement i. The direction =⇒ is clear. For the other
direction, assume that A ⊕ A ∈ Σn(Lα,B) and A ⊆ β < α for some β. WLOG
let A 6= ∅ and let a ∈ A. Define a function f : α→ α by

f(x) = y ⇐⇒ (x ∈ A ∧ x = y) ∨ (x 6∈ A ∧ y = a).

Since A ⊕ A ∈ Σn(Lα,B), the function f is Σn(Lα,B) definable. As
〈Lα,B〉 |= Σn-replacement and β is α-finite, so we have that A = f [β] ∈ Lα as
required.

The statement ii follows from the statement i since

A⊕ A ∈ Σn(Lα, B) ⇐⇒ A ∈ ∆n(Lα, B).

Lemma 3.4.14. 29 Assume 〈Lα, B〉 |= Σ0-replacement. Let W ∈ Σ1(Lα, B).
Then there is a function Ŵ : α→ Lα ∈ Σ1(Lα, B) s.t.:

i) ∀γ, δ < α[γ < δ =⇒ Ŵ (γ) ⊆ Ŵ (δ)].

ii) W =
⋃
γ<α Ŵ (γ).

iii) ∀x < α[x ∈ W ⇐⇒ ∃γ < α.x ∈ Ŵ (γ)].

Proof. As 〈Lα, B〉 |= Σ0-replacement, so 〈Lα, B〉 |= Σ0-collection by
lemma 3.4.12. As W ∈ Σ1(Lα, B), so there is a binary relation P ∈ Σ0(Lα, B)

s.t. x ∈ W ⇐⇒ ∃y < α.P (x, y). Define

Ŵ (γ) := π1[{z ∈ p2[γ] : P (z)}] = π1[p2[γ] ∩ P ]

where p2 : α → α × α is an α-computable bijection and π2 : α × α → α

is an α-computable projection. Thus Ŵ : α→ Lα ∈ Σ1(Lα, B) by propo-
sition 3.4.7 as 〈Lα, B〉 |= Σ0-collection. The set A := {z ∈ p2[γ] : P (z)} is
bounded as A ⊆ p2[γ] ∈ Lα. Since P (z) ∈ Σ0(Lα, B), so A ∈ Σ0(Lα, B).
As 〈Lα, B〉 |= Σ0-replacement, so A ∈ Lα by lemma 3.4.13. Therefore
Ŵ (γ) := π1[A] ∈ Lα and so W is well-defined. Also observe that the function
Ŵ : α→ Lα satisfies the properties i-iii as required.

Proposition 3.4.15. (Relativized Σ1 Uniformization Theorem30)
Assume 〈Lα, B〉 |= Σ0-replacement. Let R ⊆ α × α be a binary Σ1(Lα, B)-
definable relation. Then there is a partial function f ∈ Σ1(Lα, B) s.t.
∀x ∈ dom(R).R(x, f(x))].

29Introduced in this thesis.
30Introduced in this thesis.
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Proof. As 〈Lα, B〉 |= Σ0-replacement, so 〈Lα, B〉 |= Σ0-collection
by lemma 3.4.12. Using lemma 3.4.14, there is a Σ1(Lα, B) function
α → Lα, t 7→ Rt s.t. (x, y) ∈ R ⇐⇒ ∃t < α.(x, y) ∈ Rt. Let
π1 : α × α → α be the α-computable projection to the first parameter. Define
f : α→ α by

(x, y) ∈ f ⇐⇒ ∃t < α[(x, y) ∈ Rt ∧ ∀s < t∀z ∈ Rs.π1z 6= x].

Then f ∈ Σ1(Lα, B) using proposition 3.4.7 and the fact that 〈Lα, B〉 |= Σ0-collection.
Also ∀x ∈ dom(R).R(x, f(x)) as required.

3.4.5 Axioms in a parameterized model

We investigate a relationship between separation, replacement and collection in a
parameterized model 〈Lα,B〉 for B ∈ {B,B+, B−}.

Separation

Remark 3.4.16. (Power of relative separation for bounded parameter)
The relative separation is too strong to be useful for bounded parameters. Let
B ⊆ β < α. Let B ∈ {B,B+} and let 〈Lα,B〉 |= Σ0-separation, i.e. if
φ(x) ∈ Σ0(Lα,B) and K ∈ Lα, then {x ∈ K : φ(x)} ∈ Lα. If φ(x) := x ∈ B,
then φ(x) ∈ Σ0(Lα,B). Also β ∈ Lα. Thus B = {x ∈ β : x ∈ B} ∈ Lα. There-
fore the definability over 〈Lα,B〉 is just the definability over Lα.

Proposition 3.4.17. 31 Let n ∈ N and B ⊆ α. If 〈Lα, B〉 |= Σn-replacement,
then 〈Lα, B〉 |= ∆n-separation.

Proof. Let K ∈ Lα and φ(x) ∈ ∆n(Lα, B). Define A := {x ∈ K : φ(x)}. Then
clearly A ∈ ∆n(Lα, B). Also A ⊆ K. Therefore A ∈ Lα by lemma 3.4.13ii as
required.

Replacement and collection

We show that 〈Lα,B〉 |= Σ1-replacement implies 〈Lα,B〉 |= Σ1-collection. We
outline a difficulty in stating 〈Lα,B〉 |= Σ1-collection implies 〈Lα,B〉 |= Σ1-replacement
where B is a general parameter.

Proposition 3.4.18. 32 Let B ∈ {B,B−, B+}. Assume 〈Lα,B〉 |= Σ0-collection.
If A⊕ A ∈ Σ1(Lα,B) and A ⊆ K ∈ Lα, then A ∈ ∆0(Lα,B).

Proof. Since A⊕ A ∈ Σ1(Lα,B), we have:

31No reference known. Possibly new in this thesis.
32New in this thesis.
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• x ∈ A ⇐⇒ ∃y.φ(x, y) for some φ(x, y) ∈ ∆0(Lα,B),

• x 6∈ A ⇐⇒ ∃y.ψ(x, y) for some ψ(x, y) ∈ ∆0(Lα,B).

Recall Y denotes exclusive logic or. As A ⊆ K ∈ Lα, we have:

• ∀x ∈ K∃y[φ(x, y) Y ψ(x, y)] where φ(x, y) Y ψ(x, y) ∈ Σ0(Lα,B).

• ∃I ∈ Lα∀x ∈ K∃y ∈ I[φ(x, y) Y ψ(x, y)] since 〈Lα,B〉 |= Σ0-collection.

Hence we can define A with formulas with bounded quantifiers:

• x ∈ A ⇐⇒ x ∈ K ∧ ∃y ∈ I.φ(x, y),

• x 6∈ A ⇐⇒ x 6∈ K ∨ ∃y ∈ I.ψ(x, y).

Any of the two formulas implies A ∈ ∆0(Lα,B) as required.

Proposition 3.4.19. 33 Let n ∈ N. If Lα |= Σn-replacement, then
Lα |= Σn-collection.

Proof. Assume Lα |= Σn-replacement. Let φ(x, y) ∈ Σn(Lα), K ∈ Lα.
Assume ∀x ∈ K∃y.φ(x, y). By Uniformization Theorem 3.2.9, there is a
function f ∈ Σn(Lα) s.t. ∀x ∈ K.φ(x, f(x)). By the Σn-replacement, we
have K̂ := f [K] ∈ Lα. Furthermore, ∀x ∈ K∃y ∈ K̂.φ(x, y). Therefore
Lα |= Σn-collection.

Proposition 3.4.20. 34 Let n ∈ {0, 1}. If 〈Lα, B〉 |= Σn-replacement, then
〈Lα, B〉 |= Σn-collection.

Proof. The case n = 0 is implied by lemma 3.4.12.

For the other case, assume 〈Lα, B〉 |= Σn-replacement. So 〈Lα, B〉 |= Σ0-collection.
Let φ(x, y) ∈ Σn(Lα, B). As 〈Lα, B〉 |= Σ0-collection and φ(x, y) ∈ Σn(Lα, B),
so there is f ∈ Σn(Lα, B) s.t. ∀x[∃y.φ(x, y) =⇒ φ(x, f(x))] using
proposition 3.4.15.

Let K ∈ Lα and assume ∀x ∈ K∃y.φ(x, y). Then f [K] ∈ Lα as
〈Lα, B〉 |= Σn-replacement. Furthermore, ∀x ∈ K∃y ∈ f [K].φ(x, y). Therefore
〈Lα, B〉 |= Σn-collection.

Proposition 3.4.21. 35 (Σ0-elementary substructure of 〈Lα,B〉)
Let B ∈ {B,B−, B+}. If δ ≤ α, then 〈Lδ,B〉 �Σ0 〈Lα,B〉, i.e. 〈Lδ,B〉 is a Σ0

elementary substructure of 〈Lα,B〉.
33A straight-forward consequence of Uniformization Theorem from [4].
34Introduced in this thesis.
35Introduced in this thesis.
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Proof. By definition 〈Lδ,B〉 �Σ0 〈Lα,B〉 iff for every formula φ(x) ∈ Σ0(Lδ,B)

we have: 〈Lδ,B〉 |= φ(x) iff 〈Lα,B〉 |= φ(x). Let K ∈ Lδ, then trivially for any
x < δ we have: 〈Lδ,B〉 |= x ∈ K iff 〈Lα,B〉 |= x ∈ K. Clearly 〈Lδ,B〉 |= x ∈ B
iff 〈Lα,B〉 |= x ∈ B. Also clearly, 〈Lδ,B〉 |= x = y iff 〈Lα,B〉 |= x = y. Hence
〈Lδ,B〉 |= φ(x) iff 〈Lα,B〉 |= φ(x) for any atom φ(x) ∈ Σ0(Lδ). Inductive steps
for ∧, ∨, ¬ are clear. Inductive steps for the bounded quantifiers follow from the
fact that each quantifier is bounded in some K ∈ Lδ. Hence by the induction
on the structure of the formula φ(x) ∈ Σ0(Lδ) we conclude 〈Lδ,B〉 |= φ(x) iff
〈Lα,B〉 |= φ(x). Therefore 〈Lδ,B〉 �Σ0 〈Lα,B〉 as required.

Remark 3.4.22. The definability with a predicate x ∈ B is different from the
definability with a set parameter B over Lδ if B 6⊆ Lδ. Whereas with the set
parameter B we can access all the elements of B, possibly even the ones not
in Lδ, when using the definability with the predicate x ∈ B, only the elements
within the chosen model such as Lδ can be accessed. Therefore we cannot use
proposition 3.4.18 and proposition 3.4.21 to generalize lemma 3.1.18 to prove
that 〈Lα,B〉 |= Σ1-collection implies 〈Lα,B〉 |= Σ1-replacement.

3.5 α-computable index of a set

We study indexing functions and α-computable operations on such indices. The
results of this section are important for later constructions where stage-dependent
indexing and α-computability of the construction are important.

Lemma 3.5.1. (Pseudosupremum36)
The function psup : Lα → α defined by

psup(K) =

0 K = ∅

sup(K) K 6= ∅
is α-computable.

Proof. Note that

psup(K) = s ⇐⇒ [s = 0 ∧K ⊆ {0}∨

s > 0 ∧ s ∈ K ∧ ∀x ∈ K.x ≤ s∨

s > 0 ∧ s 6∈ K ∧ ∀x ∈ K.x < s ∧ ∀y < s∃x ∈ K.y < x)]

from which we deduce that the function psup is α-computable because the quan-
tifiers inside the brackets are bounded.

36Introduced in this thesis.
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Proposition 3.5.2. 37 There exist α-computable functions i : α × α → α and
si : α→ α s.t.:

i) ∀K ∈ Lα ∩ P (α)∃η < α∀x < α[x ∈ K ⇐⇒ i(η, x) = 1],

ii) ∀η < α.i(η) := {x < α : i(η, x) = 1} ∈ Lα,

iii) ∀η < α.si(η) =

0 i(η) = ∅

sup(i(η)) i(η) 6= ∅

Proof. Using the bijection b : α→ Lα ∈ Σ1(Lα) from proposition 3.2.2 and the
function psup from lemma 3.5.1 respectively, define the functions i and si:

i(η, x) :=[x ∈ b(η)],

si(η) :={s < α : ∃K ∈ Lα[b(η) = K ∧ psup(K) = s]}.

Clearly, i and si are both the required functions and i is α-computable. The func-
tion si is α-computable because the front quantifier is existential and functions b
and psup are both α-computable.

Therefore we can label α-finite subsets of α by indices η < α. Let Kη denote
an α-finite set i(η) with an index η.

Lemma 3.5.3. 38 There exists an α-computable function g : α× α× α→ α s.t.

Dη :={x|g(η, x, 1) = 1} ∈ Lα,

Eη :={x|g(η, x, 2) = 1} ∈ Lα
and for every pair (D̂, Ê) of α-finite subsets of α there is an index η < α s.t.
Dη = D̂ and Eη = Ê.

Therefore we can α-effectively number the pairs of the α-finite subsets of α
by the indices of α.

Proof. Note that there are α-computable bijections b : α→ Lα and p2 : α→ α× α.
Let π1 and π2 be the projections. Define g(η, x, k) := [x ∈ b ◦ πk ◦ p2(η)]. Then
g is the required α-computable function.

Lemma 3.5.4. 39 Let i, j, k : α × α → α be any α-computable numberings
of α-finite subsets of α with their respective α-computable supremum functions
si, sj, sk : α→ α in a sense of proposition 3.5.2. Then

i) There is an α-computable function u : α→ α s.t.

∀γ < α.
⋃

x∈j(γ)

i(x) = k(u(γ)).

37From proposition 1.7 in [4].
38Introduced in this thesis.
39Frequently used, yet usually implicitly assumed facts in α-Computability Theory.
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ii) There is an α-computable function v : α× α→ α s.t.

∀γ, δ < α.k(v(γ, δ)) = i(γ)⊕ j(δ).

iii) There exist α-computable functions iπ1 , iπ2 : α→ α s.t.

∀l ∈ {1, 2}∀γ < α.k(iπl(γ)) = {xl : 〈x1, x2〉 ∈ i(γ)}.

iv) There exists an α-computable function ip2 : α→ α s.t.

∀γ < α.k(ip2(γ)) = i(γ)× j(γ).

v) There exists an α-computable function w : α× α→ α s.t. if γ, δ < α, then

k(w(γ, δ)) = {〈x, y〉 : x ∈ j(δ) ∧ y ∈ j(γ) ∧ y ∈ i(x)}.

vi) There exists an α-computable function ti,j : α→ α s.t.

∀γ < α.i(γ) = j(ti,j(γ)).

vii) Let K(γ) :=
⋃
x∈j(γ) i(x). Then there exists an α-computable function

si,j : α→ α s.t.

∀γ < α.si,j(γ) =

0 K(γ) = ∅

sup(K(γ)) K(γ) 6= ∅
.

Proof. To ensure that the following relations are functions, if there are multiple
possible output values (resulting from the duplicate indices of α-finite subsets of
α) in α, take the least one. To prove that the following formulas are Σ1(Lα),
proposition 3.4.6 is used to rearrange the bounded quantifiers from the outside to
inside and remark 3.2.4 is used to encode the products.

i) Using the part vii) we have

u(γ) = δ ⇐⇒ ∀y ≤ si,j(γ)
[
∃x ≤ sj(γ)[j(γ, x) · i(x, y) = 1] ⇐⇒ k(δ, y) = 1

]
which is Σ1(Lα). To prove that the function u : α → α is also total,
we need to prove that the α-finite union of α-finite sets is α-finite, i.e. if
K ∈ Lα, then A :=

⋃
γ∈K Kγ ∈ Lα. By the part vii), A is bounded. Also

x ∈ A ⇐⇒ ∃γ ∈ K.x ∈ Kγ and x ∈ A ⇐⇒ ∀γ ∈ K.x 6∈ Kγ . Since the
quantifiers are bounded, so A is α-computable. Thus A is α-finite. Therefore
u : α→ α is a total α-computable function as required.

ii) Note that v(γ, δ) = ε ⇐⇒

∀x ≤ max{si(γ), sj(δ), sk(ε)}[k(ε, 2x) = i(γ, x) ∧ k(ε, 2x+ 1) = j(δ, x)]

which is Σ1(Lα) as required.

iii) Note iπl(γ) = δ ⇐⇒ k(δ) = πl[i(γ)] ⇐⇒ ∀xl ≤ sk(δ)[k(δ, xl) = 1 ⇐⇒
∃z ≤ si(γ).xl = πlz] ∧ ∀y ≤ si(γ)[k(δ, πly) = 1 ⇐⇒ ∃z ≤ si(γ).πly = πlz]

which is Σ1(Lα) as required.
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iv) Note ip2(γ) = δ ⇐⇒ ∀x < α.k(δ, x) = i(γ, π1x) · j(γ, π2x) ⇐⇒
∀x ≤ sk(δ).k(δ, x) = i(γ, π1x) · j(γ, π2x) ∧
∀x1 ≤ si(γ)∀x2 ≤ sj(γ).k(δ, 〈x1, x2〉) = i(γ, x1) · j(γ, x2) which is Σ1(Lα)

as required.

v) Note w(γ, δ) = ε ⇐⇒
∀x, y < α.k(ε, 〈x, y〉) = j(δ, x) · j(γ, y) · i(x, y) ⇐⇒
∀z ≤ sk(ε).k(ε, z) = j(δ, π1z) · j(γ, π2z) · i(π1z, π2z) ∧
∀x ≤ sj(δ)∀y ≤ max{sj(γ), si(x)}.k(ε, 〈x, y〉) = j(δ, x) · j(γ, y) · i(x, y)

which is Σ1(Lα) as required.

vi) Note ti,j(γ) = δ ⇐⇒ i(γ) = j(δ) ⇐⇒
∃sγ[si(γ) = sγ ∧ ∀x < sγ.i(γ, x) = j(δ, x)] ∧
∃sδ[sj(δ) = sδ ∧ ∀x < sδ.i(γ, x) = j(δ, x)] which is Σ1(Lα) as required.

vii) Using the function psup from lemma 3.5.1 we have si,j(γ) = psup(si[j(γ)])

where si[j(γ)] is an α-finite set by the admissibility of α, j(γ) being an α-
finite set and si being α-computable. Therefore si,j is α-computable as re-
quired.

We can index α-c.e., α-computable sets by an index in α.

Note 3.5.5. (Index for α-c.e. set)
Note that every Σ1(Lα) set is a domain of some function which is Σ1-definable
with a finite number of parameters (WLOG just one parameter K ∈ Lα) over Lα
with some first order formula φ. As the language (excluding the parameter from
Kγ ∈ Lα) where φ is defined is countable, we can encode the finite formula φ
by some index d < ω. The α-finite parameter Kγ of φ has index γ < α. Hence
we can encode the Σ1(Lα) function by a pair e := 〈d, γ〉 < α. Note that the
encoding/decoding of the index can be done in an α-computable way. Hence we
can denote an α-c.e. set as We where e is its α-computable index.

Note 3.5.6. (Index for α-computable set)
Let A be an α-computable set. Then there exist c, d < α s.t. A = Wc and
α − A = Wd by note 3.5.5. Using this, we can assign an α-computable index for
an α-computable set A as e := 〈c, d〉.

3.6 Projectum

The projectum α∗ of α is defined below. We can index all α-c.e. sets with an index
in α∗, see proposition 3.6.8. This turns out to be a useful property in constructions
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in α-Computability Theory as demonstrated in section 3.13.

We state an alternative definition of the projectum in definition 3.6.1 and then
provide its equivalence with definition 2.2.2 in proposition 3.6.2.

Definition 3.6.1. (Projectum40)
The Σ1 projectum (projectum for short) of α is

α∗ := min{γ ≤ α : ∃A ⊆ γ[A ∈ Σ1(Lα) ∧ A 6∈ Lα]}.

Proposition 3.6.2. 41 The following ordinals are equal:

i) α∗ := min{γ < α : ∃A ⊆ γ[A ∈ Σ1(Lα) ∧ A 6∈ Lα]}

ii) min{γ ≤ α : ∃ partial surjection p1 : γ ⇀ α ∈ Σ1(Lα)}

iii) min{γ ≤ α : ∃ total injection i : α� γ ∈ Σ1(Lα)}.

Example 3.6.3. (Examples of a projectum)

• The projectum of an infinite regular cardinal α is α∗ = α.

• The projectum of ωCK1 is ω. 42

Fact 3.6.4. (Admissibility of the projectum43)
If α is admissible, then the projectum α∗ of α is also admissible.

Proposition 3.6.5. 44 Suppose that α∗ < α, then α is not Σ2 admissible.

Proof. Let α∗ < α and p1 : α∗ ⇀ α be a partial surjection which is Σ1(Lα)

definable. Let A := dom(p1). Extend p1 to a total function f : α→ α as follows:

f(x) =

p1(x) if x ∈ A,

0 otherwise.

As A ∈ Σ1(Lα), so the total function f ∈ Σ2(Lα). But α∗ ∈ Lα and
f [α∗] = α 6∈ Lα. Hence α is not Σ2 admissible.

Proposition 3.6.6. 45 Let α∗ < α and let i : α → α∗ be a total α-computable
injection. If i[A] is α-computable, then A ∈ Lα.

40Definition 1.19 in [4].
41Theorem 1.20 in [4].
42[4] p10 Remark 1.21a.
43[1] section V.7. p184 Corollary 7.13.
44Usually assumed implicitly. No reference known.
45Usually assumed implicitly. No reference known.
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Proof. Let p1 : α∗ ⇀ α be an α-computable projection, i.e. p1 := i−1. Let
K := i[A]. K is α-computable by the assumption. But K is also bounded by
α∗ < α. Thus K ∈ Lα by proposition 3.2.7.

Note that p1[K] = A. Hence A ∈ Lα by the α-computability of p1, α-
finiteness of K and by the admissibility of α.

Proposition 3.6.7. 46 Let A ⊆ δ < α∗ and A ∈ Σ1(Lα). Then A ∈ Lα.

Proposition 3.6.8. (Indexing α-c.e. sets with a projectum47)
We can index all α-c.e. sets just with indices from α∗.

Proof. Let Wd be an α-c.e. set with an index in α. Let p1 : α∗ ⇀ α be an α-
computable projection (partial surjection). Let W ∗

e denote an α-c.e. set with an
index in α∗, i.e.

W ∗
e := {x < α : ∃d < α[p1(e) = d ∧ x ∈ Wd]}.

Note that W ∗
e is Σ1(Lα). As p1 is a surjection, so every α-c.e. set Wd is repre-

sented by some set W ∗
e where p1(e) = d as required.

Lemma 3.6.9. 48 Suppose that i : α→ α is an α-computable injection andA ⊆ α.
Then A ≡αe i[A].

Proof. Let B := i[A]. Then A ≤αe B via V := {〈γ, δ〉 : i[Kγ] = Kδ} where
V ∈ Σ1(Lα) since i ∈ Σ1(Lα) and i[Kγ] ∈ Lα by the admissibility of α and
α-computability of i. Similarly, B ≤αe A via

W := {〈γ, δ〉 : Kγ ⊆ rng(i) ∧ i−1[Kγ] = Kδ} ∈ Σ1(Lα).

Therefore A ≡αe i[A] as required.

Proposition 3.6.10. 49 ∀A ⊆ α∃B ⊆ α∗.A ≡αe B.

Proof. Let i : α→ α∗ be the α-computable injection and define B := i[A]. Then
B ⊆ α∗ and A ≡αe B by lemma 3.6.9 as required.

3.7 Reducibility

In this section the generalizations of the enumeration, Turing and many-one re-
ducibilities in α-Computability Theory are introduced.

Each of the enumeration and Turing reducibility from the classical
Computability Theory generalizes to several non-equivalent notions in α-
Computability Theory. The correspondence between these different notions is
introduced in section 3.9.

46From [23] p157.
47Usually assumed implicitly as in [4] theorem 3.5. p52. No reference known.
48Usually assumed implicitly. No reference known.
49Usually assumed implicitly. No reference known.



44 3.7. Reducibility

3.7.1 Enumeration reducibility

The generalization of the enumeration reducibility and operator to the context of
α-Computability Theory is briefly investigated in [6] by Di Paola for the first time.
The set A is weakly α-enumeration reducible to the set B denoted as A ≤wαe B
iff

∃ε < α∗∀x < α[x ∈ A ⇐⇒ ∃η[〈x, η〉 ∈ W ∗
ε ∧Kη ⊆ B]] (3.3)

where W ∗
ε is an α-c.e. set with an index from the projectum

α∗ := min{γ ≤ α : ∃A ⊆ γ[A ∈ Σ1(Lα) ∧ A 6∈ Lα]}.

Similarly, the set A is α-enumeration reducible to the set B denoted as A ≤αe B
iff

∃ε < α∗∀δ < α[Kδ ⊆ A ⇐⇒ ∃η[〈δ, η〉 ∈ W ∗
ε ∧Kη ⊆ B]] (3.4)

After these definitions, Di Paola studies the theory of α-enumeration operators
which diverts from our goals. Hence unless stated otherwise, the definitions and
results concerned with the enumeration reducibility and degrees in this thesis are
new.

We provide three natural notions of the weak α-enumeration reducibility prove
their equivalence in proposition 3.7.4. We also provide a suitable definition of the
α-enumeration reducibility equivalent to 3.3.

Weak α-enumeration reducibility

Definition 3.7.1. (Weak α-enumeration reducibility50)
The set A is weak α-enumeration reducible to B denoted as A ≤wαe B iff there
is a weak α-enumeration operator Φw ∈ Σ1(Lα) s.t. A = Φw(B) where

Φw(B) := {x < α : ∃δ < α[〈x, δ〉 ∈ Φw ∧Kδ ⊆ B]}.

Definition 3.7.2. (Very weak α-enumeration reducibility51)
The set A is very weak α-enumeration reducible to B denoted as A ≤vwαe B iff
there is a very weak α-enumeration operator Φvw ∈ Σ1(Lα) s.t. A = Φvw(B)

where

Φvw(B) :=
⋃
{Kγ : ∃δ < α[〈γ, δ〉 ∈ Φvw ∧Kδ ⊆ B].

Definition 3.7.3. (Feeble α-enumeration reducibility52)
The set A is feeble α-enumeration reducible to B denoted as A ≤fαe B iff there

50Definition 3.7.1 is clearly equivalent to 3.3. The difference is that we do not require the α-c.e.
set Φw to have an index from α∗.

51Introduced in this thesis.
52Introduced in this thesis.
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is a feeble α-enumeration operator Φf ∈ Σ1(Lα) s.t. A = Φf (B) where

Φf (B) := {x < α : ∃γ, δ < α[〈γ, δ〉 ∈ Φf ∧ x ∈ Kγ ∧Kδ ⊆ B]}.

Proposition 3.7.4. (Equivalence of weak α-enumeration reducibilities53)
The following three statements are equivalent for A,B ⊆ α:

i) A ≤wαe B,

ii) A ≤fαe B,

iii) A ≤vwαe B.

In other words: ≤wαe=≤fαe=≤vwαe.

Proof. Note that

x ∈ Φvw(B) ⇐⇒ ∃γ, δ < α[〈γ, δ〉 ∈ Φvw ∧ x ∈ Kγ ∧Kδ ⊆ B].

So the definition of a very weak α-enumeration operator is equivalent to the def-
inition of a feable α-enumeration operator, i.e. ∀e < α.Φvw

e (B) = Φf
e (B). Thus

ii) iff iii). Next i) implies ii) since given an element x < α, we can use the Σ1(Lα)

bijection α → Lα to retrieve the index γ of the α-finite set Kγ = {x}. To prove
that ii) implies i), we assume that we have A = Φf (B). Define

Φw := {〈x, δ〉 ∈ α× α : ∃γ < α[〈γ, δ〉 ∈ Φf ∧ x ∈ Kγ]}.

As Φf is Σ1(Lα), so is Φw. Then we have x ∈ Φw(B) ⇐⇒
∃δ < α[〈x, δ〉 ∈ Φw ∧Kδ ⊆ B] ⇐⇒
∃γ, δ < α[〈γ, δ〉 ∈ Φf ∧ x ∈ Kγ ∧ Kδ ⊆ B] ⇐⇒ x ∈ Φf (B). So given Φf

operator, we can construct Φw such that Φw(B) = Φf (B). Hence ii) implies i).
Therefore i) iff ii) iff iii) as required.

The proposition above establishes the equivalence of the three notions defined.
Therefore we will only talk about the weak α-enumeration reducibility and use
any definition of the reducibility and its enumeration operator as convenient. We
shorten weak α-enumeration operator to just α-enumeration operator and equip
it with the index from α to obtain the following updated definitions widely used
in this thesis.

Definition 3.7.5. (α-enumeration operator)
An α-enumeration operator is an α-c.e. set Φ. For a set B ⊆ α, define

Φ(B) := {x ∈ α : ∃δ < α(〈x, δ〉 ∈ Φ ∧Kδ ⊆ B)}.

Let Φγ denote an α-c.e. set with an index γ.

Definition 3.7.6. (Weak α-enumeration reducibility)
A is weakly α-enumeration reducible to B denoted as A ≤wαe B iff there exists
an α-enumeration operator Φ ∈ Σ1(Lα) s.t. A = Φ(B).

53Introduced in this thesis.
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α-enumeration reducibility

Definition 3.7.7. (α-enumeration reducibility54)
The set A is α-enumeration reducible to B denoted as A ≤αe B iff ∃W ∈ Σ1(Lα)

s.t.

∀γ < α[Kγ ⊆ A ⇐⇒ ∃δ < α[〈γ, δ〉 ∈ W ∧Kδ ⊆ B]].

Denote the fact that A reduces to B via W as A = W (B).

Properties

Lemma 3.7.8. 55 A ≤αe B ⊕ C ∧B ∈ Σ1(Lα) =⇒ A ≤αe C

Proof. As A ≤αe B ⊕ C, so there is some W ∈ Σ1(Lα) s.t.

∀γ < α.[Kγ ⊆ A ⇐⇒ ∃δ[〈γ, δ〉 ∈ W ∧Kδ ⊆ B ⊕ C]].

We want to find Wd ∈ Σ1(Lα) s.t.

∀γ < α.[Kγ ⊆ A ⇐⇒ ∃ε[〈γ, ε〉 ∈ Wd ∧Kε ⊆ C]].

Define

Wd := {〈γ, ε〉 : ∃δ∃K[〈γ, δ〉 ∈ W ∧Kδ = K ⊕Kε ∧ ∀x ∈ K.x ∈ B]}

which is Σ1(Lα) by proposition 3.4.6 since B ∈ Σ1(Lα) as required.

Note 3.7.9. 56 If A ≤αe A, is it true that A ≤αe A?
No, consider the halting set H . Then H ≤e H , but H 6≤e H .

Note 3.7.10. 57 Is it true that for any A,B ⊆ α we have: A ≤αe B ⇐⇒ A ≤αe
B?

No. For example, take A = H and B = H .

It is trivial to observe the following.

Fact 3.7.11. (Properties of an α-enumeration operator)
Let A,B ⊆ α and γ < α. Then Φγ satisfies:

i) Closure under reducibility: Φγ(A) ≤wαe A,

ii) Monotonicity: A ⊆ B =⇒ Φγ(A) ⊆ Φγ(B),

iii) Witness property: if x ∈ Φγ(A), then ∃K ⊆ A[K ∈ Lα ∧ x ∈ Φγ(K)].

Proposition 3.7.12. 58 If A ≤wαe B and B ≤αe C, then A ≤wαe C.
54Definition 3.7.7 is clearly equivalent to 3.7.1. The difference is that we do not require the

α-c.e. set W to have an index from α∗.
55Introduced in this thesis.
56Well-known from classical Computability Theory.
57Well-known from classical Computability Theory.
58Introduced in this thesis.
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Proof. Assume A ≤wαe B. So there is an α-enumeration operator Φ s.t.
A = Φ(B). In detail, for any x < α we have

x ∈ A ⇐⇒ ∃γ < α[〈x, γ〉 ∈ Φ ∧Kγ ⊆ B]. (3.5)

Similarly, we assume B ≤αe C and so there is W ∈ Σ1(Lα) s.t. for any γ < α

we have

Kγ ⊆ B ⇐⇒ ∃δ < α[〈γ, δ〉 ∈ W ∧Kδ ⊆ C]. (3.6)

Putting statement (3.5) and statement (3.6) together we get

x ∈ A ⇐⇒ ∃γ < α[〈x, γ〉 ∈ Φ ∧ ∃δ < α[〈γ, δ〉 ∈ W ∧Kδ ⊆ C]]

⇐⇒ ∃δ < α[〈x, δ〉 ∈ Φ̂ ∧Kδ ⊆ C]

⇐⇒ x ∈ Φ̂(C).

where Φ̂ := {〈x, δ〉 : ∃γ, δ < α[〈x, γ〉 ∈ Φ ∧ 〈γ, δ〉 ∈ W ]} ∈ Σ1(Lα). Hence
A = Φ̂(C) and so A ≤wαe C as required.

3.7.2 Total reducibility

The Turing reducibility can be thought of as a total reducibility wrt the
enumeration reducibility. In this section we introduce total reducibilities in
α-Computability Theory which are the generalizations of the Turing reducibility.

Definition 3.7.13. (Weak α-reducibility59)
The set A ⊆ α is weakly α-reducible to the set B ⊆ α denoted as A ≤wα B iff
there is α-c.e. set W ∈ Σ1(Lα) s.t. for any x < α:

x ∈ A ⇐⇒ ∃γ < α∃δ < α[〈x, γ, δ, 1〉 ∈ W ∧Kγ ⊆ B ∧Kδ ⊆ B],

x ∈ A ⇐⇒ ∃γ < α∃δ < α[〈x, γ, δ, 0〉 ∈ W ∧Kγ ⊆ B ∧Kδ ⊆ B].

Definition 3.7.14. (α-reducibility60)
The set A ⊆ α is α-reducible to the set B ⊆ α denoted as A ≤α B iff there is
α-c.e. set W ∈ Σ1(Lα) s.t. for any β < α:

Kβ ⊆ A ⇐⇒ ∃γ < α∃δ < α[〈β, γ, δ, 1〉 ∈ W ∧Kγ ⊆ B ∧Kδ ⊆ B],

Kβ ⊆ A ⇐⇒ ∃γ < α∃δ < α[〈β, γ, δ, 0〉 ∈ W ∧Kγ ⊆ B ∧Kδ ⊆ B].

3.7.3 Total and enumeration reducibilities

We state the correspondence between the total and enumeration reducibilities and
their shared properties.

59[4] p6 definition 1.13.
60[4] p7 definition 1.14.
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Correspondence

We state relations between the total and enumeration reducibilities which eluci-
date the use of the word total for total reducibilities.

Definition 3.7.15. (Total set61)
A subset A ⊆ α is total iff A ≤αe A iff A ≡αe A⊕ A.

The following fact 3.7.16 provides alternative definitions of the total reducibil-
ities ≤α and ≤wα in terms of the enumeration reducibilities on the total sets.
Fact 3.7.16 follows from the definitions of the α-reducibilities (definition 3.7.13
and definition 3.7.14) and α-enumeration reducibilities (definition 3.7.6 and defi-
nition 3.7.7) provided in this section.

From definition 3.7.13 and definition 3.7.14 it is easy to see that A ≤α B (or
A ≤wα B) can be also interpreted as saying that the set A and its complement A
can be (weakly) α-enumerated from the set B and its complement B. We state
this observation formally in the following fact.

Fact 3.7.16. (Total and enumeration reducibilities correspondence)

i) ∀A,B ⊆ α[A ≤wα B ⇐⇒ A⊕ A ≤wαe B ⊕B].

ii) ∀A,B ⊆ α[A ≤α B ⇐⇒ A⊕ A ≤αe B ⊕B].

Selman’s Theorem gives a characterization of the α-enumeration reducibility
for arbitrary sets in terms of the α-enumeration reducibility on the total sets.

Corollary 7.1.6. (Selman’s theorem62)
Assume V = L and let α be an infinite regular cardinal. Then for all A,B ⊆ α

we have

A ≤αe B ⇐⇒ ∀X[X ≡αe X ⊕X ∧B ≤αe X ⊕X =⇒ A ≤αe X ⊕X].

We defer the use of corollary 7.1.6 and its proof until chapter 7.

Shared properties

The following facts are easy to see for the (weak) α-reducibility and commonly
implicitly assumed in α-Computability Theory. As the definitions of the enumer-
ation reducibilities are simpler than those of the total reducibilities, the facts are
even simpler to observe for the enumeration reducibilities.

61A well-known definition in classical Computability Theory, see [2] Definition 1.4. The gen-
eralized version introduced in this thesis.

62Generalized to α-Computability Theory in this thesis.
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Fact 3.7.17. (Properties of total and enumeration reducibilities)
Let ≤r∈ {≤αe,≤α}. Then

i) ≤r induces a partial order≤ (i.e. ≤ is reflexive, antisymmetric, transitive) on
the r-Degrees Dr which are the equivalence classes induced by ≤r,

ii) In general weak reducibilities ≤wαe and ≤wα are not transitive [26],

iii) ≤r has a unique minimal degree denoted 0 containing ∅ and α,

iv) invariance under α-finite changes: if A ≤r B, A4Â ∈ Lα, B4B̂ ∈ Lα,
then Â ≤r B̂, where4 denotes a set theoretic difference.

v) A0 ∪ A1 ≤r A0 ⊕ A1,

vi) A0 ≤r B ∧ A1 ≤r B ⇐⇒ A0 ⊕ A1 ≤r B,

vii) χA ≡α A⊕ A where χA is the characteristic function of A.

3.7.4 Many-one reducibility

We generalize many-one reducibility to the setting of α-Computability Theory.

Definition 3.7.18. (Many-one reducibility63)
The set A is α-many-one reducible to the set B denoted as A ≤αm B iff there
exists a total α-computable function f : α→ α satisfying

∀x ∈ α[x ∈ A ⇐⇒ f(x) ∈ B].

It is easy to see the following.

Fact 3.7.19. (Many-one reducibility properties)

• A ≤αm B ⇐⇒ A ≤αm B,

• If A1 ≤αm B1 and A2 ≤αm B2, then A1 ⊕ A2 ≤αm B1 ⊕B2.

Proposition 3.7.20. 64 Assume A ≤αm B, then:

• A ≤αe B

• A ≤αe B

Proof. We prove the first statement. Assume that A ≤αm B via the α-
computable function f : α→ α. Hence x ∈ A ⇐⇒ f(x) ∈ B and so
Kγ ⊆ A ⇐⇒ f [Kγ] ⊆ B. Therefore A ≤αe B via α-c.e. set

W := {〈γ, δ〉 : f [Kγ] = Kδ}.

The second statement follows from the first statement and fact 3.7.19.
63Introduced in this thesis.
64Introduced in this thesis.
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3.8 Regularity

A notion of a regularity measures how close a set behaves like a set in classi-
cal Computability Theory from the definability perspective. Many theorems and
statements invoke assumptions on the regularity, e.g. Shore’s Splitting Theorem
3.8.5.

We investigate different notions of regularity: regularity, quasiregularity, hy-
perregularity and megaregularity. We consider their closure under reducibilities
and definability, degree invariance, relative strength and relation to totality.

3.8.1 Regularity and quasiregularity

We define regularity and quasiregularity. Regularity is a well-established notion
in α-Computability Theory, see [23] or [4]. Quasiregularity was introduced in this
thesis.

Definition 3.8.1. (Regularity and quasiregularity)

• A subset A ⊆ α is α-regular iff ∀γ < α.A ∩ γ ∈ Lα.

• A subset A ⊆ α is α-quasiregular iff ∀γ < sup(A).A ∩ γ ∈ Lα.

If clear from the context, we just say regular and quasiregular instead of α-
regular and α-quasiregular respectively.

The fact below follow directly from the definitions.

Fact 3.8.2. (Regularity and quasiregularity)

i) Every regular set is quasiregular.

ii) If sup(A) = α and A is quasiregular, then A is regular.

Proposition 3.8.3. (Regularity closure under operations65)

i) ∀A ⊆ α[A regular ⇐⇒ A regular],

ii) ∀A,B ⊆ α[A regular ∧B regular =⇒ A⊕B regular ],

iii) ∀A,B ⊆ α[A regular ∧B regular =⇒ A ∪B regular ].

Proof. The statements follow from the following observations respectively:

i) If A ∩ γ ∈ Lα, then A ∩ γ ∈ Lα.

ii) If A ∩ γ ∈ Lα and B ∩ γ ∈ Lα, then (A⊕B) ∩ γ ∈ Lα.

65Usually assumed implicitly. No reference known.
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iii) If A ∩ γ ∈ Lα and B ∩ γ ∈ Lα, then (A ∪B) ∩ γ ∈ Lα.

Theorem 3.8.4. (Sack’s Theorem on regular set existence66)
Let A be α-computably enumerable. Then there exists a regular, α-c.e. set B of
the same α-degree as A.

Theorem 3.8.5. (Shore’s Splitting Theorem [27])
Let C be α-c.e and regular. Let D be non-α-computable and α-c.e. Then there
exist regular α-c.e. sets A and B s.t. C = A t B, A ≤α C, B ≤α C and also
D 6≤α A or D 6≤α B.

3.8.2 Megaregularity

We introduce in this thesis the notion of megaregularity. In remark 3.8.27 this will
turn out to be much stronger than the notion of regularity.

Definition 3.8.6. (Megaregularity)
Let B ⊆ α and add B as a predicate to the language for the structure 〈Lα, B〉.

Then B is α-megaregular iff the structure 〈Lα, B〉 satisfies the axiom of
Σ1(Lα, B)-replacement:

∀f ∈ Σ1(Lα, B)∀K ∈ Lα.f [K] ∈ Lα.

If the ordinal α is clear from the context, we just say megaregular instead of
α-megaregular.

Remark 3.8.7. A person familiar with the notion of hyperregularity shall note
that a set is megaregular iff it is regular and hyperregular (proposition 3.8.31).

Admissibility and megaregularity

Lemma 3.8.8. 67 If f ∈ Σ1(Lα, A) and K ∈ Lα, then f [K] ∈ ∆1(Lα, A).

Proof. As f ∈ Σ1(Lα, A), so f ∈ ∆1(Lα, A) by proposition 3.4.2. Note that

y ∈ f [K] ⇐⇒ ∃x ∈ K.(x, y) ∈ f.

So clearly f [K] ∈ Σ1(Lα, A). As f ∈ Π1(Lα, A), so f [K] ∈ Π1(Lα, A) by
proposition 3.4.9. As f [K] ∈ Σ1 ∩Π1(Lα, A), so f [K] ∈ ∆1(Lα, A) as required.

Proposition 3.8.9. 68 If Lα |= Σn-replacement and A ∈ ∆n(Lα), then A is
megaregular.

66Sacks [23], theorem 4.2.
67Generalized from [4] proposition 1.12b.
68Introduced in this thesis.
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Proof. Assume Lα |= Σn-replacement. Hence Lα |= Σn-collection by
proposition 3.4.19. Let A ∈ ∆n(Lα). Let f ∈ Σ1(Lα, A) and K ∈ Lα be
arbitrary. Then f [K] ∈ ∆1(Lα, A) by lemma 3.8.8. By Lα |= Σn-collection
and proposition 3.4.10v we have f [K] ∈ ∆n(Lα). Thus f [K] has to be bounded
since σncf(α) = α by the Σn admissibility of α (proposition 3.1.21). As
f [K] ∈ ∆n(Lα), f [K] is bounded and Lα |= Σn-replacement, so f [K] ∈ Lα by
lemma 3.4.13ii. Therefore A is megaregular as required.

Megaregularity closure

We prove that the megaregularity is closed downwards under the weak α-
reducibility and thus α-degree invariant.

Lemma 3.8.10. 69 Assume B ≤wαe C and 〈Lα, C+〉 |= Σ0-collection. Then:

i) φ ∈ Σ1(Lα, B
+) =⇒ ∃ψ[φ ≡ ψ and ψ ∈ Σ1(Lα, C

+)].

ii) A ∈ Σ1(Lα, B
+) =⇒ A ∈ Σ1(Lα, C

+).

Proof. As B ≤wαe C, so

x ∈ B ⇐⇒ ∃δ < α[〈x, δ〉 ∈ W ∧Kδ ⊆ C] ⇐⇒ θ(x,C)

for some W ∈ Σ1(Lα).

For the first statement, let φ(x,B) ∈ Σ1(Lα, B
+) be a formula where x is a list

of variables. Replace an atom x′ ∈ B in the formula φ(x,B) by the expression
θ(x′, C). Denote the new formula by ψ(x,C). We will prove by the structural
induction on the formula that ψ(x,C) ∈ Σ1(Lα, C

+). Note that φ(x,B) and
ψ(x,C) are equivalent. This implies φ ≡ ψ and ψ ∈ Σ1(Lα, C

+) as required.

For the second statement, let φ(x,B) ∈ Σ1(Lα, B
+) be a formula defining

A. Note that φ(x,B) and ψ(x,C) define the same set A. This implies A ∈
Σ1(Lα, C

+) as required.

Proof of ψ(x,C) ∈ Σ1(Lα, C
+) by induction

Note θ(x,C) ∈ Σ1(Lα, C
+). Hence express θ(x,C) as ∃y.R(x, y, C) where

R(x, y, C) ∈ ∆0(Lα, C
+).

• If φ(x,B) ∈ QF(Lα), then ψ(x,C) ∈ Σ1(Lα, C
+) trivially.

• If φ(x,B) = xi ∈ B, then ψ(x,C) = θ(xi, C) ∈ Σ1(Lα, C
+).

69Introduced in this thesis.
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• Let φ(x,B) = φ0(x,B)�φ1(x,B) where� ∈ {∧,∨} and φi(x,B) ∈ Σ1(Lα, B
+).

Then ψ(x,C) = ψ0(x,C)�ψ1(x,C). By IH ψi(x,C) ≡ ∃yi.Ri(x, yi, C)

where Ri(x, yi, C) ∈ ∆0(Lα, C
+). Note that

ψ(x,C) ≡ ∃y0, y1[R0(x, y0, C)�R1(x, y1, C)].

Hence ψ(x,C) ∈ Σ1(Lα, C
+).

• Let φ(x,B) = ∀y ∈ K.φ′(x, y, B). Then by IH we have

ψ(x,C) = ∀y ∈ K∃zR′(x, y, z, C)

where R′(x, y, z, C) ∈ ∆0(Lα, C
+). Since 〈Lα, C+〉 |= Σ0-collection, so

ψ(x,C) ∈ Σ1(Lα, C
+) by proposition 3.4.7.

• If φ(x,B) = ∃y.φ′(x, y, B) or φ(x,B) = ∃y ∈ K.φ′(x, y, B), then it can
be verified easily using IH that also ψ(x,C) ∈ Σ1(Lα, C

+).

As all induction steps are covered, this concludes the proof.

Lemma 3.8.11. 70 Let A ∈ Σ1(Lα, B), B ≤wα C and 〈Lα, C〉 |= Σ0-collection.
Then A ∈ Σ1(Lα, C).

Proof. Since B ≤wα C, so there are α-computably enumerable sets W0,W1 ⊆ α

s.t.:

x 6∈ B ⇐⇒ ∃γ, δ < α[〈x, γ, δ〉 ∈ W0 ∧Kγ ⊆ C ∧Kδ ⊆ C] ⇐⇒ θ0(x,C),

x ∈ B ⇐⇒ ∃γ, δ < α[〈x, γ, δ〉 ∈ W1 ∧Kγ ⊆ C ∧Kδ ⊆ C] ⇐⇒ θ1(x,C),

where θ0 and θ1 are the abbreviations for the stated longer equivalent formulas.
As A ∈ Σ1(Lα, B), so A = {x < α : φ(x,B)} where φ(x,B) ∈ Σ1(Lα, B).
Using De Morgan’s laws, WLOG let the negations in the formula φ(x,B) occur
only at the level of literals. Construct a new formula ψ(x,C) from the formula
φ(x,B) by replacing the literals: x 6∈ B by θ0(x,C) and x ∈ B by θ1(x,C). Note
θi(x,C) ∈ Σ1(Lα, C).

Note that φ(x,B) and ψ(x,C) define the same set A. Moreover, one can
prove by the induction on the structure of the formula with a similar proof as in
the proof of lemma 3.8.10 that ψ(x,C) ∈ Σ1(Lα, C). Here we use the assumption
〈Lα, C〉 |= Σ0-collection in the following case. Suppose

ψ(x,C) = ∀y ∈ K∃zR′(x, y, z, C)

whereR′(x, y, z, C) ∈ ∆0(Lα, C) by IH andK ∈ Lα. Since 〈Lα, C〉 |= Σ0-collection,
so ψ(x,C) ∈ Σ1(Lα, C) by proposition 3.4.7 as required.

Therefore A ∈ Σ1(Lα, C) as required.

70Introduced in this thesis.
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Proposition 3.8.12. (Axiom closure under ≤wαe71)
Assume that A ≤wαe B. Then:

i) If 〈Lα, B+〉 |= Σ0-collection∧Σ1-replacement, then 〈Lα, A+〉 |= Σ1-replacement.

ii) If 〈Lα, B+〉 |= Σ1-collection, then 〈Lα, A+〉 |= Σ1-collection.

iii) If 〈Lα, B+〉 |= Σ0-collection∧Σ1-separation, then 〈Lα, A+〉 |= Σ1-separation.

Proof. i) Let f ∈ Σ1(Lα, A
+). SinceA ≤wαe B and 〈Lα, B+〉 |= Σ0-collection,

so f ∈ Σ1(Lα, B
+) by lemma 3.8.10ii. So if K ∈ Lα, then f [K] ∈ Lα since

〈Lα, B+〉 |= Σ1-replacement. Therefore 〈Lα, A+〉 |= Σ1-replacement.

ii) Let φ(x, y) ∈ Σ1(Lα, A
+). Since A ≤wαe B and 〈Lα, B+〉 |= Σ0-collection,

so φ(x, y) ∈ Σ1(Lα, B
+) up to equivalence by lemma 3.8.10i. So if K ∈ Lα

and ∀x ∈ K∃y.φ(x, y), then there is K̂ ∈ Lα s.t. ∀x ∈ K∃y ∈ K̂.φ(x, y)

since 〈Lα, B+〉 |= Σ1-collection. Therefore 〈Lα, A+〉 |= Σ1-collection.

iii) Let K ∈ Lα and φ(x) ∈ Σ1(Lα, A
+). Define K̂ := {x ∈ K : φ(x)}. We

need to show that K̂ ∈ Lα. Since A ≤wαe B and 〈Lα, B+〉 |= Σ0-collection,
so φ(x) ∈ Σ1(Lα, B

+) up to equivalence by lemma 3.8.10i. Thus K̂ ∈ Lα
as required since 〈Lα, B+〉 |= Σ1-separation.

Proposition 3.8.13. (Megaregularity closure and degree invariance72)

i) If A ≤wα B or A ≤α B and B is megaregular, then A is megaregular.

ii) If A ≡wα B or A ≡α B, then [A is megaregular iff B is megaregular].

iii) If A ∈ ∆1(Lα), then A is megaregular.

Proof. Statements ii) and iii) follow from i). We prove i) as follows. A is megareg-
ular iff every Σ1(Lα, A) definable function f satisfies the replacement axiom.

Let f ∈ Σ1(Lα, A). As A ≤wα B and B is megaregular, so f ∈ Σ1(Lα, B) by
lemma 3.8.11. Hence f satisfies the replacement axiom as B is megaregular.

Therefore 〈Lα, A〉 |= Σ1-replacement and so A must be megaregular.

Often we will use proposition 3.8.13 implicitly.

71Introduced in this thesis.
72Introduced in this thesis.
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3.8.3 Hyperregularity

We investigate two different notions of hyperregularity used in [23] and [4].

Definition 3.8.14. (Constructible hierarchy with a parameter73)
Introduce to the language a predicate x ∈ A to define the constructive hierarchy
for a parameter A ⊆ α:

• L[A]0 := ∅,

• L[A]γ+1 := Def(L[A]γ),

• L[A]δ :=
⋃
γ<δ L[A]γ if lim(δ),

• L[A] :=
⋃
γ∈Ord L[A]γ .

Lemma 3.8.15. 74 Assume A ⊆ α. Then A is regular iff Lα = L[A]α.

Proof. By induction ∀γ.L[A]γ = L[A ∩ γ]γ . Hence A is regular iff
∀γ < α.L[A]γ = Lα.

Definition 3.8.16. (Sacks hyperregular75)
A set A ⊆ α is Sacks hyperregular iff ∀f ≤wα A∀γ < α∃δ < α.f [γ] ⊆ δ.

Proposition 3.8.17. 76 If A ∈ Σ1(Lα) and A is Sacks hyperregular, then A is
regular.

Proposition 3.8.18. 77 α is Σ2-admissible iff ∀A ∈ Σ1(Lα).A is Sacks hyperreg-
ular.

It is easy to see that every α-computable set is Sacks hyperregular. By the-
orem 3.8.19 below the converse is not true which separates the notions of α-
computability from the Sack’s hyperregularity.

Theorem 3.8.19. 78 There exists a non-α-computable, Sacks hyperregular, α-c.e.
set.

Definition 3.8.20. (Chong hyperregular79)
A set A ⊆ α is Chong hyperregular iff L[A]α is an admissible structure - L[A]α

satisfies Σ1-Collection, i.e. ∀φ(x, y) ∈ Σ1(L[A]α, A)∀K ∈ L[A]α[
L[A]α |= ∀x ∈ K∃y.φ(x, y) =⇒ ∃K̂∀x ∈ K∃y ∈ K̂.φ(x, y)

]
.

73From [23] VII.3.5 Regularity p164.
74From [23] Proposition VII.3.6 p164.
75From [23] VI Hyperregularity and Priority p135.
76From [23] Prop VII.5.1. p167.
77From [23] Exercise VII.5.6. p174
78From [23] Theorem VII.5.3. p169
79From [4] Definition 1.32 p20
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Proposition 3.8.21. 80 Assume A ⊆ α is regular. Then A is Sacks hyperregular
iff A is Chong hyperregular.

Proof. First note that as A is regular, so L[A]α = Lα by lemma 3.8.15.

⇒: Assume that A is regular and Sacks hyperregular. Let f ∈ Σ1(Lα, A),
K ∈ Lα and K ⊆ dom(f). As A is regular, so f ≤wα A. As K ∈ Lα, so
K ⊆ γ for some γ < α. As A is Sacks hyperregular, so there is δ < α s.t.
f [K] ⊆ f [γ] ⊆ δ ∈ Lα.

⇐: Chong hyperregular implies Sacks hyperregular clearly.

3.8.4 Projectum and regularity

The projectum α∗ can be thought of as a Σ1-projectum. We generalize the Σ1-
projectum α∗ to a Σn-projectum and relate a projectum with regularity.

Definition 3.8.22. (Σn-projectum81)
The Σn projectum of α is

σnp(α) := min{γ ≤ α : ∃A ⊆ γ[A ∈ Σn(Lα) ∧ A 6∈ Lα]}.

Proposition 3.8.23. (Projectum and regularity82)

• A ⊆ α∗ ∧ A ∈ Σ1(Lα) =⇒ A quasiregular,

• α∗ = α ∧ A ∈ Σ1(Lα) =⇒ A regular.

• A ⊆ σnp(α) ∧ A ∈ Σn(Lα) =⇒ A quasiregular,

• σnp(α) = α ∧ A ∈ Σn(Lα) =⇒ A regular.

Proof. All four statements are implied by the statement

A ⊆ σnp(α) ∧ A ∈ Σn(Lα) =⇒ ∀β < sup(A).A ∩ β ∈ Lα
which is true. For suppose not, then

∃β < sup(A) ≤ σnp(α)[A ∩ β ∈ Σn(Lα) ∧ A ∩ β 6∈ Lα]

which is a contradiction to definition 3.8.22.

80Introduced in this thesis.
81Definition 1.19 in [4].
82From [23] Proposition VII.2.1. p157.
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3.8.5 Notions of regularity by strength

We inspect relation between α-finiteness, computability and different notions of
regularity: quasiregularity, regularity, hyperregularity and megaregularity.

Proposition 3.8.24. 83 Every α-computable subset of α is regular.

Proof. Follows from proposition 3.2.7.

Example 3.8.25. Let α = ωCK1 . Then the set of the ordinal notations, Kleene’s
O ⊆ ω is quasiregular, but not regular. AsO ∈ Σ1(Lα), so by theorem 3.8.4 there
is B ⊆ α s.t. O ≡α B and B is regular.

Let p0 : ω ⇀ α be a partial α-computable function taking a computable
notation to its ordinal, i.e. p0 is the α-computable projection constructed from O
using proposition 3.6.2. Using O as an oracle, complete p0 to a total surjective
function f : α→ α. Then f ∈ Σ1(Lα,O), ω ∈ Lα, but f [ω] 6∈ Lα. Hence neither
O nor B is megaregular.

Example 3.8.26. 84 Assume V = L and let α be an infinite regular cardinal.
Then every subset of α is megaregular. But there are subsets of α which are not
α-computable.

Remark 3.8.27. Hence using results from section 3.8 (statements 3.8.2, 3.8.24,
3.8.25, 3.8.26) we have the following strict separation of the notions where α-
finiteness is the strongest condition and quasiregularity is the weakest:

α-finite =⇒ α-computable =⇒ megaregular =⇒ regular =⇒ quasiregular.

Proposition 3.8.28. (Computability, regularity, megaregularity85)
Let B ∈ {B,B+}. Assume 〈Lα,B〉 |= Σ1-replacement. Then:

i) A⊕ A ∈ Σ1(Lα,B) =⇒ A regular,

ii) ¬A regular =⇒ A⊕ A 6∈ Σ1(Lα,B),

iii) If 〈Lα, B+〉 |= Σ1-replacement and A⊕ A ≤αe B, then A regular,

iv) If B megaregular, then B regular,

v) If B megaregular and A ≤α B, then A regular,

vi) ∀β < α.A ∩ β ⊕ A ∩ β ∈ Σ1(Lα,B) ⇐⇒ A regular.

83From Proposition 1.12b in [4].
84See corollary 3.11.4 for details.
85Introduced in this thesis. Some parts might have been used elsewhere implicitly, no reference

known.
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vii) If 〈Lα, B+〉 |= Σ1-replacement and B total, then B regular,

viii) If 〈Lα, B+〉 |= Σ1-replacement, B total and A ∈ Σ1(Lα, B), then
A ∈ Σ1(Lα, B

+).

ix) If 〈Lα, B+〉 |= Σ1-replacement and B total, then B megaregular,

Proof. The statements i-vi follow from lemma 3.4.13.

We show statement vii. Assume 〈Lα, B+〉 |= Σ1-replacement and
B total. So B ⊕ B ≤αe B. Clearly, B ∩ β ≤α B for any β < α.
Hence B ∩ β ⊕B ∩ β ≤αe B ⊕B ≤αe B. So B ∩ β ⊕B ∩ β ≤αe B. Hence
B ∩ β ⊕B ∩ β ∈ Σ1(Lα, B

+). As β < α was arbitrary, we have

∀β < α.B ∩ β ⊕B ∩ β ∈ Σ1(Lα, B
+).

So B has to be regular using statement vi.

We show statement viii. Assume 〈Lα, B+〉 |= Σ1-replacement and let B be
total, i.e. B ⊕ B ≤αe B. Hence B is also regular by statement vii. Assume that
A ∈ Σ1(Lα, B). As B is regular, so A ≤wαe B ⊕ B. So A ≤wαe B ⊕ B ≤αe B.
Hence A ≤wαe B and so A ∈ Σ1(Lα, B

+).

We show statement ix. Assume that f ∈ Σ1(Lα, B). Then f ∈ Σ1(Lα, B
+) by

statement item viii. Thus f satisfies the replacement axiom as 〈Lα, B+〉 |= Σ1-replacement.
Since we started with f ∈ Σ1(Lα, B), so B is also megaregular as required.

Since every megaregular set is also regular, we see directly from the definition
of the regularity the following.

Fact 3.8.29. Let A ⊆ α be bounded. If A is regular or megaregular, then A ∈ Lα.

Lemma 3.8.30. 86 A is regular and Sacks hyperregular iff

∀δ < α∀f [f ≤wα A =⇒ f � δ ∈ Lα].

Proposition 3.8.31. 87 A is regular and Sacks hyperregular iff A is megaregular.

Proof. ⇒: As A is Sacks hyperregular and regular, so

∀δ < α∀f [f ≤wα A =⇒ f � δ ∈ Lα]

by lemma 3.8.30. Let f ∈ Σ1(Lα, A) and K ∈ Lα. As A is regular, so f ≤wα A.
As K ∈ Lα, so K ⊆ δ for some δ < α. Note that f [K] = f � δ[K] ∈ Lα since
both f � δ and K are α-finite. Therefore 〈Lα, A〉 |= Σ1-replacement and so A is
megaregular.

86From [23] Lemma VII.5.2 p168.
87Introduced in this thesis.
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⇐: Assume that A is megaregular. Then A is regular by
proposition 3.8.28iv. SoL[A]α = Lα by lemma 3.8.15. Note 〈Lα, A〉 |= Σ1-replacement.
Thus 〈Lα, A〉 |= Σ1-collection by proposition 3.4.20. So 〈L[A]α, A〉 |= Σ1-collection.
Thus A is Chong hyperregular. As A is Chong hyperregular and regular, so A is
Sacks hyperregular by proposition 3.8.21 as required.

3.9 Reducibilities and definability

We state a correspondence between different notions of reducibility and definabil-
ity. See section 3.9 for details.

We establish a correspondence between the weak α-enumeration reducibility
≤wαe, α-enumeration reducibility ≤αe and Σ1 definability with a positive param-
eter. This propagates to the correspondence between the α-reducibility, weak
α-reducibility and ∆1 definability with a parameter. At the end, we prove some
results relating to the transitivity of the arithmetic definability.

3.9.1 Relation between ≤αe and ≤wαe
We investigate the relation between the weak α-enumeration reducibility ≤wαe
and the α-enumeration reducibility ≤αe.

Lemma 3.9.1. 88 Let B ⊆ α and assume at least one of the following conditions:

i) 〈Lα, B〉 |= Σ1-replacement.

ii) 〈Lα, B+〉 |= Σ0-collection ∧ Σ1-separation.

Then for any α-enumeration operator Φ ∈ Σ1(Lα) there exists set W ∈ Σ1(Lα)

s.t. Φ(B) = W (B), i.e. W satisfies

∀γ < α[Kγ ⊆ Φ(B) ⇐⇒ ∃δ < α[〈γ, δ〉 ∈ W ∧Kδ ⊆ B]].

Proof. Construct Wζ from an α-enumeration operator Φη. Define

Wζ := {〈γ, δ〉 ∈ α× α : ∃Kε[(Kδ =
⋃
β∈Kε

Kβ) ∧ ∀x ∈ Kγ∃β ∈ Kε.〈x, β〉 ∈ Φη]}.

The set Wζ is Σ1(Lα) by proposition 3.4.6 since it is defined using bounded quan-
tifiers and α-c.e. set Φη. Note that the index ζ is uniformly α-computable from
the index η.

Now let γ < α be arbitrary. By proposition 3.2.10 an α-finite union of α-finite
sets is α-finite. Thus Kγ ⊆ Wζ(B) ⇐⇒ ∃δ < α[〈γ, δ〉 ∈ Wζ ∧Kδ ⊆ B] ⇐⇒
∃δ < α[[∃Kε[(Kδ =

⋃
β∈Kε Kβ) ∧ ∀x ∈ Kγ∃β ∈ Kε.〈x, β〉 ∈ Φη]] ∧Kδ ⊆ B] ⇐⇒

88Introduced in this thesis.
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∃Kε[∀x ∈ Kγ∃β ∈ Kε.[〈x, β〉 ∈ Φη ∧Kβ ⊆ B] ∧ ∀β ∈ Kε.Kβ ⊆ B] ⇐⇒ (*)
∀x ∈ Kγ∃β[〈x, β〉 ∈ Φη ∧Kβ ⊆ B] ⇐⇒ ∀x ∈ Kγ.x ∈ Φη(B) ⇐⇒ Kγ ⊆ Φη(B).
Hence Wζ(B) = Φη(B) as required.

* Assume condition i). Define the relation

R(x, β) ⇐⇒ 〈x, β〉 ∈ Φ ∧Kβ ⊆ B.

Note that R ∈ Σ1(Lα, B). Using 〈Lα, B〉 |= Σ0-replacement there
is f ∈ Σ1(Lα, B) s.t. ∀x ∈ dom(R).R(x, f(x)) by proposition 3.4.15.
The direction ⇐ holds by taking Kε := f [Kγ] which is α-finite using
〈Lα, B〉 |= Σ1-replacement.

* Assume condition ii). Given

∀x ∈ Kγ∃β[〈x, β〉 ∈ Φη ∧Kβ ⊆ B],

we have

∃K ′ε∀x ∈ Kγ∃β ∈ K ′ε[〈x, β〉 ∈ Φη ∧Kβ ⊆ B]

using Σ1(Lα, B
+)-collection. Then the direction ⇐ holds by taking

Kε := {β ∈ K ′ε : Kβ ⊆ B} ∈ Lα using Σ1(Lα, B
+}-separation.

Proposition 3.9.2. (Correspondence between ≤wαe and ≤αe reducibilities89)

i) If A ≤αe B, then A ≤wαe B,

ii) If A ≤wαe B and B is megaregular, then A ≤αe B.

Proof. i) is true by taking an α-enumeration operator Φw to be W from ≤αe.
To prove that ii), assume first A ≤wαe B. So A ≤vwαe B by proposition 3.7.4.

Define W from Φvw using lemma 3.9.1 and Σ1(Lα, B)-replacement true by the
megaregularity of B. We have A = W (B) = Φvw(B) and

∀γ < α[Kγ ⊆ A ⇐⇒ ∃δ < α[〈γ, δ〉 ∈ W ∧Kδ ⊆ B]]

and so A ≤αe B.

Corollary 3.9.3. 90 Let e < α. Let A,B ⊆ α and let B be megaregular. Then
A ≤αe Φe(B) =⇒ A ≤αe B.

Proof. By fact 3.7.11i and proposition 3.9.2ii we have A ≤αe Φe(B) ≤αe B.
Then A ≤αe B by the transitivity of ≤αe as required.

Corollary 3.9.4. (Correspondence between ≤wα and ≤α reducibilities)

i) A ≤α B =⇒ A ≤wα B,

ii) A ≤wα B =⇒ A ≤α B if B is megaregular.

Proof. Follows from fact 3.7.16 and proposition 3.9.2.
89Introduced in this thesis. Analogous to [4] Proposition 1.15 and Proposition 1.33.
90Introduced in this thesis.
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3.9.2 Weak reducibilities and definability

We investigate the relationship between the weak α-enumeration reducibility and
the Σ1 definability with a positive parameter.

Definition 3.9.5. (Witness property91)
We say that φ(x,B) has a witness property in a parameter B iff for an arbitrary
x < α: if Lα |= φ(x,B), then there is K ⊆ B s.t. Lα |= φ(x,K) and K ∈ Lα.

Lemma 3.9.6. (Bounded usage of a positive parameter92)
Let φ(x,B) ∈ Σ1(Lα, B

+) and A := {x < α : 〈Lα, B+〉 |= φ(x,B)}. Then

∀x ∈ A∃δ < α[〈Lα, B+〉 |= φ(x,B ∩ δ)].

Moreover uniformly δ is Σ1(Lα, B) definable from the formula φ.

Proof. Extend φ(x,B) to φ(x,B) where x is a list of parameters in order to enable
the proof by the structural induction. In the end, φ(x,B) can be thought of as
φ(x,B) with x as one free variable in x and other variables in the list x fixed.
For every formula φ(x,B) we construct a total α-computable bounding function
δφ(x) s.t. if 〈Lα, B+〉 |= φ(x,B), then also 〈Lα, B+〉 |= φ(x,B ∩ δφ(x)).

• If φ(x,B) ∈ QF(Lα), then δφ(x) := 0.

• If φ(x,B) = xi ∈ B, then δφ(x) := xi.

• If φ(x,B) = φ1(x,B)�φ2(x,B) where � ∈ {∧,∨}, then

δφ(x) := max(δφ1(x), δφ2(x)).

• Let φ(x,B) = ∃y.ψ(x, y, B). If 〈Lα, B+〉 |= φ(x,B), then there is some
y < α s.t. 〈Lα, B+〉 |= ψ(x, y, B). Define

R := {〈x, δy〉 : δy = δψ(x, y) ∧ y < α ∧ ψ(x, y, B)}.

Note that R ∈ Σ1(Lα, B). So by the relativized Uniformization Theorem
3.4.15 there is function δφ ⊆ R which is Σ1(Lα, B) definable and hence the
function required.

• Let φ(x,B) = ∀y ∈ K.ψ(x, y, B) or φ(x,B) = ∃y ∈ K.ψ(x, y, B) for
some K ∈ Lα. Define δφ(x) := sup(δψ[{x} × K]). By the admissibility
of α, the supremum is computed on an α-finite set, hence δφ(x) is well-
defined.

It is easy to verify assuming the induction hypothesis that the bounded
functions constructed are Σ1(Lα, B) definable, cover all the inductive

91Introduced in this thesis, but a general idea of a witness common in mathematics.
92Introduced in this thesis.
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steps and satisfy the condition: if 〈Lα, B+〉 |= φ(x,B), then δφ(x) ↓ and
〈Lα, B+〉 |= φ(x,B ∩ δφ(x)). Hence ∀x ∈ A∃δ < α[〈Lα, B+〉 |= φ(x,B ∩ δ)]
using the Σ1(Lα, B) definable function δφ as required.

Proposition 3.9.7. (Witness property93)
Let φ(x,B) ∈ Σ1(Lα, B

+), A := {x < α : 〈Lα, B+〉 |= φ(x,B)} and B be a
regular set. Then

∀x ∈ A∃K ∈ Lα[Lα |= φ(x,K) and K ⊆ B].

Proof. This follows from lemma 3.9.6 and the regularity ofB asK := B ∩ δ ∈ Lα
for δ < α.

Definition 3.9.8. (Monotonicity of a formula94)
A formula φ(x,B) is monotone in a parameter B iff for every B,C ⊆ α:

if B ⊆ C, then {x < α : Lα |= φ(x,B)} ⊆ {x < α : Lα |= φ(x,C)}.

Proposition 3.9.9. 95 Let φ(x,B) ∈ Σ1(Lα, B
+). Then φ(x,B) is monotone in a

parameter B.

Proof. The proof follows from the structural induction on the formula φ(x,B),
carried out in a similar way like in the proof of lemma 3.9.6.

Proposition 3.9.10. (Σ1 definability and ≤wαe reducibility correspondence96)

i) A ≤wαe B =⇒ A ∈ Σ1(Lα, B
+),

ii) A ∈ Σ1(Lα, B
+) ∧B regular =⇒ A ≤wαe B.

Proof. i) Assume A ≤wαe B. So

A = {x < α : Lα |= φ(x,B)}

where

φ(x,B) ≡ ∃γ < α[〈x, γ〉 ∈ Φ ∧Kγ ⊆ B]

for some weak α-enumeration operator Φ ∈ Σ1(Lα). Note that
φ(x,B) ∈ Σ1(Lα, B

+) and φ(x,B) defines A. Hence A ∈ Σ1(Lα, B
+).

ii) Assume A ∈ Σ1(Lα, B
+). So

A = {x < α : Lα |= φ(x,B)}

93Introduced in this thesis.
94Introduced in this thesis. The idea taken from the general monotonicity property of the enu-

meration operators in classical Computability Theory.
95Introduced in this thesis.
96Introduced in this thesis. Analogous to [4] Proposition 1.30.
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for some φ(x,B) ∈ Σ1(Lα, B
+) where φ(x,B) has a witness property by the

regularity of B and by proposition 3.9.7. Hence

∀x < α[x ∈ A ⇐⇒ ∃β < α.[φ(x,Kβ) ∧Kβ ⊆ B]].

So define a weak α-enumeration operator Φ := {〈x, β〉 : φ(x,Kβ)}. As
φ(x,B) ∈ Σ1(Lα, B

+), so φ(x,Kβ) ∈ Σ1(Lα) by proposition 3.4.3. Note
A = Φ(B). Hence A ≤wαe B.

Proposition 3.9.11. 97 The following are true:

i) A ≤wα B =⇒ A ∈ ∆1(Lα, B),

ii) A ∈ ∆1(Lα, B) =⇒ A ≤wα B if B is a regular set.

Proof. The statements follow from proposition 3.9.10 and fact 3.7.16.

Proposition 3.9.12. 98 If A 6∈ Σ1(Lα), A ≤wαe C, then C 6∈ Σ1(Lα).

Proof. Assume A ≤wαe C and C ∈ Σ1(Lα). Then A ∈ Σ1(Lα).

3.9.3 Conclusions

We summarize the relations between the definability and reducibilities from this
section in implication diagrams.

Proposition 3.9.13. (Σ1 definability and α-enumeration reducibilities correspon-
dence)
We have the following implication diagram:

A ∈ Σ1(Lα, B
+) A ≤wαe B A ≤αe B

if B regular, by 3.9.10ii if B megaregular, by 3.9.2ii

by 3.9.10i by 3.9.2i

Proposition 3.9.14. (∆1 definability and α-reducibilities correspondence)
We have the following implication diagram:

97From Proposition 1.30 and Proposition 1.33 in [4].
98Introduced in this thesis.
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A ∈ ∆1(Lα, B) A ≤wα B A ≤α B

if B regular, by 3.9.11ii if B megaregular, by 3.9.4ii

by 3.9.11i by 3.9.4i

Corollary 3.9.15. 99 We have the following implication diagrams:

f ∈ Σ1(Lα, B) f ≤wα B

if B regular

f ∈ Σ1(Lα, B
+) f ≤wαe B

if B regular

Proof. Follows from proposition 3.4.2, proposition 3.9.13 and proposition 3.9.14.

3.10 Degree Theory

The generalizations of the Turing and the enumeration degrees are introduced
briefly as the α degrees Dα and the α-enumeration degrees Dαe respectively.

Definition 3.10.1. (Degrees100)
A degree structure is a set of equivalence classes induced by an equivalence rela-
tion induced by a reducibility relation. In particular:

• Dα := P (α) / ≡α is a set of α-degrees.

• Dαe := P (α) / ≡αe is a set of α-enumeration degrees.

Induce ≤ on Dα and Dαe by ≤α and ≤αe respectively.

3.10.1 Total degrees

Definition 3.10.2. (Total degrees101)
A degree d ∈ Dαe is total iff ∃D ∈ d.D ≡αe D. The set of the total degrees of
Dαe is denoted by T OT αe.

99Adapted from the Corollary 1.31 in [4].
100The α-degrees are well-established, see [4][23]. The α-enumeration degrees are introduced

in this thesis.
101The total α-enumeration degrees introduced and studied in this thesis.
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Theorem 3.10.3. 102 Let χA be the characteristic function of A. Then

∀A,B ⊆ α[A ≤α B ⇐⇒ χA ≤αe χB].

Corollary 3.10.4. (Degree embedding103)
The map ι : Dα → Dαe given by ι : degα(A) 7→ degαe(A⊕ A) is an embedding
whose image are the total degrees T OT αe.

Proof. Use the fact χA ≡αe A⊕ A and theorem 3.10.3.

From corollary 3.10.4 and definition 3.10.2 we can see directly the following
fact.

Fact 3.10.5. (Equivalent definition of total degrees)
Let ι : Dα ↪→ Dαe be the embedding from above. The total α-enumeration
degrees T OT αe are the image of ι, i.e. T OT αe := ι[Dα].

3.10.2 Unboundedness of Dαe
Proposition 3.10.6. (Set not α-enumerable from a given set104)
Given a set A ⊆ α, there is a set C ⊆ α s.t. C is not α-enumerable from A, i.e.
C 6≤αe A.

Proof. We must satisfy ∀e < α.C 6= Φe(A). So defineC := {e < α : e 6∈ Φe(A)}.
Then C 6≤αe A as required.

Corollary 3.10.7. (Unboundedness of α-enumeration degrees105)
For every set A ⊆ α, there is a set B ⊆ α s.t. A <αe B.

Proof. Let C ⊆ α s.t. C 6≤αe A using proposition 3.10.6. Then
A <αe B = A⊕ C as required.

3.10.3 Properties of Dα and Dαe
Proposition 3.10.8. (Properties of the degrees Dα and Dαe106)

• transitivity: ∀a, b, c[a ≤ b ∧ b ≤ c =⇒ a ≤ c],

• unboundedness: ∀a∃b.a < b,

• cardinality of a degree: ∀a.#a = #α.

102Theorem 2 in [6].
103Follows from Theorem 2 in [6]
104Introduced in this thesis.
105Introduced in this thesis.
106Introduced in this thesis for Dαe. Usually assumed implicitly for Dα.
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• cardinality of the structure: #Dα = #Dαe = #P(α).

Proof. The transitivity is induced by the transitivity of ≤αe and ≤α (fact 3.7.17).
The unboundedness of Dαe follows from corollary 3.10.7 which also implies the
unboundedness ofDα. Any two sets in the same degree are reducible to each other
by some reduction procedure with an index from α and hence the cardinality of a
degree is the cardinality of α and there have to be #P(α) many degrees.

As an α-enumeration operator itself is an α-c.e. set, we have directly the
following fact.

Fact 3.10.9. The least degree 0 of Dαe is the set of Σ1(Lα) subsets of α.

3.10.4 α-join operator

We introduce an α-join operator which is used to prove a degree theoretic state-
ment corollary 3.10.12.

Definition 3.10.10. (α-join and α-join operator107)
Let Aγ ⊆ α denote a set with an index γ < α. For an index set I ⊆ α define the
α-join of the set {Aγ}γ∈I to be⊕

γ∈I

Aγ = {i(γ, x) : γ ∈ I ∧ x ∈ Aγ}

where i : α×α→ α is an α-computable bijection. Call
⊕

γ∈I an α-join operator.

Clearly, for ∀δ ∈ I[Aδ ≤αe
⊕

γ∈I Aγ].

Proposition 3.10.11. 108 Let degαe(A0), degαe(A1), degαe(A2), . . . be a β-
sequence of strictly increasing α-enumeration degrees and β ≤ α. Then there is
an α-enumeration degree degαe(A) which is greater than any other degree in the
sequence.

Proof. Let A be an α-join of all the degrees in the β-sequence. Then A is strictly
greater than any other Aγ in the sequence as required since the sequence is strictly
increasing.

Corollary 3.10.12. 109 Any subset of α-enumeration degrees whose cardinality is
at most #α has an upper bound in Dαe.

107Introduced in this thesis.
108Introduced in this thesis.
109Introduced in this thesis.
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3.11 Computability with infinite cardinal and as-
sumption V = L

Many notions in α-Computability Theory trivialize and simplify if we assume the
axiom of constructibility V = L and α is taken to be an infinite cardinal, even
more when α is an infinite regular cardinal.

Throughout this section assume that V = L.

Fact 3.11.1. 110 Let α be an infinite cardinal. Let A ⊆ α. Then:

i) A is regular,

ii) A ∈ Lα ⇐⇒ ∃β < α.A ⊆ β.

3.11.1 Computability with infinite regular cardinal

Proposition 3.11.2. (α-finiteness of subsets of smaller cardinality111)
Let α be an infinite regular cardinal. Let A ⊆ α and #A < α. Then A ∈ Lα.

Proof. As #A < α, so A cannot be cofinal in α. Thus it has to be bounded by
some β < α. Hence A ∈ Lα by fact 3.11.1.

Proposition 3.11.3. (Superadmissibility of infinite regular cardinal112)
Let α be an infinite regular cardinal. Then Lα satisfies the full replacement axiom:

∀f : α→ α∀K ∈ Lα.f [K] ∈ Lα.

Proof. As α is an infinite regular cardinal, so if K ∈ Lα, then #K < α. Also
#f [K] ≤ #K by f being a single-valued function. Hence f [K] ∈ Lα by propo-
sition 3.11.2.

Corollary 3.11.4. 113 If α is an infinite regular cardinal, then every subset of α is
megaregular.

Proof. Follows from proposition 3.11.3.

Corollary 3.11.5. 114 If α is an infinite regular cardinal, then ≤αe=≤wαe.
110Follows from [4]p5 part (d).
111Usually assumed implicitly in α-Computability Theory. Parts present in standard Set Theory

texts, see [21].
112Usually assumed implicitly in α-Computability Theory. Parts present in standard Set Theory

texts, see [21].
113Introduced in this thesis. A direct consequence of well-established facts.
114Introduced in this thesis. A direct consequence of well-established facts.
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Proof. By proposition 3.9.2 if A ≤αe B, then A ≤wαe B. Also by proposi-
tion 3.9.2 if A ≤wαe B and B is megaregular, then A ≤αe B. As α is an
infinite regular cardinal, so B is megaregular by corollary 3.11.4. Therefore
∀A,B ⊆ α[A ≤wαe B ⇐⇒ A ≤αe B] and so ≤αe=≤wαe as required.

Remark 3.11.6. Fact 3.11.1 and corollary 3.11.4 imply that every subset of
an infinite regular cardinal is regular and megaregular. This reveals that the
computability on an infinite regular cardinal κ behaves similar to classical
Computability Theory. A further comparison can be summarized as follows:

classical CT α-CT κ-CT

computation domain N Lα Lκ

computable ∆1(N) ∆1(Lα) ∆1(Lκ)

c.e. Σ1(N) Σ1(Lα) Σ1(Lκ)

finite bounded bounded and ∆1 bounded

replacement strength full replacement Σ1-replacement full replacement

Proposition 3.11.7. 115 Assume that α is an infinite regular cardinal. Let
A :=

⋃
γ∈I Kγ where #I < α and I ⊆ α. Then A is α-finite.

Proof. If α is an infinite regular cardinal, then A is not cofinal in α as it is a union
of #I subsets of α for s < α and each subset has a cardinality less than α. Hence
#A < α and so A is bounded in β < α. Consequently A = A ∩ β ∈ Lα by
fact 3.11.1.

Alternatively, #I < α and so I ∈ Lα by fact 3.11.1. By then A is an α-finite
union of α-finite sets. Hence A is α-finite by proposition 3.2.10 as required.

3.12 α-enumeration jump

We define a weak α-enumeration jump and an α-enumeration jump, then prove
that they are equivalent under the weak α-enumeration reducibility. Thus if
megaregular both jumps are in the same α-enumeration degree. We investigate
several properties of an α-enumeration jump including totality, monotonicity and
Σn-completeness of the nth α-enumeration jump. The properties are established
under assumptions such as Σn-replacement axiom or megaregularity. At the end
we prove that any megaregular jump can be used equivalently as an oracle in
constructions and priority arguments.

This section generalizes a well-known notion of the enumeration jump from
classical Computability Theory unseen in α-Computability Theory before.

115Introduced in this thesis.
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3.12.1 Jump definitions

We consider K(A) := {x < α : x ∈ Φx(A)} as a weak α-jump of A and define
its α-enumeration counterpart.

Definition 3.12.1. (Weak α-enumeration jump)
A weak α-enumeration jump of a set A ⊆ α is the set Jwαe(A) defined as follows:

• K(A) := {x < α : x ∈ Φx(A)},

• Jwαe(A) := K(A)⊕K(A).

Definition 3.12.2. (α-enumeration jump)116

An α-enumeration jump of a set A ⊆ α is the set Jαe(A) defined as follows:

• H+(A) := {〈γ, δ〉 : Kγ ⊆ Φδ(A)},

• H−(A) := {〈γ, δ〉 : Kγ ⊆ Φδ(A)},

• Jαe(A) := H+(A)⊕H−(A).

The nth α-enumeration jump of the set A is defined inductively as follows:

• J (0)
αe (A) := A

• J (n+1)
αe (A) := Jαe(J

(n)
αe (A))

Definition 3.12.3. (Halting set)
The halting set of A ⊆ α is defined as H(A) := {〈x, y〉 : x ∈ Φy(A)}.

3.12.2 Equivalence of jump definitions

We investigate the relations and reductions between different jump definitions.

Lemma 3.12.4. ∃e∀x∀y[x ∈ Φy ⇐⇒ 〈x, y〉 ∈ Φe].

Proof. The index e is defined by

Φe := {z : ∃x, y[z = 〈x, y〉 ∧ x ∈ Φy]} ∈ Σ1(Lα)

as required.

Lemma 3.12.5. There is an α-computable function g : α× α→ α s.t.

∀x, y[x ∈ Φy ⇐⇒ g(x, y) ∈ Φg(x,y)].

116Generalized from [25].
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Proof. The function g takes parameters x and y and produces the index
z = g(x, y) of an α-c.e. set Φz which behaves as follows. The enumeration of
the α-c.e. set Φy is simulated. If x is enumerated by Φy, then Φz enumerates all
of α, enumerating the least unenumerated element first, so Φz = α. If x is never
enumerated by Φy, then Φz does not enumerate any elements and so Φz = ∅.
Note that g is α-computable and

x ∈ Φy ⇐⇒ α = Φz ⇐⇒ g(x, y) ∈ Φg(x,y)

as required.

Proposition 3.12.6. (Reductions between jumps and halting sets)

1. A ≤αm K(A) ≤αm H(A) ≤αm H+(A),

2. H+(A) ≤wαe H(A) ≤αm K(A) ≤wαe A and H(A) ≤wαe A,

3. A ≤αm K(A) ≤αm H(A) ≤αm H−(A),

4. H−(A) ≤wαe H(A) ≤αm K(A).

Proof. Note that A is α-many-one reducible to K(A) as

a ∈ A ⇐⇒ f(a) ∈ K(A)

where f is an α-computable function defined by

Φf(a) := {〈y, γ〉 : Kγ = {a} ∧ y ∈ α},

Thus A ≤αm K(A). Next K(A) ≤αm H(A) via x 7→ 〈x, x〉. Finally,
H(A) ≤αm H+(A) via

g = {(〈x, y〉, 〈γ, y〉) : Kγ = {x}}.

Therefore A ≤αm K(A) ≤αm H(A) ≤αm H+(A) and the statement 1 holds.
To prove H(A) ≤αm K(A), given x, y < α, define

Φz := {〈q, δ〉 : 〈x, δ〉 ∈ Φy ∧ γ ∈ α ∧ q ∈ α}.

Note that the index z is uniformly α-computable from the indices x, y and
〈x, δ〉 ∈ Φy ⇐⇒ 〈z, δ〉 ∈ Φz, so x ∈ Φy(A) ⇐⇒ z ∈ Φz(A). Thus
〈x, y〉 ∈ H(A) ⇐⇒ z(x, y) ∈ K(A). Hence H(A) ≤αm K(A) as required.

To prove H+(A) ≤wαe H(A) notice that

〈γ, δ〉 ∈ H+(A) ⇐⇒ ∀x ∈ Kγ[x ∈ Φδ(A)] ⇐⇒ ∀x ∈ Kγ[〈x, δ〉 ∈ H(A)]

and so H+(A) ≤wαe H(A) via

Φ := {〈〈γ, δ〉, ε〉 ∈ α : ∀x ∈ Kγ.〈x, δ〉 ∈ Kε} ∈ Σ1(Lα).

To prove K(A) ≤wαe A, let e be the index s.t. 〈x, δ〉 ∈ Φx ⇐⇒ 〈x, δ〉 ∈ Φe

for any pair 〈x, δ〉 using lemma 3.12.4. Then

x ∈ K(A) ⇐⇒ x ∈ Φx(A) ⇐⇒ x ∈ Φe(A).
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Thus K(A) = Φe(A) and so K(A) ≤wαe A via Φe.
Similarly, to prove H(A) ≤wαe A, let ê be the index s.t.

〈x, δ〉 ∈ Φy ⇐⇒ 〈〈x, δ〉, y〉 ∈ Φê

for any x, y, δ < α using lemma 3.12.4. Then

〈x, y〉 ∈ H(A) ⇐⇒ x ∈ Φy(A) ⇐⇒ 〈x, y〉 ∈ Φê(A).

Thus H(A) = Φê(A) and so H(A) ≤wαe A via Φê.
Therefore H+(A) ≤wαe H(A) ≤αm K(A) ≤wαe A and H(A) ≤wαe A, so the

statement 2 holds.
AsA ≤αm K(A), soA ≤αm K(A). AsK(A) ≤αm H(A), soK(A) ≤αm H(A).

AlsoH(A) ≤αm H−(A) via g. ThereforeA ≤αm K(A) ≤αm H(A) ≤αm H−(A)

and the statement 3 holds.
By symmetry we have H−(A) ≤wαe H(A) ≤αm K(A) and the statement 4

holds as required.

Proposition 3.12.7. (Equivalence of the α-enumeration jump definitions)
For any admissible ordinal α and A ⊆ α we have:

1. Jwαe(A) ≤αm H(A)⊕H(A) ≤αm Jαe(A),

2. Jwαe(A) ≡αm H(A)⊕H(A) ≡wαe Jαe(A) and Jwαe(A) ≡wαe Jαe(A),

3. Jwαe(A) ≡αe H(A)⊕H(A) ≡αe Jαe(A) if Jwαe(A) is megaregular.

Proof. By proposition 3.12.6 we have K(A) ≤αm H(A) ≤αm H+(A) and
K(A) ≤αm H(A) ≤αm H−(A). So Jwαe(A) ≤αm H(A) ⊕ H(A) ≤αm Jαe(A)

and the statement 1 holds.
By proposition 3.12.6 we have H+

αe(A) ≤wαe H(A) ≤αm K(A) and
H−αe(A) ≤wαe H(A) ≤αm K(A), so Jwαe(A) ≥αm H(A) ⊕H(A) ≥wαe Jαe(A)

and hence Jwαe(A) ≡αm H(A)⊕H(A) ≡wαe Jαe(A) and Jwαe(A) ≡wαe Jαe(A)

using the statement 1.
The statement 3 follows from the statement 2 and the megaregularity of

Jwαe(A).

Therefore if Jwαe(A) is megaregular, we can use any of the definitions of an
α-enumeration jump as convenient.

3.12.3 Totality

Clearly, by definition the degree of Jwαe(A) is a total degree. We investigate the
totality of the α-enumeration jump Jαe(A).

Proposition 3.12.8. Jαe(A)⊕ Jαe(A) ≤wαe Jαe(A).
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Proof. Let M∈ {−,+} and O ∈ {−,+} − {M}. Then HM(A) ≤wαe HO(A) via

Φ = {〈〈γ, δ〉, ε〉 : ∃β < α[Kβ 6= ∅ ∧Kβ ⊆ Kγ ∧ {〈β, δ〉} = Kε]}

since

〈γ, δ〉 ∈ HM(A) ⇐⇒ ∃β < α[Kβ 6= ∅ ∧Kβ ⊆ Kγ ∧ 〈β, δ〉 ∈ HO(A)].

Thus

Jαe(A) = H+(A)⊕H−(A) = H+(A)⊕H−(A) ≤wαe H−(A)⊕H+(A) = Jαe(A).

Therefore Jαe(A)⊕ Jαe(A) ≤wαe Jαe(A) as required.

The following definition will be useful in proposition 3.12.10 below.

Definition 3.12.9. (Pointclass union)
We define the pointclass union of the pointclasses θA and θB to be the pointclass
θ by defining θ(D,C) ⊆ P (D) from θA(D,C) ⊆ P (D) and θB(D,C) ⊆ P (D)

for an arbitrary set of parameters D and a parameter C ⊆ D as follows:

θA ∪ θB(D,C) := {E ⊆ D : ∃A,B ⊆ D

[E ∈ ∆0(D,C,B,A) ∧ A ∈ θA(D,C) ∧B ∈ θB(D,C)]}.

Proposition 3.12.10. (Definability class of the nth α-enumeration jump)
Let n ∈ N. Assume 〈Lα, A〉 |= ∆n-collection. Then:

1. J (n)
αe (A) ∈ Σn ∪ Πn(Lα, A)

2. J (n)
αe (A) ∈ ∆n+1(Lα, A)

Proof. The second statement follows from the first. We prove the first statement
by the induction.

BC: If n = 0, then trivially J (0)
αe (A) = A ∈ QF(Lα, A) ⊂ Σ0 ∪ Π0(Lα, A).

IC: Assume IH that J (n)
αe (A) ∈ ∆n+1(Lα, A). As J (n)

αe (A) ∈ ∆n+1(Lα, A)

and 〈Lα, A〉 |= ∆n+1-collection, so 〈Lα, J (n)
αe (A)〉 |= ∆1-collection by corol-

lary 3.4.11. By definition

J (n+1)
αe (A) = Jαe(J

(n)
αe (A)) = H+(J (n)

αe (A))⊕H−(J (n)
αe (A)).

Note that H+(J
(n)
αe (A)) ∈ Σ1(Lα, J

(n)
αe (A)) and H−(J

(n)
αe (A)) ∈ Π1(Lα, J

(n)
αe (A))

by proposition 3.4.9 using 〈Lα, J (n)
αe (A)〉 |= ∆1-collection. IH and

H+(J
(n)
αe (A)) ∈ Σ1(Lα, J

(n)
αe (A)) imply H+(J

(n)
αe (A)) ∈ Σn+1(Lα, A) by

〈Lα, A〉 |= ∆n+1-collection and proposition 3.4.10ii. H−(J
(n)
αe (A)) ∈ Π1(Lα, J

(n)
αe (A))

and IH imply H−(J
(n)
αe (A)) ∈ Πn+1(Lα, A) by 〈Lα, A〉 |= ∆n+1-collection and

proposition 3.4.10iv. Hence J
(n+1)
αe (A) ∈ Σn+1(Lα, A) ∪ Πn+1(Lα, A) as

required.

Corollary 3.12.11. Let n ∈ N. Assume Lα |= Σn+1-replacement. Then J (n)
αe (∅)

is megaregular.
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Proof. As Lα |= Σn+1-replacement, so Lα |= Σn+1-collection by propo-
sition 3.4.19. Thus Lα |= ∆n-collection. Hence J

(n)
αe (∅) ∈ ∆n+1(Lα) by

proposition 3.12.10. As Lα |= Σn+1-replacement and J (n)
αe (∅) ∈ ∆n+1(Lα), so

J
(n)
αe (∅) is megaregular by proposition 3.8.9.

Corollary 3.12.12. Let n ∈ N. Assume Lα |= Σn+1-replacement. Then J (n)
αe (∅)

is a total set.

Proof. This follows from corollary 3.12.11 and proposition 3.12.8.

3.12.4 Monotonicity

Proposition 3.12.13. (Jump monotonicity)
Assume A ≤αe B. Then:

i) H(A) ≤wαe H(B),

ii) H(A) ≤αm H(B),

iii) H(A)⊕H(A) ≤wαe H(B)⊕H(B),

iv) Jαe(B) is megaregular, then Jαe(A) ≤αe Jαe(B).

Proof. The statement i: We have H(A) ≤wαe A ≤αe B ≤αe H(B) using propo-
sition 3.12.6. Thus H(A) ≤wαe H(B).

The statement ii: As K(A) ≤wαe A by proposition 3.12.6 and A ≤αe B, so
K(A) ≤wαe B. As K(A) ≤wαe B, so ∃y∀x[x ∈ K(A) ⇐⇒ 〈x, y〉 ∈ H(B)].
HenceK(A) ≤αm H(B). SoK(A) ≤αm H(B). ThusH(A) ≤αm K(A) ≤αm H(B)

using proposition 3.12.6. Hence H(A) ≤αm H(B).
The statement iii follows from the statements i and ii.
The statement iv: If Jαe(B) is megaregular, then Jαe(B) ≡αe H(B)⊕H(B)

by proposition 3.12.7. By the statement iii and the megaregularity closure (propo-
sition 3.8.13) we have

Jαe(A) ≡αe H(A)⊕H(A) ≤αe H(B)⊕H(B) ≡αe Jαe(B)

and so Jαe(A) ≤αe Jαe(B) as required.

3.12.5 Σn-completeness

We investigate the relativized Σ1 completeness and non-relativized Σn-
completeness of the α-enumeration jump.

Proposition 3.12.14. (Σ1-completeness of a jump)
Let A,W ⊆ α be arbitrary. Then:
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1. W ≤wαe A =⇒ W ≤α Jαe(A).

2. W ≤wαe A =⇒ W ≤α Jαe(A).

3. A regular ∧W ∈ Σ1(Lα, A
+) =⇒ W ≤α Jαe(A).

4. A regular ∧W ∈ Σ1(Lα, A
+) =⇒ W ≤α Jαe(A).

Proof. To prove the first statement, note Φδ(A) = W for some δ < α as
W ≤wαe A. Thus

Kγ ⊆ W ⇐⇒ Kγ ⊆ Φδ(A) ⇐⇒ 〈γ, δ〉 ∈ H+(A)

and so W ≤αe H+(A). Also

Kγ ⊆ W ⇐⇒ Kγ ⊆ Φδ(A) ⇐⇒ 〈γ, δ〉 ∈ H−(A)

and so W ≤αe H−(A). Hence

W ⊕W ≤αe H+(A)⊕H−(A) = Jαe(A).

Therefore W ≤α Jαe(A) as required.
To imply the second statement, use the first statement as follows:

W ≤wαe A =⇒ W ≤α Jαe(A) =⇒ W ≤α Jαe(A).

The third and the fourth statement follow from the first the first and the second
statements respectively and the regularity of A.

Lemma 3.12.15. ∀n ∈ N[A ∈ Σn+1(Lα) =⇒ ∃B ∈ Πn(Lα).A ∈ Σ1(Lα, B
+)].

Proof. By the definition of Σn+1(Lα) class we have that x ∈ A ⇐⇒ ∃y.(x, y) ∈ B
for some B ∈ Πn(Lα). Clearly, A ∈ Σ1(Lα, B

+) as required.

Proposition 3.12.16. (Σn-jump completeness)
Let n ∈ N and A ⊆ α. Assume Lα |= Σn+1-replacement. Then

A ∈ Σn(Lα) =⇒ A ≤α J (n)
αe (∅).

Proof. We prove the statement by induction. Note that J (0)
αe (B) := B. So the base

case when n = 0 holds since A ∈ Σ0(Lα) =⇒ A ≤α ∅ trivially.
For the inductive case assume IH that A ∈ Σn(Lα) =⇒ A ≤α J

(n)
αe (∅)

for any A ⊆ α. We prove ∀A ⊆ α[A ∈ Σn+1(Lα) =⇒ A ≤α J
(n+1)
αe (∅)].

Let A ∈ Σn+1(Lα) be arbitrary. Then ∃B ∈ Πn(Lα).A ∈ Σ1(Lα, B
+) by

lemma 3.12.15. As Lα |= Σn+1-replacement and B ∈ ∆n+1(Lα), so B is
megaregular by proposition 3.8.9 and thus regular. As A ∈ Σ1(Lα, B

+) and
B is regular, so A ≤α Jαe(B) by proposition 3.12.14. As B ∈ Σn(Lα), so
B ≤α J (n)

αe (∅) by IH. Thus B ≤α J (n)
αe (∅).

Note that J (n)
αe (∅) and J

(n+1)
αe (∅) are megaregular by corollary 3.12.11 and

Lα |= Σn+2-replacement. As J (n)
αe (∅) is megaregular, so it is total by proposi-

tion 3.12.8. Using B ≤α J (n)
αe (∅) and the totality of J (n)

αe (∅), we have B ⊕ B ≤αe
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J
(n)
αe (∅). Hence B ≤αe J (n)

αe (∅). As B ≤αe J (n)
αe (∅) and J (n+1)

αe (∅) = Jαe(J
(n)
αe (∅))

is megaregular, so Jαe(B) ≤αe Jαe(J (n)
αe (∅)) = J

(n+1)
αe (∅) by proposition 3.12.13.

Since Jαe(B) ⊕ Jαe(B) ≤wαe Jαe(B) by proposition 3.12.8 and
Jαe(B) ≤αe J (n+1)

αe (∅), so Jαe(B)⊕ Jαe(B) ≤wαe J (n+1)
αe (∅). As J

(n+1)
αe (∅)

is megaregular, so Jαe(B) ⊕ Jαe(B) ≤αe J (n+1)
αe (∅). As Jαe(B) ⊕ Jαe(B) is

total, so Jαe(B) ≤α J (n+1)
αe (∅). Since A ≤α Jαe(B) and Jαe(B) ≤α J (n+1)

αe (∅), so
A ≤α J (n+1)

αe (∅).

Therefore

∀A ⊆ α[A ∈ Σn+1(Lα) =⇒ A ≤α J (n+1)
αe (∅)]

as required.

3.12.6 Usage in oracle constructions

We may use the following proposition 3.12.17 implicitly in the oracle construc-
tions and definability statements.

Proposition 3.12.17. Assume that K(A) is megaregular, then

S ∈ ∆1(Lα, Jαe(A)) =⇒ S ∈ ∆1(Lα, K(A)).

Proof. (Of proposition 3.12.17)
1. Jαe(A) ≤wαe H(A) ⊕ H(A) ≤wαe Jwαe(A) = K(A) ⊕ K(A) by proposi-
tion 3.12.7.
2. Jαe(A)⊕ Jαe(A) ≤wαe Jαe(A) by proposition 3.12.8.
3. K(A) megaregular by assumption.
4. Jαe(A) ≤αe K(A)⊕K(A) by 1, 3.
5. Jαe(A)⊕ Jαe(A) ≤wαe K(A)⊕K(A) by 2, 4.
6. Jαe(A)⊕ Jαe(A) ≤αe K(A)⊕K(A) by 3, 5.
7. Jαe(A) ≤α K(A) by 6.
8. Jαe(A) megaregular by 3, 7.
9. S ∈ ∆1(Lα, Jαe(A)) by assumption.
10. S ⊕ S ≤αe Jαe(A)⊕ Jαe(A) by 8, 9.
11. S ⊕ S ≤αe K(A)⊕K(A) by 10, 6.
12. S ∈ ∆1(Lα, K(A)) by 11.

3.13 Simple construction

We provide a simple construction that demonstrates the use of a projectum and an
assumption on megaregularity in α-Computability Theory.
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Proposition 3.13.1. 117 For a set A ⊆ α let A 6≡wαe ∅. Assume that the projectum
of α is α∗ = ω or that K(∅) ⊕ A is megaregular where K(C) := {x < α :

x ∈ Φx(C)} represents a weak α-jump118 of C. Then there is B ∈ Σ1(Lα) s.t.
A 6≤wαe B.

One could simply take B to be ∅ to prove the statement above. Instead we
make a generic proof by constructingB fromA givenA 6≡wαe ∅. Later statements
extend this proof by adding additional requirements, so it is important to present
a simple construction first for better comprehension of later results.

Proof. (Of proposition 3.13.1)

Construction

To imply A 6≤wαe B, we would like to construct B in such way so that for each
γ < α we satisfy the requirement:

Rγ : A 6= Φγ(B).

We construct B in α∗ stages. At the stage γ < α∗, given Bγ , we construct
Bγ+1 from Bγ . In the end B =

⋃
γ<α∗ Bγ ⊆ α. To satisfy Rγ for every γ < α in

only α∗ many stages, we index the requirements and α-computably enumerable
sets with the indices from the projectum α∗ by using the partial α-computable
surjection p1 : α∗ ⇀ α from proposition 3.6.2.

During the construction we prove by induction that at every stage γ < α∗, the
set Bγ is α-finite by proving Bγ+1 ∈ Lα at the stage γ < α∗ and assuming the
following IH at that stage:

Bγ ∈ Lα.

Using the α-finiteness ofBγ , we also prove thatBγ is uniformly α-computable
from the index γ by the α-computable function f : α∗ → Lα, f : γ 7→ Bγ . We use
this function f ∈ Σ1(Lα) to conclude that B ∈ Σ1(Lα).

Let B0 := ∅. Clearly, B0 ∈ Lα and so the BC of the induction holds. Define
Bγ+1 given Bγ at the stage γ below.

Stage γ: satisfy A 6= Φγ(B)

Using the oracle K(∅) check if γ ∈ dom(p1). If γ 6∈ dom(p1), then set
Bγ+1 := Bγ and proceed to the next stage γ + 1. Otherwise, proceed as follows.

As A 6≡wαe ∅, so Φs(α) 6= A. Hence one of the following must hold:

117Introduced in this thesis.
118See section 3.12 for more details.
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• Φγ(α) ⊂ A: As B ⊆ α, so Φγ(B) ⊂ A by the monotonicity of an α-
enumeration operator Φ. Thus define Bγ+1 := Bγ . The set Bγ+1 is α-finite
as Bγ ∈ Lα by IH. Note that Rγ is satisfied by B as Φγ(B) ⊂ A.

• ∃x ∈ Φγ(α) s.t. x 6∈ A: Then take any x < α s.t. x ∈ Φγ(α) and x 6∈ A.
We must have some witness K ⊆ α in Lα s.t. x ∈ Φγ(K). Thus define
Bγ+1 := Bγ ∪K. The set Bγ+1 is α-finite as Bγ ∈ Lα by IH and K ∈ Lα.
Note that Rγ is satisfied by B as Bγ+1 ⊆ B.

Limit construction

If α∗ = ω, then this construction is not needed.
Otherwise, let δ < α be a limit ordinal. Define Bδ :=

⋃
γ<δ Bγ . We prove Bδ

is α-finite using the megaregularity of K(∅)⊕ A.
Let f : α∗ → Lα be the function γ 7→ Bγ which is defined as follows:

• f(0) := ∅,

• f(γ + 1) :=


f(γ) if Φγ(α) ⊂ A,

f(γ) ∪Kδ if ∃x[x ∈ Φγ(α) ∧ x 6∈ A] where

δ := µβ[x ∈ Φγ(Kβ) ∧ x 6∈ A].

• f(δ) =
⋃
γ<δ f(γ) if lim(δ).

Note that f ∈ Σ1(Lα, K(∅) ⊕ A) since f is Σ1(Lα) definable with the oracles A
and K(∅) as seen from its definition above.

Trivially f(0) ∈ Lα and if f(γ) ∈ Lα, then f(γ + 1) ∈ Lα. Assume by
the IH that f is total and well-defined on the domain δ where δ is a limit ordinal.
Recall the α-computable bijection b : α → Lα. Note that I = b−1 ◦ f [δ] ∈ Lα
as f ∈ Σ1(Lα, K(∅) ⊕ A), δ ∈ Lα and K(∅) ⊕ A is megaregular. Therefore
Bδ = f(δ) =

⋃
β∈I Kβ ∈ Lα as required.

Conclusion

Note that B constructed in α∗ stages satisfies ∀γ < α∗.A 6= Φγ(B). So
A 6≤wαe B. Furthermore, note that B ∈ Σ1(Lα) since f ∈ Σ1(Lα) and

B = {x < α : ∃γ < α∗.x ∈ f(γ)}.

Hence A 6≤wαe B and B ∈ Σ1(Lα) as required.
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Chapter 4

Kalimullin pair and
semicomputability

A Kalimullin pair is an important relation in classical Computability Theory. The
enumeration jump was defined in the enumeration degrees using a Kalimullin pair
in [25]. Total degrees were defined in the enumeration degrees using a Kalimullin
pair in [2].

There is a close connection between Kalimullin pairs and semicomputabil-
ity. If A is semicomputable, then K(A,A), i.e. A and its complement A are a
Kalimullin pair.

We define an α-Kalimullin pair and show that it is definable in the α-
enumeration degrees Dαe if V = L and α is an infinite regular cardinal
(corollary 4.3.8). We generalize some needed results on semicomputability by
Jockusch [10] to conclude that every nontrivial total degree is a join of a maximal
α-Kalimullin pair if V = L and α is an infinite regular cardinal (corollary 4.4.2).

The work of this chapter is used in chapter 6 to prove that if V = L and α
is an infinite regular cardinal, then the total α-enumeration degrees T OT αe are
definable in the α-enumeration degrees Dαe (theorem 6.3.7):
an α-enumeration degree is total iff it is trivial or a join of a maximal α-Kalimullin
pair.

4.1 Semicomputability

We lift some needed results of Jockusch [10] on semicomputable sets from the
level ω to a level α.
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4.1.1 Definition and closure

Definition 4.1.1. A set A ⊆ α is α-semicomputable iff there exists a total α-
computable function sA : α× α→ α called a selector function satisfying:

i) ∀x, y ∈ α.sA(x, y) ∈ {x, y},

ii) ∀x, y ∈ α[{x, y} ∩ A 6= ∅ =⇒ sA(x, y) ∈ A].

Denote by sc(Lα) the class of α-semicomputable sets.

We just say semicomputable instead of α-semicomputable if clear from the
context.

Fact 4.1.2. (Semicomputability closure)

i) A ∈ sc(Lα) ⇐⇒ A ∈ sc(Lα),

ii) A⊕B ∈ sc(Lα) =⇒ A ∈ sc(Lα) ∧B ∈ sc(Lα).

4.1.2 Binary ordering

Definition 4.1.3. (Binary ordering)
Define <b⊆ P(α) × P(α) and ≤b⊆ P(α) × P(α) to be numerical orderings on
the binary representation of the compared sets:

• A <b B :⇐⇒ ∃β ∈ α[β 6∈ A ∧ β ∈ B ∧ A ∩ β = B ∩ β],

• A ≤b B :⇐⇒ A <b B ∨ A = B.

Remark 4.1.4. The restrictions of the orderings <b and ≤b to α-finite sets are
first-order definable and α-computable since an α-finite set is bounded.

Proposition 4.1.5. (Properties of binary ordering)
Let � ∈ {<,≤}, then:

i) <b is a strict total order,

ii) ≤b is a total order,

iii) A�b B ⇐⇒ B �b A.

Proof. i) and ii) are trivial. Next we prove iii). Assume A <b B. Then
there is β < α s.t. β 6∈ A, β ∈ B, A ∩ β = B ∩ β. So β 6∈ B, β ∈ A,
A ∩ β = B ∩ β. Thus B <b A and by symmetry A <b B ⇐⇒ B <b A.
Similarly, A ≤b B ⇐⇒ B ≤b A. Therefore A�b B ⇐⇒ B �b A and iii) as
required.
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It is easy to see the following.

Fact 4.1.6. (Binary and subset ordering)

i) A ⊂ B =⇒ A <b B,

ii) A ⊆ B =⇒ A ≤b B,

iii) A = B ⇐⇒ A ≡b B.

Note 4.1.7. If A ≤b C and B ≤b C, is it true that A ∪B ≤b C?
No. ConsiderA = 011 . . . , B = 100 . . . , C = 110 . . .. ThenA∪B = 111 . . ..

Thus A ≤b C and B ≤b C, but ¬A ∪B ≤b C.

4.1.3 Left and right sets

Definition 4.1.8. Given a set A define lA := {x ∈ α : Kx ≤b A}, rA := lA.

Remark 4.1.9. If A 6∈ Lα, then:

• lA = {x < α : Kx <b A} are α-finite sets left of A,

• rA = {x < α : A <b Kx} are α-finite sets right of A.

Proposition 4.1.10. (Properties of left/right α-finite sets)
Let A ⊆ α and β, γ, δ < α. Then:

i) K ∈ Lα ∧Kδ =
⋃
γ∈K Kγ ∧ δ ∈ lA =⇒ K ⊆ lA,

ii) β ∈ lA ∧ γ ∈ rA ∧Kβ ∩ δ = Kγ ∩ δ =⇒ Kβ ∩ δ ⊆ A.

Proof. i) Assume K ∈ Lα, Kδ =
⋃
γ∈K Kγ , δ ∈ lA. So Kδ <b A.

Assume γ ∈ K. Then Kγ ⊆ Kδ <b A by fact 4.1.6i. So Kγ ≤b Kδ <b A.
Hence Kγ <b A by the transitivity of ≤b (proposition 4.1.5). Therefore
γ ∈ lA and so K ⊆ lA as required.

ii) Assume β ∈ lA, γ ∈ rA, Kβ ∩ δ = Kγ ∩ δ. So Kβ <b A and A <b Kγ . As
Kβ <b A <b Kγ and Kβ ∩ δ = Kγ ∩ δ, so Kβ ∩ δ = A ∩ δ = Kγ ∩ δ. Thus
Kβ ∩ δ ⊆ A ∩ δ ⊆ A as required.

Proposition 4.1.11. For any A ⊆ α the sets lA, rA are α-semicomputable.

Proof. lA is α-semicomputable since it has an α-computable selector function

s := {(x, y, x) : Kx ≤b Ky} ∪ {(x, y, y) : Kx >b Ky}

by remark 4.1.4.
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Proposition 4.1.12. Let A ⊆ α be a quasiregular set, then A ≡α lA ≡α rA.

Proof. If A ∈ ∆1(Lα), then trivially A ≡α lA ≡α rA. Hence WLOG assume
that A 6∈ Lα and use remark 4.1.9. Also WLOG A 6∈ ∆1(Lα) and so in the proof
implicitly use the property

∀x ∈ A∃y, z[x < y < α ∧ x < z < α ∧ y 6∈ A ∧ z ∈ A].

Note that
⋃
x∈Kγ Kx ∈ Lα. Hence for any γ < α we have

Kγ ⊆ lA ⇐⇒ ∃β < α[Kβ <b A ∧ ∀x ∈ Kγ.Kx <b Kβ].

Thus lA ≤αe A via

W := {〈γ, δ〉 : ∃β < α[Kδ = {β} ∧ ∀x ∈ Kγ.Kx <b Kβ]} ∈ Σ1(Lα).

By symmetry rA ≤αe A. Hence lA ⊕ rA ≤αe A.
Let Â denote A or A. Then Kγ ⊆ Â ⇐⇒

∃βL, βR < α[∀x ∈ Kγ∀y ≤ x[y ∈ KβL ⇐⇒ y ∈ KβR ]∧Kγ ⊆ K̂βL∧βL ∈ lA∧βR ∈ rA]

for any γ < α using the quasiregularity of A and proposition 4.1.10ii. Hence
define

W := {〈γ, δ〉 : ∃βL, βR < α
[
∀x ∈ Kγ∀y ≤ x[y ∈ KβL ⇐⇒ y ∈ KβR ]∧

Kγ ⊆ K̂βL ∧Kδ = {βL} ⊕ {βR}
]
}.

Note that W ∈ Σ1(Lα) and so Â ≤αe lA ⊕ rA via W . Hence A⊕A ≤αe lA ⊕ rA.
Therefore A ⊕ A ≡αe lA ⊕ rA = lA ⊕ lA = rA ⊕ rA and so A ≡α lA ≡α rA

as required.

4.1.4 Semicomputable set existence

Lemma 4.1.13. 1 If A0 ∩ A1 = ∅ and ∀i ∈ {0, 1}.Ai ∈ Σ1(Lα, A0 t A1), then
A0 t A1 ≡α A0 ⊕ A1.

Proof. We have A0 t A1 ≤α A0 ⊕ A1 trivially. Let i ∈ {0, 1}. For
A0 ⊕ A1 ≤α A0 t A1: x ∈ Ai recognizable by Ai ∈ Σ1(Lα, A0 t A1). Also
x 6∈ Ai is recognizable since x 6∈ Ai ⇐⇒ x ∈ A1−i ∨ x 6∈ A0 t A1 by disjoint-
ness and both x ∈ A1−i, x 6∈ A0 t A1 are recognizable from A0 t A1. Hence
A0 t A1 ≡α A0 ⊕ A1.

The lemma implies that if A0, A1 are disjoint α-incomparable α-computably
enumerable sets, then A0 t A1 ≡α A0 ⊕ A1

2.

Lemma 4.1.14. 3

B ∈ Σ1(Lα) ∧B >α 0 =⇒ ∃A[A regular ∧ A ≡α B ∧ lA 6∈ Π1(Lα) ∧ lA 6∈ Σ1(Lα)].
1From lemma 6 in [22] on p66.
2Proposition 3.3 in [29].
3Adapted from Lemma 5.5 in [10] for α = ω
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Proof. By theorem 3.8.4 every Σ1(Lα) set is α-equivalent to some regular
set, so WLOG assume that B is regular. By Shore’s Splitting Theorem 3.8.5,
∃C0, D0 ∈ Σ1(Lα)[B = C0 tD0 ∧ C0|αD0] where C0|αD0 means that C0 and
D0 are incomparable wrt α-reducibility. Using theorem 3.8.4 again, let C,D be
α-c.e. regular sets s.t. C ≡α C0 and D ≡α D0. Define A := C ⊕D.

Note A = C ⊕D ≡α C0 ⊕D0. Hence A ≡α B by lemma 4.1.13 as required.
As D is regular, so D is regular. As C and D are regular, so A = C ⊕ D is

regular as required.
Next we prove lA 6∈ Π1(Lα) ∧ lA 6∈ Σ1(Lα). For suppose to the contrary that

¬(lA 6∈ Π1(Lα) ∧ lA 6∈ Σ1(Lα)). Then lA ∈ Σ1(Lα) ∨ lA ∈ Π1(Lα).

• Case lA ∈ Σ1(Lα): Note that D ≤αe C ⊕ C via

W := {〈γ, δ〉 : β = min{ε < α : Kγ ∩ ε = Kγ} ∧ ∃ζ ∈ lA∀x < β[

(2x ∈ Kδ ⇐⇒ 2x+ 1 6∈ Kδ ⇐⇒ 2x ∈ Kζ)∧

(x ∈ Kγ =⇒ 2x+ 1 ∈ Kζ)∧

(2x+ 1 6∈ Kζ =⇒ x ∈ D)]}.

The set W is α-c.e. since lA and D are α-c.e. The condition
2x ∈ Kδ ⇐⇒ 2x+ 1 6∈ Kδ ensures that Kδ contains the initial seg-
ment C ∩ β of C. The conditions 2x ∈ Kδ ⇐⇒ 2x ∈ Kζ and
2x + 1 6∈ Kζ =⇒ x ∈ D ensure that Kζ contains the initial segment
(C∩β)⊕(D∩β) ofC⊕D. Finally, the condition x ∈ Kγ =⇒ 2x+1 ∈ Kζ

verifies that Kγ is a subset of D, or more precisely a subset of its initial
segment D ∩ β.

As D is α-c.e., so this gives us D ≤α C which is a contradiction to the case
lA ∈ Σ1(Lα).

• Case lA ∈ Π1(Lα): Note that rA = lA ∈ Σ1(Lα). Hence similarly C ≤α D
using the fact that rA and C are both α-c.e. by applying a symmetric argu-
ment to the one above. This is a contradiction to the case lA ∈ Π1(Lα).

So by the two cases

lA 6∈ Π1(Lα) ∧ lA 6∈ Σ1(Lα).

Therefore given B >α 0, there is a regular set A s.t.

A ≡α B ∧ lA 6∈ Π1(Lα) ∧ lA 6∈ Σ1(Lα)

as required.

Theorem 4.1.15. Let B ⊆ α be quasiregular and B >α 0. Then there exists an
α-semicomputable set A s.t.

A ≡α B ∧ A 6∈ Σ1(Lα) ∧ A 6∈ Π1(Lα).
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Proof. If degα(B) is α-c.e. degree, then WLOG let B ∈ Σ1(Lα). Then by
lemma 4.1.14 there is C s.t. C is quasiregular and

B ≡α C ∧ LC 6∈ Σ1(Lα) ∧ LC 6∈ Π1(Lα).

By proposition 4.1.12 and quasiregularity of C we have that C ≡α LC and so
B ≡α LC . Hence A := LC is the required α-semicomputable set by proposi-
tion 4.1.11.

Otherwise degα(B) is not an α-c.e. degree and so

∀C ∈ degα(B)[C 6∈ Σ1(Lα) ∧ C 6∈ Π1(Lα)].

Note that A := lB ≡α B by the quasiregularity of B and by proposition 4.1.12
and so A 6∈ Σ1(Lα) ∧ A 6∈ Π1(Lα). Finally, A is α-semicomputable by proposi-
tion 4.1.11 as required.

4.2 Kalimullin pair

We define an α-Kalimullin pair and establish some basic properties about it.

Definition 4.2.1. (Kalimullin pair4)
Sets A,B ⊆ α are an α-U -Kalimullin pair denoted by KU(A,B) iff

∃W ≤αe U [A×B ⊆ W ∧ A×B ⊆ W ].

If clear, we omit the prefix α and say U -Kalimullin pair (or just U -K-pair) and
denote it by KU(A,B). Similarly, if U ∈ Σ1(Lα), then we say that A,B are a
Kalimullin pair (or just K-pair) and denote it as K(A,B).

The set W is called a witness to the U-Kalimullin pair.

Proposition 4.2.2. 5 If A ≤αe U , then ∀B ⊆ α.KU(A,B).

Proof. Take the witness W := A× α.

Proposition 4.2.3. If A is α-semicomputable, then K(A,A).

Proof. Define the witness W ∈ Σ1(Lα) to the Kalimullin pair K(A,A) to be

W := {〈x, y〉 ∈ α : sA(x, y) = x}

where sA is an α-computable selector function for an α-semicomputable set A.

Definition 4.2.4. A,B ⊆ α are a trivial Kalimullin pair iff K(A,B) and
A ∈ Σ1(Lα) ∨B ∈ Σ1(Lα). If A,B are a not a trivial Kalimullin pair, they form
a nontrivial Kalimullin pair, denoted by Knt(A,B).

4Adapted from [25] Definition 2.1.
5Proposition 2.2 in [25] for α = ω.
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Definition 4.2.5. (Maximal Kalimullin pair)
A Kalimullin pair K(A,B) is maximal denoted by Kmax(A,B) iff

∀C,D[A ≤αe C ∧B ≤αe D ∧ K(C,D) =⇒ A ≡αe C ∧B ≡αe D].

Remark 4.2.6. Note that in the definition of a maximal Kalimullin pair we use
α-enumeration reducibility instead of a weak α-enumeration reducibility since we
want that a maximal Kalimullin pair is definable (given that a Kalimullin pair is
definable) in the structure 〈Dαe,≤〉 where ≤ is induced by ≤αe.

Proposition 4.2.7. 6 Assume

A,B ⊆ α ∧ A 6∈ Σ1(Lα) ∧B 6∈ Σ1(Lα) ∧ K(A,B)

where the witness of K(A,B) is W . Then

i) A = {a < α : ∃b[b 6∈ B ∧ (a, b) ∈ W ]},

ii) B = {b < α : ∃a[a 6∈ A ∧ (a, b) ∈ W ]}.

Proof. i) Assume A,B ⊆ α, A 6∈ Σ1(Lα), B 6∈ Σ1(Lα) and K(A,B). Define
A2 := {a : ∃b[b 6∈ B ∧ (a, b) ∈ W ]}. We prove A = A2 which implies part i.

- We prove that A ⊆ A2. Let a ∈ A. We prove that a ∈ A2. For sup-
pose not, then a 6∈ A2 and so ∀b[¬(b 6∈ B ∧ (a, b) ∈ W )]. This implies
∀b[b ∈ B ∨ (a, b) 6∈ W ]. Hence ∀b[(a, b) ∈ W =⇒ b ∈ B]. As K(A,B),
so A × B ⊆ W where W is the witness of the Kalimullin pair. Note that
B = {b : ∃a ∈ α.(a, b) ∈ W} and so B ≤αe W . As W ∈ Σ1(Lα)

and B ≤αe W , so B ∈ Σ1(Lα). But at the beginning we assumed that
B 6∈ Σ1(Lα). This is a contradiction. Hence a ∈ A2 as needed and so
A ⊆ A2.

- We prove that A2 ⊆ A. Assume a ∈ A2. So there is some b 6∈ B s.t.
(a, b) ∈ W . We prove that a ∈ A. For suppose not, then a 6∈ A and so
b 6∈ B ∧ a 6∈ A. As K(A,B), so A× B ⊆ W . Hence (a, b) ∈ W . As both
(a, b) ∈ W and (a, b) ∈ W , this is a contradiction. Hence a ∈ A as needed
as so A2 ⊆ A.

As both A ⊆ A2 and A2 ⊆ A, so A = A2 and part i is true.

ii) The proof of part ii is symmetric.

Corollary 4.2.8. Assume

A,B ⊆ α ∧ A 6∈ Σ1(Lα) ∧B 6∈ Σ1(Lα) ∧ K(A,B).

Then
6From [25] and proposition 1.8 in [2].
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i) A ≤wαe B and B ≤wαe A,

ii) A ≤αe B if B is megaregular, B ≤αe A if A is megaregular.

Proof. Follows from proposition 4.2.7.

Lemma 4.2.9. (Kalimullin pair distributivity)
Suppose that

∧
i∈2Ai 6= ∅. Then∧

i∈2

K(Ai, B) ⇐⇒ K(
⊕
i∈2

Ai, B) ⇐⇒ K(
∏
i∈2

Ai, B)

Proof. Suppose
∧
i∈2K(Ai, B). For any i ∈ 2 let Ai × B ⊆ Ui ∈ Σ1(Lα) and

Ai ×B ⊆ U i. Define the sets V,W,U∗i as follows:

V := {(2a+ i, b) : (a, b) ∈ Ui, i ∈ 2},

W := {((a0, a1), b) : ∀i ∈ 2.(2ai + i, b) ∈ V },

U∗i := {(ai, b) : ∃(a0, a1).((a0, a1), b) ∈ W}.

The equivalences of lemma 4.2.9 follow from the following implications:∧
i∈2

Ai ×B ⊆ Ui ∈ Σ1(Lα) ∧ Ai ×B ⊆ U i =⇒(⊕
i∈2

Ai

)
×B ⊆ V ∈ Σ1(Lα) ∧

⊕
i∈2

Ai ×B ⊆ V =⇒(∏
i∈2

Ai

)
×B ⊆ W ∈ Σ1(Lα) ∧

∏
i∈2

Ai ×B ⊆ W =⇒ (by
∧
i∈2

Ai 6= ∅)∧
i∈2

Ai ×B ⊆ U∗i ∈ Σ1(Lα) ∧ Ai ×B ⊆ U
∗
i .

4.3 Definability of an α-Kalimullin pair

We prove that the set of the Kalimullin pairs is definable in Dαe if α∗ = α or if
V = L and α is an infinite regular cardinal. For any U ⊆ α we prove that the set
of the U -Kalimullin pairs is definable in Dαe if V = L and α is an infinite regular
cardinal. The main part of the proof is the construction in section 4.3.1.

For this section let Dx, Ex be a pair of α-finite sets indexed by x < α accord-
ing to lemma 3.5.3. For any x < α define

Vx := {y < α : Dx ⊆ Dy ∧ Ex ⊆ Ey}

4.3.1 Key theorem and construction

Theorem 4.3.1. 7 Let A,B, U ⊆ α. Let one of the conditions hold:
7Theorem 2.5 in [25] for α = ω.
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i) the projectum of α is α∗ = ω and U is megaregular.

ii) A⊕B ⊕K(U) is megaregular.

Suppose ¬KU(A,B). Then

∃X, Y ⊆ α[Y ≤αe X ⊕ A ∧ Y ≤αe X ⊕B ∧ Y 6≤wαe X ⊕ U ].

The following proof is a generalization of the proof for the case when α = ω

in [25].

Proof. This proof depends on lemmas 4.3.2 to 4.3.5 which are proved in sec-
tion 4.3.2.

We perform a construction in α∗ stages and define sets X, Y s.t. ∀x < α:
x ∈ Y ⇐⇒ x ∈ X ∧Dx ⊆ A ⇐⇒ x ∈ X ∧ Ex ⊆ B (4.1)

which guarantees Y ≤αe X ⊕ A and Y ≤αe X ⊕B by lemma 4.3.2 underneath.

Lemma 4.3.2. Let X, Y,A be any subsets of α. Assume that for any x < α we
have

x ∈ Y ⇐⇒ x ∈ X ∧Dx ⊆ A

where Dx is an α-finite set with a uniformly α-computable index x. Then
Y ≤αe X ⊕ A.

Index the requirements and α-enumeration operators by indices in α∗ using
proposition 3.6.8. Aim to meet for all e < α∗ the requirements

Re : Y 6= Φe(X ⊕ U).

Let s < α∗ be a stage during the construction. We use the following sets to
help to ensure the conditions stated just after them:

• Xs which is used to define the desired set X in the end as X :=
⋃
s<α∗ Xs.

• Ms which is used to put an extra condition (4.4) on Xs to ensure
Y 6≤wαe X ⊕ U (see Final verification).

• Ns := {e < α : 2e < s} which just stores the indices e of the enumeration
operators used at the stage 2e + 2 and together with Is it is used to define
Ms+1 .

• Is which is used to define Ms+1 together with Ns and stores the indices
x ∈ Ms s.t. Dx ⊆ A ∧ Ex ⊆ B ∧ x 6∈ Φe((Xs ∪ (Ms ∩ Vx)) ⊕ U). This
is used to ensure the condition 4.5 which is an essential property of the set
Ms.

• Vx := {y < α : Dx ⊆ Dy ∧ Ex ⊆ Ey} which is also used in the definition
of Ms, see 4.9.
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At each stage s < α∗ of the construction aim to define an α-finite set Xs and
an α-computable set Ms so that for all s < α∗ they satisfy:

Xs ⊆ Xs+1 (4.2)

Ms+1 ⊆Ms (4.3)

Xs+1 −Xs ⊆Ms+1 (4.4)

∀D,E ∈ Lα[D ⊆ A ∧ E ⊆ B =⇒ ∃x ∈Ms[D ⊆ Dx ⊆ A ∧ E ⊆ Ex ⊆ B]]

(4.5)

Xs ∈ Lα (4.6)

Ns ∈ Lα (4.7)

Is ∈ Lα (4.8)

Ms := (
⋂
x∈Is

Vx)−Ns = Vz −Ns (4.9)

Ms ∈ ∆1(Lα) (4.10)

Pre-construction

Note that Ns := {e < α : 2e < s} and so it is α-finite as it is α-computable and
bounded. Thus statement (4.7) is true.

Next we will use lemma 4.3.4 underneath.

Lemma 4.3.4. Let I ∈ Lα. Then exists an index z < α which is uniformly
α-computable from I s.t.

Vz =
⋂
x∈I

Vx.

By statement (4.9), the set Ms is defined at every stage s < α∗ by the sets
Ns and Is. Since the set Is is α-finite at the stage s by statement (4.8), so by
lemma 4.3.4 there is an index z which is uniformly α-computable from Is and
Vz =

⋂
x∈Is Vx. Hence the equality

(
⋂
x∈Is

Vx)−Ns = Vz −Ns

holds at every stage s where Is ∈ Lα. Consequently also the set Vz is
α-computable at such stage s.

Since the set Ns is α-finite by statement (4.7) and Vz is α-computable at the
stage s, so the setMs has to be α-computable at the stage s, hence statement (4.10)
holds.

When proving at the stage s < α∗ that statement (4.5) holds, we use the fact
that A and B are not α-finite by proposition 4.2.2 since ¬KU(A,B). This given
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α-finite sets D,E, enables us to find arbitrarily large α-finite supersets of D,E
contained in A and B respectively.

Constructing X

The set X will be constructed in α∗-many stages.

• Stage s = 0. Set X0 := ∅, I0 := ∅. Observe statement (4.5) is true for
M0 = α. Clearly, statements (4.6) to (4.8) are satisfied.

• Stage s + 1 = 2e + 1. By induction hypothesis let Xs, Is be given and α-
finite by statements (4.6) to (4.8). Define Xs+1 := Xs, Is+1 := Is. Trivially,
statements (4.6) to (4.8) hold at the stage s+ 1 by IH at the stage s.

Note Ms+1 = Ms − {e} by statement (4.9). We claim that the set Ms+1

satisfies statement (4.5). Let D,E ∈ Lα ∧D ⊆ A ∧ E ⊆ B. By IH on Ms

there is x ∈Ms s.t.

D ⊆ Dx ⊆ A ∧ E ⊆ Ex ⊆ B.

Note Dx ∈ Lα, but by proposition 4.2.2 A 6∈ Lα, hence Dx ⊂ A. Let
z ∈ A−Dx. Then D̂ := Dx ∪ {z} ∈ Lα. By IH on Ms there is y ∈Ms s.t.

D̂ ⊆ Dy ⊆ A ∧ E ⊆ Ey ⊆ B.

If x 6= e, then x ∈Ms+1 := Ms − {e}. Otherwise x = e 6= y and

y ∈Ms+1 ∧D ⊆ Dx ⊂ D̂ ⊆ Dy ⊆ A ∧ E ⊆ Ey ⊆ B.

Therefore in any case the set Ms+1 satisfies statement (4.5).

• Stage s + 1 = 2e + 2. Aim to find x ∈ Ms s.t. one of the two following
statements is true:

1: Dx 6⊆ A ∧ Ex 6⊆ B ∧ x ∈ Φe((Xs ∪ (Ms ∩ Vx))⊕ U),

2: Dx ⊆ A ∧ Ex ⊆ B ∧ x 6∈ Φe((Xs ∪ (Ms ∩ Vx))⊕ U).

First we prove the existence of such x ∈ Ms. Assume that ∀x ∈ Ms the
statement 2 is false. Define

W := {〈a, b〉 : ∃x ∈Ms[a ∈ Dx ∧ b ∈ Ex ∧ x ∈ Φe((Xs ∪ (Ms ∩ Vx))⊕ U)]}.

Then W ≤αe U by the megaregularity of U , lemma 4.3.3, statement (4.10)
and statement (4.6) where lemma 4.3.3 is given below.

Lemma 4.3.3. Assume Ms ∈ Σ1(Lα) and Xs ∈ Lα. Let

W := {〈a, b〉 : ∃x ∈Ms[a ∈ Dx ∧ b ∈ Ex ∧ x ∈ Φe((Xs ∪ (Ms ∩ Vx))⊕ U)]}.

Assume U is megaregular. Then W ≤αe U .
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We prove A × B ⊆ W . Let (a, b) ∈ A × B. By statement (4.5) for Ms it
follows

∃x ∈Ms[a ∈ Dx ⊆ A ∧ b ∈ Ex ⊆ B].

Since statement 2 is false, we have

x ∈ Φe((Xs ∪ (Ms ∩ Vx))⊕ U).

Thus (a, b) ∈ W . Since ¬KU(A,B), there is a pair (a, b) ∈ A × B s.t.
(a, b) ∈ W . Thus there is x ∈Ms s.t. a ∈ Dx, b ∈ Ex and

x ∈ Φe((Xs ∩ (Ms ∩ Vx))⊕ U).

Hence Dx 6⊆ A, Ex 6⊆ B and statement 1 is true for x ∈ Ms. Therefore
there is x ∈ Ms s.t. statement 1 or statement 2 is true. Choose such an
element x ∈Ms using the oracle A⊕B ⊕K(U).

Case 1: If statement 1 is true for x, then

x ∈ Φe((Xs ∪ (Ms ∩ Vx)⊕ U).

By fact 3.7.11ii and fact 3.7.11iii there is F ⊆ Xs ∪ (Ms ∩ Vx) s.t.

F ∈ Lα ∧ x ∈ Φe(F ⊕ U).

Thus define Xs+1 := Xs ∪ F , Is+1 := Is. Note that Ms+1 := Ms. The
set F is α-finite, by IH Xs is α-finite and so the union Xs+1 = Xs∪F
is α-finite satisfying statement (4.6). Statement (4.8) is true by IH.

Case 2: Otherwise if statement 2 is true for x, then define Xs+1 := Xs ∪ {x},
Is+1 := Is ∪ {x}. Trivially, the sets Xs+1, Is+1 are α-finite
using IH, hence satisfying statements (4.6) to (4.8). Note
Ms+1 = Ms ∩ Vx by statement (4.9). Ms+1 satisfies statement (4.5):
if D ⊆ A,E ⊆ B,D ∈ Lα, E ∈ Lα, then by the hypothesis on Ms,
there is y ∈Ms s.t.:

D ∪Dx ⊆ Dy ⊆ A,

E ∪ Ex ⊆ Ey ⊆ B.

Therefore

y ∈Ms ∩ Vx = Ms+1.

Note in both cases Xs+1 −Xs ⊆Ms+1, statement (4.4) being satisfied.

• Stage s = 2e > 0, 2e is a limit ordinal. If α∗ = ω, then this stage does not
arise. Hence assume that A⊕B ⊕K(U) is megaregular.

Define Xs :=
⋃
r<sXr, Is :=

⋃
r<s Ir. We claim that these sets are α-finite.
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Define a partial function f : α ⇀ α on the ordinals smaller than s by

f(r) := {γ < α : Kγ = Xr}.

Note that by IH for all r < s, the set Xr is α-finite using statement (4.6).
Also during the construction we only use the oracle A⊕ B ⊕K(U). Thus
the index f(r) of an α-finite setXr is alsoA⊕B⊕K(U)-computable. Con-
sequently, the function f is Σ1(Lα, A⊕B ⊕K(U)) definable. As s < α∗,
so s as a limit ordinal is an α-finite set. Therefore by the megaregularity
of A ⊕ B ⊕K(U), the set f [s] is also α-finite. But then Xs =

⋃
γ∈f [s] Kγ

is α-finite by proposition 3.2.10. So statement (4.6) holds at the stage s as
required. Applying similar reasoning, using the veracity of statement (4.8)
for all r < s by IH, we conclude that statement (4.8) holds at the stage s
too.

Note Ms :=
⋂
r<sMr by statement (4.9). We prove that statement (4.5)

holds at the stage s. Note that Ms = Vz − Ns by statement (4.9) for some
z < α satisfying both Dz ⊆ A and Ez ⊆ B. Fix α-finite sets D and E s.t.
D ⊆ A and E ⊆ B. WLOG let Dz ⊆ D and Ez ⊆ E. Define

Z := {x < α : D ⊆ Dx ⊆ A ∧ E ⊆ Ex ⊆ B}.

As ¬K(A,B) by the assumption, so A 6∈ Σ1(Lα) and B 6∈ Σ1(Lα) by
proposition 4.2.2. Note that A⊕ B is megaregular. Hence Z is unbounded
by lemma 4.3.5 below.

Lemma 4.3.5. Let D ⊆ A ⊆ α and E ⊆ B ⊆ α satisfying A,B 6∈ Σ1(Lα)

and D,E ∈ Lα. Define

Z := ZD,E := {x < α : D ⊆ Dx ⊆ A ∧ E ⊆ Ex ⊆ B}.

Then:

i) Z ≡αe A⊕B,

ii) Z ≤wαe A⊕B,

iii) Z 6∈ Σ1(Lα),

iv) Z is unbounded if A⊕B is megaregular.

On the other hand Ns ⊆ s. Thus Z −Ns 6= ∅. Note

{x ∈Ms : D ⊆ Dx ⊆ A ∧ E ⊆ Ex ⊆ B} =

{x ∈ Vz −Ns : D ⊆ Dx ⊆ A ∧ E ⊆ Ex ⊆ B} =

Z −Ns 6= ∅.
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Therefore

∀D,E ∈ Lα
[
D ⊆ A ∧ E ⊆ B =⇒ ∃x ∈Ms[D ⊆ Dx ⊆ A ∧ E ⊆ Ex ⊆ B]

]
and so the statement statement (4.5) is satisfied at the limit stage s.

Finally, define X :=
⋃
s<α∗ Xs.

Defining Y

To define Y , first prove

∀z ∈ X[Dz ⊆ A ⇐⇒ Ez ⊆ B] :

Let z ∈ X . Then there is a stage s+ 1 = 2e+ 2 s.t. z ∈ Xs+1−Xs. In case 2 we
have Dz ⊆ A and Ez ⊆ B. In case 1 there is x s.t. Xs+1−Xs ⊆ Vx, Dx 6⊆ A and
Ex 6⊆ B. As z ∈ Xs+1 −Xs ⊆ Vx, so Dx ⊆ Dz and Ex ⊆ Ez. Thus Dz 6⊆ A and
Ez 6⊆ B. Define the set

Y := {z ∈ X : Dz ⊆ A} = {z ∈ X : Ez ⊆ B}.

Final verification

Note Y ≤αe X ⊕ A and Y ≤αe X ⊕B as proved under statement (4.1).

We prove Y 6≤wαe X⊕U by showing Y 6= Φe(X⊕U) for an arbitrary e < α∗.
Consider a stage s + 1 = 2e + 2. In case 1 we have Xs+1 = Xs ∪ F and there is
x s.t. x ∈ Φe(F ⊕ U), Dx 6⊆ A and Ex 6⊆ B. Hence

x ∈ Φe(X ⊕ U)− Y.

In case 2 there is x s.t. Xs+1 = Xs ∪ {x},Ms+1 = Ms ∩ Vx, Dx ⊆ A,Ex ⊆ B

and

x 6∈ Φe((Xs ∪Ms+1)⊕ U).

Let z ∈ X . Then ∃t.z ∈ Xt+1−Xt ⊆Mt+1 by statement (4.4). If t ≥ s, then
z ∈ Ms+1 by statement (4.3). If t < s, then z ∈ Xs by statement (4.2). Hence
z ∈ Xs ∪Ms+1 and thus X ⊆ Xs ∪Ms+1.

Hence x ∈ Y − Φe(X ⊕ U) by fact 3.7.11ii. Therefore in both cases
Y 6= Φe(X ⊕ U) and so Y 6≤wαe X ⊕ U .

4.3.2 Construction lemmas proved

We prove some lemmas used in the construction in section 4.3.1.

Lemma 4.3.2. Let X, Y,A be any subsets of α. Assume that for any x < α we
have

x ∈ Y ⇐⇒ x ∈ X ∧Dx ⊆ A
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where Dx is an α-finite set with a uniformly α-computable index x. Then
Y ≤αe X ⊕ A.

Proof. Recall Y ≤αe X ⊕ A ⇐⇒

∃W ∈ Σ1(Lα)∀γ < α[Kγ ⊆ Y ⇐⇒ ∃〈γ, δ〉 ∈ W.Kδ ⊆ X ⊕ A].

Note Kγ ⊆ Y ⇐⇒ ∀x ∈ Kγ.x ∈ Y ⇐⇒ ∀x ∈ Kγ[x ∈ X ∧Dx ⊆ A] ⇐⇒

Kγ ⊆ X ∧
⋃
x∈Kγ

Dx ⊆ A ⇐⇒ (By lemma 3.5.4i)

Kγ ⊆ X ∧Ku(γ) ⊆ A ⇐⇒ (By lemma 3.5.4ii)

Kv(γ,u(γ)) ⊆ X ⊕ A.

Hence define

W := {〈γ, δ〉 < α : δ = v(γ, u(γ))}.

As u, v ∈ Σ1(Lα), so W ∈ Σ1(Lα). Moreover,

Kγ ⊆ Y ⇐⇒ ∃〈γ, δ〉 ∈ W.Kδ ⊆ X ⊕ A.

Therefore Y ≤αe X ⊕ A.

Lemma 4.3.3. Assume Ms ∈ Σ1(Lα) and Xs ∈ Lα. Let

W := {〈a, b〉 : ∃x ∈Ms[a ∈ Dx ∧ b ∈ Ex ∧ x ∈ Φe((Xs ∪ (Ms ∩ Vx))⊕ U)]}.

Assume U is megaregular. Then W ≤αe U .

Proof. Let

Se := Φe((Xs ∪ (Ms ∩ Vx))⊕ U).

We first prove W ≤αe Se. Note Kγ ⊆ W ⇐⇒ ∀〈a, b〉 ∈ Kγ.〈a, b〉 ∈ W ⇐⇒

∀〈a, b〉 ∈ Kγ.∃x ∈Ms[a ∈ Dx ∧ b ∈ Ex ∧ x ∈ Se] ⇐⇒

∀〈a, b〉 ∈ Kγ.∃x ∈Ms[〈a, b〉 ∈ Px ∧ x ∈ Se]

where iP : α → α ∈ Σ1(Lα) is a function of lemma 3.5.4iv and Px := KiP (x).
Define φ and V :

φ(γ, δ) ⇐⇒ ∀y ∈ Kγ∃x ∈ Kδ.y ∈ Px.

V := {〈γ, δ〉 : Kδ ⊆Ms ∧ φ(γ, δ)}.

Then continuing we haveKγ ⊆ W ⇐⇒ ∀y ∈ Kγ∃x ∈Ms[y ∈ Px ∧ x ∈ Se] ⇐⇒

∃δ[Kδ ⊆Ms ∧Kδ ⊆ Se ∧ φ(γ, δ)] ⇐⇒ ∃〈γ, δ〉 ∈ V.Kδ ⊆ Se.

where Kδ ∈ Lα has to exist as an image of an α-computable function restricted to
an Kγ ∈ Lα by the admissibility of α. Note

φ(γ, δ) ⇐⇒ ∃H[H = w(γ, δ) ∧ ∀y ∈ Kγ∃x ∈ Kδ.〈x, y〉 ∈ H]

where w : α× α→ α ∈ Σ1(Lα) with

Kw(γ,δ) := {〈x, y〉 : x ∈ Kδ ∧ y ∈ Kγ ∧ y ∈ Px}
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is a function of lemma 3.5.4v. Hence φ(γ, δ) ∈ Σ1(Lα). As Ms ∈ ∆1(Lα) by
Ms ∈ ∆1(Lα), so V ∈ Σ1(Lα). Therefore W ≤wαe Se.

Note Vx ∈ Σ1(Lα). By the assumptions Ms ∈ Σ1(Lα) and Xs ∈ Ls it is true
that Ms ∈ Σ1(Lα) and Xs ∈ Σ1(Lα). Thus

(Xs ∪ (Ms ∩ Vx)) ∈ Σ1(Lα).

Hence

Se ≤wαe (Xs ∪ (Ms ∩ Vx))⊕ U ≤αe U

by fact 3.7.11i and lemma 3.7.8 respectively. Hence Se ≤wαe U by proposi-
tion 3.7.12.

As U is megaregular, so Se ≤αe U by proposition 3.9.2. Hence W ≤wαe U by
proposition 3.7.12. Finally, W ≤αe U by the megaregularity of U again.

Lemma 4.3.4. Let I ∈ Lα. Then exists an index z < α which is uniformly
α-computable from I s.t.

Vz =
⋂
x∈I

Vx.

Proof. Define f as follows

f(I) = z ⇐⇒ Dz =
⋃
x∈I

Dx ∧ Ez =
⋃
x∈I

Ex.

By lemma 3.5.4i the function f is total and α-computable. Also⋂
x∈I

Vx = {y < α :
⋃
x∈I

Dx ⊆ Dy ∧
⋃
x∈I

Ex ⊆ Ey} = Vf(I) = Vz

as required.

Lemma 4.3.5. Let D ⊆ A ⊆ α and E ⊆ B ⊆ α satisfying A,B 6∈ Σ1(Lα) and
D,E ∈ Lα. Define

Z := ZD,E := {x < α : D ⊆ Dx ⊆ A ∧ E ⊆ Ex ⊆ B}.

Then:

i) Z ≡αe A⊕B,

ii) Z ≤wαe A⊕B,

iii) Z 6∈ Σ1(Lα),

iv) Z is unbounded if A⊕B is megaregular.

Proof. i) First note that for all α-finite sets Kγ, Kδ there is some x < α s.t.
Dx = Kγ, Ex = Kδ. Hence if we require that Dx (or Ex) is fixed to some
α-finite set K ∈ Lα, still the remaining sets Ex (or Dx) include all α-finite
sets. Note A ≤αe Z via

W := {〈γ, δ〉 : ∃x < α[D ∪Kγ ⊆ Dx ∧Kδ = {x}]} ∈ Σ1(Lα).
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Similarly, B ≤αe Z. Consequently, A⊕B ≤αe Z. Define ID,A and IE,B:

ID,A := {x < α : D ⊆ Dx ⊆ A},

IE,B := {x < α : E ⊆ Ex ⊆ B}.

Note ID,A ≤αe A via

WA := {〈γ, δ〉 : ∀x ∈ Kγ.D ⊆ Dx ∧
⋃
x∈Kγ

Dx = Kδ} ∈ Σ1(Lα).

Similarly IE,B ≤αe B. Note that Z = ID,A ∩ IE,B. Thus

Z ≤αe ID,A ⊕ IE,B ≤αe A⊕B.

Therefore A⊕B ≡αe Z.

ii) Note that ID,A ≤wαe A via

Φvw := {〈x, δ〉 : ∃y < α[y 6∈ Dx ∧ y ∈ D ∧Kδ = ∅ ∨ y ∈ Dx ∧Kδ = {y}}.

Similarly, IE,B ≤wαe B. Hence

Z = ID,A ∪ IE,B ≤wαe A⊕B

as required.

iii) If Z ∈ Σ1(Lα), then Z ∈ Σ1(Lα) and A ∈ Σ1(Lα), B ∈ Σ1(Lα) which
contradicts the assumption. Hence Z 6∈ Σ1(Lα).

iv) From ii) and megaregularity of A ⊕ B, we have Z ≤αe A ⊕ B. Note
A⊕B = A ⊕ B. Combining this with i) it yields Z ≤α A ⊕ B. Hence
Z ∈ ∆1(Lα, A,B). If Z was bounded, then by lemma 3.4.13 using the
megaregularity of A⊕B, Z is α-finite. This contradicts iii). Hence Z has to
be unbounded.

4.3.3 Conclusions and definability

Theorem 4.3.6. 8 Let A, B, U be arbitrary subsets of α. The statements i) - iv)
are equivalent. Moreover if V = L and α is an infinite regular cardinal, then all
the statements i) - v) are equivalent.

i) KU(A,B), i.e. ∃W ≤αe U [(A×B ⊆ W ) ∧ (A×B ⊆ W )],

ii) ∃f(x, y) ∈ ∆1(Lα).∀X ⊆ α∀x, y ∈ α

[Φx(A⊕X) ∩ Φy(B ⊕X) ⊆ Φf(x,y)(X ⊕ U) ⊆ Φx(A⊕X) ∪ Φy(B ⊕X)],

iii) ∃f(x, y) ∈ ∆1(Lα)∀x, y < α[Φx(A) = Φy(B) =⇒ Φf(x,y)(U) = Φx(A)],

8From theorem 2.6 in [25] for De. Thanks to Iskander Kalimullin for explaining the classical
case α = ω, part ii) implies v).
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iv) ∀V1, V2 ⊆ α
[
V1 ≤αe A ∧ V2 ≤αe B =⇒ ∃W ≤αe U [V1 ∩ V2 ⊆ W ⊆ V1 ∪ V2]

]
,

v) ∀X ⊆ α[degαe(X ⊕ U) = degαe(A⊕X ⊕ U) ∧ degαe(B ⊕X ⊕ U)].

Proof. • First we prove that the statements i) to iv) are equivalent. The impli-
cations ii) =⇒ iii), ii) =⇒ iv), iv) =⇒ i) are trivial. It remains to prove
the implications i) =⇒ ii) and iii) =⇒ i).

• i) =⇒ ii):

Assume

∃W ≤αe U.A×B ⊆ W ∧ A×B ⊆ W

and let W = Φ(U) for some α-enumeration operator Φ.

Define f s.t. for any X ⊆ α, x, y ∈ α:

Φf(x,y)(X ⊕ V ) := {z ∈ α : ∃D,E ∈ Lα
[z ∈ Φx(D ⊕X) ∩ Φy(E ⊕X) ∧D × E ⊆ Φ(V )]}.

Then f is α-computable and satisfies the condition ii).

• iii) =⇒ i): Suppose that A and B satisfy the condition iii) with f being
computable. Define a computable function g s.t. for every Y ⊆ α and
y < α:

Φg(y)(Y ) =

α if y ∈ Y,

∅ otherwise.

Then A,B are a U -Kalimullin pair with a witness

W = {(m,n) : Φf(g(m),g(n))(U) 6= ∅}.

• Hence we proved that the statements i) to iv) are equivalent. Next we prove
that the statements i) to v) are equivalent under the following assumption.
Assume that V = L and α is an infinite regular cardinal. Hence every
subset of α is megaregular. The statement v) =⇒ i) is the contrapositive
of theorem 4.3.1 which follows from the assumption that both U and A ⊕
B ⊕K(∅) are megaregular. Now we prove that ii) =⇒ v).

• ii) =⇒ v): Given ii) we would like to show that

X ⊕ U ≡αe (A⊕X ⊕ U) ∧ (B ⊕X ⊕ U).

where ∧ is the meet induced by ≤αe. Given some order relation ≤, recall
the definition of its induced meet ∧ that C = A ∧B iff

(A ≥ C) ∧ (B ≥ C) ∧ ∀D[(A ≥ D) ∧ (B ≥ D) =⇒ C ≥ D].
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Trivially, A ⊕ X ⊕ U ≥αe X ⊕ U and B ⊕ X ⊕ U ≥αe X ⊕ U . Let
D ⊆ α be arbitrary and assume A ⊕X ⊕ U ≥αe D and B ⊕X ⊕ U ≥αe
D. Thus ∃x, y < α s.t. Φx(A⊕X ⊕ U) = D = Φy(B ⊕X ⊕ U).
Thus using ii), we have D ⊆ Φf(x,y)((X ⊕ U)⊕ U) ⊆ D and so
D = Φf(x,y)((X ⊕ U)⊕ U) and X ⊕ U ≥wαe D. As X ⊕ U is megaregu-
lar, soX ⊕ U ≥αe D. ThereforeX ⊕ U ≡αe (A⊕X ⊕ U) ∧ (B ⊕X ⊕ U)

as required.

• Hence i) ⇐⇒ ii) ⇐⇒ iii) ⇐⇒ iv) =⇒ v) for any admissible α.
Therefore i) ⇐⇒ ii) ⇐⇒ iii) ⇐⇒ iv) ⇐⇒ v) if V = L and α is an
infinite regular cardinal.

The statement i) iff v) establishes the definability of a U -Kalimullin pair.

Proposition 4.3.7. 9 Let B ⊆ α. The set of all A s.t. K(A,B) is closed down-
wards under α-enumeration reducibility as well as closed under join.

Proof. Suppose K(A0, B) and A1 ≤αe A0. Hence

∃W0 ∈ Σ1(Lα).A0 ×B ⊆ W0 ∧ A0 ×B ⊆ W 0.

Let V1 := A1×α, V2 := α×B. As A1 ≤αe A0, so V1 ≤αe A0∧V2 ≤αe B. Hence
by theorem 4.3.6 (i implies iv), ∃W1 ∈ Σ1(Lα) s.t. V1 ∩ V2 ⊆ W1 ⊆ V1 ∪ V2.
Therefore V1 ∩ V2 = A1 ×B ⊆ W1. Also

W1 ⊆ V1 ∪ V2 ⇐⇒ V 1 ∩ V 2 ⊆ W 1

and so

V 1 ∩ V 2 = (A1 × α) ∩ (α×B) = A1 ×B ⊆ W 1.

Hence K(A1, B).

Let K(A0, B) ∧K(A1, B). If Ai = ∅ for i ∈ 2 then A0 ⊕A1 ≡αe A1−i and so
K(A0 ⊕ A1, B). Otherwise K(A0 ⊕ A1, B) by lemma 4.2.9.

Corollary 4.3.8. (Definability of an U -Kalimullin Pair10)
Assume V = L and let α be an infinite regular cardinal. Then

∀a, b, u ∈ Dαe[Ku(a, b) ⇐⇒ ∀x ∈ Dαe.(a ∨ x ∨ u) ∧ (b ∨ x ∨ u) = x ∨ u].

Proof. Note that since α is an infinite regular cardinal, so A ⊕ B ⊕ K(U) is
megaregular. Thus the statement above follows from (i ⇐⇒ v) in theorem 4.3.6
and from the K-pair being a degree theoretic property by its invariance under the
αe-reducibility by proposition 4.3.7.

9Proposition 1.7 in [2] for α = ω.
10The case for α = ω proved in [25].
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4.4 Maximal Kalimullin pair and total degrees

In this section we conclude that every nontrivial total degree is a join of a maximal
Kalimullin-pair if V = L and α is an infinite regular cardinal (corollary 4.4.2).

Proposition 4.4.1. (Maximality of semicomputable megaregular K-pairs)11

Let A ⊆ α be megaregular. If K(A,A) ∧ A 6∈ Σ1(Lα) ∧ A 6∈ Π1(Lα), then
Kmax(A,A).

Proof. SupposeK(A,A) andK(C,D), A ≤αe C, A ≤αe D. By proposition 4.3.7
K(A,D). By corollary 4.2.8 and the megaregularity ofAwe haveD ≤αe A. Sim-
ilarly, K(C,A) and thus C ≤αe A = A by corollary 4.2.8 and the megaregularity
of A.

Corollary 4.4.2. Assume V = L and let α be an infinite regular cardinal. Then
every nontrivial total degree is a join of a maximal K-pair, i.e.

∀a ∈ T OT αe − {0}∃b, c ∈ Dαe[(a = b ∨ c) ∧ Kmax(b, c)].

Proof. Since α is an infinite regular cardinal, thus the set of the (maximal)
Kalimullin pairs is definable by corollary 4.3.8.

Suppose a ∈ T OT αe − {0}. Note that a is a megaregular degree (at least one
or equivalently every set in a is megaregular). Then by theorem 4.1.15, there is
A ⊆ α s.t. A is α-semicomputable, A 6∈ Σ1(Lα), A 6∈ Σ1(Lα) and A ⊕ A ∈ a
by the totality of a. As A is α-semicomputable, so K(A,A) by proposition 4.2.3.
K(A,A) is nontrivial since A 6∈ Σ1(Lα) and A 6∈ Σ1(Lα). Thus by proposi-
tion 4.4.1 and the megaregularity of A we have Kmax(A,A).

By inspecting whether a degree which is not quasiregular could be a join of a
maximal Kalimullin pair, one may establish the following:

Proposition 4.4.3. If degα(B) is not a quasiregular degree, then there is C s.t.
0 <α C <α B and Kmax(C,C).

Proof. Since degα(B) is not a quasiregular degree, then D is not quasiregular for
any D ≡α B. So B is not quasiregular.

Let β < α be the least ordinal s.t. B ∩ β 6∈ Lα. Define A := B ∩ β.
Then A ⊂ B by B not being quasiregular. By the minimality of β, the set A is
quasiregular. A is bounded, but not α-finite, hence A cannot be α-computable.
Thus A >α ∅. By theorem 4.1.15 there is α-semicomputable set C s.t. A ≡α C,
C 6∈ Σ1(Lα) and C 6∈ Π1(Lα). As C is α-semicomputable, so K(C,C). By
proposition 4.4.1 we have that Kmax(C,C).

11Generalized from Maximal K-pairs in [2] for α = ω.
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Chapter 5

α-rational numbers Qα

In classical Computability Theory the definability of the total enumeration degrees
was established by constructing a cut in the rational numbers Q. We generalize
this result in chapter 6, but for that we first need an analogue of rational numbers
in α-Computability Theory.

Let α denote an admissible ordinal and let β denote a limit ordinal. A rational
number can be represented by a bounded binary string. Thus the analogue, β-
rational numbers Qβ , may be {/, .}<β , binary strings of order type less than β.

In this chapter we define β-rational numbers Qβ . We investigate Qβ briefly
andQα with a little more detail covering the areas of representability, computabil-
ity, dense total orders and analysis.

5.1 Basic concepts

Using strings we define β-rational numbers Qβ with its ordering and show how to
represent them in Lβ . We define a β-real number interval which is used later
in section 5.4 to analyse Qβ further. We show that the ordering of Qα is α-
computable and an order type of an α-rational is uniformly α-computable.

5.1.1 Strings

We define strings of transfinite length and explain the notation involved.

Definition 5.1.1. (Language signature, character and string1)
Let L be a set that contains the element λ.

• The set L is called the language signature.

1Strings are a common concept in the field of Computer Science. α-strings were introduced in
this thesis.
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• An element in L is called a character.

• The element λ is called the empty character.

• For an ordinal α ∈ Ord an α-string σ is a total function σ : α→ L satisfy-
ing the following property:

∀γ, δ < α[γ < δ ∧ σ(γ) = λ =⇒ σ(δ) = λ].

• If σ(0) = λ, then σ is called the empty string and denoted also by λ, i.e.
σ = λ.

If the ordinal α is clear from the context, we just use the term string for an
α-string.

Note 5.1.2. (Notation for strings)
We avoid complex definitions of the concepts and notation below and instead
provide simple clarifying examples of α-strings for some ordinal α.

• abc is the compact string notation for the string

{(0, a), (1, b), (2, c)} ∪ {(γ, λ) ∈ α× L : 2 < γ}.

E.g. abcλ = abc. Here we make a convention to grow a string from the left
to the right.

• σ(γ) is the γth character of the string σ. E.g. abc(0) = a, abc(1) = b,
abc(2) = c, abc(3) = λ.

• σ[γ, δ], σ[γ, δ), σ(γ, δ], σ(γ, δ) denote string intervals. E.g. abcd[1, 3] = bcd,
abcd[1, 3) = bc, abcd[1, 5] = bcdλλ = bcd = abcd[1, 3].

• σ · τ denotes the concatenation of the strings σ and τ . E.g. if σ = 000 and
τ = abc, then σ · τ = 000abc.

• xγ is the concatenation of γ many characters or strings x. E.g.
(bc)3 = bcbcbc, 04 · a2 = 0000aa.

• σ � δ denotes the restriction of the string σ to the characters at the position
less than δ, i.e.

∀c ∈ L∀γ < α
[
c = (σ � δ)(γ) ⇐⇒ γ < δ ∧ c = σ(γ) ∨ δ ≤ γ ∧ c = λ

]
.

E.g. (abcde) � 3 = abc.

• The order type of the string σ denoted as ot(σ) is defined as

ot(σ) := min({γ ≤ α : σ(γ) = λ}).

E.g. ot(λ) = 0, ot(ab) = 2, ot(abc · dω · ad) = 3 + ω + 2 = ω + 2.
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• Let S ⊆ L − {λ} and β < Ord. Then S<β are the strings of an order type
less than β that consist of the characters in S, i.e.

S<β := {σ : β → S ∪ {λ}|σ is a β-string}.

E.g. {a, b}<3 = {λ, a, aa, ab, b, ba, bb}.

5.1.2 β-rationals Qβ with ordering

Definition 5.1.3. (β-rational numbers2)

• Let β be a limit ordinal. Then β-rational numbers Qβ is a set of binary
β-strings, i.e. Qβ := {/, .}<β .

• The ordering on Qβ is the total lexicographical ordering induced by the
ordering on the substrings /, λ, . where / < λ < .: for σ, τ ∈ Qβ define <
as following:

σ < τ ⇐⇒ ∃γ < β[σ � γ = τ � γ ∧ (σ(γ), τ(γ)) ∈ {(/, λ), (/, .), (λ, .)}].

Remark 5.1.4. (Order type of β-rational)
Recall note 5.1.2. As every β-rational is a β-string, the order type of the β-rational
σ is the order type of the β-string σ. Specifically,

ot(σ) := min{γ < β : σ(γ) = λ}.

Proposition 5.1.5. 3 Let β be a limit ordinal and let δ < β be 0 or a limit ordinal.
Let π ∈ Qβ be a β-string of order type δ. Let S be a set of β-rationals of order
type in the interval [δ, δ + ω) for which π is a substring. In notation,

S := {ρ ∈ Qβ : π ⊆ ρ ∧ ot(ρ) ∈ [δ, δ + ω)}.

Then

(S,<) ∼= (Qω, <).

Proof. Note

S = {π · σ ∈ Qβ : ot(π · σ) ∈ [δ, δ + ω)} = {π · σ : σ ∈ Qω}.

5.1.3 β-real number unit interval Iβ

Definition 5.1.6. (β-real number unit interval4)
Let β be a limit ordinal. Then β-real number unit interval Iβ is a set of binary
strings of an order type less than or equal to β, i.e. Iβ := {/, .}≤β .

2Introduced in this thesis.
3Introduced in this thesis.
4Introduced in this thesis.
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One could establish that the β-real numbers in the unit interval are a comple-
tion of the β-rational numbers in a natural sense.

Remark 5.1.7. (Greatest and the least element)
The β-real number unit interval Iβ has the least element /β and the greatest ele-
ment .β . Hence one should not think of Iβ as being analogous to the generaliza-
tion of all of R, but only the interval [0, 1] ⊆ R.

Similarly, the β-rational numbers Qβ are analogous to the generalization of
the open unit interval (0, 1) ⊆ Q.

However, the rational interval ((0, 1), <) and (Q, <) are models of the same
theories and thus are indistinguishable. Hence, for the sake of the simplicity, we
call Qβ as β-rational numbers.

One way to define β-real numbers Rβ is as the set Iβ without the greatest and
the least element, i.e. Rβ := Iβ − {/β, .β}.

5.1.4 Representation of Qα in Lα

Definition 5.1.8. (Binary representation of a subset by a string5)
A binary representation of a subset A ⊆ β for any ordinal β is a string σ of order
type β consisting of symbols 0, 1 satisfying the conditions:

• ∀γ < β[σ(γ) = 0 ⇐⇒ γ 6∈ A],

• ∀γ < β[σ(γ) = 1 ⇐⇒ γ ∈ A].

Example 5.1.9. The set A = {1, 2, 4} is represented by a string 011010000 . . .

Note 5.1.10. (Representation of a β-rational)
We represent every string σ ∈ Qβ as the set S ⊆ β defined as follows:

• / character in σ is represented by 01 string in S.

• . character in σ is represented by 11 string in S.

• λ character (the termination of the string σ) is represented by 00 symbol in
S. We conceive 00 substring in the binary representation of an β-rational
as a termination marker since all the characters afterwards will be 0s in the
representation.

• the set S is defined by its binary representation which is the concatenation
of the representations of the characters of σ.

5Binary representations of various objects are very common in the field of Computer Science.
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• If σ ∈ Qβ is represented by S ⊆ β, then we may identify σ with S and thus
have:

σ ∈ Lβ ⇐⇒ S ∈ Lβ.

Remark 5.1.11. Every string σ ∈ Qα is bounded. Therefore if we assume V = L

and α is an infinite regular cardinal, then Qα ⊆ Lα.

5.2 Computability on Qα

Proposition 5.2.1. 6 There exists an α-computable injection i : Qα ∩ Lα� α.

Proof. As Qα ∩ Lα is an α-computable set and there exists an α-computable in-
jection Lα � α, so its restriction Qα ∩ Lα � α has to be also an injection and
α-computable.

Proposition 5.2.2. 7 The ordering < in (Qα ∩ Lα, <) is α-computable.

Proof. The equality on Qα is clearly α-computable. From definition 5.1.3 < is
Σ1(Lα), by symmetry also Π1(Lα) using the totality of<. Therefore< is ∆1(Lα),
thus α-computable.

Proposition 5.2.3. (Computability of an order type8)
The order type of a β rational ρ is uniformly Π0(Lβ, ρ)-definable.

Proof. Note that

ot(ρ) = δ ⇐⇒ ∀γ ≤ δ[ρ(γ) = / ∨ ρ(γ) = .] ∧ ρ(δ) = λ

which is Π0 over Lβ with ρ as a parameter.

5.3 (Qβ, <) as order

The classic result states that any infinite countable unbounded dense total orders
are isomorphic, see theorem 5.3.1 below.

Theorem 5.3.1. 9 Suppose that (A,<) and (B,<) are both infinite countable
unbounded dense total orders. Then (A,<) ∼= (B,<), i.e. (A,<) is order iso-
morphic to (B,<).

We use theorem 5.3.1 to conclude corollary 5.3.3 that (Qω, <) ∼= (Q, <). This
result provides us with more intuition about the β-rational numbersQβ by inspect-
ing the case when β = ω.

6Introduced in this thesis.
7Introduced in this thesis.
8Introduced in this thesis.
9Follows from theorem 2.4.1. in [18] proved by Back and Forth method.
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5.3.1 (Qβ, <) as an unbounded dense total order

Proposition 5.3.2. 10 (Qβ, <) is an unbounded dense total order.

Proof. Let σ, τ be β-rational numbers. If σ and τ are not equal, then let p < β be
the least position on which σ and τ disagree, i.e.

p := min{γ < β : σ(γ) 6= τ(γ)}.

If σ(p) = / or both σ(p) = λ and τ(p) = ., then σ <Qβ τ , otherwise τ <Qβ σ.
Hence (Qβ, <) is a total order.

Assume σ < τ . Then (σ(p), τ(p)) ∈ {(/, λ), (/, .), (λ, .)}. If σ(p) = /, then
define ρ := σ · .. If σ(p) = λ, then define ρ := τ · /. As σ, τ ∈ Qβ , so the order
type of σ and τ is bounded in β. Thus also the order type of ρ is bounded in β and
so ρ ∈ Qβ . Note that σ < ρ < τ and so (Qβ, <) is a dense order.

If σ ∈ Qβ , then σ · / < σ < σ · . and σ · /, σ · . ∈ Qβ . Hence (Qβ, <) is
unbounded.

Therefore (Qβ, <) is an unbounded dense total order.

Corollary 5.3.3. 11 (Qω, <) ∼= (Q, <)

Proof. The rational numbers Q are a countable infinite dense unbounded total
order. Similarly, the ω-rationals Qω are an unbounded dense total order by propo-
sition 5.3.2. Clearly, #Qω = ℵ0. Therefore (Qω, <) ∼= (Q, <) by theorem 5.3.1
as required.

5.4 Analysis on Qβ

We study density and weak forms of completeness of the β-rational numbers Qβ .

Proposition 5.4.1. (Infimum existence12)
Every subset of Qβ has an infimum in Iβ .

Proof. Let S ⊆ Qβ and bounded below by τ ∈ Qβ , i.e. ∀σ ∈ S.τ ≤ σ. We
construct the infimum ρ ∈ Iβ of S in β stages. Start with the stage γ = 0. At the
stage γ < β assume that ρ[0, γ) has been defined and define ρ(γ) according to the
following rules:

• If there is σ ∈ S s.t. σ[0, γ) = ρ[0, γ) and σ(γ) = /, then set ρ(γ) = / and
go to the stage γ + 1.

10Introduced in this thesis.
11Introduced in this thesis.
12Introduced in this thesis.
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• If there is σ ∈ S s.t. σ[0, γ) = ρ[0, γ) and σ(γ) = λ, then set ρ(γ) = λ and
go to the stage γ + 1. Note that σ is the minimum of the set S and so in the
end ρ := σ.

• Otherwise set ρ(γ) = . and go to the stage γ + 1.

From the construction it is clear that ρ is equal or smaller than any other element
of S. Also ρ is the maximal possible element. Hence ρ is the infimum of S as
required.

Proposition 5.4.2. 13 Every set bounded in order type δ < β is bounded by some
β-rationals of the order type δ, i.e.

∀S ⊆ Qβ

[
∃δ < β∀σ ∈ S.ot(σ) ≤ δ =⇒ ∃τ0, τ1 ∈ Qβ

[ot(τ0) = δ ∧ ot(τ1) = δ ∧ ∀σ ∈ S.τ0 ≤ σ ≤ τ1]
]
.

Proof. Take τ0 = /δ and τ1 = .δ. Then ∀σ ∈ S.τ0 ≤ σ ≤ τ1 as required.

Definition 5.4.3. (Set parameter infimum/supremum14)
Let (S,≤) be an ordered set and let A,B ⊆ S.

• The A-infimum of the set B is defined as

infA(B) := max{a ∈ A : ∀b ∈ B.a ≤ b}.

• The A-supremum of the set B is defined as

supA(B) := min{a ∈ A : ∀b ∈ B.b ≤ a}.

Remark 5.4.4. In other words,A-infimum of the setB is the greatest lower bound
of B which is in A. Similarly, A-supremum of the set B is the least upper bound
of B which is in A.

Proposition 5.4.5. (Order type δ infimum existence and computability15)
Let S ⊆ Qβ be bounded in order type δ < β. Define

Q := {ρ ∈ Qβ : ot(ρ) = δ}.

Then the Q-infimum of S exists and is uniformly Σ0(Lα, S, δ)-definable.

Proof. Let υ be the infimum of the set S as constructed in proposition 5.4.1. Let
γ be the order type of υ, i.e. γ := ot(υ). Set ρ1 := υ., i.e. the string υ padded
with the characters . so that ot(ρ1) = δ. Set ρ2 := υ/. so that ot(ρ2) = δ. Note
that if γ = δ, then ρ1 = ρ2 = υ.

13Introduced in this thesis.
14Introduced in this thesis.
15Introduced in this thesis.
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If ∀σ ∈ S.ρ1 ≤ σ, then set ρ := ρ1, otherwise set ρ := ρ2. Now by definition
∀σ ∈ S.ρ ≤ σ. Also ρ is the maximum such β-rational number of the order type
δ. As ot(ρ) = δ, so ρ ∈ Q ⊆ Qβ .

Hence ρ is the Q-infimum of the set S. Therefore the Q-infimum of the set S
exists.

Next using proposition 5.2.3 we observe that infQ(S) is uniformly definable
with bounded quantifiers from the parameters S and δ only since

ρ = infQ(S) ⇐⇒ ∀σ ∈ S.ρ ≤ σ ∧ ∀τ ≤ .δ

[ot(τ) = δ ∧ ∀σ ∈ S.τ ≤ σ =⇒ τ ≤ σ].

Therefore infQ(S) is uniformly Σ0(Lα, S, δ)-definable as required.

Proposition 5.4.6. 16 Let S ⊆ Qα be bounded in order type δ < α and let S be
α-finite. Define

Q̂ := {ρ ∈ Qα ∩ Lα : ot(ρ) = δ}.

Then the Q̂-infimum of S denoted as infQ̂(S) exists and is uniformly α-
computable from S and δ.

Proof. Define

Q := {ρ ∈ Qα : ot(ρ) = δ}

By proposition 5.4.5 the α-rational ρ := infQ(S) exists and is uniformly
Σ0(Lα, S)-definable. As S is α-finite, ρ is Σ0(Lα)-definable and hence α-
computable. As ot(ρ) = δ, so ρ is also bounded. Hence ρ is α-finite by the
admissibility of α. Thus ρ ∈ Q̂. Given that ρ ∈ Q̂ and Q̂ ⊆ Q, we have
ρ = infQ(S) = infQ̂(S). Therefore infQ̂(S) exists.

Using infQ(S) = infQ̂(S), the uniform α-computability of infQ̂(S) from S

and δ follows from the uniformly α-computability of infQ(S) from the parameters
S and δ by proposition 5.4.5.

Proposition 5.4.7. (Setwise density of Qβ for sets bounded in order type17)
Let A,B ⊆ Qβ and γ < β. Define

Q := {ρ ∈ Qα : ot(ρ) = γ}.

Assume that

∀σ ∈ A∀τ ∈ B.σ < τ ∧ ot[A tB] ⊆ γ.

Then

i) there is uniformly Σ0(Lα, A)-definable ρ ∈ Qβ satisfying

ot(ρ) = γ ∧ ∀σ ∈ A∀τ ∈ B.σ < ρ < τ,

16Introduced in this thesis.
17Introduced in this thesis.
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e.g. ρ = supQ(A),

ii) there is uniformly Σ0(Lα, B)-definable ρ ∈ Qβ satisfying

ot(ρ) = γ ∧ ∀σ ∈ A∀τ ∈ B.σ < ρ < τ,

e.g. ρ = infQ(B).

Proof. Let ρ := infQ(B). Clearly, ot(ρ) = γ. As

∀σ ∈ A∀τ ∈ B.σ < τ ∧ ot[A tB] ⊆ γ,

so

∀σ ∈ A∀τ ∈ B.σ < ρ < τ ].

Also ρ is uniformly Σ0(Lα, B)-definable by proposition 5.4.5. Therefore the state-
ment ii holds as required.

The statement i is true by the dual proof of ii.

5.5 Further directions

We investigated α-rational numbers Qα as an α-computability theory analogue of
the rational numbers Q in ω-computability theory. We proved the basic statements
about Qα sufficient for our purpose to construct an α-semicomputable cut. How-
ever, there are many further directions out of the scope of this thesis which may
yield fruitful investigations:

• interactions between different notions of continuity on Qα, e.g. ε-δ-
continuity, α-sequential continuity, limit continuity, uniform continuity,

• relations between Qα, hyperreals and surreals,

• generalizations of the real numbers, e.g. the completion of Qα under α-
Cauchy sequences, Dedekind cuts, subsets of α,

• continuity of a function f : Qα → Qα and the α-computability of its repre-
sentation,

• α-metric spaces, α-Polish spaces and Higher Descriptive Set Theory.
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Chapter 6

Semicomputable cut in Qα

In this chapter we prove Semicomputable Cut Existence Theorem 6.0.1 below.
This theorem is used in section 6.3 to obtain results about the definability of the
total α-enumeration degrees T OT αe in the enumeration degrees Dαe.

Theorem 6.0.1. (Semicomputable Cut Existence Theorem)
Let A and B form a nontrivial K-pair. Then there exists an α-semicomputable cut
C ⊆ Qα ∩ Lα s.t. A ≤wαe C and B ≤wαe C.

The proof of theorem 6.0.1 generalizes the proof of Theorem 2.3 in [2] for
α = ω to an admissible ordinal α. The main ingredient of the proof is the labelling
algorithm provided in section 6.1 which involves a priority argument. In this thesis
we mainly focus on the new parts arising from the generalization.

This chapter is organized as follows. Section 6.1 explains the labelling algo-
rithm. The labelling algorithm outline is given in section 6.1.1 with some concepts
presented intuitively. The formal definitions of the intuitive concepts are given in
section 6.1.2. The rest of the section provides formal framework and steps of the
labelling algorithm with some of its properties. Section 6.2 defines the cut C us-
ing the labelling algorithm and proves theorem 6.0.1. Section 6.3 concludes that
the total α-enumeration degrees are definable in the α-enumeration degrees.

6.1 Labelling algorithm

In this section a labelling algorithm is used to construct an α-computable sequence
of the labelling functions qs : αA t αB → Qα for s < α to prove lemma 6.1.1 be-
low. Later in section 6.2.4 this sequence of the labelling functions is used to define
a semicomputable cut C in Qα in order to prove Semicomputable Cut Existence
Theorem 6.0.1.
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Lemma 6.1.1. Let A and B form a nontrivial K-pair, then there exist an α-
computable sequence q = {qs}s<α of the α-computable partial labelling functions
and an α-semicomputable cut C ⊆ Qα ∩ Lα s.t.

A = AC := {a ∈ αA : ∃s < α.qs(a) ∈ C}

B = BC := {b ∈ αB : ∃s < α.qs(b) ∈ C}.

6.1.1 Algorithm outline

Constructing the cut C ⊆ Qα ∩ Lα from the witness W of K(A,B)

We use the witness W to the K-pair K(A,B) to construct the α-computable se-
quence q trying to satisfy two conditions for any s < α:

(a, b) ∈ A×B =⇒ qs(a) < qs(b), (6.1)

(a, b) ∈ A×B =⇒ qs(b) < qs(a). (6.2)

Therefore at the beginning the elements from αA are on the right of an α-rational
line Qα, the elements from αB are on the left of the α-rational line Qα. Hence if
{a, b} ⊆ dom(qs) and (a, b) has not entered the α-enumeration W at the stage s
yet (i.e. (a, b) 6∈ Ws), then we have qs(b) < qs(a). When (a, b) enters W , then
we try to move a as much to the left and b as much to the right as possible so that
qt(a) < qt(b) at some stage t > s. This is not possible if there are some labels
between b and a through which b and a cannot move as the conditions 6.1 and 6.2
would be violated. For example if (a′, b) 6∈ Ws, (a, b′) 6∈ Ws and

qs(b) < qs(a
′) < qs(b

′) < qs(a),

then the label b cannot be moved to the right of the label a′, similarly, the label a
cannot be moved to the left of the label b′.

If it is not possible to have the label a to the left of the label b, then for such
labels a and b we introduce a notion of a dead zone interval [qt(b), qt(a)], see
definition 6.1.13. We allow other labels to move out of the dead zone, but not
inside it (unless the labels are of a higher priority).

To get rid of the dead zone intervals as much as possible, we have to introduce
a priority ordering on the pairs (a, b) ∈ αA×αB. If (a1, b1) is of a higher priority
than (a2, b2), then it is more important to remove the dead zone [qt(b1), qt(a1)]

before removing the dead zone [qt(b2), qt(a2)].

If (a1, b) ∈ W , (a2, b) 6∈ W and a2 ∈ A, then a1 ∈ A. Therefore the main
idea in defining the cut C to meet the conditions A = AC and B = BC is to place
the labels a1 ∈ αA to the left of the labels a2 ∈ αA if a1 label is witnessed by
pairs in W of some fixed higher priority than the pairs in W witnessing a2. The
case of the labels b ∈ αB is symmetric, where labels start on the left and with new
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witnessing pairs in W move towards right.

Moving the label a to the left of b for (a, b) ∈ W

Recall from the previous subsubsection that the goal of the labelling algorithm is
to move labels in such a way that the conditions 6.1 and 6.2 are satisfied. Now
we outline in a little more detail some related scenarios and steps of the labelling
algorithm to resolve them.

Permanent dead zone Let W = {(a0, b0), (a1, b1), . . .} be a witness to
K(A,B). Let q0 be the initial labelling function, we have:

. . . < q0(b2) < q0(b1) < q0(b0) < q0(a0) < q0(a1) < q0(a2) < . . .

First (a0, b0) is enumerated and the labelling algorithm places a0 to the left of
b0, i.e. q1(a0) < q1(b0) using W1 := {(a0, b0)}. Next (a1, b1) is enumerated
and the labelling algorithm would like to place a1 to the left of b1. However, as
(a0, b1) 6∈ W2, (a1, b0) 6∈ W2 where W2 := {(a0, b0), (a1, b1)}, so we will instead
have the labelling function q2 s.t.

q2(b1) < q2(a0) < q2(b0) < q2(a1).

The label a0 cannot be moved to the left of the label b1 as (a0, b1) 6∈ W2 and we
need to satisfy the condition 6.2. Here the label b1 is an obstacle for the label a0.
As a1 and b1 cannot satisfy the condition 6.1, so the interval [q2(b1), q2(a1)] is a
dead zone. If (a0, b1) 6∈ W , (a1, b0) 6∈ W , then a1 will never be to the left of b1

and such an interval [q2(b1), q2(a1)] is called a permanent dead zone.

Strategy, its run and termination For each pair of the labels (a, b) ∈ αA×αB
there is part of the labelling algorithm called strategy for the pair (a, b) which
tries to move the labels a and b in such a way that the conditions 6.1 and 6.2 are
satisfied.

When the strategy for the pair of labels (a, b) of the priority p < α runs at the
stage s < α, we call this a strategy run (s, p).

In lemma 6.2.6 we prove that such a strategy does not move labels forever,
but eventually stops acting. Let (a, b) ∈ W . The termination of each strategy
for some pair (a, b) is ensured by the following. If ever qs(a) < qs(b) for some
s < α, then the condition 6.1 is satisfied and the strategy will never act again.
Otherwise the interval [qs(b), qs(a)] is a permanent dead zone. The labels inside
the dead zone have to be of a higher priority (otherwise they would have to be
moved out) and so using the induction hypothesis that the strategies of the higher
priority have stopped acting we conclude that also the strategy for the pair (a, b)

has to stop acting as it has nothing more to do.
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Label clearing The goal of the strategy for the pair (a, b) ∈ W is to ensure 6.1,
i.e. qs(a) < qs(b). If this is not possible, then the interval [qs(b), qs(a)] is a dead
zone. In order to satisfy 6.1 it is important to shrink the dead zone as much as
possible. This may not be always possible with moving the labels a and b alone.
Hence after the labels a and b have been moved as much as possible, other labels
are attempted to be cleared out of the dead zone. This is called label clearing and
we demonstrate its importance in the following scenario.

Consider we have the following ordering of the labels:

qs(b2) < qs(a3) < qs(b1) < qs(a0) < qs(a2) < qs(b0) < qs(a1),

the following memberships (a0, b1) 6∈ W , (a3, b2) 6∈ W , (a2, b2) 6∈ W ,
(a1, b0) 6∈ W , (a2, b1) ∈ W , (a1, b1) ∈ W , with the following priority ordering:

p(a1, b1) > p(a0, b2) > p(a2, b1).

Then the strategy for the pair (a1, b1) would like to move the label a1 to left of the
label b1, but it cannot do so as (a0, b1) 6∈ W and (a1, b0) 6∈ W . However, we have
(a2, b1) ∈ W and so a2 can be put to the left of b1 and so the dead zone for the
pair (a1, b1) can be shrunk by one label as desired. This is the label clearing of the
strategy for the pair (a1, b1).

Note that the label clearing of the label a2 is necessary as it cannot be done by
the strategy (a2, b1) since [qs(b2), qs(a0)] is a dead zone of the higher priority than
the dead zone [qs(b1), qs(a2)].

6.1.2 Formalizing the concepts

In subsection 6.1.1 we outlined the labelling algorithm and introduced intuitively
some concepts as a label, labelling function, obstacle, dead zone, permanent dead
zone, priority. In this subsection we formalize these and some more concepts
including adjacent labels, left of an interval, connectedness since their precise
meaning in the proof of Semicomputable Cut Existence Theorem 6.0.1 is crucial.

Labelling function, label, obstacle

Definition 6.1.2. (Labelling function and label)

• A labelling function is a total injection q̂ : αAtαB � Qα from two disjoint
copies of α to α-rationals.

• If c ∈ αA t αB and q̂(c) = ρ ∈ Qα, then c is the label for ρ in q̂.

Definition 6.1.3. (Labels inside/outside of the cut in Qα)
Given a set C ⊆ Qα and an α-sequence of partial labellings qs : αA t αB � Qα
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for s < α, define

AC := {a ∈ αA : ∃s < α.qs(a) ∈ C},

BC := {b ∈ αB : ∃s < α.qs(b) ∈ C}.

Definition 6.1.4. (α-computable sequence of functions)
A sequence of partial functions qs : α ⇀ α is α-computable iff the partial α-
computable function q : α× α ⇀ α defined by q = λsc.qs(c) is α-computable.

Recall definition 6.1.2 that a labelling function is total.

Definition 6.1.5. (Label obstacle)
Let qs,p : αA t αB → Qα be an input labelling function of the labelling algorithm
for the strategy run (s, p). A label bo is a (left) obstacle for the label a (at the stage
s and priority p) iff qs,p(bo) < qs,p(a) and (a, bo) 6∈ Ws. Define the right obstacles
for the labels in αB symmetrically.

Definition 6.1.6. (Labelling function consistency)
A labelling function q̂ : αA t αB � Qα is consistent with respect to the set of
pairs W ⊆ αA × αB iff

∀(a, b) ∈ αA × αB[q̂(a) < q̂(b) =⇒ (a, b) ∈ W ].

Adjacency

The labelling algorithm has to be able to determine if two labels are next to each
other, i.e. adjacent.

Definition 6.1.7. (Label adjacency)
Let q̂ : αA t αB � Qα be a labelling function and c, d ∈ αA t αB be labels
satisfying the condition q̂(c) < q̂(d). We say that the two labels c and d are
adjacent iff for every other label e ∈ αA t αB either q̂(e) < q̂(c) or q̂(d) < q̂(e).
We say that c is adjacent to d from the left and that d is adjacent to c from the
right.

It is important to position and determine an exact position of a label wrt to
some set of labels (which can be all the labels in some interval for example).

Definition 6.1.8. (Adjacency from the right/left)
Let q̂ : αA t αB � Qα be a labelling function and d ∈ αA t αB be a label and
C ⊆ αA t αB be a set of labels. Then the label d is adjacent (from the right) to
the labels C iff:

i) ∀c ∈ C.q̂(c) < q̂(d),

ii) ∀e ∈ αA t αB[∀c ∈ C.q̂(c) < q̂(e) ∧ d 6= e =⇒ q̂(d) < q̂(e)].
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We say that d is adjacent to c (from the right) iff d is adjacent to a set {c}.
Define adjacency from the left symmetrically. If c and is adjacent to d from the
left, then we say that the labels c and d are adjacent.

We have the following relation between definition 6.1.7 and definition 6.1.8.

Remark 6.1.9. Let c, d ∈ αA t αB be labels. Then the label c is adjacent to the
label d from the left/right iff the label c is adjacent to the set {d} from the left/right
respectively.

Priority

The priority ordering on the label pairs determines the order in which the strategies
act and the order in which the dead zones are cleared out. The priority ordering
prevents that a dead zone is cleared out of the labels and then new labels are added
into it again. Ultimately, this guarantees that each strategy would stop acting
eventually (lemma 6.2.6) which is essential to construct a static semicomputable
cut to prove lemma 6.1.1.

Definition 6.1.10. (Priority on pairs)
The priority for a pair (a, b) ∈ αA × αB is given by an α-computable bijection
α× α→ α. Denote this bijection as p : α× α→ α.

Lemma 6.1.11. (Computability of priority)
There is an α-computable bijection p : α× α→ α.

Proof. Take the inverse of the α-computable bijection p2 : α → α × α in propo-
sition 3.2.3.

Priority in definition 6.1.10 inherits the ordering from the ordinal ordering. If
p1 < p2, then the ordinal p1 is smaller than the ordinal p2 and p2 is greater than
p1. For lower and higher priority terms, the meaning is reversed.

Definition 6.1.12. (Lower and higher priority)
Let p1 < p2. Then:

• p1 is a higher priority than p2.

• p2 is a lower priority than p1.

Dead zone

Definition 6.1.13. (Dead zone - DZ)
An interval [qs(b), qs(a)] is a dead zone of a priority p iff (a, b) ∈ Ws,
qs(b) < qs(a) and p(a, b) = p.
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Definition 6.1.14. (Permanent dead zone - PDZ)
A dead zone Z = [qs(b), qs(a)] is permanent iff

∀t < α[s < t =⇒ q−1
s � Z = q−1

t � Z].

Connectedness of α-rationals

α-rational numbers can be connected through some set of intervals such as dead
zones. Connected dead zones of a higher priority are treated as one dead zone.
Hence it is important for a labelling algorithm to know if two α-rationals are
connected.

Definition 6.1.15. (Connectedness through the set of intervals)
Let ρ, σ ∈ Qα. Let I be a1 set of intervals in Qα. Denote ρ is connected to σ
through I as conn(ρ, σ, I). Define conn(ρ, σ, I) inductively:

• ∃I ∈ I[ρ ∈ I ∧ σ ∈ I] =⇒ conn(ρ, σ, I)

• conn(ρ, σ, I) ∧ conn(σ, τ, I) =⇒ conn(ρ, τ, I)

Lemma 6.1.16. Suppose that conn(ρ, σ, I). Then there is If ⊆ I s.t.
conn(ρ, σ, If ) and #If < ℵ0.

Proof. Suppose that ρ and σ are connected through I. Then there is a finite proof
of this statement. As the proof is finite, so it refers to only finitely many intervals
from I. Let If be the set of these intervals. Then conn(ρ, σ, If ) and #If < ℵ0

as required.

Lemma 6.1.17. Define the predicate fin(K) : ⇐⇒ #K < ℵ0. Then fin is
α-computable on an α-finite domain.

Proof. Note

fin(K) ⇐⇒ ∃n < ω∃f ∈ Lα[π1[f ] = n ∧ π2[f ] = K]

where π1, π2 represent α-computable projections, f : n ⇀ K is a partial surjec-
tion. Clearly fin : Lα → {0, 1} ∈ Σ1(Lα) as required.

Lemma 6.1.18. The predicate conn is α-computable on an α-finite domain, i.e.

conn : (Qα ∩ Lα)× (Qα ∩ Lα)× Lα → {0, 1}

is α-computable.

Proof. First observe that conn(ρ, σ, If ) is clearly α-computable on the domain
where If is finite, i.e. just try all the possible arrangements of the intervals in If
in a finite time to test the connectedness of ρ and σ through If . Recall

fin(K) ⇐⇒ #K < ℵ0.

1I does not necessarily contain all the intervals in Qα.
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Using lemma 6.1.16 we have

conn(ρ, σ, I) ⇐⇒ ∃If ∈ Lα[If ⊆ I ∧ fin(If ) ∧ conn(ρ, σ, If )].

Hence conn(ρ, σ, I) is α-computable by the observation, α-finiteness of I and
α-computability of fin (lemma 6.1.17).

The labelling function qα and label connectedness

Remark 6.1.19. (Labels in PDZ and their labelling function qα)
By definition 6.1.14, for every PDZ there is some stage s < α s.t.
every label c ∈ αA t αB in PDZ stops moving by that stage s, i.e.
∀t < α[s ≤ t =⇒ qs(c) = qt(c)]. Therefore we can define a partial labelling
function qα : αA t αB ⇀ Qα on the domain of stationary labels by:

∀c ∈ αA t αB∀ρ ∈ Qα

[
(c, ρ) ∈ qα ⇐⇒ ∃s < α

[qs(c) = ρ ∧ ∀t < α
(
s ≤ t =⇒ qs(c) = qt(c)

)
]
]
.

The function qα could be extended in a compatible way with the definition of a
limit function in section 6.1.7, but its codomain and image would have to contain
elements outside of the α-rationals Qα.

Definition 6.1.20. (Connectedness of labels)
Let c, d ∈ αAtαB. The labels c, d are connected iff qα(c) and qα(d) are connected
through PDZs according to definition 6.1.15.

6.1.3 The labelling function construction

A label a (or b) with a subscript if applicable is in αA (or αB). Index the enumer-
ation of W as W = {(a0, b0), (a1, b1), . . .} and define

Ws := {(at, bt) : t < s}.

We construct the labelling sequence q : α× (αA tαB)� Qα also denoted as
{qs}s<α in α stages by constructing the labelling sequence
{qs,p,u}0≤s<α,0≤p≤s+1,−1≤u≤s+1 first in definition 6.1.24. The construction of qs,p,u
depends on whether (s, p, u) is an initial, strategy, clearing or a limit triple as
defined below in definition 6.1.21.

Using the triple indexing for the labelling function enables us to track the de-
tailed changes of the labelling function which simplifies the proofs of the proper-
ties about the labelling function later. The first index s determines which α-finite
subset of the set W is used by the labelling algorithm. At the stage s = r + 1 the
set Wr is used. At the stage s where s is a limit ordinal, the set Ws is used. The
second index p represents the priority of the pair (a, b) that is passed to the part of
the labelling algorithm called the strategy run which attempts to move the label a
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to the left of the label b. The clearing of the labels is executed after each strategy
run. The third index u represents the stage within the algorithm for the clearing
of the labels. At the stage u the pair (c, d) with the priority u is attempted to be
cleared.

Definition 6.1.21. (Initial, strategy, clearing and limit triple)
Assume 0 ≤ s < α, 0 ≤ p ≤ s+ 1,−1 ≤ u ≤ s+ 1. Then

• (s, p, u) is an initial triple iff u = −1.

• (s, p, u) is a strategy triple iff u = 0.

• (s, p, u) is a clearing triple iff u > 0 and ¬lim(u).

• (s, p, u) is a limit triple iff
lim(u) ∨ lim(p) ∧ u = −1 ∨ lim(s) ∧ p = 0 ∧ u = −1.

Note that the definition definition 6.1.21 allows for a triple to be both an initial
and a limit triple.

Remark 6.1.22. (Equality relation on triples)
We extend the equality relation on triples by identifying

(s, p, s+ 1) = (s, p+ 1,−1),

(s, s+ 1, s+ 1) = (s+ 1, 0,−1).

In other words, (s1, p1, u1) = (s2, p2, u2) ⇐⇒ s1 = s2 ∧ p1 = p2 ∧ u1 = u2∨

∃s, p < α[(s1, p1, u1) = (s, p, s+ 1) ∧ (s2, p2, u2) = (s, p+ 1,−1)]∨

∃s < α[(s1, p1, u1) = (s, s+ 1, s+ 1) ∧ (s2, p2, u2) = (s+ 1, 0,−1)].

Remark 6.1.23. (Ordering on triples)
The ordering on the triples (s, p, u) ∈ α × α × ({−1} t α) is a usual alpha-
numerical ordering: (s1, p1, u1) < (s2, p2, u2) ⇐⇒

s1 < s2 ∨ s1 = s2 ∧ p1 < p2 ∨ s1 = s2 ∧ p1 = p2 ∧ u1 < u2.

Definition 6.1.24. (Labelling sequence construction)
Construct the labelling sequence {qs,p,u}0≤s<α,0≤p≤s+1,−1≤u≤s+1 as follows:

• q0,0,−1 := ∅.

• qs,p+1,−1 := qs,p,s+1.

• qt,r,v := lim(s,p,u)<(t,r,v)(qs,p,u) if (t, r, v) is a limit triple where
lim(s,p,u)<(t,r,v)(qs,p,u) is the limit function defined in section 6.1.7.

• qs,p,0 is the output of the strategy run (s, p) on the input function qs,p,−1 for
a pair (a, b) of a priority p using Ws+1. See section 6.1.5 on a strategy run.
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• qs,p,u+1 where −1 ≤ u ≤ s is the output of clearing labels of the pair
(c, d) ∈ αA t αB of the priority u from the the dead zone
[qs,p,u(b), qs,p,u(a)] where (a, b) is a label pair of a priority p. See sec-
tion 6.1.6 on label clearing.

Using the sequence with triple indices define abridged sequences
{qs,p}s<α,p≤s+1 and {qs}s<α by the assignment qs := qs,0 := qs,0,−1.

In the end, we have an α-computable sequence of α-computable partial la-
belling functions qs : αA t αB → Qα for s < α as required. Note that if t < α is
a limit ordinal, then qt = lims<tqs. Also note that for any s < α the function qs is
constructed from Ws.

6.1.4 Label order type at the substage (s, p, u)

The strategy for the pair (a, b) moves the labels a and b first. Next if
[qs(b), qs(a)] is a dead zone, then it tries to move other labels out of this dead zone.
Recall the order type ot(ρ) of an α-rational ρ is the order type of the binary string
representing this α-rational. As ρ is an α-rational, so ot(ρ) < α. Every label
moved has to be moved to an α-rational Qα of a certain order type dependent on
the stage s, priority p and the label itself. This is to guarantee that at every stage
there is enough space for new adjacent labels which is made precise later, see
proposition 6.2.3i.

Here we define an order type function ot : α × α × ({−1} ∪ α) → α which
is used to specify a label order type during the strategy run in section 6.1.5 and
during the label clearing in section 6.1.6. We also define a limit order type function
otLim : α × α × ({−1} ∪ α) → α which is used to specify a label order type
during the limit function construction in section 6.1.7.

Definition 6.1.25. (Order type functions)
The domain of the order type function ot is

dom(ot) := {(s, p, u) ∈ α× α× ({−1} ∪ α) : 0 ≤ s < α, 0 ≤ p ≤ s,−1 ≤ u ≤ s}.

The domain of the limit order type function otLim is

dom(otLim) := {(s, p, u) ∈ α× α× ({−1} ∪ α) : (s, p, u) is a limit triple}.

Let t, r, v < α be limit ordinals. We define the order type func-
tion ot : α× α× ({−1} ∪ α)→ α and the limit order type function
otLim : α× α× ({−1} ∪ α)→ α inductively:

• ot(0, 0,−1) := 0,

• ot(s, p, u+ 1) := ot(s, p, u) + 2,
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• ot(s, p+ 1,−1) := ot(s, p, s) + 2,

• ot(s+ 1, 0,−1) := ot(s, s, s) + 2,

• otLim(s, p, v) := supu<vot(s, p, u),

• otLim(s, r, 0) := supp<rot(s, p, 0),

• otLim(t, 0,−1) := sups<tot(s, 0, 0),

• ot(s, p, v) := otLim(s, p, v) · 2,

• ot(s, r, 0) := otLim(s, r, 0) · 2,

• ot(t, 0,−1) := otLim(t, 0,−1) · 2.

Lemma 6.1.26. (Properties of order type functions)

• ot is well-defined on all triples.

• otLim is well-defined on the limit triples.

• ot is α-computable.

• otLim is α-computable.

Proof. The proof is performed by the transfinite induction on the triple

γ = (s, p, u) ∈ α× α× ({−1} ∪ α)

where p, u ≤ s+ 1.
The base case is clear: ot is well-defined and α-computable on the domain

{(0, 0,−1)}.
For the inductive case when γ + 1 is not a limit triple, by IH assume

that ot is well-defined and α-computable on the domain γ + 1. Then clearly
ot(γ + 1) := ot(γ) + 2 is well-defined and α-computable uniformly from γ + 1.
Hence ot is well-defined and α-computable on the domain γ + 2.

For the inductive case when δ is a limit triple, by IH assume that ot is well-
defined and α-computable on the domain D := δ. Note D ∈ Lα. Hence
K := ot[D] ∈ Lα. Note that otLim(δ) := psup(K) where psup is α-computable
by lemma 3.5.1. Also ot(δ) := otLim(δ) · 2. Hence otLim(δ) and ot(δ) are
well-defined and uniformly α-computable from δ. Hence ot is well-defined and
α-computable on the domain δ + 1, and otLim is well-defined and α-computable
on the domain {γ ≤ δ : lim(γ)}.

Therefore the function ot is well-defined and α-computable on the domain
α, and the function otLim is well-defined and α-computable on the domain
{δ < α : lim(δ)}.
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6.1.5 Strategy for (a, b) of the priority p at the stage s

Strategy for (a, b) of the priority p executes a strategy run (s, p) trying to satisfy
the condition

(a, b) ∈ Ws+1 =⇒ qs+1(a) < qs+1(b).

Strategy run notation and order of execution

Definition 6.1.27. (Strategy run notation)
If a strategy runs at the stage s < α and for the pair (a, b) of an priority p ≤ s,
then denote this strategy run by the pair (s, p).

By the above the first strategy runs are the following:

(0, 0), (1, 0), (1, 1), (2, 0), (2, 1), (2, 2), (3, 0), . . .

Definition 6.1.28. (Order of execution notation)
The function oe(s, p) denotes the order of the execution of the strategy run (s, p)

and it is formally defined inductively as follows:

dom(oe) := {(s, p) : s ∈ α, p ∈ s}

oe(0, 0) := 0

oe(s, p+ 1) := oe(s, p) + 1

oe(s, r) := sup{oe(s, p) : p < r} if lim(r)

oe(s+ 1, 0) := oe(s, s) + 1

oe(t, 0) := sup{oe(s, 0) : s < t} if lim(t)

Example 6.1.29. For example (0, 0) is executed first, so oe(0, 0) = 0 (starting
from 0). For others, oe(1, 0) = 1, oe(1, 1) = 2, . . . , oe(n, p) = 1

2
n(n + 1) + p,

. . . , oe(ω, 0) = ω, etc.

Note that 1
2
n(n+ 1) is a triangular number.

Remark 6.1.30. Let δ be 0 or a limit ordinal. Let n < ω be a finite ordinal. Note
that oe(δ, 0) =

∑
β<δ β. More generally, the order of execution of a strategy run

(δ + n, p) is

oe(δ + n, p) = (
∑
β<δ

β) + δ · n+ n+ p.

Strategy run (s, p) for the pair (a, b)

• Inputs:

– qin := qs,p,−1 (α-finite by IH, proposition 6.2.3iv)
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– Ws+1 (α-finite as W ∈ Σ1(Lα))

– s

– p

• Output: qs,p,0 := qout

• Goal: (a, b) ∈ Ws+1 =⇒ qout(a) < qout(b) (possibly unsatisfiable)

Given as input the partial labelling function qin, use the strategy underneath to
modify qin. Once the strategy run completed, copy the updated qin into qout.

Before the label clearing, the strategy for the pair (a, b) moves the labels a and
b only and is allowed to label only two α-rationals of an order type θ and θ + 1

where θ := ot(s, p,−1) specified in definition 6.1.25.

If no rational is labelled by a ∈ αA, i.e. qin(a) ↑, then put the label a to the
right of all the defined labels in dom(qin), i.e. qin(a) := .θ. Similarly, if qin(b) ↑,
then let qin(b) := /θ be left of all rationals in dom(qin).

At the stage s < α, if (a, b) has not entered Ws+1, do nothing. If the current
labels of qin satisfy the condition qin(a) < qin(b), do nothing. Otherwise, try to
move the label a to the left of the label b. This may not always be possible: if
bo ∈ αB, (a, bo) 6∈ W and qin(b) < qin(bo) < qin(a), then moving the label a
left of the label b would cause qin(a) < qin(bo) which may prevent the conditions
A = AC and B = BC from being satisfied.

Hence the label bo is an obstacle for the label a to be moved left of the label b
at the stage s and priority p, see definition 6.1.5. Define

Bo := {bo ∈ αB ∩ dom(qin) : qin(bo) < qin(a) ∧ (a, bo) 6∈ Ws+1}

to be the set of the obstacles for the label a.

Hence try to move the label a to the left of the label b according to the follow-
ing rules:

1. follow the rules below iff qin(b) < qin(a).

2. if Bo = ∅, then put the label a to the left of all the labels in qin, i.e.
qin(a) := /θ+1.

3. if no label on the right of Bo is in a dead zone of a higher priority with some
label in Bo, then place the label a adjacent to the set Bo from the right.

4. if qin(a) is inside an interval protected by higher priority strategies and
which contains some label from Bo, then do not move the label a.
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5. otherwise do the following. First define the set Y .

Y := {â ∈ αA : ∃b̂ ∈ αB.(â, b̂) ∈ S} ∪ {b̂ ∈ αB : ∃â ∈ αA.(â, b̂) ∈ S} where

S := {(â, b̂) ∈ αA × αB : (â, b̂) ∈ Ws+1 ∧ p(â, b̂) < p ∧ qin(b̂) < qin(â) ∧ b̂ ∈ Bo}

and p(â, b̂) is the priority of the pair (â, b̂). Note that the set S is the maximal
set of pairs (â, b̂) such that the dead zone interval [qin(b̂), qin(â)] is protected
by higher priority strategies and b̂ is an obstacle for the label a. The set Y
is the set which contains a label from αA t αB iff it is in some pair in the
set S. As Y is the main set of interest and S is an auxiliary maximal set,
throughout the text we refer to Y as the maximal set. Now having defined
the maximal set Y , in this step place the label a adjacent from the right to
the right endpoint of the maximal set Y .

In a similar way move the label b as far right as possible.

Now copy the result qin into the output labelling function qout. This completes
the strategy run (s, p) for the pair (a, b).

Pseudocode

The function strategy_run takes as an input the labelling function qin := qs,p,−1

and the output is assigned to the function qs,p,0.

1: function strategy_run(qin,Ws+1, s, p)
Require: qin ∈ Lα by IH

2: θ := ot(s, p,−1)

3: (a, b) := p−1(p)

4: if a 6∈ dom(qin) then
5: qin(a) := .θ

6: end if
7: if b 6∈ dom(qin) then
8: qin(b) := /θ

9: end if
10: if (a, b) 6∈ Ws+1 ∨ qin(a) < qin(b) then
11: return qin
12: end if
13: Bo := {bo ∈ αB ∩ dom(qin) : qin(bo) < qin(a) ∧ (a, bo) 6∈ Ws+1}
14: qin := move_label_a(qin) . Move the label a as much left as possible
15: qin := move_label_b(qin) . Move the label b as much right as possible
16: return qin
17: end function
18:
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19: function move_label_a(qin)
20: if Bo = ∅ then
21: qin(a) := /θ+1

22: return qin
23: end if
24: Q̂ := {ρ ∈ Qα ∩ Lα : ot(ρ) = θ + 1}
25: if ∀(â, b̂) ∈ Ws+1[p(â, b̂) < p =⇒ (¬∃bo ∈ Bo.qin(b̂) ≤ qin(bo) <

qin(â))] then
26: qin(a) := supQ̂(Bo)

27: return qin
28: end if
29: Z := {d ∈ dom(qin) : ∃(â, b̂) ∈ Ws+1[p(â, b̂) < p ∧ qin(b̂) ≤ qin(d) ≤

qin(â)]}
30: if a ∈ Z ∧ ∃bo ∈ Bo ∩ Z

[
∀c ∈ dom(qin)[qin(bo) < qin(c) < qin(a) =⇒

c ∈ Z]
]

then
31: return qin
32: end if
33: qin(a) := supQ̂(qin[Y ])

34: return qin
35: end function

The function move_label_b is symmetric to the function move_label_a defined
above. In particular, move_label_b uses the following sets:

Ao := {ao ∈ αA ∩ dom(qin) : qin(b) < qin(ao) ∧ (ao, b) 6∈ Ws+1},

Yb := {â ∈ αA : ∃b̂ ∈ αB.(â, b̂) ∈ Sb} ∪ {b̂ ∈ αB : ∃â ∈ αA.(â, b̂) ∈ Sb}, where

Sb := {(â, b̂) ∈ αA × αB : (â, b̂) ∈ Ws+1 ∧ p(â, b̂) < p ∧ qin(b̂) < qin(â) ∧ â ∈ Ao},

where Ao is the set of the obstacles for the label b and Yb is the set of the labels in
the maximal set for the label b. The function move_label_b is defined as follows.

1: function move_label_b(qin)
2: if Ao = ∅ then
3: qin(b) := .θ+1

4: return qin
5: end if
6: Q̂ := {ρ ∈ Qα ∩ Lα : ot(ρ) = θ + 1}
7: if ∀(â, b̂) ∈ Ws+1[p(â, b̂) < p =⇒ (¬∃ao ∈ Ao.qin(b̂) ≤ qin(ao) <

qin(â))] then
8: qin(b) := supQ̂(Ao)

9: return qin
10: end if
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11: Z := {d ∈ dom(qin) : ∃(â, b̂) ∈ Ws+1[p(â, b̂) < p ∧ qin(b̂) ≤ qin(d) ≤
qin(â)]}

12: if b ∈ Z ∧ ∃ao ∈ Ao ∩ Z
[
∀c ∈ dom(qin)[qin(b) < qin(c) < qin(ao) =⇒

c ∈ Z]
]

then
13: return qin
14: end if
15: qin(b) := supQ̂(qin[Yb])

16: return qin
17: end function

Properties

We assume the hypothesis that the input function qin is α-finite.

Lemma 6.1.31. The set of the obstacles Bo is α-finite and uniformly α-
computable from the parameters qin, a and Ws+1.

Proof. The set Bo is α-finite as qin ∈ Lα, dom(qin) ∈ Lα by IH and Ws+1 ∈ Lα.
By the definition of Bo, it is clearly uniformly α-computable from the parameters
qin, a and Ws+1 as required.

Lemma 6.1.32. The setZ of the labels in the dead zones of a priority higher than p
(or a set protected by strategies of a higher priority) in the function move_label_a

is α-finite and uniformly α-computable from the parameters qin, p and Ws+1.

Proof. Z is α-finite as dom(qin) ∈ Lα and qin ∈ Σ1(Lα) by IH, Ws+1 ∈ Lα and
p ∈ Σ1(Lα). The uniform α-computability of Z is follows from its definition as
required.

Lemma 6.1.33. The set Y of the labels in the maximal set is α-finite and uni-
formly α-computable from the parameters qin, a, p and Ws+1.

Proof. Recall Y := π1[S] ∪ π2[S] where πi is an α-computable projection and

S := {(â, b̂) ∈ αA × αB : (â, b̂) ∈ Ws+1 ∧ p(â, b̂) < p ∧ qin(b̂) < qin(â) ∧ b̂ ∈ Bo}.

The set S is α-computable from the parameters qin, a, p and Ws+1 using the
uniform α-computability of the set Bo from the parameters qin, a and Ws+1. S is
bounded as S ⊆ Ws+1. Hence S is α-finite. As πi is α-computable, so πi[S] ∈ Lα,
hence Y ∈ Lα. The uniform α-computability of Y follows from the uniform α-
computability of S.

Lemma 6.1.34. The α-rationals qout(a) and qout(b) defined in the function strat-

egy_run are computed in a uniform way, exist and are α-finite given that qin is
α-finite.
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Proof. The statement is clear for the assignments on the lines 5, 8 and 21 as θ < α.

The assignments on the lines 26 and 33 use the function supQ(S). The func-
tion supQ(S) can compute using the same algorithm for any arguments Q and
S where Q contains all the α-rationals of the same order type δ = θ + 1 and
ot[S] ⊆ δ, see proposition 5.4.6. Hence an α-rational supQ(S) is computed in a
uniform way.

Furthermore S ∈ {Bo, qin[Y ]} and both Bo and Y are α-computable uni-
formly from the parameters qin, a, p and Ws+1. Hence qin(a) := supQ̂(S) is
computed uniformly from qin, a, p, Ws+1 and δ.

The α-finiteness of qin(a) := supQ̂(S) where S ∈ {Bo, qin[Y ]} follows from
the fact that the set Q̂ contains only α-finite α-rationals.

By lemma 6.1.31, the setBo is α-finite. By lemma 6.1.33, the set Y is α-finite.
As qin is also α-finite by the assumption, so qin[Y ] is α-finite. Hence S is α-finite
and by proposition 5.4.6 the α-rational qin(a) := supQ̂(S) exists, i.e. is well-
(first-order)-defined. By duality qin(b) := infQ̂(Sb) also exists for an appropriate
Sb.

In the end qin is copied to qout. Therefore qout(a) ∈ Lα and qout(b) ∈ Lα as
required.

Lemma 6.1.35. If the input function qin is α-finite, then the output function

qout := strategy_run(qin,Ws+1, s, p)

is also α-finite.

Proof. The function qout is different from the α-finite function qin on at most two
labels in the label pair (a, b) of a priority p. By lemma 6.1.34 qout(a) and qout(b)
have to be α-finite if changed. This change is α-finite and so qout has to be α-finite
too.

Remark 6.1.36. (Object types2)
Let M be the domain of some model. Then an element in M is a type-0 object. A
function from M to M is a type-1 object. A function from MM to MM is a type-2
object (called a functional), etc.

In α-Computability Theory, the domain M of the model of the computation
is α. For the purpose of this thesis we also consider a composition of a type-1
object with an α-computable bijection from/to α (e.g. α → Lα, α → α × α)
to be a type-1 object. We do this since ultimately we are interested in assessing
if a function is first-order definable over Lα and at what level of the arithmetical
hierarchy.

2Consult a general book on Computability Theory, e.g. for a general idea see [5] Chapter 11,
subsection The Scott model for lambda calculus.
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Remark 6.1.37. (Type of the strategy run function)
We assume that the argument qin to the function label_clearing which clears out
the labels from the dead zone is always α-finite by IH, proposition 6.2.3iv. By
lemma 6.1.35, the output of the function label_clearing has to be also α-finite.
Therefore we can express the function with the type as

label_clearing : Lα × Lα × α× α× α→ Lα.

Hence label_clearing is clearly a type-1 function.

Proposition 6.1.38. The procedure move_label_a is α-computable.

Proof. The procedure move_label_a is α-computable since:

• Bo is α-finite by lemma 6.1.31,

• Ws+1 is α-finite,

• p is α-computable by lemma 6.1.11,

• Z is α-finite and uniformly α-computable by lemma 6.1.32,

• the instructions on the lines 26 and 33 are α-computable (by the unifor-
mity of supQ(S) and S), an α-rational qin(a) is well-defined and α-finite
by lemma 6.1.34.

Proposition 6.1.39. The function strategy_run is α-computable.

Proof. By remark 6.1.37 the function label_clearing is a type-1 function, so it
makes sense to talk about it being first-order definable over Lα. The function
strategy_run is α-computable since:

• qin is α-finite by IH proposition 6.2.3iv,

• p−1 is α-computable by lemma 6.1.11,

• ot is α-computable by lemma 6.1.26,

• Bo is α-finite and uniformly α-computable by lemma 6.1.31,

• the procedures move_label_a and move_label_b are α-computable by
proposition 6.1.38 and its dual.
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Next strategy runs

If qout(a) < qout(b), then the strategy for (a, b) has satisfied its condition and
never runs again. Otherwise it runs again later and prevents the strategies of lower
priorities from placing labels in the interval [qout(b), qout(a)] until the condition
becomes satisfied (if that happens). We say the interval is marked as a dead zone.

6.1.6 Label clearing from DZ for a pair (a, b)

If qin(b) < qin(a) and (a, b) ∈ W , then the interval [qin(b), qin(a)] is a dead zone
(DZ). See definition 6.1.13.

After the strategy run (s, p) for the pair (a, b) concludes, we would like to
move labels out of the DZ interval [qin(b), qin(a)] as much as possible. Let M be
the set of labels in the maximum interval that contains the DZ [qin(b), qin(a)] and
other higher priority DZs connected to it.

See section 6.1.3 to recall that the sequence qs,p,u for u ≤ s + 1 is used to
construct qs,p+1 after the strategy run (s, p) concludes and outputs qs,p,−1. Also
recall that qs,p,v := limu<vqs,p,u.

Let u < α where 0 ≤ u ≤ s. We construct the function qs,p,u+1 given the
function qs,p,u. For every u < s starting from 0 do the following in order: If
p = u, then do nothing, i.e. qs,p,u+1 := qs,p,u. Otherwise let (c, d) ∈ αA t αB be a
pair of the priority u, i.e. p(c, d) = u. Let η be the order type η := ot(s, p, u). If
qs,p,u(b) < qs,p,u(c) < qs,p,u(a) and it is consistent to move c left of M , then move
c to the left ofM to an α-rational ρc of an order type η, i.e. define qs,p,u+1(c) := ρc.
If qs,p,u(b) < qs,p,u(d) < qs,p,u(a) and it is consistent to move d right of M , then
move d to the right of M to an α-rational ρd of an order type η + 1, i.e. define
qs,p,u+1(d) := ρd. If qs,p,u+1(e) has not been defined for a label e ∈ dom(qs,p,u),
let qs,p,u+1(e) := qs,p,u(e).

Pseudocode

The function label_clearing takes as an input the labelling function qin := qs,p,u

and the output is assigned to the function qs,p,u+1.

1: function label_clearing(qin,Ws+1, s, p, u)
Require: qin ∈ Lα by IH

2: (a, b) := p−1(p)

3: if qin(a) < qin(b) ∨ (a, b) 6∈ Ws+1 ∨ p = u then
4: return qin
5: end if
6: (c, d) := p−1(u)
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7: η := ot(s, p, u)

8: if qin(b) < qin(c) < qin(a) ∧ ∀b̂ ∈ αB ∩M.(c, b̂) ∈ Ws+1 then
9: Qc := {ρ ∈ Qα ∩ Lα : ot(ρ) = η}

10: ρc := infQc(qin[M ])

11: qin(c) := ρc

12: end if
13: if qin(b) < qin(d) < qin(a) ∧ ∀â ∈ αA ∩M.(â, d) ∈ Ws+1 then
14: Qd := {ρ ∈ Qα ∩ Lα : ot(ρ) = η + 1}
15: ρd := supQd(qin[M ])

16: qin(d) := ρd

17: end if
18: return qin
19: end function

Properties

We assume the hypothesis that the input function qin is α-finite.

Lemma 6.1.40. The set M of the labels in the maximal interval extending the
dead zone [qin(b), qin(a)] is α-finite and uniformly α-computable from the pa-
rameters a, b and Ws+1.

Proof. Define

I := {[qin(c), qin(d)] : (c, d) ∈ Ws+1 ∧ p(c, d) ≤ p(a, b)}

to be the set of the DZs of the priority p(a, b) or higher. Clearly, I is uniformly
α-computable from Ws+1, a, b as p is α-computable (lemma 6.1.11). The set I is
α-finite as it is bounded up to α-computable encoding by Ws+1 and Ws+1 ∈ Lα.

Recall definition 6.1.15: conn(ρ, σ, I) iff ρ and σ are connected through I.
So we have

M := {e ∈ dom(qin) : conn(qin(a), qin(e), I)}.

The set M is uniformly α-computable from a, b and Ws+1 since:

• I is α-finite,

• I is uniformly α-computable from a, b and Ws+1,

• conn is α-computable on the domain where I is α-finite (lemma 6.1.18).

Finally M is α-finite since it is α-computable and bounded by dom(qin) ∈ Lα

assuming the hypothesis that qin is α-finite.
Thus M is α-finite and uniformly α-computable from a, b and Ws+1 as re-

quired.
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Lemma 6.1.41. The α-rationals ρc and ρd defined in the function
label_clearing are computed in a uniform way, exist and are α-finite given that
qin is α-finite.

Proof. The functions infQ(S) and supQ(S) can compute using the same algorithm
for any arguments Q and S where Q contains all the α-rationals of the same
order type δ and ot[S] ⊆ δ, see proposition 5.4.6. Furthermore, S = qin[M ] is
uniformly α-computable since M is uniformly α-computable by lemma 6.1.40.
Hence the α-rationals ρc and ρd are computed in a uniform way.

The α-finiteness of ρc and ρd follows from the fact that Qc and Qd contain
only α-finite α-rationals.

By lemma 6.1.40, the set M is α-finite. Hence qin[M ] has to be α-finite. By
proposition 5.4.6 ρc := infQc(qin[M ]) exists, i.e. is well-(first-order)-defined. By
duality ρd := supQd(qin[M ]) exists too.

Therefore ρc ∈ Lα and ρd ∈ Lα as required.

Lemma 6.1.42. If the input function qin is α-finite, then the output function

qout := label_clearing(qin,Ws+1, s, p, u)

is also α-finite.

Proof. The function qout is different from the α-finite function qin on at most two
labels in the label pair (c, d) of a priority u. By lemma 6.1.41 qout(c) and qout(d)

have to be α-finite if changed. This change is α-finite and so qout has to be α-finite
too.

Remark 6.1.43. (Type of the label clearing function)
We assume that the argument qin to the function label_clearing is always α-finite.
By lemma 6.1.42, the output of the function label_clearing has to be also α-finite.
Therefore we can express the function with the type as

label_clearing : Lα × Lα × α× α× α→ Lα.

Hence label_clearing is clearly a type-1 function.

Proposition 6.1.44. The function label_clearing is α-computable.

Proof. By remark 6.1.43 the function label_clearing is a type-1 function, so it
makes sense to talk about it being first-order definable over Lα. The function
label_clearing is α-computable since:

• qin is α-finite by IH proposition 6.2.3iv,

• p−1 is α-computable by lemma 6.1.11,

• ot is α-computable by lemma 6.1.26,



128 6.1. Labelling algorithm

• M is α-finite and uniformly α-computable by lemma 6.1.40,

• instructions on the lines 10 and 15 are α-computable (by the uniformity of
infQ(S), supQ(S) and S) and the α-rationals ρc and ρd are well-defined and
α-finite by lemma 6.1.41.

6.1.7 Limit labelling function

We define a function qδ where δ = (t, r, v) is a limit triple.
The main idea in defining qδ is that if some label c ∈ αAtαB stops moving at

some triple stage γ < δ, then qδ(c) := qγ(c). Otherwise, the label c keeps moving
and so it converges to some α-real point which is close to some α-rational ρ of an
order type otLim(δ), see definition 6.1.25. However, there could be more labels
that converge to the same α-real point. In such case, put the labels from αA on
the right of ρ and the labels from αB on the left of ρ. This is to make sure that
qδ(b) < qδ(a) if still (a, b) 6∈ Wh where h = t if lim(t) and h = t + 1 otherwise.
The idea is made precise and formal as follows.

Definition 6.1.45. (Limit of a labelling function)
Given a sequence of the labelling functions qγ for a triple γ < δ, we define the
limit of this sequence as a function qδ := limγ<δqγ as follows:

• Let S(c) := {qγ(c) ∈ Qα : qγ(c) ↓ ∧γ < δ} =

{σ ∈ Qα : ∃γ < δ∃c ∈ dom(qγ).qγ(c) = σ}.

• Let Q̂ := {ρ ∈ Qα ∩ Lα : ot(ρ) = otLim(δ)}.

• qδ(c) := qγ(c) for c ∈ αA t αB if

∃β < δ∀γ[β ≤ γ < δ =⇒ qβ(c) = qγ(c)].

Otherwise:

• qδ(a) := max{ρ ∈ Qα : ot(ρ) = otLim(δ) ∧ ∀γ < δ.ρ ≤ qγ(c)} · .k =

supQ̂(S(a)) · .k if a ∈ αA where

k := min{k < t : ∃b ∈ αB.p(a, b) = k} =

min{k < t : ∃x ∈ Wh[p(x) = k ∧ π1(x) = a]}

and π1 is a projection to the first coordinate,

• qδ(b) := min{ρ ∈ Qα : ot(ρ) = otLim(δ) ∧ ∀γ < δ.qγ(b) ≤ ρ} · /l =

infQ̂(S(b)) · /l if b ∈ αB where

l := min{l < t : ∃a ∈ αA.p(a, b) = l} =

min{l < t : ∃x ∈ Wh[p(x) = l ∧ π2(x) = b]}
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and π2 is a projection to the second coordinate.

Properties

Lemma 6.1.46. (Uniform α-computability of the indices k and l)
Let (a, b) = p−1(t).

• The index k is uniformly α-computable from a and Wh.

• The index l is uniformly α-computable from b and Wh.

Proof. The index k is uniformly α-computable from the parameters a and Wh as
it is well-defined for a label a by the following formula:

φ(a, k) := ∃x ∈ Wh[p(x) = k ∧ π1(x) = a]∧

∀s < k∀x ∈ Wh[p(x) < k =⇒ π1(x) 6= a]

which is Σ1(Lα) as Wh is α-finite and both p and π1 are α-computable.
The uniform α-computability of the index l follows by a dual argument.

Lemma 6.1.47. Let γ be any triple. Let δ be a limit triple. Then:

i) ot[Im(qγ)] ⊆ ot(γ),

ii) ot[
⋃
γ<δ Im(qγ)] ⊆ otLim(δ).

Proof. The statement i follows directly from the design of the labelling algorithm
- to construct qγ the algorithm places labels only on the α-rationals of an order
type less than ot(γ). In particular, this is follows from the proof by induction
using the following four observations:

• The strategy run (s, p) moves the labels to the order type

ot(s, p,−1) + 1 < ot(s, p, 0)

at most to construct the labelling function qs,p,0: see the function strag-

egy_run lines 2, 5, 8; its subroutine move_label_a lines 21, 24, 26, 33 and
its subroutine move_label_b lines 3, 6, 8, 15.

• The label clearing which constructs the function qs,p,u+1 moves the labels
to the order type ot(s, p, u) + 1 < ot(s, p, u+ 1) at most: see the function
label_clearing lines 7, 9, 10, 11, 14, 15, 16.

• otLim(δ) := sup{ot(γ) : γ < δ} and ot(δ) = otLim(δ) · 2 by defini-
tion 6.1.25.

• The limit labelling function qδ moves the labels to the order type
ot(δ) = otLim(δ) · 2 at most by definition 6.1.45.



130 6.1. Labelling algorithm

To see the statement ii, use the statement i and definition 6.1.25 to observe
respectively that

ot[
⋃
γ<δ

Im(qγ)] ⊆ sup{ot(γ) : γ < δ},

otLim(δ) := sup{ot(γ) : γ < δ},

which implies ot[
⋃
γ<δ Im(qγ)] ⊆ otLim(δ) as required.

Lemma 6.1.48. S(c) is bounded in the order type:

∀c ∈ αA t αB∀γ < δ[c ∈ dom(qγ) =⇒ ot(qγ(c)) < otLim(δ)].

Proof. Follows from lemma 6.1.47.

For the remaining statements in this subsection we assume hypothesis 6.1.49
below. This is in fact the induction hypothesis for the proof of proposition 6.2.3v.
The statements below are used to prove the inductive cases of the statements in
proposition 6.2.3 assuming this IH.

Hypothesis 6.1.49. The function q = λγc.qγ(c) is a partial α-computable func-
tion with the domain {(γ, c) : γ < δ ∧ c ∈ dom(qγ)}.

Fact 6.1.50. Hypothesis 6.1.49 implies that S(c) is uniformly α-computable from
the parameters c and δ.

Lemma 6.1.51. (Uniform α-computability of an α-rational qδ(c))
Let (a, b) = p−1(t). Assume hypothesis 6.1.49 about q = λγc.qγ(c). Then:

• qδ(a) is α-finite and uniformly α-computable from δ, a and Wh.

• qδ(b) is α-finite and uniformly α-computable from δ, b and Wh.

Proof. Note qδ(a) := infQ̂(S(a)) · .k. By lemma 6.1.48, the set S(a) is bounded
in order type, i.e. ot[S(a)] ⊆ otLim(δ). By hypothesis 6.1.49 and fact 6.1.50,
S(a) is α-computable. Thus S(a) is α-finite. So the α-rational infQ̂(S(a)) ex-
ists and is uniformly α-computable from S(a) and δ by proposition 5.4.6 and
by the α-computability of otLim (lemma 6.1.26). The index k is uniformly α-
computable from a and Wh by lemma 6.1.46. Hence qδ(a) exists and is uniformly
α-computable from S(a), δ, a and Wh. But S(a) is uniformly α-computable
from a and δ by hypothesis 6.1.49 and fact 6.1.50. Hence qδ(a) is uniformly α-
computable from a, δ and Wh. Moreover infQ̂(S) ∈ Lα as Q̂ ⊆ Lα. Hence as
k < α, so qδ(a) ∈ Qα ∩ Lα.

The α-finiteness and the uniform α-computability of qδ(b) follows by a dual
argument.
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Proposition 6.1.52. (α-computability of q = λγc.qγ(c) for γ ≤ δ)
Assume hypothesis 6.1.49 about q = λγc.qγ(c). Then qδ is α-computable and q
is α-computable on the domain where γ ≤ δ and c ∈ dom(qγ).

Proof. Define Q̂ := {ρ ∈ Qα ∩ Lα : ot(ρ) = otLim(δ)}. Note that S(c) is
uniformly α-computable from the parameters c and δ by hypothesis 6.1.49 and
fact 6.1.50. Also S(c) is bounded as all α-rationals within are bounded in order
type by otLim(δ) < α by lemma 6.1.48. Thus S(c) is α-finite and we have a type-
1 α-computable function c 7→ S(c) mapping a label c ∈ αA t αB to its set S(c)

defined above. Similarly, we have α-computable functions k : αA∩dom(qδ)→ h

and l : αB ∩ dom(qδ) → h defined by the Σ1(Lα) formula φ(a, k) and its dual
above in lemma 6.1.46. Note that the function infQ : α → α taking an index
of an α-finite set and returning an index of an α-finite rational is α-computable
by proposition 5.4.5. Dually, the function supQ : α → α is also α-computable.
Using these functions express the function qδ = qt,r,v as follows:

qt,r,v(c) =


qβ(c) ∃β < δ∀γ < δ[β ≤ γ =⇒ qβ(c) = qγ(c)]

infQ̂(S(c)) · .k(c) c ∈ αA
supQ̂(S(c)) · /l(c) c ∈ αB

From this definition we see that qδ is α-computable by hypothesis 6.1.49 on q and
the α-computability of the functions S, k, l, infQ, supQ and otLim (lemma 6.1.26)
whose index (or program) is α-computable from the triple δ = (t, r, v). Note that

∀c ∈ αA t αB.q(t, r, v, c) = qt,r,v(c).

Therefore q can compute the output for any input (γ, c) where γ ≤ δ and
c ∈ dom(qγ) as required.

6.2 Proof and verification

First we establish some properties and lemmas about the constructed labelling
sequence q = {qs}s<α. Next we define a semicomputable cut C ⊆ Qα using
the constructed sequence q. Finally we complete the proof of lemma 6.1.1 and
Semicomputable Cut Existence Theorem 6.0.1 using such cut C.

6.2.1 Labelling function properties

Remark 6.2.1. (Domain of the labelling function)

• dom(qs) = {(a, b) ∈ αA × αB : p(a, b) < s} = p−1[s],

• dom(qs,p) = {(a, b) ∈ αA × αB : p(a, b) < max(s, p)} = p−1(max(s, p)),
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• dom(qs,p,u)

= {(a, b) ∈ αA×αB : u = −1∧p(a, b) < s∨u ≥ 0∧p(a, b) < max(s, p)}
= {(a, b) ∈ αA × αB : p(a, b) < max(s, p+ min(u, 0))}
= p−1[max(s, p+ min(u, 0))].

Lemma 6.2.2. (α-finiteness of the domain of the labelling function)
The set dom(qs,p,u) is α-finite for any triple (s, p, u) for which qs,p,u is defined,
i.e.

0 ≤ s < α, 0 ≤ p ≤ s+ 1,−1 ≤ u ≤ s+ 1.

Proof. The domain of qs,p,u is given explicitly in remark 6.2.1 above as
dom(qs,p,u) = p−1[t] for t = max(s, p+ min(u, 0)) < α. As t is an α-finite set, α
admissible and p α-computable, so dom(qs,p,u) has to be α-finite as required.

Proposition 6.2.3. (Properties of the labelling function)
For any triple (s, p, u) for which qs,p,u is defined, the partial labelling function
qs,p,u : αA × αB ⇀ Qα satisfies the following conditions:

i) qs,p,u is well-defined on its domain (explicitly given in remark 6.2.1),

ii) Im(qs,p,u) ⊆ Lα,

iii) qs,p,u is a type-1 function,

iv) qs,p,u ∈ Lα,

v) The function

q : α× α× ({−1} ∪ α)× (αA t αB) ⇀ Qα

defined using the λ-term as q := λspuc.qs,p,u(c) is α-computable.

Proof. (Of proposition 6.2.3)

qs,p,u as a type-1 function - property iii

In order to be able to talk about the α-computability and α-finiteness of the la-
belling function qs,p,u, we need that it is a type-1 function, i.e. both its domain and
codomain is a type-1 object, i.e. a subset of α up to the α-computable coding. The
domain of qs,p,u is α-finite by lemma 6.2.2, so dom(qs,p,u) ⊆ α as required. The
codomain of the function qs,p,u is α-rationals Qα. Qα coincides with Lα (which is
just α up to α-computable coding) for an infinite regular cardinal α, but in other
cases, Qα ⊃ Lα. For example, Kleene’s O ∈ QωCK1

, but O 6∈ LωCK1
. However,

the statement ii) states that Im(qs,p,u) ⊆ Lα. Hence we can impose implicitly
codomain Qα ∩Lα = Lα on the labelling function qs,p,u to make it type-1. There-
fore whenever the statement ii) holds for qs,p,u, so does the statement iii).
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Induction and base case - properties i, ii, iv, v

The rest of the proof is done by an induction on the triple (s, p, u). For the base
case, when (s, p, u) is the first initial triple (0, 0,−1), then q0,0,−1 = ∅. Hence
trivially all conditions i) - iv) are satisfied.

For the inductive case, we have to prove that the properties hold at strategy,
clearing and limit triples. We do not need to prove that the properties hold at
initial triples because every initial triple is equivalent to clearing, limit or the first
initial triple. See definition 6.1.21.

The function q = λspc.qs,p,u(c) under the statement v) is α-computable as it
is given by an algorithm consisting of the strategies (section 6.1.5), label clearing
(section 6.1.6) and the limit function construction (section 6.1.7) which do not use
any oracle, but only an α-finite part of the α-computably enumerable set W for
particular values of s, p, u and c. We clarify by induction that q indeed computes
the value qs,p,u(c) for any label c ∈ dom(qs,p,u) assuming that q computes the
values for all predecessor triples (s′, p′, u′) < (s, p, u).

Inductive case for a strategy triple - properties i, ii

Assume that (s, p, 0) is a strategy triple. The predecessor of (s, p, 0) is the initial
triple (s, p,−1). By IH, let the statements i) and ii) hold for the labelling function
qs,p,−1. We have to show that they hold for the labelling function qs,p,0. The
labelling function qs,p,0 is constructed by a strategy run (s, p) on the input function
qs,p,−1. This strategy run is associated with some pair of labels, say (a, b) ∈
αA × αB. Only these two labels a and b can be moved by the strategy run (s, p).

Hence by IH qs,p,0 is well-defined on dom(qs,p,0) − {a, b} and Im(qs,p,0 −
{a, b}) ⊆ Lα. Thus we need to show that qs,p,0 is well-defined on a and b to
conclude i) and that qs,p,0(a) ∈ Lα and qs,p,0(b) ∈ Lα to conclude ii). In other
words, we have to show that for every strategy run for the pair (a, b) there exist
α-rationals onto which the labels a and b can be placed and that these α-rationals
are α-finite and satisfy the required conditions mentioned in section 6.1.5. By this
follows from lemma 6.1.34 and IH property iv) that qin = qs,p,−1 ∈ Lα.

Hence the conditions i) and ii) hold for the labelling function qs,p,0.

Inductive case for a clearing triple - properties i, ii

Let (s, p, u + 1) be a clearing triple. Let p(c, d) = u. By IH qs,p,u is well-defined
on its domain and Im(qs,p,u) ⊆ Lα. Note that qs,p,u+1 can be different from
qs,p,u on at most two labels c and d. In particular qs,p,u+1(c) ∈ {qs,p,u(c), ρc} and
qs,p,u+1(d) ∈ {qs,p,u(c), ρd} where ρc and ρd are well-defined α-finite α-rationals
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by lemma 6.1.41 and α-finiteness of qs,p,u (IH property iv)). Hence the properties
i) and ii) hold for the labelling function qs,p,u+1 as required.

Inductive case for a strategy triple - property iv

Let (s, p, 0) be a strategy triple. By IH qs,p,−1 is α-finite. But qs,p,0 is different
from qs,p,−1 on at most two labels a and b since every strategy run can move only
two labels. Hence the strategy run (s, p) can make at most only an α-finite change
to qin = qs,p,−1 and so qout = qs,p,0 has to be α-finite too. Hence the property iv)
holds for the function qs,p,0 as required.

Inductive case for a clearing triple - property iv

Let (s, p, u + 1) be a clearing triple. By IH the function qs,p,u is α-finite. The
function qs,p,u+1 is different from qs,p,u on at most one label pair (the one of a
priority u), see section 6.1.6. As this is an α-finite change, qs,p,u+1 has to be
α-finite too.

Inductive case for a strategy triple - property v

Let (s, p, 0) be a strategy triple. By IH assume that q = λspuc.qs,p,u(c) can com-
pute the output for any input tuple (s′, p′, u′, c) where (s′, p′, u′) < (s, p, 0) and
c ∈ dom(qs′,p′,u′).

By the α-finiteness of qin = qs,p,−1 (IH property iv)) and by proposition 6.1.39
all the instructions for a strategy run (s, p) for some pair (a, b) ∈ αA×αB are uni-

formly α-computable from qin,Ws+1, s and p. Hence q can compute the output for
an input tuple (s, p, 0, c) where c ∈ αA×αB is any label in the domain dom(qs,p,0).
Therefore the property v) on q holds at the strategy triple (s, p, 0) as required.

Inductive case for a clearing triple - property v

Let (s, p, u + 1) be a clearing triple. By IH assume that q = λspuc.qs,p,u(c) can
compute the output for any input tuple (s′, p′, u′, c) where (s′, p′, u′) < (s, p, u+1)

and c ∈ dom(qs′,p′,u′).

By the α-finiteness of qin = qs,p,u (IH property iv)) and by proposition 6.1.44
all the instructions for label clearing are uniformly α-computable from qin, Ws+1,
s, p and u. Hence q can compute the output for an input tuple (s, p, u+1, c) where
c ∈ αA × αB is any label in the domain dom(qs,p,u+1). Therefore the property v)
on q holds at the clearing triple (s, p, u+ 1) as required.
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Inductive case for a limit triple - properties i, ii, v

Let δ = (t, r, v) be a limit triple. Let

S(c) :={qγ(c) ∈ Qα : qγ(c) ↓ ∧γ < δ}

={σ ∈ Qα : ∃γ < δ∃c ∈ dom(qγ).qγ(c) = σ}.

By IH property v) the function q = λγc.qγ(c) is α-computable on the domain
where γ < δ and c ∈ dom(qγ). Hence hypothesis 6.1.49 is true.

By hypothesis 6.1.49 and lemma 6.1.51 qδ(c) is α-finite and well-defined
for any c ∈ {a, b} where p(a, b) < t. Therefore the labelling function
qδ : αA t αB → Qα is well-defined on its domain and Im(qδ) ⊆ Lα. Hence i)
and ii) hold for qδ = qt,r,v as required.

By hypothesis 6.1.49, IH property v) and proposition 6.1.52, the function
q = λγc.qγ(c) is α-computable on the domain where γ ≤ δ and c ∈ dom(qγ).
Therefore the property v) holds for q at the limit triple δ = (t, r, v) as required.

Inductive case for a limit triple - property iv

Let (t, r, v) be a limit triple. Note that qt,r,v = λc.q(t, r, v, c). So the labelling
function qt,r,v is α-computable since λc.q(t, r, c) is α-computable by the prop-
erty v) proved above. Furthermore dom(qt,r,v) ∈ Lα by lemma 6.2.2. Hence
qt,r,v ∈ Lα by proposition 3.2.14 and thus the property iv) holds for the limit triple
(t, r, v).

This completes the proof of proposition 6.2.3.

Lemma 6.2.4. (Consistency of the labelling function)
For any triple γ, the labelling function qγ is consistent:

∀(a, b) ∈ αA × αB[qγ(a) < qγ(b) =⇒ (a, b) ∈ W ].

Proof. This follows directly from the labelling function construction in sec-
tions 6.1.5 to 6.1.7.

Lemma 6.2.5. (Monotonicity of the label movement)

• ∀s, t < α∀a ∈ αA[s ≤ t =⇒ qs(a) ≥ qt(a)]

• ∀s, t < α∀b ∈ αB[s ≤ t =⇒ qs(b) ≤ qt(b)]

Proof. For the label a ∈ αA, if some strategy moves, then only more left on the α-
rational line Qα. For the limit construction, the label a is moved to a generalized
infimum of the sequence qs(a). This is also to the left as required.
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6.2.2 Strategy termination

Lemma 6.2.6. (Strategy termination)
Every (a, b)-strategy stops acting within α-finite time.

Proof. If (a, b) 6∈ W , then the strategy never acts. If there ever exists a stage t s.t.
qt(a) < qt(b), then the strategy does not act again by lemma 6.2.5. Hence let s be
large enough that (a, b) ∈ Ws and by induction all strategies of a higher priority
have stopped acting, yet qs(b) < qs(a).

The only way that the (a, b)-strategy could act is that it would move either the
label a or the label b. The cases for moving the label b are symmetric to moving
the label a, hence let us consider only the case that the label a may be moved.

Let Bo be the set of obstacles for the label a. If the (a, b)-strategy acts and
Bo ever gets empty, then it will move a to the left of all labels and afterwards
qs+1(b) < qs+1(a) and the strategy will never act again.

So suppose that Bo 6= ∅.

If qs(a) is inside an interval protected by higher priority dead zones, then it
cannot be moved and will not be moved since the higher priority strategies have
stopped acting.

If qs(a) is adjacent to the right endpoint of the maximal set Y that contains
some label bo ∈ Bo and every other label inBo that is right of bo where the interval
is protected by higher priority strategies, then qs(a) will not be moved again since
the maximal set will not shrink as all higher priority strategies have stopped acting
and nothing will be placed between the right endpoint and the label qs(a) since the
(a, b)-strategy will protect the interval [qs(b), qs(a)] from lower priority strategies
placing the label inside.

Hence the only way that the (a, b)-strategy could act is that it would place a
adjacent to Bo from the right. Therefore Bo, the set of obstacles for a, has to be
shrinking and the label a advancing more towards left.

Define

Bo′ := {bo ∈ αB : bo ∈ dom(qs) ∧ qs(bo) ∈ [qs(b), qs(a)] ∧ (a, bo) 6∈ Ws+1}

to be the set of the obstacles to a that are in the dead zone. Note that as dom(qs)

is α-finite by lemma 6.2.2, so Bo′ is bounded by some t < α, i.e. Bo′ ⊆ t ∈ αB.
Hence if the strategy (a, b) continues acting, Bo′ gets emptied by the stage t, then
qt(a) < qt(b) and the strategy does not act again.

Therefore by the induction on the priority of the pairs (a, b) ∈ αA × αB all the
strategies terminate within an α-finite number of the steps as required.
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6.2.3 Dead Zone Lemma

Recall definition 6.1.20: two labels are connected iff they are in a connected union
of PDZs.

Lemma 6.2.7. (Dead Zone Lemma)
Assume

A×B ⊆ W ∧ A×B ⊆ W ∧W ∈ Σ1(Lα).

Then

• If a1 and b1 are connected, then a1 ∈ A ⇐⇒ b1 6∈ B,

• If a1 and a2 are connected, then a1 ∈ A ⇐⇒ a2 ∈ A,

• If b1 and b2 are connected, then b1 6∈ B ⇐⇒ b2 6∈ B.

Proof. Let HPPDZ abbreviate higher priority permanent dead zone and HPPDZs
its plural form.

Intersecting dead zones share a label, hence it is sufficient to prove the lemma
under the assumptions that the labels a1, a2, b1, b2 are contained in the same PDZ
since the conclusion follows by transitivity.

We prove the lemma by induction on the priority of a PDZ. Suppose that a1, b1

are in a PDZ [qα(b), qα(a)] declared by the strategy (a, b). Hence (a, b) ∈ W .
Redefine the sets

Ao := {ao ∈ αA : qα(b) < qα(ao) < qα(a) ∧ (ao, b) 6∈ W},

Bo := {bo ∈ αB : qα(b) < qα(bo) < qα(a) ∧ (a, bo) 6∈ W},

where Ao (Bo resp.) is the set of obstacles to b (to a resp.) that are in the PDZ
[qα(b), qα(a)]. The interval [qα(b), qα(a)] is a dead zone, hence both Ao 6= ∅ and
Bo 6= ∅.

Let φ(a1, b2) denote the statement

a1 ∈ A ⇐⇒ b2 6∈ B ⇐⇒ a ∈ A ⇐⇒ b 6∈ B.

To prove Dead Zone Lemma we show for arbitrary labels a1 ∈ αA and b2 ∈ αB
that if {qα(a1), qα(b2)} ⊆ [qα(b), qα(a)], then φ(a1, b2).

Unlike for α = ω, in general the leftmost αA-obstacle to b and the rightmost
αB-obstacle to a may not be defined, i.e. it may be the case that
min(qα[Ao]) ↑ or max(qα[Bo]) ↑. Hence we have to reason in general with quan-
tifiers over the obstacle sets. There are 2 cases to consider:

Case 1: ∀ao ∈ Ao∀bo ∈ Bo.qα(bo) < qα(ao)

There has to be a HPPDZ interval Ia (possibly an infinite union of HPPDZs) on
the left of the label a. Let Ia denote the maximal possible such interval. There
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cannot be any label between Ia and a. Otherwise (a, b) strategy would have moved
the label a to the left of such label not in Ia. The set Ia has to contain at least one
Bo obstacle. Otherwise (a, b) strategy would have moved the label a to the right
of Bo, i.e. between Bo and Ao.

Similarly, there is a maximal HPPDZ interval Ib on the immediate right of the
label b and Ib contains some Ao obstacle.

Hence Ia ∩ Ib 6= ∅ and the labels in the open interval (qα(b), qα(a)) are
connected by HPPDZs. All such labels are more specifically in the interval
I = (Ia ∪ Ib) ∩ (qα(b), qα(a)). Thus by IH for arbitrary labels a1 and b2 in I we
have a1 ∈ A ⇐⇒ b2 6∈ B. Note that Ao ∪ Bo ⊆ I . Let ao ∈ Ao ∩ I and let
bo ∈ Bo ∩ I . Then

a ∈ A =⇒ bo 6∈ B =⇒ ao ∈ A =⇒ b 6∈ B =⇒ a ∈ A

using the facts (a, bo) 6∈ W , IH, (ao, b) 6∈ W , (a, b) ∈ W respectively. Thus

a ∈ A ⇐⇒ bo 6∈ B ⇐⇒ ao ∈ A ⇐⇒ b 6∈ B

and so φ(ao, bo).

Let a1 and b2 be any labels in the PDZ [qα(b), qα(a)]. WLOG let a1 6= a and
b2 6= b. As {a1, ao, b2, bo} ⊆ q−1

α [I] and I is a HPPDZ interval, so the labels
a1, ao, b2, bo are connected and

a1 ∈ A ⇐⇒ bo 6∈ B ⇐⇒ ao ∈ A ⇐⇒ b2 6∈ B

by IH. Combining this with the statement φ(ao, bo) above we get

a ∈ A ⇐⇒ b2 6∈ B ⇐⇒ a1 ∈ A ⇐⇒ b 6∈ B

and so φ(a1, b2) as required.

Case 2: ∃ao ∈ Ao∃bo ∈ Bo.qα(ao) < qα(bo)

Let ao ∈ Ao and bo ∈ Bo s.t. qα(ao) < qα(bo). So (ao, bo) ∈ W . Note we have

qα(b) < qα(ao) < qα(bo) < qα(a).

Thus

a ∈ A =⇒ bo 6∈ B =⇒ ao ∈ A =⇒ b 6∈ B =⇒ a ∈ A

using (a, bo) 6∈ W , (ao, bo) ∈ W , (ao, b) 6∈ W and (a, b) ∈ W respectively. Hence
the following statement φ(ao, bo) is true:

a ∈ A ⇐⇒ bo 6∈ B ⇐⇒ ao ∈ A ⇐⇒ b 6∈ B (6.3)

Next extend PDZ [qα(b), qα(a)] to the maximum possible interval I by HP-
PDZs since we cannot move the labels to HPPDZs anyway. Then an arbitrary
label a1 ∈ q−1

α [[qα(b), qα(a)]] cannot be moved out of I since there is its mu-
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tual obstacle b1 ∈ q−1
α [I] (i.e. (a1, b1) 6∈ W ) that prevents a1 being moved out of

[qα(b), qα(a)]. Depending on where a1 and b1 are, we prove case by case φ(a1, b1).

Below follows the proof of φ(a1, b1) where a1 is arbitrary and b1 depends on
a1. To prove φ(a1, b2) for arbitrary labels a1 and b2, first apply a symmetric proof
to prove φ(a2, b2) for an arbitrary label b2 and a2 dependent on b2. Once we have
φ(a1, b1) and φ(a2, b2) for arbitrary labels a1 and b2, we can conclude φ(a1, b2) as
required.

Case 2.1: qα[Bo] ∩ [qα(a1), qα(a)] = ∅

The label a1 has to be in a HPPDZ interval I1. Otherwise the strategy (a, b)

would have moved the label a to the left of the label a1. Let I1 be the maximum
such possible interval. The label a cannot be put to the left of the interval I1

as I1 contains some obstacle bo ∈ Bo. WLOG choose ao ∈ Ao and bo so that
they satisfy qα(ao) < qα(bo). Also a1 is not moved out of I1, hence using the
maximality of I1 for the label a1 there is some obstacle b1 ∈ I1, i.e. (a1, b1) 6∈ W
and qα(b1) < qα(a1). But then bo and a1 are already connected through I1. Hence
by IH bo 6∈ B ⇐⇒ a1 ∈ A. Using this and statement (6.3) we get

a ∈ A ⇐⇒ b1 6∈ B ⇐⇒ a1 ∈ A ⇐⇒ b 6∈ B

and so φ(a1, b1) as required.

Case 2.2: qα[Bo] ∩ [qα(a1), qα(a)] 6= ∅

There is bo ∈ Bo s.t. qα(bo) ∈ [qα(a1), qα(a)]. So qα(a1) < qα(bo) < qα(a) and
(a1, bo) ∈ W . WLOG choose ao ∈ Ao and bo so that they satisfy qα(ao) < qα(bo).

Case 2.2.1: ∃ao ∈ Ao.qα(ao) < qα(b1)

WLOG let ao satisfy the condition qα(ao) < qα(b1). So (ao, b1) ∈ W . Note we
have

qα(b) < qα(ao) < qα(b1) < qα(a1) < qα(bo) < qα(a).

Hence

a1 ∈ A =⇒ b1 6∈ B =⇒ ao ∈ A =⇒ bo 6∈ B =⇒ a1 ∈ A

using (a1, b1) 6∈ W , (ao, b1) ∈ W , statement (6.3) and (a1, bo) ∈ W respectively.
Thus

a1 ∈ A ⇐⇒ b1 6∈ B ⇐⇒ ao ∈ A ⇐⇒ bo 6∈ B.

Therefore by statement (6.3) again we conclude φ(a1, b1) as required.
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Case 2.2.2: ∀ao ∈ Ao.qα(b1) < qα(ao)

Note that

qα(b), qα(b1) < qα(ao) < qα(a1) < qα(bo) < qα(a).

We claim b 6∈ B ⇐⇒ b1 6∈ B.

• Subcase qα(b) < qα(b1):
Note

qα(b) < qα(b1) < qα(ao) < qα(a1) < qα(bo) < qα(a).

By symmetry of Case 2.1 we have φ(a2, b1) for the given b1 and a2 depen-
dent upon it. Hence b 6∈ B ⇐⇒ b1 6∈ B.

Note that φ(a1, b1) does not follow immediately by symmetry since in Case
2.1 we show the existence of such b1 satisfying the necessary conditions
implying φ(a1, b1). But here we first start with a1 and fix it. On the other
hand, the symmetry proof starts from b1 first.

• Subcase qα(b) = qα(b1):
Note

qα(b) = qα(b1) < qα(ao) < qα(a1) < qα(bo) < qα(a).

So b = b1 and b 6∈ B ⇐⇒ b1 6∈ B.

• Subcase qα(b) > qα(b1):
Note

qα(b1) < qα(b) < qα(ao) < qα(a1) < qα(bo) < qα(a).

As b, b1 ∈ q−1
α [I], the labels b and b1 have to be connected by HPPDZs and

so b 6∈ B ⇐⇒ b1 6∈ B by IH.

In all subcases above we have b 6∈ B ⇐⇒ b1 6∈ B. Combining this with
statement (6.3) we have b1 6∈ B ⇐⇒ bo 6∈ B. Notice qα(a1) < qα(bo), so
(a1, bo) ∈ W . Thus

a1 ∈ A =⇒ b1 6∈ B =⇒ bo 6∈ B =⇒ a1 ∈ A

using (a1, b1) 6∈ W , b1 6∈ B ⇐⇒ bo 6∈ B and (a1, bo) ∈ W respectively. Hence

a1 ∈ A ⇐⇒ b1 6∈ B ⇐⇒ bo 6∈ B.

Using this and statement (6.3) we conclude φ(a1, b1) for Case 2.2.2 as required.

In all possible cases we have φ(a1, b2) as needed. This completes the proof of
Dead Zone Lemma.
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6.2.4 Defining the cut

Definition 6.2.8. (Cut C in Qα ∩ Lα)
Define the cut C in the α-finite α-rationals and its complement3 D by:

• C := {ρ ∈ Qα ∩ Lα : ∃b ∈ B∃s < α[ρ ≤ qs(b) ↓
or {ρ, qα(b)} is a subset of a PDZ ]}.

• D := {ρ ∈ Qα ∩ Lα : ∃a ∈ A∃s < α[qs(a) ↓≤ ρ

or {ρ, qα(a)} is a subset of a PDZ ]}.

The following lemma establishes that C is a cut in Qα ∩ Lα.

Lemma 6.2.9. (Closure of C and D under <Qα)

• C is downwards closed in Qα ∩ Lα:

∀σ, ρ ∈ Qα ∩ Lα[σ < ρ ∈ C =⇒ σ ∈ C].

• D is upwards closed in Qα ∩ Lα:

∀σ, ρ ∈ Qα ∩ Lα[σ > ρ ∈ D =⇒ σ ∈ D].

Proof. Let σ, ρ ∈ Qα ∩ Lα and σ < ρ ∈ C. If ∃b ∈ B∃s < α.ρ ≤ qs(b) ↓, then
clearly σ ≤ qs(b) ↓ and so σ ∈ C. If ∃b ∈ B s.t. {ρ, qα(b)} is a subset of a PDZ,
then σ < qα(b) or qα(b) ≤ σ < ρ. If σ < qα(b), then σ ∈ C. If qα(b) ≤ σ < ρ,
then σ is in the PDZ with qα(b) and so {σ, qα(b)} is a subset of the PDZ. Hence
σ ∈ C. In all cases σ ∈ C. Therefore C is downwards closed.

The proof that D is upwards closed in Qα ∩ Lα is symmetric.

Lemma 6.2.10. C ∩D = ∅

Proof. Assume for a contradiction that ∃ρ ∈ Qα.ρ ∈ C ∩D.
As ρ ∈ C, so ∃b ∈ B∃s < α[ρ ≤ qs(b) ↓ or {ρ, qα(b)} is a subset of a PDZ].
As ρ ∈ D, so ∃a ∈ A∃s < α[qs(a) ↓≤ ρ or {ρ, qα(a)} is a subset of a PDZ].
WLOG let s be large enough so that qs(a) ↓ ∧qs(b) ↓. Since a ∈ A ∧ b ∈ B, we
have (a, b) ∈ W . Therefore qs(b) < qs(a) by construction. There are four cases:

1. Case qs(a) ≤ ρ ≤ qs(b): this is impossible since qs(b) < qs(a).

2. Case {ρ, qα(b)} is a subset of a PDZ and qs(a) ≤ ρ: since (a, b) 6∈ W we
have qα(b) ≤ qα(a) ≤ qs(a) ≤ ρ. Thus qα(a) is in the same PDZ as qα(b),
so a and b are connected, but a 6∈ A∧b 6∈ B which leads to the contradiction
of lemma 6.2.7.

3For the proof, see proposition 6.2.15.
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3. Case ρ ≤ qs(b) and {ρ, qα(a)} is a subset of a PDZ: this is symmetric to the
case above.

4. Case {ρ, qα(a)} is a subset of a PDZ and {ρ, qα(b)} is a subset of a PDZ:
thus qs(a) and qs(b) are connected and by lemma 6.2.7 a ∈ A ⇐⇒ b 6∈ B
which leads to the contradiction.

Lemma 6.2.11. Assume C ⊆ E ∧D ⊆ E. Then A = AE ∧B = BE .

Proof. We show

A = AE := {a ∈ αA : ∃s < α.qs(a) ∈ E}.

If a 6∈ A, then

∀s < α(qs(a) ↓ =⇒ qs(a) ∈ D ⊆ E),

and thus a 6∈ AE .
If a ∈ A, then since Knt(A,B), we have ∃b 6∈ B.(a, b) ∈ W by proposition

4.2.7. By lemma 6.2.6, let s be a stage s.t. (a, b) strategy and all other strategies
of a higher priority have stopped acting. Two cases are possible: qs(a) < qs(b) or
[qs(b), qs(a)] is a PDZ. Each implies qs(a) ∈ C ⊆ E and thus a ∈ AE . Therefore
A = AE as required.

By a symmetric proof B = BE .

6.2.5 Proof completion

We complete the proof of Semicomputable Cut Existence Theorem 6.0.1.

Proof. (Of lemma 6.1.1) We use the labelling algorithm in section 6.1 to construct
a labelling sequence

q = {qs : αA t αB 7→ Qα ∩ Lα}s<α.

This sequence is α-computable by proposition 6.2.3v. Using this sequence q, the
cut C is defined in definition 6.2.8. Since the ordering on Qα is α-computable, C
is α-semicomputable. TakingE := C by lemma 6.2.10 we have C ⊆ E∧D ⊆ E.
Therefore by lemma 6.2.11 it follows that A = AC and B = BC which completes
the proof of lemma 6.1.1.

Lemma 6.2.12. AC ≤wαe C and BC ≤wαe C.

Proof. Note AC ≤αe C via

W := {〈a, δ〉 : ∃s < α.{qs(a)} = Kδ}

which is Σ1(Lα) as q : α × (αA t αB) → Qα is α-computable by proposi-
tion 6.2.3v. Similarly, BC ≤wαe C as required.
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Proof. (Of theorem 6.0.1) Assume Knt(A,B). Then there is a semicomputable
cut C ∈ Qα ∩ Lα by lemma 6.1.1 s.t. A = AC and B = BC . Applying
lemma 6.2.12 we get A ≤wαe C and B ≤wαe C as required.

6.2.6 More about the cut C

We establish some additional properties about the constructed semicomputable
cut C ⊆ Qα ∩ Lα which are not necessary for the proof of theorem 6.0.1.

Proposition 6.2.13. The cut C ⊆ Qα ∩ Lα is a proper cut. In particular,

• C 6= ∅,

• C 6= Qα ∩ Lα.

Proof. Suppose that C = ∅ or that C = Qα ∩Lα. Then C ∈ ∆1(Lα). Remember
that by theorem 6.0.1 we have A ≤wαe C and B ≤wαe C. As C ∈ ∆1(Lα), so
A ∈ Σ1(Lα) and B ∈ Σ1(Lα). But by the assumption in theorem 6.0.1, K(A,B)

is nontrivial which is a contradiction.

Lemma 6.2.14. C ∪D = Qα ∩ Lα

Proof. Assume not, then there is an α-finite α-rational ρ ∈ Qα ∩ Lα − C ∪ D.
Define E := {π ∈ Qα ∩ Lα : π < ρ}. Then C ⊆ E and D ⊆ E and so
A = AE by lemma 6.2.11. Hence A = AE ≤wαe E by lemma 6.2.12. But
note that E ∈ Σ1(Lα) and so A ∈ Σ1(Lα). But K(A,B) is nontrivial which is a
contradiction.

Proposition 6.2.15. D = C := Qα ∩ Lα − C

Proof. Remember definition 6.2.8 that C ⊆ Qα ∩ Lα and D ⊆ Qα ∩ Lα. Hence
D = C follows from lemma 6.2.10 stating C ∩D = ∅ and lemma 6.2.14 stating
C ∪D = Qα ∩ Lα.

6.3 Dα definable in Dαe
We prove that the total degrees T OT αe are definable in the α-enumeration de-
grees Dαe if V = L and α is an infinite regular cardinal (theorem 6.3.7).

Lemma 6.3.1. The following are true about the function qα:

• dom(qα) ∈ Σ2(Lα),

• qα ∈ Σ2(Lα).
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Proof. Note that the labelling sequence q : α× (αAtαB)→ Qα is α-computable
by proposition 6.2.3v.

So dom(qα) ∈ Σ2(Lα) since

c ∈ dom(qα) ⇐⇒ ∃s < α∀t < α[s ≤ t =⇒ qs(c) = qt(c)].

And qα ∈ Σ2(Lα) since

qα(c) = ρ ⇐⇒ ∃s < α∀t < α[s ≤ t =⇒ ρ = qt(c)].

Lemma 6.3.2. Let σ, ρ ∈ Qα ∩ Lα. Then the statement

“σ and ρ are together in a PDZ”

is Σ2(Lα) definable.

Proof. Note {σ, ρ} ⊆ a PDZ ⇐⇒

∃(a, b) ∈ W∃t < α[∀u < α(u ≥ t =⇒ qu(b) = qt(b) ≤ σ, ρ ≤ qu(a) = qt(a))].

As the labelling sequence q is α-computable by proposition 6.2.3v, so by looking
at the quantifier arrangement the statement has to be Σ2(Lα) definable as required.

Recall section 3.12 that J (n)
αe (A) denotes the nth α-enumeration jump of A.

Lemma 6.3.3. (Definability of C and C)
Assume Lα |= Σ3-replacement, then:

1. C ∈ Σ1(Lα, B ⊕ J (2)
αe (∅)),

2. C ∈ Σ1(Lα, A⊕ J (2)
αe (∅)),

3. C ∈ ∆1(Lα, A⊕B ⊕ J (2)
αe (∅)).

Proof. Note C = {ρ ∈ Qα ∩ Lα : ∃b ∈ αB∃s < α∃σ ∈ Qα ∩ Lα
[b ∈ B ∧ (ρ ≤ qs(b) ↓ or σ = qα(b) ∧ {ρ, σ} is a subset of a PDZ )]}.

The statement “σ = qα(b)” is Σ2(Lα) by lemma 6.3.1. The statement
“{ρ, σ} is a subset of a PDZ” is Σ2(Lα) by lemma 6.3.2. The statement
“ρ ≤ qs(b) ↓” is α-computable by the α-computability of the labelling sequence
q, see proposition 6.2.3v. Hence the formula

“ρ ≤ qs(b) ↓ or σ = qα(b) ∧ {ρ, σ} is a subset of a PDZ”

is Σ2(Lα) definable. Using the Σn-completion of the nth αe-jump (proposi-
tion 3.12.16) and Lα |= Σ3-replacement the set defined by such formula is
α-reducible to the set J (2)

αe (∅). So clearly the set defined by the formula

“b ∈ B ∧ (ρ ≤ qs(b) ↓ or σ = qα(b) ∧ {ρ, σ} is a subset of a PDZ)”
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is α-reducible to the set B ⊕ J (2)
αe (∅). Thus C is Σ1(Lα, B ⊕ J (2)

αe (∅)) definable
and the statement 1 holds.

Similarly, C is Σ1(Lα, A⊕ J (2)
αe (∅)) definable. Hence the statement 2 is true.

By the statements 1 and 2 we have

C ∈ C ∈ Σ1(Lα, A⊕B ⊕ J (2)
αe (∅)).

Therefore

C ∈ ∆1(Lα, A⊕B ⊕ J (2)
αe (∅))

and thus the statement 3 is true.

Remark 6.3.4. The reason that the Σ1 definition of C and C needs only one of
the sets B and A respectively, not both, is corollary 4.2.8 which says A ≤wαe B
and B ≤wαe A for a non-trivial Kalimullin pair Knt(A,B).

Theorem 6.3.5. Suppose that A and B form a non-trivial maximal K-pair, then
there exists an α-semicomputable set C s.t. C ≡αe A, C ≡αe B and K(C,C).
Furthermore, if Lα |= Σ3-replacement and A⊕ B ⊕ J (2)

αe (∅) is megaregular, then
degαe(A⊕B) is a total degree.

Proof. (Of theorem 6.3.5)
1. Assume Kmax(A,B).
2. Assume Knt(A,B).
3. ∃C ∈ sc(Lα)[A ≤wαe C ∧B ≤wαe C] by 2 and theorem 6.0.1.
4. K(C,C) by 3.
5. A ≤wαe C ∧B ≤wαe C by 3.
6. Assume Lα |= Σ3-replacement and A⊕B ⊕ J (2)

αe (∅) is megaregular.
7. C and C are megaregular by 6, lemma 6.3.3 and proposition 3.8.13.
8. A ≤αe C ∧B ≤αe C by 5 and 7.
9. A ≡αe C ∧B ≡αe C by 1, 4, 8.
10. Define T := C ⊕ C.
11. T is total and T ∈ A⊕B by 9, 10.

Corollary 6.3.6. Assume V = L and let α be an infinite regular cardinal. If a and
b are α-enumeration degrees that form a non-trivial maximal K-pair, then there
exists an α-semicomputable set C s.t. C ∈ a, C ∈ b and K(C,C). Hence a⊕ b is
a total degree.

Proof. As α is an infinite regular cardinal, so K-pair is definable in Dαe by corol-
lary 4.3.8. Thus assume Kmax(a, b)∧Knt(a, b) and let A ∈ a and B ∈ b. We have
Kmax(A,B) ∧ Knt(A,B). If α is an infinite regular cardinal, then every subset
of α is megaregular. Hence A ⊕ B ⊕ J (2)

αe (∅) is megaregular. As α is an infinite
regular cardinal, so Lα |= Σ3-replacement. Next apply theorem 6.3.5 to conclude
a⊕ b = degαe(A⊕B) is total as required.
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Theorem 6.3.7. (Definability of total degrees)
Assume V = L. Let α be an infinite regular cardinal. A degree of Dαe is total iff
it is trivial or a join of a maximal K-pair.

Proof. (Of theorem 6.3.7) Assume that α is an infinite regular cardinal. SoK-pair
is definable inDαe by corollary 4.3.8. Thus the proposed definition makes a sense
in Dαe.

The =⇒ direction follows from corollary 4.4.2.
Clearly, the trivial α-enumeration degree degαe(∅) is total.
The rest of ⇐= direction follows from corollary 6.3.6 implied by theo-

rem 6.3.5 and theorem 6.0.1.



Chapter 7. Embedding Theorem for Aut(Dαe) 147

Chapter 7

Embedding Theorem for Aut(Dαe)

In this chapter we first prove Selman’s theorem 7.1.6 in α-Computability The-
ory assuming V = L and α being an infinite regular cardinal. Finally, we use
this theorem to prove the main result of this thesis, Embedding Theorem 7.3: the
automorphism group of the α-enumeration degreesDαe embeds into the automor-
phism group of the α degrees Dα assuming V = L and α being an infinite regular
cardinal.

7.1 Selman’s theorem

Selman’s theorem is generalized to the setting of α-Computability Theory from
classical Computability Theory [24][30].

Definition 7.1.1. (Odd enumeration and α-finite part)

• Let B ⊆ α. The total function f : α→ α is an odd enumeration of B iff

f [{2γ + 1 < α : γ < α}] = B.

• B odd α-finite part is a function τ : [0, 2s)→ α for s < α s.t.

∀x < α[2x+ 1 ∈ dom(τ) =⇒ τ(2x+ 1) ∈ B].

• Let |τ | denote the order type of dom(τ), i.e. |τ | := ot(dom(τ)).

If dom(τ) is an initial segment of α, we have |τ | = dom(τ). If τ : [0, 2s)→ α

is a function, then dom(τ) = 2s and so |τ | = 2s. If τ is a B odd α-finite part,
then there is an odd enumeration f : α→ α of B s.t. τ ⊆ f .

Lemma 7.1.2. Let f : α→ α be an odd enumeration of B. Then B ≤wαe f .

Proof. We have B ≤wαe f via

Φ := {〈b, δ〉 : ∃γ < α[2γ + 1 < α ∧Kδ = {(2γ + 1, b)}]}.
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Lemma 7.1.3. Assume that A ≤wαe f . Then f−1[A] ≤wαe f .

Proof. Note f−1[A] := {x < α : f(x) ∈ A}. Let A ≤wαe f via Ψ ∈ Σ1(Lα).
Then f−1[A] ≤wαe f via

Φ := {〈x, δ〉 : ∃y < α[Kδ = Kε ∪ {(x, y)}} ∧ 〈y, ε〉 ∈ Ψ]} ∈ Σ1(Lα).

Proposition 7.1.4. 1 Let A,B ⊆ α and A 6≤wαe B. Assume that A⊕B⊕K(∅) is
megaregular. Then there exists an odd enumeration f : α→ α ofB s.t. A 6≤wαe f
and B ≤αe f .

Proof. Construction

Since B ≡αe B ∪ (α − sup(B)), WLOG redefine B to be B ∪ (α − sup(B)) so
that it is unbounded. We construct a sequence of B odd α-finite parts in α many
stages s.t.:

τ0 ⊆ τ1 ⊆ . . . ⊆ τs ⊆ . . .

In the end, the desired function f : α→ α is defined as f =
⋃
s<α τs.

Let τ0 = ∅. If s is a limit ordinal, then let τs :=
⋃
r<s τr. Now assume that τs

has been constructed, then at the stage s construct τs+1:

• Stage s = 2e:
Set τs+1 := τs · 0 · b where

b = µy{y < α : y ∈ B ∧ y 6∈ τs[{2γ + 1 < |τs| : γ < α}]}

and 0 · b is the concatenation of 0 and b. E.g. if τ = a · b, then
τ(0) = a, τ(1) = b. Note that b is well-defined since B is unbounded.

• Stage s = 2e+ 1:
Use e and τs to define the set C as

C := {x < α|∃ρ ⊇ τs[ρ is a B odd α-finite part and x = ρ(|τs|) ∧ |τs| ∈ Φe(ρ)]}.

Since A 6≤wαe B by assumption and C ≤wαe B, we have C 6= A. Thus we
have two cases:

– Case ∃x < α[x ∈ C ∧x 6∈ A]: Then let τs+1 be the minimal ρ from C.
Note τs+1 = τs · x · b · σ for some b ∈ B where σ is a B odd α-finite
part.

– Case ∃x < α[x 6∈ C ∧ x ∈ A]: Then let τs+1 := τs · x · b for some
b ∈ B.

1Generalized from [30] for α = ω.
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Verification

By the two cases above we have for all e, s, x < α:

s = 2e+ 1 ∧ x = τs+1(|τs|) =⇒ x ∈ C ∧ x 6∈ A ∨ x 6∈ C ∧ x ∈ A (7.1)

Note that f =
⋃
s<α τs is an odd enumeration of B. This is ensured by stages

s = 2e < α. If b ∈ B, then a pair (2γ + 1, b) is added to f for some 2γ + 1 < α

at the stage s = 2b < α at latest.
Moreover, A 6≤wαe f . For suppose not, then A ≤wαe f . Hence

f−1[A] ≤wαe f by lemma 7.1.3 and so there is e < α s.t. f−1[A] = Φe(f) and
thus:

∀l < α[f(l) ∈ A ⇐⇒ l ∈ f−1[A] ⇐⇒ l ∈ Φe(f)] (7.2)

Consider the stage s = 2e+ 1. Let l = |τs|. Note τs ⊆ f .

• Case 1: l ∈ f−1[A] =⇒ f(l) ∈ A =⇒ l ∈ Φe(f) using statement (7.2).
By the witness property of an α-enumeration operator there exists B odd
α-finite part ρ of f s.t. ρ ⊇ τs ∧ l ∈ Φe(ρ) ∧ ρ(l) = f(l). So f(l) ∈ C.
Hence f(l) ∈ C ∩ A. Also by statement (7.1) we have

(f(l) ∈ C ∧ f(l) 6∈ A) ∨ (x 6∈ C ∧ f(l) ∈ A).

This is a contradiction.

• Case 2: l 6∈ f−1[A] =⇒ f(l) 6∈ A =⇒ l 6∈ Φe(f) using statement (7.2).
By the monotonicity of an α-enumeration operator there is no B odd α-
finite part ρ of f s.t. ρ ⊇ τs ∧ l ∈ Φe(ρ). So f(l) 6∈ C. Hence f(l) 6∈
A ∧ f(l) 6∈ C. By statement (7.1) we have

(f(l) ∈ C ∧ f(l) 6∈ A) ∨ (x 6∈ C ∧ f(l) ∈ A).

This is a contradiction.

Hence in any case A 6≤wαe f as required.
Let g : α → α be defined by g : s 7→ γ where Kγ = τs. During the construc-

tion we use the oracle A ⊕ B ⊕ K(∅), hence g ∈ Σ1(Lα, A ⊕ B ⊕ K(∅)). We
show that g is well-defined and that τs is α-finite at a limit stage s. Let s < α

be a limit stage and g|s be a restriction of g to the subdomain s ⊆ α. Then
g[s] = I ∈ Lα since s ∈ Lα, g|s ∈ Σ1(Lα, A⊕B ⊕K(∅)) and by the megareg-
ularity of the oracle A⊕B ⊕K(∅)). Hence τs =

⋃
r<s τr =

⋃
γ∈I Kγ is α-finite

as required. Therefore ∀s < α.τs ∈ Lα, as needed.
Note that f ∈ ∆1(Lα, A ⊕ B ⊕ K(∅)) since the construction of f uses the

oracle A ⊕ B ⊕K(∅). By that and the megaregularity of A ⊕ B ⊕K(∅), also f
must be megaregular. By lemma 7.1.2 we have B ≤wαe f . By the megaregularity
of f , we have B ≤αe f as required.
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Theorem 7.1.5. (Selman’s theorem for admissible ordinals)
Let A,B ⊆ α and let A⊕B ⊕K(∅) be megaregular. Then

A ≤αe B ⇐⇒ ∀X[X ≡αe X ⊕X ∧B ≤αe X ⊕X =⇒ A ≤αe X ⊕X].

Part of the following proof is adapted from the classical case present in [30].

Proof. ⇒ direction is by the transitivity of ≤αe.
For the⇐ direction assume that

∀X[X ≡αe X ⊕X ∧B ≤αe X ⊕X =⇒ A ≤αe X ⊕X].

We want to show that A ≤αe B. Assume not, then A 6≤αe B and so A 6≤wαe B as
A⊕B ⊕K(∅) is megaregular. Then by proposition 7.1.4 and the megaregularity
of A⊕ B ⊕K(∅) there exists a total function f s.t. A 6≤wαe f , but B ≤αe f . But
f is total and so A ≤αe f which is a contradiction to the statement A 6≤wαe f .
Hence A ≤αe B as required.

Corollary 7.1.6. (Selman’s theorem for regular cardinals)
Assume V = L. Let α be an infinite regular cardinal. Then for any A,B ⊆ α we
have:

A ≤αe B ⇐⇒ ∀X[X ≡αe X ⊕X ∧B ≤αe X ⊕X =⇒ A ≤αe X ⊕X]

Proof. If α is a regular cardinal, then every subset of α is megaregular. Hence
A⊕B⊕K(∅) is megaregular. The remaining proof of the corollary follows from
theorem 7.1.5.

7.2 T OT αe as an automorphism base for Dαe
We use Selman’s theorem to conclude that T OT αe are an automorphism base for
Dαe under some assumptions.

Definition 7.2.1. (Automorphism base [11])
TFAE:

• The subset B ⊆ dom(M) is an automorphism base of the modelM.

• ∀f, g ∈ Aut(M)[f|B = g|B =⇒ f = g]

• ∀f ∈ Aut(M)[f|B = 1|B =⇒ f = 1]

Theorem 7.2.2. 2 Assume V = L. Let α be an infinite regular cardinal. The total
degrees T OT αe are an automorphism base for Dαe.

2For α-Computability Theory introduced in this thesis. A well-known result in classical Com-
putability Theory concluded by the work in [24].
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Proof. 0. Assume α is a regular cardinal.

1. ∀a, b ∈ Dαe[a ≤ b ⇐⇒ ∀x ∈ T OT αe(b ≤ x =⇒ a ≤ x)] by 0 and
corollary 7.1.6.

2. ∀a, b ∈ Dαe[a = b ⇐⇒ ∀x ∈ T OT αe(b ≤ x ⇐⇒ a ≤ x)] by 1.

3. Assume f ∈ Aut(Dαe).

4. ∀a, b ∈ Dαe[a ≤ b ⇐⇒ f(a) ≤ f(b)] by 3.

5. Assume ∀x ∈ T OT αe.f(x) = x.

6. Assume y ∈ Dαe.
7. ∀x ∈ T OT αe.(f(y) ≤ f(x) ⇐⇒ y ≤ x) by 4.

8. ∀x ∈ T OT αe.(f(y) ≤ x ⇐⇒ y ≤ x) by 5, 7.

9. f(y) = y by 2, 8.

10. ∀y ∈ Dαe.f(y) = y by 6, 9.

11. T OT αe is an automorphism base for Dαe by 3, 5, 10.

7.3 Embedding Theorem

The main result of this thesis is:

Theorem 7.3.1. (Embedding Theorem3)
Assume V = L. Let α be an infinite regular cardinal, then the automorphism
group of the α-enumeration degrees is embeddable in the automorphism group of
the total α-enumeration degrees: Aut(Dαe) ↪→ Aut(T OT αe).

Proof. (Of theorem 7.3.1) The embedding theorem is implied by 3 statements:

1. There exists an embedding ι : Dα ↪→ Dαe where Im(ι) = T OT αe,

2. T OT αe are an automorphism base for Dαe,

3. T OT αe are definable in Dαe.

The first statement follows from theorem 3.10.4 where the embedding
ι : T OT αe ↪→ Dαe is given by ι : degα(A) 7→ degαe(A⊕ A). The sec-
ond statement is theorem 7.2.2 which is the generalization of a result by Selman
[24]. The third statement is theorem 6.3.7 which is the generalization of the
definability of the total degrees in the enumeration degrees [2].

By the 3 statements we can define an injective group homomorphism
η : Aut(Dαe) ↪→ Aut(Dα), η : f 7→ ι−1 ◦ f ◦ ι. As Im(ι) = T OT αe and T OT αe
definable and hence invariant under an automorphism f so Im(f ◦ ι) = T OT αe.

3For α-Computability Theory introduced in this thesis. A well-known result in classical Com-
putability Theory concluded by the work in [2]. The proof of this result outlined in [2] p13.
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Thus the composition of ι−1 : T OT αe → Dα (where ι injective) with
f ◦ ι : Dα → Dαe is well-defined. Since

η(f) ◦ η(g) = (ι−1 ◦ f ◦ ι) ◦ (ι−1 ◦ g ◦ ι) = ι−1 ◦ f ◦ g ◦ ι = η(f ◦ g),

so η is a group homomorphism. If η(f) = η(g) then ∀a ∈ T OT αe.f(a) = g(a),
since T OT αe is an automorphism base for Dαe so f = g and hence η injective.
This η is the required embedding.

7.4 Further directions

Embedding theorem 7.3.1 establishes for a certain class of admissible ordinals α
that Aut(Dαe) ↪→ Aut(Dα). One of the obstacles to prove the Embedding theo-
rem for all admissible α is a difficulty in proving the definability of a Kalimullin
pair and the total degrees in the enumeration degrees. We proved that a Kalimullin
pair is definable in Dαe if all subsets of α are megaregular (theorem 4.3.6). This
condition seems to be necessary. The lack of the megaregularity of the sets is a
consequence of the lack of the admissibility on Lα. This gives us the following
intuition:
The less admissibility Lα has, the less definability Dαe is expected to have.

Slaman and Woodin [28] proved that the Turing degrees have a trivial auto-
morphism group iff they are biinterpretable with second order arithmetic. Also
every automorphism in a structure has to preserve all definable relations. This
gives us another intuition:
The less definability a structure has, the more non-trivial automorphism group it

is expected to have.

Combining the two intuitions above into the third one we have:
The less admissibility Lα has, the more non-trivial automorphism group Dαe is

expected to have.
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Chapter 8

Open problems

We present several open problems in Higher Computability Theory at a various
level of difficulty, where the number of stars ?marking the problem is proportional
to the level of the difficulty guessed by the author. For comparison, Embedding
Theorem 7.3.1, the main result of this thesis stands at the difficulty level of about
three stars (? ? ?).

8.1 α-Computability Theory

8.1.1 General

Does the following relativization of the Uniformization Theorem 3.2.9 hold?

Conjecture 8.1.1. (?) (Relativized Uniformization Theorem)
Let n ≥ 1 and A ⊆ α. Then for each Σn(Lα, A) relation R(x, y) there is a
Σn(Lα, A) function f satisfying:

∀x < α[if ∃y < α.〈Lα, A〉 |= R(x, y), then 〈Lα, A〉 |= R(x, f(x))].

Note that conjecture 8.1.1 in the case of n = 1 was established by proposi-
tion 3.4.15. Likely, the cases n > 1 require additional assumptions on the struc-
ture 〈Lα, A〉. Using a stronger Relativized Uniformization Theorem we could
strengthen proposition 3.4.20.

Conjecture 8.1.2. (?) Let Aδ := {γ < α : Kγ ⊆ Kδ}. Then Aδ ∈ Lα.

Conjecture 8.1.2 could simplify many of the proofs in this thesis, especially
the ones where indices of α-finite sets are used, e.g. section 3.5. Trivially, Aδ
is α-computable. However, it does not seem to be clear that Aδ is also bounded.
This seems to depend on the function used to index α-finite sets.

Fact 3.6.4 states that the projectum of an admissible ordinal is admissible.
Proposition 3.1.21 gives a relation between the admissibility and the cofinality.
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How can we relate the projectum and the cofinality? Can we do so in the following
way?

Conjecture 8.1.3. (??) (Projectum and cofinality)

1. If δ = σnp(α), then there is a partial surjection s : δ ⇀ α ∈ Σn(Lα) s.t.

∀y < α∃x < δ.y < s(x),

2. σn+1cf(α) ≤ σnp(α).

Proof. (Of 2 assuming 1.)
Let δ = σnp(α). So there is a partial surjection s : δ ⇀ α ∈ Σn(Lα) s.t.
∀y < α∃x < δ.y < s(x). Define s′(x) = s(µz[x ≤ z ∧ s(z) ↓]). Note that
s′ : δ � α is a total Σn+1(Lα) definable surjection and ∀y < α∃x < δ.y < s′(x).
Therefore σn+1cf(α) ≤ δ as required.

We ask the next question in order to understand the relation between different
levels of the definability.

Question 8.1.4. (??) Suppose that α1 and α2 are admissible ordinals and that
α1 < α2. Let A,B ⊆ α1. If A ≤α1e B, is it then true that A ≤α2e B?

8.1.2 Totality

Question 8.1.5. (??) Recall section 3.12. If Jαe(A) is a megaregular set, then
Jαe(A) is total. In general, is Jαe(A) a total set for any A ⊆ α?

The next question asks if it is sufficient to define the totality with the weaker
reducibility instead. If that is the case, then one could conclude the totality using
the weaker reducibility without invoking the requirement of megaregularity.

Question 8.1.6. (??) Assume that A⊕ A ≤wαe A. Is it true that A⊕ A ≤αe A?

8.1.3 Regularity

Proposition 3.8.13 already implies that megaregularity is closed under the ∆1 de-
finability. The next conjecture states that also regularity is closed under the ∆1

definability.

Conjecture 8.1.7. (?) If A ∈ ∆1(Lα, B) and B is regular, then A is regular.

Megaregularity seems as a too strong notion in the context of positive defin-
ability and enumeration reducibilities. Moreover, it does not even have the desired
properties. The next question asks if there is a better notion in this context.
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Question 8.1.8. (??) (Natural notion of positive megaregularity)
Let α be a general admissible ordinal, not necessarily an infinite regular cardinal.
Does there exists a relation R ⊆ P(α) satisfying the following properties?

1. ∀A ⊆ α[ if A megaregular, then R(A) ∧R(A)].

2. ∀A,B ⊆ α[A ≤wαe B ∧R(B) =⇒ A ≤αe B].

3. ∀A,B ⊆ α[A ≤wαe B ∧R(B) =⇒ R(A)].

8.1.4 Automorphisms

Megaregularity emerged as a very important notion. It would be good to know
some of its degree theoretic properties. The negative answer to the next question
would imply that it cannot be definable in a degree structure in question.

Question 8.1.9. (??) Does an automorphism preserve megaregularity?

The next question seems a very natural one to ask after proving in this thesis
that Aut(Dαe) ↪→ Aut(Dα) for an infinite regular cardinal assuming V = L.

Question 8.1.10. (? ? ??) (Embedding Conjecture for admissible ordinals)
Let α be a general admissible ordinal. Is it true that Aut(Dαe) ↪→ Aut(Dα)?

There is already a classical conjecture that the Turing degrees are rigid [28]. In
remark 3.11.6 we saw that the computability on the infinite regular cardinals be-
haves much like the classical computability theory. Thus it may be natural to con-
jecture in general that the α-degreesDα are rigid if α is an infinite regular cardinal
and V = L. Together with the main result of this thesis Aut(Dαe) ↪→ Aut(Dα) it
can imply the following conjecture characterizing Aut(Dαe).

Conjecture 8.1.11. (? ? ??) If V = L and α is an infinite regular cardinal, then
the automorphism group of the α-enumeration degrees is trivial.

8.2 Transfer principle

Question 8.2.1. (? ? ?) (Transfer principle for infinite regular cardinals)
Assume V = L. In remark 3.11.6 we observed that the α-Computability with
infinite regular cardinals behaves similarly to the classical Computability Theory.
Also all the main results of this thesis (section 2.3) are the generalizations of the
classical results which hold for infinite regular cardinals α.

Is there some general transfer principle that would enable us to conclude that
any result of a certain form which holds in classical Computability Theory is true
also in α-Computability Theory if α is an infinite regular cardinal?



156 8.3. ε,ζ - Computability Theory

8.3 ε,ζ - Computability Theory

In remark 3.2.6 it was stated that ∆1 definability over Lα behaves like the com-
putability on the extended Turing machine with a tape of an order type α and the
computational time α. Can we generalize this further?

Definition 8.3.1. For A ∈ L define its powerset to be

P (A) := {B ∈ L : B ⊆ A}.

Definition 8.3.2. (ε,ζ-Constructible Hierarchy)
Let δ, ε and ζ be limit ordinals or∞ (i.e. Ord) and ε ≥ ζ . Let γ <∞. Define the
ε,ζ-level of the constructible hierarchy recursively:

Lζ,ζ := Lζ ,

Lζ+γ+1,ζ := Def(Lζ+γ,ζ) ∩ P (ζ),

Lζ+δ,ζ := (
⋃
γ<δ Lζ+γ,ζ) ∩ P (ζ).

Definition 8.3.3. A function f : ζ → ζ is ε,ζ-computable iff f is Σ1(Lε,ζ)-
definable.

Question 8.3.4. (??) Is a function f : ζ → ζ ε,ζ-computable iff it is a computable
on a Turing machine with a tape of an order type ζ and time ε?
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Appendix A

Axioms

A.1 Zermelo-Fraenkel set theory with choice

Definition A.1.1. (Zermelo-Fraenkel set theory with choice)
Zermelo-Frankel set theory with choice (ZFC) is the theory specified by the fol-
lowing axioms:

• extensionality: ∀x∀y[x = y ⇐⇒ ∀z(z ∈ x ⇐⇒ z ∈ y)],

• foundation: ∀x[x 6= ∅ =⇒ ∃y ∈ x.x ∩ y = ∅],

• schema of separation: for any formula φ(a) in which y is not free we have

∀x∃y∀z[z ∈ y ⇐⇒ z ∈ x ∧ φ(z)],

• pairing: ∀x∀y∃z[x ∈ z ∧ y ∈ z],

• union: ∀x∃y∀v∀w[v ∈ w ∧ w ∈ x =⇒ v ∈ y],

• schema of replacement: for any formula φ(x, y) we have

∀K[∀x ∈ K∃!y.φ(x, y) =⇒ ∃I∀x ∈ K∃y ∈ I.φ(x, y)],

• infinity: ∃x[∅ ∈ x ∧ ∀y ∈ x.y ∪ {y} ∈ x],

• powerset: ∀x∃y∀z[z ⊆ x =⇒ z ∈ y],

• choice: ∀x[∅ 6∈ x =⇒ ∃f : x→
⋃
x(∀y ∈ x.f(y) ∈ y)]
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Appendix B

Abbreviations

iff if and only if
s.t. such that
wrt with respect to
BC base case
IC inductive case
IH inductive hypothesis
TFAE the following are equivalent
WLOG without the loss of generality
QED quod erat demonstrandum, i.e. that which was to be demonstrated
KP Kripke-Platek set theory
AC the axiom of choice
ZF Zermelo-Fraenkel set theory
ZFC Zermelo-Fraenkel set theory with AC
CK Church-Kleene
CNF Cantor normal form
c.e. computably enumerable
K-pair Kalimullin pair
DZ dead zone
PDZ permanent dead zone
HPPDZ higher priority permanent dead zone
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Appendix C

Notation

C.1 General

N natural numbers, i.e. N := {0, 1, 2, . . .}
Q rational numbers∑

sum∏
product

min(A) the minimum of the set A
max(A) the maximum of the set A
inf(A) the infimum of the set A
sup(A) the supremum of the set A
x := y assignment, x is defined to be y
≡ equivalence relation
∼= isomorphism

C.2 Functions

A→ B total function from A to B
A ⇀ B partial function from A to B
A ↪→ B embedding from A to B
A� B epimorphism from A to B, i.e. surjection
A� B monomorphism from A to B, i.e. injection
f : x 7→ y the function f maps x to y
f [A] the image of the function f on the set A
dom(f) the domain of the function f , i.e. dom(f : A→ B) = A

dom(R) the domain of the relation R,
e.g. if R ⊆ X × Y , then dom(R) := {x ∈ X : ∃y ∈ Y.(x, y) ∈ R}

cod(f) the codomain of the function f , i.e. cod(f : A→ B) = B
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Im(f) the image of the function f ,
i.e. Im(f) := {y ∈ cod(f) : ∃x ∈ dom(f).f(x) = y}

rng(f) the range of the function f , i.e. rng(f) := Im(f),
e.g. rng(id : Z→ R) = Z

f−1 the inverse of the function f
f � D the restriction of the function f to the domain D
f(x) ↓ the function f is defined on x, i.e. x ∈ dom(f)

C.3 Logic

¬ logic negation
∧ logic and / lattice meet
∨ logic or / lattice join
Y exclusive logic or, i.e. A YB ≡ A ∧ ¬B ∨ ¬A ∧B
=⇒ implies
⇐⇒ if and only if
∃ existential quantifier
∀ universal quantifier
φ(x) formula φ with the list of free parameters x
φ ≡ ψ the formula φ is equivalent to the formula ψ
M |= φ the formula φ is true in the modelM
T |= φ the formula φ is true in every model of the theory T
T ` φ the formula φ is provable from the theory T
M�Σn N M is a Σn elementary substructure (or submodel) of N

C.4 Set Theory

∅ the empty set
∈ set membership relation
∩ set intersection
∪ set union
t disjoint set union
\ set difference, i.e. A \B := A−B
4 symmetric difference, i.e. A4B := A ∪B − A ∩B
⊂ strict subset relation
⊆ subset relation
A complement of the set A
A×B the Cartesian product of the set A and B
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P(A) the powerset of the set A
#A the cardinality of the set A, i.e. #A = |A|
ω the first infinite ordinal
ωCK1 the Church-Kleene ordinal, i.e. the first uncomputable ordinal
cf(α) the cofinality of an ordinal α
σncfα(δ) the Σn(Lα) cofinality of δ
σncf(α) the Σn(Lα) cofinality of α
α admissible ordinal
α∗ the projectum of α
σnp(α) the Σn-projectum of α
lim(β) β is a limit ordinal
ℵ0 the first infinite cardinal
ℵα (1 + α)th infinite cardinal
Def(M) the first-order definable sets over the modelM
Lγ γth level of Gödel’s constructible hierarchy
L[A]γ γth level of Gödel’s constructible hierarchy with a parameter A
L Gödel’s constructible universe
V von Neumann’s universe
O Kleene’s O - the set of ordinal notations in N

for computable ordinals
Ord the class of all ordinals
∞ element of order type Ord
[γ, δ) half-closed, half-open ordinal number interval, i.e. [γ, δ) := δ \ γ
[γ, δ] closed ordinal number interval, i.e. [γ, δ] := (δ \ γ) ∪ {δ}

C.5 β-rational numbers and strings

Qβ set of β-rational numbers
Rβ set of β-real numbers
Iβ the β-real number unit interval
λ the empty string
σ · τ the concatenation of the string σ with the string τ
/γ the concatenation of γ zero characters
ρ, σ, τ, υ strings bounded in β, β-rational numbers
ot(σ) order type of a string σ, e.g. ot(/.//) = 4, ot(.ω/.) = ω + 2

σ � γ restriction of a string σ to the characters
at the position less than γ, e.g. //./ � 3 = //.

σ[γ] the character at the position γ of the string σ, e.g. (./)[1] = /

σ[γ, δ] the closed interval of the string σ from σ[γ] to σ[δ],
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e.g. (/.//)[1, 3] = .//

infA(B) A-infimum of the set B, see 5.4.3
supA(B) A-supremum of the set B, see 5.4.3

C.6 α-Computability Theory

A complement of A, i.e. A := α− A
A⊕B α-computable join of sets A and B
πl projection, i.e. πl(〈x1, . . . , xn〉) = xl

λ λ operator in α-calculus, e.g. λx.x = id : x 7→ x

µ µ operator, i.e. µx[x ∈ A] = min(A)

Φe (weak) α-enumeration operator
We α-computably enumerable set
Kγ β-finite set, i.e. Kγ ∈ Lβ
≤T Turing reducibility
≤e enumeration reducibility
≤wα weak α-reducibility
≤α α-reducibility
≤wαe weak α-enumeration reducibility
≤αe α-enumeration reducibility
A|rB sets A and B are incomparable wrt r-reducibility,

i.e. A 6≤r B and A 6≥r B
DT = P (ω) / ≡T set of Turing degrees
De = P (ω) / ≡e set of the enumeration degrees
T OT e set of the total enumeration degrees
Dα = P (α) / ≡α set of α-degrees
Dαe = P (α) / ≡αe set of the α-enumeration degrees
T OT αe set of the total α-enumeration degrees
degα(A) α-degree of a set A
degαe(A) α-enumeration degree of a set A
K(A) weak α-jump of a set A
Jwαe(A) weak α-enumeration jump of a set A
Jαe(A) α-enumeration jump of a set A
J

(n)
αe (A) nth α-enumeration jump of a set A
A+ enumeration of a set A
A− enumeration of a set A
QF(A) the class of quantifier free formulas

with parameters from A
∆0
n,Σ

0
n,Π

0
n definability classes of the arithmetical hierarchy
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∆n,Σn,Πn definability classes of the arithmetical hierarchy
∆1
n,Σ

1
n,Π

1
n definability classes of the analytical hierarchy

Σ1(Lα) the class of Σ0
1 formulas with parameters in Lα

or sets definable with such formulas
Σ1(Lα, A) the class of Σ0

1 formulas over Lα with A as a param.
Σ1(Lα, A

+) the class of Σ0
1 formulas over Lα with A as

a positive parameter
〈Lα,B〉 extended model with a parameter B ∈ {B,B+, B−},

see 3.4.5
sc(Lα) the class of α-semicomputable sets
KU(A,B) U -Kalimullin pair, U -K-pair
K(A,B) Kalimullin pair, K-pair
Knt(A,B) nontrivial Kalimullin pair
Kmax(A,B) maximal Kalimullin pair
psup pseudosupremum function, see 3.5.1
fin finiteness predicate, i.e. fin(A) ⇐⇒ #A < ℵ0
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