Embedding Theorem
for the automorphism group

of the c-enumeration degrees

David Natingga

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

The University of Leeds
School of Mathematics

April 2019


mailto:mmdt@leeds.ac.uk

i

The candidate confirms that the work submitted is his own and that appropriate

credit has been given where reference has been made to the work of others.

This copy has been supplied on the understanding that it is copyright material
and that no quotation from the thesis may be published without proper acknowl-

edgement.
(©2019 The University of Leeds and David Natingga

The right of Ddvid Natingga to be identified as Author of this work has

been asserted by Ddvid Natingga in accordance with the Copyright, Designs and
Patents Act 1988.



11

Acknowledgements

This project started with the embedding theorem for the automorphism group of
the enumeration degrees D.: the automorphism group of the enumeration degrees
embeds into the automorphism group of the Turing degrees.

First I would like to thank the following researchers chronologically:

e my first supervisor, Barry Cooper, for suggesting to generalize this embed-

ding theorem for the automorphism group of the hyperenumeration degrees,

e Maryia Soskova for explaining me the proof of the original embedding the-
orem for Aut(D,),

e Gerald Sacks and Chi Tat Chong for writing invaluable books on a-
computability theory [23] [4] that convinced me and made it feasible
within the scope of this thesis to work on the embedding theorem for the

automorphism group of the a-enumeration degrees instead,

e my second supervisor, Michael Rathjen, for his understanding and for tak-
ing over my supervision when Barry Cooper had to suddenly depart... His

advice, comments and suggestions improved this thesis,

e my thesis examiners, Paul Shafer and Andrew Lewis-Pye, for examining

and providing corrective feedback which made this thesis better.

Discussions with many other researchers were useful, in particular - Robert
Lubarsky, Theodore Slaman, Hristo Ganchev, Iskander Kalimullin, Charles Har-
ris, Hajime Ishihara, Takako Nemoto and Juan P. Aguilera.

My visit to JAIST (Japan Advanced Institute of Science and Technology) from
February 2016 to September 2016 was supported by CORCON grant. My partic-
ipation at Hausdorff Trimester Program Types, Sets and Constructions in Bonn
from May 2018 to August 2018 was funded by Hausdorff Institute for Mathemat-
ics. Both visits were essential for this thesis and I am grateful for the support.

I am beholden to my family and friends, especially:
e to my father, Jan, for his love, encouragement and scientific zeal,
e to my aunt Stellamaris for caring for my heart and for all her prayers,

e to my wife, Rheslyn, and my daughter Sophia for being by my side. Rhes-
lyn’s suggestions and feedback on formatting with ISIgX were also very
helpful.



v

Finally, my greatest gratitude goes to the Creator of the universe. Without His
grace this work would not have been possible. Without His wisdom there would
not be interesting questions to ask. Without His love all our efforts would be
futile.



Abstract

It is a theorem of classical Computability Theory that the automorphism group of
the enumeration degrees D, embeds into the automorphism group of the Turing

degrees Dy. This follows from the following three statements:
1. Dy embeds to D,,
2. Dy is an automorphism base for D,
3. Dy is definable in D,.

The first statement is trivial. The second statement follows from the Selman’s
theorem: A <, B <= VX Cw[B <, X DX — A<.X @_]. The third
statement follows from the definability of a Kalimullin pair in the c-enumeration
degrees D, and the following theorem: an enumeration degree is total iff it is
trivial or a join of a maximal Kalimullin pair.

Following an analogous pattern, this thesis aims to generalize the results above
to the setting of c-Computability theory. The main result of this thesis is Em-
bedding Theorem: the automorphism group of the a-enumeration degrees D,
embeds into the automorphism group of the a-degrees D,, if « is an infinite reg-
ular cardinal and assuming the axiom of constructibility V' = L. If « is a gen-
eral admissible ordinal, weaker results are proved involving assumptions on the
megaregularity.

In the proof of the definability of D, in D,. a helpful concept of a-rational
numbers (), emerges as a generalization of the rational numbers (Q and an ana-
logue of hyperrationals. This is the most valuable theory development of this

thesis with many potentially fruitful directions.
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Chapter 1. Conventions 1

Chapter 1
Conventions

We state global conventions sometimes locally violated.

1.1 Notational conventions

Facts and proofs

Facts do not have proofs. If a proof for some other logical statement such as
a proposition, lemma, theorem, corollary is not included, the statement will be
marked with a box [ at the end.

Binding strength of arithmetical operators

Binding strength of logical symbols

The equally strongest symbols are = V 3. Then continued from the strongest to
the weakest: A V = <= . Brackets override the binding strength. Thus for
example Vx.¢(z) Vi = x = ((Vx.é(z)) Viv) = x.

Bounded quantifiers over several variables

A bounded quantifier over several variables bounds all of them. Thus Va,b,c >
0.a + b+ ¢ = z abbreviates Va > 0Vb > OVc > 0.a + b+ ¢ = z which is different
from YaVbVe > 0.a + b + ¢ = z where only the third variable c is bounded.

Evaluation of the logic formulas

Brackets are used as a function [| : PROP — 2 to give a valuation of a logic formula

in PROP with the valuation for the atoms as [false] := 0 and [true| == 1.



2 1.2. Metatheory

Ordinals

In the context of a-Computability Theory, the ordinal o always denotes an admis-
sible ordinal, i.e. L, satisfies the axioms of Kripke-Platek set theory. Similarly,

the ordinal 3 denotes a limit ordinal.

1.2 Metatheory

Proofs in this thesis are carried out in ZFC - Zermelo-Fraenkel set theory with the

axiom of choice. See appendix A.1 for the list of ZFC axioms.
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Chapter 2
Thesis summary

The central focus of this thesis is to generalize the embedding theorem 2.1.17 that
the automorphism group of the enumeration degrees embeds into the automor-
phism group of the Turing degrees to the setting of a-Computability Theory.

The enumeration reducibility and degrees are a major research area in Com-
putability Theory with first investigations at least as early as 1961 [19] and 1974
[3].

A generalized notion of a-enumeration degrees in a-Computability Theory
has been investigated by the author for the first time!. To generalize the major
recent result meant on one hand the development of many notions and proving of
many intermediate results. On the other hand this required a careful selection of

the results and notions to be generalized.

2.1 Embedding Theorem in classical Computability
Theory

We present some essential concepts first, including enumeration reducibility,
semicomputability, Kalimullin pair and degree structures. Then we state and
outline the proof of the embedding theorem in classical Computability Theory.
For a more detailed background in classical Computability Theory consult
the Cooper’s book Computability Theory [5] which includes the material on the

following, but not limited to:
e Turing machines, computability, reducibility, degrees and jump,
e computably enumerable sets and degrees,

e Peano arithmetic, arithmetical hierarchy and sets,

The only publication that the author is aware of and which treats c-enumeration reducibility
briefly is [6]. However, a-enumeration degrees remain there untouched.
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the enumeration reducibility, degrees and jump,

total sets and degrees,

e many-one reducibility and degrees,

priority arguments.

2.1.1 Basic notions

In remark 2.1.1 below we recall the classes of the formulas in the arithmetical

hierarchy. For a full definition, see [5].
Remark 2.1.1. (Arithmetical hierarchy)

e A formula ¢ belongs to the classes >y and Il iff it is equivalent to a formula

with bounded quantifiers only.

e A formula ¢ belongs to the class X2, iff it is equivalent to a formula of the

form dxydx, . .. Jx,9 where 1) belongs to the class II,,.

e A formula ¢ belongs to the class II,,,; iff it is equivalent to a formula of the

form Vx,Vx, . .. Vx,1) where 1) belongs to the class Y,,.
e A formula ¢ belongs to the class A, iff ¢ belongs to both 3, and II,,.

We use remark 2.1.1 further to define the definability classes over some set
M.

Definition 2.1.2. (Definability classes over M)

Let C be a class of first-order formulas in the language of ZF. Specifically, let
C e {%,,1I,,A,} forsome n € N. Let M be a set, e.g. the domain of the model
of computation. Then C(M) denotes the subsets of M which are definable with

some formula from C with parameters in M.

Note 2.1.3. For the subsequent concepts in classical Computability Theory, we
use the least infinite ordinal w in place of the natural numbers N. This does not
introduce any problems since w = N and has a benefit of an easier generalization

of the notation to the context of a-Computability Theory introduced later.
Definition 2.1.4. (Computability and computable enumerability)

e The set A C w is computable iff A is definable over w with some A; for-
mula, i.e. A € Ay(w).
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e The set A C w is computably enumerable (c.e.) iff A is definable over w

with some 3J; formula, i.e. A € ¥ (w).

Definition 2.1.5. (Canonical index of a finite set)
Let D C w be a finite set. Then its canonical index n is defined as n ==, _, 2".
Denote a finite set with the canonical index n as D,,. In other words, D,, is the set

that contains an element & < w iff the k™ digit of the binary expansion of n is 1.
Definition 2.1.6. (Reducibilities)

e The set A C w is enumerable from B C w denoted as A <, B iff there is a
c.e. set W such that:

Va <wla € A <= In <wl(a,n) € WAD, C BJ]

where D,, is the finite set given by the canonical index n and (a,b) is a

natural number coding the pair (a, b).

e The set A C w is computable from B C w denoted as A <7 B iff there is a

Turing machine with an oracle B that computes the characteristic function
of A.

A general r-reducibility such as the Turing or the enumeration reducibility

gives rise to the ordered structure of the r-degrees as in definition 2.1.7 below.

Definition 2.1.7. (r-Degrees)
Let <,€ {<.,<r} be the enumeration or Turing reducibility. Then <, induces
the equivalence relation =,C P(w) x P(w) as follows:

= B <+ A<,BANBZ<,A

for any sets A and B which are subsets of w. The r-degree of the set A C w
denoted as deg, (A) is its equivalence class given by the equivalence relation =,.

In notation,
deg,.(A) ={B € P(w): A=, B}.

The set of r-degrees denoted as D, is the set of the partitions of P(w) partitioned
by the equivalence relation =,. induced by the reducibility relation <,.. In notation,
D, = {degy(A) : A C w}.

The reducibility relation <, induces the order < on the set of r-degrees D, as

follows:

VA, B € P(w)[deg,(A) < deg.(B) «<— A<, B].

Using the general definition definition 2.1.7, we can specifically define the

structures of the enumeration and Turing degrees in definition 2.1.8.
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Definition 2.1.8. (Degrees)

e The enumeration degrees are D, := P(w)/ =, where =, is the equivalence

relation induced by the enumeration reducibility <.. In detail,

D, :={deg.(A): ACw}={{BeP(w): A<, BAB <, A}: A Cw}.

e The Turing degrees are Dy = P(w)/ = where = is induced by <. In
detail,

Dy = {degp(A) : ACw}={{BeP(w): A<y BAB <p A} : A Cw}.

Definition 2.1.9. (Computable join)
Let A, B C w. Then the computable join of A and B is defined as

A®B={2a:ac A}U{2b+1:b€ B}.

Definition 2.1.10. (Set complement)
Let A C w. Then the complement of A in w is A=w-—A.

Fact 2.1.11. 2 For any total functions f, g : w — w we have:
f<eg <= [<rg.
Remark 2.1.12. (Correspondence between Dy and D,)
e Using fact 2.1.11 for any A, B C w we have:

A<; B «<— A®A<.,B&®B.

e There is an embedding ¢ : Dy — D, from the Turing degrees into the
enumeration degrees given by A — A ® A.

e The set ¢[Dy] C D, is called total enumeration degrees and is denoted by

TOT..

Definition 2.1.13. (Semicomputability)
A set A C w is semicomputable iff there is a computable function s4 : w X w — w

such that for all x,y € w:

o sa(z,y) € {z,y}

e x c AVye A = sa(x,y) € A.
Definition 2.1.14. (Kalimullin pair)

e Let U C w. The pair of sets A, B C w is a U-Kalimullin pair denoted® as
Ky (A, B)iff thereisaset W <, U suchthat Ax BC Wand Ax B C W.

2[20] Corollary XXIV p153.
*Here the notation Kr7(A, B) has two meanings: the first is the reference to the pair object
(A, B), the second is the statement that this pair object (A, B) is a U-Kalimullin pair.
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e The pair of sets A, B C w is a Kalimullin pair denoted as KC(A, B) iff there
isace.setWsuchthat Ax BCWand Ax BCW.

e A Kalimullin pair K(A, B) is non-trivial denoted as /Cy (A, B) iff both A
and B are not c.e.

e A Kalimullin pair K(A, B) is maximal denoted as Cp.x(A, B) iff for
any Kalimullin pair £(C, D) if A <. C and B <. D, then A =, C and
B=_D.

Example 2.1.15. Let A C w be a semicomputable set. Then (4, A).

Definition 2.1.16. (Kalimullin pair in the enumeration degrees D)

Let a,b,u € D, be some enumeration degrees.

e Then the pair of the degrees a and b is a u-Kalimullin pair denoted as
K.(a,b) iff

JA € a3B € b3U € u.Ky(A, B).

e The pair of the degrees a and b is a Kalimullin pair denoted as K(a, b) iff
JA € a3B € b.K(A, B).

2.1.2 Embedding Theorem

Induce < by <, and < on D, and Dy respectively.

Theorem 2.1.17. (Embedding theorem [24][10][25][2] %)
dn : Aut((D,, <)) — Aut((Dr, <))

Proof. This follows from the following 3 statements:

e Dy degrees are embeddable in D, i.e. 3. : Dy — D,, see remark 2.1.12.

e Dy are an automorphism base for D,, i.e.

Vf e Aut(’De)[f‘L(DT) = 1L(DT) = f= 198]
This is implied by Selman’s theorem 2.1.18 below.

e The total degrees TOT . := ([Dr] are definable in D, (theorem 2.1.20).
Then n(f) :== ¢! o f o is the required embedding. [

Theorem 2.1.18. (Selman’s theorem[24])
A<.B <= VX Cuw[B<. X®X = A< X®X]

[]

“The last paper with which the proof of the Embedding Theorem was completed is [2]. See [2]
pl3.
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Definability of the total degrees [10][25][2]

Theorem 2.1.19. (Definability of a Kalimullin pair [25])

The Kalimullin pair is definable in the enumeration degrees D.:
Va,b € D.[K(a,b) <= Vx € De.x = (aVax)A(bVx)

where V denotes lattice join and A lattice meet. 0

Theorem 2.1.20. (Definability of the total degrees [10] [25] [2] 7)
An enumeration degree total iff it is trivial or a join of a maximal Kalimullin pair,
ie.

Vd € D Jd € TOT. < d=0V3a,be D.[(d=aVb)AKumaxl(a,b)]l.

Proof. <« direction follows from theorem 2.1.21. = direction follows from theo-
rem 2.1.22. O

Theorem 2.1.21. (Semicomputable cut existence [2])
Let A, B C wand K\, (A, B). Then there is semicomputable cut C' C Q such that
A<.,Cand B <, C. O

Theorem 2.1.22. (Maximal Kalimullin pair for a total set [10] [25])
Suppose that D C wis total, i.e. D =, D @ D and that D > (). Then there are
sets A, B Cwsuchthat D =, A® B and K,,.x(A, B). O

2.1.3 Dependency tree

We provide a dependency tree of the Embedding Theorem.

A node in the dependency tree is a statement or a mathematical area of devel-
opment which depends upon all of its children as follows. If a node is a statement,
then the proof of this statement requires the assumption of all the statements at
the child nodes and the assumption of some of the statements achieved within all
the mathematical areas of development at the child nodes. If a node is a mathe-
matical area, then it to develop this area it is essential to require the assumption of
all the statements at the child nodes and the assumption of some of the statements
achieved within all the mathematical areas of development at the child nodes.

If a node and all its children are mathematical statements, this simplifies to
saying that a node in the dependency tree is a statement implied by the conjunction
of all its children.

For example, the root node is the Embedding Theorem stating Aut(D,) —

Aut(Dr) which follows from the three statements at the child nodes (namely

3The last paper with which the proof of the definability of the total degrees was completed is
[2].
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Dy — D, Dr is definable in D, and Dy is an automorphism base for D,) as
shown in the proof of theorem 2.1.17.
Aut(D.) — Aut(Dr)

Dr — D, D definable in D, D aut. base for D,

|

Selman’s theorem [24]

semicomputable
ct C CQ K-pair definability Semicomputability
existence (Kalimullin [25]) (Jockush [10])

(Cai et al. [2])

2.2 Generalization to a-Computability Theory

We introduce intuitively a-Computability Theory, its methods and differences
with classical Computability Theory. Then we present the main results of this
thesis including the main result Embedding Theorem in a-Computability Theory.
Finally, we provide a dependency tree of the Embedding Theorem which on one
hand serves as a proof outline, on the other hand shows dependencies between the

chapters of this thesis.

2.2.1 «-Computability Theory [23][4][17][6]

a-Computability Theory is the study of the definability theory over Godel’s L,
where « is an admissible ordinal, i.e. L,, satisfies the axioms of Kripke-Platek set
theory. One can think of equivalent definitions on Turing machines with transfinite
tape and time [12] [13] [14] [15] or on generalized register machines [16].

The a-degrees D, are the generalization of the Turing degrees. The a-
enumeration degrees D, are the generalization of the enumeration degrees. Note
that w-Computability Theory coincides with the classical Computability Theory.
Similarly, the Turing degrees are the w-degrees, the enumeration degrees are the

w-enumeration degrees.

In this summary we omit many basic definitions in a-Computability The-
ory. To get a glimpse of the next material, one should use the intuitions from
w-Computability Theory. For a proper introduction to a-Computability Theory,

consult chapter 3.
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2.2.2 Differences with classical Computability Theory and sep-

aration of notions
Limit stages

If @ > w, then limit stages of an algorithm for an extended Turing machine with
the tape and time « have to be defined appropriately. Similarly, constructions and

priority arguments at limit stages have to be specified.

Regularity and megaregularity

In a-Computability Theory one studies the definability properties of the subsets
of . In classical Computability Theory, the subsets of w have nice properties -

the central ones are regularity and megaregularity defined below.
Definition 2.2.1. (Regularity and megaregularity)
e Asubset A C «is regular ift Vy < a. ANy € Ly,

e A subset A C « is megaregular iff for every function f : « — a which is

Y2 definable over L, with a parameter A we have:

VK € L. f[K] € L.

Enumeration and Turing reducibility

Another major difference is that the enumeration reducibility in a generalized set-
ting can be one of the three different reducibilities: >J; definability with a positive
parameter, weak a-enumeration reducibility and a-enumeration reducibility de-
noted as A € Xy (Ly, BT), A <yae B, A <, B respectively for the parameters
Aand B.

Similarly the Turing reducibility corresponds to the following three notions:
A definability with a parameter, weak a-reducibility and a-reducibility, denoted
as A € Ay(Ly, B), A <ya B, A <, B respectively.

The exact relationship between the reducibilities is given below:

if B regular if B megaregular

/_\/\

Ae El(Laa B+) A <wae B A <ae B
if B regular if B megaregular

/\/\

A € Ay(Lq, B) A<y B A<, B

\_/‘\/
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Projectum emerged

A well-known notion of a projectum in a-Computability Theory is a new concept
relative to classical Computability Theory since in classical Computability Theory

the notion of a projectum is trivial and thus not manifested.

Definition 2.2.2. (Projectum)®

a* = min{y < « : 3 total injection i : & — ~ that is ¥, definable over L, }

Example 2.2.3. o = w%¥ is an admissible ordinal. Its projectum is a* = w.

Note that @ many requirements can be given indices from o* instead. Hence
one uses projectum «* to carry out a construction in only o* many stages to sat-
isfy a-many requirements. This technique enables one to bypass some of the

difficulties caused by the lack of the megaregular and regular sets.

Summary

In summary the following are the major obstacles in generalization:
e Existence of limit stages in algorithms and constructions.
e Existence of non-regular and non-megaregular sets.
e Multiple generalized notions of reducibility.

To tackle these, one uses new notions such as projectum a* of a.

2.3 Results

Let deg,.(Y) denote an a-enumeration degree that contains a set Y C «. Let
K (U) denote an a-jump of U. The following are the major results presented in
this thesis.

Theorem 4.3.6. (o-U-Kalimullin pair definability correspondence)
Assume V' = L and let « be an infinite regular cardinal. Let A, B,U C «. Then

Ku(A,B) <= VX C adeg, (X @ U) =deg, . (AD X ®U)Adeg,.(Bd X B U).
O]

Corollary 4.3.8. (Definability of an a-U-Kalimullin Pair)
Assume V' = L and let « be an infinite regular cardinal. Then
Va,b,u € Due[Ky(a,b) <= Vo € Dye.(aVaVu)AbVrVu)=zVul.
Definition 6.1 in [1] on p174 or Theorem 1.20 in [4].
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Proof. Follows from theorem 4.3.6. 0

Corollary 4.4.2. (Maximal o-Kalimullin pair for a total set, see 2.1.22)
Assume V' = L and let o be an infinite regular cardinal. Then every nontrivial

total degree is a join of a maximal C-pair, i.e.

Va € TOT e — {0}3b, ¢ € Doel(a = bV &) A Kunax (b, €)].

Proof. Follows from corollary 4.3.8 and the results on semicomputable sets in
chapter 4. [

The proof of the next statement required a development of a new notion of

a-rational numbers (), see chapter 5.

Theorem 6.0.1. (Semicomputable Cut Existence Theorem, see 2.1.21)
Let A and B form a nontrivial o-Kalimullin pair, then there exists an «-

semicomputable cut C' C @), N L, such that A <., C'and B <, C. O

Theorem 6.3.7. (Definability of total degrees)
Assume V' = L and let o be an infinite regular cardinal. A degree of D, is total

iff it is trivial or a join of a maximal /C-pair.
Proof. Follows from corollary 4.3.8, corollary 4.4.2 and theorem 6.0.1. [

Theorem 7.1.5. (Selman’s theorem, see 7.1.5)
Let v be an admissible ordinal. Let A, B C « and let A® B & K (U) be megareg-
ular. Then
A<pe B &= VX[ X = XOXAB<, XO&X = A<, XOX]
O

The main result of this thesis is the embedding theorem in a-Computability

Theory.

Theorem 7.3.1. (Embedding Theorem, see 2.1.17)
Assume V' = L. Let « be an infinite regular cardinal. Then Aut(D,.) < Aut(D,).

Proof. Follows from theorem 6.3.7 and theorem 7.1.5. 0

2.4 Dependency tree

We provide a dependency tree for the Embedding Theorem in a-Computability
Theory.
A node in the dependency tree is a statement or a mathematical area of devel-

opment which depends upon all of its children. If a node and all its children are
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mathematical statements, this simplifies to saying that a node in the dependency

tree is a statement implied by the conjunction of all its children.

Aut(Dye) — Aut(D,)
(section 7.3)

/ D,, definable in D, D,, aut. base for D,

Dy — D
“ e (section 6.3) (section 7.2)

|

Selman’s theorem

(section 7.1)

a-semicomputable

cut C C Q, IC-pair definability Semicomputability
existence (section 4.3) (section 4.1)
(chapter 6)

|

a-rational numbers (),

(chapter 5)

2.5 Established and new material

In section 2.3 we presented the major new results in this thesis. Here we summa-
rize in more detail which results and notions in this thesis are new and which ones
were introduced prior to this thesis. The greatest detail about the first appearance

of the results themselves can be found in the text.

2.5.1 Classical Computability Theory

The new results in this thesis in a-Computability Theory are well-established in
classical Computability Theory. This thesis does not introduce anything new in
classical Computability Theory. Most of the used material from classical Com-
putability Theory can be found in [5, 2, 10, 24, 25] .
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2.5.2 Chapter 3: a-Computability Theory
Section 3.1: Set Theory

The definition of the ordinal sum 3.1.7 and its related result proposition 3.1.28

are new. Other material is well-established and most of it can be found in

[11[4][8][23].

Section 3.2: Basic concepts in a-Computability Theory

This section contains introductory material about a-Computability all of which
can be found in [4] and [23]. Some statements without the references (i.e.
3.2.11,3.2.12,3.2.13,3.2.14) are usually considered too trivial to be even stated

explicitly outside of this thesis, yet are widely used implicitly.

Section 3.3: Higher Order Definability

Well-established material discussed in [23].

Section 3.4: Relativization

The parametrized definability or the definability with a parameter is very common
and widely used in [1][4][23] for example. On the other hand, the restriction to a
positive or a negative parameter seems to be introduced in this thesis for the first
time, although it is a very natural direction to explore.

This section contains some new results introduced in this thesis, however, not
significant as they are usually a straight-forward generalization, adaptation or con-
sequence of other well-established statements with a general parameter or without
1t.

Section 3.5: a-computable index of a set

The material in this section is wisely used, but usually implicitly assumed in a-
Computability Theory on the grounds of a generalized Church-Turing thesis. See
the remark in [4] at the bottom of the page 7 for example.

Section 3.6: Projectum

A projectum is a well-established notion in a-Computability Theory, see [4][23].
The statements about the projectum in section 3.6 are well-known and often im-
plicitly assumed in the literature (without a proof or a reference) as they are trivial
to prove. Explicit proofs were given for the statements for which no reference was

found. However, nothing in this section is new in this thesis.
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Section 3.7.1: Reducibility

This section generalizes to a-Computability Theory the enumeration reducibility
and its relationships with the Turing reducibility which are well-known in classical
Computability Theory.

The weak enumeration operator and reducibility were introduced in [6]
and easily seen equivalent definitions used in this thesis. Definition 3.7.2 and
definition 3.7.3 are new in this thesis, but equivalent. The definition of the
a-enumeration reducibility (definition 3.7.7) is different from the definitions in
[6] and the relationships were not investigated as the focus of this thesis was
different from the focus in [6].

Although this section contains new material, it is usually straight-forward to
prove and see from the existing results in classical Computability Theory or the
results in a-Computability Theory about the a-reducibility. The later is true by
realizing that the original definition of the (weak) a-reducibility just copies the
new definition of the (weak) c-enumeration reducibility twice - once for the posi-
tive part of the set and once for the positive part of the complement of the set. See

fact 3.7.16 for a formal correspondence.

Section 3.8: Regularity

This section investigates the following notions of the regularity: regularity,
quasiregularity, hyperregularity, megularity; and compares them with the notions
of a-finiteness, a-computability and boundedness. Regularity and hyperregular-
ity are well-established and investigated notions in a-Computability Theory, see
[41[23].

Quasiregularity is a new notion which is slightly weaker than regularity.
Megaregularity is a new notion which is slightly stronger than hyperregularity.
The material which concerns quasiregularity and megaregularity in this thesis
is new. The remaining material can be considered as well-known and is often
assumed and used implicitly in the literature. Some explicit proofs are given in
this thesis.

Section 3.9: Reducibilities and definability

This section explores mostly the relations between the >;-definability with a pos-
itive parameter, weak a-enumeration reducibility and a-enumeration reducibility
on general, regular and megaregular sets. An analogous exploration is present in
[4] between the A;-definability with a general parameter, weak a-reducibility and

a-reducibility on general, regular and hyperregular sets, see [4] propositions 1.15,
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1.30, 1.32. Hence the general ideas of making such comparisons between the no-
tions of the definability is not new. However, the exact results concerned with the
Y’1-definability with a positive parameter and (weak) a-enumeration reducibility
in this section are new. Their proof may be inspired by analogous results, but
often differs as the definability with a positive parameter behaves quite differently

from the definability with a general parameter.

Section 3.10: Degree Theory

The a-degrees are well-established and studied, see [4][23]. The a-enumeration
degrees are newly introduced in this thesis. And so the results about them are new.
Similarly, c-join operator is a new concept introduced in this thesis, but possibly

general and useful enough to have been discovered somewhere before.

Section 3.11: Computability with infinite cardinal and assumption V' = L

The well-established material of this section can be found in some standard texts
on Set Theory that include material on regular cardinals, replacement axiom and
constructive universe such as [21]. Some material in this section can be thought
of as new, but it rather puts the well-established material from Set Theory into
a perspective of a-Computability Theory through direct observations or simple

proofs.

Section 3.12: c-enumeration jump

This section generalizes a well-known notion of the enumeration jump from clas-
sical Computability Theory (E.g. see [25].) unseen in a-Computability Theory
before. Therefore all the material including definitions and results in this section

1S new.

Section 3.13: Simple construction

In this section a simple construction is presented which is new in this thesis.

2.5.3 Chapter 4: Kalimullin pair and semicomputability

All the material in this chapter except lemma 4.1.13 is new in a-Computability
Theory and generalizes well-established material from classical Computability
Theory. Section 4.1 generalizes the classical notion of semicomputability and
some related results from [10]. Section 4.2 and section 4.4 generalize the re-
sults on the definability of a Kalimullin pair [25] and the results about maximal

Kalimullin pairs [2] in classical Computability Theory.
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2.5.4 Chapter 5: a-rational numbers ),

An idea to extend or generalize rational or real numbers is not new. Conway’s
field of the surreal numbers is a good example which extends the field of the
real numbers into transfinite. However, the definition of the S-rational numbers
()3 is new and is well-suited for the application within this thesis. Just as the
real numbers can be defined in many different ways (e.g. through Dedekind cuts,
equivalence classes of Cauchy sequences or infinite decimal representations), and
each is better suited for a different application, so also [-rational numbers and
their definition can turn out to be more suitable in some applications than other
well-established concepts.

() is defined as a set of a-strings. An a-string is a new concept in this thesis
which is a generalization of a string. A string is a well-known concept in the field
of Computer Science. An «-rational is represented by a binary a-string. Binary
representations are common in Computer Science. Transfinite binary representa-
tions are less common, but not new in this thesis, e.g. they are very useful (but
usually implicit) in general priority arguments in a-Computability Theory.

As () is anew concept in this thesis, also all results specific to it. The chapter
uses a general well-known result from the model theory about the infinite count-

able dense orders (theorem 5.3.1).

2.5.5 Chapter 6: Semicomputable cut in (),

All the material in this chapter is new in a-Computability Theory and generalizes
the labelling algorithm and the definability of the total enumeration degrees in the
enumeration degrees from the classical Computability Theory [2]. The general-
ization is not straight-forward and it is claimed that the most creative and novel

work of the thesis is present in this chapter.

2.5.6 Chapter 7: Embedding Theorem

All the material in this chapter is new in a-Computability Theory and generalized
from classical Computability Theory. The Selman’s Theorem is generalized from
[24][30]. The Embedding Theorem is generalized from [2] p13.
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Chapter 3
a-Computability Theory

a-Computability Theory is the study of the definability theory over Godel’s L,
where « is an admissible ordinal. In this thesis, o always denotes an admissible
ordinal. One can think of equivalent definitions on Turing machines with a trans-
finite tape and time [12] [13] [14] [15] or on generalized register machines [16].
Recommended references for a-Computability Theory are [23], [4], [17] and [6].
Classical Computability Theory is a-Computability Theory restricted to av = w.

In this chapter we introduce key notions and topics in a-Computability The-
ory relevant to this thesis including admissibility, a-finiteness, c-computability,
a-computable enumerability, relativization, projectum, regularity, quasiregularity,
hyperregularity and megaregularity, a-enumeration reducibility and « reducibil-
ity, degrees and an a-enumeration jump. We observe that a-Computability Theory
behaves more like classical Computability Theory when « is an infinite regular
cardinal. Finally, we perform a simple construction involving a pattern central to

more complex arguments presented later in this thesis.

A lot of content in this chapter is essential to read the main results in chapter 4,
chapter 5, chapter 6 and chapter 7. Many statements in this chapter are invoked in

later proofs so frequently that their use is often implicit.

3.1 Set Theory

We mainly introduce Godel’s constructible hierarchy, Kripke-Platek set theory
and admissible ordinals. Background on Set Theory can found in [8]. The material

on admissible sets is mainly in [1].

Everything in this section is well-known except the notion of the ordinal sum
(definition 3.1.7).
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3.1.1 Ordinals and cardinals
Definition 3.1.1. (Ordinal and cardinal [8])

e The relation <C X x X is a well-order on X iff it is a total order and every

non-empty subset of X has a least element wrt <.
e The set X is transitive iff VY € XVZ e Y.Z € X.
e An ordinal is a transitive set well-ordered by €.

e A cardinal is an ordinal which is equal to its own cardinality.

Definition 3.1.2. (Cofinality of an ordinal [8])

The cofinality of an ordinal « is denoted as cf(«) and defined as:
e cf(0) =0,
o cf(y+1):=1,
o cf(§) =min{y < :3f : v — 0[Ve <6308 < v.f(B) > €]} if im(9).

Definition 3.1.3. (Regular and singular cardinal [8])
A regular cardinal is a cardinal that is equal to its own cofinality. Otherwise the

cardinal is called singular.

Example 3.1.4. [8] 8, and N, are regular cardinals. 8, is a singular cardinal
forn € N.

3.1.2 Ordinal arithmetic

Fact 3.1.5. [8] An ordinal « is a limit ordinal iff there exists an ordinal [ s.t.

a=w-p.

Theorem 3.1.6. (Cantor Normal Form - CNF [8])
For every positive ordinal « there exist unique positive integers aq, ..., a; and
ordinals oy, . .., oy satisfying a; > ... > o > 0 s.t.
oa=wa;+...+w - ay.
[
We define the ordinal sum. In a-Computability, the computations are per-

formed within o time where « is an ordinal strong enough to be closed under the

ordinal sum. This property is exploited in chapter 6.

Definition 3.1.7. (Ordinal sum')

For an ordinal v we define the ordinal sum By [ recursively:

Mntroduce in this thesis.
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° Z/B<Oﬁ =0,
b Zﬂ<7+1ﬁ = (Z[Kw 6) +7
® > 5B =sup{d 4 B:vy<d}iflim(d).

Proposition 3.1.8. > Let &« = w® - a; + ... + w - a; be an ordinal greater than

w expressed in CNF where oy > ... > a; > 0. Then

) VB<alf+a=a) < V3, y<a(lB+7<a) & F(a=u),
i) Vi<a(f-a=a) < Vo,y<a(f-7<a) < Ele(a:w“’e),
iii) Y, ,8=0a <= I5(lim(0) Ao = u?),

) l+a=a < aq; > 1,

V) w-a=a <= qi > W,

vi) lim(6) = a0 =w™ 4.

3.1.3 Godel’s Constructible Universe

Definition 3.1.9. (Godel’s Constructible Universe [4][23])
Let Ord represent the class of all ordinals. Gddel’s constructible universe is de-

noted by L and defined by transfinite recursion as follows:

o L, :=Def(L,) = {z|r C L, and z is first-order definable over L. } for
any v € Ord,

o L5 = U7 <5 L for a limit ordinal ¢ € Ord,

o L= Uﬁeord Lg.

3.1.4 Kripke-Platek set theory

Definition 3.1.10. (Kripke-Platek set theory axioms [1])
e Extensionality: Va,bja =b <= Vz[r € a <= x € ]

e Empty set: daVzr.x & a

2Some of these facts can be found as exercises to the course Axiomatic Set Theory taught by
Peter Holy [7].
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Pairing: YaVb3c.c = {a, b}

Union: Va3WWzlx € b <= Jylx € y Ay € a]

Induction: For any formula ¢(x) the following holds:

Ve[Vy € x.0(y) = o(z)] = Vr.¢(x).

e Yy-separation: For any ¥, formula ¢(x) the following holds:

VadbVzjx € b <= z € a A ¢(x)].

Yg-collection: For any 3}, formula ¢(x,y) the following holds:

VulVe € udy.¢(x,y) = F2Va € uldy € z.¢(z,y)).

3.1.5 Admissible ordinal

Definition 3.1.11. (Admissible ordinal [4][1])

e An ordinal « is XJ,, admissible iff « is a limit ordinal and L, satisfies >,,-

collection:
Vo(z,y) € Bp(La) Lo E Vu[Vr € udy.d(x,y) = F2Vr € udy € z.¢(z,y)]

where L, is the a-th level of the Godel’s Constructible Hierarchy (defini-
tion 3.1.9).

e An ordinal « is admissible iff o is ¥; admissible.

Throughout the rest of the thesis, the ordinal « is always an admissible ordinal

unless a weaker assumption is made explicitly.

Definition 3.1.12. (Stable ordinal [1])
An ordinal f3 is stable iff Lg <5, L, i.e. Lgis a >, elementary substructure of L.

Example 3.1.13. (Examples of admissible ordinals [4] [31])
° wch - the Church-Kleene ordinal, the first non-computable ordinal,

e every stable ordinal o, e.g. d; - the least ordinal which is not an order type
of a A% subset of N, 1% stable ordinal,

e every infinite cardinal in a transitive model of ZF 3.

Lemma 3.1.14. * Let o be an admissible ordinal. If A € A{(L,) and A C K €
L, then A € Ag(L,).

3[1] p53 Corollary 3.4.
“The relativization of lemma 3.1.14 is proposition 3.4.18.
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Proof. This follows from the basic fact that KP - A;-separation. 0
Lemma 3.1.15. [1] Let « be an admissible ordinal. If 6 < a, then Ls <y, L,.

Proof. This follows from the fact that L is transitive.

For a detailed proof of the relativized statement see proposition 3.4.21. 0

Lemma 3.1.16. [4] Let a be an admissible ordinal. If A € A;(L,)and A C K €
L,,then A € L,.

Proof. Assume A € Ay(L,)and A C K € L,. By lemma 3.1.14 A € Ay(L,).
Note that since the formula defining A is finite, it uses only a finite number of
parameters from L,. Thus there is some 6 < « s.t. all these L, parameters are
in Ls. As Ls <x, L, by lemma 3.1.15 and A € Ag(L,), so A € Ay(Ls) and
A € Def(Ls). Therefore A € L, as required. N

Definition 3.1.17. (Replacement axiom [8])

Let C be a class of formulas, e.g. ¥,,. Then L, satisfies C-replacement axiom iff
we have the following: for any total function f : @ — « definable with some
formula in C and parameters from L, and for any K € L, it is true that f[K] €
L,

Lemma 3.1.18. If L, = ¥;-collection, then L, = ¥;-replacement.

Proof. Assume L, |= Xj-collection. Assume f € ¥(L,), K € L, and
fIK] € K € L,. Note f[K] € Ay(Ly). Thus f[K] € Ly by lemma 3.1.16.

Therefore L, |= Y;-replacement as required. 0

Proposition 3.1.19. (Equivalent notions of admissibility?)
Let a be a limit ordinal. TFAE:

e (v is admissible,

e [, satisfies >i1-collection,

e [, satisfies >g-collection,

e L, = KP where KP is Kripke-Platek set theory,

e L, = Yj-replacement for total functions: for any total (L, ) definable
function f : @« — a and for any K € L, itis true that f[K] € L,,

e L, | Yj-replacement for partial function: for any partial ¥;(L,,) defin-
able function f : @« — « and for any K € L,: if f[K] is defined (i.e.
Ve € K.f(x) ), then f[K] € L,.

SUses [23] Chapter VII: Admissibility and Regularity, Section 1.1 and Proposition 1.5. More
material on this can be also found in [1].
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Proof. To prove the proposition note the following facts. By Proposition VII.1.5
of [23] we have: « is admissible iff L, | 3,-Collection. Note that L, = -
collection implies L, = ¥;-replacement by lemma 3.1.18.

If L, | ¥-replacement, then imply that L, |= ¥g-collection by constructing
a total function f : o — a € ¥4(L,) from Xo(L, ) formula ¢(z, y). O

Admissibility and cofinality

Definition 3.1.20. (3,,(L,,) cofinality®)
Let p < a. X, (L,,) cofinality of p is defined as

oncfo(p) =min{8 < p:3f: = p € X, (La) [V < pIy < B.f(7) > ]}

Abbreviate o,,cf, () as o,cf ().

The ordinal o,,cf(«) measures the extend to which « is not admissible:
Proposition 3.1.21. 7 v is 33, admissible iff o,,cf(a) = a.
Proof. « is 3, admissible iff L, = 3,-collection iff o, cf(a) = a. O
Corollary 3.1.22. ® If « is not admissible, then ogcf(a) < a.

Proof. Assume that « is not admissible. Then « is not Xy admissible by proposi-

tion 3.1.19. Hence ogcf () < « by proposition 3.1.21. O

Computably inaccessible ordinal

Remark 3.1.23. A limit of admissible ordinals may not be an admissible ordinal.
An ordinal which is admissible and a limit of admissible ordinals is called to be

computably inaccessible.

Fact 3.1.24. ° If o > w is admissible and L, = X;-separation, then « is com-

putably inaccessible.
Proposition 3.1.25. '° Let o > w be an admissible ordinal.

1. If L, |= Xs-replacement, then there exists C C as.t. V3 € C.Lg |= ¥ -replacement
and o = sup(C).

2. Therefore if an admissible ordinal o has a maximal admissible predecessor,

then L, cannot satisfy >Jo-replacement.

6[4] Definition 1.24

141 1.24

8This statement was discussed with Robert Lubarsky.
°Follows from [1] p175 Theorem 6.3. and p176 Theorem 6.8.
19The proof pointed out by Michael Rathjen.
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Proof. As L, = Xs-replacement, so L, | X;-separation. Hence « is com-
putably inaccessible by fact 3.1.24. Therefore the statement 1 is true.

The statement 2 follows from the statement 1. O]

Closure under ordinal operations

The strength of an admissible ordinal reflects in the strength of its closure under
ordinal operations. Every admissible ordinal @ > w, is also an e ordinal, i.e.

w® = «. Hence proposition 3.1.8 implies proposition 3.1.26 below.
Proposition 3.1.26. ' Let o be an admissible ordinal and 3,y < «, then
) f+v<a
i) fg-v<a,
i) 87 < a.
O]
Proposition 3.1.27. [9] If « is an admissible ordinal, then « = wor w - @ = a..

Proof. For a« = w both statements clearly hold. So suppose that « > w. By
proposition 3.1.26 an admissible ordinal is closed under ordinal multiplication.
Hence by the proposition 3.1.8ii there exists an ordinal € s.t. a = w*".

The proposition 3.1.27 is true since w® > w and hence by the proposition

3.1.8v we have w - a = «. O
Proposition 3.1.28. '* If « is an admissible ordinal, then > pea B =

Proof. Recall the definition of the ordinal sum ) <o 0 for an ordinal o (defi-
nition 3.1.7). Let § := w¢, then ¢ is a limit ordinal and o = w? and so by the

proposition 3.1.8iii we have > 5, 8 = a. N

3.2 Basic concepts in a-Computability Theory

The statements in this section are very common in a-Computability Theory and
can be found or used in [4][23].
Assume that « is an admissible ordinal. In a-Computability Theory, sets in

L, play a similar role that finite sets play in the classical Computability Theory.

Definition 3.2.1. [4] A set K C « is a-finite iff K € L,.

11[1] p274 Corollary 3.5.
2Tntroduced in this thesis.
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Proposition 3.2.2. [4] There exists a 3, (L,,) definable bijection b : o« — L,. [

Hence we can index a-finite sets with an index in a.. Let &, denote an a-finite
set b(7y).

Proposition 3.2.3. [17][4] For every n, there is a > (L, ) definable bijection

Pn @ = a X aX...x «a(n-fold product).

By proposition 3.2.3 we can also index pairs and other finite vectors from
" by an index in . Moreover, by proposition 3.2.3 one can consider a partial

function f : @ X a X ... X a — « and its graph to be subsets of a.

Remark 3.2.4. [4] If K; and K are a-finite subsets of «, then using the admis-
sibility of a and proposition 3.2.3 the set p, '[K; x Kj] is a-finite. Thus we can
encode products of a-finite sets as a-finite subsets of « using p,,. This fact will be

used implicitly.

Recall definition 2.1.2 that A is (L, ) definable iff A € ¥,(L,) iff A is

definable with a >; formula with parameters in L,,.
Definition 3.2.5. (o-computability and computable enumerability [4])

e A function f : o — « is a-computable iff the graph of f is 3 (L,,) defin-
able.

o Aset A C «is a-computably enumerable (a-c.e.) iff A € 31(L,).

e A set A C «a is a-computable iff A€ A(L,) iff A€ X(L,) and
a—A S El(La>.

Instead of using the definability over L,, an alternative approach to

a-Computability Theory studies computation on extended Turing machines.

Remark 3.2.6. (a-Computability on an extended Turing machine [14]))

Let an a-machine be a Turing machine with time « and tape length .
e f:a — aisa-computable iff f is a-machine computable,
e Ais a-computable iff A is a-machine computable,
e Ais a-c.e. iff Ais a-machine c.e.

Proposition 3.2.7. '° For every set A C o we have:

A€ L, iff A € Ay(L,) and A is bounded by some 3 < a.

13Pr()position 1.12b in [4].
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Proof. This follows from the fact that L, = A-separation.

For a detailed proof of a more general result, see lemma 3.4.13. 0
Fact 3.2.8. * TFAE:
i) Ais a-c.e.,
i) f ta— ast f € X(Ly) N A= dom(f),
i) 3f :a — ast f € B1(La) AN A =rng(f).

Theorem 3.2.9. (Uniformization Theorem'®)
Let n > 1. For each ¥,,(L,) relation R(x,y) there is a 3,,(L,) function f satis-
fying

Vo < afif Jy < a.L, E R(x,y), then L, = R(x, f(x))].

Proposition 3.2.10. (a-finite union of a-finite sets'®)

a-finite union of a-finite sets is a-finite, i.e. if K € L,, then |J _x K, € L.
Proof. Follows from lemma 3.5.4 1). [

Proposition 3.2.11. Let A, B C «. If A is unbounded and B € L,, then
A—B¢€L,.

Proof. As B € L, so B is bounded. Thus A — B has to be unbounded and hence

cannot be «-finite. ]

Note 3.2.12. Suppose that A C «vand f : @« — « are a-computable. Is it true that
f[A] is also a-computable?
Not in general using fact 3.2.8 and the fact that there are a-computably enu-

merable sets which are not a-computable.
Fact 3.2.13. Forany A C «, itmusthold [A & L,V A & L,].
Proposition 3.2.14. Vf € ¥ (L,)[dom(f) € L, = f € L,].

Proof. Define g : x — (x, f(z)). Note g € 31(L,) since

zeg = Fylz = (z,(x,9) A (v,y) € f]
and f € ¥(L,). Butthen f = g[dom(f)] € L, as required since dom(f) € L,,
g € ¥1(Ly) and « is admissible. O

The computable join turns out to be very useful to encode within one set the

information from two sets.

4From Proposition 1.12a in [4].
I5Theorem 1.27 in [4].
16From [23] pl162.
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Definition 3.2.15. " The computable join of sets A, B C « denoted A ® B is
defined to be

A®B={2a:a€ A}U{2b+1:b € B}.

The computable join satisfies the usual properties of the case a = w.

3.3 Higher Order Definability

Recall that L, is defined using the first order definability possibly transfinitely
many times. The first order definability over such L, relates to the higher order
definability for a suitable a.. Thus a-Computability Theory in one way is a study
of the higher order definability too.

Let HYP denote the class of the hyperarithmetic sets. Recall X1, TI!, Al are
second order definable classes. Let n : O — w{X take a computable notation in

Kleene’s O C w to the ordinal represented by it. Then:
Theorem 3.3.1. (Correspondence with second-order definability[4][23])
i) VACWAEHYP <= Ac A <= Ac Lox],

i) VA C wch[A € Lwlck = n_l[A] € AH,
i) VA C w{¥[A € X0(L,ex) <= n~'[A] € I1j],
iv) VACwl[A € Ly <= Ac A,

V) VAC w[A € B)(Lgy) <= A € 5.

3.4 Relativization

We study the definability over L, with a parameter B C «. This can be thought of
as an analogue of the oracle computation with the oracle 5. Once we generalize
the Turing and enumeration reducibilities later in section 3.7.1, we will compare
them in section 3.9 with this parametrized definability of section 3.4 in a useful
way.

The definability with a parameter is very common and widely used in
[1]{4][23] for example. Hence the results with a general parameter in this section
are not new.

On the other hand, the restriction to a positive or a negative parameter seems
to be introduced in this thesis for the first time, although it is a very natural direc-
tion to explore. Consequently, the results concerned with the definability with a

positive parameter are assumed to be new in this thesis.

TFrom [4] p8.
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3.4.1 Model with a parameter

We parametrize the arithmetical hierarchy and define a model L, with a parameter
B C .

Definition 3.4.1. (Arithmetical hierarchy with a parameter'®)

Let B C «. We call the expression B™ a positive parameter and the expression
B~ anegative parameter. Let QF (A) denote the class of quantifier free formulas
with parameters from .A. We define recursively QF (L, B) - the class of quantifier

free formulas with B € { B, B™, B~} as a parameter as follows:
o if K\, M€ L,, thenz; =x;,z; = M, K =z;and K = M are in QF(L,),
o if K € L,,thenx € K isin QF(L,),
o if $(7)isin QF(L,), then ~¢(Z) is in QF(L,),
o if ¢(T)is in QF(L,), then ¢(T) is in QF(L,, B) for B € {B, B*, B},
o 1€ Bisin QF(Ly, BY),
e ~z € Bisin QF(L,, B7),
o if (%) is in QF(L,, B™) orin QF (L, B™), then ¢(7) is in QF (L., B),

o if ¢(7) and ¢/(T) are both in QF(.A), then both ¢(T) A1)(T) and ¢(T) V()
are in QF (A).

We define Ag(Lq, B) - the class of formulas with bounded quantifiers with
B € {B, Bt, B~} as a parameter as follows:

o if (7) is in QF(L,, B), then ¢(T) is in Ay(L,, B),

o if K € L, and ¢(Z) is in Ag(L,,B), then both Jz; € K.¢(T) and
V; € K.¢(T) are in Ag(Lq, B).

o if ¢(T)isin Ag(Ly, BT) orin Ag(Ly, B™), then ¢(T) is in Ag(La, B).

Let 3o(La,B) = lly(La, B) == Ao(Lqa, B). Then ¥(L,, B) is the class of
formulas with an existential quantifier and with B3 as a parameter. More precisely
we define ¥, 1(L,, B) as follows:

o if ¢(7) is in I, (L, B), then Vz,;.¢() is in I1,,(L,, B) and 3z;.¢(T) is in
En—i—l(Laa B),

18Tntroduced in this thesis.
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o if ¢(7) is in X,,(Ly, B), then 3x;.¢(T) is in X,,(L,, B) and Vz;.¢(Z) is in
Hn—l—l(Lau B)’

o if ¢(T)isin ©,(L,, BT) orin ©,(L,, B7), then ¢(T) is in ©,,(L,, B) for
O e {¥, 11},

e close the classes Y, I1,, under the equivalence of the formulas.
Finally, define A, 1(L,, B) as follows:
o A, (Ly,B) :=%,(Ls, B) N11,(Ly, B),
e if ¢(7)isin A, (Ly, BT)orin A, (L,, B7), then ¢(Z) is in A,,(Ly, B),
e close the classes A,, under the equivalence of the formulas.
Proposition 3.4.2. ' Let f be a partial function. Let A C «. Then
i) dom(f) € I%(L,, A) = [f € 2Ly, A) <= [ € A%(L,, A)],
i) dom(f) €Al = [feX! «— felll < feAll

Proof. As f is a function,

flx) =y <= Vzly= 2V f(z) # 2] ANz € dom(f).

Proposition 3.4.3. ?° The following are true:
i) if 6(2. B) € 51 (Lo, B*). then 6(z, B) € (Lo, B).
i) If ¢(z, B) € $1(La, B), then 6(z, K) € X1(Ly) for K € L.

Proof. The statement i is clearly true as the definability with the positive parame-
ter B is just the definability with the parameter B with some additional restric-
tions on what reference to B can be made.

To prove the statement ii, note that if ¢(z, B) € ¥;(L,, B), then for any K
we have ¢(z, K) € (L, K) by applying syntactic substitution of B with K.
However, if in addition K € L,, then ¢(z, K) € 3;(L,) as K is included as a

parameter in L, already. [
Proposition 3.4.4. (Properties of arithmetic definability>')

i) ©,(La, (B® B)*) = 0,(Ly, B) where © € {A, X, 11} and n € N,

19 Adapted from proposition 1.7 in [23].
Tntroduced in this thesis.
2ntroduced in this thesis.
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ii)

A€ A(Ly,B) <= AP A€ (Ly,B) <= A®AcIl(Ly, B).

Proof. i) We would like to show that for any formula ¢ and for any n € Nt we

1)

have
¢ € On(La,(B@ B)") <= ¢ € 0,(La, B)
up to the equivalence of ¢. By expressing the formula ¢ in a prenex form

we reduce the problem to proving only the following two statements for any

formula ¢:

¢ € X1(La; (B® B)") <= ¢ € (Lo, B), 3.1)

¢ €1i(Ly, (B® B)) <= ¢ €1I;(L,, B). 3.2)
Assume ¢ € Y1 (Lo, (B ® B)*) andlet ¢ = 3x¢’ for ¢’ € Ag(La, (B @ B)*).
Obtain the formula ¢” from the formula ¢’ by replacing every atom
x € B® B for every variable x with the equivalent a-computable sub-
formula Jy < z[(z=2yAy € B)V(r=2y+ 1Ay & B)]. Observe
¢ = ¢". Note that ¢" € Ay(L,, B) and so ¢ = 37¢" € ¥1(L,, B). Hence
¢ € X1(La,(B® B)*) = ¢ € Y1(La, B) up to the equivalence of ¢.
For the other direction, assume ¢ € (Lo, B) and let ¢ = 3z¢’ for
¢ € Ao(La, B). Use De Morgan’s law to move the negations to
the literals. To obtain the formula ¢” from ¢, replace every literal
—x € B with the subformula 2z + 1 € B @ B and afterwards every literal
& € B with the subformula 22 € B @ B. Observe ¢/ = ¢’. Note that
¢" € A(Ly,(B@ B)Y) and so ¢ = 37¢" € ¥1(La, (B @ B)*). Hence
¢ € Y1(Lo,B) = ¢ € %y(La, (B @ B)*Y) up to the equivalence of
¢. Thus statement (3.1) is true. Statement (3.2) follows from a similar
proof where X; and 3 are replaced by II; and V respectively. Therefore
On(La, (B ® B)*) = 0,(La, B) where © € {A ¥, 11} and n € N* as
required.

Note A € Ay(Lo, B) <= A€ Xi(Ly, B)AA €T (Ly)
— Ae¥(Ly,B)NAE X (Ly,B) —= A®Ac X (L, B).
Similarly, A € Ay(Ly, B) <= A€ %,(Lo, B) A A € TI(L,)
<= Acl(Ls,B)NA €T |(Ly,B) <= A® AcIl(Ly,B).
O

Remark 3.4.5. (Model with a parameter??)
If B € {B,B~,B"} is a parameter in a formula ¢ (7, B), we face a difficulty of
interpreting the literal z € B (or x ¢ B) in the model L, if B & L,.

22This should not be confused with a relativized model (Ly, B) in [4] p18 with the same nota-

tion.
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For this purpose we define an extended model (L, 3) which is a pair of L,
and a set B C «. The language of the interpretable formulas over the model
(Lq, B) is extended by a predicate B and has restrictions on the formulas depend-
ing on B to comply with definition 3.4.1.

Note the definability over L, with a parameter 3 is equivalent to the definabil-

ity over (L, B). Hence we use them interchangeably.

3.4.2 Bounded quantifier rearrangement

When having a formula with bounded quantifiers in front of the unbounded quan-
tifiers, it is possible to rearrange it to an equivalent formula where the bounded
quantifiers are behind the unbounded quantifiers. This rearrangement is the source
of many statements in this subsection about the arithmetical hierarchy of the for-

mulas with the unbounded quantifiers.

Proposition 3.4.6. [23] Assume that ¢(x,y, z) is a Ag(L,)-formula. Then the
formula Vy € K3z.¢(x,y, z) is equivalent to some > (L, ) formula.

Proof. 1t is sufficient to prove the claim
Vy € K3z.¢(x,y,2) <= JHYy € K3z € H.¢(x,y, 2).
The < direction is clear. For the = direction assume Vy € K3z.¢(x,y, 2).
Define a partial function
f=Aly,2) eaxa:ye KAN¢d(x,y,2) ANV < z.=¢(x,y,2")}.
The function f is A definable with K as a parameter from L,. Thus f is ¥;-
definable over L,. By the admissibility of o and the a-finiteness of K, the set

H = f[K] must by a-finite. Furthermore, note that Vy € K3z € H.¢(z,y, 2).
Hence dHVy € K3z € H.¢(x,y, z) as required. O

We generalize proposition 3.4.6 to proposition 3.4.7 and proposition 3.4.9.

Proposition 3.4.7. * Let B € {B,B",B~}. Assume (L,,B) E Y-
collection. Assume that ¢(x,y, z) is a Ag(L,, B) formula. Then the formula
Vy € K3z.¢(z,y, z) is equivalent to some ¥ (L, 5) formula.

Proof. 1t is sufficient to prove the claim
Vy € K3z.¢(x,y,2) <= JHYy € K3z € H.¢(x,y, 2).
The <= direction is clear. For the = direction assume Vy € K3z.¢(z, vy, 2).

Note (L,,B) | Xg-collection and ¢(z,y,z) € Ao(La,B). Therefore
JHVy € K3z € H.¢(x,y, z) as required. Il

BTntroduced in this thesis.
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Fact 3.4.8. Suppose that the collection axiom holds for the formula ¢. Then:
1) \V/yl & K13y2.¢<y1,y2) <~ HKQVyl c KlEIyg € Kg.gb(yl,yg)
11) Elyl & KNyg.ﬂgb(yl,yg) < VKQHyl c Kl‘v’yg c Kg.ﬁgf)(yl,yg)

Proposition 3.4.9. (Bounded quantifier rearrangement>*)
Let BC a,n € Nand K € L,. DefineI_; := (). Assume (L, B) [ II,,_;-collection
or (L,, B) = A,-collection. Then:

i) ¢ € (Lo, B) = F € B,(La, B)[t) =Vy € K.¢(y)]
ii) ¢ € Uy(La, B) = W € (Lo, B)[t) = Iy € K.4(y)]

Proof. First note that (L, B) = A,-collection or (L, B) | II,_;-collection
implies (L,, B) = I1,,,-collection for any m < n.

We prove the statements by the induction on n € N. The base case whenn = 0
1s trivial. For the inductive case, assume IH that the statements hold for some n.
Let ¢ € ¥,41(Ly, B). Then ¢ = 3y .¢'(y,y') for some ¢'(y,y') € 11,,(Ly, B).
We have

Vy e K3y.¢'(y,y) < IK'Vye K3y € K'.¢'(y,v')

by I1,,(L,, B)-collection and fact 3.4.8i. By IH the formula 3y’ € K'.¢'(y,vy’) is
equivalent to some I1,,(L,, B) formula. Hence 3K'Vy € K3y’ € K'.¢'(y,v') is

equivalent to some formula ¢ € 3, 1(L,, B). Therefore using the equivalence,
Vye Ko(y)=Vy € KIy.¢'(y,y/) =3IK'Vy € KIy' € K'.¢'(y,y) =

as required.
The second statement for the formula ¢ € I1,,,1(L,, B) holds by applying the

first statement on the formula —¢ which is ¥, 1 (L., B) up to equivalence. This

completes the induction. [

3.4.3 Transitivity for the arithmetical definability

If A is definable from the parameter B and B is definable from the parameter C,
then A is definable from the parameter C'. This subsection explorers the exact
first-order definability class of A with the parameter C' given the definability class

of A with the parameter B and the definability class of B with the parameter C'.
Proposition 3.4.10. (Transitivity for the arithmetical definability?)

Assume (L, C) = A,-collection. Then:

i) ¢ €X1(La, B), B € Ay(La,C) = Fbl¢p = and tp € X,,(La, C)).

2Introduced in this thesis.
23 No reference known. Possibly new in this thesis.
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ii) Ae S (Ly,B),BeAy(La,C) = A€ ,(La,C)
iii) ¢ € II1(Lqy, B), B € Ap(Lyo,C) = [ = and ¢ € I1,(La, C)).
iv) Aell;(Ls,B),B € Ay(Ly,C) = A€l (L, C)
v) A€ Ay(La,B),B € Ap(Ly,C) = Ae A, (Ly,C)

Proof. As B e A,(Ly,C), so z€B <= 6(z,C) for some formula
0(z,C) € Ay(La, C).

For the first statement, let ¢(Z, B) € (L., B) be a formula where 7 is a list
of variables. WLOG let ¢(Z, B) be in a prenex normal form, i.e. have all the nega-
tions, conjunctions and disjunctions in its quantifier-free subformula. Replace an
atom 2’ € B in the formula ¢(7, B) by the subformula 0(z’, C'). Denote the new
formula by ¢(Z,C'). We will prove by the structural induction on the formula
that ¢(z,C) € X,(La,C). Note that ¢(z, B) and (T, C) are equivalent. This
implies ¢ = ¢ and ¢ € 3,,(L,, C) as required.

For the second statement, let ¢(z, B) € ¥,(L,, B) be a formula defining A.
Note that ¢(z, B) and ¢(x, C') define the same set A. This implies A € ¥,,(L,, C)
as required.

The third and the fourth statements follow by the duality from the first and the
second respectively.

The statement v follows from the statements ii and iv.

Proof of (7, C) € A, (L., C) if ¢(Z, B) € QF(L,, B) by induction
o If ¢(7, B) € QF(L,), then ¥(z,C) € A, (L,, C) trivially.
o If (T, B) = x; € B, then¢(Z,C) = 6(x;,C) € Ap(Lq, C).

o If ¢(7,B) = —¢/(T, B), then by IH ¢/'(Z, B) = ¢/(z,C) for some for-
mula ¢'(7,C) € A,(Ly,C). Thus ¢(z,C) = -/'(z,C) = ¢(T, B) and
¥(x,C) € A,(La, C) as required.

o Let (T, B) = ¢o(T, B) 441 (T, B) where ¢ € {A,V}and ¢;(Z, B) € ¥1(La, B).
Then ¢ (z, C') = (T, C) Y1 (7, C). By IH (T, C) € A,(La, C). Hence
(T, C) € Ay(Ly, O).

Proof of (7, C) € ¥,(L,, C) by induction

o If ¢(7,B) € QF(L,, B), then ¢(z,C) € A,(L,,C) by the argument
above. Thus (7, C) € ¥,,(La, C).
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o Let ¢(z,B) = Vy € K.¢/(z,y, B). By IH ¢/(z,y, B) = ¢/(7,y,C) for
some ' (Z,y,C) € ¥,(La, C). Then
U(T,y,C) =Vy € K4'(z,y,C) = ¢(T,y, C).
Since (L, C) = A,-collection, so ¢(Z, (') € ¥, (L., C) up to equivalence
by proposition 3.4.9.

o If ¢(z,B) = I.¢'(T,y,B) or ¢(z,B) = Jy € K.¢(T,y,B), then
¢ (z,y,B) = ¢'(Z,y, B) for some formula ¢'(z, B) € %, (L, C) by IH.
Thus (7, C) € 3,(Lgy, C) trivially as required.

As all induction steps are covered, this concludes the proof. 0

Corollary 3.4.11. ?° Assume (L,,C) | A,-collection. If B € A,,(L,,C), then
(Lo, B) = Aj-collection.

Proof. Let ¢ € Ay(L,, B) and let B € A, (L, C). Then by proposition 3.4.10v
¢ € A,(La,C) up to equivalence using (L,,C) = A,-collection. As
(Lo, C) = Ay-collection and ¢ € A, (L,, C) up to equivalence, so the collection
holds for ¢ € Ay(L,, B). Therefore (L, B) = A-collection. O

3.4.4 Relativized Uniformization Theorem

We prove the relativization of theorem 3.2.9 for the case n = 1.
Lemma 3.4.12. *’ If (L,,, B) = Y-replacement, then (L, B) = X-collection.

Proof. Assume (L, B) = Yg-replacement. Let ¢(z,y) € Xo(Lq, B). Define f
by
(z,y) € f <= d(z,y) ANVY <y.=o(z,y).
Then f € ¥y(L,, B) up to equivalence trivially.
Let K €L, and assume Yz € K3y.¢(z,vy). Then f[K]e€ L, as

(Lo, B) = Yo-replacement. Furthermore, Vo € K3y € f[K].¢(x,y). Therefore
(L4, B) = X-collection as required. O

Lemma 3.4.13. 2 Let AC o, BCa,Be {B,B",B }andn € N,

i) Assume that (L, B) |= X, -replacement. Then
AcL,iff A®AcX,(L,,B)and 33 < a. A C f.

26No reference known. Possibly new in this thesis.

?7A straight-forward generalization of a well-known statement without a parameter, found in
[23]VII for example.

ZIntroduced in this thesis.
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ii) Assume that (L,, B) = X, -replacement. Then
AeL,iff Ae A,(Ly,B)and 35 < a. A C S.

Proof. We prove the statement i. The direction = 1is clear. For the other
direction, assume that A ® A € Yu(La,B)and A C 5 < « for some 5. WLOG
let A # () and let a € A. Define a function f : o — «a by

flx)=y <= (z€Anz=y)V(r€ANYy=a).
Since A @ A € X,(L,,B), the function f is ¥,(L,,B) definable. As
(Lo, B) |E X,,-replacement and f3 is a-finite, so we have that A = f[3] € L, as
required.
The statement ii follows from the statement i since
Ao AeX, (L, B) <= AcA,(L,, B).
O

Lemma 3.4.14. * Assume (L, B) | Yo-replacement. Let W € X,(L,, B).
Then there is a function W : o — Lo, € ¥1(Ly, B) s.t.:

) V.6 <aly <8 = W(y) S W(6).
i) W=U, .. W().
i) Ve < afzr e W <= Iy <axe /W(’y)]

Proof. As (L,,B) | 3j-replacement, so (L,,B) | Xg-collection by
lemma 3.4.12. As W € ¥4(L,, B), so there is a binary relation P € ¥y(L,, B)
st.z €W < Jy < a.P(x,y). Define

W) =ml{z € pao]  P(2)}] = malpay] 0 P
where p, : @ — « X « is an a-computable bijection and ™ : o X @ = «
is an a-computable projection. Thus W:ia—L,€ ¥1(Ly, B) by propo-
sition 3.4.7 as (L,, B) |= Xy-collection. The set A :={z € po[y]: P(2)} is
bounded as A C po[y] € Lo.  Since P(z) € ¥o(La, B), so A € ¥Xy(La, B).
As (L,, B) = ¥y-replacement, so A € L, by lemma 3.4.13.  Therefore
ﬁ/\(y) = m[A] € L, and so W is well-defined. Also observe that the function

—~

W a — L, satisfies the properties i-iii as required. ]

Proposition 3.4.15. (Relativized 3; Uniformization Theorem?")

Assume (L, B) | Yg-replacement. Let R C a X « be a binary (L, B)-
definable relation. Then there is a partial function f € (L., B) s.t.
Vo € dom(R).R(z, f(x))].

Tntroduced in this thesis.
30Tntroduced in this thesis.
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Proof. As (L.,B) | Xo-replacement, so (L,,B) | Xy-collection

by lemma 3.4.12. Using lemma 3.4.14, there is a (L., B) function

a — Lot — Ryst. (z,y) € R < 3t < a.(r,y) € R Let

m : a X a — « be the a-computable projection to the first parameter. Define
fia— aby

(x,y) € f < Tt <af[(r,y) € Ry ANVs < 1Vz € Ry.m2 # xl.

Then f € ¥,(L,, B) using proposition 3.4.7 and the fact that (L,,, B) |= X,-collection.
Also Vz € dom(R).R(z, f(z)) as required. O

3.4.5 Axioms in a parameterized model

We investigate a relationship between separation, replacement and collection in a
parameterized model (L, B) for B € {B, BT, B~ }.

Separation

Remark 3.4.16. (Power of relative separation for bounded parameter)

The relative separation is too strong to be useful for bounded parameters. Let
B C (8 < a LetB € {B,B"} and let (L,,B) | Xo-separation, i.e. if
o(x) € Xo(La,B) and K € L, then {z € K : ¢(x)} € L,. If ¢(x) =z € B,
then ¢(z) € Xo(La, B). Also 5 € L,. Thus B = {x € : 2z € B} € L,. There-
fore the definability over (L,, B3) is just the definability over L.

Proposition 3.4.17. 3! Letn € Nand B C «. If (L,, B) &= X,-replacement,
then (L,, B) = A,-separation.

Proof. Let K € L, and ¢(z) € A, (L,, B). Define A :== {z € K : ¢(x)}. Then
clearly A € A, (L, B). Also A C K. Therefore A € L, by lemma 3.4.13ii as
required. [

Replacement and collection

We show that (L, B) = ¥;-replacement implies (L, B) = ¥;-collection. We
outline a difficulty in stating (L,,, B) = ¥;-collection implies (L, B) = ¥;-replacement

where B is a general parameter.

Proposition 3.4.18. ** Let B € {B, B~, B"}. Assume (L,, B) = Y;-collection.
IfA® A€ Y (Ly,B)and A C K € Ly, then A € Ay(Ly, B).

Proof. Since A ® A € ¥(L,, B), we have:

3INo reference known. Possibly new in this thesis.
32New in this thesis.
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o v € A < Jy.¢(z,7y) for some ¢(z,7) € Ag(Lq, B),

o t ¢ A < Jy.(x,7) for some ¥(z,7) € Ag(Lq, B).
Recall Y denotes exclusive logic or. As A C K € L, we have:

o Vo € K3y[o(x,y) ¥ ¢(x,y)] where ¢(z, ) ¥ ¢ (x,9) € Xo(La, B).

e d] € L,Vx € K3y € I[¢(x,y) ¥ ¢(x,7)] since (L, B) = ¥p-collection.
Hence we can define A with formulas with bounded quantifiers:

e r €A < xe KANTJgelo(x7),

et ¢ A<= x¢g KVIye ly(zx,7).
Any of the two formulas implies A € Ay(L,, B) as required. O

Proposition 3.4.19. ** Let n € N. If L, E X,-replacement, then
L, = ¥, -collection.

Proof. Assume L, | X,-replacement. Let ¢(z,y) € X,.(Ly), K € L.
Assume Vx € K3y.¢(x,y). By Uniformization Theorem 3.2.9, there is a
function f € ¥,(L,) st. Vo € K.¢(x, f(z)). By the X,-replacement, we
have K = f[K] € L,. Furthermore, Vz € K3y € K.¢(z,y). Therefore
L, = ¥, -collection. [l

Proposition 3.4.20. ** Let n € {0,1}. If (L,,B) E X,-replacement, then
(Lo, B) = ¥,-collection.

Proof. The case n = 0 is implied by lemma 3.4.12.

For the other case, assume (L,,, B) |= 3,,-replacement. So (L,,, B) |= ¥,-collection.
Let ¢(x,y) € X, (Lo, B). As (L, B) = ¥g-collection and ¢(z,y) € X, (La, B),
so there is [ € X,(La, B) st. Vz[Fy.é(zr,y) = ¢(z, f(z))] using
proposition 3.4.15.

Let K € L, and assume Vx € K3y.¢(z,y). Then f[K]€ L, as
(Lo, B) = X, -replacement. Furthermore, Vo € K3y € f[K].¢(x,y). Therefore
(Lo, B) = X,-collection. O

Proposition 3.4.21. *° (3;-elementary substructure of (L, B))
Let B€ {B,B7,B"}. If § < a, then (Ls, B) =<5, (L, B), i.e. (Ls,B) is a Xy

elementary substructure of (L., B).

3 A straight-forward consequence of Uniformization Theorem from [4].
3Introduced in this thesis.
3Introduced in this thesis.
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Proof. By definition (Ls, B) <5, (L4, B) iff for every formula ¢(Z) € ¥ (Ls, B)
we have: (Ls, B) = ¢(T) iff (Lo, B) = ¢(T). Let K € Lg, then trivially for any
x < dwehave: (Ls,B) =x € Kiff (L,,B) =2 € K. Clearly (Ls,B) =z € B
iff (Lo, B) =z € B. Also clearly, (Ls, B) = x = y iff (L., B) = = = y. Hence
(Ls, B) = ¢(x) iff (L, B) = ¢(x) for any atom ¢(x) € 3g(Ls). Inductive steps
for A, Vv, — are clear. Inductive steps for the bounded quantifiers follow from the
fact that each quantifier is bounded in some K € Ls;. Hence by the induction
on the structure of the formula ¢(Z) € ¥y(Ls) we conclude (Ls, B) = ¢(T) iff
(Lo, B) = ¢(T). Therefore (Ls, B) <x, (L, B) as required. O

Remark 3.4.22. The definability with a predicate x € B is different from the
definability with a set parameter B over Ls if B € Ls;. Whereas with the set
parameter B we can access all the elements of B, possibly even the ones not
in Ls, when using the definability with the predicate x € B, only the elements
within the chosen model such as Ls can be accessed. Therefore we cannot use
proposition 3.4.18 and proposition 3.4.21 to generalize lemma 3.1.18 to prove
that (L, B) = ¥;-collection implies (L,, B) = ¥;-replacement.

3.5 «a-computable index of a set

We study indexing functions and a-computable operations on such indices. The
results of this section are important for later constructions where stage-dependent

indexing and a-computability of the construction are important.

Lemma 3.5.1. (Pseudosupremum?®)

The function psup : L, — « defined by

0 K
psup(K) =
sup(K) K

=0
# 0
is a-computable.
Proof. Note that
psup(K)=s <= [s=0AK C {0}V

s>0Nse KAVre Kz <sV

s>0NsEg KNV e Kx <sAVy<sdre Ky<uz)

from which we deduce that the function psup is a-computable because the quan-

tifiers inside the brackets are bounded. O]

36Tntroduced in this thesis.
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Proposition 3.5.2. *7 There exist a-computable functions i : o X @ — « and

S; . a— «S.t.:
) VKeL,NP(a)In<aVr < afr e K < i(n,x)=1],
i) Vn < aei(n) ={x < a:i(n,x) =1} € L,

(n) =

0 i
sup(i(n)) i(n)

0
i) Vn < a.s;(n) = ’

e

Proof. Using the bijection b : o« — L, € ¥1(L,) from proposition 3.2.2 and the

function psup from lemma 3.5.1 respectively, define the functions 7 and s;:

i(n, x) =[x € b(n)],
si(n) ={s < a:3IK € L,[b(n) = K Npsup(K) = s]}.
Clearly, ¢ and s; are both the required functions and 7 is a-computable. The func-
tion s; is a-computable because the front quantifier is existential and functions b

and psup are both a-computable. [

Therefore we can label o-finite subsets of « by indices n < «. Let K, denote

an «-finite set i(n) with an index 7.

Lemma 3.5.3. 8 There exists an c-computable function g : & X o X v — v s.t.
Dy ={xlg(n,z,1) = 1} € La,
E, ={zlg(n,x,2) =1} € Lo
and for every pair (15, E) of a-finite subsets of « there is an index n < « s.t.
D,=Dand E, = F.
Therefore we can a-effectively number the pairs of the a-finite subsets of «

by the indices of a.

Proof. Note that there are a-computable bijections b : &« — L, and ps : o — a X a.
Let 7, and 7, be the projections. Define ¢(n, z, k) = [z € bo 7 o pa(n)]. Then

g 1s the required a-computable function. U

Lemma 3.54. ¥ Let i,5,k : o X @ — «a be any a-computable numberings
of a-finite subsets of o with their respective a-computable supremum functions

Si, 85,5 - @ — o in a sense of proposition 3.5.2. Then

i) There is an a-computable function v : @ — « s.t.

vy <a. | i(x) = k(u(y)).

z€5(7)

37From proposition 1.7 in [4].
BIntroduced in this thesis.
¥Frequently used, yet usually implicitly assumed facts in a-Computability Theory.
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i1) There is an a-computable function v : @ X o — «a s.t.
Yy, 0 < a.k(v(y,9)) =i(y) ® j(0).
ii1) There exist a-computable functions i, , %5, : & — a s.t.
VI e {1,2}Vy < a.k(in (7)) = {x : (x1,22) € i(y)}.
iv) There exists an a-computable function i,, : @ — « s.t.
vy < ak(ip (7)) = i(y) X j (7).
v) There exists an a-computable function w : o X @ — « s.t. if 7,0 < a, then
k(w(v,6)) = {(z,y) :z € j(6) Ay € j(y) Ay € i(x)}.
vi) There exists an a-computable function ¢; ; : « — a s.t.
Yy < aiy) = j(ti; (7).
vii) Let K(7) = U,¢j,)i(z). Then there exists an a-computable function
Sijta— as.t
0 K(y)=0
sup(K (7)) K(7) #0

Proof. To ensure that the following relations are functions, if there are multiple

possible output values (resulting from the duplicate indices of a-finite subsets of
a) in a, take the least one. To prove that the following formulas are > (L,),
proposition 3.4.6 is used to rearrange the bounded quantifiers from the outside to

inside and remark 3.2.4 is used to encode the products.

1) Using the part vii) we have

u(v) =0 <= Yy < si5(7) [Fr < 5500 (. 2) iz y) = 1] <= k(,y)
which is 3;(L,). To prove that the function v : o — « is also total,
we need to prove that the a-finite union of a-finite sets is a-finite, i.e. if
K € L,, then A = UweK K., € L,. By the part vii), A is bounded. Also
r€A < JyeKreK,andx € A < Vyec K.x & K,. Since the
quantifiers are bounded, so A is a-computable. Thus A is a-finite. Therefore

u : o — « 1s a total a-computable function as required.

ii) Note that v(7,) = ¢ <
Vo < max{s;(7),s;(0), sp(€)}[k(e, 2z) = i(y,z) A k(e, 22 + 1) = j(9, z)]
which is 3 (L, ) as required.

iii) Noteiy, () =6 <= k() = m[i(y)] <= Va < sp(0)[k(0,2)) = 1 <=

Jz < s;(y).xp = mz) AVy < s;(7)[k(6, my) =1 <= Jz < si(7).my = m2]

which is 3 (L,,) as required.
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iv) Note iy, (7) =0 <= Vo < a.k(d,z) = i(y, m2) - j(7, mx) <=
Vo < 5,(0).k(0, ) = i(y, ma) - j(7, max) A
Vo < s;(y)Vre < 5;(7).k(9, (x1, 22)) = i(7y, 1) - §(77, x2) whichis X (L)
as required.

v) Note w(v,0) = € <
Vi, y < ak(e, (z,y)) = j(0,2) - j(v,y) - i(x,y) <=
Vz < sp(e).k(e, z) = j(0,mz) - j(7y, me2) - i(mz, mz) A
Vo < s;(0)Vy < max{s;(7), si(x)}.k(e, (x,9)) = j(6,2) - 5(v,y) - iz, y)
which is 3 (L,) as required.

vi) Note ¢, j(7) =0 <= i(y) =j() <=

ds,[si(7) = sy AVx < 54.0(7,2) = j(6, 2)] A
ds5(s;(0) = ss ANV < s5.i(y, x) = j(0, )] which is 31 (L,) as required.

vii) Using the function psup from lemma 3.5.1 we have s; ;() = psup(s;[j(7)])
where s;[j(7)] is an a-finite set by the admissibility of «, j() being an «-
finite set and s; being a-computable. Therefore s; ; is a-computable as re-

quired.

We can index a-c.e., a-computable sets by an index in «.

Note 3.5.5. (Index for a-c.e. set)

Note that every X1(L,) set is a domain of some function which is 3;-definable
with a finite number of parameters (WLOG just one parameter K € L,) over L,
with some first order formula ¢. As the language (excluding the parameter from
K, € L,) where ¢ is defined is countable, we can encode the finite formula ¢
by some index d < w. The a-finite parameter K, of ¢ has index v < «. Hence
we can encode the ¥;(L,) function by a pair e := (d,7) < «. Note that the
encoding/decoding of the index can be done in an a-computable way. Hence we

can denote an a-c.e. set as W, where e is its a-computable index.

Note 3.5.6. (Index for a-computable set)
Let A be an a-computable set. Then there exist ¢,d < a st. A = W, and
a — A = W, by note 3.5.5. Using this, we can assign an c-computable index for

an a-computable set A as e := (¢, d).

3.6 Projectum

The projectum o* of « is defined below. We can index all a-c.e. sets with an index

in o, see proposition 3.6.8. This turns out to be a useful property in constructions
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in a-Computability Theory as demonstrated in section 3.13.
We state an alternative definition of the projectum in definition 3.6.1 and then

provide its equivalence with definition 2.2.2 in proposition 3.6.2.

Definition 3.6.1. (Projectum*’)

The >y projectum (projectum for short) of « is

o =min{y<a:JACH[A€ X (La) NAE Ly}
Proposition 3.6.2. *! The following ordinals are equal:
) o =min{y<a:3FACH[A€ X (L) NAE Lo}
ii) min{y < « : 3 partial surjection p; : v — o € X1(Ly)}

iii) min{y < « : Jtotal injection i : o — 7y € X1(Ly)}-

Example 3.6.3. (Examples of a projectum)

e The projectum of an infinite regular cardinal « is a* = av.

e The projectum of WX is w. +

Fact 3.6.4. (Admissibility of the projectum*)
If o is admissible, then the projectum o* of « is also admissible.

Proposition 3.6.5. ** Suppose that a* < «, then « is not ¥, admissible.

Proof. Let o < «a and p; : o — « be a partial surjection which is (L)

definable. Let A := dom(p;). Extend p; to a total function f : « — « as follows:

m(z) ifzx € A,

fx) = .
0 otherwise.
As A € Xi(L,), so the total function f € 3y(L,). But o € L, and
fla*] = a & L. Hence « is not X5 admissible. O

Proposition 3.6.6. ¥ Let o* < aand let i : a — o* be a total a-computable

injection. If i[A] is a-computable, then A € L,,.

40Definition 1.19 in [4].

4Theorem 1.20 in [4].

42[4] p10 Remark 1.21a.

#3[1] section V.7. p184 Corollary 7.13.

#Usually assumed implicitly. No reference known.
4Usually assumed implicitly. No reference known.
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Proof. Let p; : o — « be an a-computable projection, i.e. p; := i~ !. Let

K := i[A]. K is a-computable by the assumption. But K is also bounded by
a* < a. Thus K € L, by proposition 3.2.7.

Note that p;[K| = A. Hence A € L, by the a-computability of p;, a-
finiteness of K and by the admissibility of a. L

Proposition 3.6.7. “* Let A C § < a*and A € ¥y(L,). Then A € L,,. O

Proposition 3.6.8. (Indexing a-c.e. sets with a projectum*’)

We can index all a-c.e. sets just with indices from «o*.

Proof. Let W, be an a-c.e. set with an index in a. Let p; : @ — « be an a-
computable projection (partial surjection). Let W) denote an a-c.e. set with an
index in o*, i.e.

W ={z<a:3d<ap(e) =dANz e Wy}

Note that W) is ¥1(L,). As p; is a surjection, so every a-c.e. set W, is repre-

sented by some set W where p;(e) = d as required. O

Lemma 3.6.9. *® Suppose thati : o« — « is an a-computable injection and A C o
Then A =, i[A].

Proof. Let B = i[A]. Then A <,. B viaV :={(y,0) : i[K,] = K;} where
V e ¥1(Lq) since i € ¥q(L,) and i[K,| € L, by the admissibility of a and
a-computability of <. Similarly, B <,. A via

W= {(v,6) : K, Crng(i) ANi '[K,] = K;} € %1(La).
Therefore A =, i[A] as required. O
Proposition 3.6.10. VA C o3B C o*. A =,. B.

Proof. Leti : o — a* be the a-computable injection and define B := i[A]. Then
B C a* and A =,. B by lemma 3.6.9 as required. ]

3.7 Reducibility

In this section the generalizations of the enumeration, Turing and many-one re-
ducibilities in a-Computability Theory are introduced.

Each of the enumeration and Turing reducibility from the classical
Computability Theory generalizes to several non-equivalent notions in a-
Computability Theory. The correspondence between these different notions is
introduced in section 3.9.

46From [23] p157.

#TUsually assumed implicitly as in [4] theorem 3.5. p52. No reference known.
48Usually assumed implicitly. No reference known.

#Usually assumed implicitly. No reference known.
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3.7.1 Enumeration reducibility

The generalization of the enumeration reducibility and operator to the context of
a-Computability Theory is briefly investigated in [6] by Di Paola for the first time.
The set A is weakly a-enumeration reducible to the set B denoted as A <, B
iff

Jde < a'Vr <afr € A < In[(z,n) e W NK, C B (3.3)
where W is an a-c.e. set with an index from the projectum

o =min{y<a:JACH[A € X (La) NAE L)}

Similarly, the set A is a-enumeration reducible to the set B denoted as A <,. B
iff

de < 'V < a[K5 C A < In[(0,n) €e W NK, C B (3.4)
After these definitions, Di Paola studies the theory of a-enumeration operators
which diverts from our goals. Hence unless stated otherwise, the definitions and
results concerned with the enumeration reducibility and degrees in this thesis are
new.

We provide three natural notions of the weak a-enumeration reducibility prove

their equivalence in proposition 3.7.4. We also provide a suitable definition of the

a-enumeration reducibility equivalent to 3.3.

Weak a-enumeration reducibility

Definition 3.7.1. (Weak a-enumeration reducibility®”)
The set A is weak a-enumeration reducible to B denoted as A <,,,. B iff there

is a weak a-enumeration operator ®* € (L, ) s.t. A = ®¥(B) where

PY(B) ={r < a:30 < al(z,d) € P A K5 C Bl}.

Definition 3.7.2. (Very weak a-enumeration reducibility®!)
The set A is very weak a-enumeration reducible to B denoted as A <,,qe B iff
there is a very weak c-enumeration operator ®** € ¥;(L,) s.t. A = ®"“(B)

where

©"(B) = | J{K, : 30 < a[(v,0) € 2" A K; C B].

Definition 3.7.3. (Feeble c-enumeration reducibility®?)

The set A is feeble a-enumeration reducible to B denoted as A <;,. B iff there

Definition 3.7.1 is clearly equivalent to 3.3. The difference is that we do not require the a-c.e.
set @™ to have an index from «o*.

SlIntroduced in this thesis.

Introduced in this thesis.
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is a feeble a-enumeration operator ®/ € ¥, (L,) s.t. A = ®/(B) where
®'(B) ={r <a:3,0<a[(y,5) €/ Az € K, NKs C B}

Proposition 3.7.4. (Equivalence of weak a-enumeration reducibilities>®)

The following three statements are equivalent for A, B C «:
1) A <yae B,
i) A <fqe B,
iil) A <ywae B.
In other words: <,ne=< fac=<pwae-
Proof. Note that
r e P(B) < Iv,0 <al(y,0) e " Nz e K, \NKs C BJ.

So the definition of a very weak a-enumeration operator is equivalent to the def-
inition of a feable a-enumeration operator, i.e. Ve < a.®*%(B) = ®/(B). Thus
ii) iff iii). Next i) implies ii) since given an element x < «, we can use the ¥;(L,,)
bijection @ — L, to retrieve the index 7 of the a-finite set X, = {x}. To prove
that ii) implies i), we assume that we have A = ®/(B). Define

" = {(z,0) €Eax a:Iy<al(y,8) € ® ANz € K.}
As &7 is ¥y (L,), so is ®*. Then we have z € ®¥(B) +—=
36 < af(z,d) € Y N K5 C B] <~
37,0 < al(y,0) € ¥/ Ax € K, ANK; C B] < 1z € ®/(B). So given ¢/
operator, we can construct ®* such that ®*(B) = ®/(B). Hence ii) implies 1).

Therefore 1) iff ii) iff iii) as required. ]

The proposition above establishes the equivalence of the three notions defined.
Therefore we will only talk about the weak a-enumeration reducibility and use
any definition of the reducibility and its enumeration operator as convenient. We
shorten weak a-enumeration operator to just a-enumeration operator and equip
it with the index from « to obtain the following updated definitions widely used

in this thesis.

Definition 3.7.5. (a-enumeration operator)

An a-enumeration operator is an a-c.e. set ¢. For a set B C a, define
O(B)={reca:3<al(z,d) e DANK; C B)}.
Let @, denote an a-c.e. set with an index 7.

Definition 3.7.6. (Weak a-enumeration reducibility)
A is weakly a-enumeration reducible to B denoted as A <,,,. B iff there exists

an a-enumeration operator € ¥,(L,) s.t. A = &(B).

33Tntroduced in this thesis.
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a-enumeration reducibility
Definition 3.7.7. (a-enumeration reducibility>*)
The set A is a-enumeration reducible to B denoted as A <., B iff IW € ¥;(L,)

S.t.
Vy <alK, CA < 3§ <af[(y,0) e WAK;s C Bl
Denote the fact that A reduces to B via W as A = W(B).

Properties
Lemma3.7.8. * A<, B&CABeX|(L,) = A<, C

Proof. As A <,. B ® C, so there is some W € (L) s.t.
Vy <a K, CA < 3[(y,0) e WAKs CBa&Cl.
We want to find W, € 3,(L,) s.t.
Vy < alK,CA <= 3e[(y,e) e Wy NK, CC]].
Define
Wy ={(v,€) : IIK[(7,0) e WANKs = K ® K. \Vx € K.x € B|}
which is 3 (L,,) by proposition 3.4.6 since B € ¥ (L, ) as required. O

Note 3.7.9. °If A <. A, is it true that A <, A?
No, consider the halting set /. Then H <, H,but H L. H.

Note 3.7.10. *’ Is it true that for any A, B C a we have: A <,. B <= A <,.
B?
No. For example, take A = H and B = H.

It is trivial to observe the following.

Fact 3.7.11. (Properties of an c-enumeration operator)
Let A, B C ovand v < o. Then ®, satisfies:

i) Closure under reducibility: ®,(A) <,q. A,
ii) Monotonicity: A C B = &,(A4) C ¢.,(B),
iii) Witness property: if z € ¢, (A), then 3K C A[K € L, ANz € D, (K)].

Proposition 3.7.12. 3 If A <, B and B <. C, then A <, C.

>Definition 3.7.7 is clearly equivalent to 3.7.1. The difference is that we do not require the
a-c.e. set W to have an index from o*.

>Introduced in this thesis.

36Well-known from classical Computability Theory.

S7Well-known from classical Computability Theory.

BIntroduced in this thesis.
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Proof. Assume A <,,. B. So there is an a-enumeration operator ® s.t.

A = ®(B). In detail, for any z < o we have
reA = Iy<allr,y) e PANK, CB]. (3.5)
Similarly, we assume B <, C and so there is W € ¥(L,) s.t. for any v < «
we have
K, CB < 36 <al[(y,0) e WAK; CC]. (3.6)
Putting statement (3.5) and statement (3.6) together we get
r€A <= Fy<af(z,y) € PAT <al{y,0) e WAKs CC]
— 35 < a{z,0) € DA K; C (]
— z€d(C)
where ® = {(z,8) : 37,6 < a[(z,7) € DA (7,8) € W]} € ©1(La). Hence
A=9(C) and s0 A <, C as required. O

3.7.2 'Total reducibility

The Turing reducibility can be thought of as a total reducibility wrt the
enumeration reducibility. In this section we introduce total reducibilities in

a-Computability Theory which are the generalizations of the Turing reducibility.

Definition 3.7.13. (Weak a-reducibility”®)
The set A C « is weakly a-reducible to the set B C « denoted as A <,,, B iff
there is a-c.e. set W € (L) s.t. for any = < a:

€A = Iy<adl<al(z,7,5,1) e WAK,C BAKsC B,
r€A <= Fy<add<al(z,7,§,00) e WAK,C BAK; C BJ.

Definition 3.7.14. (a-reducibility®?)
The set A C « is a-reducible to the set B C « denoted as A <, B iff there is
a-ce. set W € X(L,) s.t. forany 8 < a:

K3 CA <= Iy <adb<al(B,7,6,1) e WAK, S BAK; C B
Ky CA < 3y <adi<al(B,7,6,0) e WAK, C BAK; C Bl

3.7.3 Total and enumeration reducibilities

We state the correspondence between the total and enumeration reducibilities and

their shared properties.

914] p6 definition 1.13.
6014] p7 definition 1.14.
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Correspondence

We state relations between the total and enumeration reducibilities which eluci-

date the use of the word total for total reducibilities.

Definition 3.7.15. (Total set®!)
A subset A C avistotal iff A <, Aiff A=,. AP A.

The following fact 3.7.16 provides alternative definitions of the total reducibil-
ities <, and <,, in terms of the enumeration reducibilities on the total sets.
Fact 3.7.16 follows from the definitions of the a-reducibilities (definition 3.7.13
and definition 3.7.14) and a-enumeration reducibilities (definition 3.7.6 and defi-
nition 3.7.7) provided in this section.

From definition 3.7.13 and definition 3.7.14 it is easy to see that A <, B (or
A <, B) can be also interpreted as saying that the set A and its complement A
can be (weakly) a-enumerated from the set B and its complement B. We state

this observation formally in the following fact.

Fact 3.7.16. (Total and enumeration reducibilities correspondence)
i) VA BCa[A<,o B < A®A<,.. B®B.
ii) VA BCalA<,B < A® A<, BoB)|.

Selman’s Theorem gives a characterization of the a-enumeration reducibility

for arbitrary sets in terms of the a-enumeration reducibility on the total sets.

Corollary 7.1.6. (Selman’s theorem®?)
Assume V' = L and let « be an infinite regular cardinal. Then for all A, B C «

we have

A<pe B <= VX[ X = XOXAB<p( X®X = A<, X®X]

We defer the use of corollary 7.1.6 and its proof until chapter 7.

Shared properties

The following facts are easy to see for the (weak) a-reducibility and commonly
implicitly assumed in a-Computability Theory. As the definitions of the enumer-
ation reducibilities are simpler than those of the total reducibilities, the facts are

even simpler to observe for the enumeration reducibilities.

1A well-known definition in classical Computability Theory, see [2] Definition 1.4. The gen-
eralized version introduced in this thesis.
92Generalized to a-Computability Theory in this thesis.
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Fact 3.7.17. (Properties of total and enumeration reducibilities)
Let <,.€ {<.¢, <o} Then

1) <, induces a partial order < (i.e. < is reflexive, antisymmetric, transitive) on

the r-Degrees D, which are the equivalence classes induced by <.,
i1) In general weak reducibilities <, and <,,, are not transitive [26],
iii) <, has a unique minimal degree denoted 0 containing ) and «,

iv) invariance under a-finite changes: if A <, B, ANA € L., BAB € L.,

then A <, B , where A denotes a set theoretic difference.
v) AgUA; <, A @ Ay,
Vl) AO S,«B/\Al STB < AQ@Al Sr B,

vil) x4 =o A @ A where x4 is the characteristic function of A.

3.7.4 Many-one reducibility

We generalize many-one reducibility to the setting of a-Computability Theory.

Definition 3.7.18. (Many-one reducibility®®)
The set A is a-many-one reducible to the set B denoted as A <,,, B iff there

exists a total a-computable function f : o — « satisfying
Veealre A < f(x)€ B].
It is easy to see the following.
Fact 3.7.19. (Many-one reducibility properties)
e A<,, B <= A<,,B,
o If A, <., By and Ay <,,, By, then A1 ® Ay <., B1 ® Bs.
Proposition 3.7.20. % Assume A <,,, B, then:
e A<, B
e A<, B
Proof. We prove the first statement. Assume that A <., B via the a-

computable function f:a —a. Hence z€ A < f(x) € B and so
K, CA < f[K,] C B. Therefore A <,. B via a-c.e. set

W= {(7.0) : JIK,] = Ks}.

The second statement follows from the first statement and fact 3.7.19. ]

%Tntroduced in this thesis.
%Tntroduced in this thesis.
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3.8 Regularity

A notion of a regularity measures how close a set behaves like a set in classi-
cal Computability Theory from the definability perspective. Many theorems and
statements invoke assumptions on the regularity, e.g. Shore’s Splitting Theorem
3.8.5.

We investigate different notions of regularity: regularity, quasiregularity, hy-
perregularity and megaregularity. We consider their closure under reducibilities

and definability, degree invariance, relative strength and relation to totality.

3.8.1 Regularity and quasiregularity

We define regularity and quasiregularity. Regularity is a well-established notion
in a-Computability Theory, see [23] or [4]. Quasiregularity was introduced in this

thesis.
Definition 3.8.1. (Regularity and quasiregularity)
o Asubset A C avis a-regular ift Vy < a. AN~y € L,.
e Asubset A C ais a-quasiregular iff Vy < sup(A). AN~ € L,.

If clear from the context, we just say regular and quasiregular instead of a-
regular and a-quasiregular respectively.

The fact below follow directly from the definitions.
Fact 3.8.2. (Regularity and quasiregularity)
1) Every regular set is quasiregular.
ii) If sup(A) = « and A is quasiregular, then A is regular.
Proposition 3.8.3. (Regularity closure under operations®)
i) VA C a[A regular <= A regular],
ii) VA, B C a|A regular AB regular —> A @ B regular |,
iii) VA, B C a|A regular AB regular —> A U B regular |.
Proof. The statements follow from the following observations respectively:
i) IfAN~y € Lo, then AN~y € L.

ii) fAN~y € Lyand BNy € Ly, then (A® B) Ny € Ly,.

5Usually assumed implicitly. No reference known.
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iii) f ANy € Ly,and BNy € Ly, then (AU B) N~y € L,.

Theorem 3.8.4. (Sack’s Theorem on regular set existence®)
Let A be a-computably enumerable. Then there exists a regular, a-c.e. set B of

the same «a-degree as A.

Theorem 3.8.5. (Shore’s Splitting Theorem [27])

Let C' be a-c.e and regular. Let D be non-a-computable and a-c.e. Then there
exist regular a-c.e. sets Aand Bst. C' = AUB, A <, C, B <, C and also
DL, Aor D £, B. O]

3.8.2 Megaregularity

We introduce in this thesis the notion of megaregularity. In remark 3.8.27 this will

turn out to be much stronger than the notion of regularity.

Definition 3.8.6. (Megaregularity)
Let B C « and add B as a predicate to the language for the structure (L,,, B).
Then B is a-megaregular iff the structure (L., B) satisfies the axiom of

Y1 (Lq, B)-replacement:
Vf € Xi(La, B)IVK € Lo.f[K] € L.

If the ordinal « is clear from the context, we just say megaregular instead of

a-megaregular.

Remark 3.8.7. A person familiar with the notion of hyperregularity shall note
that a set is megaregular iff it is regular and hyperregular (proposition 3.8.31).

Admissibility and megaregularity
Lemma 3.8.8. ¢ If f € ¥;(L,, A) and K € L, then f[K] € A(L,, A).

Proof. As f € ¥1(La, A), so f € Ay(L,, A) by proposition 3.4.2. Note that
y € fIK] <= dzx € K.(z,y) € f.
So clearly f[K] € ¥1(La, A). As f € II1(La, A), so f[K] € II1(La, A) by
proposition 3.4.9. As f[K]| € ¥; NI (Ly, A), so fIK] € Ay(Lqy, A) as required.
Ol

Proposition 3.8.9. % If L, = ¥,-replacement and A € A, (L,), then A is
megaregular.

%6Sacks [23], theorem 4.2.
7Generalized from [4] proposition 1.12b.
%¥Introduced in this thesis.
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Proof. Assume L, [ 3,-replacement. Hence L, | X,-collection by
proposition 3.4.19. Let A € A,(L,). Let f € ¥i(Ly,A) and K € L, be
arbitrary. Then f[K] € A;(L,, A) by lemma 3.8.8. By L, | ,-collection
and proposition 3.4.10v we have f[K] € A,(L,). Thus f[K] has to be bounded
since o,cf(a) = a by the ¥, admissibility of « (proposition 3.1.21). As
fIK] € An(Ly), fIK] is bounded and L, = ¥, -replacement, so f[K]| € L, by
lemma 3.4.13ii. Therefore A is megaregular as required. [

Megaregularity closure

We prove that the megaregularity is closed downwards under the weak a-

reducibility and thus a-degree invariant.

Lemma 3.8.10. ® Assume B <, C and (L., C") | Yg-collection. Then:
i) ¢ € 21(La, BY) = [ = and ¥ € £,(La, CF)).
i) A€ (Lo, BY) = A€ X (Ly,CH).

Proof. As B <, C, s0
r€B < 35 <al(x,d) e WAK; CC|] < 0(z,C)
for some W € ¥ (L,).

For the first statement, let ¢(7, B) € (L., B™) be a formula where T is a list
of variables. Replace an atom 2’ € B in the formula ¢(Z, B) by the expression
6(z’',C). Denote the new formula by ¢(Z,C'). We will prove by the structural
induction on the formula that ¢(z,C) € 3;(L,,C%). Note that ¢(Z, B) and
(T, C) are equivalent. This implies ¢ = ¢ and ¢ € ¥1(L,, C") as required.

For the second statement, let ¢(x, B) € Xi(L,, B") be a formula defining
A. Note that ¢(x, B) and ¢(x,C) define the same set A. This implies A €
Y1 (Lo, CT) as required.

Proof of ¢)(z,C) € ¥1(L,, C") by induction

Note 6(x,C) € 31(L,, CT). Hence express 0(x,C) as Jy.R(x,y,C) where
R(l’,y, C) € AU(La7C+)'

o If (7, B) € QF(L,), then ¢ (T, C') € ¥1(Ly, CT) trivially.

o If ¢(T, B) =; € B, then @ZJ(E, C) = H(fL‘Z,C) S 21<LQ,C+).

Tntroduced in this thesis.
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o Let gb(f, B) = gbo(T, B)‘gbl (T, B) where ‘ S {/\7 \/} and QZSI(E, B) S Zl(La, B+)
where R;(Z,7y;,C) € Ag(Ly, CT). Note that

w(fa C) = 3%7 E[RO(EJ Yo, C)‘Rl (57 U1, C)]
Hence ¢ (7, C) € £1(L,, CT).

e Let ¢(7, B) = Vy € K.¢/(T,y, B). Then by IH we have
(7, C) =y € KFR(7,5,%,C)

where R'(Z,y,%,C) € Ag(Lq, CT). Since (L,,CT) E Yg-collection, so
(T, C) € ¥1(Ly, CT) by proposition 3.4.7.

o If ¢(7,B) = Jy.¢'(z,y, B) or ¢(z, B) = Jy € K.¢'(T,y, B), then it can
be verified easily using IH that also ¢ (%, C') € X1(L,, CT1).

As all induction steps are covered, this concludes the proof. ]

Lemma 3.8.11. " Let A € X;(Lq, B), B <ua C and (L,, C) | Zy-collection.
Then A € ¥1(L,, C).

Proof. Since B <,,, C, so there are a-computably enumerable sets Wy, W, C «

S.t.:

¢ B < 3,8 <a[(x,7,0) e WoANK, CCAKs CC| < b(z,0C),

re€B < Iv,0 <al(x,7,0) e WiANK, CCANK; CC|] < b(z,0),
where 6y and 6, are the abbreviations for the stated longer equivalent formulas.
As A € ¥y(Ly,B),s0 A = {x < o : ¢(x, B)} where ¢(x, B) € ¥y(Lq, B).
Using De Morgan’s laws, WLOG let the negations in the formula ¢(z, B) occur
only at the level of literals. Construct a new formula ¢(x, C') from the formula
¢(z, B) by replacing the literals: = ¢ B by 0y(z, C') and z € B by 6, (z, C). Note
0i(z,C) € ¥1(Lqa, C).

Note that ¢(z, B) and v (z, C') define the same set A. Moreover, one can
prove by the induction on the structure of the formula with a similar proof as in
the proof of lemma 3.8.10 that ¢(z, C') € (L, C'). Here we use the assumption
(Lo, C) = Xg-collection in the following case. Suppose

Y(T,C) =Vy € KIZR'(7,9,%,C)
where R'(Z,y,%z,C) € A¢(Ly, C)byIHand K € L,. Since (L, C) = ¥Xy-collection,
so (T, C) € ¥1(L,, C) by proposition 3.4.7 as required.
Therefore A € ¥(L,, C) as required. O

Tntroduced in this thesis.
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Proposition 3.8.12. (Axiom closure under <,,.’")
Assume that A <,,. B. Then:

i) If (Lo, BT) = Xo-collection A X -replacement, then (L,, A*) = X;-replacement.
ii) If (L,, B™) | ¥;-collection, then (L,, A*) = X;-collection.
iii) If (L., B*) | Xg-collection A X1 -separation, then (L, A*) = 3;-separation.

Proof. i) Let f € ¥1(L,, A™). Since A <,qe Band (L,, B*) & Xy-collection,
so f € ¥y(Ly, BT) by lemma 3.8.10ii. So if K € L,, then f[K] € L, since
(Lo, BT) = X;-replacement. Therefore (L, AT) = X;-replacement.

ii) Let ¢(x,y) € 31(La, AT). Since A <,0e B and (L., BT) |= ¥o-collection,
s0 ¢(x,y) € X1(La, BT) up to equivalence by lemma 3.8.10i. So if K € L,
and Vx € K3y.¢(x,y), then there is KeLystVee Kiye f(.gb(x,y)
since (L, B™) | ¥;-collection. Therefore (L., A") = 3;-collection.

iii) Let K € L, and ¢(z) € £1(La, A"). Define K == {z € K : ¢(zx)}. We
need to show that K € L,,. Since A <,.. B and (Lo, BT) = Yg-collection,
50 ¢(z) € B1(Lqg, BY) up to equivalence by lemma 3.8.10i. Thus K € L,
as required since (L,,, B™) |= 3;-separation.

O
Proposition 3.8.13. (Megaregularity closure and degree invariance’?)
i) If A <,, Bor A<, B and B is megaregular, then A is megaregular.
ii) If A =,, Bor A=, B, then [A is megaregular iff B is megaregular].
iii) If A € Ay(L,), then A is megaregular.

Proof. Statements ii) and iii) follow from i). We prove i) as follows. A is megareg-

ular iff every ¥ (L,, A) definable function f satisfies the replacement axiom.
Let f € ¥1(La, A). As A <, B and B is megaregular, so f € ¥,(L,, B) by

lemma 3.8.11. Hence f satisfies the replacement axiom as B is megaregular.

Therefore (L,, A) = ¥;-replacement and so A must be megaregular. O

Often we will use proposition 3.8.13 implicitly.

"ntroduced in this thesis.
Tntroduced in this thesis.
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3.8.3 Hyperregularity

We investigate two different notions of hyperregularity used in [23] and [4].

Definition 3.8.14. (Constructible hierarchy with a parameter’?)

Introduce to the language a predicate x € A to define the constructive hierarchy
for a parameter A C «:

o L[A]p =10,
o L[A],+1 = Def(L[A],),
o L[Als; =U,.5 L[A], if lim(0),

o L[A} = U'yEDrd L[A]'Y
Lemma 3.8.15. 7 Assume A C a. Then A is regular iff L, = L[A],.

Proof. By induction V+y.L[A], = L[A N 7],. Hence A is regular iff
Vy < a.L[A], = L,. O

Definition 3.8.16. (Sacks hyperregular’)

A set A C «is Sacks hyperregular iff V[ <,, AVy < a3 < a.f[y] C 6.

Proposition 3.8.17. * If A € ¥,(L,) and A is Sacks hyperregular, then A is

regular. ]

Proposition 3.8.18. 77 a is ¥y-admissible iff VA € 3 (L,).A is Sacks hyperreg-
ular. []

It is easy to see that every a-computable set is Sacks hyperregular. By the-
orem 3.8.19 below the converse is not true which separates the notions of a-

computability from the Sack’s hyperregularity.

Theorem 3.8.19. 7 There exists a non-a-computable, Sacks hyperregular, a-c.e.
set. Ol

Definition 3.8.20. (Chong hyperregular’®)

A set A C « is Chong hyperregular iff L[A], is an admissible structure - L[A],
satisfies 3;-Collection, i.e. Vo(x,y) € X1(L[A]., A)VK € L[A],

[L[A], =V € K3y.¢(z,y) = IKVr € K3y € f(.qb(x,y)}.

3From [23] VIL3.5 Regularity p164.

"4From [23] Proposition VII.3.6 p164.

"SFrom [23] VI Hyperregularity and Priority p135.
"5From [23] Prop VIL5.1. p167.

"TFrom [23] Exercise VIL5.6. p174

78From [23] Theorem VIL.5.3. pl69

From [4] Definition 1.32 p20
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Proposition 3.8.21. % Assume A C « is regular. Then A is Sacks hyperregular
iff A is Chong hyperregular.

Proof. First note that as A is regular, so L[A], = L, by lemma 3.8.15.

=: Assume that A is regular and Sacks hyperregular. Let f € X,(L,, A),
K € L, and K C dom(f). As A is regular, so f <,, A. As K € L,, so
K C ~ for some v < «a. As A is Sacks hyperregular, so there is § < « s.t.
fIK] S f] €6 € La.

<: Chong hyperregular implies Sacks hyperregular clearly.

3.8.4 Projectum and regularity

The projectum «* can be thought of as a >;-projectum. We generalize the >3-

projectum «* to a YJ,-projectum and relate a projectum with regularity.

Definition 3.8.22. (,,-projectum®!)

The >2,, projectum of v is

opp(a) =min{y < a:3JACH[A € X, (L) NAE L,|}.
Proposition 3.8.23. (Projectum and regularity®?)
e ACa*NAe€ ¥ (L,) = A quasiregular,
e a*=aANAe¥(L,) = Aregular.
e ACop(a)NA€ ¥, (L,) = A quasiregular,

o o.p(a) =aNAeX, (L, = Aregular.

Proof. All four statements are implied by the statement
ACopa)NA€e X, (Ly) = VB <sup(A).ANpe L,
which is true. For suppose not, then
38 < sup(A) < op(a)[ANB € X, (La) NANS & Ly

which is a contradiction to definition 3.8.22. ]

80Introduced in this thesis.
81Definition 1.19 in [4].
82From [23] Proposition VIL.2.1. p157.
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3.8.5 Notions of regularity by strength

We inspect relation between a-finiteness, computability and different notions of

regularity: quasiregularity, regularity, hyperregularity and megaregularity.
Proposition 3.8.24. *° Every a-computable subset of « is regular.
Proof. Follows from proposition 3.2.7. [

Example 3.8.25. Let a = w{X. Then the set of the ordinal notations, Kleene’s
O C wis quasiregular, but not regular. As O € (L), so by theorem 3.8.4 there
is BC as.t. O =, Band B is regular.

Let pp : w — « be a partial a-computable function taking a computable
notation to its ordinal, i.e. py is the a-computable projection constructed from O
using proposition 3.6.2. Using O as an oracle, complete p, to a total surjective
function f : @« — «a. Then f € ¥1(L,,0), w € L,, but f[w] ¢ L,. Hence neither

O nor B is megaregular.

Example 3.8.26. 3% Assume V = L and let o be an infinite regular cardinal.
Then every subset of « is megaregular. But there are subsets of o which are not

a-computable.

Remark 3.8.27. Hence using results from section 3.8 (statements 3.8.2, 3.8.24,
3.8.25, 3.8.26) we have the following strict separation of the notions where a-

finiteness is the strongest condition and quasiregularity is the weakest:

a-finite = a-computable = megaregular = regular = quasiregular.

Proposition 3.8.28. (Computability, regularity, megaregularity®>)

Let B € {B, B*}. Assume (L,, B) = ¥;-replacement. Then:

i) A A€ X (Lo, B) = Aregular,

ii) ~Aregular = A® A ¢ (L, B),

iii) If (Lo, B*) = ¥;-replacement and A & A <, B, then A regular,
iv) If B megaregular, then B regular,

v) If B megaregular and A <, B, then A regular,

Vi) VB < a.ANBHANLG € X1(La, B) < Aregular.

8 From Proposition 1.12b in [4].

84See corollary 3.11.4 for details.

85Introduced in this thesis. Some parts might have been used elsewhere implicitly, no reference
known.
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vii) If (L., B") | ¥;-replacement and B total, then B regular,

viii) If (L,,B*) | X;-replacement, B total and A € ¥,(L,,B), then
A € %(Ly, BY).

ix) If (L., B") = X;-replacement and B total, then B megaregular,

Proof. The statements i-vi follow from lemma 3.4.13.

We show statement vii.  Assume (L., B't) E ¥j-replacement and
B total. So B@® B <,. B. Clearly, BN g <, B for any f < «a.
Hence BNA®BNB <oe BB <,.B. So BNB&® BN <, B. Hence
BNB®BNBE X (Ly, BY). As 3 < a was arbitrary, we have

VB <a.BNB@®BNBE X (Ly, B).
So B has to be regular using statement vi.

We show statement viii. Assume (L, B™) = X;-replacement and let B be
total, i.e. B® B <,. B. Hence B is also regular by statement vii. Assume that
A€ %(Ly, B). As Bis regular, 50 A <44, B® B. S0 A <40 B® B <,. B.
Hence A <,q. B andso A € 3(L,, BT).

We show statement ix. Assume that f € (L., B). Then f € ¥1(L,, B) by
statement item viii. Thus f satisfies the replacement axiom as (L, B) = X;-replacement.

Since we started with f € ¥(L,, B), so B is also megaregular as required. [

Since every megaregular set is also regular, we see directly from the definition

of the regularity the following.
Fact 3.8.29. Let A C o be bounded. If A is regular or megaregular, then A € L,.

Lemma 3.8.30. 3¢ A is regular and Sacks hyperregular iff
Vo < aVf[f <wa A = f]0€ L,
0

Proposition 3.8.31. 87 A is regular and Sacks hyperregular iff A is megaregular.

Proof. =-: As A is Sacks hyperregular and regular, so
V5<avf[f§waA - fr(SGLoz]

by lemma 3.8.30. Let f € ¥1(L,, A) and K € L,. As Aisregular, so [ <,, A.
As K € L,, so K C ¢ for some 0 < a. Note that f[K] = f | §[K] € L, since
both f | ¢ and K are a-finite. Therefore (L,, A) |= 3;-replacement and so A is

megaregular.

86From [23] Lemma VIL.5.2 pl6s.
8 Tntroduced in this thesis.
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<: Assume that A is megaregular. Then A is regular by
proposition 3.8.28iv. So L[A], = L, by lemma 3.8.15. Note (L,, A) = 3;-replacement.
Thus (L., A) = 3-collection by proposition 3.4.20. So (L[A]., A) = 3;-collection.
Thus A is Chong hyperregular. As A is Chong hyperregular and regular, so A is
Sacks hyperregular by proposition 3.8.21 as required. L

3.9 Reducibilities and definability

We state a correspondence between different notions of reducibility and definabil-
ity. See section 3.9 for details.

We establish a correspondence between the weak a-enumeration reducibility
<wae> @-enumeration reducibility <,. and >.; definability with a positive param-
eter. This propagates to the correspondence between the a-reducibility, weak
a-reducibility and A; definability with a parameter. At the end, we prove some

results relating to the transitivity of the arithmetic definability.

3.9.1 Relation between <,. and <.

We investigate the relation between the weak a-enumeration reducibility <,

and the a-enumeration reducibility <,..

Lemma 3.9.1. ® Let B C « and assume at least one of the following conditions:
i) (La, B) E X-replacement.
i) (L,, B™) | Yg-collection A X;-separation.

Then for any a-enumeration operator & € 3 (L,,) there exists set W € ¥,(L,)
s.t. ®(B) = W(B), i.e. W satisfies

Vy <alK, C®(B) <= 30 < af[(y,§) € WAK; C B.

Proof. Construct W, from an a-enumeration operator ®,,. Define

We ={(7,0) €axa:IK[(Ks= | ] Kg) AVz € K,38 € K..(z, ) € O,]}.
BEK.
The set W, is 31 (L, ) by proposition 3.4.6 since it is defined using bounded quan-

tifiers and «a-c.e. set ®,. Note that the index ( is uniformly c-computable from
the index 7.

Now let v < « be arbitrary. By proposition 3.2.10 an a-finite union of a-finite
sets is a-finite. Thus K, C W¢(B) <= 30 < a[(7,6) € W AN K5 C B] <
36 < a[[FK[(Ks = Ugek, Kp) NVr € K\ 38 € Kc.(z,8) € ]| AN K; C B| <

8Tntroduced in this thesis.
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IK.|Vz € K,38 € K..[(x,8) € &, A K5 C BIAVB € K. K5 C B] < (¥)
Vo e K,36[(x,B8) € ,NKz C B] <= Vo € K,z € $,(B) < K, C ®,(B).
Hence W, (B) = ®,(B) as required.

* Assume condition i). Define the relation

R(z,B) <= (x,8) € ® N Kz C B.

Note that R € (Lo, B). Using (L,,B) = 3j-replacement there
is feXi(Ly,B) st Vo € dom(R).R(z, f(z)) by proposition 3.4.15.
The direction < holds by taking K. = f[K,] which is a-finite using
(Lo, B) = ¥;-replacement.

* Assume condition ii). Given
Vo e K,36[(x, ) € &, N Kz C B],
we have
IKVz € K38 € K![(z, 8) € ®, A K5 C B]

using ¥ (L., B")-collection. Then the direction < holds by taking
K. ={f € K!: Kz C B} € L, using ¥,(L,, B"}-separation. O
Proposition 3.9.2. (Correspondence between <, and <, reducibilities®)

i) If A <., B, then A <yo. B,

ii) If A <, B and B is megaregular, then A <,. B.

Proof. 1) is true by taking an a-enumeration operator ®* to be W from <.

To prove that ii), assume first A <., B. S0 A <,,ae B by proposition 3.7.4.
Define W from ®"* using lemma 3.9.1 and > (L,, B)-replacement true by the
megaregularity of B. We have A = W (B) = ®"*(B) and

Vy<aolK, CA < 3§ <af(y,0) e WAK; C B
and so A <,. B. l

Corollary 3.9.3. ® Let ¢ < . Let A, B C « and let B be megaregular. Then
A <ae (I)e(B) = A <ae B.

Proof. By fact 3.7.11i and proposition 3.9.2ii we have A <,. ®.(B) <.. B.
Then A <,. B by the transitivity of <,. as required. O

Corollary 3.9.4. (Correspondence between <,,, and <, reducibilities)
1) ASQB - AgwaB9
i) A <,o B = A <, Bif B is megaregular.

Proof. Follows from fact 3.7.16 and proposition 3.9.2. U

8Introduced in this thesis. Analogous to [4] Proposition 1.15 and Proposition 1.33.
PIntroduced in this thesis.
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3.9.2 Weak reducibilities and definability

We investigate the relationship between the weak a-enumeration reducibility and

the 2J; definability with a positive parameter.

Definition 3.9.5. (Witness property!)
We say that ¢(x, B) has a witness property in a parameter B iff for an arbitrary
r < o if L, = ¢(x, B), then there is K C Bs.t. L, = ¢(x, K) and K € L,.
Lemma 3.9.6. (Bounded usage of a positive parameter’?)
Let ¢(x, B) € 3¥1(Ly, BT)and A = {x < a: (Lo, BT) = ¢(x, B)}. Then

Vo € A3S < a[(Ls, BT) = ¢(x, BN J)).
Moreover uniformly ¢ is ¥ (L,, B) definable from the formula ¢.
Proof. Extend ¢(x, B) to ¢(T, B) where T is a list of parameters in order to enable
the proof by the structural induction. In the end, ¢(x, B) can be thought of as
¢(Z, B) with z as one free variable in Z and other variables in the list T fixed.

For every formula ¢(Z, B) we construct a total c-computable bounding function
35(T) s.t. if (Lo, BT) |= ¢(T, B), then also (L,, BY) = ¢(T, B N 04(T)).

o If (7, B) € QF(L,), then §,(T) = 0.
o If Qﬁ(f, B) =x; € B, then 5¢(E) = X;.

o If (7, B) = ¢1(T, B)#p2(T, B) where ¢ € {A,V}, then
04 (T) = max(dy, (T), 4, (T))-
e Let ¢(7, B) = Jy.o(7,y, B). If (L., BY) = ¢(T, B), then there is some
y < as.t. (L, BY) E¥(Z,y, B). Define
R ={(Z,0,) : 6, = 04(T,y) Ny < a NY(T,y, B)}.
Note that R € ¥1(L,, B). So by the relativized Uniformization Theorem
3.4.15 there is function 65 C R which is X (L,, B) definable and hence the

function required.

o Let ¢(7,B) = Vy € Kap(T,y,B) or ¢(z,B) = Jy € K.4(z,y, B) for
some K € L,. Define 64(%) = sup(d,[{ZT} x K]). By the admissibility
of a, the supremum is computed on an a-finite set, hence ,(7) is well-
defined.

It is easy to verify assuming the induction hypothesis that the bounded

functions constructed are X,(L,,B) definable, cover all the inductive

9ntroduced in this thesis, but a general idea of a witness common in mathematics.
“Tntroduced in this thesis.
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steps and satisfy the condition: if (L,,BY) = ¢(7, B), then 04(%) | and
(Lo, BY) = ¢(T,BNdg(T)). Hence Vo € A36 < a[(La, BT) = ¢(z, BN )]
using the ¥ (L,, B) definable function 4 as required. [

Proposition 3.9.7. (Witness property®*)

Let ¢(z, B) € ¥1(Lo, BY), A = {x < a : (Lo, BT) = ¢(x,B)} and B be a
regular set. Then

Vo € A3K € Ly[La = ¢(z, K) and K C B].

Proof. This follows from lemma 3.9.6 and the regularity of Bas K := BN € L,
for 0 < a. ]

Definition 3.9.8. (Monotonicity of a formula®*)

A formula ¢(x, B) is monotone in a parameter B iff for every B, C C «a:

ifBCC,then{r <a:L,E¢x,B)} C{r<a:L,E o C)}

Proposition 3.9.9. %> Let ¢(x, B) € 31(L,, BT). Then ¢(z, B) is monotone in a

parameter B.

Proof. The proof follows from the structural induction on the formula ¢(z, B),

carried out in a similar way like in the proof of lemma 3.9.6. [
Proposition 3.9.10. (3, definability and <,,.. reducibility correspondence”®)

i) A<yae B = A€¥(L,, B"),

ii) A€ Xi(Ly, BT) A Bregular = A <. B.

Proof. 1) Assume A <,,. B. So
A={rx<a:L, = ¢, B)}
where
¢(x,B) =3Iy < af(zr,7) € PANK, C B

for some weak «-enumeration operator ® € ¥(L,). Note that
é(z, B) € X1(Ly, BT) and ¢(z, B) defines A. Hence A € ¥(L,, B).

ii) Assume A € ¥y(L,, B). So
A={z<a:L, E ¢(x,B)}

%Introduced in this thesis.

%“Introduced in this thesis. The idea taken from the general monotonicity property of the enu-
meration operators in classical Computability Theory.

%Introduced in this thesis.

%Introduced in this thesis. Analogous to [4] Proposition 1.30.
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for some ¢(x, B) € X(Ly, BT) where ¢(z, B) has a witness property by the
regularity of B and by proposition 3.9.7. Hence

Ve <alr € A < 30 < a.lp(z, Kz) N K C B|.
So define a weak a-enumeration operator ® = {(z, ) : ¢(x, Kg)}. As
¢(x, B) € ¥1(La, BY), so ¢(x, Kg) € £1(L,) by proposition 3.4.3. Note
A = ®(B). Hence A <y,qe B.

O
Proposition 3.9.11. °’ The following are true:
i) A<ya B = A€ A(L,,B),
i) A€ Ay(Ly, B) = A <, Bif Bisaregular set.
Proof. The statements follow from proposition 3.9.10 and fact 3.7.16. ]
Proposition 3.9.12. ®If A & 31(L,), A <wae C, then C & X1 (Ly,).
Proof. Assume A <, C'and C' € 3;(L,). Then A € ¥1(L,). O

3.9.3 Conclusions

We summarize the relations between the definability and reducibilities from this

section in implication diagrams.

Proposition 3.9.13. (32, definability and a-enumeration reducibilities correspon-
dence)

We have the following implication diagram:

if B regular, by 3.9.10ii if B megaregular, by 3.9.2ii

/_\/\

A € El(Lau B+) A Swae B A Sae B

~_ S~

by 3.9.10i by 3.9.2i

Proposition 3.9.14. (A, definability and a-reducibilities correspondence)

We have the following implication diagram:

9TFrom Proposition 1.30 and Proposition 1.33 in [4].
%Introduced in this thesis.
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if B regular, by 3.9.11ii if B megaregular, by 3.9.4ii

/\/\

AeAl(LomB) ASchB ASaB

‘\/

by 3.9.11i by 3.9.4i

Corollary 3.9.15. *° We have the following implication diagrams:

if B regular

/\

f € %(La, B) f <wa B

\/

if B regular

/_\

f € Zl(LauBJr) f Swae B
\_/

Proof. Follows from proposition 3.4.2, proposition 3.9.13 and proposition 3.9.14.
O]

3.10 Degree Theory

The generalizations of the Turing and the enumeration degrees are introduced

briefly as the o degrees D, and the a-enumeration degrees D,,. respectively.

Definition 3.10.1. (Degrees!™)
A degree structure is a set of equivalence classes induced by an equivalence rela-

tion induced by a reducibility relation. In particular:
e D, =P («a)/ =,is aset of a-degrees.
e D,. =P (a)/ =qe is a set of a-enumeration degrees.

Induce < on D, and D, by <, and <. respectively.

3.10.1 Total degrees

Definition 3.10.2. (Total degrees'®")
A degree d € D, is total iff 3D € d.D =,. D. The set of the total degrees of
D, is denoted by TOT ..

9 Adapted from the Corollary 1.31 in [4].

100The a-degrees are well-established, see [4][23]. The a-enumeration degrees are introduced
in this thesis.

101The total c--enumeration degrees introduced and studied in this thesis.
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Theorem 3.10.3. '°% Let x4 be the characteristic function of A. Then

VA>B g CK[A Sa B <~ XA Sae XB]

Corollary 3.10.4. (Degree embedding'%%)

The map ¢ : D, — D given by ¢ : deg,,(A) — deg, (A @ A) is an embedding

whose image are the total degrees 7 OT 4.
Proof. Use the fact x4 =,. A @ A and theorem 3.10.3. O

From corollary 3.10.4 and definition 3.10.2 we can see directly the following
fact.

Fact 3.10.5. (Equivalent definition of total degrees)

Let . : D, — D,. be the embedding from above. The total a-enumeration
degrees T OT . are the image of ¢, i.e. TOT 4e == t[Da].

3.10.2 Unboundedness of D,

Proposition 3.10.6. (Set not a-enumerable from a given set'%)

Given a set A C q, there is a set C' C « s.t. C' is not -enumerable from A, i.e.

C Lo A

Proof. We must satisfy Ve < a.C' # ®.(A). SodefineC :={e < a:e & P.(A)}.
Then C' £, A as required. ]

Corollary 3.10.7. (Unboundedness of a-enumeration degrees'?”)

For every set A C «, thereisaset B C as.t. A <,. B.
Proof. Let C C o« st. C £, A using proposition 3.10.6. Then
A <4 B= A® C as required. O

3.10.3 Properties of D, and D,,.

Proposition 3.10.8. (Properties of the degrees D, and D,.'")
e transitivity: Va,b,cla <bAb<c¢ = a < ¢,
e unboundedness: Vadb.a < b,

e cardinality of a degree: Va.#a = #a.

102Theorem 2 in [6].

103Follows from Theorem 2 in [6]

1%4Tntroduced in this thesis.

195Tntroduced in this thesis.

1%ntroduced in this thesis for Dy,. Usually assumed implicitly for D,,.
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e cardinality of the structure: #D, = #D,. = #P(«).

Proof. The transitivity is induced by the transitivity of <,. and <, (fact 3.7.17).
The unboundedness of D, follows from corollary 3.10.7 which also implies the
unboundedness of D,. Any two sets in the same degree are reducible to each other
by some reduction procedure with an index from « and hence the cardinality of a
degree is the cardinality of o and there have to be #P(a) many degrees. 0

As an a-enumeration operator itself is an a-c.e. set, we have directly the

following fact.

Fact 3.10.9. The least degree 0 of D, is the set of (L) subsets of a.

3.10.4 «-join operator

We introduce an a-join operator which is used to prove a degree theoretic state-
ment corollary 3.10.12.

Definition 3.10.10. (a-join and a-join operator!'®”)

Let A, C o denote a set with an index v < «. For an index set / C « define the
a-join of the set { A}, to be
EBA7 ={i(y,x):yelNnz €A}

vel
where i : @ X & — « is an a-computable bijection. Call P 1 an a-join operator.

Clearly, for V6 € I[As <ae D.c; 4.

Proposition 3.10.11. ' Let deg, (Ag),deg,.(A;),deg, . (As),... be a [-
sequence of strictly increasing a-enumeration degrees and 5 < «. Then there is
an a-enumeration degree deg,.(A) which is greater than any other degree in the

sequence.

Proof. Let A be an a-join of all the degrees in the -sequence. Then A is strictly
greater than any other A, in the sequence as required since the sequence is strictly

increasing. O

Corollary 3.10.12. ' Any subset of a-enumeration degrees whose cardinality is

at most #« has an upper bound in D,,.. [

107ptroduced in this thesis.
1081ntroduced in this thesis.
19Tntroduced in this thesis.
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3.11 Computability with infinite cardinal and as-

sumption V' = L

Many notions in a-Computability Theory trivialize and simplify if we assume the
axiom of constructibility V' = L and « is taken to be an infinite cardinal, even
more when « is an infinite regular cardinal.

Throughout this section assume that V' = L.
Fact 3.11.1. "' Let a be an infinite cardinal. Let A C . Then:
i) A is regular,

i) Ae L, < A <a.ACp.

3.11.1 Computability with infinite regular cardinal

Proposition 3.11.2. (a-finiteness of subsets of smaller cardinality!!!)
Let o be an infinite regular cardinal. Let A C ovand #A < «. Then A € L,,.

Proof. As #A < «, so A cannot be cofinal in «. Thus it has to be bounded by
some < a. Hence A € L, by fact 3.11.1. O

Proposition 3.11.3. (Superadmissibility of infinite regular cardinal'!?)

Let o be an infinite regular cardinal. Then L,, satisfies the full replacement axiom:

Vf:a— aVK € L,.f[K] € L,.

Proof. As « is an infinite regular cardinal, so if K € L,, then #K < a. Also
#f[IK] < #K by f being a single-valued function. Hence f[K] € L, by propo-
sition 3.11.2. ]

Corollary 3.11.4. ''* If o is an infinite regular cardinal, then every subset of « is

megaregular.
Proof. Follows from proposition 3.11.3. L

Corollary 3.11.5. ""*If o is an infinite regular cardinal, then <,.=<,qe.

10Follows from [4]p5 part (d).

M Usually assumed implicitly in a-Computability Theory. Parts present in standard Set Theory
texts, see [21].

2Usually assumed implicitly in a-Computability Theory. Parts present in standard Set Theory
texts, see [21].

B3ntroduced in this thesis. A direct consequence of well-established facts.

4Introduced in this thesis. A direct consequence of well-established facts.
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Proof. By proposition 3.9.2 if A <,. B, then A <,,. B. Also by proposi-
tion 3.9.2 if A <, . B and B is megaregular, then A <,. B. As « is an
infinite regular cardinal, so B is megaregular by corollary 3.11.4. Therefore
VA, B C alA <yae B <= A <, B] and 50 <,.=<yq¢ as required. O

Remark 3.11.6. Fact 3.11.1 and corollary 3.11.4 imply that every subset of
an infinite regular cardinal is regular and megaregular. This reveals that the
computability on an infinite regular cardinal x behaves similar to classical

Computability Theory. A further comparison can be summarized as follows:

classical CT a-CT k-CT
computation domain | N L, L,
computable A1(N) Ay (Ly) Ay (Ly)
c.e. Y1(N) Yi1(La) ¥1(Ly)
finite bounded bounded and A; | bounded
replacement strength | full replacement | X;-replacement | full replacement

Proposition 3.11.7. !'5 Assume that « is an infinite regular cardinal. Let
A= U’YGI K., where #I < aand I C . Then A is a-finite.

Proof. If « is an infinite regular cardinal, then A is not cofinal in « as it is a union
of #1 subsets of o for s < « and each subset has a cardinality less than . Hence
#A < « and so A is bounded in § < «. Consequently A = AN € L, by
fact 3.11.1.

Alternatively, #/ < aand so I € L, by fact 3.11.1. By then A is an a-finite

union of a-finite sets. Hence A is a-finite by proposition 3.2.10 as required. [

3.12 «a-enumeration jump

We define a weak a-enumeration jump and an a-enumeration jump, then prove
that they are equivalent under the weak a-enumeration reducibility. Thus if
megaregular both jumps are in the same a-enumeration degree. We investigate
several properties of an a-enumeration jump including totality, monotonicity and
¥,-completeness of the n' a-enumeration jump. The properties are established
under assumptions such as X.,,-replacement axiom or megaregularity. At the end
we prove that any megaregular jump can be used equivalently as an oracle in
constructions and priority arguments.

This section generalizes a well-known notion of the enumeration jump from

classical Computability Theory unseen in a-Computability Theory before.

B Tntroduced in this thesis.
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3.12.1 Jump definitions

We consider K(A) = {z < a: 2z € ®,(A)} as a weak a-jump of A and define

its a-enumeration counterpart.

Definition 3.12.1. (Weak a-enumeration jump)
A weak a-enumeration jump of a set A C « is the set J,.(A) defined as follows:

e K(A)={z<a:ze€d,(A)},
o Juwe(A) = K(A) @ K(A).

Definition 3.12.2. (a-enumeration jump)'!®

An «a-enumeration jump of a set A C « is the set J,.(A) defined as follows:
o H(A)={(,8): K, C ®5(A)},
o« H () ={(,6): K, CB5(A)}.
o Joo(A) = HT(A) @ H (A).

The n'™ a-enumeration jump of the set A is defined inductively as follows:
o JV(A)=A
o JETV(A) = Jae(JE(A))

Definition 3.12.3. (Halting set)

The halting set of A C «vis defined as H(A) = {(z,y) : v € ®,(A)}.

3.12.2 Equivalence of jump definitions

We investigate the relations and reductions between different jump definitions.
Lemma 3.12.4. JeVaVy[xr € &, <= (z,y) € O]

Proof. The index e is defined by
Q. ={z:3z,ylz = (z,y) Nz € D]} € £1(La)

as required. ]

Lemma 3.12.5. There is an a-computable function g : « X o — « s.t.

Va,ylr € D, <= g(r,y) € Pyay)].

116Generalized from [25].
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Proof. The function g takes parameters z and y and produces the index
z = g(z,y) of an a-c.e. set ®, which behaves as follows. The enumeration of
the a-c.e. set @, is simulated. If x is enumerated by ®,, then ®, enumerates all
of o, enumerating the least unenumerated element first, so ¢, = «. If x is never
enumerated by ®,, then ®, does not enumerate any elements and so ¢, = (.

Note that g is a-computable and
red®, = a=0, <= g(z,y) € Pyay)

as required. 0
Proposition 3.12.6. (Reductions between jumps and halting sets)

1. A <om K(A) <am H(A) <am HT(A),

2. H"(A) <wae H(A) <om K(A) <pae Aand H(A) <yoe A,

3. A <om K(A) <am H(A) <am H™(A),

4. H™(A) <uoe H(A) <om K(A).
Proof. Note that A is a-many-one reducible to K (A) as

ac€A <~ f(a) € K(A)
where f is an a-computable function defined by
o) = {(y,7) - Ky = {a} Ay € af,
Thus A <., K(A). Next K(A) <.,n H(A) via x — (z,x). Finally,
H(A) <gm HT(A) via
9 =1z, 9), (v,9) : Ky = {x}}.

Therefore A <, K(A) <am H(A) <am HT(A) and the statement 1 holds.

To prove H(A) <,m K(A), given z,y < «, define

O, = {(g,9) : (z,0) e DAy EaNgE a}.

Note that the index z is uniformly a-computable from the indices z,y and
(,0) € P, <= (2,0)€P,, soz € P, (4) <<= =z € ®,(A). Thus
(r,y) € H(A) < z(x,y) € K(A). Hence H(A) <.n K(A) as required.

To prove H"(A) <yae H(A) notice that

(7,0) € H'(A) <= Vr € K[z € §5(A)] < Vz € K,[(z,d) € H(A)]
and s0 HT(A) <uae H(A) via
Q= {((7,6),e) cv: Vo € K,.(z,6) € K.} € £1(Ly).

To prove K(A) <yae A, let e be the index s.t. (z,0) € &, < (x,0) € .
for any pair (z, J) using lemma 3.12.4. Then

re€K(A) < € d,(A) < z € D (A).
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Thus K(A) = ®.(A) and so K(A) <yae A via @..
Similarly, to prove H(A) <,ae A, let é be the index s.t.
(x,0) € &, <= ((2,0),y) € D
for any x,y,0 < o using lemma 3.12.4. Then
(r,y) € H(A) <= 1€ ®,(A) <= (2,y) € D:(A).
Thus H(A) = ®;(A) and so H(A) <yae A via De.
Therefore H(A) <ypae H(A) <am K(A) <wae Aand H(A) <yae A, so the

statement 2 holds.

AS A <gm K(A),50 A <o K(A). As K(A) <gm H(A), 50 K(A) <am H(A).
Also H(A) <am H~(A) via g. Therefore A <., m <am H(A) <om H(A)
and the statement 3 holds.

By symmetry we have H (A) <yae H(A) <om K(A) and the statement 4
holds as required. [

Proposition 3.12.7. (Equivalence of the a-enumeration jump definitions)

For any admissible ordinal a and A C « we have:
1. Jyae(A) <am H(A) ® H(A) <am Jac(A),
2. Juae(A) Zam H(A) © H(A) Zpae Jae(A) and Juae(A) Zwae Jae(A),
3. Juwael(A) =ae H(A) ® m =ae Jae(A) if Jpae(A) is megaregular.

Proof. By proposition 3.12.6 we have K(A) <.n H(A) <u,m HT(A) and
KTA) <am FA) <o H(A). 50 Jyne(A) <o H(A) & FA) <o JoelA)
and the statement 1 holds.

By proposition 3.12.6 we have HI (A) <pae H(A) <am K(A) and
H (A) <wae m <am K(A), 30 Jyac(A) Zam H(A) (A) >wae Jae(A)

and hence Jyae(A) =am H(A) ® H(A) =pae Jae(A) and Jyae(A) Zwae Jae(4)

using the statement 1.

The statement 3 follows from the statement 2 and the megaregularity of
Jwae(A). [

Therefore if J,,.(A) is megaregular, we can use any of the definitions of an

a-enumeration jump as convenient.

3.12.3 Totality

Clearly, by definition the degree of J,..(A) is a total degree. We investigate the

totality of the a-enumeration jump J,.(A).

Proposition 3.12.8. J,.(A) & Jae(A) <wae Jac(A).
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Proof. Let A€ {—,+}and V € {—,+} — {A}. Then H2(A) <yae H'(A) via
= {({7,6),) : 38 < a[Ky £ 0 A Ky € Ky A{(B,0)} = K.J}
since
(7,0) € H>(A) <= 3B < alKs #DANKz C K, A{(B,6) € H"(A)].
Thus
Joe(A) = HT(A) ® H-(A) = Ht (A)DH(A) <wae H (A)BHT(A) = Joo(A).

Therefore Jue(A) @ Joe(A) <wae Jae(A) as required. O

The following definition will be useful in proposition 3.12.10 below.

Definition 3.12.9. (Pointclass union)
We define the pointclass union of the pointclasses 64 and 6y to be the pointclass
6 by defining §(D, C') C P (D) from 64(D,C) C P (D) and O5(D,C) C P (D)
for an arbitrary set of parameters D and a parameter C' C D as follows:
0,U0p(D,C)={FECD:3A,BCD
[E € Ao(D,C,B,A)NA € 84(D,C)NB € 0(D,C)]}.

Proposition 3.12.10. (Definability class of the n'" a-enumeration jump)
Letn € N. Assume (L,, A) = A,-collection. Then:

1. JS(A) € B, UTL, (L, A)
2. JW(A) € Api1(La, A)

Proof. The second statement follows from the first. We prove the first statement
by the induction.

BC: If n = 0, then trivially JY(A) = A € QF (L, A) C S U Tly(Lq, A).

IC: Assume IH that JP(A) € Apyi(La, A). As JS(A) € Anyi(La, A)
and (L,, A) = A, i1-collection, so (L,, Jé@(A)} = Aj-collection by corol-
lary 3.4.11. By definition

JE(A) = Jae(JE(A)) = HF (I (A) @ H (I (4)).

Note that H* (JS(A)) € $1(La, J& (A)) and H=(JS(A)) € T (La, JE(A))
by proposition 3.4.9 using (L,, Jo(f;)(A» = Aj-collection. IH and
HH(JS(A)) € S1(La, JS(A)) imply HY(JS(A)) € Spii(La, A) by
(Lo, A) = A, 1-collection and proposition 3.4.10ii. H~(JS(A)) € I, (La, JS (A))
and TH imply H~(JS(A)) € T,41(La, A) by (La, A) = A,1-collection and
proposition 3.4.10iv. Hence JO(LLH)(A) € Ypi1(La, A) Uy 1(Ly, A) as
required. =

Corollary 3.12.11. Let n € N. Assume L, = X, ;-replacement. Then JO(Z)((D)

1s megaregular.
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Proof. As L, E X,.i-replacement, so L, = X, i-collection by propo-
sition 3.4.19. Thus L, = A,-collection. Hence J&(0) € Ani1(La) by
proposition 3.12.10. As L, = %,i-replacement and JS (0) € Api1(La), 50

n)

% () is megaregular by proposition 3.8.9. O

Corollary 3.12.12. Let n € N. Assume L, = ¥, ;-replacement. Then JSZ)(@)
is a total set.

Proof. This follows from corollary 3.12.11 and proposition 3.12.8. ]

3.12.4 Monotonicity

Proposition 3.12.13. (Jump monotonicity)
Assume A <. B. Then:

i) H(A) <wee H(B),

i) H(A) <om H(B),

iii) H(A) ® H(A) <yae H(B) ® H(B),
iv) Jae(B) is megaregular, then J,.(A) <ae Jae(B).

Proof. The statement i: We have H(A) <yae A <ae B <ae H(B) using propo-
sition 3.12.6. Thus H(A) <yae H(B).

The statement ii: As K(A) <,ae A by proposition 3.12.6 and A <,. B, so
K(A) <pae B. As K(A) <yae B, so yVz[zr € K(A) < (z,y) € H(B)].

Hence K (A) <am H(B). So K(A) <um H(B). Thus H(A) <,m K(A) <am H(B)
using proposition 3.12.6. Hence H(A) <., H(B).

The statement iii follows from the statements i and ii.

The statement iv: If .J,.(B) is megaregular, then J,.(B) =, H(B) ® H(B)

by proposition 3.12.7. By the statement iii and the megaregularity closure (propo-

sition 3.8.13) we have

Jae(A) Zae H(A) © H(A) <oe H(B) © H(B) =ae Jae(B)
and s0 Jue(A) <pe Joe(B) as required. O

3.12.5 X,-completeness

We investigate the relativized >; completeness and non-relativized 2,,-

completeness of the a-enumeration jump.

Proposition 3.12.14. (2;-completeness of a jump)
Let A, W C « be arbitrary. Then:
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L W <pae A = W <, Joe(4).
2. W Swae A = W <o Jae(A).
3. Aregular AW € 31 (L,, AT) = W <, Jae(A).
4. Aregular AW € Xy (Lo, AY) = W <, Jae(A).
Proof. To prove the first statement, note ®5(A) = W for some § < « as
W <wae A. Thus
K, CW < K,Cd5(A) < (v,8) € H(A)
and so W <,. H*(A). Also
K, CW < K,C®5(4) < (v,0) € H (A)
and so W <,. H~(A). Hence
WOW <qe HT(A) @ H (A) = Jo(A).
Therefore W <,, J,e(A) as required.
To imply the second statement, use the first statement as follows:
W <wae A = W <4 Joe(A) = W <, Joe(A).
The third and the fourth statement follow from the first the first and the second
statements respectively and the regularity of A. [

Lemma 3.12.15. Vn € N[A € 3,,,1(L,) = 3B € 11,,(L,).A € X1(La, BY)].

Proof. By the definition of >, 1 (L, ) class we have thatx € A <— dy.(z,y) € B
for some B € I1,,(L,,). Clearly, A € ¥,(L,, B") as required. O

Proposition 3.12.16. (>,,-jump completeness)
Letn € Nand A C . Assume L, = ¥, -replacement. Then

A€, (Ly) = A<, J(0).

Proof. We prove the statement by induction. Note that J (B) := B. So the base
case when n = 0 holds since A € Yo(L,) = A <, 0 trivially.

For the inductive case assume IH that A € ¥, (L,) = A <, Jo(fé)(@)
forany A C a. We prove VA C a[A € ¥,1(L,) = A <, J((XZH)((D)].
Let A € %,.1(Ly) be arbitrary. Then 3B € II,(L,).A € X,(L,, BT) by
lemma 3.12.15. As L, E X,,i-replacement and B € A,,1(L,), so B is
megaregular by proposition 3.8.9 and thus regular. As A € Y,(L,, B") and
B is regular, so A <, Ja.(B) by proposition 3.12.14. As B € %,(L,), so
B <, JS(0) by IH. Thus B <, JS(0).

Note that J&(0) and J{™ () are megaregular by corollary 3.12.11 and
L, E X, o-replacement. As JC(Z;)(@) is megaregular, so it is total by proposi-
tion 3.12.8. Using B <, Jgé)(@) and the totality of Jc(fé)(@), we have B® B <.
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J52(0). Hence B <. J5(0). As B <o J&(0) and JED(0) = Joo(J5(0))
is megaregular, s0 Jue(B) <ae Jae(JS(0)) = JE& (9) by proposition 3.12.13.

Since J..(B) @ m <wae Jae(B) by proposition 3.12.8 and
Jae(B) <ae JET (D), 50 Joe(B) @ Jae(B) uoe Joe V(@) As JETV(0)
is megaregular, s0 Joo(B) @ Joo(B) <ae JET(0). As Joo(B) ® Joo(B) is
total, 50 Jae (B) <o JUTV(P). Since A <, Joe(B) and Joo(B) <o JETV(0), so
A <, JED().

Therefore

VA CalA € Su(Ly) = A<y JODO)]

as required. L

3.12.6 Usage in oracle constructions

We may use the following proposition 3.12.17 implicitly in the oracle construc-

tions and definability statements.

Proposition 3.12.17. Assume that & (A) is megaregular, then
S € Ai(Ly, Jae(A)) = S € Ay(La, K(A)).

Proof. (Of proposition 3.12.17)

1. Joe(A) <pae H(A) ® H(A) <pae Jwac(A) = K(A) & K(A) by proposi-
tion 3.12.7.

Jae(A) B Joe(A) <wae Jae(A) by proposition 3.12.8.
K (A) megaregular by assumption.

Joe(A) <oe K(A)@® K(A) by 1, 3.
D Joe(A) <wae K(A) @ K(A) by 2, 4.

D Joe(A) <ae K(A) @ K(A) by 3, 5.

D A T e

S € Ai(Lqa, Jae(A)) by assumption.

10. S @ S <pe Jae(A) ® Jue(A) by 8,9.

11.S® S <, K(A) @ K(A) by 10, 6.

12. S € A(La, K(A)) by 11. 0

3.13 Simple construction

We provide a simple construction that demonstrates the use of a projectum and an

assumption on megaregularity in a-Computability Theory.
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Proposition 3.13.1. ''" Foraset A C «a let A # 4. (). Assume that the projectum
of o is a* = w or that K(()) & A is megaregular where K(C) = {z < « :
r € ®,(C)} represents a weak a-jump''® of C. Then there is B € X;(L,) s.t.
A Lyae B.

One could simply take B to be () to prove the statement above. Instead we
make a generic proof by constructing B from A given A #,,,. (). Later statements
extend this proof by adding additional requirements, so it is important to present

a simple construction first for better comprehension of later results.

Proof. (Of proposition 3.13.1)

Construction

To imply A L.ne B, we would like to construct B in such way so that for each
v < « we satisfy the requirement:
R,:A# & (B).

We construct B in o stages. At the stage v < o, given B,, we construct
B,1, from B,. Intheend B = |

only o many stages, we index the requirements and a-computably enumerable

<o+ By © . To satisfy R, for every 7 < «in
sets with the indices from the projectum o* by using the partial a.-computable
surjection p; : @ — « from proposition 3.6.2.

During the construction we prove by induction that at every stage v < o, the
set B, is a-finite by proving B, € L, at the stage 7 < o* and assuming the
following IH at that stage:

B, € L.

Using the a-finiteness of B, we also prove that B, is uniformly o-computable
from the index 7 by the a-computable function f : a* — L,, f : v +— B,. We use
this function f € ¥(L,) to conclude that B € ¥;(L,,).

Let By := (). Clearly, By € L, and so the BC of the induction holds. Define
B, ., given B, at the stage v below.

Stage : satisfy A # ©.(B)

Using the oracle K(()) check if v € dom(p;). If v ¢ dom(p;), then set
B, 1 = B, and proceed to the next stage v + 1. Otherwise, proceed as follows.
As A Zae 0, 50 () # A. Hence one of the following must hold:

Untroduced in this thesis.
118See section 3.12 for more details.
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e & (o) C A: As B C «, so &,(B) C A by the monotonicity of an a-
enumeration operator ¢. Thus define B, := B,. The set B, is a-finite
as B, € L, by IH. Note that R, is satisfied by B as ®.(B) C A.

e Jz € &, (o) s.t. © ¢ A: Then take any v < as.t. v € ®,(a) and z ¢ A.
We must have some witness X' C « in L, s.t. € ¢, (K). Thus define
B.,i1 = B,U K. The set B4, is a-finite as B, € L, by IHand K € L.
Note that R, is satisfied by B as B, C B.

Limit construction

If a* = w, then this construction is not needed.

Otherwise, let < « be a limit ordinal. Define Bs := Uﬂ/ <5 By. We prove Bs
is a-finite using the megaregularity of K () & A.

Let f : a* — L, be the function v — B., which is defined as follows:

 f(0)=0,

f) if &, (a) C A,
o f(y+1) =19 f(y)UK;s ifIz[z € &, (a) Az ¢ A] where
§ = pflr e & (Kpg) Nz & A.

o f(0) =U, s f(7) if lim(9).

Note that f € (L, K(0) ® A) since f is 3 (L, ) definable with the oracles A
and K (()) as seen from its definition above.

Trivially f(0) € L, and if f(vy) € L,, then f(y + 1) € L,. Assume by
the IH that f is total and well-defined on the domain d where 9 is a limit ordinal.
Recall the a-computable bijection b : « — L,. Note that I = b~ o f[d] € L,
as f € X1(Lo, K(0) ® A), § € L, and K(0) & A is megaregular. Therefore
Bs = f(6) = Uge; Kp € Lo as required.

Conclusion

Note that B constructed in o* stages satisfies Vy < o*.A # &.(B). So

A Lipae B. Furthermore, note that B € ¥, (L,,) since f € ¥;(L,) and
B={z<a:Iy<a’ze f(y)}

Hence A £L0e B and B € 3(L,) as required. [l
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Chapter 4

Kalimullin pair and

semicomputability

A Kalimullin pair is an important relation in classical Computability Theory. The
enumeration jump was defined in the enumeration degrees using a Kalimullin pair
in [25]. Total degrees were defined in the enumeration degrees using a Kalimullin

pair in [2].

There is a close connection between Kalimullin pairs and semicomputabil-
ity. If A is semicomputable, then K(A, A), i.e. A and its complement A are a

Kalimullin pair.

We define an «-Kalimullin pair and show that it is definable in the -
enumeration degrees D,. if V' = L and « is an infinite regular cardinal
(corollary 4.3.8). We generalize some needed results on semicomputability by
Jockusch [10] to conclude that every nontrivial total degree is a join of a maximal

a-Kalimullin pair if V' = L and « is an infinite regular cardinal (corollary 4.4.2).

The work of this chapter is used in chapter 6 to prove that if V' = L and «
is an infinite regular cardinal, then the total a-enumeration degrees 7 O7T . are
definable in the a-enumeration degrees D, (theorem 6.3.7):
an a-enumeration degree is total iff it is trivial or a join of a maximal a-Kalimullin

pair.

4.1 Semicomputability

We lift some needed results of Jockusch [10] on semicomputable sets from the

level w to a level .
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4.1.1 Definition and closure

Definition 4.1.1. A set A C « is a-semicomputable iff there exists a total «-

computable function s : @ X o« — « called a selector function satisfying:
i) Vo,y € a.sa(x,y) € {z,y},
i) Vo,y € a[{z,y} NA# D = sa(x,y) € Al.

Denote by sc(L,,) the class of c-semicomputable sets.

We just say semicomputable instead of a-semicomputable if clear from the

context.
Fact 4.1.2. (Semicomputability closure)
i) Ae€sc(Ly) < A€sc(Ly),

i) A® B €sc(Ly) = A€sc(Ly) ANB € sc(Ly).

4.1.2 Binary ordering

Definition 4.1.3. (Binary ordering)
Define <,C P(a) x P(a) and <,C P(a) x P(a) to be numerical orderings on

the binary representation of the compared sets:
e A<, B:<= dpeca|lfgANBEeBANANG=BNJ,
e Ay B:<—= A<, BVA=B.

Remark 4.1.4. The restrictions of the orderings <, and <, to a-finite sets are

first-order definable and a-computable since an a-finite set is bounded.

Proposition 4.1.5. (Properties of binary ordering)
Let < € {<, <}, then:

1) < is a strict total order,

1) <, is a total order,
iii) A<, B <= B <, A.
Proof. 1) and ii) are trivial. Next we prove iii). Assume A <, B. Then
there is B < a st. f&€A BeB, ANB=BNpHE. So f&B, fEA,
ANB=BNpA. Thus B<, A and by symmetry A <, B <= B <, A.

Similarly, A <, B <= B <, A. Therefore A <, B <= B <|; A and iii) as
required. L
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It is easy to see the following.
Fact 4.1.6. (Binary and subset ordering)
i) ACB = A<, B,
i) ACB = A<, B,
i) A=B < A=, B.

Note 4.1.7. If A <, C and B <, C, is it true that AU B <, C'?

No. Consider A =011...,B=100...,C =110.... Then AUB = 111....

Thus A <, C and B <, C,but AU B <, C.

4.1.3 Left and right sets

Definition 4.1.8. Given a set A define l4 == {z € a: K, < A}, ra = l4.
Remark 4.1.9. If A ¢ L, then:

o [y={r<a:K, <, A} are a-finite sets left of A,

o ry={x <a:A<, K,} are a-finite sets right of A.

Proposition 4.1.10. (Properties of left/right a-finite sets)
Let AC aand f3,7,0 < «. Then:

1) KELa/\K(;:U,VeKK,},/\(SEZA — K Cly,
i1) BGZA/\’)/GTA/\Kgﬂ(;:K,YQ(s — Kgﬂ(sgA

Proof. i) Assume K € L, K5 = U%K K., 0 €ls. So K5 <; A.

Assume v € K. Then K, C K; <, A by fact 4.1.61. So K, <, K5 <; A.
Hence K, <, A by the transitivity of <, (proposition 4.1.5). Therefore

v € l4 and so K C [4 as required.

ii) Assume 3 € l4, vy €714, KgNd = K,NJ. So Kg < Aand A <, K. As
Kg<y A<y Kyand KgNo=K,No,s0 KgNd=ANd=K,NJ. Thus

Kznd C ANd C A as required.

Proposition 4.1.11. For any A C « the sets [ 4, 74 are a-semicomputable.

Proof. 14 is a-semicomputable since it has an a-computable selector function
5= {(ﬂf,y,ﬂ?) P Ky <y Ky} U {(f,y,y) K, >y Ky}
by remark 4.1.4.

]
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Proposition 4.1.12. Let A C « be a quasiregular set, then A =, 4 =, 74.

Proof. If A € Ay(L,), then trivially A =, l4 =, ra. Hence WLOG assume
that A ¢ L, and use remark 4.1.9. Also WLOG A ¢ A(L,) and so in the proof
implicitly use the property
Vee Ady,zlx <y<aAhz<z<aAyg€ ANze Al
Note that (J,c i Kz € Lq. Hence for any v < o we have
K,Cly < 3P <a[Ks <y ANVz € K, K, <, Kg|.
Thus 14 <, A via
W ={(v,0): 36 < a[Ks ={B} NVz € K,.K, <, Kz} € £1(La).
By symmetry 74 <,. A. Hence [, ® ra <,. A.
Let A denote Aor A. Then K, C A <=
38, 8r < alVx € KWy < zly € K5, <= y € Kz, |AK, C Kg, ABL € LaABR € 4]
for any v < « using the quasiregularity of A and proposition 4.1.10ii. Hence
define
W= {(7,6) : 301, Br < a[Vz € K.Vy < zly € K5, <= y € Kg,]A
K, C Ks, ANKs = {8} & {Br}] }-
Note that W € ¥;(Lo) and s0 A <ao [y @14 via W. Hence A® A <o Ly ®1a.
Therefore A A =, laDra=IlaDly=ras®r7aandso A =, l4 =, 74
as required. []

4.1.4 Semicomputable set existence

Lemma 4.1.13. LIf AO N Al = @ and Vi € {0, ]-}Az S El(La, AQ L Al), then
AQ L Al =a AQ @Al

Proof. We have Ay U Ay <, Ay & A; trivially. Let 7€ {0,1}. For
Ag @ Ay <, AgU Ay: x € A; recognizable by A; € 34(L,, Ag U Ap).  Also
x ¢ A; is recognizable since x ¢ A; <— v € A;_; Vx & Ay Ay by disjoint-
ness and both = € A ;,x & Ay U A, are recognizable from Ay Ll A;. Hence
AU A =, Ay @ A O

The lemma implies that if Ay, A; are disjoint a-incomparable a-computably
enumerable sets, then Ay Ll 41 =, Ay D A; 2.

Lemma 4.1.14. 3

BeXi(Ly) NB>,0 = JA[Aregular NA=, BAla € 111(La) Nla & 31(La)].

'From lemma 6 in [22] on p66.
2Proposition 3.31in [29].
3Adapted from Lemma 5.5 in [10] for = w
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Proof. By theorem 3.8.4 every Y;(L,) set is a-equivalent to some regular
set, so WLOG assume that B is regular. By Shore’s Splitting Theorem 3.8.5,
ACh, Dy € 31(Ly)[B = Co LU Dy A CylaDo| where Cyl, Dy means that Cy and
D, are incomparable wrt a-reducibility. Using theorem 3.8.4 again, let C', D be
a-c.e. regular sets s.t. C' =, Cyand D =, D,. Define A .= C & D.

Note A=C @D =, Cy ® D,. Hence A =, B by lemma 4.1.13 as required.

As D is regular, so D is regular. As C and D are regular, so A = C @ D is
regular as required.

Next we prove (4 & 11;(Ly) Ala & X1(Ls). For suppose to the contrary that
—(la €4 (La) ANl & 31(La))- Then ly € X1(Ly) Vg € TI1(Ly).

e Case Iy € ¥1(Lg): Note that D <,, C @ C via

W={(n,0):f=min{e <a:K,Ne=K,} NI € l4Vz <[]

2re Ky <= 20+1¢ K; <= 2z € KA

(re K, = 2zx+1€ KA

2r+1¢ K, = z € D)}
The set W is «-c.e. since [, and D are a-c.e. The condition
2v € Ks <= 2r+1¢ K;s ensures that K contains the initial seg-
ment C' N B of C. The conditions 2z € K; <= 2z € K, and
20 +1 € K = x € D ensure that K, contains the initial segment
(CNp)@e(DNP) of CeD. Finally, the conditionz € K., = 2z+1 € K,
verifies that K, is a subset of D, or more precisely a subset of its initial

segment D N S.

As D is a-c.e., so this gives us D <, C which is a contradiction to the case

Iy € El(La).

e Casely € II;(L,): Note that r4 = I4 € ¥;(L,). Hence similarly C' <, D
using the fact that 74 and C' are both a-c.e. by applying a symmetric argu-

ment to the one above. This is a contradiction to the case [4 € I1;(L,,).

So by the two cases
la €T (L) Nla & X1(La).
Therefore given B >, 0, there is a regular set A s.t.
A=, BNy g11(Ly) Nla & X1(La)
as required. [

Theorem 4.1.15. Let B C « be quasiregular and B >, 0. Then there exists an

a-semicomputable set A s.t.

A =a BANA g 21<LQ) NA g H1<La>.
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Proof. 1f deg,(B) is a-c.e. degree, then WLOG let B € X(L,). Then by

lemma 4.1.14 there is C' s.t. C' is quasiregular and
B=,CALc &3 (La) N Lc & 114(Ly,).

By proposition 4.1.12 and quasiregularity of C' we have that C' =, L and so
B =, L¢. Hence A = L is the required a-semicomputable set by proposi-
tion 4.1.11.

Otherwise deg,, (B) is not an a-c.e. degree and so
VO € dega(B)[C g 21<La> NC ¢ Hl(La>]'

Note that A = [ =, B by the quasiregularity of B and by proposition 4.1.12
andso A € ¥1(Ly) N A & 114(L, ). Finally, A is a-semicomputable by proposi-
tion 4.1.11 as required. [

4.2 Kalimullin pair

We define an a-Kalimullin pair and establish some basic properties about it.

Definition 4.2.1. (Kalimullin pair*)
Sets A, B C « are an a-U-Kalimullin pair denoted by Ky (A, B) iff

AW <@ UAXxBCWAAXx BCW].
If clear, we omit the prefix o and say U-Kalimullin pair (or just U-KC-pair) and
denote it by Cyy(A, B). Similarly, if U € ¥,(L,), then we say that A, B are a
Kalimullin pair (or just C-pair) and denote it as (A, B).

The set W is called a witness to the U-Kalimullin pair.
Proposition 4.2.2. ° If A <,. U, then VB C a.Ky(A, B).
Proof. Take the witness W = A x «. [
Proposition 4.2.3. If A is a-semicomputable, then K(4, A).

Proof. Define the witness W € X1 (L,) to the Kalimullin pair /C(A, A) to be
W ={(z,y) € a:sa(z,y) =z}

where s4 is an a-computable selector function for an a-semicomputable set A.
[

Definition 4.24. A, B C « are a trivial Kalimullin pair iff C(A, B) and
Ae X (Ly)V B € X(Ly). If A, B are a not a trivial Kalimullin pair, they form
a nontrivial Kalimullin pair, denoted by /Cy (A, B).

4Adapted from [25] Definition 2.1.
5Proposition 2.2 1in [25] for o = w.
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Definition 4.2.5. (Maximal Kalimullin pair)
A Kalimullin pair IC(A, B) is maximal denoted by K,,ax (A, B) iff

VC,DIA <4e CANB <, DANK(C,D) = A=, CAB=, D].
Remark 4.2.6. Note that in the definition of a maximal Kalimullin pair we use
a-enumeration reducibility instead of a weak a-enumeration reducibility since we

want that a maximal Kalimullin pair is definable (given that a Kalimullin pair is
definable) in the structure (D,., <) where < is induced by <,e.

Proposition 4.2.7. © Assume
ABCanAgSi(La)ABESi(La) AK(A, B)
where the witness of IC(A, B) is W. Then
i) A={a<a:3bb¢& BA(a,b) € W|},
i) B={b<a:3dala ¢ AN (a,b) € W]}.

Proof. i) Assume A, B C a, A ¢ ¥1(Ly), B € ¥1(Ls) and K(A, B). Define
Ay = {a:3bb & BA(a,b) € W|}. We prove A = A, which implies part i.

- We prove that A C A,. Leta € A. We prove that a € A,. For sup-
pose not, then a & A, and so Vb[—(b ¢ B A (a,b) € W)|. This implies
Vblb € BV (a,b) ¢ W]. Hence Vb[(a,b) € W = b € B]. As K(A, B),
so A x B C W where W is the witness of the Kalimullin pair. Note that
B ={b:3a € a.(a,b) € W}and so B <, W. As W € ¥;(L,)
and B <,. W, so B € ¥,(L,). But at the beginning we assumed that
B ¢ %4(L,). This is a contradiction. Hence a € A, as needed and so
A C A,.

- We prove that Ay C A. Assume a € A,. So there is some b € B s.t.
(a,b) € W. We prove that a € A. For suppose not, then a ¢ A and so
bZ BNa g A AsK(A,B),so Ax B CW. Hence (a,b) € W. As both
(a,b) € W and (a,b) € W, this is a contradiction. Hence a € A as needed
as so A, C A.

Asboth A C As and A; C A, so A = Ay and part i is true.

i1) The proof of part ii is symmetric.

Corollary 4.2.8. Assume
A BCaNAEY(Ly) NB ¢ (L) NK(A, B).
Then
SFrom [25] and proposition 1.8 in [2].
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1) A Swoae E and B Swae Z’
ii) A <,. B if B is megaregular, B <,. A if A is megaregular.
Proof. Follows from proposition 4.2.7. ]

Lemma 4.2.9. (Kalimullin pair distributivity)

Suppose that A,_, A; # (). Then
A\ KA, B) <= K(EP A, B) < K(J[A:.B)
€2 1€2 1€2

Proof. Suppose \,;., K(A;, B). Forany i € 2let A; x B C U; € X1(Lg) and
A; x B C U,. Define the sets V, W, U as follows:

V={(2a+1,b) : (a,b) € U;,i € 2},

W = {((ap,a1),b) : Vi € 2.(2a; + i,b) € V'},

U ={(a;,b) : Iag,a1).((ap,a1),b) € W}.
The equivalences of lemma 4.2.9 follow from the following implications:

/\AzXBgUzezl(La)/\ZlXEQUZ —

€2
<@A1>XBQV621(LQ)/\@A1XEQV —
1€2 1€2
(HAi) xBCWeSi(La)A[JAxBCW = by \A#0)
1€2 1€2 1€2
/\Aix BC U € %1(La) NA; x BCT,.
€2

4.3 Definability of an o-Kalimullin pair

We prove that the set of the Kalimullin pairs is definable in D,,. if o* = « or if
V = L and « is an infinite regular cardinal. For any U C « we prove that the set
of the U-Kalimullin pairs is definable in D, if V' = L and « is an infinite regular
cardinal. The main part of the proof is the construction in section 4.3.1.

For this section let D,, I/, be a pair of a-finite sets indexed by z < « accord-

ing to lemma 3.5.3. For any < « define

Vo={y<a:D,CD,NE, CE,}

4.3.1 Key theorem and construction

Theorem 4.3.1. " Let A, B,U C «. Let one of the conditions hold:

"Theorem 2.5 in [25] for o = w.
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1) the projectum of o is a* = w and U is megaregular.
ii) A® B® K(U) is megaregular.

Suppose =Ky (A, B). Then
IX,Y Call <ae XBAAY <o X ©BAY Lyoe X @ U]

The following proof is a generalization of the proof for the case when av = w
in [25].

Proof. This proof depends on lemmas 4.3.2 to 4.3.5 which are proved in sec-
tion 4.3.2.

We perform a construction in o* stages and define sets X, Y s.t. Vo < a:
r€e€Y <— e XAND,CA < 26 XNE,CB 4.1)

which guarantees Y <, X & Aand Y <,. X & B by lemma 4.3.2 underneath.
Lemma 4.3.2. Let X, Y, A be any subsets of a. Assume that for any 2 < o we
have
reY < reXAND,CA

where D, is an a-finite set with a uniformly a-computable index x. Then
Y <, X B A. ]

Index the requirements and a-enumeration operators by indices in a* using
proposition 3.6.8. Aim to meet for all e < o* the requirements

R.:Y#®(XaU).
Let s < a* be a stage during the construction. We use the following sets to

help to ensure the conditions stated just after them:
e X, which is used to define the desired set X in the end as X = [, cor Xse

e M, which is used to put an extra condition (4.4) on X to ensure
Y Lwae X @ U (see Final verification).

e N, :={e < a:2e < s} which just stores the indices e of the enumeration
operators used at the stage 2e + 2 and together with /I it is used to define
Mgy .

e [, which is used to define M, together with N, and stores the indices
re Mgst. D, CANE, CBAx & P (XU (M;NV,)) @ U). This
is used to ensure the condition 4.5 which is an essential property of the set
M.

oV, ={y<a:D, CD,NE, CE,} which is also used in the definition
of M,, see 4.9.
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At each stage s < o* of the construction aim to define an a-finite set X, and

an a-computable set M so that for all s < o™ they satisfy:

Xs € Xoa (4.2)

M1 C M, (4.3)

X1 — X, € My (4.4)
VD,E€ LyDCAANECB — Jze MJDCD,CAANECE,C B

4.5)

X € L, 4.6)

Ns € L, 4.7)

I, e L, 4.8)

M, = () Va) = Ny =V. = N, (4.9)

z€l,
M, € Aq(L,) (4.10)

Pre-construction

Note that N := {e < « : 2e < s} and so it is a-finite as it is a-computable and
bounded. Thus statement (4.7) is true.

Next we will use lemma 4.3.4 underneath.

Lemma 4.3.4. Let [ € L,. Then exists an index 2 < « which is uniformly

V.=V

zel

a-computable from [ s.t.

]

By statement (4.9), the set M, is defined at every stage s < o™ by the sets
N and I,. Since the set I is a-finite at the stage s by statement (4.8), so by
lemma 4.3.4 there is an index z which is uniformly a-computable from /; and
V. = N4er, V- Hence the equality

(V) = N.=V. =N,
z€l,
holds at every stage s where Iy € L,. Consequently also the set V, is

a-computable at such stage s.

Since the set N, is a-finite by statement (4.7) and V, is a-computable at the
stage s, so the set M has to be a-computable at the stage s, hence statement (4.10)
holds.

When proving at the stage s < «o* that statement (4.5) holds, we use the fact
that A and B are not a-finite by proposition 4.2.2 since =Ky (A, B). This given
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a-finite sets D, F, enables us to find arbitrarily large a-finite supersets of D, E/

contained in A and B respectively.

Constructing X

The set X will be constructed in o*-many stages.

e Stage s = 0. Set X, := 0, I, := (). Observe statement (4.5) is true for
My = «a. Clearly, statements (4.6) to (4.8) are satisfied.

e Stage s + 1 = 2e + 1. By induction hypothesis let X, I be given and -
finite by statements (4.6) to (4.8). Define X, = X, [, = I,. Trivially,
statements (4.6) to (4.8) hold at the stage s + 1 by IH at the stage s.

Note My,1 = My — {e} by statement (4.9). We claim that the set M,
satisfies statement (4.5). Let D, K € L,AND C AANE C B. By IH on M;
there is x € M, s.t.

DCD,CANECE, CB.

Note D, € L,, but by proposition 4.2.2 A ¢ L, hence D, C A. Let
2€A—D, ThenD = D, U {2} € L,. By IH on M, there is y € M, s.t.

DCD,CANECE,CB.
If © # e, then x € My, = M, — {e}. Otherwise z = e # y and
ye Mi,ADCD,cDCD,CANECE,CB.

Therefore in any case the set M, satisfies statement (4.5).
e Stage s + 1 = 2e + 2. Aim to find x € M; s.t. one of the two following
statements is true:
1: D, Z ANE, € BAz € ®((X,U(M,NV,)) & U),
22D, CANE, CBAx & P ((XsU(M;NV,)) D U).

First we prove the existence of such x € M. Assume that Vo € M, the

statement 2 is false. Define

W = {{a,b) : 3z € Milae D,ANbe E, Nz € o, ((X,U(M;NV,)) ®U)|}.

Then W <,. U by the megaregularity of U, lemma 4.3.3, statement (4.10)

and statement (4.6) where lemma 4.3.3 is given below.

Lemma 4.3.3. Assume M; € ¥,(L,) and X € L,. Let

W= {{a,b) : 3z € Msjae D, Nbe E, Nz € O (XU (M;NV,))dU)l}.
Assume U is megaregular. Then W <. U. L]
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We prove A x B C W. Let (a,b) € A x B. By statement (4.5) for M; it

follows

dr € Mglae D, CANbE E, C B].

Since statement 2 is false, we have

€ ®((X,U(M,NV,) @ U).

Thus (a,b) € W. Since =Ky (A, B), there is a pair (a,b) € A x B s.t.
(a,b) € W. Thus thereis x € My s.t.a € D,,b € E, and

r € P ((XsN(MsNV,)) B U).

Hence D, ¢ A, E, ¢ B and statement 1 is true for x € M,. Therefore

there is x € M, s.t. statement 1 or statement 2 is true. Choose such an
element € M using the oracle A ® B @ K (U).

Case 1:

Case 2:

If statement 1 is true for x, then
r€ P ((XsU(M;NV,)dU).
By fact 3.7.11ii and fact 3.7.11iii there is ' C X, U (M, NV,) s.t.
FeLonzed (FaU,).
Thus define X, = X, UF, I, := I,. Note that M, = M,. The

set F'is a-finite, by IH X is a-finite and so the union X1 = X;UF
is a-finite satisfying statement (4.6). Statement (4.8) is true by IH.

Otherwise if statement 2 is true for z, then define X, = X, U {x},
Iy = Iy U {x}. Trivially, the sets X .1, are a-finite
using IH, hence satisfying statements (4.6) to (4.8). Note
Mgy = M, NV, by statement (4.9). M, satisfies statement (4.5):
it DCAFECB,De€ L, FE € L, then by the hypothesis on M,
there is y € Mg s.t.

DuD, CD,CA,

FUE, CE,CB.
Therefore

yGMsﬂV;;:MS_H.

Note in both cases X1 — Xy C M., statement (4.4) being satisfied.

e Stage s = 2e > 0, 2e is a limit ordinal. If o* = w, then this stage does not

arise. Hence assume that A & B & K (U) is megaregular.

Define X, = J,_, X,, I, =

<5 Ir- We claim that these sets are a-finite.



90

4.3. Definability of an a-Kalimullin pair

Define a partial function f : & — « on the ordinals smaller than s by

firy={y<a:K, =X}
Note that by IH for all r < s, the set X, is a-finite using statement (4.6).
Also during the construction we only use the oracle A ® B @ K (U). Thus
the index f(r) of an a-finite set X, is also A® B® K (U)-computable. Con-
sequently, the function f is ¥1(L,, A @® B & K(U)) definable. As s < o,
so s as a limit ordinal is an a-finite set. Therefore by the megaregularity
of A® B @ K(U), the set f[s] is also a-finite. But then X, = |, K,
is a-finite by proposition 3.2.10. So statement (4.6) holds at the stage s as
required. Applying similar reasoning, using the veracity of statement (4.8)
for all » < s by IH, we conclude that statement (4.8) holds at the stage s

to0o.

Note M, = (), <s M, by statement (4.9). We prove that statement (4.5)
holds at the stage s. Note that M; = V, — N, by statement (4.9) for some
z < « satisfying both D, C A and E, C B. Fix a-finite sets D and E s.t.
DCAand £ C B. WLOG let D, C D and £, C E. Define

Z={x<a:DCD,CAANECE,C B}

As —=K(A, B) by the assumption, so A ¢ ¥,(L,) and B ¢ 3,(L,) by
proposition 4.2.2. Note that A @ B is megaregular. Hence 7 is unbounded
by lemma 4.3.5 below.

Lemma 4.3.5. Let D C A C aand E C B C a satistfying A, B ¢ ¥1(L,)

and D, E € L,. Define
Z=Jpp={r<a:DCD,CAANECE,CB}.

Then:

i) Z=. A® B,
11) ? Swae Z s> E’
i) Z & 31(La),

iv) Z is unbounded if A @& B is megaregular.

On the other hand N, C s. Thus Z — N, # (). Note
{freMs:DCD, CANECE, CB}=
{reV,-Ng:DCD, CANECE,CB}=
Z-N,£0.
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Therefore
VD,E€ L,([DCANECB = e M,DCD,CANECE,C B

and so the statement statement (4.5) is satisfied at the limit stage s.

Finally, define X = [, .

Defining Y

To define Y, first prove
Ve X[D,CA < E,CB|:

Let z € X. Then there is a stage s +1 = 2e + 2 s.t. z € X1 — X;. In case 2 we
have D, C Aand E, C B.Incase 1 thereis z s.t. X,y — X, C V., D, € Aand
E. B Asze Xg1—X;CV,ys0D, CD,and B, C E,. Thus D, € A and
E. ¢ B. Define the set

Y={:e€X:D,CA ={€X:E,CB}.

Final verification

Note Y <,. X ® Aand Y <,. X & B as proved under statement (4.1).

We prove Y L0 X ®U by showing Y # &, (X @ U) for an arbitrary e < a*.
Consider a stage s + 1 = 2e + 2. In case 1 we have X,,; = X, U F' and there is
rst.z € (FaU),D, Z Aand E, € B. Hence

red(XDU)-Y.
In case 2 there is z s.t. X, = XU {z}, Mgy = M;NV,, D, CAE, CB
and
rd P ((XsUMsq)dU).

Let z € X. Then dt.z € X;,1 — X; C M, by statement (4.4). If t > s, then
z € My, by statement (4.3). If ¢ < s, then 2 € X by statement (4.2). Hence
z€ XsUMg,qand thus X C X, U M, ;.

Hence © € Y — ®.(X @ U) by fact 3.7.11ii. Therefore in both cases
Y#0 (X BU)andsoY Lyae X G U. O

4.3.2 Construction lemmas proved

We prove some lemmas used in the construction in section 4.3.1.

Lemma 4.3.2. Let X, Y, A be any subsets of . Assume that for any x < a we

have

reY < xe€ XAND,CA
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where D, is an a-finite set with a uniformly a-computable index z. Then
Y <oe X @ A
Proof. RecallY <,, X § A <—
AW e B1(L)Vy < ofK, CY < I(y,0) € W.K; C X @ A].
Note K, CY <= Vee K, o €Y < Vee K,tr€c XAND, CA| <~
K,CXA|J) D, CA < (Bylemma3.5.4i)

€K,
K, C XNK,, €A <= (Bylemma 3.5.4ii)

Kopruy) € X @ A.

Hence define
W =A{(7,0) <a:6=uv(y,u(v))}

Asu,v € 31(Ly), so W € ¥(L,). Moreover,

K, CY < 3(v,0) e WEK; C X @ A.
Therefore Y <,. X @ A. O

Lemma 4.3.3. Assume M, € ¥;(L,) and X, € L,. Let
W= {{a,b) : Jx € Milae D,Abe E, Nz € D, ((X;U(M;NV,))dU)|}.

Assume U is megaregular. Then W <. U.

Proof. Let
Se = (X, U (M;N VL)) @ U).
We first prove W <,. S,. Note K, CW <= V(a,b) € K,,.(a,b) e W =
V(a,b) € K, 3x € Myla € Dy, Nbe E, Nz € 5,] <
V(a,b) € K,.3x € M[{a,b) € P, Nx € S,]

where ip : & = « € ¥q1(L,) is a function of lemma 3.5.4iv and P, = K, ().
Define ¢ and V:

#(v,0) < Vye K,z € Ks.y € P,.
Vi={(y,0) : K5 C M, A ¢(v,6)}.
Then continuing wehave K., CW <= Vy e K, 3z € Myly€ P, ANz € S.] <
J0[Ks C My AKs C S Ag(7,6)] < 3(v,6) € V.Ks C S..

where K5 € L, has to exist as an image of an a-computable function restricted to
an K, € L, by the admissibility of a. Note

#(v,0) <= JH[H =w(v,0) A\Vy € K., 3z € Ks.(x,y) € H|
where w : a X a — « € ¥(L,) with

Kooy ={{z,y) ;2 € KsNnye K, Ny € P}
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is a function of lemma 3.5.4v. Hence ¢(7,0) € ¥1(La). As My € Ay(L,) by
M € Ay(Ly),s0V € ¥1(L,). Therefore W <0 Se.
Note V,, € ¥1(L,). By the assumptions M, € (L, ) and X € Ly it is true
that M, € 3,(L,) and X, € ¥(L,). Thus
(X U(M,NVz)) € E1(La).
Hence
Se Swae (Xs U (M;NV,))0U <o U

by fact 3.7.11i and lemma 3.7.8 respectively. Hence S. <,n. U by proposi-
tion 3.7.12.

As U is megaregular, so S, <,. U by proposition 3.9.2. Hence W <,,,. U by
proposition 3.7.12. Finally, W <,. U by the megaregularity of U again. [l

Lemma 4.34. Let / € L,. Then exists an index z < « which is uniformly

V.=V

zel

a-computable from [ s.t.

Proof. Define f as follows
fU)=z < D.=| D, ANE.= | E..

zel zel
By lemma 3.5.4i the function f is total and a.-computable. Also

Ve={y<a:|JD. CD,A|JE. CE} =V =V.

zel xzel xzel
as required. ]
Lemma 4.3.5. Let D C A C awand F C B C « satisfying A, B ¢ ¥,(L,,) and
D, FE € L,. Define

Z=Zpp={r<a:DCD,CANECE,C B}

iv) Z is unbounded if A & B is megaregular.

Proof. 1) First note that for all a-finite sets K, K there is some v < « s.t.
D, = K,,E, = Ks. Hence if we require that D, (or L) is fixed to some
a-finite set K € L,, still the remaining sets £, (or D, ) include all a-finite
sets. Note A <,. Z via

W ={(7,0): Jxr <a[DUK, C D, NKs ={x}]} € £1(La).
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Similarly, B <,. Z. Consequently, A ® B <,. Z. Define Ip 4 and I p:
Ips={r<a:DCD,CA},
Igp={r<a:ECE,CB}

Note Ip 4 <, Avia

Wa={(,6) : Vo€ K, DC D, A | ] D, = K5} € T1(La).

reK,
Similarly I p <, B. Note that Z = Ip 4 N Ig . Thus

Z ZaeIpa®Ipp <o AD B.
Therefore A ® B =,. Z.

ii) Note that Ip 4 <,ae A via
O ={(z,0): y<aly¢ D, Nye DANKs=0Vye D, NKs={y}}
Similarly, Iz g <uae B. Hence

Z = D,AU]E,B Swaez@g

as required.

iii) If Z € %1(La), then Z € %1(Ly) and A € 2y(La), B € $(L,) which
contradicts the assumption. Hence Z ¢ ¥ (L,,).

iv) From ii) and megaregularity of A @ B, we have Z <,. A @ B. Note
A@® B = A® B. Combining this with i) it yields Z <, A @ B. Hence
7Z € Ay(La, A, B). If Z was bounded, then by lemma 3.4.13 using the
megaregularity of A & B, Z is a-finite. This contradicts iii). Hence Z has to

be unbounded.
O]

4.3.3 Conclusions and definability

Theorem 4.3.6. 8 Let A, B, U be arbitrary subsets of . The statements 1) - iv)
are equivalent. Moreover if V' = L and « is an infinite regular cardinal, then all

the statements 1) - v) are equivalent.
i) Ky(A,B),ie. IW <, U[(Ax BCW)A(Ax BCW),

i) 3f(z,y) € A1(Lo) VX C aVr,y € «
[©2(A® X)NPY(B® X) C Proy) (X BU) COe(A® X)U P, (B &S X)),

iii) 3f(z,y) € A(La)Va,y < a[®@,(A) = Oy(B) = Pyuy)(U) = 2.(A)],

8From theorem 2.6 in [25] for D,. Thanks to Iskander Kalimullin for explaining the classical
case o = w, part ii) implies V).
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iv) VW1, Vo CalVi Sae ANVa <o B = W <, UVINT: CW C VUV,
v) VX C aldeg, (X @ U) =deg,.(A® X DdU)Adeg,. (Bd X dU)|.

Proof. e First we prove that the statements 1) to iv) are equivalent. The impli-
cations ii) = 1ii), ii)) = 1v), 1v) == 1) are trivial. It remains to prove

the implications i) = 1ii) and iii) = 1).
o i) = ii):
Assume
W<, ,UAXBCWAAXxBCW
and let W = & (U) for some a-enumeration operator ®.

Define f s.t. forany X C o, 2,y € o
Prupy(X®V)={2€a:3D,F € L,
ze®, (DB X)NP(EB X)AND x ECO(V)]}.

Then f is a-computable and satisfies the condition ii).

e iii) = 1): Suppose that A and B satisfy the condition iii) with f being
computable. Define a computable function ¢ s.t. for every ¥ C « and

y < a:

a ifyey,
CI)g(y) (Y) = )
()  otherwise.

Then A, B are a U-Kalimullin pair with a witness

W = {(m,n) : @ s(g(m) ) (U) # 0}

e Hence we proved that the statements 1) to iv) are equivalent. Next we prove
that the statements i) to v) are equivalent under the following assumption.
Assume that V' = L and « is an infinite regular cardinal. Hence every
subset of « is megaregular. The statement v) = 1) is the contrapositive
of theorem 4.3.1 which follows from the assumption that both U and A &
B @ K () are megaregular. Now we prove that ii) = V).

e ii) —> v): Given ii) we would like to show that
XoU=, (Ao XadU)AN(BdXU).

where A is the meet induced by <,.. Given some order relation <, recall
the definition of its induced meet A that C' = A A B iff

(A>C)A(B>C)AVYD[(A>D)A(B>D) = C > D.
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Trivially, A X U >, X@Uand B® X & U >, X ®U. Let
D C « be arbitrary and assume AG X U >, Dand B X QU >,
D. Thus dr,y<a st. O, (AeXU)=D=0,(BeXal,).
Thus using ii), we have D C ®;,  (X®U)®U)C D and so
D=%i,n(X®U)®U)and X ®U >yae D. As X @ U is megaregu-
lar,s0 X @ U >, D. Therefore X @ U =, (A XD U)AN (BB X dU)

as required.

e Hence i) < ii) <= iii)) < iv) = v) for any admissible a.
Therefore i) <= ii) < iii) <= iv) <= v)if V = L and o is an
infinite regular cardinal.

[

The statement 1) iff v) establishes the definability of a U/-Kalimullin pair.

Proposition 4.3.7. ° Let B C a. The set of all A s.t. K(A, B) is closed down-

wards under c-enumeration reducibility as well as closed under join.

Proof. Suppose K(Ag, B) and A; <,. Ag. Hence
AW, € 1(Ly).Ag x BC Wy A Ay x BC W,.
LetVi = A xa, Vo =ax B. As A1 <, Ag, 50 V] <pe Ag AV <, B. Hence
by theorem 4.3.6 (i implies iv), IW; € X1(Ly) s.t. ViNnVe CW; C V3 U VL.
Therefore Vi N Vo = A; x B C W;. Also
Wi CViUVy, <= VNV, CW,

and so

VinVy= (A xa)N(ax B)=A; x

Hence (A, B).
Let (Ao, By AK(A1,B). If A; = () for i € 2 then Ay ® A; =4 A1_; and so
K(Ag @ Ay, B). Otherwise K(Ay @ A, B) by lemma 4.2.9. O

oy

C W,.

Corollary 4.3.8. (Definability of an U-Kalimullin Pair'®)

Assume V' = L and let o be an infinite regular cardinal. Then

Va,b,u € Dye[Ky(a,b) <= Vo € Dye.(aVaxVu)ANbVrVu)=2zxVul.

Proof. Note that since « is an infinite regular cardinal, so A & B & K(U) is
megaregular. Thus the statement above follows from (i <= v) in theorem 4.3.6
and from the KC-pair being a degree theoretic property by its invariance under the

ae-reducibility by proposition 4.3.7. [

9Proposition 1.7 in [2] for o = w.
10The case for & = w proved in [25].
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4.4 Maximal Kalimullin pair and total degrees

In this section we conclude that every nontrivial total degree is a join of a maximal

Kalimullin-pair if V' = L and « is an infinite regular cardinal (corollary 4.4.2).

Proposition 4.4.1. (Maximality of semicomputable megaregular K-pairs)'!
Let A C « be megaregular. If (A, A) A A &€ S1(La) A A & (L), then
Kinax (A, A).

Proof. Suppose K(A, A) and K(C, D), A <, C, A <, D. By proposition 4.3.7
IC(A, D). By corollary 4.2.8 and the megaregularity of A we have D <,. A. Sim-
ilarly, K(C, A) and thus C' <., A = A by corollary 4.2.8 and the megaregularity
of A. ]

Corollary 4.4.2. Assume V' = L and let o be an infinite regular cardinal. Then

every nontrivial total degree is a join of a maximal /C-pair, i.e.

Va € TOT ge —{0}3b, ¢ € Dye[(a =0V ¢) A Kpax (b, ©)].

Proof. Since « is an infinite regular cardinal, thus the set of the (maximal)
Kalimullin pairs is definable by corollary 4.3.8.

Suppose a € TOT .. — {0}. Note that a is a megaregular degree (at least one
or equivalently every set in a is megaregular). Then by theorem 4.1.15, there is
A C a st Ais a-semicomputable, A ¢ ¥1(L,), A € ¥1(L,) and A® A € a
by the totality of a. As A is a-semicomputable, so K(A, A) by proposition 4.2.3.
KC(A, A) is nontrivial since A & ¥1(L,) and A € ¥1(L,). Thus by proposi-
tion 4.4.1 and the megaregularity of A we have Kay (A, A). O

By inspecting whether a degree which is not quasiregular could be a join of a

maximal Kalimullin pair, one may establish the following:

Proposition 4.4.3. If deg (B) is not a quasiregular degree, then there is C' s.t.
0 <o C <o Band Kpay(C, O).

Proof. Since deg, (B) is not a quasiregular degree, then D is not quasiregular for
any D =, B. So B is not quasiregular.

Let 8 < « be the least ordinal st. BN 3 ¢ L,. Define A = BN f.
Then A C B by B not being quasiregular. By the minimality of 3, the set A is
quasiregular. A is bounded, but not a-finite, hence A cannot be a-computable.
Thus A >, (). By theorem 4.1.15 there is a-semicomputable set C' s.t. A =, C,
C ¢ %(Ly) and C ¢ TI,(L,). As C is a-semicomputable, so K(C,C). By
proposition 4.4.1 we have that K., (C, C). O

"1Generalized from Maximal IC-pairs in [2] for a = w.
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Chapter 5
a~-rational numbers (),

In classical Computability Theory the definability of the total enumeration degrees
was established by constructing a cut in the rational numbers Q. We generalize
this result in chapter 6, but for that we first need an analogue of rational numbers
in a-Computability Theory.

Let o denote an admissible ordinal and let 5 denote a limit ordinal. A rational
number can be represented by a bounded binary string. Thus the analogue, (-
rational numbers ()5, may be {<,>} <7, binary strings of order type less than 3.

In this chapter we define -rational numbers (3. We investigate ()g briefly
and (), with a little more detail covering the areas of representability, computabil-

ity, dense total orders and analysis.

5.1 Basic concepts

Using strings we define $-rational numbers ()g with its ordering and show how to
represent them in Lz. We define a [3-real number interval which is used later
in section 5.4 to analyse (3 further. We show that the ordering of @), is a-

computable and an order type of an a-rational is uniformly c-computable.

5.1.1 Strings

We define strings of transfinite length and explain the notation involved.

Definition 5.1.1. (Language signature, character and string')

Let £ be a set that contains the element \.

e The set L is called the language signature.

I'Strings are a common concept in the field of Computer Science. a-strings were introduced in
this thesis.
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An element in L is called a character.
The element \ is called the empty character.

For an ordinal a € Ord an «-string o is a total function o : o« — L satisfy-

ing the following property:
Vy,0 <aly<dAa(y) =X = a(d) =\

If 0(0) = A, then o is called the empty string and denoted also by ), i.e.
o=\

If the ordinal « is clear from the context, we just use the term string for an

a-string.

Note 5.1.2. (Notation for strings)

We avoid complex definitions of the concepts and notation below and instead

provide simple clarifying examples of a-strings for some ordinal .

abc is the compact string notation for the string

{(0,a),(1,0),(2,0)} U{(y,\) eax L:2 <~}
E.g. abc\ = abc. Here we make a convention to grow a string from the left
to the right.

o(7) is the ™ character of the string 0. E.g. abc(0) = a, abc(1) = b,
abc(2) = ¢, abe(3) = .

o[y, 9], o[v,9), o(v, 0], o(7, 0) denote string intervals. E.g. abed[1, 3] = bed,
abcd[1,3) = be, abed[1, 5] = bedAX\ = bed = abed]1, 3).

o - 7 denotes the concatenation of the strings o and 7. E.g. if o = 000 and

T = abe, then o - 7 = 000abc.

27 1is the concatenation of v many characters or strings z. E.g.
(be)® = bebebe, 0* - a? = 0000aa.

o | 4 denotes the restriction of the string o to the characters at the position
less than 4, i.e.

Vee LVy <ale=(c]6)(y) <= v<dAc=0o(y)Vi<yAc=]].
E.g. (abcde) | 3 = abe.

The order type of the string o denoted as ot(o) is defined as

ot(o) =min({y < a:o(y) = A}).
E.g. ot(\) = 0,0t(ab) = 2,0t(abc-d* - ad) =3+ w+2 =w + 2.
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e Let S C £ —{)\}and 8 < Ord. Then S<# are the strings of an order type

less than [ that consist of the characters in S, i.e.
S<F:={o:B = SU{\}|oisa jB-string}.
E.g. {a,b}=3 = {\ a,aa,ab,b, ba, bb}.

5.1.2 (-rationals ()3 with ordering
Definition 5.1.3. (/3-rational numbers?)

e Let 3 be a limit ordinal. Then [-rational numbers ()p is a set of binary
B-strings, i.e. Q5 = {<,>}<F.

e The ordering on () is the total lexicographical ordering induced by the
ordering on the substrings <, A\, > where < < A < p: for 0,7 € (3 define <

as following:
o<1 = Iy <Ploly=717A((7),7(7) € {(,A), (4,>), (A, >)}].

Remark 5.1.4. (Order type of [-rational)
Recall note 5.1.2. As every [-rational is a 3-string, the order type of the 3-rational
o is the order type of the 3-string 0. Specifically,

ot(o) =min{y < B :0(y) = A}

Proposition 5.1.5. 3 Let 3 be a limit ordinal and let § < 3 be 0 or a limit ordinal.
Let 7 € (g be a B-string of order type d. Let S be a set of J-rationals of order

type in the interval [d, § + w) for which 7 is a substring. In notation,
S={peQs:mCpAot(p) €[4,0+w)}
Then
(5, <) = (Qu, <)
Proof. Note
S={m-0e€Qp:ot(r-0)€[f,0+w)}={r-0:0€Qu,}

5.1.3 (-real number unit interval I

Definition 5.1.6. (3-real number unit interval*)
Let 3 be a limit ordinal. Then [3-real number unit interval I3 is a set of binary

strings of an order type less than or equal to 3, i.e. I5 = {<,>}=F.

Introduced in this thesis.
3Introduced in this thesis.
“Introduced in this thesis.
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One could establish that the /5-real numbers in the unit interval are a comple-

tion of the -rational numbers in a natural sense.

Remark 5.1.7. (Greatest and the least element)
The j3-real number unit interval I has the least element <” and the greatest ele-
ment >°. Hence one should not think of I as being analogous to the generaliza-
tion of all of IR, but only the interval [0, 1] C R.

Similarly, the S-rational numbers ()3 are analogous to the generalization of
the open unit interval (0,1) C Q.

However, the rational interval ((0,1), <) and (Q, <) are models of the same
theories and thus are indistinguishable. Hence, for the sake of the simplicity, we
call (3 as S-rational numbers.

One way to define S-real numbers Rj is as the set I3 without the greatest and

the least element, i.e. R == I3 — {<% >7}.

5.1.4 Representation of (), in L,

Definition 5.1.8. (Binary representation of a subset by a string”)
A binary representation of a subset A C (3 for any ordinal /3 is a string o of order

type [ consisting of symbols 0, 1 satisfying the conditions:
o VY <PBlo(y) =0 <= v &A4],
o Vy < flo(y)=1 <= € Al
Example 5.1.9. The set A = {1,2,4} is represented by a string 011010000 . . .

Note 5.1.10. (Representation of a S-rational)
We represent every string o € (3 as the set S C 3 defined as follows:

e Jcharacter in o is represented by 01 string in .S.
e > character in o is represented by 11 string in S.

e )\ character (the termination of the string o) is represented by 00 symbol in
S. We conceive 00 substring in the binary representation of an S-rational
as a termination marker since all the characters afterwards will be Os in the

representation.

e the set S is defined by its binary representation which is the concatenation

of the representations of the characters of o.

SBinary representations of various objects are very common in the field of Computer Science.
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o If o € (g isrepresented by S C 3, then we may identify o with S and thus

have:

oc€ls < Se€ls

Remark 5.1.11. Every string o € @), is bounded. Therefore if we assume V' = L
and « is an infinite regular cardinal, then @), C L,,.

5.2 Computability on (),

Proposition 5.2.1. ° There exists an a-computable injection i : Q, N Ly — .

Proof. As Q. N L, is an a-computable set and there exists an c-computable in-
jection L, — «, so its restriction (), N L, — « has to be also an injection and

a-computable. [
Proposition 5.2.2. 7 The ordering < in (Q, N L,, <) is a-computable.

Proof. The equality on @), is clearly a-computable. From definition 5.1.3 < is
¥1(Lq), by symmetry also IT; (L, ) using the totality of <. Therefore < is A;(L,),

thus a-computable. 0

Proposition 5.2.3. (Computability of an order type®)
The order type of a [ rational p is uniformly I1y(Lg, p)-definable.

Proof. Note that
ot(p) =0 <= Vy <d[p(y) =<V p(y) =p] Ap(d) = A

which is I, over Lg with p as a parameter. [

53 (Qs,<) as order

The classic result states that any infinite countable unbounded dense total orders

are isomorphic, see theorem 5.3.1 below.

Theorem 5.3.1. ° Suppose that (A4, <) and (B, <) are both infinite countable
unbounded dense total orders. Then (A, <) = (B, <), i.e. (A, <) is order iso-
morphic to (B, <). O

We use theorem 5.3.1 to conclude corollary 5.3.3 that (Q,,, <) = (Q, <). This
result provides us with more intuition about the S-rational numbers () 3 by inspect-

ing the case when 3 = w.

®Introduced in this thesis.
"Introduced in this thesis.
8Introduced in this thesis.
Follows from theorem 2.4.1. in [18] proved by Back and Forth method.
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5.3.1 (Qp, <) as an unbounded dense total order

Proposition 5.3.2. ' (Q3, <) is an unbounded dense total order.

Proof. Let o, T be S-rational numbers. If o and 7 are not equal, then let p < ( be

the least position on which ¢ and 7 disagree, i.e.

p=min{y < B :0(y) #7(7)}

If o(p) = <orbotho(p) = Aand 7(p) = i, then o <g, 7, otherwise 7 <q, 0.
Hence (@3, <) is a total order.

Assume o < 7. Then (o(p), 7(p)) € {(<,A), (,>), (A\,>)}. If o(p) = <, then
define p == o - >. If o(p) = A, then define p := 7 - <. As 0,7 € @3, so the order
type of o and 7 is bounded in 3. Thus also the order type of p is bounded in /5 and
so p € (Qp. Note that 0 < p < 7 and so (@3, <) is a dense order.

Ifo € Qg theno-a< o <o->pando-<,0-> € Qg Hence (Qp, <) is
unbounded.

Therefore (@), <) is an unbounded dense total order. O
Corollary 5.3.3. '' (Q,,, <) = (Q, <)

Proof. The rational numbers (Q are a countable infinite dense unbounded total
order. Similarly, the w-rationals (),, are an unbounded dense total order by propo-
sition 5.3.2. Clearly, #Q,, = N,. Therefore (Q),, <) = (Q, <) by theorem 5.3.1
as required. ]

5.4 Analysis on ()3
We study density and weak forms of completeness of the S-rational numbers ().

Proposition 5.4.1. (Infimum existence'?)

Every subset of ()3 has an infimum in /.

Proof. Let S C (3 and bounded below by 7 € (3, i.e. Vo € S.7 < 0. We
construct the infimum p € Iz of S in J stages. Start with the stage v = 0. At the
stage v < 3 assume that p[0, 7) has been defined and define p(y) according to the

following rules:

e Ifthereis o € Ss.t. 0]0,7) = p[0,7) and o(y) = <, then set p(y) = < and
go to the stage v + 1.

10Tntroduced in this thesis.
Untroduced in this thesis.
2Tntroduced in this thesis.
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e Ifthereis o € S s.t. 0[0,7) = p[0,7) and o(y) = A, then set p(y) = A and
go to the stage v 4 1. Note that o is the minimum of the set S and so in the

end p == 0.
e Otherwise set p(y) = > and go to the stage v + 1.

From the construction it is clear that p is equal or smaller than any other element
of S. Also p is the maximal possible element. Hence p is the infimum of S as

required. =

Proposition 5.4.2. '* Every set bounded in order type < 3 is bounded by some
[-rationals of the order type 9, i.e.

VS C Qﬂ [35 < 6VO’ S SOt(O’) <6 = E]T(),Tl S Qﬁ
[ot(0) =d Aot(r) =0 AVo € Sog <o < 71]].

Proof. Take 7y = <® and 7, = °. Then Vo € S.7y < o < 7 as required. O

Definition 5.4.3. (Set parameter infimum/supremum!#)
Let (.S, <) be an ordered set and let A, B C S.

e The A-infimum of the set B is defined as
inf,(B) =max{a € A:Vbe€ B.a <b}.

e The A-supremum of the set B is defined as
supy(B) :==min{a € A:Vbe B.b <a}.

Remark 5.4.4. In other words, A-infimum of the set B is the greatest lower bound
of B which is in A. Similarly, A-supremum of the set B is the least upper bound
of B which is in A.

Proposition 5.4.5. (Order type  infimum existence and computability'®)
Let S C ()3 be bounded in order type § < (3. Define

Q= {p e Qs otlp) = 3},
Then the Q-infimum of S exists and is uniformly ¥q(L,, S, )-definable.

Proof. Let v be the infimum of the set .S as constructed in proposition 5.4.1. Let
7 be the order type of v, i.e. 7 := ot(v). Set p; = vb, i.e. the string v padded
with the characters > so that ot(p;) = 0. Set ps = v<i> so that ot(ps) = 0. Note
that if v = 9, then p; = py = v.

BIntroduced in this thesis.
4Introduced in this thesis.
I5Tntroduced in this thesis.
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If Vo € S.p; < o, then set p := p;, otherwise set p := py;. Now by definition
Vo € S.p < 0. Also p is the maximum such [S-rational number of the order type
d. Asot(p) = 0,50 p € Q C Qp.

Hence p is the (Q-infimum of the set S. Therefore the Q-infimum of the set S
exists.

Next using proposition 5.2.3 we observe that infy(.S) is uniformly definable
with bounded quantifiers from the parameters .S and ¢ only since

p=info(S) <= Voe Sp<oAV¥Vr< 0
ot(T) =0 AVo e St <o = 7 <o0].

Therefore inf(S) is uniformly ¥ (L,, S, §)-definable as required. O

Proposition 5.4.6. ' Let S C (), be bounded in order type § < « and let S be

a-finite. Define

Q:={peQanLy,:ot(p) =5}
Then the Q-infimum of S denoted as inf,(S) exists and is uniformly a-

computable from S and 9.

Proof. Define
Q ={p € Qa : ot(p) = 6}

By proposition 5.4.5 the a-rational p = infg(S) exists and is uniformly
Y0(La, S)-definable. As S is a-finite, p is Xo(L,)-definable and hence a-
computable. As ot(p) = 4, so p is also bounded. Hence p is a-finite by the
admissibility of a. Thus p € Q Given that p € Q and Q C @, we have
p = infq(S) = inf;(S). Therefore inf;(S) exists.

Using infg(S) = inf,(S), the uniform a-computability of infs(S) from S
and ¢ follows from the uniformly a-computability of infg, (.S) from the parameters
S and 4 by proposition 5.4.5. [

Proposition 5.4.7. (Setwise density of Q4 for sets bounded in order type'”)
Let A, B C (g and 7 < (3. Define
Q = {p € Qu : ot(p) =7}
Assume that
Vo € AVT € B.o < T ANot[AU B] C 7.
Then

i) there is uniformly 3,(L,, A)-definable p € ()4 satisfying
ot(p) =y AVo € AVT € B.o < p <,

16Tntroduced in this thesis.
Introduced in this thesis.
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e.g. p = supg(4),
ii) there is uniformly ¥y(L,, B)-definable p € ()5 satisfying
ot(p) =y AVo € AVr € Bo < p <,
e.g. p = infg(B).
Proof. Let p = infg(B). Clearly, ot(p) = . As
Vo € AVT € B.o <7 Aot[AU B] C~,
SO
Vo € AVT € B.o < p <T|.
Also pis uniformly ¥y (L,,, B)-definable by proposition 5.4.5. Therefore the state-

ment ii holds as required.

The statement i is true by the dual proof of ii. 0

5.5 Further directions

We investigated a-rational numbers @), as an a-computability theory analogue of
the rational numbers QQ in w-computability theory. We proved the basic statements
about (), sufficient for our purpose to construct an c-semicomputable cut. How-
ever, there are many further directions out of the scope of this thesis which may

yield fruitful investigations:

e interactions between different notions of continuity on @),, e.g. €-0-

continuity, a-sequential continuity, limit continuity, uniform continuity,
e relations between (), hyperreals and surreals,

e generalizations of the real numbers, e.g. the completion of (), under a-

Cauchy sequences, Dedekind cuts, subsets of «,

e continuity of a function f : @), — @), and the a-computability of its repre-

sentation,

e «-metric spaces, a-Polish spaces and Higher Descriptive Set Theory.
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Chapter 6
Semicomputable cut in (),

In this chapter we prove Semicomputable Cut Existence Theorem 6.0.1 below.
This theorem is used in section 6.3 to obtain results about the definability of the

total a-enumeration degrees 7 OT . in the enumeration degrees D,,..

Theorem 6.0.1. (Semicomputable Cut Existence Theorem)
Let A and B form a nontrivial C-pair. Then there exists an a-semicomputable cut

CCQuNLyst. A<pyae Cand B <,qe C.

The proof of theorem 6.0.1 generalizes the proof of Theorem 2.3 in [2] for
« = w to an admissible ordinal ov. The main ingredient of the proof is the labelling
algorithm provided in section 6.1 which involves a priority argument. In this thesis
we mainly focus on the new parts arising from the generalization.

This chapter is organized as follows. Section 6.1 explains the labelling algo-
rithm. The labelling algorithm outline is given in section 6.1.1 with some concepts
presented intuitively. The formal definitions of the intuitive concepts are given in
section 6.1.2. The rest of the section provides formal framework and steps of the
labelling algorithm with some of its properties. Section 6.2 defines the cut C' us-
ing the labelling algorithm and proves theorem 6.0.1. Section 6.3 concludes that

the total a-enumeration degrees are definable in the a-enumeration degrees.

6.1 Labelling algorithm

In this section a labelling algorithm is used to construct an a-computable sequence
of the labelling functions ¢, : a4 Uap — @), for s < « to prove lemma 6.1.1 be-
low. Later in section 6.2.4 this sequence of the labelling functions is used to define
a semicomputable cut C' in (), in order to prove Semicomputable Cut Existence
Theorem 6.0.1.
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Lemma 6.1.1. Let A and B form a nontrivial /C-pair, then there exist an a-
computable sequence ¢ = {¢;}s<. Of the a-computable partial labelling functions

and an a-semicomputable cut C' C @, N L, s.t.

A=Ac ={a€as:3Is<agsa)eC}

B=DBc={b€ag:3s < a.qsb) eC}.

6.1.1 Algorithm outline
Constructing the cut C' C (), N L,, from the witness " of IC(A, B)

We use the witness W to the K-pair K(A, B) to construct the a-computable se-
quence ¢ trying to satisfy two conditions for any s < a:

(a,b) € A x B = q,(a) < qs(b), (6.1)

(a,b) € Ax B = ¢.,(b) < qs(a). (6.2)
Therefore at the beginning the elements from « 4 are on the right of an «a-rational
line ()., the elements from oz are on the left of the «-rational line (),. Hence if
{a,b} C dom(qgs) and (a, b) has not entered the a-enumeration W at the stage s
yet (i.e. (a,b) & W), then we have ¢5(b) < ¢s(a). When (a, b) enters W, then
we try to move a as much to the left and b as much to the right as possible so that
q:(a) < q(b) at some stage t > s. This is not possible if there are some labels

between b and a through which b and a cannot move as the conditions 6.1 and 6.2
would be violated. For example if (a’,b) & Wy, (a,b’) € W, and

qs(b) < gs(a') < q5(V) < gs(a),
then the label b cannot be moved to the right of the label o/, similarly, the label a
cannot be moved to the left of the label ¥'.

If it is not possible to have the label a to the left of the label b, then for such
labels a and b we introduce a notion of a dead zone interval [q, (), g;(a)], see
definition 6.1.13. We allow other labels to move out of the dead zone, but not
inside it (unless the labels are of a higher priority).

To get rid of the dead zone intervals as much as possible, we have to introduce
a priority ordering on the pairs (a,b) € ay X ap. If (a1, by) is of a higher priority
than (ag, by), then it is more important to remove the dead zone [g;(b1), ¢:(a1)]
before removing the dead zone [g;(b2), ¢:(a2)].

If (a1,0) € W, (ag,b) ¢ W and ay € A, then a; € A. Therefore the main
idea in defining the cut C' to meet the conditions A = Ac and B = B¢ is to place
the labels a; € a4 to the left of the labels ay; € a4 if a; label is witnessed by
pairs in W of some fixed higher priority than the pairs in W witnessing ao. The

case of the labels b € a g is symmetric, where labels start on the left and with new
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witnessing pairs in W move towards right.

Moving the label a to the left of b for (a,b) € W

Recall from the previous subsubsection that the goal of the labelling algorithm is
to move labels in such a way that the conditions 6.1 and 6.2 are satisfied. Now
we outline in a little more detail some related scenarios and steps of the labelling

algorithm to resolve them.

Permanent dead zone Let W = {(ap,by),(a1,b1),...} be a witness to
KC(A, B). Let gy be the initial labelling function, we have:

o< qo(b2) < qo(b1) < qo(bo) < qo(ap) < qo(ar) < qolas) < ...
First (ag, by) is enumerated and the labelling algorithm places g to the left of
bo, i.e. qi(ag) < q1(bo) using Wy = {(ag,bo)}. Next (ai,b;) is enumerated
and the labelling algorithm would like to place a; to the left of b;. However, as
(ap,b1) & Wa, (ay,bo) & Wo where Wy = {(ag, by), (a1, b1)}, so we will instead

have the labelling function ¢ s.t.

¢@2(b1) < q2(ao) < q2(bo) < qo(ar).
The label ay cannot be moved to the left of the label b; as (ag,b1) ¢ W5 and we
need to satisfy the condition 6.2. Here the label b, is an obstacle for the label a.
As a; and b cannot satisfy the condition 6.1, so the interval [g2(b1), ¢2(a1)] is a
dead zone. If (ag,by) &€ W, (a1,by) & W, then a; will never be to the left of b;

and such an interval [q2(b1), g2(a1)] is called a permanent dead zone.

Strategy, its run and termination For each pair of the labels (a,b) € as X ap
there is part of the labelling algorithm called strategy for the pair (a,b) which
tries to move the labels a and b in such a way that the conditions 6.1 and 6.2 are
satisfied.

When the strategy for the pair of labels (a, b) of the priority p < « runs at the
stage s < «, we call this a strategy run (s, p).

In lemma 6.2.6 we prove that such a strategy does not move labels forever,
but eventually stops acting. Let (a,b) € W. The termination of each strategy
for some pair (a,b) is ensured by the following. If ever ¢s(a) < ¢s(b) for some
s < «a, then the condition 6.1 is satisfied and the strategy will never act again.
Otherwise the interval [gs(b), gs(a)] is a permanent dead zone. The labels inside
the dead zone have to be of a higher priority (otherwise they would have to be
moved out) and so using the induction hypothesis that the strategies of the higher
priority have stopped acting we conclude that also the strategy for the pair (a, b)

has to stop acting as it has nothing more to do.
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Label clearing The goal of the strategy for the pair (a,b) € W is to ensure 6.1,
i.e. gs(a) < gs(b). If this is not possible, then the interval [¢4(b), ¢s(a)] is a dead
zone. In order to satisfy 6.1 it is important to shrink the dead zone as much as
possible. This may not be always possible with moving the labels a and b alone.
Hence after the labels a and b have been moved as much as possible, other labels
are attempted to be cleared out of the dead zone. This is called label clearing and
we demonstrate its importance in the following scenario.

Consider we have the following ordering of the labels:

QS<b2) < QS(QB) < qg(bl) < QS(GO) < QS(CLQ) < qs(bO) < QS(al)v
the following memberships (ag,b1) € W, (as,ba) €W, (a2,b2) € W,
(ay,b0) € W, (az,b1) € W, (a1,by) € W, with the following priority ordering:

p(a, b1) > p(ao, b2) > p(az, by).

Then the strategy for the pair (aq, b;) would like to move the label a; to left of the
label by, but it cannot do so as (ag, b;) ¢ W and (ay, by) ¢ W. However, we have
(ag,b1) € W and so as can be put to the left of b; and so the dead zone for the
pair (a1, by) can be shrunk by one label as desired. This is the label clearing of the
strategy for the pair (aq, by ).

Note that the label clearing of the label a5 is necessary as it cannot be done by
the strategy (as, b1) since [gs(b2), gs(ao)] is a dead zone of the higher priority than
the dead zone [g,(b1), gs(as2)].

6.1.2 Formalizing the concepts

In subsection 6.1.1 we outlined the labelling algorithm and introduced intuitively
some concepts as a label, labelling function, obstacle, dead zone, permanent dead
zone, priority. In this subsection we formalize these and some more concepts
including adjacent labels, left of an interval, connectedness since their precise

meaning in the proof of Semicomputable Cut Existence Theorem 6.0.1 is crucial.

Labelling function, label, obstacle

Definition 6.1.2. (Labelling function and label)

o A labelling function is a total injection ¢ : a4 Ulap — @, from two disjoint

copies of « to a-rationals.
e If c € vy Uapand §(c) = p € Q.. then ¢ is the label for p in q.

Definition 6.1.3. (Labels inside/outside of the cut in (),)

Given a set C' C (), and an a-sequence of partial labellings ¢s : a4 Ll ap — Q,
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for s < «, define
Ac ={a € ay:3s < a.gs(a) € C},
Be={b€ap:3s < a.ql)€C}.

Definition 6.1.4. (a-computable sequence of functions)
A sequence of partial functions g5 : @ — « is a-computable iff the partial «-

computable function ¢ : « X o« — «a defined by ¢ = Asc.¢s(c) is a-computable.
Recall definition 6.1.2 that a labelling function is total.

Definition 6.1.5. (Label obstacle)

Let ¢, , : ay Uap — @, be an input labelling function of the labelling algorithm
for the strategy run (s, p). A label b, is a (left) obstacle for the label a (at the stage
s and priority p) iff ¢ ,(b,) < ¢s,(a) and (a, b,) ¢ W. Define the right obstacles

for the labels in avp symmetrically.

Definition 6.1.6. (Labelling function consistency)
A labelling function ¢ : a4 U ap — @, is consistent with respect to the set of

pairs W C a4 X ap iff

V(a,b) € ay x aglj(a) < ¢(b) = (a,b) € W].

Adjacency

The labelling algorithm has to be able to determine if two labels are next to each

other, i.e. adjacent.

Definition 6.1.7. (Label adjacency)

Let ¢ : aq Uag — @, be a labelling function and ¢,d € a4 U ap be labels
satisfying the condition ¢(c) < ¢(d). We say that the two labels ¢ and d are
adjacent iff for every other label e € a4 Ll o either §(e) < §(c) or ¢(d) < g(e).
We say that c is adjacent to d from the left and that d is adjacent to ¢ from the
right.

It is important to position and determine an exact position of a label wrt to

some set of labels (which can be all the labels in some interval for example).

Definition 6.1.8. (Adjacency from the right/left)

Let g : as Uapg — @, be alabelling function and d € a4 LI ap be a label and
C C as Uap be a set of labels. Then the label d is adjacent (from the right) to
the labels C' iff:

i) Ve e C.q(c) < q(d),

i) Ve € ay Uag[Vee Cg(c) < gle) Nd # e = ¢(d) < ¢(e)].
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We say that d is adjacent to ¢ (from the right) iff d is adjacent to a set {c}.
Define adjacency from the left symmetrically. If ¢ and is adjacent to d from the

left, then we say that the labels c and d are adjacent.
We have the following relation between definition 6.1.7 and definition 6.1.8.

Remark 6.1.9. Let c,d € a4 LI ap be labels. Then the label c is adjacent to the
label d from the left/right iff the label c is adjacent to the set {d} from the left/right

respectively.

Priority

The priority ordering on the label pairs determines the order in which the strategies
act and the order in which the dead zones are cleared out. The priority ordering
prevents that a dead zone is cleared out of the labels and then new labels are added
into it again. Ultimately, this guarantees that each strategy would stop acting
eventually (lemma 6.2.6) which is essential to construct a static semicomputable

cut to prove lemma 6.1.1.

Definition 6.1.10. (Priority on pairs)
The priority for a pair (a,b) € sy X ap is given by an a-computable bijection

a X a — «. Denote this bijectionas p : @ X o« — «.

Lemma 6.1.11. (Computability of priority)

There is an a-computable bijectionp : a X a@ — .

Proof. Take the inverse of the a-computable bijection ps : @ — a X « in propo-
sition 3.2.3. ]

Priority in definition 6.1.10 inherits the ordering from the ordinal ordering. If
p1 < D2, then the ordinal p; is smaller than the ordinal p, and p, is greater than

p1. For lower and higher priority terms, the meaning is reversed.

Definition 6.1.12. (Lower and higher priority)
Let p; < po. Then:

e p; is a higher priority than ps.

® D, is a lower priority than p;.

Dead zone

Definition 6.1.13. (Dead zone - DZ)
An interval [gs(D),qs(a)] is a dead zone of a priority p iff (a,b) € Wi,

qs(b) < qs(a) and p(a,b) = p.
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Definition 6.1.14. (Permanent dead zone - PDZ)
A dead zone Z = [q,(b), qs(a)] is permanent iff

Vi<als<t = ¢' [ Z=q '] Z].

Connectedness of a-rationals

a-rational numbers can be connected through some set of intervals such as dead
zones. Connected dead zones of a higher priority are treated as one dead zone.
Hence it is important for a labelling algorithm to know if two a-rationals are

connected.

Definition 6.1.15. (Connectedness through the set of intervals)
Let p,o € Q,. Let Z be a' set of intervals in ),. Denote p is connected to o

through 7 as conn(p, 0, 7). Define conn(p, 0, Z) inductively:

e J/cZlpelNoel] = conn(p,0,7)

e conn(p,0,Z) A conn(o,7,Z) —> conn(p,7,7)
Lemma 6.1.16. Suppose that conn(p, o, 7). Then there is Z; C T s.t.
conn(p,o,Zy) and #Zy < V.

Proof. Suppose that p and o are connected through Z. Then there is a finite proof
of this statement. As the proof is finite, so it refers to only finitely many intervals
from Z. Let Z; be the set of these intervals. Then conn(p, 0,Zy) and #Z; < N,
as required. ]

Lemma 6.1.17. Define the predicate fin(K) : <= #K < XN,. Then fin is
a-computable on an a-finite domain.
Proof. Note

fin(K) <= dn <w3if € L,m|[f] = n A m[f] = K|
where 7, o represent c.-computable projections, f : n — K is a partial surjec-
tion. Clearly fin : L, — {0,1} € ¥;(L,) as required. O
Lemma 6.1.18. The predicate conn is a-computable on an a-finite domain, i.e.

conn : (Qo N Ly) X (Qo N Ly) x Ly — {0,1}

is a-computable.
Proof. First observe that conn(p, 0, Zy) is clearly a-computable on the domain

where Z; is finite, i.e. just try all the possible arrangements of the intervals in Z

in a finite time to test the connectedness of p and o through Z;. Recall

fin(K) < #K < X,.

17 does not necessarily contain all the intervals in Q.



114 6.1. Labelling algorithm

Using lemma 6.1.16 we have
conn(p,0,Z) <= 3Ty € L[y C I Nfin(Zs) A conn(p, 0, Zy)].

Hence conn(p, 0,7) is a-computable by the observation, a-finiteness of Z and

a-computability of fin (lemma 6.1.17). 0

The labelling function ¢, and label connectedness

Remark 6.1.19. (Labels in PDZ and their labelling function ¢,,)

By definition 6.1.14, for every PDZ there is some stage s < « s.t.
every label ¢ € a4 U ap in PDZ stops moving by that stage s, i.e.
Vi < als <t = ¢s(c) = ¢(c)]. Therefore we can define a partial labelling
function ¢, : a4 U ag — @, on the domain of stationary labels by:

Ve € ay UagVp € Qa[(c,p) €y, < Is<a
[gs(c) = p AVt <a(s <t = q(c) = q(c))]].
The function g, could be extended in a compatible way with the definition of a

limit function in section 6.1.7, but its codomain and image would have to contain

elements outside of the a-rationals ().

Definition 6.1.20. (Connectedness of labels)
Letc,d € asUap. The labels ¢, d are connected iff q,(c) and ¢, (d) are connected
through PDZs according to definition 6.1.15.

6.1.3 The labelling function construction

A label a (or b) with a subscript if applicable is in a4 (or a ). Index the enumer-
ation of W as W = {(aq, by), (a1, b1), ...} and define

Wy = {(as, by) : t < s}.

We construct the labelling sequence ¢ : o X (a4 Uag) — @, also denoted as
{¢s}s<a In « stages by constructing the labelling sequence
{qs.pu}o<s<a.0<p<s+1—1<u<s+1 first in definition 6.1.24. The construction of g5, ,,
depends on whether (s, p,u) is an initial, strategy, clearing or a limit triple as
defined below in definition 6.1.21.

Using the triple indexing for the labelling function enables us to track the de-
tailed changes of the labelling function which simplifies the proofs of the proper-
ties about the labelling function later. The first index s determines which a-finite
subset of the set IV is used by the labelling algorithm. At the stage s = r + 1 the
set W, is used. At the stage s where s is a limit ordinal, the set W is used. The
second index p represents the priority of the pair (a, b) that is passed to the part of

the labelling algorithm called the strategy run which attempts to move the label a
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to the left of the label b. The clearing of the labels is executed after each strategy
run. The third index u represents the stage within the algorithm for the clearing
of the labels. At the stage u the pair (¢, d) with the priority u is attempted to be

cleared.

Definition 6.1.21. (Initial, strategy, clearing and limit triple)
Assume 0 < s < a,0<p<s+1,—1<u<s+ 1. Then

o (s,p,u) is an initial triple iff u = —1.
o (s,p,u) is a strategy triple iff u = 0.
e (s,p,u) is a clearing triple iff v > 0 and —lim(u).
o (s,p,u) is a limit triple iff
lim(u) Vlim(p) Au=—-1VIim(s) Ap=0Au=—1.

Note that the definition definition 6.1.21 allows for a triple to be both an initial

and a limit triple.
Remark 6.1.22. (Equality relation on triples)
We extend the equality relation on triples by identifying
(S,p,S + 1) = (S7p+ 17 _1)7
(s,s+1,s+1)=(s+1,0,—1).
In other words, (s1, p1,u1) = (S2,D2,U2) <= $1 = So Ap1 = P2 Aug = usV
HS,p < a[('shpl?ul) = (S7p75 + 1) N (3271927“2) - <37p+ 17 _1)]\/
ds < af(s1,p1,u1) = (s, + 1,5 + 1) A (s2,p2,u2) = (s + 1,0, —1)].
Remark 6.1.23. (Ordering on triples)

The ordering on the triples (s,p,u) € o x a x ({—1} U «a) is a usual alpha-

numerical ordering: (s, p1,u1) < (S2,pa, u2) <=

§1<89VS =S Ap <paVs =8 Apr =psAup < Us.

Definition 6.1.24. (Labelling sequence construction)

Construct the labelling sequence {qs,p,u}0§s<a70§p§s+1,_1§u§s+1 as follows:
® (Jo,0,—1 = 0.
o QS,p+1,71 = q57p78+1'

® Giro = 1M pu)<(trw) (@spu) if (t,7,v) is a limit triple where

lim (s p, )< (t,r,0) (@s,p,u) 18 the limit function defined in section 6.1.7.

e (s, 0 is the output of the strategy run (s, p) on the input function ¢, , _; for

a pair (a, b) of a priority p using Wy, 1. See section 6.1.5 on a strategy run.
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® ¢sputr1 Where —1 < u < s is the output of clearing labels of the pair
(¢,d) € aqa U aps of the priority u from the the dead zone
[@s.pu(b), Gs pu(a)] where (a,b) is a label pair of a priority p. See sec-
tion 6.1.6 on label clearing.

Using the sequence with triple indices define abridged sequences

{q$,p}s<a,p§s+l and {qs}s<a by the assignment qs ‘= {4s,0 = ({s,0,—1-

In the end, we have an a-computable sequence of a-computable partial la-
belling functions ¢, : a4 U ag — @, for s < « as required. Note that if ¢ < « is
a limit ordinal, then ¢; = lim,.;q,. Also note that for any s < « the function g¢; is

constructed from W.

6.1.4 Label order type at the substage (s, p, u)

The strategy for the pair (a, b) moves the labels a and b first. Next if

[95(D), gs(a)] is a dead zone, then it tries to move other labels out of this dead zone.
Recall the order type ot(p) of an a-rational p is the order type of the binary string
representing this a-rational. As p is an a-rational, so ot(p) < «. Every label
moved has to be moved to an a-rational (),, of a certain order type dependent on
the stage s, priority p and the label itself. This is to guarantee that at every stage
there is enough space for new adjacent labels which is made precise later, see
proposition 6.2.3i.

Here we define an order type function ot : a x a x ({—1} U @) — « which
is used to specify a label order type during the strategy run in section 6.1.5 and
during the label clearing in section 6.1.6. We also define a limit order type function
otLim : a X v X ({—=1} U a) — «a which is used to specify a label order type

during the limit function construction in section 6.1.7.

Definition 6.1.25. (Order type functions)
The domain of the order type function ot is

dom(ot) = {(s,p,u) Eaxax ({-1}Ua):0<s<a,0<p<s,—1<u<s}
The domain of the limit order type function otLim is
dom(otLim) = {(s,p,u) € a x a x ({=1} Ua) : (s,p,u) is a limit triple}.
Let ¢{,r,v < « be limit ordinals. @~ We define the order type func-

tion ot:axax ({-1}Ua)— « and the limit order type function
otlLim: a X a X ({—1} U a) — « inductively:

e 0t(0,0,—1) =0,

e ot(s,p,u+ 1) :=ot(s,p,u) + 2,
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e ot(s,p+1,—1) :=ot(s,p,s) + 2,

e ot(s+1,0,—1) = ot(s,s,s) + 2,

e otLim(s,p,v) = sup,.,ot(s,p,u),

e otLim(s,7,0) := sup,_,ot(s,p,0),

e otLim(¢,0,—1) := sup,_,o0t(s,0,0),

e ot(s,p,v) = otLim(s,p,v) - 2,

e ot(s,r,0) = otLim(s,r,0) -2,

e ot(t,0,—1) == otLim(¢,0,—1) - 2.
Lemma 6.1.26. (Properties of order type functions)

e ot is well-defined on all triples.

e otLim is well-defined on the limit triples.

e ot is a-computable.

e otLimis a-computable.

Proof. The proof is performed by the transfinite induction on the triple
y=(s,p,u) Eaxax ({-1}Ua)
where p,u < s+ 1.

The base case is clear: ot is well-defined and a-computable on the domain
{(0,0,-1)}.

For the inductive case when v + 1 is not a limit triple, by IH assume
that ot is well-defined and a-computable on the domain v + 1. Then clearly
ot(y+ 1) = ot(y) + 2 is well-defined and a-computable uniformly from ~ + 1.
Hence ot is well-defined and c-computable on the domain v + 2.

For the inductive case when ¢ is a limit triple, by IH assume that ot is well-
defined and a-computable on the domain D = 4. Note D € L,. Hence
K = ot[D] € L,. Note that otLim(d) := psup(K ) where psup is a-computable
by lemma 3.5.1. Also ot(d) := otLim(d) - 2. Hence otLim(d) and ot(J) are
well-defined and uniformly a-computable from . Hence ot is well-defined and
a-computable on the domain § + 1, and otLim is well-defined and a-computable
on the domain {y < ¢ : lim(v)}.

Therefore the function ot is well-defined and a-computable on the domain

«, and the function otLim is well-defined and a-computable on the domain
{6 < a:lim(0)}. O
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6.1.5 Strategy for (a,b) of the priority p at the stage s
Strategy for (a, b) of the priority p executes a strategy run (s, p) trying to satisfy
the condition

((l,b) € WS—H - QS—H(G’) < QS—H(b)‘

Strategy run notation and order of execution

Definition 6.1.27. (Strategy run notation)
If a strategy runs at the stage s < « and for the pair (a, b) of an priority p < s,
then denote this strategy run by the pair (s, p).

By the above the first strategy runs are the following:
(0,0),(1,0),(1,1),(2,0),(2,1),(2,2),(3,0),. ..

Definition 6.1.28. (Order of execution notation)
The function oe(s, p) denotes the order of the execution of the strategy run (s, p)

and it is formally defined inductively as follows:
dom(oe) == {(s,p) : s € a,p € s}
)=0
) = oe(s,p) +1
oe(s,r) = sup{oe(s,p) : p < r}if lim(r)
)
)

Example 6.1.29. For example (0, 0) is executed first, so oe(0,0) = 0 (starting
from 0). For others, oe(1,0) = 1, oe(1,1) = 2, ..., oe(n,p) = in(n + 1) + p,

ooy 06(w,0) = w, etc.
Note that %n(n + 1) is a triangular number.

Remark 6.1.30. Let o be 0 or a limit ordinal. Let n < w be a finite ordinal. Note
that oe(0,0) = > 5<s 3. More generally, the order of execution of a strategy run
(0 +mn,p)is

oe(5+n,p):(25)+5-n+n+p.
=

Strategy run (s, p) for the pair (a, b)

e Inputs:

— (in = (s p,—1 (-finite by IH, proposition 6.2.31v)
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- Wyi1 (a-finite as W € 3 (Ly,))
-5
=D

e Output: ¢ 0 ‘= Gout

e Goal: (a,b) € Wei1 = Gour(a) < qous(b) (possibly unsatisfiable)

Given as input the partial labelling function ¢;,, use the strategy underneath to
modify ¢;,. Once the strategy run completed, copy the updated ¢;, into oyus-

Before the label clearing, the strategy for the pair (a, b) moves the labels a and
b only and is allowed to label only two a-rationals of an order type # and 6 + 1
where 6 := ot(s, p, —1) specified in definition 6.1.25.

If no rational is labelled by a € a4, i.e. ¢in(a) T, then put the label a to the
right of all the defined labels in dom(gsy), i.e. qin(a) = Y. Similarly, if ¢;,(b) 1,
then let g, (b) := <’ be left of all rationals in dom(qsy).

At the stage s < «, if (a, b) has not entered W1, do nothing. If the current
labels of ¢;, satisfy the condition ¢;,(a) < gin(b), do nothing. Otherwise, try to
move the label a to the left of the label b. This may not always be possible: if
bo € ap, (a,b,) & W and ¢in(b) < ¢in(by) < qin(a), then moving the label a
left of the label b would cause ¢, (a) < ¢in(b,) which may prevent the conditions
A = A¢ and B = B from being satisfied.

Hence the label b, is an obstacle for the label a to be moved left of the label b
at the stage s and priority p, see definition 6.1.5. Define

B, = {b, € ag Ndom(qin) : ¢in(bo) < qin(a) A (a,b,) & Wi1}
to be the set of the obstacles for the label a.

Hence try to move the label a to the left of the label b according to the follow-

ing rules:

1. follow the rules below iff ¢i,(b) < gin(a).

2. if B, = (), then put the label a to the left of all the labels in g, i.e.

¢in(a) = <OFL,

3. if no label on the right of B, is in a dead zone of a higher priority with some
label in B,, then place the label a adjacent to the set B, from the right.

4. if gin(a) is inside an interval protected by higher priority strategies and

which contains some label from B,, then do not move the label a.
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5. otherwise do the following. First define the set Y.

Y ={a€ca,:3eap(ab) eStU{beap:Jacay(ab) e S} where

S = {(a,D) € aq X ap : (a,b) € Wy Ap(d, D) < p A qin(b) < qin(@) AD € B,}
and p(a, b) is the priority of the pair (é, b). Note that the set S is the maximal

set of pairs (é, b) such that the dead zone interval [qs, (b), ¢sn ()] is protected

by higher priority strategies and b is an obstacle for the label a. The set Y’

is the set which contains a label from a4 LI ap iff it is in some pair in the

set S. As Y is the main set of interest and .S is an auxiliary maximal set,
throughout the text we refer to Y as the maximal set. Now having defined

the maximal set Y, in this step place the label a adjacent from the right to
the right endpoint of the maximal set Y.

In a similar way move the label b as far right as possible.
Now copy the result g;, into the output labelling function ¢,,;. This completes

the strategy run (s, p) for the pair (a, ).

Pseudocode

The function strategy_run takes as an input the labelling function ¢, = g5 p 1

and the output is assigned to the function ¢; ;.

1: function strategy_run(qin, Wsi1, S, p)
Require: ¢;, € L, by IH

2: 0= ot(s p,—1)
3 (a,0)=p7(p)
4 ifa & dom(qm) then
5 Gin(a) =7
6: end if
7 if b ¢ dom(qi,) then
8
9

¢in(b) = <
: end if
10: if (a,b) € Wei1 V ¢in(a) < ¢in(b) then
11: return ¢;,
12: end if
13: B, = {b, € ag Ndom(qin) : ¢in(bo) < qin(a) A (a,b,) & Wsi1}
14: Gin = move_label_a(qi,) > Move the label a as much left as possible

15: ¢in = move_label_b(q;n) > Move the label b as much right as possible
16: return ¢;,

17: end function

18:
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19: function move_label_a(qiy,)
20: if B, = () then

21: ¢in(a) = <1
22: return ¢;,
23: end if

24 Q={pe€QunNLy:ot(p)=0+1}
5. if V(a,b) € Woq[p(a,b) < p = (=3by € Bo.gin(b) < qin(b,) <
¢in(@))] then

26: ¢in(a) = supy(B,)
27: return ¢;,
28: end if

29: 7 = {d € dom(qsy) : I(a,0) € Wes1[p(@,b) < p A qin(D) < qin(d) <
Gin(@)]}

30: ifac ZA3b, € B,N Z[‘v’c € dom(qin)[¢in(bo) < Gin(c) < ¢in(a) =

c € Z]| then
31: return ¢;,
32: end if
33: gin(a) = supy(gia[Y])
34: return ¢;,

35: end function

The function move_label_b is symmetric to the function move_label_a defined

above. In particular, move_label_b uses the following sets:

A, = {a, € aa Ndom(qin) : ¢in(b) < qin(ao) A (a0, b) & Wi},

Y, = {a€ay:Tbeag.(ab)eS}U{beag:Iacay(ab)es,}, where

Sy = {(a,0) € aa x ap 1 (4,b) € W1 Ap(a,b) < p A qsa(b) < ginl@) A € A},
where A, is the set of the obstacles for the label b and Y}, is the set of the labels in

the maximal set for the label b. The function move_label_b is defined as follows.

1: function move_label_b(qin)

2: if A, = () then

3: Qin(b) = p0T1

4: return g;,

5: end if

6: Q={peQunNL,:ot(p)=0+1}

7. ifV(a,0) € Woalp(a,b) < p = (=34, € Apqin(d) < qinlao) <
¢in(@))] then

8: Gia(b) = supg(Ao)

9: return ¢;,
10: end if
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11: Z = {d € dom(gs,) : I(a,b) € Wap1[p(a,b) < p A qin(b) < gin(d) <
¢in()]}

12: ifbe ZA3a, e A, N Z[Vc € dom(qin)[qin(b) < qin(c) < ¢in(a,) =

c € Z]] then
13: return ¢;,
14: end if
150 Gin(b) = supp(¢in[Y3])
16: return q;,

17: end function

Properties
We assume the hypothesis that the input function ¢;, is a-finite.

Lemma 6.1.31. The set of the obstacles B, is «-finite and uniformly a-

computable from the parameters ¢;,, a and Wy .

Proof. The set B, is a-finite as i, € Ly, dom(gs,) € Lo by IH and W,y € Ly,
By the definition of B,, it is clearly uniformly a-computable from the parameters

Gin, @ and Wy, as required. ]

Lemma 6.1.32. The set Z of the labels in the dead zones of a priority higher than p
(or a set protected by strategies of a higher priority) in the function move_label_a

is a-finite and uniformly a-computable from the parameters ¢;,, p and W;.

Proof. Z is a-finite as dom(qi,) € L, and i, € ¥1(L,) by IH, W,y € L, and
p € ¥1(Ls). The uniform a-computability of Z is follows from its definition as

required. =

Lemma 6.1.33. The set Y of the labels in the maximal set is «-finite and uni-

formly a-computable from the parameters ¢iy,, a, p and Wy ;.

Proof. Recall Y := m[S] U m[S] where ; is an a-computable projection and

S = {(a,b) € ax x ap : (a,b) € W1 Ap(a,0) < p A qia(b) < gsal@) Ab € B,}.
The set S is a-computable from the parameters ¢i,, a, p and Wy, using the

uniform a-computability of the set B, from the parameters ¢;,, a and W, 4. S'is

bounded as S C W, . Hence S is a-finite. As 7; is a-computable, so 7;[S] € L,

hence Y € L,. The uniform a-computability of Y follows from the uniform -

computability of S. ]

Lemma 6.1.34. The a-rationals gy (a) and gou. (b) defined in the function strat-
egy_run are computed in a uniform way, exist and are a-finite given that ¢, 1S

a-finite.
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Proof. The statement is clear for the assignments on the lines 5, 8 and 21 as § < a.

The assignments on the lines 26 and 33 use the function sup,(S). The func-
tion supQ(S ) can compute using the same algorithm for any arguments () and
S where () contains all the a-rationals of the same order type 6 = 6 + 1 and
ot[S] C 4, see proposition 5.4.6. Hence an a-rational supg(.S) is computed in a
uniform way.

Furthermore S € {B,,qin[Y]} and both B, and Y are a-computable uni-
formly from the parameters ¢i,, a, p and W, ;. Hence ¢i,(a) = supQ(S) is
computed uniformly from ¢y, a, p, W1 and 9.

The a-finiteness of gin(a) = supy(S) where S € {B,, ¢in[Y]} follows from
the fact that the set () contains only a-finite a-rationals.

By lemma 6.1.31, the set B, is a-finite. By lemma 6.1.33, the set Y is a-finite.
As gip is also a-finite by the assumption, so gi,[Y] is a-finite. Hence S is a-finite
and by proposition 5.4.6 the a-rational gix(a) = supy(S) exists, i.e. is well-
(first-order)-defined. By duality ¢;,(b) = inf5(Ss) also exists for an appropriate
Sh.

In the end g;, is copied to gous. Therefore gout(a) € Lo and gout(b) € Ly, as
required. [

Lemma 6.1.35. If the input function ¢, is a-finite, then the output function

Qout = strategy_run(qsn, Wii1, s, p)

is also a-finite.

Proof. The function ¢, is different from the a-finite function ¢;, on at most two
labels in the label pair (a, b) of a priority p. By lemma 6.1.34 gy (@) and goyt (b)
have to be a-finite if changed. This change is a-finite and so ¢,y has to be a-finite
too. O

Remark 6.1.36. (Object types?)

Let M be the domain of some model. Then an element in M is a type-0 object. A
function from M to M is a type-1 object. A function from M to M™ is a type-2
object (called a functional), etc.

In a-Computability Theory, the domain M of the model of the computation
is a. For the purpose of this thesis we also consider a composition of a type-1
object with an a-computable bijection from/to o (e.g. o« — Lo, o — a X «)
to be a type-1 object. We do this since ultimately we are interested in assessing
if a function is first-order definable over L, and at what level of the arithmetical

hierarchy.

2Consult a general book on Computability Theory, e.g. for a general idea see [5] Chapter 11,
subsection The Scott model for lambda calculus.
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Remark 6.1.37. (Type of the strategy run function)

We assume that the argument g;,, to the function label_clearing which clears out
the labels from the dead zone is always a-finite by IH, proposition 6.2.3iv. By
lemma 6.1.35, the output of the function label_clearing has to be also a-finite.

Therefore we can express the function with the type as
label_clearing : Lo X Lo X ao X @ X @ — L,

Hence label_clearing is clearly a type-1 function.
Proposition 6.1.38. The procedure move_label_a is a-computable.
Proof. The procedure move_label_a is a-computable since:

e B, is a-finite by lemma 6.1.31,

W11 1s a-finite,

e pis a-computable by lemma 6.1.11,

Z is a-finite and uniformly a-computable by lemma 6.1.32,

the instructions on the lines 26 and 33 are a-computable (by the unifor-
mity of supg(S) and ), an a-rational gi,(a) is well-defined and a-finite
by lemma 6.1.34.

Proposition 6.1.39. The function strategy_run is a-computable.

Proof. By remark 6.1.37 the function label_clearing is a type-1 function, so it
makes sense to talk about it being first-order definable over L,. The function

strategy_run is a-computable since:
® (i, i1s a-finite by IH proposition 6.2.31v,
e p!is a-computable by lemma 6.1.11,

e ot is a-computable by lemma 6.1.26,

B, is a-finite and uniformly a-computable by lemma 6.1.31,

the procedures move_label_a and move_label b are «-computable by

proposition 6.1.38 and its dual.
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Next strategy runs

If gour(a) < Gout(b), then the strategy for (a,b) has satisfied its condition and
never runs again. Otherwise it runs again later and prevents the strategies of lower
priorities from placing labels in the interval [gout(b), gous (@)] until the condition

becomes satisfied (if that happens). We say the interval is marked as a dead zone.

6.1.6 Label clearing from DZ for a pair (a, b)

If ¢in(b) < gin(a) and (a,b) € W, then the interval [gi,(b), ¢in(a)] is a dead zone
(DZ). See definition 6.1.13.

After the strategy run (s, p) for the pair (a,b) concludes, we would like to
move labels out of the DZ interval [¢;, (), ¢in(a)] as much as possible. Let M be
the set of labels in the maximum interval that contains the DZ [¢;,(b), ¢in(a)] and
other higher priority DZs connected to it.

See section 6.1.3 to recall that the sequence ¢, for u < s + 1 is used to
construct ¢, 1 after the strategy run (s, p) concludes and outputs ¢, ;1. Also
recall that g; , , ‘= limy, <y Gs p u-

Let u < o where 0 < u < s. We construct the function g, 1 given the
function ¢, ,. For every u < s starting from 0 do the following in order: If
p = u, then do nothing, i.e. ¢sput1 = ¢spu. Otherwiselet (¢,d) € ay Uapgbea
pair of the priority u, i.e. p(c,d) = u. Let 1) be the order type n := ot (s, p, u). If
Ts.pu(b) < Gspu(c) < gspu(a)and it is consistent to move c left of M/, then move
c to the left of M to an a-rational p,. of an order type 7, i.e. define ¢; , ,+1(¢) = pe.
If g5 pu(b) < @spu(d) < ¢spwu(a) and it is consistent to move d right of M, then
move d to the right of M to an a-rational p, of an order type n + 1, i.e. define
Isput1(d) = pa. If ¢spu+1(e) has not been defined for a label e € dom(gsp.u),

let qs,p,qul(e) = qs,p,u(e)-

Pseudocode

The function label_clearing takes as an input the labelling function gin, = g5,
and the output is assigned to the function g ;, ;4 1.

1: function [abel_clearing(qin, Wsi1, S, p, 1)
Require: ¢;, € L, by IH

2 (a,b)=p7'(p)

3: if ¢in(a) < qin(b) V (a,b) € W1 V p = u then
4: return ¢;,

5: end if

6:

(e, d) =p~"(u)
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7: n = ot(s,p,u)
8: if ¢in(b) < qin(c) < gin(a) A Vb€ agn M (e, 13) € W, then

9: Q. ={p € QaNL,:ot(p) =n}

10: pe = infg, (qin[M])

11: Gin(C) = pe

12: end if

13: if ¢in(b) < qin(d) < qin(a) AVa € aq N M.(a,d) € W,y then
14: Qi={peQanNL,:ot(p)=n+1}

15: pa = supq, (¢in[M])

16: Gin(d) = pa

17: end if

18: return g;,

19: end function

Properties
We assume the hypothesis that the input function ¢;, is a-finite.

Lemma 6.1.40. The set M of the labels in the maximal interval extending the
dead zone [gin (D), gin(a)] is a-finite and uniformly a-computable from the pa-

rameters a, b and W, .

Proof. Define

Z = {lgsa(¢), gsa(d)] - (¢, d) € Wiy Ap(c,d) <p(a,b)}
to be the set of the DZs of the priority p(a, b) or higher. Clearly, Z is uniformly
a-computable from W1, a, b as p is a-computable (lemma 6.1.11). The set Z is
a-finite as it is bounded up to a-computable encoding by W, and W1 € L,,.
Recall definition 6.1.15: conn(p, 0,Z) iff p and o are connected through Z.

So we have
M = {e € dom(qi,) : conn(qi(a), qin(e),Z)}.

The set M is uniformly a.-computable from a, b and W, since:
o 7 is o-finite,
e 7 is uniformly a-computable from a, b and W, 1,
e conn is a-computable on the domain where 7 is a-finite (lemma 6.1.18).

Finally M is a-finite since it is a-computable and bounded by dom(qi,) € L,
assuming the hypothesis that ¢;, is a-finite.
Thus M is a-finite and uniformly a-computable from a, b and Wy, as re-

quired. 0
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Lemma 6.1.41. The a-rationals p. and p,; defined in the function
label_clearing are computed in a uniform way, exist and are a-finite given that

¢in 18 -finite.

Proof. The functions inf(S) and supg (.S) can compute using the same algorithm
for any arguments () and S where () contains all the a-rationals of the same
order type  and ot[S] C 4, see proposition 5.4.6. Furthermore, S = ¢;,[M] is
uniformly a-computable since M is uniformly a-computable by lemma 6.1.40.
Hence the a-rationals p. and p, are computed in a uniform way.

The a-finiteness of p. and p; follows from the fact that ). and (), contain
only a-finite a-rationals.

By lemma 6.1.40, the set M is a-finite. Hence ¢;,[M] has to be a-finite. By
proposition 5.4.6 p.. := inf_(qin[M]) exists, i.e. is well-(first-order)-defined. By
duality pgq := supg, (¢in[M]) exists too.

Therefore p. € L, and p,; € L, as required. L]

Lemma 6.1.42. If the input function g;, is a-finite, then the output function
Gout = label_clearmg(qin, Ws+17 $, D, u)
is also a-finite.
Proof. The function g,y is different from the a-finite function g;, on at most two
labels in the label pair (¢, d) of a priority u. By lemma 6.1.41 goyus(c) and gout (d)

have to be a-finite if changed. This change is a-finite and so ¢,y has to be a-finite
too. O

Remark 6.1.43. (Type of the label clearing function)
We assume that the argument ¢;, to the function label_clearing is always a-finite.
By lemma 6.1.42, the output of the function label_clearing has to be also a-finite.

Therefore we can express the function with the type as
label_clearing : Lo X Lo X a X 0 X ¢ — L,

Hence label_clearing is clearly a type-1 function.
Proposition 6.1.44. The function label_clearing is a-computable.

Proof. By remark 6.1.43 the function label_clearing is a type-1 function, so it
makes sense to talk about it being first-order definable over L,. The function

label_clearing is a-computable since:
® ¢in is a-finite by IH proposition 6.2.3iv,
e p ! is a-computable by lemma 6.1.11,

e ot is a-computable by lemma 6.1.26,
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e M is a-finite and uniformly a-computable by lemma 6.1.40,

e instructions on the lines 10 and 15 are a-computable (by the uniformity of
info(S), supy(S) and S) and the a-rationals p. and p, are well-defined and
a-finite by lemma 6.1.41.

]

6.1.7 Limit labelling function

We define a function g; where § = (¢, r, v) is a limit triple.

The main idea in defining g; is that if some label ¢ € a4 Ll ap stops moving at
some triple stage v < 6, then ¢s(c) = ¢,(c). Otherwise, the label ¢ keeps moving
and so it converges to some a-real point which is close to some a-rational p of an
order type otLim()), see definition 6.1.25. However, there could be more labels
that converge to the same «-real point. In such case, put the labels from a4 on
the right of p and the labels from o on the left of p. This is to make sure that
¢5(b) < gs(a) if still (a, b) & Wy, where h = t if lim(¢) and h = ¢ + 1 otherwise.
The idea is made precise and formal as follows.

Definition 6.1.45. (Limit of a labelling function)

Given a sequence of the labelling functions ¢, for a triple v < 4§, we define the

limit of this sequence as a function ¢s = lim, 5q, as follows:

o Let S(c) ={g,(c) € Qu : g,(c) L Ny <6} =
{0 € Qo : Fy < 03c € dom(q,).q,(c) = o}
o Let Q={p€QunLy,:ot(p) = otLim(5)}.

o ¢s5(c) =g, (c)force ayUagpif
B <VY[B <y <d = gslc) = g,(0)]-
Otherwise:
e g¢s(a) = max{p € Q, : ot(p) = otLim(d) AVy < d.p < g ()} - pF =
supg(S(a)) ->" if a € ay where
k= min{k <t¢:3b€ ag.p(a,b) =k} =
min{k < t: 3z € Wy[p(z) = k A mi(z) = d

—

and 7 is a projection to the first coordinate,
e ¢;(b) = min{p € Q, : ot(p) = otLim(d) AVy < d.¢,(b) < p}-< =
inf,(S(b)) - <" if b € ap where
[ '=min{l <t:3Ja € asp(a,b) =1} =
min{l < t: 3z € Wy[p(x) =1 A m(x) = b|}
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and 7, is a projection to the second coordinate.

Properties

Lemma 6.1.46. (Uniform a-computability of the indices &k and /)
Let (a,b) = p~1(¢).

e The index £ is uniformly a-computable from a and W,.
e The index [ is uniformly a-computable from b and W},.

Proof. The index k is uniformly a-computable from the parameters a and W}, as

it is well-defined for a label a by the following formula:
o(a, k) = Jz € Wylp(x) = k Am(z) = alA
Vs < kVx € Wyp(z) < kb = m(x) # a]

which is ¥4 (L,,) as W), is a-finite and both p and 7 are a-computable.

The uniform a-computability of the index [ follows by a dual argument. [
Lemma 6.1.47. Let ~ be any triple. Let § be a limit triple. Then:
i) otfIm(g,)] ot ().
i) ot[U, s Im(g,)] € otLim(9).

Proof. The statement i follows directly from the design of the labelling algorithm
- to construct g, the algorithm places labels only on the a-rationals of an order
type less than ot(vy). In particular, this is follows from the proof by induction

using the following four observations:

e The strategy run (s, p) moves the labels to the order type
ot(s,p,—1)+ 1 < ot(s,p,0)
at most to construct the labelling function ¢, ,o: see the function strag-

egy_run lines 2, 5, 8; its subroutine move_label_a lines 21, 24, 26, 33 and

its subroutine move_label b lines 3, 6, 8, 15.

e The label clearing which constructs the function g, ,+1 moves the labels
to the order type ot(s,p,u) + 1 < ot(s,p,u + 1) at most: see the function
label_clearing lines 7, 9, 10, 11, 14, 15, 16.

e otLim(d) = sup{ot(y) : v < J} and ot(§) = otLim(d) - 2 by defini-
tion 6.1.25.

e The limit labelling function ¢s moves the labels to the order type
ot(d) = otLim(d) - 2 at most by definition 6.1.45.
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To see the statement ii, use the statement i and definition 6.1.25 to observe
respectively that
ot[(_J Im(g,)] € sup{ot(y) : v < 4},
y<8
otLim(0) := sup{ot(y) : v < d},
which implies ot[lJ, _; Im(¢,)] € otLim(d) as required. O

Lemma 6.1.48. S(c) is bounded in the order type:

Ve € ayg UagVy < §jc € dom(g,) = ot(g,(c)) < otLim(d)].
Proof. Follows from lemma 6.1.47. 0

For the remaining statements in this subsection we assume hypothesis 6.1.49
below. This is in fact the induction hypothesis for the proof of proposition 6.2.3v.
The statements below are used to prove the inductive cases of the statements in

proposition 6.2.3 assuming this IH.

Hypothesis 6.1.49. The function ¢ = A\yc.g,(c) is a partial a-computable func-
tion with the domain {(v,¢) : v < J A c € dom(g,)}.

Fact 6.1.50. Hypothesis 6.1.49 implies that S(c) is uniformly a-computable from
the parameters ¢ and .

Lemma 6.1.51. (Uniform a-computability of an a-rational gs(c))
Let (a,b) = p~'(t). Assume hypothesis 6.1.49 about ¢ = \yc.q,(c). Then:

e ¢s(a) is a-finite and uniformly a-computable from 4§, a and W),.
e ¢5(b) is a-finite and uniformly a-computable from §, b and WW},.

Proof. Note g5(a) = inf5(S5(a)) - >*. By lemma 6.1.48, the set S(a) is bounded
in order type, i.e. ot[S(a)] C otLim(J). By hypothesis 6.1.49 and fact 6.1.50,
S(a) is a-computable. Thus S(a) is a-finite. So the a-rational inf,(S(a)) ex-
ists and is uniformly a-computable from S(a) and ¢ by proposition 5.4.6 and
by the a-computability of otLim (lemma 6.1.26). The index k is uniformly a-
computable from a and W}, by lemma 6.1.46. Hence ¢s(a) exists and is uniformly
a-computable from S(a), J, a and W),. But S(a) is uniformly a-computable
from a and ¢ by hypothesis 6.1.49 and fact 6.1.50. Hence ¢s(a) is uniformly «-
computable from a, 6 and W),. Moreover ian(S) € L, as Q C L,. Hence as
k < a,s0qs(a) € QqyN L.

The a-finiteness and the uniform a-computability of gs(b) follows by a dual

argument. 0
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Proposition 6.1.52. (a-computability of ¢ = Ayc.q,(c) for v < 0)
Assume hypothesis 6.1.49 about ¢ = A\yc.g,(c). Then gs is a-computable and ¢
is a-computable on the domain where v < § and ¢ € dom(g,).

Proof. Define Q = {p € Qo N Ly : ot(p) = otLim(5)}. Note that S(c) is
uniformly a-computable from the parameters ¢ and ¢ by hypothesis 6.1.49 and
fact 6.1.50. Also S(c) is bounded as all a-rationals within are bounded in order
type by otLim(d) < a by lemma 6.1.48. Thus S(c) is a-finite and we have a type-
1 a-computable function ¢ — S(¢) mapping a label ¢ € a4 U ap to its set S(c)
defined above. Similarly, we have a-computable functions k : a4 Ndom(gs) — h
and [ : ap N dom(gs) — h defined by the 3 (L, ) formula ¢(a, k) and its dual
above in lemma 6.1.46. Note that the function infg : o — « taking an index
of an a-finite set and returning an index of an a-finite rational is a.-computable
by proposition 5.4.5. Dually, the function sup, : a — « is also a-computable.

Using these functions express the function ¢s = ¢ .., as follows:
qs(c) 3B < VY <O[B <7 = qs(c) = ¢4(c)]
Gtrw(C) = inf5(S(c)) - pFE) e € ay
supy(S(c)) - <A@ ceap
From this definition we see that g; is a-computable by hypothesis 6.1.49 on ¢ and

the a-computability of the functions S, £, [, inf, supg and otLim (lemma 6.1.26)
whose index (or program) is c-computable from the triple § = (¢, r, v). Note that

Ve € (o) L aB-Q(ta r,v, C) = qt7T7U<C)'

Therefore ¢ can compute the output for any input (v,c) where v <§ and

¢ € dom(g,) as required. O

6.2 Proof and verification

First we establish some properties and lemmas about the constructed labelling
sequence ¢ = {¢s}s<a- Next we define a semicomputable cut C' C @), using
the constructed sequence g. Finally we complete the proof of lemma 6.1.1 and

Semicomputable Cut Existence Theorem 6.0.1 using such cut C.

6.2.1 Labelling function properties

Remark 6.2.1. (Domain of the labelling function)
e dom(q,) = {(a,b) € as X ap :p(a,b) < s} =p s,

o dom(qsp) = {(a,b) € ay x ap : p(a,b) < max(s,p)} = p~'(max(s,p)),
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o dom(gsp.u)
={(a,b) € aaxap:u=—1Ap(a,b) < sVu > 0Ap(a,b) < max(s,p)}
={(a,b) € as x ap : p(a,b) < max(s,p+ min(u,0))}
= p~![max(s, p + min(u, 0))].

Lemma 6.2.2. (a-finiteness of the domain of the labelling function)
The set dom(g; ,,) is a-finite for any triple (s, p, u) for which ¢ ,,, is defined,
i.e.

0<s<a,0<p<s+1,-1<u<s+1.

Proof. The domain of g¢,,, is given explicitly in remark 6.2.1 above as
dom(gs p.) = p~'[t] for t = max(s, p+ min(u,0)) < a. Astis an a-finite set, «

admissible and p a-computable, so dom(gs ;) has to be a-finite as required. [

Proposition 6.2.3. (Properties of the labelling function)
For any triple (s, p,u) for which ¢s,,, is defined, the partial labelling function

Qspu - 04 X ap — @, satisfies the following conditions:

1) gsp 15 well-defined on its domain (explicitly given in remark 6.2.1),
i) Im(¢spu) C Las
ii1) ¢s,. 1S a type-1 function,
V) Gspu € La,

v) The function
g:axax({-1}Ua)x (aaUag) = Qa

defined using the A\-term as ¢ := Aspuc.gs ,.,(c) is a-computable.

Proof. (Of proposition 6.2.3)

qspu s a type-1 function - property iii

In order to be able to talk about the a-computability and a-finiteness of the la-
belling function ¢, ,,, we need that it is a type-1 function, i.e. both its domain and
codomain is a type-1 object, i.e. a subset of o up to the a-computable coding. The
domain of ¢s,,, is a-finite by lemma 6.2.2, so dom(qgs p.) € « as required. The
codomain of the function g¢; ,,, is -rationals ). (), coincides with L, (which is
just v up to a-computable coding) for an infinite regular cardinal «, but in other
cases, (), O L,. For example, Kleene’s O € lecK, but O & Lwlcx. However,
the statement ii) states that Im(qs,.) C L,. Hence we can impose implicitly
codomain ), N L, = L, on the labelling function ¢, ; ,, to make it type-1. There-

fore whenever the statement ii) holds for ¢, ;, ,,, s0 does the statement iii).
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Induction and base case - properties i, ii, iv, v

The rest of the proof is done by an induction on the triple (s, p, u). For the base
case, when (s, p,u) is the first initial triple (0,0, —1), then goo—1 = (. Hence
trivially all conditions 1) - iv) are satisfied.

For the inductive case, we have to prove that the properties hold at strategy,
clearing and limit triples. We do not need to prove that the properties hold at
initial triples because every initial triple is equivalent to clearing, limit or the first
initial triple. See definition 6.1.21.

The function ¢ = Aspc.gs . (c) under the statement v) is c-computable as it
is given by an algorithm consisting of the strategies (section 6.1.5), label clearing
(section 6.1.6) and the limit function construction (section 6.1.7) which do not use
any oracle, but only an a-finite part of the a-computably enumerable set I for
particular values of s, p, u and c. We clarify by induction that ¢ indeed computes
the value g5, (c) for any label ¢ € dom(gs,,) assuming that ¢ computes the

values for all predecessor triples (', p/,u) < (s, p,u).

Inductive case for a strategy triple - properties i, ii

Assume that (s, p,0) is a strategy triple. The predecessor of (s, p,0) is the initial
triple (s, p, —1). By IH, let the statements i) and ii) hold for the labelling function
Gsp—1- We have to show that they hold for the labelling function g;, (. The
labelling function ¢ , o is constructed by a strategy run (s, p) on the input function
¢sp—1. This strategy run is associated with some pair of labels, say (a,b) €
a4 X ag. Only these two labels a and b can be moved by the strategy run (s, p).

Hence by IH ¢s,( is well-defined on dom(qs,0) — {a,b} and Im(qs,0 —
{a,b}) C L,. Thus we need to show that ¢, is well-defined on a and b to
conclude i) and that ¢, 0(a) € L, and ¢s,0(b) € L, to conclude ii). In other
words, we have to show that for every strategy run for the pair (a,b) there exist
a-rationals onto which the labels a and b can be placed and that these a-rationals
are a-finite and satisfy the required conditions mentioned in section 6.1.5. By this
follows from lemma 6.1.34 and IH property iv) that gin, = qsp 1 € L.

Hence the conditions 1) and ii) hold for the labelling function g, ; ¢.

Inductive case for a clearing triple - properties i, ii

Let (s,p,u + 1) be a clearing triple. Let p(c,d) = u. By IH g, ,, is well-defined
on its domain and Im(gs,,) < L,. Note that ¢ ,,11 can be different from
{s,p ON at most two labels ¢ and d. In particular g; ,, ,+1(c) € {gspu(c), pc} and

Isput1(d) € {gspu(c), pa} Where p. and p, are well-defined a-finite a-rationals
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by lemma 6.1.41 and a-finiteness of ¢, ,,, (IH property iv)). Hence the properties

1) and ii) hold for the labelling function g, ,+1 as required.

Inductive case for a strategy triple - property iv

Let (s,p,0) be a strategy triple. By IH ¢, 1 is a-finite. But ¢, is different
from ¢, , 1 on at most two labels a and b since every strategy run can move only
two labels. Hence the strategy run (s, p) can make at most only an a-finite change
t0 Gin = (s p,—1 and SO ¢our = g5 0 has to be a-finite too. Hence the property iv)

holds for the function g; , ¢ as required.

Inductive case for a clearing triple - property iv

Let (s,p,u + 1) be a clearing triple. By IH the function ¢s,,, is a-finite. The
function g5 p .1 1s different from ¢, ,, on at most one label pair (the one of a
priority u), see section 6.1.6. As this is an a-finite change, ¢, .11 has to be

a-finite too.

Inductive case for a strategy triple - property v

Let (s, p,0) be a strategy triple. By IH assume that ¢ = Aspuc.g; ;. (c) can com-
pute the output for any input tuple (s, p, v/, ¢) where (s',p’,u') < (s,p,0) and
¢ € dom(qy ).

By the a-finiteness of ¢in = g5, —1 (IH property iv)) and by proposition 6.1.39
all the instructions for a strategy run (s, p) for some pair (a,b) € s X ap are uni-
Jormly a-computable from g;,, W1, s and p. Hence q can compute the output for
an input tuple (s, p, 0, ¢) where ¢ € a4 X ap is any label in the domain dom(gs ).
Therefore the property v) on ¢ holds at the strategy triple (s, p, 0) as required.

Inductive case for a clearing triple - property v

Let (s,p,u + 1) be a clearing triple. By IH assume that ¢ = Aspuc.qs .. (c) can
compute the output for any input tuple (s, p’, u’, ¢) where (s, p’, u') < (s,p,u+1)
and ¢ € dom(qy p u)-

By the a-finiteness of gin, = g5, (IH property iv)) and by proposition 6.1.44
all the instructions for label clearing are uniformly a-computable from ¢;,, Wy 1,
s, p and u. Hence q can compute the output for an input tuple (s, p, u+ 1, ¢) where
¢ € ay X ap is any label in the domain dom(gs p ,+1). Therefore the property v)

on ¢ holds at the clearing triple (s, p,u + 1) as required.



Chapter 6. Semicomputable cut in Q) 135

Inductive case for a limit triple - properties i, ii, v

Let 6 = (¢,7,v) be a limit triple. Let

S(c) ={g,(c) € Qa : qy(c) L Ny < 6}
={0 € Qq : Iy < 63c € dom(g,).¢,(c) = o}.

By IH property v) the function ¢ = Ayc.q,(c) is a-computable on the domain
where v < ¢ and ¢ € dom(q,). Hence hypothesis 6.1.49 is true.

By hypothesis 6.1.49 and lemma 6.1.51 gs5(c) is a-finite and well-defined
for any ¢ € {a,b} where p(a,b) < t. Therefore the labelling function
g5 : oqa Uap — @, is well-defined on its domain and Im(gs;) C L,. Hence i)
and ii) hold for ¢5 = ¢, as required.

By hypothesis 6.1.49, IH property v) and proposition 6.1.52, the function
q = Myc.gy(c) is a-computable on the domain where v < § and ¢ € dom(g,).
Therefore the property v) holds for ¢ at the limit triple § = (¢, r, v) as required.

Inductive case for a limit triple - property iv

Let (¢,7,v) be a limit triple. Note that ¢;,, = Ac.q(t,r,v,c). So the labelling
function ¢ ., is a-computable since Ac.q(t, 7, c) is a-computable by the prop-
erty v) proved above. Furthermore dom(q;,,) € L, by lemma 6.2.2. Hence
Gtrv € Lo by proposition 3.2.14 and thus the property iv) holds for the limit triple
(t,r,v).

This completes the proof of proposition 6.2.3. ]

Lemma 6.2.4. (Consistency of the labelling function)

For any triple +, the labelling function ¢, is consistent:

V(a,b) € as x aplgy(a) < ¢,(b) = (a,b) € W].

Proof. This follows directly from the labelling function construction in sec-
tions 6.1.5 to 6.1.7. []

Lemma 6.2.5. (Monotonicity of the label movement)
o Vs, t < aVa € auls <t = ¢s(a) > ¢(a)]
o Vst <aVb e ap[s <t = ¢5(b) < q:(b)]

Proof. For the label a € a4, if some strategy moves, then only more left on the a-
rational line @),,. For the limit construction, the label a is moved to a generalized

infimum of the sequence ¢s(a). This is also to the left as required. Ol
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6.2.2 Strategy termination

Lemma 6.2.6. (Strategy termination)

Every (a, b)-strategy stops acting within a-finite time.

Proof. If (a,b) ¢ W, then the strategy never acts. If there ever exists a stage ¢ s.t.
qi(a) < q;(b), then the strategy does not act again by lemma 6.2.5. Hence let s be
large enough that (a,b) € W, and by induction all strategies of a higher priority
have stopped acting, yet ¢5(b) < gs(a).

The only way that the (a, b)-strategy could act is that it would move either the
label a or the label b. The cases for moving the label b are symmetric to moving

the label a, hence let us consider only the case that the label @ may be moved.

Let B, be the set of obstacles for the label a. If the (a, b)-strategy acts and
B, ever gets empty, then it will move a to the left of all labels and afterwards

¢s+1(b) < gs+1(a) and the strategy will never act again.
So suppose that B, # 0.

If ¢(a) is inside an interval protected by higher priority dead zones, then it
cannot be moved and will not be moved since the higher priority strategies have

stopped acting.

If gs(a) is adjacent to the right endpoint of the maximal set Y that contains
some label b, € B, and every other label in B, that is right of b, where the interval
is protected by higher priority strategies, then ¢5(a) will not be moved again since
the maximal set will not shrink as all higher priority strategies have stopped acting
and nothing will be placed between the right endpoint and the label ¢,(a) since the
(a, b)-strategy will protect the interval [gs(b), ¢s(a)] from lower priority strategies

placing the label inside.

Hence the only way that the (a, b)-strategy could act is that it would place a
adjacent to B, from the right. Therefore B,, the set of obstacles for a, has to be
shrinking and the label a advancing more towards left.

Define
By = {bo €ap:b, € dom(%) A QS(bO) € [QS(b)a QS(a)] A (a, bo) ¢ Ws+1}

to be the set of the obstacles to « that are in the dead zone. Note that as dom(q;)
is a-finite by lemma 6.2.2, so B, is bounded by some ¢t < «, i.e. By Ct € ap.
Hence if the strategy (a, b) continues acting, B, gets emptied by the stage ¢, then
q:(a) < q;(b) and the strategy does not act again.

Therefore by the induction on the priority of the pairs (a,b) € oy X ap all the

strategies terminate within an a-finite number of the steps as required. 0
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6.2.3 Dead Zone Lemma

Recall definition 6.1.20: two labels are connected iff they are in a connected union
of PDZs.

Lemma 6.2.7. (Dead Zone Lemma)
Assume

AXxBCWAAXBCWAW € %(Ly).
Then

e If a; and b; are connected, thena; € A < b, € B,
e If a; and a- are connected, thena; € A < ay € A,

e If b; and by are connected, then b € B < by ¢ B.

Proof. Let HPPDZ abbreviate higher priority permanent dead zone and HPPDZs
its plural form.

Intersecting dead zones share a label, hence it is sufficient to prove the lemma
under the assumptions that the labels ay, as, by, by are contained in the same PDZ
since the conclusion follows by transitivity.

We prove the lemma by induction on the priority of a PDZ. Suppose that a4, b;
are in a PDZ [q,(b), g.(a)] declared by the strategy (a,b). Hence (a,b) € W.
Redefine the sets

Ao ={ao € aa 1 qa(b) < galao) < gala) A (ao, b) & W},
By = {bo € ap : ¢a(b) < ¢a(bs) < gala) A (a,bo) & W,
where A, (B, resp.) is the set of obstacles to b (to a resp.) that are in the PDZ
[7a(D), qo(a)]. The interval (g, (b), go(a)] is a dead zone, hence both A, # () and
B, 0.
Let ¢(aq, by) denote the statement
g €A <= b¢€B < ac A < b¢B.

To prove Dead Zone Lemma we show for arbitrary labels a; € a4 and by € ap
that if {ga(a1), ¢a(b2)} C [ga(b), ga(a)], then ¢(aq, by).

Unlike for o = w, in general the leftmost a4-obstacle to b and the rightmost
ap-obstacle to a may not be defined, i.e. it may be the case that
min(g,[A4,]) T or max(q.[B,]) 1. Hence we have to reason in general with quan-

tifiers over the obstacle sets. There are 2 cases to consider:

Case 1: Va, € A,Vb, € B,.qa(by) < qu(a,)

There has to be a HPPDZ interval I, (possibly an infinite union of HPPDZs) on

the left of the label a. Let I, denote the maximal possible such interval. There
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cannot be any label between [, and a. Otherwise (a, b) strategy would have moved
the label a to the left of such label not in /,. The set I, has to contain at least one
B, obstacle. Otherwise (a, b) strategy would have moved the label a to the right
of B,, i.e. between B, and A,.

Similarly, there is a maximal HPPDZ interval I, on the immediate right of the
label b and [, contains some A, obstacle.

Hence I, N I, # () and the labels in the open interval (g, (b),q.(a)) are
connected by HPPDZs. All such labels are more specifically in the interval
I =(I,UI)N(qa(b),ga(a)). Thus by IH for arbitrary labels a; and by in I we
have a; € A <= by, ¢ B. Note that A,U B, C I. Leta, € A, NI and let
b, € B,N 1. Then

a€eA = b,¢B = a0, €A = b¢B = acA
using the facts (a, b,) ¢ W, IH, (a,,b) € W, (a,b) € W respectively. Thus
a€A << b,¢B < a,€c A << b¢B
and so ¢(a,, by)-
Let a; and by be any labels in the PDZ [q,(]), ¢ (a)]. WLOG let a; # a and
by # b. As {ay,a,,b2,0,} C q;'[I] and I is a HPPDZ interval, so the labels

ai, a,, by, b, are connected and
a €A <= b, 4B << a,€ A <= b ¢ B
by IH. Combining this with the statement ¢(a,, b,) above we get
Ga€EA < h¢&B < a1 €A << b¢B

and so ¢(aq, by) as required.

Case 2: Ja, € A,3b, € B,.qu(a,) < qu(b,)

Let a, € A, and b, € B, s.t. ¢o(a,) < Ga(bo). So (a,,b,) € W. Note we have
qa(b) < ga(ao) < qalbs) < ga(a).
Thus
a€eA = b,¢B = a, €A = b¢B = acA
using (a,b,) € W, (a,, b,) € W, (a,,b) € W and (a, b) € W respectively. Hence
the following statement ¢(a,, b,) is true:

a€EA <= b,¢&B << a, € A < b¢B (6.3)

Next extend PDZ [¢,()), go(a)] to the maximum possible interval / by HP-
PDZs since we cannot move the labels to HPPDZs anyway. Then an arbitrary

label a; € ¢, '[[¢a(b), qa(a)]] cannot be moved out of I since there is its mu-
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tual obstacle b; € ¢, '[I] (i.e. (aj,b;) & W) that prevents a; being moved out of
[7a(D), go(a)]. Depending on where a; and b; are, we prove case by case ¢(ay, b ).

Below follows the proof of ¢(ay, b;) where a; is arbitrary and b; depends on
ay. To prove ¢(aq, by) for arbitrary labels a; and b, first apply a symmetric proof
to prove ¢(az, be) for an arbitrary label by and a, dependent on b,. Once we have
¢(aq1,by) and ¢(aq, by) for arbitrary labels a; and by, we can conclude ¢(ay, bs) as

required.

Case 2.1: ¢,[B,] N [qa(a1), qa(a)] = 0

The label a; has to be in a HPPDZ interval [;. Otherwise the strategy (a,b)
would have moved the label a to the left of the label a;. Let I; be the maximum
such possible interval. The label a cannot be put to the left of the interval I,
as I; contains some obstacle b, € B,. WLOG choose a, € A, and b, so that
they satisfy ¢, (a,) < ¢a(b,). Also a; is not moved out of [;, hence using the
maximality of [; for the label a; there is some obstacle by € I, i.e. (a1,b) € W
and ¢, (b1) < ga(a1). But then b, and a; are already connected through 7;. Hence
byIHb, ¢ B <= a; € A. Using this and statement (6.3) we get

a€EA <= 0hh¢gB < a1 €A <= b¢B

and so ¢(aq, by) as required.

Case 2.2: ¢,[B,] N [qa(a1), go(a)] # 0

There is b, € B, s.t. qa(bo) € [ga(a1),qa(a)]. SO gu(a1) < qa(bs) < ga(a) and
(ay1,b,) € W. WLOG choose a, € A, and b, so that they satisfy g, (a,) < ¢u(b,).

Case 2.2.1: Ja, € Ay.qa(a,) < qu(br)

WLOG let a, satisfy the condition ¢, (a,) < ¢a(b1). So (a,,b;) € W. Note we

have
4a(b) < galao) < ga(b1) < galar) < galbo) < gala).
Hence
nwEA = bp¢B = a, € A = b,¢B = a1€ A

using (ay,b1) € W, (a,, b1) € W, statement (6.3) and (ay,b,) € W respectively.
Thus

€A <= h¢é¢B < a, €A <= b, ¢B.

Therefore by statement (6.3) again we conclude ¢(ay, by) as required.
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Case 2.2.2: Va, € A,.qa(b1) < qalas)

Note that

QQ(b)7Qa(bl) < qa(ao) < Qa(al) < qa<bo) < Qa(a)'
Weclaimb¢ B <— b, ¢ B.

e Subcase ¢, (b) < qa(b1):
Note

Ga(b) < Ga(b1) < qa(as) < galar) < qa(bs) < qala).

By symmetry of Case 2.1 we have ¢(as, by) for the given b; and a, depen-
dent upon it. Hence b ¢ B <— b, ¢ B.

Note that ¢(aq, by ) does not follow immediately by symmetry since in Case
2.1 we show the existence of such b; satisfying the necessary conditions
implying ¢(aq,b;). But here we first start with a; and fix it. On the other

hand, the symmetry proof starts from b, first.

e Subcase ¢, (b) = qo(b1):
Note

Ga(b) = qa(b1) < qa(@o) < ga(a1) < qa(bo) < qa(a).

Sob=bandb¢ B < b € B.

e Subcase ¢, (b) > qa(b1):
Note

o (1) < ¢a(b) < qalao) < ga(ar) < ga(bo) < gala).

As b, by € g *[I], the labels b and b; have to be connected by HPPDZs and
sob¢g¢ B < b; ¢ BbylH.

In all subcases above we have b ¢ B <= b; ¢ B. Combining this with
statement (6.3) we have by ¢ B <= b, ¢ B. Notice q,(a1) < ga(b,), SO
(ay,b,) € W. Thus

nweEA = bp¢B = b,¢B = a1 €A
using (ay,b1) € W, by € B <= b, ¢ B and (a;,b,) € W respectively. Hence
€A <= b¢B << b, ¢B.

Using this and statement (6.3) we conclude ¢(ay, b;) for Case 2.2.2 as required.
In all possible cases we have ¢(a, bs) as needed. This completes the proof of

Dead Zone Lemma. L]
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6.2.4 Defining the cut

Definition 6.2.8. (Cut C'in Q, N L,)

Define the cut C' in the a-finite a-rationals and its complement® D by:

e C:={peQ.NL,:3FbeBIs<alp<qd) |
or {p, q.(b)} is a subset of a PDZ |}.

e Di={peQyNL,:3ac Ads < afga) |<p
or {p, q.(a)} is a subset of a PDZ |}.

The following lemma establishes that C'is a cut in @), N L.
Lemma 6.2.9. (Closure of C' and D under <)

e (' is downwards closed in @), N L:

Vo,pe QauNLlyjo<peC = o€’

e D isupwards closed in @), N L,:
Vo, p € QuNLyjo>peD = o€ D].

Proof. Leto,p € QuNLyando < p € C. If 3b € B3s < a.p < q,(b) |, then
clearly 0 < q4(b) L andso o € C. If 3b € B s.t. {p, q.(b)} is a subset of a PDZ,
then 0 < ¢ (b) or ¢o(b) < o < p. If 0 < qu(b), then o € C. If ¢,(b) < o < p,
then o is in the PDZ with ¢,(b) and so {c, q,(b)} is a subset of the PDZ. Hence
o € C.Inall cases o € C. Therefore C' is downwards closed.

The proof that D is upwards closed in ), N L, is symmetric. Ol
Lemma 6.2.10. CND = ()

Proof. Assume for a contradiction that 3p € QQ,,.p € C'N D.

Asp € C,s03b € Bs < afp < q,(b) L or {p, q.(b)} is a subset of a PDZ].

As p € D,so3a € Ads < afgs(a) 1< por {p,ga(a)} is a subset of a PDZ].
WLOG let s be large enough so that g,(a) | Ags(b) |. Sincea € ANb € B, we
have (a,b) € W. Therefore ¢,(b) < g,(a) by construction. There are four cases:

1. Case gs(a) < p < gs(b): this is impossible since ¢5(b) < gs(a).

2. Case {p, q.(b)} is a subset of a PDZ and ¢s(a) < p: since (a,b) ¢ W we
have ¢, (b) < ga(a) < gs(a) < p. Thus g, (a) is in the same PDZ as ¢, (),
so a and b are connected, buta ¢ AAb ¢ B which leads to the contradiction

of lemma 6.2.7.

3For the proof, see proposition 6.2.15.
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3. Case p < ¢s(b) and {p, g, (a)} is a subset of a PDZ: this is symmetric to the

case above.

4. Case {p,qn(a)} is a subset of a PDZ and {p, ¢,(b)} is a subset of a PDZ:
thus ¢,(a) and ¢, () are connected and by lemma 6.2.7a € A < b¢ B
which leads to the contradiction.

Lemma 6.2.11. Assume C C EAD C E. Then A= Ax A B = Bp.

Proof. We show
A=A ={a€ay:3s<agsa) € E}.
If a € A, then
Vs < a(gu(a) L = qu(a) € D C B,

and thus a & Ag.

If a € A, then since K (A, B), we have 3b ¢ B.(a,b) € W by proposition
4.2.77. By lemma 6.2.6, let s be a stage s.t. (a, b) strategy and all other strategies
of a higher priority have stopped acting. Two cases are possible: ¢s(a) < gs(b) or
[q5(b), gs(a)] is a PDZ. Each implies ¢s(a) € C' C FE and thus a € Ag. Therefore
A = Ag as required.

By a symmetric proof B = Bp. [

6.2.5 Proof completion
We complete the proof of Semicomputable Cut Existence Theorem 6.0.1.

Proof. (Of lemma 6.1.1) We use the labelling algorithm in section 6.1 to construct
a labelling sequence
q=1q¢s:aaUap > QuN Lytsca-

This sequence is a-computable by proposition 6.2.3v. Using this sequence ¢, the
cut C'is defined in definition 6.2.8. Since the ordering on (), is a-computable, C'
is a-semicomputable. Taking F := C by lemma 6.2.10 we have C C EAD C E.
Therefore by lemma 6.2.11 it follows that A = As and B = B¢ which completes
the proof of lemma 6.1.1. U

Lemma 6.2.12. A¢ <uue C and Be <yoe C.
Proof. Note Ac <,. C via
W = {{a,d) : Is < a.{qs(a)} = K5}

which is ¥1(L,) as ¢ : a X (aa U ag) — @, is a-computable by proposi-
tion 6.2.3v. Similarly, B <y ae C as required. L]
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Proof. (Of theorem 6.0.1) Assume K, (A, B). Then there is a semicomputable
cut C € @, N L, by lemma 6.1.1 st. A = Ag and B = Bo. Applying
lemma 6.2.12 we get A <,0e C and B <,q. C as required. O

6.2.6 More about the cut ('

We establish some additional properties about the constructed semicomputable

cut C' C @, N L, which are not necessary for the proof of theorem 6.0.1.
Proposition 6.2.13. The cut C' C (), N L, is a proper cut. In particular,
o C #10),
o ('# (QQyN L.

Proof. Suppose that C' = () or that C' = Q, N L,. Then C' € A;(L,). Remember
that by theorem 6.0.1 we have A <,ne C and B <,ne C. As C € Ai(L,), so
A€ ¥y(L,) and B € ¥(L,). But by the assumption in theorem 6.0.1, (A, B)

1s nontrivial which is a contradiction. ]
Lemma 6.2.14. CUD = (Q,N L,

Proof. Assume not, then there is an a-finite a-rational p € Q, N L, — C' U D.
Define £ := {7 € QuN Ly : ™ < p}. Then C C Eand D C E and so
A = Ag by lemma 6.2.11. Hence A = Ap <yae F by lemma 6.2.12. But
note that £ € ¥,(L,) and so A € ¥;(L,). But (A, B) is nontrivial which is a

contradiction. L]
Proposition 6.2.15. D =C =Q,N L, — C

Proof. Remember definition 6.2.8 that C' C ), N L, and D C @), N L,. Hence
D = C follows from lemma 6.2.10 stating C N D = () and lemma 6.2.14 stating
CUD =Q.,NL,. []

6.3 D, definable in D,,

We prove that the total degrees 7 OT . are definable in the a-enumeration de-

grees D, if V = L and « is an infinite regular cardinal (theorem 6.3.7).
Lemma 6.3.1. The following are true about the function ¢,:
e dom(q,) € ¥a(La),

e (. € Xo(Ly).
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Proof. Note that the labelling sequence g : a X (vallag) — @, is a-computable
by proposition 6.2.3v.
So dom(g,) € ¥o(L,) since

c €dom(q,) <= Is<aVit<als <t = gs(c) = ¢(c)].
And q, € ¥5(L,,) since

o) =p <= Ts<aVt<als <t = p=qlc)].

Lemma 6.3.2. Let o, p € (), N L,. Then the statement

“o and p are together in a PDZ”
is ¥p(L,,) definable.

Proof. Note {0, p} C aPDZ <=
Aa,b) e Wt <aVu < a(u >t = q,(b) = ¢(b) < 0,p < qu(a) = q:(a))].

As the labelling sequence ¢ is a-computable by proposition 6.2.3v, so by looking
at the quantifier arrangement the statement has to be Y5 (L,,) definable as required.
]

Recall section 3.12 that J{ (A) denotes the '™ a-enumeration jump of A.

Lemma 6.3.3. (Definability of C' and C)
Assume L,, = ¥3-replacement, then:

1. C €%y (La, Ba J2(0)),
2. T e (Lo, AD JO0)),
3. C € Ai(La, A® B® J2(0)).

Proof. Note C ={p € Q,NL,:3b€ agds<ado € Q,N L,
[b € BA(p<qs(b) ] ora=q.(b) A{p,c} is a subset of a PDZ )]}.

The statement “oc = ¢,(b)” is Xa(L,) by lemma 6.3.1. The statement
“{p,o}is asubsetof aPDZ” is ¥5(L,) by lemma 6.3.2. The statement
“p < ¢s(b) |7 is a-computable by the a-computability of the labelling sequence

q, see proposition 6.2.3v. Hence the formula
“p < qs(b) | oro = q.(b) A{p,c} isasubset of a PDZ”

is ¥o(L,) definable. Using the X,-completion of the n™ ae-jump (proposi-
tion 3.12.16) and L, | Xj-replacement the set defined by such formula is
a-reducible to the set J$2 (@). So clearly the set defined by the formula

“be BA(p<qs(b) ] oro=qa(b) A{p,o} is a subset of a PDZ)”
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is a-reducible to the set B @& J2(0). Thus C is 31(La, B ® J&2(0)) definable
and the statement 1 holds.
Similarly, C'is ¥1(La, A @ J2 (0)) definable. Hence the statement 2 is true.

By the statements 1 and 2 we have
CeCeXi(La,Ad Ba JP0)).
Therefore
C e A(Ly, A B J2(0))
and thus the statement 3 is true. [

Remark 6.3.4. The reason that the 3J; definition of C' and C needs only one of
the sets B and A respectively, not both, is corollary 4.2.8 which says A <,.. B
and B <. A for a non-trivial Kalimullin pair K, (A, B).

Theorem 6.3.5. Suppose that A and B form a non-trivial maximal K-pair, then
there exists an a-semicomputable set C' s.t. C' =,, A, C =,. B and K(C,C).
Furthermore, if L, = Y3-replacement and A & B @ Jé?(@) is megaregular, then
deg,.(A @ B) is a total degree.

Proof. (Of theorem 6.3.5)

. Assume K< (A, B).

. Assume K (A, B).

. 3C € s¢(La)[A <wae C A B <yae C] by 2 and theorem 6.0.1.

. K(C,C) by 3.

. A <pae O A B <yae Cby 3.

. Assume L, = ¥j-replacement and A © B & I (@) is megaregular.
. C and C are megaregular by 6, lemma 6.3.3 and proposition 3.8.13.
A< OANB <, Cby5and7.

A=, CANB=,Cbyl,4,8.

10. Define T := C @ C.

11. T'istotaland T' € A ® B by 9, 10. O

O 0 N N U kW N~

Corollary 6.3.6. Assume V' = L and let « be an infinite regular cardinal. If a and
b are a-enumeration degrees that form a non-trivial maximal [C-pair, then there
exists an a-semicomputable set C's.t. C € a, C € band K(C,C). Hence a © b is

a total degree.

Proof. As « is an infinite regular cardinal, so C-pair is definable in D,,. by corol-
lary 4.3.8. Thus assume /Cpax(a, b) A Kyt (a,b) and let A € a and B € b. We have
Kmax(A, B) A Kyt (A, B). If «v is an infinite regular cardinal, then every subset
of « is megaregular. Hence A © B & Jo(i)((Z)) is megaregular. As « is an infinite
regular cardinal, so L, = Y3-replacement. Next apply theorem 6.3.5 to conclude
a®b=deg,.(AD B) is total as required. []
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Theorem 6.3.7. (Definability of total degrees)
Assume V' = L. Let « be an infinite regular cardinal. A degree of D, is total iff

it is trivial or a join of a maximal K-pair.

Proof. (Of theorem 6.3.7) Assume that «v is an infinite regular cardinal. So K-pair
is definable in D, by corollary 4.3.8. Thus the proposed definition makes a sense
in D,,.

The = direction follows from corollary 4.4.2.

Clearly, the trivial a-enumeration degree deg,,.(() is total.

The rest of <= direction follows from corollary 6.3.6 implied by theo-
rem 6.3.5 and theorem 6.0.1. 0
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Chapter 7

Embedding Theorem for Aut(D,.)

In this chapter we first prove Selman’s theorem 7.1.6 in a-Computability The-
ory assuming V' = L and « being an infinite regular cardinal. Finally, we use
this theorem to prove the main result of this thesis, Embedding Theorem 7.3: the
automorphism group of the a-enumeration degrees D,,. embeds into the automor-
phism group of the o degrees D, assuming V' = L and « being an infinite regular

cardinal.

7.1 Selman’s theorem
Selman’s theorem is generalized to the setting of a-Computability Theory from
classical Computability Theory [24][30].
Definition 7.1.1. (Odd enumeration and a-finite part)

e Let B C a. The total function f : o — « is an odd enumeration of B iff

f{2v+1<a:v<a}l|=B.
e B odd a-finite part is a function 7 : [0,2s) — « for s < a s.t.
Vo <a2z+1€dom(r) = 7(2x+1) € B].
e Let |7| denote the order type of dom(7), i.e. |7| := ot(dom(7)).

If dom(7) is an initial segment of «v, we have |7| = dom(7). If 7 : [0, 2s) — «
is a function, then dom(7) = 2s and so |7| = 2s. If 7 is a B odd a-finite part,

then there is an odd enumeration f : « — o of Bs.t. 7 C f.
Lemma 7.1.2. Let f : @« — a be an odd enumeration of B. Then B <. f.

Proof. We have B <, f via
O ={(h,0):Iy<a2y+1<anKs={2y+1,0b)}]}.
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Lemma 7.1.3. Assume that A <, f. Then f71[A] <yae f-

Proof. Note f71[A] = {z < a: f(z) € A}. Let A <yue fvia ¥ € X1(L,).
Then f~A] <uae f via
O = {(x,0) : Jy < a[Ks = K. U{(x,y)}} A (y,¢€) € U]} € £;(Ls).
0

Proposition 7.1.4. ' Let A, B C aand A £, B. Assume that A® B® K () is
megaregular. Then there exists an odd enumeration f : & — aof Bs.t. A Lyae
and B <,. f.

Proof. Construction

Since B =,. B U (a — sup(B)), WLOG redefine B to be B U (a — sup(B)) so
that it is unbounded. We construct a sequence of B odd a-finite parts in  many
stages s.t.:

T C...C,C ...
In the end, the desired function f : @ — « is defined as f = [ J,_,, 7.
Let 7o = (). If s is a limit ordinal, then let 7, := U, <5 Tr- Now assume that 7,

has been constructed, then at the stage s construct 7, 1:

e Stage s = 2e:
Set 7541 == 75 - 0 - b where
b=pyly<a:ye€BAy€n[{2v+1<|r|:v <a}l}
and 0 - b is the concatenation of 0 and 0. E.g. if 7=a-0, then
7(0) = a,7(1) = b. Note that b is well-defined since B is unbounded.

e Stage s = 2e + 1:
Use e and 7, to define the set C' as
C = {z < a|3p D 745[pis a B odd a-finite part and = = p(|75|) A |7s| € Pc(p)]}.
Since A Lqe B by assumption and C' <,,,. B, we have C' # A. Thus we

have two cases:

— Case dz < afr € C Ax ¢ A]: Then let 74,1 be the minimal p from C.
Note 75,1 = 75 - x - b - o for some b € B where o is a B odd a-finite

part.

— Case dr < ajr ¢ C ANx € A]: Then let 75,1 = 75 - x - b for some
be B.

IGeneralized from [30] for a = w.
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Verification

By the two cases above we have for all e, s,z < a:

s=2e+1N2=T1(7s]) = z€CAxgAVegCAzecA (7.1)

Note that f = (J,_,,
s =2e < a. If b € B, then a pair (2y + 1,b) is added to f for some 27y + 1 < «

Ts 1s an odd enumeration of B. This is ensured by stages

at the stage s = 20 < « at latest.
Moreover, A £ae f. For suppose not, then A <,,,. f. Hence
F7YA] <wae f by lemma 7.1.3 and so there is e < a s.t. f7'[A] = ®.(f) and

thus:
Vi<a[f() e A < le fA] < 1 d.(f)] (7.2)

Consider the stage s = 2e + 1. Let [ = |74|. Note 75, C f.

e Case I: l € f7'[A] = f(I) € A = | € ®.(f) using statement (7.2).
By the witness property of an c-enumeration operator there exists 5 odd
a-finite part p of fs.t. p D 7, Al € Po(p) A p(l) = f(I). So f(I) € C.
Hence f(I) € C'N A. Also by statement (7.1) we have

() eCAFI) g AV (@ g CA[(I) €A,

This is a contradiction.

o Case2: I ¢ f7'[A] = f(I) ¢ A = | & ®.(f) using statement (7.2).
By the monotonicity of an a-enumeration operator there is no B odd o-
finite part p of f st. p D 7, Al € ®.(p). So f(I) & C. Hence f(l) ¢
AN f(l) ¢ C. By statement (7.1) we have

() eCAFI) AV (x g CA[(I) €A,

This is a contradiction.

Hence in any case A £, f as required.

Let g : @ — « be defined by g : s — ~y where K., = 7,. During the construc-
tion we use the oracle A ® B @ K (), hence g € ¥1(Lo, A® B @ K(0)). We
show that g is well-defined and that 7, is a-finite at a limit stage s. Let s < «
be a limit stage and g, be a restriction of g to the subdomain s C . Then
gls] =1 € L, since s € Lq, g;s € X1(La, A@® B @& K(0)) and by the megareg-
ularity of the oracle A ® B & K (0)). Hence 7, = | = U, ¢s K is a-finite
as required. Therefore Vs < «a.7; € L,, as needed.

Note that f € Ai(La, A ® B @ K(()) since the construction of f uses the
oracle A ® B @ K ((). By that and the megaregularity of A @ B & K(()), also f

must be megaregular. By lemma 7.1.2 we have B <, f. By the megaregularity

r<s Tr

of f, we have B <,. f as required. ]
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Theorem 7.1.5. (Selman’s theorem for admissible ordinals)
Let A, B C candlet A® B @ K(0) be megaregular. Then

A<p B <= VX[ X =Ze XOXAB <0 XX = A<, X®X]
Part of the following proof is adapted from the classical case present in [30].

Proof. = direction is by the transitivity of <.
For the < direction assume that
VXX = XOXAB<, X0X = A<, XDX].

We want to show that A <,. B. Assume not, then A £,. B and so A £,.. B as
A @ B @ K(0) is megaregular. Then by proposition 7.1.4 and the megaregularity
of A® B @ K(0) there exists a total function f s.t. A L0 f,but B <,. f. But
f is total and so A <,. f which is a contradiction to the statement A £, f.

Hence A <,. B as required. O

Corollary 7.1.6. (Selman’s theorem for regular cardinals)
Assume V' = L. Let « be an infinite regular cardinal. Then for any A, B C o we

have:

A<ue B <= VX[ X = XOXAB<W XOX = A<, X DX]

Proof. If « is a regular cardinal, then every subset of « is megaregular. Hence
A® B K(0) is megaregular. The remaining proof of the corollary follows from
theorem 7.1.5. [

7.2 TOT, as an automorphism base for D,

We use Selman’s theorem to conclude that 7 OT . are an automorphism base for

D, under some assumptions.

Definition 7.2.1. (Automorphism base [11])
TFAE:

e The subset B C dom(M) is an automorphism base of the model M.
o Vf.g € Aut(M)[fir =g = [ =4
o Vf e Aut(./\/l)[f\B = 1‘3 = = 1]

Theorem 7.2.2. > Assume V = L. Let « be an infinite regular cardinal. The total

degrees T OT . are an automorphism base for D,,..

For a-Computability Theory introduced in this thesis. A well-known result in classical Com-
putability Theory concluded by the work in [24].
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Proof. 0. Assume « is a regular cardinal.

1. Va,b € Dyela < b <= Vo € TOT (b < x = a < z)] by 0 and
corollary 7.1.6.

2.Va,b € Dyela=b <= Ve € TOT 4e(b<z <= a<z)|byl.

3. Assume f € Aut(D,.).

4.Ya,b € Dyela <b <= f(a) < f(b)] by 3.

5. Assume Vz € TOT ge.f(x) = x.

6. Assume y € De.

T.¥2 € TOT ae.(f(y) < f(z) <= y < x)by4

8.VL € TOT ge-(fly) <z <= y<x)by5,7.

9. f(y) =yby?2,8.

10. Yy € Doe.f(y) = y by 6, 9.

11. TOT 4 is an automorphism base for D, by 3, 5, 10. O

7.3 Embedding Theorem

The main result of this thesis is:

Theorem 7.3.1. (Embedding Theorem?)

Assume V' = L. Let a be an infinite regular cardinal, then the automorphism
group of the a-enumeration degrees is embeddable in the automorphism group of
the total a-enumeration degrees: Aut(D,e) — Aut(TOT 4e).

Proof. (Of theorem 7.3.1) The embedding theorem is implied by 3 statements:
1. There exists an embedding ¢ : D, < D, where Im(¢) = T OT 4e,

2. TOT 4 are an automorphism base for D,
3. TOT ,. are definable in D,.

The first statement follows from theorem 3.10.4 where the embedding
t 0 TOTae = Dae is given by ¢ : deg, (A) +— deg,. (A D A). The sec-
ond statement is theorem 7.2.2 which is the generalization of a result by Selman
[24]. The third statement is theorem 6.3.7 which is the generalization of the
definability of the total degrees in the enumeration degrees [2].

By the 3 statements we can define an injective group homomorphism
N Aut(Dgae) <= Aut(Dy),n: fr 1 o for AsIm(t) = TOT qe and TOT 4

definable and hence invariant under an automorphism f so Im(f o ¢) = TOT ge.

3For a-Computability Theory introduced in this thesis. A well-known result in classical Com-
putability Theory concluded by the work in [2]. The proof of this result outlined in [2] p13.
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Thus the composition of :=! : TOT,.. — D, (where ¢ injective) with
fouv:D, — D, is well-defined. Since

n(f)en(g)=("ofor)o(tT ogo)=1"ofogor=1n(fog),
so 7 is a group homomorphism. If 7(f) = n(g) then Va € TOT 4e.f(a) = g(a),
since T OT 4. is an automorphism base for D,. so f = ¢ and hence 7 injective.

This 7 is the required embedding. ]

7.4 Further directions

Embedding theorem 7.3.1 establishes for a certain class of admissible ordinals «
that Aut(D,.) — Aut(D,). One of the obstacles to prove the Embedding theo-
rem for all admissible « is a difficulty in proving the definability of a Kalimullin
pair and the total degrees in the enumeration degrees. We proved that a Kalimullin
pair is definable in D,,. if all subsets of o are megaregular (theorem 4.3.6). This
condition seems to be necessary. The lack of the megaregularity of the sets is a
consequence of the lack of the admissibility on L. This gives us the following
intuition:
The less admissibility L., has, the less definability D, is expected to have.
Slaman and Woodin [28] proved that the Turing degrees have a trivial auto-
morphism group iff they are biinterpretable with second order arithmetic. Also
every automorphism in a structure has to preserve all definable relations. This
gives us another intuition:
The less definability a structure has, the more non-trivial automorphism group it
is expected to have.
Combining the two intuitions above into the third one we have:
The less admissibility L. has, the more non-trivial automorphism group D,. is

expected to have.
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Chapter 8
Open problems

We present several open problems in Higher Computability Theory at a various
level of difficulty, where the number of stars x marking the problem is proportional
to the level of the difficulty guessed by the author. For comparison, Embedding
Theorem 7.3.1, the main result of this thesis stands at the difficulty level of about

three stars (x x ).

8.1 «a-Computability Theory

8.1.1 General
Does the following relativization of the Uniformization Theorem 3.2.9 hold?

Conjecture 8.1.1. (x) (Relativized Uniformization Theorem)
Letn > 1 and A C «. Then for each ¥, (L,, A) relation R(x,y) there is a
Y (Lo, A) function f satisfying:

Vo < afif Jy < a.(Ly, A) E R(z,y), then (L,, A) = R(x, f(x))].

Note that conjecture 8.1.1 in the case of n = 1 was established by proposi-
tion 3.4.15. Likely, the cases n > 1 require additional assumptions on the struc-
ture (L,, A). Using a stronger Relativized Uniformization Theorem we could

strengthen proposition 3.4.20.
Conjecture 8.1.2. (x) Let A5 = {7y < a: K, C K;}. Then As5 € L,.

Conjecture 8.1.2 could simplify many of the proofs in this thesis, especially
the ones where indices of a-finite sets are used, e.g. section 3.5. Trivially, As
is a-computable. However, it does not seem to be clear that A; is also bounded.
This seems to depend on the function used to index a-finite sets.

Fact 3.6.4 states that the projectum of an admissible ordinal is admissible.

Proposition 3.1.21 gives a relation between the admissibility and the cofinality.
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How can we relate the projectum and the cofinality? Can we do so in the following

way?
Conjecture 8.1.3. (xx) (Projectum and cofinality)

1. If § = 0,,p(«), then there is a partial surjection s : 6 — o € ¥,,(L,) s.t.

Yy < adx < d.y < s(x),

2. oppicf(a) < oup(a).

Proof. (Of 2 assuming 1.)

Let § = o,p(a). So there is a partial surjection s : § — a € X,(L,) s.t
Vy < ade < 6y < s(z). Define s'(x) = s(uz[zr < z A s(z) J]). Note that
s': 0 — aisatotal X,1(L,) definable surjection and Vy < adzr < d.y < §'(z).

Therefore o, cf(a) < § as required. O

We ask the next question in order to understand the relation between different
levels of the definability.

Question 8.1.4. (xx) Suppose that o; and a» are admissible ordinals and that
ap < ag. Let A, B C ay. If A <,,. B, is it then true that A <,,. B?

8.1.2 Totality

Question 8.1.5. (%) Recall section 3.12. If J,.(A) is a megaregular set, then
Jae(A) is total. In general, is J,.(A) a total set for any A C «o?

The next question asks if it is sufficient to define the totality with the weaker
reducibility instead. If that is the case, then one could conclude the totality using

the weaker reducibility without invoking the requirement of megaregularity.

Question 8.1.6. (x%) Assume that A & A <, A. Isit true that A ¢ A <,. A?

8.1.3 Regularity

Proposition 3.8.13 already implies that megaregularity is closed under the A; de-
finability. The next conjecture states that also regularity is closed under the A;
definability.

Conjecture 8.1.7. (x) If A € A{(L,, B) and B is regular, then A is regular.

Megaregularity seems as a too strong notion in the context of positive defin-
ability and enumeration reducibilities. Moreover, it does not even have the desired

properties. The next question asks if there is a better notion in this context.
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Question 8.1.8. (xx) (Natural notion of positive megaregularity)
Let o be a general admissible ordinal, not necessarily an infinite regular cardinal.

Does there exists a relation R C P(«) satisfying the following properties?
1. YA C afif A megaregular, then R(A) A R(A)].
2. VA,B C a[A <yoe BANR(B) = A <, B].

3. VA, B C a[A <uyae BAR(B) = R(A)].

8.1.4 Automorphisms

Megaregularity emerged as a very important notion. It would be good to know
some of its degree theoretic properties. The negative answer to the next question

would imply that it cannot be definable in a degree structure in question.
Question 8.1.9. (xx) Does an automorphism preserve megaregularity?

The next question seems a very natural one to ask after proving in this thesis
that Aut(D,.) < Aut(D,,) for an infinite regular cardinal assuming V' = L.

Question 8.1.10. (x x xx) (Embedding Conjecture for admissible ordinals)
Let o be a general admissible ordinal. Is it true that Aut(D,.) — Aut(D,)?

There is already a classical conjecture that the Turing degrees are rigid [28]. In
remark 3.11.6 we saw that the computability on the infinite regular cardinals be-
haves much like the classical computability theory. Thus it may be natural to con-
jecture in general that the a-degrees D,, are rigid if « is an infinite regular cardinal
and V' = L. Together with the main result of this thesis Aut(D,.) — Aut(D,,) it

can imply the following conjecture characterizing Aut(D,e).

Conjecture 8.1.11. (x x xx) If V = L and « is an infinite regular cardinal, then

the automorphism group of the a-enumeration degrees is trivial.

8.2 Transfer principle

Question 8.2.1. (x % %) (Transfer principle for infinite regular cardinals)
Assume V' = L. In remark 3.11.6 we observed that the a-Computability with
infinite regular cardinals behaves similarly to the classical Computability Theory.
Also all the main results of this thesis (section 2.3) are the generalizations of the
classical results which hold for infinite regular cardinals .

Is there some general transfer principle that would enable us to conclude that
any result of a certain form which holds in classical Computability Theory is true

also in a-Computability Theory if « is an infinite regular cardinal?
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8.3 ¢,( - Computability Theory

In remark 3.2.6 it was stated that A, definability over L, behaves like the com-
putability on the extended Turing machine with a tape of an order type « and the

computational time «v. Can we generalize this further?

Definition 8.3.1. For A € L define its powerset to be
P(A)={BeL:BCA}

Definition 8.3.2. (¢,(-Constructible Hierarchy)
Let 9, € and ¢ be limit ordinals or oo (i.e. Ord) and € > (. Let v < oo. Define the

€,(-level of the constructible hierarchy recursively:
LC»C = Lc,
Leiyt1,c = Def(Letq,c) NP (Q),

Letse = (Uyes Letne) NP Q).

Definition 8.3.3. A function f : ( — ( is e,(-computable iff f is 3q(L.¢)-
definable.

Question 8.3.4. (xx) Is a function f : { — ( ¢,(-computable iff it is a computable

on a Turing machine with a tape of an order type ¢ and time €?



Appendix A. Axioms 157

Appendix A

Axioms

A.1 Zermelo-Fraenkel set theory with choice

Definition A.1.1. (Zermelo-Fraenkel set theory with choice)

Zermelo-Frankel set theory with choice (ZFC) is the theory specified by the fol-

lowing axioms:

extensionality: VaVylr =y <= Vz(z €z < z € y)],
foundation: Vz[z # ) = Jy cx.x Ny =10],

schema of separation: for any formula ¢(a) in which y is not free we have

VedyVz[z €y <= z €z A ¢(z2)],
pairing: VaVy3zjx € z Ay € 2],
union: VxIyVoVwv e w Aw € x = v € y],

schema of replacement: for any formula ¢(x,y) we have

VKVz € K3ly.¢(x,y) = IIVx € KJy € 1.¢(x,y)],
infinity: 3z[) € z AVy € .y U {y} € 2],
powerset: VzIyVz[z Cx — z € 1],

choice: V[0 ¢ x — If :x = Jz(Vy € x.f(y) € y)]
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Appendix B

Abbreviations

iff if and only if

S.t. such that

wrt with respect to

BC base case

IC inductive case

IH inductive hypothesis

TFAE  the following are equivalent
WLOG  without the loss of generality

QED quod erat demonstrandum, i.e. that which was to be demonstrated
KP Kripke-Platek set theory

AC the axiom of choice

ZF Zermelo-Fraenkel set theory

ZFC Zermelo-Fraenkel set theory with AC

CK Church-Kleene

CNF Cantor normal form

c.e. computably enumerable

IC-pair  Kalimullin pair
DZ dead zone
PDZ permanent dead zone

HPPDZ higher priority permanent dead zone
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Appendix C

Notation

C.1 General

N natural numbers, i.e. N :={0,1,2,...}
Q rational numbers

> sum

I product

min(A) the minimum of the set A

max(A) the maximum of the set A

inf(A)  the infimum of the set A

sup(A)  the supremum of the set A

=y assignment, z is defined to be y

equivalence relation

2

isomorphism

C.2 Functions

A—B total function from A to B
A—B partial function from A to B
A— B embedding from A to B
A—-» B epimorphism from A to B, i.e. surjection
A— B monomorphism from A to B, i.e. injection
f:x+— 1y the function f maps x toy
f1A] the image of the function f on the set A
dom(f)  the domain of the function f,i.e. dom(f: A — B)=A
dom(R)  the domain of the relation R,
eg if RC X xY,thendom(R) :={zr € X : 3y €Y. (x,y) € R}
cod(f) the codomain of the function f,i.e. cod(f : A — B) =B
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Im(f) the image of the function f,
ie. Im(f) == {y € cod(f) : 3z € dom(f).f(x) = y}
rng(f) the range of the function f, i.e. rng(f) := Im(f),
egmg(id:Z—>R)=7Z
ft the inverse of the function f
fID the restriction of the function f to the domain D
f(z) 4 the function f is defined on z, i.e. z € dom(f)

C.3 Logic
- logic negation
A logic and / lattice meet
Vv logic or / lattice join
\Y exclusive logic or,i.e. AYB=AAN-BV-AAB
- implies
= if and only if
= existential quantifier
v universal quantifier
() formula ¢ with the list of free parameters =
o= the formula ¢ is equivalent to the formula ¢
Mo the formula ¢ is true in the model M
TE¢ the formula ¢ is true in every model of the theory T'
THo the formula ¢ is provable from the theory T’

M =<x. N Misa}, elementary substructure (or submodel) of N/
C.4 Set Theory

the empty set
set membership relation
set intersection
set union
disjoint set union
set difference, i.e. A\ B:=A— B
symmetric difference, i.e. AAB:=AUB—-ANB
strict subset relation
subset relation
complement of the set A
x B the Cartesian product of the set A and B

L oxliN N p>-—C CDOmsS
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P(A)
4A

w

wfk
cf(a)
ncfa(9)

oncf(a)

Ord

g

=
> >

2

the powerset of the set A

the cardinality of the set A, i.e. #A = |A]

the first infinite ordinal

the Church-Kleene ordinal, i.e. the first uncomputable ordinal
the cofinality of an ordinal «

the 3,,(L,) cofinality of ¢

the 3, (L, ) cofinality of «

admissible ordinal

the projectum of «

the ., -projectum of «

[ is a limit ordinal

the first infinite cardinal

(1 + )™ infinite cardinal

the first-order definable sets over the model M
+ level of Godel’s constructible hierarchy

7' level of Godel’s constructible hierarchy with a parameter A
Godel’s constructible universe

von Neumann’s universe

Kleene’s O - the set of ordinal notations in N
for computable ordinals

the class of all ordinals

element of order type Ord

half-closed, half-open ordinal number interval, i.e. [y,0) == \ v

closed ordinal number interval, i.e. [y, 0] :== (6 \ v) U {0}

C.5 [(-rational numbers and strings

set of S-rational numbers

set of 3-real numbers

the 3-real number unit interval

the empty string

the concatenation of the string o with the string 7

the concatenation of 7 zero characters

strings bounded in (3, S-rational numbers

order type of a string o, e.g. ot(<><<) = 4, ot (DY) = w + 2
restriction of a string o to the characters

at the position less than v, e.g. <<>< | 3 = <<

the character at the position v of the string o, e.g. (><)[1] =«
the closed interval of the string o from o[v] to od],
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e.g. («><<)[1, 3] = >

lan(B>
sup 4(B)

A-infimum of the set B, see 5.4.3
A-supremum of the set B, see 5.4.3

C.6 «a-Computability Theory

e
S
v

= > 3
ANINIA X S e =

AN CIA
° g
Q

—waoae

A

—ae

A|,B

A% 30 110

complement of A,i.e. A:=a — A
a-computable join of sets A and B

projection, i.e. m;({x1,...,2,)) =

A operator in a-calculus, e.g. A\x.x =id: z — @

p operator, i.e. px[r € Al = min(A)
(weak) a-enumeration operator
a-computably enumerable set
B-finite set, i.e. K, € Lg

Turing reducibility

enumeration reducibility

weak a-reducibility

a-reducibility

weak a-enumeration reducibility

a-enumeration reducibility

sets A and B are incomparable wrt r-reducibility,

ie. AL, Band A #, B

set of Turing degrees

set of the enumeration degrees

set of the total enumeration degrees
set of a-degrees

set of the c-enumeration degrees

set of the total a-enumeration degrees
a-degree of a set A

a-enumeration degree of a set A
weak a-jump of a set A

weak a-enumeration jump of a set A
a-enumeration jump of a set A

n'™ q-enumeration jump of a set A
enumeration of a set A
enumeration of a set A

the class of quantifier free formulas

with parameters from A

definability classes of the arithmetical hierarchy
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Ap, Y, 1,
Al 3L
EI(La)

Y1(Ly, A)
Y1(La, AT)

(Lo B)

sc(Lq)
Ku(A, B)
K(A, B)
K (A, B)
Knax(A, B)
psup

fin

definability classes of the arithmetical hierarchy
definability classes of the analytical hierarchy

the class of X! formulas with parameters in L,

or sets definable with such formulas

the class of 3¢ formulas over L, with A as a param.
the class of 3! formulas over L, with A as

a positive parameter

extended model with a parameter B € {B, B™, B~ },
see 3.4.5

the class of a-semicomputable sets

U-Kalimullin pair, U-K-pair

Kalimullin pair, C-pair

nontrivial Kalimullin pair

maximal Kalimullin pair

pseudosupremum function, see 3.5.1

finiteness predicate, i.e. fin(A) <= #A <N,
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