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1. Introduction

Many interesting properties of finite structures cannot be expressed in first order
logic (FO). Therefore, various extensions of first order logic have been studied in
the context of finite model theory. First order logic can be strengthened for example
by adding fixed-point operators, infinitary connectives, higher order quantification
or generalized quantifiers. Lindström quantifiers [11], i.e., first order generalized
quantifiers, give direct means to extend logics in a controlled and minimal way. The
notion of second order generalized quantifier [1] combines the idea of Lindström
quantifiers with that of higher order quantification. In this thesis we study questions
concerning definability of second order generalized quantifiers. We show that some
of the results on Lindström quantifiers carry over to the second order setting. On
the other hand, some striking differences are discovered between first order and
second order theory of definability.

First order logic cannot express, e.g., that a formula holds for an even number of
elements. To acquire an extension of FO with this feature, we can extend it by a
new quantifier Qeven with interpretation given by

M |= Qeven xϕ(x)⇔ |ϕM| is even,

where ϕM = {a ∈ M | M |= ϕ(a)}. Let P be a unary predicate symbol. In general,
the interpretation of a Lindström quantifier Q of type (1) is given by

M |= Qxϕ(x)⇔ (M,ϕM) ∈ K,

where M denotes the universe of M and K is a class of {P}-structures which is
closed under isomorphisms. In particular, the class K corresponding to Qeven is

{(M,A) | A ⊆M and |A| even}.

From now on, we identify a quantifier with the class of structures which interprets
it. In other words, Q denotes a class of structures or a quantifier symbol depending
on the context.

Intuitively, a quantifier Q is definable in terms of the quantifiers Q1, . . . , Qn if
there is a uniform way to express what Q "says" of a formula using the quantifiers
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Q1, . . . , Qn. The question of expressibility of Q in terms of Q1, . . . , Qn actually re-
duces to the question of axiomatizability of the class Q in the logic FO(Q1, . . . , Qn).
Indeed, if Q = Mod(ψ) then

|= Qxϕ(x)↔ ψ(P/ϕ),

where ψ(P/ϕ) is obtained by substituting every occurrence of P (x) in ψ by ϕ(x).
The same argument shows that if the logic L is closed under first order operations
and has the substitution property then axiomatizability of Q in L implies that
L ≥ FO(Q). Therefore, the logic FO(Q) is the minimal such logic which can
express Q.

Definability questions of Lindström quantifiers have been studied extensively in
finite model theory. In [9] Kolaitis and Väänänen combined Lindström quantifiers
with the infinitary logic Lω∞ω in which every formula has only a finite number of
variables. They showed that equivalence of structures relative to Lω∞ω(Qi)i∈I can
be characterized in terms of an Ehrenfeucht-Fraïssé type pebble game. This game
is then used to prove, e.g., that the Härtig quantifier (cf. Example 3.2) is not
definable in Lω∞ω(Qi)i∈I for any finite collection {Qi}i∈I of quantifiers of type (1).
In [7] Hella studied Lindström quantifiers in connection with descriptive complexity
theory. He showed that no extension of fixed point logic by finitely many Lindström
quantifiers captures PTIME on unordered structures. On the other hand, in [3]
Dawar proved that if PTIME can be represented as a logic at all, then there is a
Lindström quantifier Q such that FO({Q(n)}n∈N) captures PTIME, where Q(n) is
the so-called n-vectorization of Q.

Second order generalized quantifiers alter the definition of Lindström quantifiers
in a straightforward way. Let us first restrict attention to second order generalized
quantifiers of type ((1)), i.e., to quantifiers which apply to a single formula and
bind one unary second order variable. The interpretation of such a quantifier is
determined by a class Q of second order structures (M,G), where M is a set and
G ⊆ P(M), such thatQ is closed under isomorphisms. In other words, the semantics
of Q is given by

M |= QX ϕ(X)⇔ (M,ϕM) ∈ Q,

where ϕM = {A ⊆M | M |= ϕ(A)}.
In [1] Andersson studies the expressive power of second order generalized quan-

tifiers on finite structures. He shows that on finite structures with at most binary
relations almost any countable logic is equivalent to a uniformly obtained sublogic
of FO(Q), where Q is some second order generalized quantifier of type ((1)), and
that the result extends to all finite structures if Q is allowed to be of type ((2)). He
also shows that there is a quantifier Q of type ((1)) and a Lindström quantifier Q
such that FO ≡ FO(Q) but FO(Q) < FO(Q, Q).

In this thesis we study definability of second order generalized quantifiers. The
questions we study are very similar to questions that have been studied extensively
in the case of Lindström quantifiers. Indeed, the notion of definability we shall
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formulate is analogous to the notion of definability of Lindström quantifiers. Al-
though, already monadic second order generalized quantifiers can be used to define
any Lindström quantifier [1], monadic second order generalized quantifiers turn out
to be relatively weak in defining second order quantifiers of non-monadic types.

Let us look at an example of definability in the second order setting.

1.1. Example. Let Q be the quantifier {(M,P ) | P ⊆ P(M) and |P | ≥ 2} and
ψ(X) ∈ SO a formula. Then

|= QX ψ(X)↔ ∃X∃Y (X 6= Y ∧ ψ(X) ∧ ψ(Y )).

Example 1.1 shows that extending second order logic, SO, by the quantifier Q
does not increase its expressive power. In addition, it shows that all occurrences of
the quantifier Q can be eliminated from the formulas of SO(Q) in a uniform way.

Definability questions of Lindström quantifiers can be reduced to questions con-
cerning axiomatizability of classes of first order structures. Second order generalized
quantifiers are classes of second order structures so there is no connection between
quantifiers and classes of structures determined by sentences. Therefore, we intro-
duce logics which are interpreted in second order structures consisting of a first order
part and some second order predicates. Syntactically, these second order predicates
act as first order quantifiers (so-called quantifier variables) the interpretations of
which are given locally and arbitrarily in every model. This approach enables us to
transform questions like “Can a logic L define Q” to “Is Q the class of models of some
sentence ψ ∈ L′”, where L′ is an extension of L by some second order predicates. It
turns out that a defining sentence ψ ∈ L′ can be converted into a uniform definition
of Q in the logic L. So definability of Q in L implies that L(Q) ≡ L.

We study definability of second order quantifiers in different contexts. In Chapter
III we study which second order generalized quantifiers can be defined in a “first order
way”. In fact, we concentrate on studying definability of second order generalized
quantifiers in extensions of FO by Lindström quantifiers. It turns out that there are
simple structural properties of second order predicates which can be used to prove
non-definability results. We also show that L(Q) ≡ L does not imply definability
of Q in the logic L contrary to the case with Lindström quantifiers.

In Chapter IV we study definability in monadic second order logic, MSO. We
prove some non-definability results using the fact that a quantifier Q for which
MSO(Q) > MSO cannot be definable in MSO. We also show that finding a sim-
ple characterization of definable quantifiers in MSO is hard since it would yield a
characterization of classes of graphs definable in MSO.

In Chapter V we take a broader perspective and study definability of second order
quantifiers in terms of their types. The main result of Chapter V is the analogue
of the Hierarchy Theorem in [8]. It says that for any second order type t there is
a quantifier of type t which cannot be defined using any second order quantifiers
of types lower than t. We also produce a concrete example of a quantifier of type
((2)) which is not definable in terms of quantifiers of lower types, namely the binary
second order existential quantifier.
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I. Preliminaries

In this chapter we explain the notation used in this thesis. We also recall the
basic concepts and some known results about Lindström quantifiers.

2. Notation

Vocabularies τ are finite sets consisting of relation symbols and constant symbols.
All structures are assumed to be finite. The universe of a structure M is denoted
by M . For τ = ∅, we denote τ -structures by their universes.

The cardinality of a set X is denoted by |X|. The image of a relation R under a
function f is f [R] = {(f(a1), . . . , f(an)) | (a1, . . . , an) ∈ R}. With the cardinality
of a structure M we mean the cardinality of the domain M .

The class of all τ -structures is denoted by Str(τ), and Str(τ, n) is the restriction
of Str(τ) to structures having cardinality n. For a logic L, the set of τ -formulas of
L is denoted by L[τ ]. If ϕ is a τ -sentence then the class of τ -models of ϕ is denoted
by Mod(ϕ). For a class K of τ -structures, the number of isomorphism types of
structures in K with universe {1, . . . , n} is denoted by In(K).

For functions f, g : ω → ω on natural numbers, we write f(n) ∼ g(n) if

lim
n→∞

f(n)/g(n) = 1.

Throughout the text, second order generalized quantifiers are denoted by Q and
Lindström quantifiers are denoted by Q. The set of natural numbers is denoted by
N or ω.

3. Lindström quantifiers

Lindström defined the general notion of first order generalized quantifier in [11].

3.1. Definition. Let s = (l1, . . . , lr) be a tuple of positive integers. A Lindström

quantifier of type s is a class Q of structures of vocabulary τs = {P1, . . . , Pr} such
that Pi is li-ary for 1 ≤ i ≤ r, and Q is closed under isomorphisms.

The arity of a quantifier Q is ar(Q) = max{ar(P1), . . . , ar(Pr)}. We say that Q
is n-ary is ar(Q) ≤ n. The type of the quantifier Q is called simple if r = 1, i.e., if
Q applies to one formula.

3.2. Example. Let us look at some examples of Lindström quantifiers.

∀ = {(M,P ) | P = M}

∃ = {(M,P ) | P ⊆M and P 6= ∅}

Qeven = {(M,P ) | P ⊆M and |P | is even}

Most = {(M,P, S) | P, S ⊆M and |P ∩ S| > |P \ S|}

Some = {(M,P, S) | P, S ⊆M and P ∩ S 6= ∅}

I = {(M,P, S) | P, S ⊆M and |P | = |S|}
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The first example is the first order universal quantifier. The quantifiers Most and
Some are examples of quantifiers used in natural language semantics. They aim to
capture the truth conditions of sentences of the form ”Most A’s are B’s” and ”Some
A is B”. The quantifier I is the so-called Härtig quantifier.

Quantifiers can be also defined over a fixed set M .

3.3. Definition. A quantifier Q of type s overM is a subset of P(M l1)×· · ·×P(M lr)
such that Q is permutation invariant :

(A1, . . . , Ar) ∈ Q⇔ (f [A1], . . . , f [Ar]) ∈ Q

for all (A1, . . . , Ar) ∈ P(M l1) × · · · × P(M lr) and f ∈ SM , where SM is the set of
permutations of M .

Note that if Q is a Lindström quantifier of type s and M is a set, then

{(A1, . . . , Ar) | (M,A1, . . . , Ar) ∈ Q}

is a quantifier of type s over M .

3.4. Definition. The extension FO(Q) of first order logic by a quantifier Q is
defined as follows:

• The formula formation rules of FO are extended by the rule:
if for 1 ≤ i ≤ r, ϕi(xi) is a formula and xi is an li-tuple of pairwise distinct

variables then Qx1, . . . , xr (ϕ1(x1), . . . , ϕr(xr)) is a formula.
• The satisfaction relation of FO is extended by the rule:

M |= Qx1, . . . , xr (ϕ1(x1), . . . , ϕr(xr)) iff (M,ϕM

1 , . . . , ϕ
M

r ) ∈ Q,

where ϕM

i = {a ∈M li | M |= ϕi(a)}.

First order logic can be extended in the same way by a collection B of Lindström
quantifiers. The extension of FO by the quantifiers in B is denoted by FO(B).

4. Definability of Lindström quantifiers

4.1. Definition. Let L and L′ be logics. The logic L′ is at least as strong as the
logic L ( L ≤ L′) if for every sentence ϕ ∈ L over any vocabulary there exists a
sentence ψ ∈ L′ over the same vocabulary such that

|= ϕ↔ ψ.

The logics L and L′ are equivalent (L ≡ L′) if L ≤ L′ and L′ ≤ L.

4.2. Definition. Let Q be a Lindström quantifier of type s and B a collection of
Lindström quantifiers. We say that the quantifier Q is definable in terms of the
quantifiers in B if there is a sentence ϕ ∈ FO(B) of vocabulary τs such that for any
τs-structure M:

M |= ϕ⇔M ∈ Q.
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4.3. Proposition. Let Q be a Lindström quantifier and B a collection of Lindström

quantifiers. If the quantifier Q is definable in terms of the quantifiers in B, then

FO(Q,B) ≡ FO(B).

The proof of Proposition 4.3 uses recursively the fact that if ϕ is the formula
which defines Q and ψ1(x1), . . . , ψr(xr) are formulas of FO(B), then

|= Qx1, . . . , xr (ψ1(x1), . . . , ψr(xr))↔ ϕ(P1/ψ1, . . . , Pr/ψr),

where the formula on the right is obtained by substituting every occurrence of Pi(xi)
in ϕ by ψi(xi). Since Q = Mod(ϕ), where ϕ = Qx1, . . . , xr (P1(x1), . . . , Pr(xr)),
the converse of Proposition 4.3 is also true. We shall prove that the version of
Proposition 4.3, where Q is replaced with a second order quantifier Q, holds. On
the other hand, the converse of Proposition 4.3 turns out to be false in the second
order case.

The quantifiers ∃, ∀, and Some in Example 3.2 are clearly definable in FO. Fact
4.4 lists some well-known examples of Lindström quantifiers which are not definable
in FO.

4.4. Fact. Let S ⊆ N be infinite and co-infinite. The following Lindström quanti-

fiers are not definable in FO:

• I
• Most
• Log = {(M,P ) | P ⊆M and |P | ≥ log(|M |)}
• QS = {(M,P ) | P ⊆M and |P | ∈ S}

5. Second order generalized quantifiers

The notion of second order generalized quantifier was introduced in [1]. Let
t = (s1, . . . , sw), where si = (li1, . . . , l

i
ri
) is a tuple of positive integers for 1 ≤ i ≤ w.

A second order structure of type t is a structure of the form (M,P1, . . . , Pw), where

Pi ⊆ P(M li1)×· · ·×P(M liri ). In the following the notations Str(t) and Str(t, n) are
used analogously to the first order case.

5.1. Definition. A second order generalized quantifier Q of type t is a class of
structures of type t such that Q is closed under isomorphisms: if (M,P1, . . . , Pw) ∈
Q and f : M → N is a bijection such that

Si = {(f [A1], . . . , f [Ari]) | (A1, . . . , Ari) ∈ Pi}

(abbreviated f [[Pi]] = Si) for 1 ≤ i ≤ w then (N, S1, . . . , Sw) ∈ Q.

The arity of a second order generalized quantifier Q is ar(Q) = max{r1, . . . , rw}
and the variable arity of Q is max{lij | 1 ≤ j ≤ ri and 1 ≤ i ≤ w}. The type of a
quantifier Q is called simple if w = 1 and Q is called monadic if its variable arity is
1.
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5.2. Example. Let us look at some examples of second order generalized quantifiers.
Suppose S ⊆ N and k ∈ N.

∃2
k = {(M,P ) | P ⊆ P(Mk) and P 6= ∅}

Even = {(M,P ) | P ⊆ P(M) and |P | even}

Even′ = {(M,P ) | P ⊆ P(M) and ∀X ∈ P (|X| even)}

Three = {(M,P ) | P ⊆ P(M) and |P | = 3}

Most2 = {(M,P ) | P ⊆ P(M) and |P | ≥ 2|M |−1}

QS = {(M,P ) | P ⊆ P(M) and |P | ∈ S}

TC2
k = {(M,R1, R2) | Ri ⊆ P(Mk)× P(Mk) and R2 ⊆ TC(R1)}

The first example is the familiar k-ary second order existential quantifier. The
type of ∃2

k is ((k)). The quantifier Even says that a formula holds for an even number
of subsets of the universe. On the other hand, the quantifier Even′ says that all the
subsets satisfying a formula have an even number of elements. The quantifier TC2

k

is the second order version of the transitive closure operator. It consists of the
structures (M,R1, R2), where R2 is contained in the transitive closure TC(R1) of
R1. The type of TC2

k of is ((k, k), (k, k)). The type of the other examples is ((1)).

5.3. Definition. The extension FO(Q) of FO by a quantifier Q is defined as follows:

• Second order variables are introduced to FO.
• The formula formation rules of FO are extended by the rule:

if for 1 ≤ i ≤ w, ϕi(X i) is a formula and X i = (X1,i, . . . , Xri,i) is a tuple
of pairwise distinct predicate variables such that ar(Xj,i) = lij for 1 ≤ j ≤ ri,
then

QX1, . . . , Xw (ϕ1(X1), . . . , ϕw(Xw))

is a formula.
• Satisfaction relation of FO is extended by the rule:

M |= QX1, . . . , Xw (ϕ1, . . . , ϕw) iff (M,ϕM

1 , . . . , ϕ
M

w ) ∈ Q,

where ϕM

i = {R ∈ P(M li1)× · · · × P(M liri ) | M |= ϕi(R)}.

5.4. Example. We show that Partial Fixed-Point Logic FO(PFP) can be captured
by the second order transitive closure quantifiers TC2

k. So let ϕ be a formula of
the logic FO(PFP). Then ϕ is equivalent to a formula of the form ∀u [PFPX,x ψ]u
where ψ is first order (cf. [4]). Let π be the formula

TC2
kXY,UV (∀x(Y (x)↔ ψ(X, x)), ∀y¬U(y) ∧ ∀uV (u)),

where k = |x|. Then |= ∀u [PFPX,x ψ]u↔ π and thus |= ϕ↔ π.



12

II. A notion of definability for second order quantifiers

In this chapter we formulate the notion of definability studied in this thesis.
Before we can give the exact definition we need to define some auxiliary logics.

6. Extending first order logic by second order predicates

6.1. Definition. Let t = (s1, . . . , sw) be a type, where si = (li1, . . . , l
i
ri
) for 1 ≤ i ≤

w, and let G1, . . . ,Gw be first order quantifier symbols of types s1, . . . , sw.

• The syntax of the logic FO(G1, . . . ,Gw) is obtained by extending the syntax
of FO by the quantifier rules corresponding to G1, . . . ,Gw.
• The models M of the logic FO(G1, . . . ,Gw) are of the form

(M, G1, . . . , Gw),

where M is a first order model and Gi ⊆ P(M li1)× · · · × P(M liri ).
• The satisfaction relation of FO is extended by the following rule for 1 ≤ i ≤
w:

M |= Gix1, . . . , xri(ϕ1, . . . , ϕri) iff (ϕM
1 , . . . , ϕM

ri
) ∈ Gi.

Note that if Gi happens to be permutation invariant (cf. Definition 3.3) then Gi

is a quantifier of type si over M .
Now, for τ = ∅, all τ -models of FO(G1, . . . ,Gw) are second order structures of type

t. By Proposition 6.2, isomorphic structures are elementarily equivalent. Thus, for
any τ -sentence ϕ ∈ FO(G1, . . . ,Gw) the class Mod(ϕ) is a second order quantifier of
type t.

6.2. Proposition. Let (M, G1, . . . , Gw) and (N, G′
1, . . . , G

′
w) be models and f : M ∼=

N an isomorphism such that f [[Gi]] = G′
i for 1 ≤ i ≤ w. Then for all ϕ(x) ∈

FO(G1, . . . ,Gw) and a = a1 . . . an ∈M ,

(M, G1, . . . , Gw) |= ϕ(a)⇔ (N, G′
1, . . . , G

′
w) |= ϕ(f(a)).

Proof. Induction on ϕ. �

In the light of the preceding discussion, we now formulate the notion of definability
studied in this thesis.

6.3. Definition. Let B be a collection of first and second order quantifiers and let
Q be a second order quantifier of type t = (s1, . . . , sw). The quantifier Q is definable

in FO(B) if there is a sentence ϕ ∈ FO(B,G1, . . . ,Gw) of vocabulary τ = ∅ such that
for all second order structures (M,G1, . . . , Gw) of type t,

(M,G1, . . . , Gw) |= ϕ⇔ (M,G1, . . . , Gw) ∈ Q.

The next example shows that a quantifier Q can be defined using itself in a
uniform way.

6.4. Example. Suppose, to simplify notation, that Q is a quantifier of type t =
((1), (1)). Then for any t-structure (M,G1, G2),

(M,G1, G2) |= QX, Y (G1xX(x),G2y Y (y))⇔ (M,G1, G2) ∈ Q.
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Next we show that the notion of definability formulated in Definition 6.3 does
have the desired property.

6.5. Theorem. If Q is definable in the logic FO(B) then FO(B) ≡ FO(B,Q).

Proof. Suppose that ϕQ ∈ FO(B,G1, . . . ,Gw) defines Q. Let σ be a vocabulary and
let θ1(X1), . . . , θw(Xw) ∈ FO(B) be σ-formulas. We show that there is a σ-formula
θ∗ ∈ FO(B) such that

|= QX1, . . . , Xw (θ1, . . . , θw)↔ θ∗.

We may assume that θ1(X1), . . . , θw(Xw) do not contain other free variables than
the ones appearing in X1, . . . , Xw. If FO(B) does not have second order variables,
we may treat the variables appearing in X1, . . . , Xw as extra predicate symbols.
Define a mapping f : FO(B,G1, . . . ,Gw)[∅] → FO(B)[σ] as follows (where the only
non-trivial clause is the last one):

f(x = y) = (x = y)

f(X(y)) = X(y)

f(¬ϕ) = ¬f(ϕ)

f(ϕ ∧ ψ) = f(ϕ) ∧ f(ψ)

f(∃xϕ) = ∃xf(ϕ)

f(Qx1, . . . , xr (ϕ1, . . . , ϕr)) = Qx1, . . . , xr (f(ϕ1), . . . , f(ϕr)), for Q ∈ B

f(Q′X1, . . . , Xw (ϕ1, . . . , ϕw)) = Q′X1, . . . , Xw (f(ϕ1), . . . , f(ϕw)), for Q′ ∈ B

f(Gix1, . . . , xri(ϕ1, . . . , ϕri)) = θi(X1/f(ϕ1), . . . , Xri/f(ϕri))

Our intention is to show that

|= QX1, . . . , Xw (θ1, . . . , θw)↔ f(ϕQ).

1. Claim. Let M be a σ-structure and Gi = {A | M |= θi(A)}. Then for all

ϕ(x,X) ∈ FO(B,G1, . . . ,Gw)[∅], b = b1 . . . bn ∈M , and relations R:

(M, G1, . . . , Gw) |= ϕ(b, R)⇔M |= f(ϕ)(b, R).

Proof of Claim. We prove the claim using induction on ϕ. We need to consider only
the case ϕ = Gix1, . . . , xri (ψ1, . . . , ψri)(x,X). Now

(M, G1, . . . , Gw) |= ϕ(b, R) ⇔ (A1, . . . , Ari) ∈ Gi,

where Ai = {d | (M, G1, . . . , Gw) |= ψi(d, b, R)}. By the definition of Gi, we have

(A1, . . . , Ari) ∈ Gi ⇔ M |= θi(A1, . . . , Ari).

By the induction hypothesis Ai = {d | M |= f(ψi)(d, b, R)}, hence

M |= θi(A1, . . . , Ari)⇔ M |= θi(X1/f(ψ1), . . . , Xri/f(ψri))(b, R).

The claim now follows by the chain of equivalences.
�
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We claim now that

|= QX1, . . . , Xw (θ1, . . . , θw)↔ f(ϕQ).

Let M be a σ-structure and Gi = {A | M |= θi(A)} for 1 ≤ i ≤ w. By the
assumption that ϕQ defines Q and Claim 1,

M |= QX1, . . . , Xw (θ1, . . . , θw) ⇔ (M, G1, . . . , Gw) |= ϕQ

⇔ M |= f(ϕQ).

�
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III. Definability in terms of Lindström quantifiers

In this chapter we study definability of second order quantifiers in the logic FO(C),
where C is the collection of all Lindström quantifiers of all types. The results in this
chapter will appear in a modified form in [10].

7. Preliminaries

7.1. Definition. Let C be the collection of all Lindström quantifiers of all types.
Denote the logic FO(C) by L∗. Also, FO(C,G1, . . . ,Gw) is denoted by L∗(G1, . . . ,Gw).

Every formula of the logic L∗(G1, . . . ,Gw) contains occurrences of finitely many
Lindström quantifiers. Therefore, Theorem 6.5 implies the following.

7.2. Proposition. Let Q be definable in the logic L∗ with a sentence ϕ. Then

FO(Q, Q1, . . . , Qn) ≡ FO(Q1, . . . , Qn),

where Q1, . . . , Qn are those Lindström quantifiers which appear in ϕ.

We shall first restrict attention to definability of second order generalized quan-
tifiers of type ((1)) in the logic L∗. In Section 11 we show how to treat quantifiers
of arbitrary types.

8. Some definable quantifiers

In this section we formulate a simple property of quantifiers of type ((1)) which
implies definability in the logic L∗. Let us begin with some examples.

8.1. Example.

• ψ1 = ∀xGz (z = x)
• ψ2 = ∃x1 . . .∃xn (

∧

i6=j(xi 6= xj) ∧ Gz (
∨n
i=1 z = xi))

• ψ3 = Qeven x (Gz (z = x))

The formula ψ1 (ψ3, respectively) is true in (M,G) iff G contains all (an even
number of, respectively) singletons. The formula ψ2 expresses that G contains at
least one set of size n.

8.2. Example. Let M = {a1, . . . , an} be a set and G ⊆ P(M). Choose variables
x1, . . . , xn and, for X = {ai1 , . . . , aim} ⊆M , define

ψX = Gz (∨mj=1z = xij ).

Now, the formula ψ4 = ∃x1 . . .∃xn (
∧

i6=j(xi 6= xj)∧∀y (
∨n
i=1(y = xi))∧(

∧

X∈G ψX)∧
(
∧

X/∈G ¬ψX)) determines the model (M,G) up to isomorphism.

Example sentences ψ1, ψ2, ψ3, and ψ4 suggest that we need at least n+1 variables
to define (cf. Definition 9.1) sets of size n. This is not actually true for all models
(M,G) but holds under some extra assumptions on G. This fact motivates the
following definition.
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8.3. Definition. Let (M,G) be a structure and n ∈ N. The set {X ∈ G | |X| ≤
n or |M \X| ≤ n} is denoted by G(n).

8.4. Theorem. Let Q be a quantifier of type ((1)). Suppose there is n ∈ N such that

for any set M and G ⊆ P(M) we have (M,G) ∈ Q if and only if (M,G(n)) ∈ Q.

Then Q is definable in L∗.

Proof. We shall construct formulas ψ1, ψ2, ψ3, ψ4 and a Lindström quantifier Q of
type (n, n, 1, 1) such that the sentence ϕ ∈ L∗(G)

ϕ = Qx1, x2, x, y (ψ1(x1), ψ2(x2), ψ3(x), ψ4(y))

defines Q. The quantifier Q will be defined so that

(M,G) |= Qx1, x2, x, y (ψ1, ψ2, ψ3, ψ4)⇔ (M,C) ∈ Q,

where C is a certain collection of subsets of M constructed from the relations ψ
(M,G)
i .

The idea is to choose the formulas ψi so that C = G(n).
With this in mind, we let ψ1(x1) be the formula

Gz (
n

∨

j=1

z = xj)

and ψ2(x2) be the formula

Gz (

n
∧

j=1

z 6= xj).

Finally, ψ3(x) is the formula

¬Gz (z 6= z)

and ψ4(y) is the formula

Gz (z = z).

Let Q be defined as follows:

(M,R1, . . . , R4) ∈ Q⇔ (M,
4

⋃

i=1

R′
i) ∈ Q,

where R′
1 is

{{a1, . . . , an} | (a1, . . . , an) ∈ R1}

and R′
2 is

{M \ {a1, . . . , an} | (a1, . . . , an) ∈ R2}.

The sets R′
3 and R′

4 are defined as follows:

R′
3 = {R3} \ {M} and R′

4 = {R4} \ {∅}.

2. Claim. The class Q is closed under isomorphisms.
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Proof of Claim. Let f : (M,R1, . . . , R4) ∼= (N, S1, . . . , S4). Then f [[R′
i]] = S ′

i for
1 ≤ i ≤ 4. Since the quantifier Q is closed under isomorphisms, we have

(M,
4

⋃

i=1

R′
i) ∈ Q ⇔ (N,

4
⋃

i=1

S ′
i) ∈ Q,

and thus
(M,R1, . . . , R4) ∈ Q⇔ (N, S1, . . . , S4) ∈ Q.

�

By Claim 2, the class Q is a Lindström quantifier. Hence, the logic L∗ is closed
under Q and ϕ ∈ L∗(G). It is now easy to verify that for any structure (M,G)

(M,G) |= ϕ⇔ (M,G(n)) ∈ Q.

Since the quantifier Q satisfies

(M,G(n)) ∈ Q ⇔ (M,G) ∈ Q

for all (M,G), the sentence ϕ defines Q.
�

9. Proving non-definability

In the previous section we proved that using suitable Lindström quantifiers we
can define any second order quantifier Q such that the membership of a structure
(M,G) in Q is determined by checking only sets X ∈ G for which |X| < n or
|M \ X| < n for some fixed n ∈ N. However, this property does not characterize
all quantifiers which are definable in the logic L∗ (cf. Example 9.5). Therefore,
we concentrate now on developing tools for proving non-definability. One simple
property of L∗(G) which is instrumental in proving non-definability is that every
formula of the logic L∗(G) has only a finite number of variables.

Let Q be a quantifier of type ((1)). Proving the non-definability of Q in the logic
L∗ amounts to showing that there is no ϕ ∈ L∗(G) over vocabulary τ = ∅ such that
for all (M,G),

(M,G) |= ϕ⇔ (M,G) ∈ Q.

For this it suffices to construct structures (Mk, Gk) and (Mk, G
′
k), for k ∈ N, such

that (Mk, Gk) ∈ Q, (Mk, G
′
k) /∈ Q, and (Mk, Gk) ≡

k (Mk, G
′
k), where ≡k means

that the structures satisfy the same sentences of L∗(G)[τ ] containing at most k
variables. We shall formulate a simple structural property of collections G,G′ ⊆
P(M) implying that (M,G) ≡k (M,G′). Let us begin with some definitions.

9.1. Definition. Let σ be a vocabulary, M a σ-structure, G ⊆ P(M), and let
a1, . . . , an ∈ M . A relation X ⊆ M l is definable with parameters a1, . . . , an if there
is a formula ϕ(y, x1, . . . , xn) ∈ L

∗(G)[σ] such that

X = {b ∈M l | (M, G) |= ϕ(b, a1, . . . , an)}.

A closely related notion to a definable relation is the notion of invariant relation.
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9.2. Definition. Let σ be a vocabulary, M a σ-structure, G ⊆ P(M), and let
a1, . . . , an ∈M . A relation X ⊆ M l is called (a1, . . . , an)-invariant if f [X] = X for
all f : (M, G) ∼= (M, G) such that f(ai) = ai for 1 ≤ i ≤ n.

Proposition 6.2 implies that all (a1, . . . , an)-definable relations are (a1, . . . , an)-
invariant. Note, however, that there might not be any non-trivial permutations
fixing the collection G.

9.3. Example. Let M be a set and < a linear-ordering of M . Define G as the set
of all initial segments of <. Then, f [[G]] 6= G for all permutations f of M such that
f 6= idM .

On the other hand, if the quantifier G is permutation invariant then G is fixed by
all permutations of M . In this special case invariant sets over τ = ∅ can be easily
characterized.

9.4. Lemma. Let (M,G) be a structure such that G is permutation invariant.

Then a set X ⊆ M is (a1, . . . , an)-invariant if and only if X ⊆ {a1, . . . , an} or

M \X ⊆ {a1, . . . , an}.

Lemma 9.4 is very useful since it tells us what (a1, . . . , an)-definable sets look
like in a model (M,G), where G is permutation invariant. Example 9.3 shows that
Lemma 9.4 fails if G is not required to be permutation invariant. By Example 9.5,
Lemma 9.4 also fails for the definable sets.

9.5. Example. Let ϕ = Gz (Gx (x = z)). The sentence ϕ is true in a model (M,G)
if and only if A ∈ G where A = {a ∈ M | {a} ∈ G}. In particular, the formula
Gx (x = z) defines the set A without parameters.

Next, we formulate the first structural property of collections G,G′ ⊆ P(M)
implying that (M,G) ≡k (M,G′).

9.6. Lemma. Let (M,G) and (M,G′) be structures such that G and G′ are permu-

tation invariant and G(k) = G′(k). Then

(M,G) ≡k+1 (M,G′).

Proof. We prove using induction on ϕ(x1, . . . , xn) ∈ L
∗(G) having at most k + 1

variables that

(M,G) |= ϕ(a1, . . . , an)⇔ (M,G′) |= ϕ(a1, . . . , an),

for all a1, . . . , an ∈ M . We consider the case ϕ = Gxψ(x, y) only since the
cases ϕ = (x = y), ϕ = ¬ψ, ϕ = ψ ∧ φ, and ϕ = Qx1, . . . , xr (ψ1, . . . , ψr)
are trivial. Assume (M,G) |= ϕ(a1, . . . , an). Then X ∈ G, where X = {c ∈
M | (M,G) |= ψ(c, a1, . . . , an)}. The formula ϕ contains at most k + 1 vari-
ables, hence |{a1, . . . , an}| ≤ k. By Lemma 9.4, we have either X ⊆ {a1, . . . , an}
or M \ X ⊆ {a1, . . . , an}. Since G(k) = G′(k), we have that X ∈ G′. By
the induction hypothesis, X = {c ∈ M | (M,G′) |= ψ(c, a1, . . . , an)} and thus
(M,G′) |= ϕ(a1, . . . , an). The converse is similar. �
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Lemma 9.6 can be used to show many quantifiers non-definable in the logic L∗.

9.7. Theorem. The following quantifiers are not definable in L∗:

• Most2

• ∃2 = ∃2
1

Proof. We prove the claim for the quantifier ∃2. The non-definability of Most2 can
be shown analogously. For k ∈ N \ {0, 1}, we set Mk = {1, . . . , 3k}, Gk = ∅ and
G′
k = {A ⊆ {1, . . . , 3k} | |A| > k and |M \ A| > k}. Suppose that ϕ defines ∃2.

Then

(9.8) (Mk, Gk) 6|= ϕ and (Mk, G
′
k) |= ϕ

for k ∈ N\{0, 1}. Let r ∈ N be the number of variables in ϕ. By Lemma 9.6, we have
(Mr−1, Gr−1) ≡

r (Mr−1, G
′
r−1), and thus (Mr−1, Gr−1) |= ϕ iff (Mr−1, G

′
r−1) |= ϕ

contradicting (9.8). �

There are quantifiers which cannot be shown to be non-definable using Lemma
9.6. The reason is that we have to be able to choose structures with permutation
invariant quantifiers in order to apply it. For example, for the quantifier Three such
structures of cardinality n > 3 do not exist. Our next goal is to modify Lemma 9.6
by replacing the assumption of permutation invariance with a milder condition.

Let us first return to the formula ψ = Gx (x = z) introduced in Example 9.5. In
a structure (M,G) the formula ψ defines the set A = {a ∈ M | {a} ∈ G}. If G
happens to be permutation invariant then A = ∅ or A = M . Actually, it is not
necessary that G is closed under permutations “globally” for A to be either ∅ or M .
It is enough that G contains all singletons or no singletons.

9.9. Lemma. Let (M,G) and (M,G′) be structures such that G(k) and G′(k) are

permutation invariant and G(k) = G′(k). Then

(M,G) ≡k+1 (M,G′).

Proof. We prove using induction on ϕ(x) ∈ L∗(G) having at most k + 1 variables
that for all f ∈ SM and a = a1 . . . an ∈M ,

(M,G) |= ϕ(a)⇔ (M,G′) |= ϕ(f(a)).

We consider only the non-trivial case ϕ = Gxψ(x, y). Assume a ∈ M , f ∈ SM ,
and (M,G) |= ϕ(a). Then X = {c ∈ M | (M,G) |= ψ(c, a)} ∈ G. The induc-
tion assumption applied to idM implies that X = {c ∈ M | (M,G′) |= ψ(c, a)}.
Therefore, again by the induction assumption, g[X] = X for all g ∈ SM such that
g(ai) = ai for 1 ≤ i ≤ n. So (cf. Lemma 9.4) we have either X ⊆ {a1, . . . , an}
or (M \ X) ⊆ {a1, . . . , an}. Also, by the induction assumption f [X] = X ′ where
X ′ = {c ∈ M | (M,G′) |= ψ(c, f(a))}. Now, since X ∈ G(k) and G(k) is permuta-
tion invariant we have that X ′ ∈ G(k) = G′(k), i.e., (M,G′) |= ϕ(f(a)). Assuming
(M,G′) |= ϕ(f(a)), we can show (M,G) |= ϕ(a) completely analogously. �

Lemma 9.9 now allows us to prove the non-definability of the quantifier Three in
the logic L∗.
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9.10. Theorem. The following quantifiers are not definable in L∗:

• Three
• QS, where S ( N and S 6= ∅.

Proof. Similar to the proof of Theorem 9.7. Let us consider the quantifier Three.
For k ≥ 3, we set Mk = {1, . . . , 3k}, Gk = ∅ and G′

k = {A1, A2, A3}, where
Ai = {1, . . . , k + i} for 1 ≤ i ≤ 3. By the same arguments as in the proof of
Theorem 9.7 and Lemma 9.9, the quantifier Three is not definable in the logic L∗.

In the general case we first choose n1 ∈ S and n2 6∈ S and then construct Mk, Gk

with |Gk| = n2, and G′
k with |G′

k| = n1 similarly as for Three. �

However, we conjecture that there are non-definable quantifiers which cannot be
shown to be non-definable in the logic L∗ using Lemma 9.9. Let k be a positive
integer. We conjecture that the quantifier Qu is not definable in the logic L∗. Note
that Lemma 9.9 cannot be used to show this.

Qu = {(M,G) | G contains exactly k sets of size n for 1 ≤ n ≤ |M | − 1}.

10. Looking for a complete characterization of definability

Let us return to our example sentence ϕ = Gz (Gx (x = z)) introduced in Exam-
ple 9.5. The second order quantifier defined by the sentence ϕ is a quantifier which
is definable in L∗ but does not satisfy the assumption of Theorem 8.4. The reason is
that ϕ contains nesting of the quantifier G. We shall next show that the character-
ization of Theorem 8.4 is complete with respect to sentences not containing nesting
of G.

10.1. Definition. A formula ψ ∈ L∗(G) is flat if it does not contain nesting of
G. The collection of all flat formulas of L∗(G) over τ = ∅ is denoted by F . The
collection of flat formulas with at most k variables is denoted by Fk.

Restricting attention to flat formulas allows us to prove a version of Lemma 9.6
for arbitrary collections G,G′ ⊆ P(M).

10.2. Lemma. Let M be a set and G,G′ ⊆ P(M) such that G(k) = G′(k). Then

(M,G) |= ϕ(a)⇔ (M,G′) |= ϕ(a),

for all ϕ(x) ∈ Fk+1, and a = a1 . . . an ∈M .

Proof. We prove the claim using induction on ϕ. Again, it suffices to consider the
case ϕ = Gz ψ(z, y) only. Since the quantifier G does not appear in ψ, the set X =
{c ∈ M | (M,G) |= ψ(c, a)} is fixed by all permutations of M which fix a1, . . . , an.
As in Lemma 9.4, we have that X ⊆ {a1, . . . , an} or M \ X ⊆ {a1, . . . , an}. Now,
since G(k) = G′(k), it follows that X ∈ G iff X ∈ G′. Therefore, by the induction
assumption,

(M,G) |= Gz ψ(a)⇔ (M,G′) |= Gz ψ(a).

�
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Lemma 10.2 implies that Theorem 8.4 characterizes definable second order quan-
tifiers completely with respect to sentences ϕ ∈ F .

10.3. Theorem. Let Q be a second order quantifier of type ((1)). Then Q is

definable with a sentence ϕ ∈ F if and only if Q satisfies the assumption of Theorem

8.4.

Proof. The defining sentence ofQ constructed in the proof of Theorem 8.4 is flat. On
the other hand, by Lemma 10.2, a quantifier Q defined by a flat sentence ϕ satisfies
the assumption of Theorem 8.4 with r − 1, where r is the number of variables
appearing in ϕ. �

Finding a complete characterization of L∗-definable quantifiers is an interesting
open problem.

11. Quantifiers of arbitrary types

It is easy to see that the methods we used to prove non-definability can be
used with quantifiers of arbitrary types. Let us first consider monadic types t =
(s1, . . . , sw), where si is of the form (1, . . . , 1) for 1 ≤ i ≤ w. So we are now con-
sidering classes axiomatizable in the logic L∗(G1, . . . ,Gw), where the type of Gi is si
for 1 ≤ i ≤ w.

Let (M,G1, . . . , Gw) be a t-structure and n ∈ N. Denote the set {(X1, . . . , Xri) ∈
Gi : |Xj| ≤ n or |M \Xj | ≤ n for 1 ≤ j ≤ ri} by Gi(n). Now, Lemma 9.9 can be
reformulated as follows.

11.1. Lemma. Let (M,G1, . . . , Gw) and (M,G′
1, . . . , G

′
w) be structures of type t

such that Gi(k) and G′
i(k) are permutation invariant and Gi(k) = G′

i(k) for 1 ≤
i ≤ w. Then

(M,G1, . . . , Gw) ≡k+1 (M,G′
1, . . . , G

′
w).

It is also straightforward to prove a version of Theorem 8.4 in this context.

11.2. Theorem. Let t be a monadic type and Q a quantifier of type t. Suppose there

is n ∈ N such that for any set M and G1, . . . , Gw we have (M,G1, . . . , Gw) ∈ Q if

and only if (M,G1(n), . . . , Gw(n)) ∈ Q. Then Q is definable in L∗.

Since Lemma 10.2 also holds in this setting, the characterization of Theorem 10.3
can be generalized for quantifiers of monadic types.

11.3. Theorem. Let t be a monadic type and Q a quantifier of type t. Then Q
is definable in L∗ with a flat sentence if and only if Q satisfies the assumption of

Theorem 11.2.

Let us then assume that n > 1 and t = ((n)). Suppose (M,G) and (M,G′)
are t-structures such that G and G′ are permutation invariant. As in Lemma 9.6,
(M,G) ≡k+1 (M,G′) follows if G and G′ contain the same n-ary relations which
can be defined with k parameters in the empty vocabulary. Since G and G′ are
permutation invariant, we have that (a1, . . . , ak)-definable relations are fixed by all



22

permutations of M which fix the parameters a1, . . . , ak. However, the picture is not
so simple as with unary relations. In particular, it is not so easy to describe the
collection G(k) since it is supposed to include all relations which are (a1, . . . , ak)-
invariant for some (a1, . . . , ak) ∈M

k. The collection G(k) can be described but we
do not take up this task here.

In some cases it is possible to utilize the fact that the diagonal {(a, . . . , a) | a ∈M}
of Mn can be identified with M . To take an example, we show that the n-ary second
order existential quantifier ∃2

n = {(M,G) | G ⊆ P(Mn) and G 6= ∅} is not definable
in the logic L∗.

11.4. Proposition. The quantifier ∃2
n is not definable in the logic L∗.

Proof. For k ∈ N \ {0}, we set Mk = {1, . . . , 3k}, Gk = ∅ and

G′
k = {{(c, . . . , c) | c ∈ A} | A ⊆ {1, . . . , 3k}, |A| > k and |M \ A| > k}.

It is easy to see that G′
k is permutation invariant for all k ∈ N \ {0}. Also, none of

the relations in G′
k can be defined with parameters fewer than k+ 1. Consequently,

(Mk, Gk) ≡
k+1 (Mk, G

′
k) for all k ∈ N \ {0}. �

12. Further non-definability results

In this section we show that logics which are equally strong over classes of first
order structures may have radically different capabilities to define second order
quantifiers.

Recall that if Q is definable in L∗ then there are some Lindström quantifiers
Q1, . . . , Qn such that

FO(Q, Q1, . . . , Qn) ≡ FO(Q1, . . . , Qn).

In this section we show that the converse of the above does not hold. To prove this,
we construct a second order quantifier which does not have any expressive power
when combined with FO(Q1, . . . , Qn) but is still not definable in FO(Q1, . . . , Qn).

The construction of the quantifier Q0 in Theorem 12.1 is a slight modification
of the construction in Theorem 3.1 in [1]. The construction in [1] is modified so
that the resulting quantifier Q0 contains more than half of the isomorphism types
of structures in every cardinality. This change does not affect the proof in [1] in any
way. In particular, Claim 3 is proved in the same way as in [1].

12.1. Theorem. Let B be a countable collection of first and second order quantifiers

and let t be a second order type. Then there is a quantifier Q0 of type t such that Q0

contains more than half of the isomorphism types of structures in every cardinality

n ∈ N \ {0} and for every quantifier Q ⊆ Q0,

FO(B) ≡ FO(B,Q).

Proof. We assume first that B = ∅ and t = ((1)). Let τ be a vocabulary containing
countably many constant symbols and relation symbols of all arities. Let X ∈ τ be
a unary predicate symbol. Let (ϕi)i∈N be a list of all first order sentences over the
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vocabulary τ . Let τ(m) denote the union of vocabularies of formulas ϕ0, . . . , ϕm−1

minus the predicate X. Suppose that M is a set and G ⊆ P(M). We say that G
is ϕ<m-definable over M if there is a τ(m)-structure M with universe M and i < m
such that

G = {B | (M, B) |= ϕi},

where X is interpreted as B.
We define a function h : N → N such that if |M | ≥ h(m), then the number of

collections G ⊆ P(M) which are ϕ<m-definable over M is less than 1
2
b|M |(t), where

bn(t) is the number of isomorphism types of t-structures with universe {1, . . . , n}.
For every m ∈ N there is a polynomial pτ(m) such that the number of τ(m)-structures

with fixed universe M is at most 2pτ(m)(|M |). Over any structure M, each of the
sentences ϕi defines at most one collection of subsets of M . Thus, over M there
are at most m2pτ(m)(|M |) many ϕ<m-definable collections G. On the other hand, the

number of elements in P(P(M)) is 22|M|
and obviously bn(t) ≥

1
n!

22n

. We define
h(m) to be the least r such that

1

r!
22r

> m2pτ(m)(r)+1.

Let Q0 denote the class

{(M,G) | (∀m ∈ N)(|M | ≥ h(m)⇒ G is not ϕ<m-definable over M)}.

It is easy to see that the definition of h ensures that the quantifier Q0 contains more
than half of the isomorphism types of structures in every cardinality n ∈ N \ {0}.

3. Claim. Let Q ⊆ Q0 be a quantifier. Then FO ≡ FO(Q).

Proof of Claim. The claim is proved using induction on the number of occurrences of
Q in a formula ϕ. We prove that any formula of FO(Q) is equivalent to a first order
formula over the same vocabulary. Let ϕ be a formula with n+ 1 occurrences of Q.
We may assume that the minimal sub-formula of ϕ containing n+ 1 occurrences of
Q is of the form QX ψ(x). Otherwise, the claim follows directly from the induction
hypothesis. By the induction hypothesis, ψ(X, x) viewed as a sentence over the
vocabulary τψ ∪ {X, x1, . . . , xn}, where x = (x1, . . . , xn), is equivalent to a first
order sentence ψ′ over the same vocabulary. Let i ∈ N such that ψ′ is equivalent to
ϕi modulo renaming. Let M be a τψ-structure and a ∈M . The second order relation
{B ⊆ M | (M, B, a) |= ϕi} is ϕ<i+1-definable over M . So if |M | > h(i + 1) then
M 2 QX ψ′(X, a). Therefore, the formula QX ψ′(X, x) is equivalent to a first order
formula. Consequently, the formula ϕ is also equivalent to a first order formula. �

This completes the proof of Theorem 12.1 in the case B = ∅ and t = ((1)). The
only effect the collection B has on the proof is that the formula ψ(x) in Claim 3
may have some free second order variables [1]. Suppose then that t = (s1, . . . , sw) is
an arbitrary second order type. Then we define Q0 analogously using a list (ϕi)i∈N

of w-tuples of sentences containing every possible definition of a t-structure modulo
renaming and proceed analogously.

�
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12.2. Theorem. Let B be a countable collection of first and second order quantifiers.

Then there is a quantifier Q of type ((1)) such that FO(B) ≡ FO(B,Q) but Q is not

definable in the logic FO(B).

Proof. Let Q0 be as in Theorem 12.1. Then, for all A ⊆ N

FO(B) ≡ FO(B,QA),

where QA = {(M,G) | (M,G) ∈ Q0 and |M | ∈ A}. Since Q0 contains structures in
every cardinality, we have QA 6= QA′ for A 6= A′ ⊆ N. On the other hand, the logic
FO(B,G) is countable. Thus, QA is not definable in FO(B) for some A ⊆ N. �

12.3. Remark. Since SO can be represented as FO(B) for a countable collection
B of second order quantifiers, Theorem 12.2 implies that there is a second order
quantifier Q of type ((1)) which is not definable in SO and satisfies SO ≡ SO(Q).

Theorem 12.2 can be improved to yield a quantifier Q which is not definable in L∗

and satisfies FO(Q) ≡ FO. The cardinality argument used in the proof of Theorem
12.2 does not work since the logic L∗(G) is uncountable. We use diagonalization to
overcome this difficulty. We begin with an auxiliary definition [8].

12.4. Definition. Let ϕ ∈ L∗(G) be a formula and let Q1, . . . , Qn be the Lindström
quantifiers appearing in ϕ. Then we write ϕ = ϕ(Q1, . . . , Qn). If Q′

1, . . . , Q
′
n are

Lindström quantifiers such that the type of Qi is the same as the type of Q′
i for

1 ≤ i ≤ n, then ϕ(Q′
1, . . . , Q

′
n) denotes the formula obtained from ϕ by changing

Qi everywhere to Q′
i. Formulas obtained from each other by a change of quantifiers

are called similar.

12.5. Theorem. There is a quantifier Q of type ((1)) with the following properties:

(1) FO(Q) ≡ FO.

(2) The quantifier Q is not definable in the logic L∗.

Proof. Let Q0 be as in Theorem 12.1. We shall define a sub-class Q of Q0 which is
not definable in L∗. Let τ = ∅ and let (ψi)i∈N be a list of τ -sentences of L∗(G) such
that every τ -sentence ϕ of L∗(G) is similar to some ψi. We define Q inductively as
follows. Assume that the numbers n0, . . . , nj−1 and the classes K0, . . . , Kj−1 ⊆ Q0

have been defined already. Suppose (Q1, . . . , Qy) are the Lindström quantifiers
appearing in ψj . The type of Qi is denoted by si. Let (Q′

1, . . . , Q
′
y) be Lindström

quantifiers such that the type of Q′
i is si for 1 ≤ i ≤ y. If

Qi ∩ Str(τsi
, n) = Q′

i ∩ Str(τsi
, n)

for 1 ≤ i ≤ y, then the sequences (Q1, . . . , Qy) and (Q′
1, . . . , Q

′
y) are called n-

equivalent. It easy to see that for n-equivalent sequences we have

Mod(ψj(Q1, . . . , Qy)) ∩ Str(t, n) = Mod(ψj(Q
′

1, . . . , Q
′

y)) ∩ Str(t, n),

where t = ((1)). The number of τsi
-structures with universe {1, . . . , n} is less than

2Pi(n) where Pi is a polynomial. Therefore, the number of n-equivalence classes of
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sequences is clearly less than 2f(n) where f(n) =
∑y

i=1 2Pi(n). Define nj as the least
n such that nj > nj−1 and

1

2

1

n!
22n

> f(n).

Then there is Kj ⊆ Q0 of structures (M,G) with |M | = nj such that Kj cannot be
represented in the form

Mod(ψj(Q1, . . . , Qy)) ∩ Str(t, nj),

for any sequence of quantifiers (Q1, . . . , Qy). This concludes the construction. We
define Q =

⋃

i∈N
Ki.

4. Claim. The quantifier Q is not definable in the logic L∗.

Proof of Claim. Suppose that Q = Mod(ϕ) for some ϕ ∈ L∗(G). Then ϕ =
ψj(Q1, . . . , Qy) for some j ∈ N and Lindström quantifiers Q1, . . . , Qy. Thus Kj =
Mod(ψj(Q1, . . . , Qy)) ∩ Str(t, nj), which contradicts the definition of Q. �

This completes the proof of Theorem 12.5. �
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IV. Definability in monadic second order logic

In this chapter we study definability of second order quantifiers of type ((1)) in
monadic second order logic, MSO. Proving non-definability turns out to be much
harder in the case of MSO. We show that finding a complete characterization of
definability is hard since this characterization would also characterize MSO-definable
classes of graphs.

13. Some non-definability results

13.1. Theorem. Let S ⊆ N be infinite and co-infinite. The following quantifiers

are not definable in MSO:

• Log2 = {(M,R) | R ⊆ P(M) and |R| ≥ log(|M |)}
• QS = {(M,R) | R ⊆ P(M) and |R| ∈ S}
• I2 = {(M,R1, R2) | Ri ⊆ P(M) and |R1| = |R2|}

Proof. Suppose that I2 is definable in MSO. Then the formula ϕ

ϕ = I2X, Y (∃x(P1(x) ∧ ∀y(X(y)↔ y = x)), ∃x(P2(x) ∧ ∀y(Y (y)↔ y = x)))

is equivalent to some ψ in MSO over the vocabulary {P1, P2}. It is easy to verify
that Mod(ϕ) = I and hence the Härtig quantifier I is definable in MSO. This is a
contradiction since the quantifier I is not definable in FO (Fact 4.4) and MSO ≡
FO on vocabularies containing only unary predicates. The non-definability of the
quantifiers Log2 and QS can be proved analogously. �

Let Q be any of the quantifiers in Theorem 13.1. Theorem 13.1 is based on
the observation that MSO(Q) > MSO. By Theorem 12.2, there are quantifiers Q′

which are not definable in MSO and MSO(Q′) ≡ MSO. For such quantifiers Q′,
non-definability has to be established using different means.

Next we show that finding a complete characterization of MSO-definable quan-
tifiers seems hard since such a characterization would also characterize classes of
graphs definable in MSO.

Let V = (M,R) be a graph, i.e., the relation R ⊆M2 is symmetric and irreflexive.
Denote by MV the following second order structure (M,G) where

G = {{a, b} ⊆M | a, b ∈M and R(a, b)}.

Suppose that C is a class of graphs. Denote by QC the following second order
quantifier

QC = {MV | V ∈ C}.

13.2. Proposition. Let C be a class of graphs. Then C is definable in MSO if and

only if the second order quantifier QC is definable in MSO.

The other half of the claim follows from Lemma 13.3.
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13.3. Lemma. Let ϕ ∈ MSO[{R}] be a sentence. Then there is ϕ∗ ∈ MSO(G)[∅]
such that for any graph V ,

V |= ϕ⇔MV |= ϕ∗.

Proof. Define a function f : MSO[{R}]→ MSO(G)[∅] as follows:

f(x = y) = x = y

f(X(y)) = X(y)

f(R(x, y)) = Gz (z = x ∨ z = y)

f(¬ϕ) = ¬f(ϕ)

f(ϕ ∧ ψ) = f(ϕ) ∧ f(ψ)

f(∃xϕ) = ∃xf(ϕ)

f(∃Xϕ) = ∃Xf(ϕ)

5. Claim. Let V be a graph. Then for all ϕ(x,X) ∈ MSO[{R}], b = b1 . . . bn ∈M ,

and sets A:

V |= ϕ(b, A)⇔ MV |= f(ϕ)(b, A).

Proof of Claim. Induction on ϕ. �

This completes the proof of Lemma 13.3. �

Proof of Proposition 13.2. Suppose C = Mod(ϕ) for some ϕ ∈ MSO[{R}]. By
Lemma 13.3 we have that

QC = Mod(f(ϕ) ∧ ψ)

where ψ is the formula

∀X(Gz (X(z))→ ∃x∃y(x 6= y ∧ ∀z(X(z) ↔ (z = x ∨ z = y)))).

Suppose then that Q is definable in MSO and Q = QC for some class of graphs C.
Now Mod(ϕ) = C where

ϕ = QX (∃x∃y(R(x, y) ∧ ∀z(X(z)↔ (z = x ∨ z = y)))).

Since MSO(Q) ≡ MSO, we get that C is definable in MSO. �

Proposition 13.2 shows that finding a complete characterization of definability in
the case of MSO is difficult. On the other hand, such a characterization could be
possible for some interesting subclasses of quantifiers.
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V. Definability in extensions of second order logic

In the previous chapters we have mainly concentrated on definability of quantifiers
of type ((1)). In this chapter we study definability of second order quantifiers in
terms of their types. The main result of this chapter is the analogue of the Hierarchy
Theorem in [8]:

Hierarchy Theorem. Let s be a first order type and B the collection of all Lind-

ström quantifiers of types lower than s. Then there is a Lindström quantifier Q of

type s which is not definable in the logic FO(B).

We shall prove the following.

Theorem 17.1. Let t be a second order type and Q the collection of all second order

generalized quantifiers of types lower than t. Then there is a quantifier Q of type t
which is not definable in the logic SO(Q).

Before proving Theorem 17.1, we prove a version of Fagin’s lemma for second
order structures which is the main result used in the proof of the Hierarchy Theorem.
Analogously to the first order case, our version of Fagin’s lemma induces a natural
well-ordering of second order types. This well-ordering is then used to state and
prove Theorem 17.1.

14. Definability and types

A simple coding argument shows that for any finite number of Lindström quanti-
fiersQ1, . . . , Qn there is a Lindström quantifierQ such that FO(Q) ≡ FO(Q1, . . . , Qn).
The quantifier Q ends up having a more complex type than any of the quantifiers
Q1, . . . , Qn. Actually, the same result holds even for some countable collections of
Lindström quantifiers (Fact 14.1). The proof of Fact 14.1 can be found in [6] and
in [12] in a slightly different context.

14.1. Fact. Suppose B is a countable collection of n-ary Lindström quantifiers.

Then there is a Lindström quantifier Q of type (n+ 1) such that FO(Q) ≥ FO(B).

In this section we prove that the analogue of Fact 14.1 holds also for second order
quantifiers. The proof of Proposition 14.2 is similar to the proof of Lemma 1.6 in
[6].

14.2. Proposition. Let B be a countable collection of second order quantifiers such

that the variable arity of Q′ is at most n for all Q′ ∈ B. Then there is a quantifier

Q of type ((n+ 1)) such that Q′ is definable in SO(Q) for all Q′ ∈ B.

Proof. We write B = {Qi}i∈N\{0}. Without loss of generality we can assume that the
type of Qi is (s1, . . . , si) where sj is a sequence of n’s of length i. This simplification
can be justified by using dummy variables analogously to the first order case (see
Theorem 12.1.4. in [4]). We can also assume that none of the quantifiers Qi contains
structures of the form (M, ∅, . . . , ∅).
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Let (M,Gi
1, . . . , G

i
i) ∈ Qi. We use basically the same coding trick as in the first

order case [6] and code each X ∈ Gi
j by a relation R ⊆ Mn+1. For the purposes of

coding we choose a bijection

f : {(i, j, k) | i ∈ N \ {0}, 1 ≤ j, k ≤ i} → {2i | i ∈ N}

and define Q to be the class of structures (M,G) with G ⊆ P(Mn+1) such that
there exists i ∈ N\{0}, Gi

1, . . . , G
i
i with (M,Gi

1, . . . , G
i
i) ∈ Qi, and distinct elements

a1,1
1 , . . . , a1,1

f(i,1,1), . . . , a
i,i
1 , . . . , a

i,i
f(i,i,i) ∈M for which

G = {RX | X ∈ G
i
j for some 1 ≤ j ≤ i},

where RX =
⋃

1≤k≤i{(b, a
j,k
d ) | b ∈ Xk and 1 ≤ d ≤ f(i, j, k)}. The quantifier Q is

as wanted, since for i ∈ N \ {0} we have

|= QiX1, . . . , X i (ψ1, . . . , ψi)↔ θi ∨ χ,

where

χ = ∃x1 . . . xl(
∧

p 6=q

(xp 6= xq) ∧QR
∨

1≤j≤i

φj)

φj = ∃R1 . . . Ri(ψj(R) ∧ ∀z1 . . . zn+1(R(z1, . . . , zn+1)↔
∨

1≤s≤i

υs))

υs = Rs(z1, . . . , zn) ∧
∨

l(j,s−1)<h≤l(j,s)

(zn+1 = xh)

and where l(j,s) = (f(i, 1, 1) + f(i, 1, 2) + · · · + f(i, j, s)), l = l(i,i), l(1,0) = 0 and
l(j,0) = l(j−1,i) for j > 1. The formula θi takes care of the interpretations of Qi on
models with less than l elements. �

14.3. Remark. It is worth noting that to prove definability (as formulated in Defin-
ition 6.3) of Qi in the logic SO(Q) the proof of Proposition 14.2 has to be slightly
modified. We have to replace the formula ψj with Gjx1, . . . , xi (X1(x1), . . . , Xi(xi))
for 1 ≤ j ≤ i in χ and θi. It is now easy to see that Mod(θi ∨ χ) = Qi as wanted.

15. Fagin’s lemma for second order structures

The Hierarchy Theorem in [8] is based on a result called Fagin’s lemma [5].
Fagin’s lemma is concerned with the number of isomorphism types of finite rela-
tional structures. Let s = (l1, . . . , lr) be a first order type. Denote the number of
τs-structures with universe {1, . . . , n} by an(s) and the number of isomorphism
types of τs-structures with universe {1, . . . , n} by bn(s). It is easy to see that

an(s) = 2(nl1+···+nlr ). The real task is to determine the value bn(s). Fagin’s lemma
answers this question.

Fagin’s lemma. Let s = (l1, . . . , lr) be a first order type such that max{li : 1 ≤
i ≤ r} > 1. Then bn(s) ∼ 1

n!
an(s).

Proof. See [5]. �
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In this section we prove a version of Fagin’s lemma for second order structures.
The proof follows the proof in [5] closely. Let s = (l1, . . . , lr). We write Ps(x) for
xl1 + · · · + xlr . Also, for a second order type t, the notations an(t) and bn(t) are
used as for first order structures.

15.1. Lemma. Let t = (s1, . . . , sw) be a second order type where si = (li1, . . . , l
i
ri
)

for 1 ≤ i ≤ w. Then

an(t) = 2(2Ps1 (n)+···+2Psw (n)).

Proof. Let M = {1, . . . , n}. Clearly an(t) is equal to the cardinality of the set

w
∏

i=1

(P(

ri
∏

j=1

P(M lij ))).

�

15.2. Definition. Let X be a set and π a permutation of X.

• Denote by spt(π) the support of π

spt(π) = {a ∈ X | π(a) 6= a}.

• The cardinality of the set spt(π) is denoted by s(π).
• The number of cycles of π is denoted by c(π).

The next lemma is a corollary of Burnside’s Lemma [2]. It will be used in the
proof of Theorem 15.4. Recall that Sn denotes the set of permutations of the set
{1, . . . , n}.

15.3. Lemma. Let t be a second order type and let π be a permutation of the set

M = {1, . . . , n}. Let N(π) denote the number of t-structures with universe M for

which π is an automorphism. Then

bn(t) =
1

n!

∑

π∈Sn

N(π).

Proof. The claim follows directly from Burnside’s Lemma [2]. �

15.4. Theorem. Let t be a second order type. Then bn(t) ∼
1
n!
an(t).

Proof. We first prove the claim for type t = ((1)). Let π be a permutation of
the set {1, . . . , n}. Denote by π(1) the permutation of P({1, . . . , n}) defined by
π(1)(X) = π[X].

6. Claim. Let π be a permutation of the set {1, . . . , n}. Then N(π) = 2c(π(1)).

Proof of Claim. The cycles of π(1) form a partition P of the set P({1, . . . , n}). It is
easy to see that π is an automorphism of ({1, . . . , n}, G) if and only if G is a union
of some elements of P . �
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By Lemma 15.3,

(15.5) bn(t) =
1

n!

∑

π∈Sn

N(π).

Combining (15.5) and Claim 6,

bn(t) =
1

n!

∑

π∈Sn

2c(π(1)).

The original claim is equivalent to

lim
n→∞

n!bn(t)

an(t)
= 1.

Hence, it suffices to prove

lim
n→∞

∑

π∈Sn

2(c(π(1))−2n) = 1.

For π = id, c(π(1)) = 2n thus it suffices to show

(15.6) lim
n→∞

∑

π∈S′
n

2(c(π(1))−2n) = 0,

where S ′
n = Sn \ {id}.

7. Claim. Let n > 5 and let π be a permutation of the set {1, . . . , n}. If s(π) = m
then s(π(1)) ≥ m(n− 2).

Proof of Claim. Obviously m singletons are not fixed by π(1). The number of sets
{a, b} such that π(a) = a and π(b) 6= b ism(n−m). Finally, the number of sets {a, b}
(plus their complements) such that {π(a), π(b)} ∩ {a, b} = ∅ is at least m(m − 3).
By summing these numbers, we get m(n− 2). �

If s(π(1)) = x, then clearly

(15.7) c(π(1)) ≤ 2n − x/2.

By the estimate (15.7) and Claim 7, the terms of the sequence in (15.6) are domi-
nated by

(15.8)
∑

π∈S′
n

2−(s(π)(n−2))/2.

The number of permutations π of {1, . . . , n} such that s(π) = m is less than
(

n
m

)

m! ≤
nm. Therefore, the sequence in (15.8) is dominated by

(15.9)
n

∑

m=2

nm2−m(n−2)/2.
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Now (15.9) is equal to

(15.10)

n
∑

m=2

2−
1
2
m((n−2)−2 log(n)).

Let n0 be the least n such that (n − 2) − log(n) is positive. If n ≥ n0 then the
greatest summand in (15.10) occurs when m = 2. Thus, for n ≥ n0, (15.10) is
dominated by

(n− 1)2(2 log(n)−(n−2)) = 2(2 log(n)+log(n−1)−(n−2)),

which converges to 0.
Next we turn to the general case. Let t = (s1, . . . , sw) and let π be a permutation

of the set M = {1, . . . , n}. Denote by πsi
the permutation of the set

P(M li1)× · · · × P(M liri )

induced by π. Then (cf. Claim 6) π is an automorphism of N(π) many t-structures
where

N(π) = 2
�w

i=1 c(πsi
).

By Lemma 15.3,

bn(t) =
1

n!

∑

π∈Sn

N(π)

and thus

bn(t) =
1

n!

∑

π∈Sn

2
�w

i=1 c(πsi
).

The original claim is equivalent to

lim
n→∞

n!bn(t)

an(t)
= 1.

Hence, it suffices to prove

lim
n→∞

∑

π∈Sn

2
�w

i=1(c(πsi
)−2Psi

(n)) = 1.

Since c(πsi
) = 2Psi

(n) for π = id, it remains to prove

(15.11) lim
n→∞

∑

π∈S′
n

2
�w

i=1(c(πsi
)−2Psi

(n)) = 0.

Suppose s(π) = m. We want to find a lower bound for s(πsi
). If li1 = 1, then

based on the calculations made in Claim 7 the number of sets A not fixed in the
first coordinate is greater than m(n− 2). Thus, no tuple of the form

(A,B2, . . . , Bri),

where Bj ∈ P(M lij ) for 2 ≤ j ≤ ri, is fixed by πsi
. Hence, we have s(πsi

) > m(n−2).
If li1 = q > 1, then πq : M

q → M q defined applying π point-wise moves more than
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mnq−1 many tuples. Therefore, the number of singletons which are not fixed by πsi

in the first coordinate is greater than

mnq−1 > m(n− 2).

As in (15.7) the terms of the sequence in (15.11) are dominated by
∑

π∈S′
n

2−w(s(π)(n−2))/2

and thus by

(15.12)
∑

π∈S′
n

2−(s(π)(n−2))/2.

Sequence (15.12) is identical to sequence (15.8) which converges to 0. �

16. An ordering of second order types

In this section we define an ordering for second order types arising naturally from
Theorem 15.4. The following results concerning first order types and structures are
taken from [8].

For a first order type s = (l1, . . . , lr), the pattern of s is the tuple p(s) =
(p1, . . . , pa), where pi = |{1 ≤ j ≤ r : lj = i}| and a = max{lj : 1 ≤ j ≤ r}.
Let S denote the set of finite sequences p = (p1, . . . , pa) of natural numbers such
that pa 6= 0. We denote a by l(p).

16.1. Definition. Let p and q be elements of S. We set p < q if

(i) l(p) < l(q) or
(ii) l(p) = l(q) and pi < qi for the largest i such that pi 6= qi.

16.2. Proposition. The relation < well-orders the set S and the order-type of <
is ωω.

Proof. See [8]. �

We denote the order-isomorphism between (S,<) and (ωω, ε) by Φ.

16.3. Definition. Let s and s′ be first order types. Define s < s′ to hold if
p(s) < p(s′).

16.4. Lemma. Let s and s′ be first order types such that s < s′. Then

lim
n→∞

an(s)

an(s′)
= 0.

Proof. See [8]. �

Now we turn to second order types. We shall define an ordering for second order
types analogously to Definition 16.3. We shall first define an ordering for a certain
collection B of functions j : ωω → ω and then associate each second order type t
with a unique element of B.
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For a function j : ωω → ω, denote by spt(j) the support of j

spt(j) = {α ∈ ωω | j(α) 6= 0}.

We shall restrict attention to functions j with finite support.

16.5. Definition. Let B denote the set

{j : ωω → ω : | spt(j)| ∈ ω \ {0}}.

We define an ordering ≺ for the set B as follows. Let j and j′ be elements of B.
Define j ≺ j′ to hold if j′(β) > j(β), where β is the greatest κ such that j(κ) 6= j′(κ).

It is easy to see that ≺ is a linear-ordering.

16.6. Proposition. The ordering ≺ well-orders the set B and the order-type of ≺
is ωω

ω

.

Proof. Let j ∈ B and let {α1, . . . , αn} (αi < αj iff i < j) be the set of those ordinals
α for which j(α) 6= 0. We divide j into component functions j1, . . . , jn by setting
ji(αi) = j(αi) and for β 6= αi, we set ji(β) = 0. Assume that j ∈ B and j(α) 6= 0
for exactly one α. If this α is equal to some k ∈ ω we define F (j) = ωk−1j(k), and
if ω ≤ α we define F (j) = ωαj(α). Finally, we extend F to a function from the
set B to ωω

ω

in the following way. Let j ∈ B and let j1, . . . , jn be the component
functions of j. Define

(16.7) F (j) = F (jn) + F (jn−1) + · · ·+ F (j1).

Since every ordinal α < ωω
ω

has a unique representation in the form (16.7), the
function F is bijective. It is easy to see that j ≺ j′ if and only if F (j) ∈ F (j′).
Thus, F is an order-isomorphism. �

16.8. Definition. Let t = (s1, . . . , sw) be a second order type. Define jt : ω
ω → ω

by

jt(α) = |{1 ≤ i ≤ w | Φ(p(si)) = α}|.

Let t and t′ be second order types. We define t ≺ t′ to hold if jt ≺ jt′ .

16.9. Lemma. Let t = (s1, . . . , sw) and t′ = (d1, . . . , de) be second order types such

that t′ ≺ t. Then

lim
n→∞

bn(t
′)

bn(t)
= 0.

Proof. By Theorem 15.4,

(16.10)
bn(t

′)

bn(t)
∼ 2((2

Pd1
(n)

+···+2Pde
(n))−(2Ps1 (n)+···+2Psw (n))).

After subtraction and by the assumption t′ ≺ t, the right-hand side of (16.10) is
dominated by

2(e2Pd(n)−2Ps(n)),
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where d ∈ {d1, . . . , de}, s ∈ {s1, . . . , sw}, and d < s. By Lemma 16.4, we have
limn→∞ 2Pd(n)/2Ps(n) = 0. Thus

lim
n→∞

2(e2Pd(n)−2Ps(n)) = 0.

�

16.11. Corollary. Let t, t1, . . . , te be second order types such that ti ≺ t for 1 ≤
i ≤ e. Then

lim
n→∞

e
∑

i=1

bn(ti)

bn(t)
= 0.

17. A hierarchy of definability

In this section we prove that on every level t of the ordering ≺ there is a quantifier
Q of type t which is not definable in the extension of second order logic by all second
order quantifiers of types lower than t. The proof of Theorem 17.1 is analogous to
the proof of Theorem 5 in [8].

17.1. Theorem. Let t be a second order type and Q the collection of all second

order generalized quantifiers of types lower than t. Then there is a quantifier Q of

type t which is not definable in the logic SO(Q).

Proof. Let τ = ∅ and let (ψi)i∈ω be a list of τ -sentences of the logic SO(Q,G1, . . . ,Gw)
such that every τ -sentence of SO(Q,G1, . . . ,Gw) is similar (see Definition 12.4) to
some ψi. Suppose n0, . . . , nj−1 and classes K0, . . . , Kj−1 have been defined already.
Let Q1, . . . ,Qy be the quantifiers in Q appearing in ψj . The type of Qi is denoted
by ti. Let Q′

1, . . . ,Q
′
y be quantifiers such that the type of Q′

i is ti for 1 ≤ i ≤ y. If

Qi ∩ Str(ti, n) = Q′
i ∩ Str(ti, n)

for 1 ≤ i ≤ y, then the sequences (Q1, . . . ,Qy) and (Q′
1, . . . ,Q

′
y) are called n-

equivalent. It is easy to see that for n-equivalent sequences,

Mod(ψj(Q1, . . . ,Qy)) ∩ Str(t, n) = Mod(ψj(Q
′
1, . . . ,Q

′
y)) ∩ Str(t, n).

The number of n-equivalence classes of sequences is at most 2p(n), where p(n) =
∑y

i=1 bn(ti). By Corollary 16.11, there is n > nj−1 such that bn(t) > p(n). Let nj be

the least such n. Then 2bnj
(t) > 2p(nj) and hence there is a class Kj of t-structures

of cardinality nj such that Kj cannot be represented in the form

Mod(ψj(Q1, . . . ,Qy)) ∩ Str(t, nj),

for any sequence (Q1, . . . ,Qy) of quantifiers in Q. This concludes the construction.
We define Q =

⋃

j∈ωKj.

8. Claim. The quantifier Q is not definable in the logic SO(Q).
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Proof of Claim. Suppose that Q = Mod(ϕ) for some ϕ ∈ SO(Q,G1, . . . ,Gw). Then
ϕ = ψi(Q1, . . . ,Qy) for some i ∈ ω and quantifiers Q1, . . . ,Qy. Thus

Ki = Mod(ψi(Q1, . . . ,Qy)) ∩ Str(t, ni),

which contradicts the definition of Q. �

This completes the proof of Theorem 17.1 . �

Next we show that the diagonalization argument used in the proof of Theorem
17.1 can be modified so that the resulting non-definable quantifier can be extended
to a non-definable monotone quantifier. The proof is adapted from Theorem 7 in
[8] where an analogous result is proved for Lindström quantifiers.

17.2. Definition. Let Q be a second order quantifier. We say that Q is a monotone

quantifier if for every structure (M,G1, . . . , Gw) ∈ Q and G′
1, . . . , G

′
w, where G′

i ⊆

P(M li1)×· · ·×P(M liri ) and Gi ⊆ G′
i for 1 ≤ i ≤ w, we have that (M,G′

1, . . . , G
′
w) ∈

Q.

The quantifiers Most2 and ∃2
k are examples of monotone quantifiers and the quan-

tifiers Even and Three are obviously not monotone.

17.3. Theorem. Let t be a type and Q the collection of all second order generalized

quantifiers of types lower than t. Then there is a monotone quantifier Q of type t
which is not definable in the logic SO(Q).

Before going to the proof of Theorem 17.3, we introduce an auxiliary concept [8].
Let M = {1, . . . , n} and let (M,G1, . . . , Gw) be a t-structure. Note that

0 ≤
w

∑

i=1

|Gi| ≤
w

∑

i=1

2Psi
(n).

Suppose σ : ω → ω. We say that (M,G1, . . . , Gw) is σ-balanced if
∑w

i=1 |Gi| = σ(n).
Define a function f : ω → ω as follows: f(n) is the least y such that

bn(t) ≤ (

w
∑

i=1

2Psi
(n) + 1)Ny,

where Ny is the number of isomorphism types of t-structures with universe {1, . . . , n}
satisfying

∑w
i=1 |Gi| = y. Let Strf(t) = {M ∈ Str(t) | M is f -balanced}.

17.4. Lemma. Let t = (s1, . . . , sw) and t′ = (d1, . . . , de) be types such that t′ ≺ t.
Then

lim
n→∞

bn(t
′)

In(Strf(t))
= 0.

Proof. By the choice of f , we have

In(Strf (t)) ≥
bn(t)

∑w
i=1 2Psi

(n) + 1
.
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Therefore,

(17.5)
bn(t

′)

In(Strf(t))
≤
bn(t

′)(
∑w

i=1 2Psi
(n) + 1)

bn(t)
.

By the estimate in Lemma 16.9, the right-hand side of (17.5) is eventually dominated
by

(17.6) c(
w

∑

i=1

2Psi
(n) + 1)2(e2Pd(n)−2Ps(n)),

where c > 1 is a constant and d < s. By Lemma 16.4, limn→0 2Pd(n)/2Ps(n) = 0,
hence there are u, h, r ∈ ω such that, for n ≥ r, the sequence in (17.6) is dominated
by

(2n
u

+ h)2−2n

−→ 0.

�

Proof of Theorem 17.3. We modify the proof of Theorem 17.1 so that the diago-
nalization is realized with respect to the class Strf(t). In other words, we ensure
that

Kj 6= Mod(ψj(Q1, . . . ,Qy)) ∩ Strf (t, nj),

for all sequences (Q1, . . . ,Qy) of quantifiers. This is possible by Lemma 17.4, since
the number of collections of the form

Mod(ψj(Q1, . . . ,Qy)) ∩ Strf(t, nj)

is at most the number of nj-equivalence classes of sequences of quantifiers. In
particular, we choose Kj ⊆ Strf(t) for all j ∈ ω. Let Q =

⋃

i∈ωKi, and let Q′ be
the following monotone quantifier

{(M,G1, . . . , Gw) | there is (M,G′
1, . . . , G

′
w) ∈ Q such that G′

i ⊆ Gi}.

Since Q′ ∩ Strf (t) = Q and Q 6= (Mod(ϕ) ∩ Strf(t)) for all ϕ ∈ SO(Q,G1, . . . ,Gw),
the quantifier Q′ is not definable in the logic SO(Q). �

Theorem 17.1 can be also improved to yield an non-definable recursive quantifier,
i.e., there is a Turing machine which accepts a coding of a structure (M,G1, . . . , Gw)
if and only if (M,G1, . . . , Gw) ∈ Q.

17.7. Theorem. Let t be a type and Q the collection of all second order generalized

quantifiers of types lower than t. Then there is a recursive quantifier Q of type t
which is not definable in the logic SO(Q).

The algorithm we use is the same as in the first order case. However, for reader’s
convenience, we explain the idea of the algorithm. The following, modulo notational
changes, is taken from [8].
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Proof of Theorem 17.7. Let τ = ∅ and let (ψi)i∈ω be an effective enumeration of
t-sentences of SO(Q,G1, . . . ,Gw) up to similarity.

Input: M = (M,G1, . . . , Gw) of type t and cardinality n.
Algorithm:
j ← 0; n−1 ← 0;
repeat {nj ← min{n′ > nj−1 | Cond(n

′, j)}; j ← j + 1}
until nj ≥ n;
if nj > n
then rejectM
else

{FindQuant(K,n, j);
ifM∈ K
then acceptM
else rejectM}.

The condition Cond(n,j) is the condition bn(t) >
∑y

i=1 bn(ti) where ti refer to the
types of quantifiers occurring in ψj . In other words, the algorithm computes for
each j the least nj > nj−1 (until nj ≥ n) such that there is guaranteed to exist a
class of t-structures of cardinality nj which cannot be represented in the form

(17.8) Mod(ψj(Q1, . . . ,Qy)) ∩ Str(t, nj),

for any sequence (Q1, . . . ,Qy) of quantifiers. If n = nj for some j then the procedure
FindQuant(K,n, j) returns a canonical class K(n, j) of t-structures of cardinality n
which cannot be represented in the form (17.8). The structureM is accepted by the
algorithm if n = nj for some j andM∈ K(n, j). So, we have Q =

⋃

j∈ωK(nj , j).
The procedure FindQuant is computed as follows:

K ← ∅;
repeat

{K ← Next(K);
repeat

{Q ← (∅, . . . , ∅);
b← Definable(K,Q, j);
Q ← NextSeq(Q)}

until b or Q = (∅, . . . , ∅)}
until not b;

To ensure that the class of t-structures accepted by the algorithm is closed under
isomorphisms, the algorithm first defines a canonical linear order < of the structure
M. For each type t, the order < induces a lexicographic order <t between the
subsets of Str(t,M), where Str(t,M) is the set of t-structures with universe M .
The procedure Next(K) returns the least quantifier K ′ ⊆ Str(t,M) which is greater
than K with respect to <t. If such K ′ does not exist, Next(K) = ∅. NextSeq(Q) is
a similar function for sequences of quantifiers of types lower than t. The condition



39

Definable(K,Q, j) is satisfied just in case K = {M′ ∈ Str(t,M) | M′ |= ψj(Q)}.
�

Suppose ((1)) ≺ t and Q is a quantifier of type t as in Theorem 17.1. Although Q
is not definable in the logic SO(Q), where Q is the collection of quantifiers of types
lower than t, we are bound to have

SO(Q,Q) ≡ SO(Q).

The reason is that any class of finite first order structures is axiomatizable in
SO(M1

1 ), where M1
1 is the collection of quantifiers of type ((1)) (cf. Theorem 6.4

and Corollary 6.5 in [1]). In fact, even the following version of Theorem 17.1 holds.

17.9. Theorem. Let t be a second order type and Q the collection of all second

order generalized quantifiers of types lower than t. Then there is a quantifier Q of

type t which is not definable in the logic SO(Q) and FO ≡ FO(Q).

Proof. Let Q0 be as in Theorem 12.1 when applied to B = ∅ and t. We modify the
diagonalization argument in the proof of Theorem 17.1 as follows. We let nj be the
least n such that 1

2
bn(t) > p(n), where p(n) =

∑y
i=1 bn(ti). By the choice of nj , we

can choose Kj so that Kj ⊆ Q0. Since
⋃

j∈ωKj ⊆ Q0, the claim follows by Theorem
12.1. �

18. A hierarchical quantifier

In this section we show that the binary second order existential quantifier cannot
be defined in the logic FO(Q), where Q is the collection of monadic second order
generalized quantifiers, i.e., quantifiers of types less than ((2)). Since the logic
FO(Q) is capable of defining all classes of first order structures (cf. Theorem 6.2 in
[1]), we also get a concrete example of a quantifier Q and a logic L extending MSO
such that L(Q) ≡ L and Q is not definable in L.

18.1. Theorem. The quantifier ∃2
2 is not definable in the logic FO(Q).

Denote by L(l,r) the fragment of FO(Q,G) containing only formulas, whose free
and bound variables are among x1, . . . , xl and X1, . . . , Xr. We write M ≡l,r M

′ if
the models M andM′ satisfy the same sentences of L(l,r) of vocabulary τ = ∅.

Let M be a set and let G ⊆ P(M2) be defined as follows:

G = {R ⊆M2 | ∀a 6= b ∈M(R(a, b)↔ ¬R(b, a))}.

The set G is the collection of so-called tournaments over M . It is easy to see that
G is permutation invariant.

18.2. Lemma. Let l, r ∈ N, k = l + r, and let M be a set such that |M | > 2k.
Suppose a1, . . . al ∈ M and A1, . . . Ar ⊆ M . Then no relation R ∈ G is (a, A)-
invariant.



40

Proof. The elements a1, . . . al and sets A1, . . .Ar induce a partition of M which has
at most 2k different classes. Since |M | > 2k, one of the classes contain at least two
elements, say, c and d. Let f be a permutation of M such that f(c) = d, f(d) = c,
and f(b) = b for b ∈ M \ {c, d}. Then any (a, A)-invariant relation R is fixed by
f . This implies that either R(c, d) and R(d, c) or ¬R(c, d) and ¬R(d, c). Thus, we
have that R /∈ G. �

Theorem 18.1 now follows from Lemma 18.3.

18.3. Lemma. Let l, r ∈ N, k = l + r, and let M be a set such that |M | > 2k.
Then (M,G) ≡l,r (M,G′), where G′ = ∅.

Proof. We prove using induction on ϕ(x,X) ∈ L(l,r)[∅] that

(M,G) |= ϕ(a, A)⇔ (M,G′) |= ϕ(a, A),

for all a = a1 . . . al ∈ M and A = A1 . . . Ar ⊆ M . We consider the case ϕ =
Gxy ψ(x, y, z,X) only since other cases are trivial. By Lemma 18.2, we have (M,G) 6|=
ϕ(a, A) since the relation

{(b1, b2) ∈M
2 | (M,G) |= ψ(b1, b2, a, A)}

is (a, A)-invariant and hence not in G. On the other hand, since G′ = ∅ we have
(M,G′) 6|= ϕ(a, A). �
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19. Conclusion and further directions

Definability questions of Lindström quantifiers have been studied extensively in
finite model theory. Many of the questions concerning definability of Lindström
quantifiers also make sense for second order generalized quantifiers. On the other
hand, we have seen that genuinely new type of questions arise in the second order
case.

In this thesis we have studied definability of second order generalized quantifiers
in different contexts. The most obvious questions left unanswered are questions of
the form "Is the quantifier Q definable in FO(Q′)". We have touched this area
in Chapter IV where we considered definability in MSO. We conjecture that the
quantifier Most2 is not definable in MSO. If one is able to show MSO(Most2) >
MSO, then the conjecture follows, of course. It would be also interesting to find a
concrete quantifier Q which is not definable in MSO and satisfies MSO(Q) ≡ MSO.

A more general project is to study definability in terms of all quantifiers of a
certain type or with some property. For example, Theorem 18.1 implies that no ex-
tension of FO by finitely many monadic second order generalized quantifiers defines
the quantifier ∃2

2.
Let us then consider Theorem 17.1. If we replace SO by FO in Theorem 17.1, then

it remains open whether there is a strict hierarchy also in the expressive power of the
logics FO(Q) with respect to types t ≺ ((2)). Andersson showed that quantifiers of
type ((1;n)), where (1;n) is a sequence of 1´s of length n, can define all Lindström
quantifiers of arity at most 2n − 1 (cf. Theorem 6.2 in [1]). So it might be possible
to prove that for any type t ≺ ((2)) there is a quantifier Q of type t which is not
definable in FO(Q) and satisfies FO(Q) < FO(Q,Q). It is also an open question
whether for every type t any quantifier Q of some type t′ ≺ t is definable in the
logic SO(Qt) where Qt is the collection of all second order quantifiers of type t.
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