424 research outputs found

    Coordinatization structures for generalized quadrangles and glued near hexagons.

    Get PDF

    Every generalized quadrangle of order 5 having a regular point is symplectic

    Get PDF
    For many years now, one of the most important open problems in the theory of generalized quadrangles has been whether other classes of generalized quadrangles exist besides those that are currently known. This paper reports on an unsuccessful attempt to construct a new generalized quadrangle. As a byproduct of our attempt, however, we obtain the following new characterization result: every generalized quadrangle of order 5 that has at least one regular point is isomorphic to the quadrangle W(5) arising from a symplectic polarity of PG(3, 5). During the classification process, we used the computer algebra system GAP to perform certain computations or to search for an optimal strategy for the proof

    Singer quadrangles

    Get PDF
    [no abstract available

    Domesticity in generalized quadrangles

    Get PDF
    An automorphism of a generalized quadrangle is called domestic if it maps no chamber, which is here an incident point-line pair, to an opposite chamber. We call it point-domestic if it maps no point to an opposite one and line-domestic if it maps no line to an opposite one. It is clear that a duality in a generalized quadrangle is always point-domestic and linedomestic. In this paper, we classify all domestic automorphisms of generalized quadrangles. Besides three exceptional cases occurring in the small quadrangles with orders (2, 2), (2, 4), and (3, 5), all domestic collineations are either point-domestic or line-domestic. Up to duality, they fall into one of three classes: Either they are central collineations, or they fix an ovoid, or they fix a large full subquadrangle. Remarkably, the three exceptional domestic collineatons in the small quadrangles mentioned above all have order 4

    Generalized quadrangles of order (p,t) admitting a 2-transitive regulus, p a prime

    Get PDF
    AbstractWe classify generalized quadrangles of order (p,t) admitting a 2-transitive regulus, p a prime

    On the Veldkamp Space of GQ(4, 2)

    Full text link
    The Veldkamp space, in the sense of Buekenhout and Cohen, of the generalized quadrangle GQ(4, 2) is shown not to be a (partial) linear space by simply giving several examples of Veldkamp lines (V-lines) having two or even three Veldkamp points (V-points) in common. Alongside the ordinary V-lines of size five, one also finds V-lines of cardinality three and two. There, however, exists a subspace of the Veldkamp space isomorphic to PG(3, 4) having 45 perps and 40 plane ovoids as its 85 V-points, with its 357 V-lines being of four distinct types. A V-line of the first type consists of five perps on a common line (altogether 27 of them), the second type features three perps and two ovoids sharing a tricentric triad (240 members), whilst the third and fourth type each comprises a perp and four ovoids in the rosette centered at the (common) center of the perp (90). It is also pointed out that 160 non-plane ovoids (tripods) fall into two distinct orbits -- of sizes 40 and 120 -- with respect to the stabilizer group of a copy of GQ(2, 2); a tripod of the first/second orbit sharing with the GQ(2, 2) a tricentric/unicentric triad, respectively. Finally, three remarkable subconfigurations of V-lines represented by fans of ovoids through a fixed ovoid are examined in some detail.Comment: 6 pages, 7 figures; v2 - slightly polished, subsection on fans of ovoids and three figures adde

    Zoology of Atlas-groups: dessins d'enfants, finite geometries and quantum commutation

    Full text link
    Every finite simple group P can be generated by two of its elements. Pairs of generators for P are available in the Atlas of finite group representations as (not neccessarily minimal) permutation representations P. It is unusual but significant to recognize that a P is a Grothendieck's dessin d'enfant D and that most standard graphs and finite geometries G-such as near polygons and their generalizations-are stabilized by a D. In our paper, tripods P -- D -- G of rank larger than two, corresponding to simple groups, are organized into classes, e.g. symplectic, unitary, sporadic, etc (as in the Atlas). An exhaustive search and characterization of non-trivial point-line configurations defined from small index representations of simple groups is performed, with the goal to recognize their quantum physical significance. All the defined geometries G' s have a contextuality parameter close to its maximal value 1.Comment: 19 page

    Intriguing sets of partial quadrangles

    Full text link
    The point-line geometry known as a \textit{partial quadrangle} (introduced by Cameron in 1975) has the property that for every point/line non-incident pair (P,)(P,\ell), there is at most one line through PP concurrent with \ell. So in particular, the well-studied objects known as \textit{generalised quadrangles} are each partial quadrangles. An \textit{intriguing set} of a generalised quadrangle is a set of points which induces an equitable partition of size two of the underlying strongly regular graph. We extend the theory of intriguing sets of generalised quadrangles by Bamberg, Law and Penttila to partial quadrangles, which surprisingly gives insight into the structure of hemisystems and other intriguing sets of generalised quadrangles
    corecore