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Abstract

We classify generalized quadrangles of order (p, t) admitting a 2-transitive regulus, p a prime.
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1. 2-Transitive reguli in generalized quadrangles

In [2] J. De Kaey and H. Van Maldeghem classified the finite generalized quadrangles (“GQs”)
of order s, 1 < s, having an automorphism group that induces the natural action of degree s + 1
of PSL2(s) on a regulus R while fixing the opposite regulus elementwise, and also inducing that
action on the opposite regulus. (They call this action the “natural action of PSL2(s) × PSL2(s)”
on the subGQ of order (s,1) defined by R.)

Theorem 1.1. (J. De Kaey and H. Van Maldeghem [2].) Suppose S is a GQ of order s,
∞ > s > 1, admitting the natural action of PSL2(s)×PSL2(s) on a subGQ of order (s,1). Then
S is isomorphic to the GQ Q(4, s) formed by the points and lines on a nonsingular parabolic
quadric in PG(4, s).

In [14] Theorem 1.1 was then generalized for arbitrary parameters:
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Theorem 1.2. (K. Thas [14].) Suppose S is a GQ of order (s, t), ∞ > s, t > 1, admitting the
natural action of PSL2(s) × PSL2(s) on a subGQ of order (s,1). Then t ∈ {s, s2} and S is
isomorphic to a GQ Q(d, s) formed by the points and lines on a nonsingular quadric of Witt
index 2 in PG(d, s), where d ∈ {4,5}.

In this paper, we consider general 2-transitive groups acting “naturally” on a subGQ of order
(s,1) of a GQ of order (s, t), s, t > 1. Perhaps this aim is not plausible without further restric-
tions (as the proofs of the results in [7,12,13,15] seem to indicate). In this paper, we will do the
classification for s a prime. However, we only demand a 2-transitive action on one regulus of the
subGQ which fixes the opposite regulus elementwise.

Besides Theorems 1.1 and 1.2, our result is motivated by attempting to construct new gen-
eralized quadrangles. To do so, it is always useful to have assumptions on the automorphism
group of the quadrangle, especially when it admits a nice action on some interesting subgeome-
try. Our principal result seems to indicate that no unknown (thick) quadrangle of order (s, t) with
a subquadrangle of order (s,1) has a “large” automorphism group stabilizing the subquadrangle.

We do not use the classification of finite simple groups; we rely only on rather elementary
group theory to obtain sufficient geometrical information in order to obtain the main results.

2. Statement of the main result

In this paper we only work with finite GQs—see the monograph [10] for a comprehensive
introduction to these structures.

Recall that, for a subset A of the point set P of a GQ, A⊥ = ⋂
a∈A a⊥, and the elements of A⊥

are called centers (of A). Also, A⊥⊥ = (A⊥)⊥, and the same notations are used for lines. If A is a
set of three two by two noncollinear points, A is called a triad. Let U,V be distinct nonconcurrent
lines of the GQ S of order (s, t), s �= 1 �= t . If |{U,V }⊥⊥| = s + 1, then {U,V }⊥⊥ is called a
regulus. Note that if {U,V }⊥⊥ is a regulus, {U,V }⊥ also is one.

Let Γ be a proper subGQ of order (s,1), s > 1, of a GQ S of order (s, t). Let R be a regulus
of Γ . We say that R is a 2-transitive regulus if S has an automorphism group that fixes R⊥
elementwise and acts 2-transitively on R.

The main objective of this note is to obtain the following result.

Theorem 2.1. Let S be a GQ of order (p, t), p a prime and t > 1, admitting a 2-transitive
regulus, with associated 2-transitive group H . Then one of the following occurs:

(1) S ∼= Q(4,p);
(2) S ∼= Q(5,p);
(3) H/N acts sharply 2-transitively, where N is the kernel of the action on R, and 7 � p + 2 �

t � p2. Here p + 1 is a power of 2.

A spread of a GQ of order (s, t), s, t > 1, is a set of st + 1 mutually nonconcurrent lines (this
means that each point is on exactly one line of the spread). A spread is a spread of symmetry if
there is an automorphism group of the GQ that fixes the spread line by line, and acts regularly on
any (and then each) of these lines (we call this group the “associated group”).

A generalized broken grid with carriers L and M in a GQ of order (s, t), s, t > 1, consists of
two disjoint sets of lines G1 ⊆ L⊥ and G2 ⊆ M⊥, where L � M , L ∈ G1 and M ∈ G2, such that
each point of L ∪ M (the lines seen as point sets) is incident with a constant number c of lines of
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G1 ∪ G2, 1 < c < t + 1, and such that the point set of G1 \ {L} equals that of G2 \ {M}. If c = 2,
we just speak of a broken grid.

Analyzing the situation in the third part of Theorem 2.1, we will obtain the following extra
information:

Theorem 2.2. Suppose we are in (3) of Theorem 2.1, and suppose that H is minimal w.r.t. its
action, i.e., H has no subgroup which also acts 2-transitively on R. Suppose first that |N | = 1. If
S has no broken grids with carriers in R⊥, then p + 1 divides t − 1 implies that S has a spread
of symmetry, with associated elementary abelian 2-group.

Suppose that |N | > 1. Then |N | is even.
In general, if S has a spread of symmetry, p + 1 divides t − 1.

Moreover, we will show that there is a class of examples in the third case with t = p + 2 (and
|N | = 1), each example being associated to a Mersenne prime.

3. Proof of Theorems 2.1 and 2.2

Suppose L ∈ R and let N be the kernel of the action of H on R. Let Γ be the subGQ of
order (p,1) defined by R. By D. Passman [9, Theorem 7.3, p. 53], HL/N either is a 2-transitive
group, or (HL/N,R \ {L}) can be identified with the permutation group (H ′,GF(p)), where

H ′ ⊆ {
cx + d ‖ c �= 0; c, d ∈ GF(p)

}
.

If we are in the latter case, |H ′| divides p(p − 1), so HL/N has exactly one (Sylow) p-sub-
group. So either H/N acts 3-transitively on R, or H/N has a split BN-pair of rank 1, meaning
that

• for each line R ∈ R, (H/N)R contains a normal subgroup NR acting sharply transitively on
R \ {R};

• the groups NR generate H/N , and are mutually conjugate.

As the GQs of order (3, t), t > 1, are known (see [10, Chapter 6]), we suppose p > 3 through-
out.

Lemma 3.1. H/N cannot act 4-transitively.

Proof. Suppose it does act as such. Then the size of H is (p+1)p(p−1)(p−2)r|N |, where r is
natural. Suppose some nontrivial element α of H fixes some point of S not in Γ . Then combining
[10, 2.4.1 and 2.2.2], it follows that α fixes a subGQ of order p pointwise, and so α ∈ N . Then
one notes that (p + 1)p(p − 1)(p − 2) divides (p + 1)p(t − 1), so that (p − 1)(p − 2) divides
t − 1. If there is no such element, H acts semiregularly on the points of S \ Γ , so we have
the same conclusion. By Higman’s Inequality [10, 1.2.3], it follows that either p � 5 or that
t − 1 = (p − 1)(p − 2). If p = 5, and the latter equality is not satisfied, t = 25. A 4-transitive
group on 6 letters contains A6 (see [1]), so H/N also contains PSL2(5). Now it follows from [14]
that S ∼= Q(5,5), but this GQ does not admit A6 in this action. Suppose t = (p − 1)(p − 2) + 1;
then the “standard divisibility condition for GQs” [10, 1.2.2] leads to a contradiction. �

We now proceed in a number of steps to obtain the proofs of the main results.
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3.1. 3-Transitive case

Let L ∈ R, and suppose np + 1 is the number of Sylow p-subgroups in HL, and denote these
groups with H0,H1, . . . ,Hnp .2 Let M ∈ R⊥. Suppose n′ is the number of fixed lines through
L ∩ M of H0 which are not in Γ , and note that this number is the same for each of these Sylow
groups. For now, suppose that no two of these groups can fix the same line incident with L ∩ M

not in Γ . Then (np + 1)n′ � t − 1. One also notes that t − 1 − n′ is divisible by p. We now
consider several cases.

(a) t − 1 = n′. Then n = 0, and H0 fixes each line concurrent with L, implying, by definition,
that L is an axis of symmetry. So each line of R is an axis of symmetry, so that S is, again
by definition, a span-symmetric generalized quadrangle. But then [7,12,13] (see also [15, Chap-
ter 7]) imply that H/N ∼= PSL2(p) in its natural permutation representation of degree p + 1,
contradicting the 3-transitive action.

(b) Let p = t − 1 − n′. Then (np + 1)(t − 1 − p) � t − 1 ⇒ t � p + 1 = s + 1, implying
that s = t by the standard divisibility condition of GQs (p � t as S has a subGQ of order (p,1)),
contradiction.

(c) Let mp = t − 1 −n′, m � 2. We suppose that t − 1 = a(p − 1) for some nonzero integer a

(we will show later that this is no restriction)—it follows that a � p + 1. As p(a − m) = n′ + a,
the assumption that a − m � 2 would assert that n′ � p − 1. So n = 1 and t = p2. Suppose
N(H/N)L(H0) is the normalizer of H0 ∼= H0N/N in (H/N)L; then clearly p(p − 1)/2 divides
|N(H/N)L(H0)|. Applying the result of D. Passman quoted in the beginning of this section,
it is easy to see that [(H/N)L]′ = [(H/N)L, (H/N)L] either is a 2-transitive group (so that
(H/N)′ is again 3-transitive), or H/N has a split BN-pair of rank 1. Suppose for now that the
latter is not the case, so that (H/N)L may be assumed to be unsolvable. Then by P.M. Neu-
mann [8], Lemma 3.1 implies that |N(H/N)L(H0)| equals p(p − 1)/2. By [8], we then have that
(H/N)X,Y,Z , where X,Y,Z are three distinct lines in R, has at most two orbits in R \ {X,Y,Z}.
So by Lemma 3.1 precisely two orbits. As |(H/N)X,Y,Z| = (p + 1)/2, it easily follows that
p = 7 or p = 11. The group S8 does not contain 3-transitive subgroups (on 8 letters) of or-
der 8.7.6.4 = 1344 by [1], so p = 7 does not occur. By [1], the only 3-transitive subgroup (on
12 letters) of S12 of order 12.11.10.6 = 7920 is the Mathieu group M11. This permutation group
contains PSL2(11) in its natural action (on 12 letters), so that the main result of [14] implies that
S ∼= Q(5,11). But this quadrangle does not allow M11 to act in this way.

Now suppose that a − m = 1 (a − m > 0!). We know that |H/N | is divisible by (p + 1) ×
p(p − 1)(np + 1)/r , where r divides (n + 1,p − 1). First suppose that H acts semiregularly
on the point set of S \ Γ ; then (p + 1)p(t − 1) is divisible by |N |(p + 1)p(p − 1)(np + 1)/r ,
implying that |N |(p − 1)(np + 1)/r divides t − 1. If r � (n + 1)/2, Higman’s Inequality is
violated unless n = 0 or n = 1. The case n = 1 was already essentially handled, and n = 0 implies
H/N to have a split BN-pair of rank 1. We may assume r = n + 1, so that n + 1 divides p − 1.
Then (p − 1)(np + 1)/(n + 1) divides t − 1 implies that (p − 1)(p + (1 − p)/(n + 1)) divides
t − 1. As t � p2, a contradiction easily follows if n � 2. So n = 0 or n = 1, and we proceed as
before. If the action of H on the point set of S \ Γ is not semiregular, an element θ that fixes a
point not in Γ is contained in N , so that again (p − 1)(np + 1)/r divides t − 1, and we are done.

2 The number of Sylow p-subgroups in (H/N)L is at most np + 1, but by abuse of notation, we will assume that this
number is also np + 1—the intention is to prove that the number of Sylow p-subgroups in (H/N)L is 1.
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Suppose that either p − 1 � | t − 1, or that there are two distinct Sylow p-subgroups Hi and
Hj in HL that fix the same line M not in Γ (meeting L). In the first case, the stabilizer in H of
two distinct lines of R, having a size divisible by p − 1, has some nontrivial element that fixes
some line meeting Γ but not contained in it. So [10, 2.4.1 and 2.2.2] imply that this element fixes
some subGQ of order p pointwise, and t = p2. But then p − 1 | t − 1, contradiction. If we are
in the second case, by a similar argument, 〈Hi,Hj 〉 has such an element fixing a subGQ of order
p pointwise. Moreover, if N ′ ∈ R \ {L}, then each element of 〈Hi,Hj 〉N ′ fixes a subGQ of order
p pointwise, so that |〈Hi,Hj 〉N ′ | = 2, contradicting p > 2.

We have shown that H/N always has a split BN-pair of rank 1.

3.2. H/N has a split BN-pair of rank 1

If a group G has a split BN-pair of rank 1 in its (faithful) action on the set X, where |X| =
s + 1 ∈ N, then G acts as a sharply 2-transitive group on X, or is isomorphic, as a permutation
group, to one of the following: (a) PSL2(s), (b) the Ree group R( 3

√
s), (c) the Suzuki group

Sz(
√

s), (d) the unitary group PSU3(
3√
s2), each with its natural action of degree s + 1 [6,11].

Clearly, only the sharply 2-transitive groups and PSL2(s) turn up here, with s = p. If we are in
the latter case, Theorem 3.1 of K. Thas [14] implies that either S ∼= Q(4,p) or Q(5,p).

3.3. The sharply 2-transitive groups

Put R = {L0,L1, . . . ,Lp}, and let Hi be a Sylow p-subgroup in HLi
.

First suppose that t = p. Then clearly Hi fixes L⊥
i elementwise, so that Li is an axis of

symmetry for each i, and S a span-symmetric generalized quadrangle. But by [13,15], the groups
Hi only generate a sharply 2-transitive group acting on R if p ∈ {2,3}, leading us to the classical
case. As p + 1 = t is not allowed by the standard divisibility condition for GQs, we have p+2 �
t � p2 by Higman’s Inequality.

For now, suppose that |N | = 1 and that S has no broken grids with carriers in R⊥. As H

acts sharply 2-transitively on R, H has a normal regular elementary abelian 2-subgroup A. So
H = HjA for any j .

Suppose that

t − 1

p + 1
= a ∈ N.

Then for a fixed but arbitrary i, Hi fixes at least a lines not in Γ through each point of Li . So Hi

acts regularly on the points not in Γ of these lines. Fix lILi , and suppose MIl is fixed by Hi ,
M /∈ Γ . Then the H -orbit MH has (p + 1)p points not in Γ , and p + 1 lines. Let this point set
be denoted by Ω . Let l �= l′ILi , and take an arbitrary line R incident with l′ and meeting Ω in a
point. Then we show that no nontrivial element of Hi can fix R. If such an element would exist,
Hi fixes R. It now follows that MH and RH are the line sets of a broken grid with carriers the
lines of R⊥ containing l and l′, respectively.

So RHi ∩ Ω consists of a set of p mutually noncollinear points. Note that l′ was essentially
arbitrary, and that this observation is independent of i (it works for all i ∈ {0,1, . . . , p}). As
H = (

⋃
i Hi) ∪ A, it follows easily that all elements of A map points of Ω onto collinear points.

Let o ∈ Ω be arbitrary, as well as α,β ∈ A \ {1}, α �= β . Then o ∼ oα ∼ oαβ , but also o ∼ oαβ , so
o, oα, oβ , oαβ are on the same line. It now easily follows that the points of Ω ∪ lH together with
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the lines of S meeting this point set in at least 2 distinct points, form a subGQ of order (s,1), of

which MH is a regulus. Moreover, A fixes the opposite regulus [MH ]⊥ =: S(M) linewise.
Now let M vary through l (obtaining at least a lines), and also lILi . Then we obtain a(p + 1)

different reguli which are disjoint outside Γ , and fixed linewise by A. So we obtain a(p + 1)p =
(t − 1)p mutually nonconcurrent lines which are all fixed by A. Together with the lines of R⊥,
they form a spread of symmetry with associated group A.

Suppose |N | > 1. If Hi is not a unique Sylow p-subgroup in HLi
, then, using 1.4.1 of [10], one

easily shows that |N | = p + 1 is even. So we suppose now Hi is unique as such. As N ∩Hi = {1}
and N and Hi normalize each other, they commute, so N is in the center Z(H) of H . Suppose
A/N is the regular normal elementary abelian 2-subgroup of H/N as before. As N � Z(A),
A/Z(A) is nilpotent, so A is nilpotent. Hence A has a unique Sylow 2-subgroup U . As UN/N

is abelian,

(UN/N)′ = {1} = U ′N/N,

so U ′ � N . Suppose that U is abelian. As Hi acts naturally on U and (p, |U |) = 1, Maschke’s
Theorem [5] implies that U = CU(Hi) × [U,Hi]. So [U,Hi] is an Hi -invariant subgroup of U

of size p + 1, which is hence normal in H . So [U,Hi]Hi is a subgroup of H which acts sharply
2-transitively on R without a kernel. We are in a previous situation. If U ′ �= {1}, then it follows
that |N | is even.

Now suppose T is a spread of symmetry of S . Then T is a regular spread (meaning that each
two distinct lines of T are contained in a regulus which is part of T), so that counting the number
of reguli in T leads to

(pt + 1)pt

(p + 1)p
∈ N.

So p + 1 divides t (t − 1). Suppose that t − 1 is odd; as p + 1 is a power of 2, p + 1 divides t ,
so (p, t) = 1 by Higman’s Inequality. Now the standard divisibility condition for GQs leads to a
contradiction. So t is odd, and p + 1 divides t − 1.

This concludes the proof of both Theorems 2.1 and 2.2.

4. A class of examples

We now construct a class of examples for the first case.
Consider a generalized quadrangle S of order s > 2, with regular point x, and point set P .

Construct the following incidence structure P(S, x) (see, e.g., [10]) from S :

• POINTS are the points of P \ x⊥;
• LINES are of two types: the lines of S not incident with x, and the hyperbolic lines {x, y}⊥⊥,

y � x;
• INCIDENCE is the natural one.

Then P(S, x) is a GQ of order (s −1, s + 1). When XIx is a regular line, an (s +1)× (s +1)-
grid Γ containing X clearly induces an (s × s)-grid Γ ′ in P(S, x). Now suppose S = W(s), with
s = 2h; then each point and each line of W(s) is regular. Take a line Y � X. Then the symmetries
about X and Y (which are collineations fixing, respectively, X⊥ and Y⊥ linewise), generate a
group G isomorphic to SL2(s) in its natural action of degree s + 1 on {X,Y }⊥⊥ [7,12]; also,
G fixes {X,Y }⊥ elementwise. As G acts sharply 3-transitively on {X,Y }⊥⊥, GX acts sharply
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2-transitively on {X,Y }⊥⊥ \ {X}. Moreover, one notes that each automorphism group of S fixing
x induces an automorphism group of P(S, x).

So, as soon as s − 1 = 2h − 1 is a prime p, we have an example of the third class of Theo-
rem 2.1. A prime p with this property is precisely a Mersenne prime, and there are at least 43
such primes known at present (and thought of to belong to an infinite family), see [4].

In fact, for t = p + 2, the main result and the following theorem show that examples always
essentially arise from such a construction:

Theorem 4.1. (M. De Soete and J.A. Thas [3].) Let S be a GQ of order (s, s + 2), s > 1, with
spread of symmetry T. Then there exists a GQ S ′ of order s + 1 with center of symmetry x, so
that P(S ′, x) ∼= S and T is the set of all lines of the second type.
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