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Abstract

An automorphism of a generalized quadrangle is called domestic if it maps no
chamber, which is here an incident point-line pair, to an opposite chamber. We call
it point-domestic if it maps no point to an opposite one and line-domestic if it maps
no line to an opposite one. It is clear that a duality in a generalized quadrangle is
always point-domestic and line-domestic.

In this paper, we classify all domestic automorphisms of generalized quadrangles.
Besides three exceptional cases occurring in the small quadrangles with orders (2, 2),
(2, 4) and (3, 5), all domestic collineations are either point-domestic or line-domestic.
Up to duality, they fall into one of three classes: either they are central collineations,
or they fix an ovoid, or they fix a large full subquadrangle. Remarkably, the three
exceptional domestic collineatons in the small quadrangles mentioned above all have
order 4.
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1 Introduction

Brown & Abramenko [2] show that every automorphism of an irreducible non-spherical
building has infinite displacement. Their method also gives information about the spher-
ical case. For instance, in the rank 2 case, every automorphism maps some chamber to
a chamber at codistance at most one, and if the diameter of the incidence graph is even
(odd), then any duality (collineation) maps some chamber to an opposite one. For gen-
eralized quadrangles, this shows that dualities behave normally, where ‘normal’ means
that at least one chamber is mapped onto an opposite one. Counterexamples to this nor-
mal behaviour are given in [2], attributed to the third author of this paper, and consist of
symplectic polarities in projective spaces and central collineations in generalized polygons
of even diameter. The goal of this paper is to classify all ‘abnormal’ automorphisms of
generalized quadrangles, which we will call ‘domestic’.

The motivation for this work is to gather more qualitative information about general
collineations in generalized quadrangles. When dealing with collineations, one usually
considers fixed point structures, possibly using Benson’s formulae [3], which gives a re-
lation between the number of fixed points and those mapped onto collinear ones. The
idea of the present paper is to consider also chambers and to offer a complementary look:
what can we say about points, lines and chambers that are mapped onto opposite ones
(which is complementary to the fixed ones). And it turns out that one can classify those
collineations that have no points, lines or chambers like this at all. A useful consequence
is that, given an arbitrary ‘generic’ collineation of a generalized quadrangle, it always
maps some chamber to an opposite one.

A second motivation for this work is given by the result itself. It will turn out that, up
to conjugation, there are precisely three domestic collineations which map some point to
an opposite one, and which map some line to an opposite one. These three collineations
all have order 4 and they act on small generalized quadrangles. Preliminary work on
other generalized polygons shows that in the small cases there again exist such domestic
collineations, and again they have order 4. However, it seems to be difficult to classify
these exceptional domestic collineations in the case of generalized n-gons, with n even and
n ≥ 6. In any case, it is somehow mysterious that all known examples of such exceptional
domestic collineations have order 4 and only appear in small examples.
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2 Preliminaries and statement of the Main Result

We will write down most definitions in the general context of spherical buildings, but we
will only be concerned with a specific class of buildings, namely, generalized quadrangles.
Hence we do not define a building in full generality, but refer to the literature.

Let Ω be a spherical building, and let θ be an automorphism of Ω. We emphasize that θ
need not be type-preserving. Then we call θ domestic if no chamber of Ω is mapped onto
an opposite chamber. More in particular, for a subset J of the type set of Ω, we say that θ
is J-domestic, if θ does not map any flag of type J onto an opposite one. The main result
of Section 5 of [2], also proved earlier by Leeb [5], using entirely different methods, asserts
that every automorphism of any (thick) spherical building is not J-domestic, for some
type subset J . Hence being not J-domestic seems to be the rule, and so it is worthwhile
to look at automorphisms which are J-domestic, for some J .

We now specialize to generalized quadrangles. Recall that a generalized quadrangle is a
point-line incidence structure Γ = (P ,L, I) such that the incidence graph (P ∪ L, I) has
diameter 4 and girth 8. If there are (possibly infinite) parameters s, t such that every line
contains s+ 1 points and every point is incident with t+ 1 lines, then we say that (s, t) is
the order of Γ. If the valency of every vertex in the above graph is at least 3 (in which case
we say that the quadrangle is thick), then Γ automatically admits an order. Interchanging
the roles of points P and lines L is called dualizing, and definitions or properties all have
dual forms, obtained by dualizing.

In a generalized quadrangle, a flag is a point, a line or an incident point-line pair and a
chamber is an incident point-line pair. An element (a point or a line) x of a generalized
quadrangle is opposite an element y if the distance, measured in the incidence graph,
between x and y is equal to 4. Two chambers are called opposite if their points are
opposite and their lines are opposite.

We will call a non-type preserving automorphism a duality and a type preserving automor-
phism a collineation, but as we mentioned before, we only have to consider collineations.

According to the terminology introduced above for spherical buildings, we will call a
collineation which maps no point to an opposite point point-domestic, a collineation which
maps no line to an opposite line line-domestic and a collineation which maps no chamber
to an opposite chamber domestic. Also, if a collineation θ in a generalized quadrangle fixes
all points collinear with a given point x, then we call θ a central collineation or a symmetry
about the point x. Dually, we have axial collineations or symmetries about a line. We use
common terminology such as ‘collinear points’, ‘concurrent lines’, etc. See [6] for more
information and terminology on generalized quadrangles, and [14] for similar definitions
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on generalized polygons. Let us mention that an ovoid of a generalized quadrangle is a
set O of points such that every line of the quadrangle is incident with exactly one element
of O. The dual notion is a spread. A full subquadrangle Γ′ of a generalized quadrangle Γ
is a subquadrangle such that all points of Γ of any line of Γ′ are also points of Γ′. The
dual notion is an ideal subquadrangle.

The following theorem is our main result:

Theorem 2.1 If θ is a domestic collineation of a (not necessarily finite) thick generalized
quadrangle Γ of order (s, t) then we have one of the following possibilities.

(i) θ is either point-domestic or line-domestic.

(ii) (s, t) ∈ {(2, 2), (2, 4), (4, 2)}, θ is neither point-domestic nor line-domestic and θ has
fixed elements; θ has a unique fixed chamber in case (s, t) = (2, 2), a unique fixed
point and three fixed lines incident with it in case (s, t) = (2, 4), and the dual in the
case (s, t) = (4, 2).

(iii) (s, t) ∈ {(3, 5), (5, 3)}, θ is neither point-domestic nor line-domestic, θ has no fixed
elements and maps exactly 48 points to collinear points and 48 lines to concurrent
lines.

Also, if θ is line-domestic, then we have one of the following possibilities.

(i) There are no fixed lines and the fixed points of θ form an ovoid.

(ii) There are fixed lines, but not two opposite ones. Then θ is a central collineation.

(iii) There are two opposite fixed lines and the fixed point-line structure is a full subquad-
rangle Γ′ of Γ with the additional property that every line off Γ′ meets Γ′ in a unique
point. In the finite case this is equivalent with Γ′ having order (s, t/s).

And also, if θ is point-domestic, then we have one of the following possibilities.

(i) There are no fixed points and the fixed lines of θ form a spread.

(ii) There are fixed points, but not two opposite ones. Then θ is an axial collineation.
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(iii) There are two opposite fixed points and the fixed point-line structure is an ideal
subquadrangle Γ′ of Γ with the additional property that every point off Γ′ is incident
with a unique line of Γ′. In the finite case this is equivalent with Γ′ having order
(s/t, t).

The subquadrangles in (iii) above are sometimes called large subquadrangles.

Let us mention a corollary to show the immediate usefulness of our result.

In Phan theory, see for instance [4], the Phan geometry of an involution of a (twin) building
is the geometry induced on the chambers which are mapped onto opposite chambers.
Our main result above characterizes all involutions of generalized quadrangles which have
empty Phan geometry. Since Phan theory deals with Moufang buildings, we state our
corollary in these terms, and refer to the literature for more information on Moufang
quadrangles, see [13, 14]. In particular, a Moufang quadrangle has a characteristic, which
is the characteristic of any underlying field.

Corollary 2.2 Suppose the Phan geometry of an involution θ of a Moufang quadrangle
Γ is empty. Then θ fixes either a geometric hyperplane, or a dual geometric hyperplane.
In particular, if the characteristic of Γ is not equal to 2, then either an ovoid, a spread,
or a large subquadrangle is pointwise fixed.

In more specific cases, we can state this in more detail. For instance, exceptional quad-
rangles do not admit large subquadrangles, and we conjecture that an involution in such
a quadrangle can never fix an ovoid or a spread (this conjecture is supported by the fact
that the existence of such a fixed ovoid or spread would imply the existence of a yet
unknown Moufang set of algebraic nature, which is highly unlikely). Also, the geometric
hyperplanes of the embeddable Moufang quadrangles (the ‘classical’ ones) are obtained
by intersecting with a hyperplane of the ambient projective space related to the ‘universal
embedding’.

Before embarking on the proof of Theorem 2.1, we comment on the situation in other types
of buildings. For projective spaces, domestic collineations and dualities are completely
classified in [9]. The result is that the only domestic duality is a symplectic polarity, and a
collineation in an n-dimensional projective space is domestic if and only if it pointwise fixes
a subspace of dimension at least n+1

2 . For polar spaces, there is only a full classification
available in the case of rank 3. This, and partial results in arbitrary rank, can be found
in [10]. For other types of spherical buildings, nothing is known, except for generalized
n-gons with n odd, where one can show that no domestic collineation or dualities exist at
all (see [7]) .
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3 The generic case

We shall prove Theorem 2.1 in a sequence of lemmas and propositions. In this section,
we will focus on the generic case. So we exclude the small cases that will provide the
exceptional examples. However, the small examples will be excluded in different circum-
stances, and this will enable us to give some general information about the exceptional
cases, which we will then use in the next section.

Throughout, let θ be a domestic collineation of a generalized quadrangle Γ with order
(s, t). Our first big aim is to prove the following proposition.

Proposition 3.1 If (s, t) /∈ {(2, 2), (2, 4), (4, 2), (3, 5), (5, 3)}, then θ is either point-domestic
or line-domestic. Also, if θ is neither point-domestic nor line-domestic and has fixed ele-
ments, then (s, t) ∈ {(2, 2), (2, 4), (4, 2)}. If θ is neither point-domestic nor line-domestic
and has no fixed elements, then (s, t) ∈ {(3, 5), (5, 3)}.

We will prove this proposition in a few lemmas.

Lemma 3.2 Suppose that t ≥ 3, and that s ≥ 7. If a line X is mapped onto an opposite
line X ′, then {X, X ′}⊥ is fixed elementwise. Also, θ is point-domestic.

Proof Suppose a line X is mapped onto an opposite line X ′ and some element Y
concurrent with both X, X ′ is not fixed. We note that every point p on X is mapped
onto projX′p. Hence the intersection x := X ∩ Y is mapped onto x′ := X ′ ∩ Y , and so
Y θ is incident with x′. We assume, by way of contradiction, that Y θ &= Y . Hence, every
point on Y distinct from x and from x′ is mapped onto an opposite point. Let y be such a
point. Since θ is domestic, every line through y is mapped onto a concurrent line. Choose
three such lines L1, L2, L3, all distinct from Y . On Li, i ∈ {1, 2, 3}, there is a unique point
zi that is mapped onto the intersection Li ∩ Lθ

i (and since yθ &= y, we have Li &= Lθ
i , so

that the intersection is well defined). Let z′i be the projection of zi onto X, i ∈ {1, 2, 3}.
Note that, applying θ, projX′z′i is collinear to both xθ = x′ and zθ

i . Since s ≥ 7, there
exists a point w on X distinct from x, z′1, z

′
2, z

′
3, projXzθ

1 , projXzθ
2 , projXzθ

3 . Let wi be the
projection of w onto Li, i ∈ {1, 2, 3}. Then wθ

i is opposite wi. Hence the image of the
line wwi, i = 1, 2, 3, is concurrent with the line wwi, contradicting the fact that at most
two lines through w are mapped onto a concurrent one (namely, the line through w and
wθ, and the preimage of that line).

Suppose now that some point v is mapped onto an opposite point vθ. Let v′ be the
projection of v onto X. Since v′ is mapped onto a collinear but distinct point, and since
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vv′ is not fixed, we see that vv′ is mapped onto an opposite line, contradicting domesticity
of θ. !
This lemma together with its dual proves Proposition 3.1 except for the cases (s, t) ∈
{(2, 2), (2, 4), (3, 3), (3, 5), (4, 4), (4, 6), (5, 5), (6, 6)} (up to duality).

The following lemma makes some progress for the bigger values of s and t in the foregoing
list, and shows that there are no fixed elements in the cases (s, t) ∈ {(3, 5), (5, 3)}.

Lemma 3.3 Suppose that Γ is finite and that θ has fixed elements. Suppose also that θ
is neither point-domestic nor line-domestic. Then either s = 2 or t = 2. If (s, t) = (2, 2),
then θ has a unique fixed point and a unique fixed line (both incident with each other). If
(s, t) = (4, 2), then θ fixes a unique line and exactly three points incident with that line.

Proof Suppose θ is neither point-domestic nor line-domestic and suppose that θ fixes
at least one point x. Then there exists a line X which is mapped onto an opposite line
X ′. Because the projection x′ := projXx is collinear with its image x′θ, it is easy to see
that x is incident with the line Y := x′x′θ. Hence the line Y is fixed (which will allow us
below to use the dual arguments of what follows). Suppose first that all lines concurrent
with X and X ′ are fixed. We assumed that θ is not point-domestic, hence there exists a
point p which is mapped to an opposite point. This point can not lie on one of the fixed
lines which are concurrent with X and X ′. Consider the point p′ := projXp. The line pp′

would be mapped to an opposite line and we obtain a flag {p, pp′} which is mapped to
an opposite flag, a contradiction. Hence we can assume that there is a line Z, concurrent
with X and X ′ which is not fixed. Because the points on this line, not incident with X or
X ′ are mapped to opposite points, it follows that every point y on Y , not incident with X
or X ′, is fixed. Otherwise, the flag {projZy, 〈y, projZy〉} would be mapped to an opposite
flag.

If s = 2, then we know that t ∈ {2, 4} and all lines are regular. This implies that
exactly one line meeting both X and X ′ is fixed, and so, there is a unique fixed point. If
(s, t) = (2, 2), then also the dual holds and we obtain a unique fixed point and a unique
fixed line, incident with one another.

If (s, t) = (4, 2), then the duals of the previous arguments imply that there is a unique
fixed line, which can be taken as Y . Then Y contains exactly 3 fixed points. As there are
no further fixed lines, there are neither further fixed points.

From now on, we may assume that s ≥ 3 and t ≥ 3 and we aim for a contradiction. Hence
there exists a line M through X ∩ Z different from X, Z and Zθ−1

. This line is mapped
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to an opposite line through X ′ ∩ Z. Let y′ be the projection of a point y of Y onto M .
The image of y′ is a point y′θ on M θ which is collinear to y′. Hence the line yy′ is fixed.
By equivalent reasons as before every point z on yy′ different from y′ and y′θ is fixed. If z′

is the point of X collinear with z, then zz′ ∈ {X, X ′}⊥ is fixed. Hence exactly s− 1 ≥ 2
lines of {X, X ′}⊥ are fixed under θ. Let U be one of these, U &= Y .

If a line L through x is not fixed, then all points of L except for x are mapped onto
opposites. Hence, since θ is domestic, the line U ′ through X ∩ U and concurrent with L
must be mapped onto a concurrent line. Since U is fixed, U ′ must necessarily coincide
with U . Hence U ′ is fixed, and so is L, a contradiction.

Because x was an arbitrary fixed point, it follows that every line through every fixed
point is fixed. Hence we obtain a fixed subquadrangle of order (s − 2, t). Dually, this
subquadrangle must also have order (s, t− 2), a contradiction. !

Lemma 3.4 Suppose that (s, t) ∈ {(2, 2), (2, 4), (3, 3), (4, 2), (4, 4), (4, 6), (5, 5), (6, 4), (6, 6)}
and that there are no fixed elements, then θ is the identity.

Proof If by way of contradiction θ is not the identity, then there is at least one element
which is mapped to an opposite. So up to duality we may assume that there exists a
line X which is mapped onto an opposite line X ′. We will first count the number of
points which are mapped to a collinear point. For every point p on X there are t−1 lines
through p (including X) which are mapped to opposite lines. Hence all the points on these
lines should be mapped to collinear points. On each of the two remaining lines through p,
there are exactly two points which are mapped to collinear ones (twice including p). Hence
2(s−1) points collinear to p are mapped to opposite ones. Hence there are (s+1)2(s−1)
points which are mapped to opposite points and (s + 1)(t − 2)s + 3(s + 1) points which
are mapped to collinear points. Dually the number of lines mapped to opposite lines is
equal to 2(t2 − 1). We will now calculate this number in a different way.

We count the number of flags {y, Y } which are mapped to a flag {y, Y }θ where Y and Y θ

are opposite lines and y and yθ are collinear points. Suppose that n is the number of lines
which are mapped to an opposite line. Then there are n(s + 1) such flags. We can also
count these flags as follows. There are (s + 1)(t− 2)s + 3(s + 1) points which are mapped
to a collinear point, through each of these points there are t− 1 lines which are mapped
to an opposite line. Hence n(s + 1) should be equal to ((s + 1)(t− 2)s + 3(s + 1))(t− 1)
and hence n = ((t− 2)s + 3)(t− 1).

Combining the two previous paragraphs we obtain 3t+2s+ st2 = 3st+2t2 +1. If (s, t) ∈
{(2, 2), (2, 4), (3, 3), (4, 2), (4, 4), (4, 6), (5, 5), (6, 4), (6, 6)}, we obtain a contradiction. !
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The last identity of the previous proof is fulfilled for both (s, t) = (3, 5) and (s, t) = (5, 3).
This is rather surprising, as the identity is far from being symmetric in s and t. Yet, the
right exceptions emerge! Moreover, the previous proof shows that a domestic collineation
in a quadrangle of order (3, 5) which is neither point- nor line domestic must have exactly
(s + 1)(t − 2)s + 3(s + 1) = 48 points mapped to a collinear point. This observation
completes the proof of the fact that domestic collineations of generalized quadrangles
which are neither point-domestic nor line-domestic can only exist for orders (2, 2), (2, 4)
and (3, 5), up to duality. Moreover, taking account of Lemma 3.3, in the first case there
is a unique fixed chamber, in the second case there is a unique fixed point and exactly
three fixed lines, and in the last case there are no fixed elements and precisely 48 points
mapped onto collinear ones and hence also 48 lines mapped to concurrent ones.

Now we investigate what happens if θ is line-domestic.

Lemma 3.5 If no line is mapped onto an opposite line, then we have one of the following
possibilities.

(i) There are no fixed lines and the fixed points of θ form an ovoid.

(ii) There are fixed lines, but not two opposite ones. Then θ is a central collineation.

(iii) There are two opposite fixed lines and the fixed point-line structure is a full subquad-
rangle Γ′ of Γ with the additional property that every line off Γ′ meets Γ′ in a unique
point. In the finite case this is equivalent with Γ′ having order (s, t/s).

Proof Suppose a line L is not fixed. Then there is a unique point x in the intersection
of L and Lθ. If x were not fixed, then every line distinct from L and Lθ and incident with
x would be mapped onto an opposite line, a contradiction. Hence x is fixed.

So, if no line is fixed, then every line is incident with a unique fixed point, and hence
these form an ovoid.

Suppose now that there is at least one fixed line L and all fixed lines are concurrent and
incident with some point z. Note that every point on any fixed line is a fixed point,
as otherwise some line concurrent with that fixed line is mapped onto an opposite line.
Suppose now that some line M concurrent with L is not fixed. Then every point x on M ,
not on L, is mapped onto an opposite point xθ, and so every line through x is mapped
onto a concurrent line. This implies the existence of a fixed point u off L, and hence of
a fixed line L′ different from L, but concurrent with it in the point z (by assumption).
Note that M cannot be incident with z, as x and xθ are both collinear with u, and u is
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collinear with z. In particular, it follows that all lines through z are fixed, and that we
have a central collineation with center z.

If L and M are two opposite fixed lines, then, in view of the fact that every point on
every fixed line is fixed, we see that the fixed point structure is a full subquadrangle Γ′.
If some line off Γ′ did not meet Γ′, then it would be mapped onto an opposite line (as
otherwise the intersection with its image is fixed and belongs to Γ′ by definition of Γ′).
In the finite case, it follows from [11] and [12] that Γ′ has order (s, t/s).

The lemma is proved. !
Combining the previous lemmas and their duals, we see that Theorem 2.1 is proved, up
to the exceptional cases, which we will treat in the next section.

4 Domestic collineations of the generalized quadran-
gles of order (2,2), (2,4) and (3,5)

The restrictions that we assume are justified by arguments in the previous section. It
turned out that these are the only cases in which domestic collineations that are neither
point-domestic nor line-domestic can exist (we call these exceptional domestic collineations).

The methods that we use are far from uniform. We usually just pick a convenient de-
scription of the quadrangle in question and start arguing. The fact that all exceptional
domestic collineations have order 4 suggests that there might be a uniform approach, but
so far we have not been able to find one. Concerning the orders (2, 2) and (2, 4), our
previous results imply that exceptional domestic collineations must live in the stabilizer
of a flag, which is in both cases a 2-group, and so this hints at order 4 (as no involution
can have the given fixed point structure). We could use this in the proof of the next
lemma, but a direct approach is not much longer and provides an explicit description.

Lemma 4.1 Suppose Γ has order (2, 2), then up to conjugation there is exactly one do-
mestic collineation which is neither point-domestic nor line-domestic and which fixes ex-
actly one point and one line. It has order 4.

Proof We will use the following model of the generalized quadrangle of order (2, 2), see
Chapter 6 of [6]. The points are pairs {i, j}, i &= j and i, j ∈ {1, 2, 3, 4, 5, 6}. The lines are
partitions {{i, j}, {k, l}, {m, n}}, where {i, j, k, l, m, n} = {1, 2, 3, 4, 5, 6}. The incidence
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relation is given by inclusion. The full automorphism group is given by the natural action
of the symmetric group S6.

By assumption, we may assume that θ fixes the point {5, 6}. It is easy to see that the
only permutations in S6 fixing the pair {5, 6} and not any other pair, are conjugate to
the permutations (1 2 3 4), (1 2 3)(5 6) and (1 2 3 4)(5 6). But the second permutation
does not fix any line (contradicting our assumption), while the first one maps the flag
{{1, 2}, {{1, 2}, {3, 5}, {4, 6}}} to the opposite flag {{2, 3}, {{2, 3}, {4, 5}, {1, 6}}}. Also,
one easily checks that (1 2 3 4)(5 6) satisfies the given conditions. !

Lemma 4.2 Suppose Γ has order (2, 4), then up to conjugation there is exactly one do-
mestic collineation which is neither point-domestic nor line-domestic and which fixes ex-
actly one point and three lines. It has order 4.

Proof We will use the following model of the generalized quadrangle of order (2, 4),
see Chapter 6 of [6]. The points are pairs {i, j}, with i &= j and i, j ∈ {1, 2, 3, 4, 5, 6}, and
the symbols 1, 2, 3, 4, 5, 6 and 1′, 2′, 3′, 4′, 5′, 6′. The lines are triples {{i, j}, {k, l}, {m, n}},
where {i, j, k, l, m, n} = {1, 2, 3, 4, 5, 6}, and triples {i, {i, j}, j′}, where i, j ∈ {1, 2, 3, 4, 5, 6},
i &= j. Incidence is given by inclusion.

By assumption, we know that θ fixes exactly one point and three lines incident with
that point. So we may assume that the point {5, 6} is fixed, and that also the lines
{5, {5, 6}, 6′}, {6, {5, 6}, 5′} and {{5, 6}, {1, 3}, {2, 4}} are fixed. Then θ interchanges the
points 5 and 6′ and the points 6 and 5′. We now claim that the size of the orbit of {1, 2}
under θ is 4. If not, then θ2 fixes all points of {5, 6}⊥. Take a point x /∈ {5, 6}⊥. Then
xθ2

is collinear with all points of {{5, 6}, x}⊥, hence x = xθ2
and hence θ2 = 1. Now take

a line L on {1, 2} which is not incident with {5, 6}. The image Lθ of L is incident with
the point {1, 2}θ which is opposite {1, 2}, hence, because θ is domestic, the lines L and
Lθ are concurrent. If y is the intersection of L and Lθ, then it follows that yθ = y, a
contradiction. Consequently we may assume, possibly by substituting θ with its inverse,
that

θ : {1, 2} *→ {2, 3} *→ {3, 4} *→ {1, 4} *→ {1, 2}.

But now θ is completely determined, as every point x opposite {5, 6} is itself determined by
the trace {{5, 6}, x}⊥. For instance, the point 1 is collinear with {6′, 5′, {1, 3}, {1, 2}, {1, 4}}
which is mapped to {5, 6, {2, 4}, {2, 3}, {1, 2}}, and this set equals {{5, 6}, 2′}⊥. One ob-
tains that θ is naturally induced by the permutation ϕ := (1 2 3 4)(5 6) (in the sense
that the image of the point {a, b}, a &= b, under θ is the point {aϕ, bϕ}, and the images of
the points a and b′ under θ are (aϕ)′ and bϕ, respectively, for all a, b ∈ {1, 2, . . . , 6}), and

11



one observes that the collineation induced by the permutation (2 4) conjugates θ into its
inverse. One easily checks that θ satisfies the conditions, which completes the proof of
the lemma. !
The following lemma belongs to folklore, but we provide a short proof for the sake of
completeness.

Lemma 4.3 Let O be a hyperoval in PG(2, 4). Let θ be a collineation of PG(2, 4) pre-
serving O. Then the companion field automorphism of θ is trivial if and only if the
permutation induced on O by θ is even.

Proof It is well known that the stabilizer ofO in PΓL3(4) is isomorphic to the symmetric
group S6, with natural action on O. Since S6 has a unique subgroup of index 2 — which
is the alternating group A6 — and since the intersecion of S6 with the subgroup PGL3(4)
of index 2 of PΓL3(4) is a subgroup of index at most 2 in S6, it suffices to prove that at
least one element of S6 does not belong to PGL3(4). But this is easy: any collineation of
PG(2, 4) inducing a transposition on O fixes pointwise a quadrangle, and hence must be
a Baer involution.

The lemma is proved. !

Lemma 4.4 Suppose Γ has order (3, 5), then up to conjugation there is exactly one do-
mestic collineation which is neither point-domestic nor line-domestic, which has no fixed
elements and for which exactly 48 points are mapped onto collinear points and 48 lines
are mapped onto concurrent lines. It has order 4.

Proof We use the following model of the generalized quadrangle of order (3, 5), see
Chapter 6 of [6]. The points are the points of a 3-dimensional affine space AG(3, 4) over
GF(4). The lines are the lines of AG(3, 4) which meet the plane at infinity π in a point of
a fixed hyperoval O. Introducing coordinates X1, X2, X3, X4 in the projective completion
PG(3, 4) of AG(3, 4), we may assume that π has equation X4 = 0, and that the coordinates
of the points of the hyperoval O are (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (1, 1, 1, 0), (1, ε, ε2, 0)
and (1, ε2, ε, 0), where GF(4) = {0, 1, ε, ε2}.
Suppose θ satisfies the assumptions of the lemma. By [1, Section 3], θ is induced by a
collineation of PG(3, 4) stabilizing O. Hence θ induces a permutation of O. If it fixes
some point x of O, then, since θ does not fix any line of Γ, and the lines through x are
mutually opposite, θ must map every point to a collinear point, a contradiction.
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Hence θ induces a fixed point free permutation on O. Since it also acts fixed point freely
on AG(3, 4) without cycles of length 2 (such a cycle of collinear points would imply a fixed
line, such a cycle of non-collinear points would imply that all points collinear to both of
these are fixed), the action on O must have order 2 or 4.

Suppose first that the action of θ on O has order 4. Then because of the foregoing lemma
the companion field automorphism of θ is the identity (indeed, the action on O is an even
permutation). So, up to conjugation, the matrix of θ has the form





0 1 0 0
0 0 1 0
1 1 1 0
a b c d



.

If d &= 1, then this matrix has an eigenvector belonging to the eigenvalue d, which gives
rise to a fixed point in Γ. Hence d = 1. Let L be a line of Γ containing the point (1, ε, ε2, 0)
at infinity. Then this line contains at most one point x with the property that xθ belongs
to L. Since by the observation just after Lemma 3.4 the collineation θ maps 48 points to
collinear points, there are at most 32 points x with xxθ a line of Γ through one of (1, ε, ε2)
and (1, ε2, ε). Consequently, there is at least one point y with yyθ a line of Γ through
(1, 0, 0, 0). We may choose the coordinates of y equal to (0, 0, 0, 1), and those of yθ equal
to (1, 0, 0, 1). Hence a = d = 1 and b = c = 0 in the above matrix. But now the flag
{(1, 0, 0, ε), M}, with M the line through (1, 0, 0, ε) and (0, 1, 0, 0), is mapped onto the
opposite flag {(1, ε2, 0, 1), M θ}, with M θ the line through (1, ε2, 0, 1) and (0, 0, 1, 0).

Hence θ induces a fixed point free involution on O. It follows that the companion field
automorphism is nontrivial this time, and we may assume that the matrix of θ has the
form





1 1 1 0
0 0 1 0
0 1 0 0
a b c d



.

We may assume that the point (0, 0, 0, 1) is mapped onto a collinear point, for which we
may take without loss of generality the coordinates (1, 0, 0, 1). Hence a = d and b = c = 0.
The cases d = ε and d = ε2 are equivalent by conjugating with the map that squares each
coordinate of every point. But if a = d = ε, then θ would map the flag

{(ε, 0, 0, 1), 〈(ε, 0, 0, 1), (0, 1, 0, 0)〉}
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onto the opposite flag

{(1, ε2, ε2, ε), 〈(1, ε2, ε2, ε), (0, 0, 1, 0)〉},

a contradiction. Hence θ is given by

θ : (x1, x2, x3, x4) *→ (x2
1, x

2
2, x

2
3, x

2
4)





1 1 1 0
0 0 1 0
0 1 0 0
1 0 0 1



 .

This shows the uniqueness part of the lemma. To show existence, we need to show that θ
as given above is domestic, since it is clearly not point-domestic nor line-domestic. Also,
one can check with an elementary calculation that θ does not fix any point of Γ.

One sees that θ2 fixes π pointwise, and it also fixes all lines through the point (0, 1, 1, 0).
Hence, since θ fixes exactly three lines through (0, 1, 1, 0) in π, and also at least one line
off π (for instance the line 〈(0, 1, 1, 0), (ε, 0, 0, 1)〉), it fixes exactly seven lines through
(0, 1, 1, 0), and these seven lines form a Baer subplane in the projection from (0, 1, 1, 0).
It follows that every point x of AG(3, 4) is contained in at least one plane β through
(0, 1, 1, 0) and fixed under θ. Suppose that x does not lie on one of the two affine fixed
lines of β. Let o1 and o2 be the two points of O in β. Consider the line xo1. Then both
(xo1)θ and (xo1)θ−1

contain o2 and must meet xo1 in one of the two points of xo1 not lying
on a fixed line, as otherwise this intersection point would be fixed under θ, a contradiction.
But it is easy to see that both possibilities lead to xθ being collinear to x in Γ, since xxθ

contains either o1 or o2. Hence if xθ is opposite x, then x is incident with a fixed line K of
AG(3, 4) through (0, 1, 1, 0). But then, for an arbitrary point o in O, the line xo intersects
the line xθoθ, since both are contained in the same plane 〈x, o, (0, 1, 1, 0)〉. This shows the
assertion. !
Now Theorem 2.1 is completely proved.

Remark 4.5 In the last paragraph of the previous proof, we established that θ2 is a
translation in AG(3, 4) with center (0, 1, 1, 0) at infinity. Since this point is not in the
hyperoval, θ2 maps every flag to an opposite one. Hence θ2 is an involution without fixed
elements. This is rather rare for finite generalized quadrangles, as this can never happen in
any finite classical generalized quadrangle. Indeed, in this case the parameters s and t are
not relatively prime, and it is noted in [8] that under this assumption, a result of Benson
[3] implies that every involution has fixed elements. Our example shows the necessity of
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that assumption (in fact, an analogous example exists for all generalized quadrangles of
type T ∗

3 (O), with O a hyperoval in a finite projective plane; for the precise definitions,
see [6]).

It can also be shown directly from the data gathered in Section 3 that the square of any
exceptional domestic collineation without fixed elements maps every flag onto an opposite
one.

Acknowledgment. We would like to thank the anonymous referee for various interesting
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Monographs in Mathematics 93, 1998.

16


