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Abstract

For already many years now one of the most important open problems in the
theory of generalized quadrangles is whether other classes of generalized quadrangles
exist besides those that are currently known. This paper reports on an unsuccess-
ful attempt to construct a new generalized quadrangle. As a by-product of our
attempt, we however obtain the following new characterization result: every gen-
eralized quadrangle of order 5 that has at least one regular point is isomorphic
to the quadrangle W (5) arising from a symplectic polarity of PG(3, 5). During
the classification process we used the computer algebra system GAP to do certain
computations or to experiment about an optimal strategy for the proof.
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1 Introduction

A partial linear space Q is called a generalized quadrangle of order (s, t) for some s, t ∈
N∗ := N \ {0} if the following three properties hold:

(1) every line is incident with precisely s+ 1 points;

(2) every point is incident with precisely t+ 1 lines;

(3) for every line L and every point x not incident with L, there exists a unique point
on L collinear with x.

If s = t, then the generalized quadrangle Q is also said to be of order s. Generalized
quadrangles were introduced by Jacques Tits in [19].

Suppose Q is a generalized quadrangle of order (s, t) with point set P . For every point
x of Q, we denote by x⊥ the set of all points of Q collinear with x (including the point x
itself). If X is a set of points of Q, then we define X⊥ :=

⋂
x∈X x

⊥ and X⊥⊥ := (X⊥)⊥,
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hereby following the convention that ∅⊥ = P . A hyperbolic line of Q is any set of the
form {x, y}⊥⊥ where x and y are two noncollinear points of Q. Every hyperbolic line of
Q has size at most t + 1. If all hyperbolic lines through a point x of Q have size t + 1,
then x is called a regular point.

Let ζ be a symplectic polarity of PG(3, q). Let W (q) denote the subgeometry of
PG(3, q) defined by those points and lines of PG(3, q) that are totally isotropic with
respect to ζ. Then W (q) is a generalized quadrangle of order q all whose points are regular.
The generalized quadrangle W (q) is called a symplectic quadrangle. The following is the
main result of this paper.

Theorem 1.1 Every generalized quadrangle of order 5 having at least one regular point
is symplectic.

As Theorem 1.1 indicates, the current paper is concerned with the problem of clas-
sifying all GQ’s of order (s, t) for some specific values of s and t. In the literature, a
complete classification of all GQ’s of order (s, t) has been obtained whenever s ∈ {1, 2, 3},
t ∈ {1, 2, 3} or (s, t) = (4, 4), see [8, 13, 14, 15]. The GQ’s with the smallest number of
points for which the mentioned classification problem is still unsolved are those for which
the order is equal to (4, 6) or (5, 5) (respectively corresponding to 125 and 156 points).
Theorem 1.1 gives a complete classification of those GQ’s of order (5, 5) that contain at
least one regular point. Theorem 1.1 is equivalent with the statement that every gener-
alized quadrangle of order (4, 6) having a regular spread is isomorphic to the GQ AS(5)
(see Section 2.1 for definitions).

Theorem 1.1 is also concerned with the problem of characterizing symplectic GQ’s by
means of suitable sets of regular points. One of the earliest combinatorial characterizations
of GQ’s ([2, 16, 17], [15, 5.2.1]) states that every GQ of order s ≥ 2 for which every point
is regular is symplectic (and so s is a prime power). In [5], the author showed that a GQ
of order s ≥ 2 is symplectic as soon as there is some hyperbolic line that entirely consists
of regular points. Other characterizations of symplectic GQ’s in terms of suitable sets of
regular points can be found in [15] (see Theorems 1.3.6, 5.2.5 and 5.2.6). In [18, Theorem
4.3], it was shown that a generalized quadrangle of order s ≥ 2 is symplectic as soon as
there are two noncollinear regular points x and y such that the projective plane πx (as
defined in Section 2.1) is Desarguesian. This implies that every generalized quadrangle of
order 5 is symplectic as soon as there are two noncollinear regular points ([18, Corollary
4.4]). Theorem 1.1 improves this by saying that the existence of one regular point is
already sufficient. Note that this cannot be further improved. The GQ Q(4, 5), which is
the point-line dual of W (5), is nonisomorphic to W (5) and has no regular points at all. In
fact, there is a conjecture in the area of generalized quadrangles which states that every
GQ of order 5 is isomorphic to either W (5) or Q(4, 5).
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2 Preliminaries

2.1 Further notions regarding GQ’s

Let Q be a generalized quadrangle (GQ) of order (s, t), where s, t ∈ N∗. If L1 and L2 are
two disjoint lines of Q, then {L1, L2}⊥ denotes the set of all lines meeting L1 and L2, and
{L1, L2}⊥⊥ denotes the set of all lines meeting every line of {L1, L2}⊥. A spread of Q is
a set S of lines having the property that every point of Q is incident with a unique line
of S. A spread S of Q is called regular if for every two distinct lines L1, L2 ∈ S, the set
{L1, L2}⊥⊥ has size s+1 and is contained in S. A spread S is called a spread of symmetry
if for every line L ∈ S and all l1, l2 ∈ L, there exists an automorphism of Q fixing each
line of S and mapping l1 to l2. Every spread of symmetry is a regular spread. If S is a
spread of a GQ of order (s, t) with t 6= 1, then by [3, Theorem 4.1]), there are at most
s+ 1 automorphisms of Q that fix each line of S, and equality holds if and only if S is a
spread of symmetry.

If x is a point of a GQ Q of order (s, t) with s > 1, then there are at most t au-
tomorphisms of Q that fix each point of x⊥, see [15, 8.1]. If there are precisely t such
automorphisms, then x is called a center of symmetry. Every center of symmetry is a
regular point.

If x is a regular point of a GQ of order s ≥ 2, then the geometry defined on x⊥ by the
sets {y1, y2}⊥⊥ where y1 and y2 are two distinct points of x⊥ is a projective plane πx of
order s, see e.g. [15, 1.3.1].

From every GQ Q of order s > 1 having a regular point x, a GQ P(Q, x) of order
(s− 1, s + 1) can be derived, see [11, Theorem 5.1] or [15, 3.1.4]. This new GQ is called
the expansion of Q about x. The points of P(Q, x) are the points of Q noncollinear with
x and the lines of P(Q, x) are on the one hand the lines of Q nonincident with x and
on the other hand the hyperbolic lines through x (natural incidence). The set S(Q, x) of
all hyperbolic lines through x is a regular spread of P(Q, x). By De Soete and Thas [7,
Theorems 2.7 and 2.8], this regular spread is a spread of symmetry if and only if x is a
center of symmetry. By [12, Theorem 1.1], for every GQ Q′ of order (s− 1, s+ 1), s ≥ 2
having a regular spread, there exists a generalized quadrangle Q of order s and a regular
point x in Q such that Q′ ∼= P(Q, x).

As told before, all points of the symplectic GQ W (q) are regular. As the automorphism
group ofW (q) is point-transitive there is essentially one GQ that arises by expandingW (q)
about one of its points. This GQ, which we denote here by AS(q), was first constructed
by Ahrens and Szekeres [1] and (only for q even) by Hall [10].

2.2 Generalized admissible triples

Definition 2.1 Let s, t ∈ N∗. A Steiner system of type S(2, s + 1, st + 1) is a point-line
geometry (P ,B) having precisely st + 1 points, s + 1 points on each line and a unique
line through every pair of distinct points. Every point of such a Steiner system is incident
with precisely t lines.
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Definition 2.2 A generalized admissible triple (GAT for short) is a triple T = (S, X,∆)
for which:

• X is a finite set whose size s+ 1 := |X| is at least 2.

• S is a Steiner system of type S(2, s+ 1, st+ 1) for some t ∈ N∗.

• If P denotes the point set of S, then ∆ is a map from P ×P to Sym(X) satisfying
the following:

(GAT1) if p, q and r are collinear, then ∆(p, q) ·∆(q, r) = ∆(p, r);

(GAT2) if p, q and r are not collinear, then the permutation ∆(p, q) · ∆(q, r) · ∆(r, p)
has no fixpoints.

Above, Sym(X) denotes the group of all permutations of X and we follow the convention
here that xσ1σ2 = (xσ1)σ2 for all x ∈ X and all σ1, σ2 ∈ Sym(X). We denote the trivial
permutation of X by 1. If T = (S, X,∆) is a GAT, then by putting successively q = p
and r = p in (GAT1), we see that ∆(p, p) = 1 and ∆(q, p) = ∆(p, q)−1 for every two
points p and q of S. Generalized admissible triples were introduced in [5].

Proposition 2.3 ([5, Theorem 7]) Let S1 = (P1,B1) and S2 = (P2,B2) be two isomor-
phic Steiner systems and X1, X2 two sets of the same cardinality. Let α be an isomorphism
between S1 and S2 and for every point p of S1 let θp be a bijection between X1 and X2.
Suppose T1 = (S1, X1,∆1) is a GAT for a certain map ∆1 : P1 × P1 → Sym(X1). Then
also T2 = (S2, X2,∆2) is a GAT, where ∆2 is the map from P2 ×P2 to Sym(X2) defined
by

∆2(pα, qα) := θ−1
p ∆1(p, q)θq, ∀p, q ∈ P1.

Definition 2.4 We say that two GAT’s T1 = (S1, X1,∆1) and T2 = (S2, X2,∆2) are
equivalent if there exists an isomorphism α from S1 to S2 and bijections θp : X1 → X2 for
points p of S1 such that ∆2(pα, qα) = θ−1

p ∆1(p, q)θq for all points p and q of S1.

2.3 GQ’s from GAT’s

Proposition 2.5 ([5, Theorem 4]) Suppose T = (S, X,∆) is a GAT where S = (P ,B)
is a Steiner system of type S(2, s + 1, st + 1). Let Γ be the simple graph with vertex set
X × P, where two distinct vertices (x1, p1) and (x2, p2) are adjacent whenever either

(a) p1 = p2 and x1 6= x2, or

(b) p1 6= p2 and x2 = x
∆(p1,p2)
1 .

Then Γ is the collinearity graph of a GQ QT of order (s, t). For every point p of S, the
set Lp := {(x, p) |x ∈ X} is a line of QT and the set ST of all lines obtained in this way
is a regular spread of QT .
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Definition 2.6 For every GAT T , we define Ω(T ) := (QT , ST ), where QT and ST are
as in Proposition 2.5.

Definition 2.7 Let Q1 and Q2 be two generalized quadrangles and let Si, i ∈ {1, 2}, be
a regular spread of Qi. Then (Q1, S1) and (Q2, S2) are said to be equivalent if there exists
an isomorphism from Q1 to Q2 mapping S1 to S2.

Proposition 2.8 ([5, Theorem 6]) Let Q be a generalized quadrangle of order (s, t)
having a regular spread S. Then there exists a GAT T such that Ω(T ) is equivalent with
(Q, S).

Proposition 2.9 ([5, Theorem 8]) Let T1 and T2 be two GAT’s. Then Ω(T1) and Ω(T2)
are equivalent if and only if T1 and T2 are equivalent.

2.4 Admissible triples

Definition 2.10 A GAT T = (S, X,∆) is called an admissible triple (AT for short) if
there exists a binary operation · on X such that

(AT1) (X, ·) is a group;

(AT2) x−1 · x∆(p1,p2) only depends on the points p1 and p2 of S and not on the element x
of X.

Now, let G denote the subgroup of Sym(X) consisting of the elements σy, y ∈ X, where
each σy maps the element x ∈ X to the element x ·y ∈ X. If p1 and p2 are two points of S,
then putting xp1,p2 := x−1 ·x∆(p1,p2) (with x ∈ X arbitrary), we see that x∆(p1,p2) = x·xp1,p2
for every x ∈ X, showing that ∆(p1, p2) ∈ G. The conditions (GAT1) and (GAT2) can
thus be replaced by the following condition: three points p, q and r of S are collinear if
and only if xpq ·xqr = xpr. This shows that the definition of AT as given here is equivalent
with the definition of admissible triple as given in [3]. Indeed, in [3] this notion was
defined as a triple (S, G,∆) satisfying:

• G is a nontrivial finite group;

• S is a Steiner system of type S(2, s+ 1, st+ 1) where s := |G| − 1 and t ∈ N∗;

• if P denotes the point set of S, then ∆ is a map from P × P to G such that if
x, y, z ∈ P , then x, y, z are incident with the same line of S if and only if ∆(x, y) ·
∆(y, z) = ∆(x, z).

We end this subsection with stating two results that we will need to invoke later.

Proposition 2.11 ([5, Theorems 11 and 12]) Let T = (S, X,∆) be a GAT, where
the Steiner system S is not a line. Then T is a AT if and only if Im(∆) generates a
subgroup of size |X| of Sym(X).

Proposition 2.12 ([3, Theorem 3.2]) If T = (S, X,∆) is an AT, then the spread ST
of QT is a spread of symmetry.
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3 Proof of Theorem 1.1

3.1 Sets of permutations of {1, 2, 3, 4, 5} satisfying Property (∗)
Definition 3.1 Let Σ be a set of permutations of X := {1, 2, 3, 4, 5}. We say that Σ
satisfies Property (∗) if the following hold:

• |Σ| = 4;

• no element of Σ has fixpoints;

• no permutation σ1σ
−1
2 has fixpoints, where σ1, σ2 are two distinct elements of Σ.

Note that if σ1σ
−1
2 has fixpoints, then each of the permutations σ2σ

−1
1 , σ−1

1 σ2, σ−1
2 σ1

also has fixpoints. If Σ is a set of permutations of X satisfying Property (∗), then for
every σ ∈ Sym(X) also Σσ := {σ−1σ′σ |σ′ ∈ Σ} satisfies Property (∗). We call Σσ the
conjugation of Σ by σ.

Lemma 3.2 Up to conjugation, there are precisely three sets of permutations of X sat-
isfying Property (∗). These three sets are:

(1) Σ∗1 := {(12345), (13524), (14253), (15432)};

(2) Σ∗2 := {(123)(45), (135)(24), (253)(14), (152)(34)};

(3) Σ∗3 := {(12345), (13)(254), (14352), (15324)}.

Proof. Put Σ = {σ1, σ2, σ3, σ4}. Since no σi has fixpoints, each σi has shape (∗, ∗, ∗, ∗, ∗)
or (∗, ∗)(∗, ∗, ∗). Observe that the sets Σ∗1, Σ∗2, Σ∗3 defined above are mutually non-
conjugate as they contain a different amount of cycles of length 5 (4, 0 and 3, respectively).
We will consider three cases.

(1) Suppose σ1, σ2, σ3 and σ4 are all cycles of length 5. As we classify sets of permu-
tations up to conjugacy, we may without loss of generality suppose that σ1 = (12345) and
that σ2, σ3, σ4 are of the following form: σ2 = (13∗∗∗), σ3 = (14∗∗∗), σ4 = (15∗∗∗). The
fact that σ2σ

−1
1 has no fixpoints implies that {σ1, σ2} is equal to either {(12345), (13254)},

{(12345), (13524)} or {(12345), (13542)}. Together with the facts that also σ3σ
−1
1 and

σ3σ
−1
2 have no fixpoints, we see that {σ1, σ2, σ3} is equal to {(12345), (13254), (14352)}

or {(12345), (13524), (14253)}. If we now try to find σ4 such that none of σ4σ
−1
1 , σ4σ

−1
2 ,

σ4σ
−1
3 has fixpoints, we see that one possibility remains: σ1 = (12345), σ2 = (13524),

σ3 = (14253) and σ4 = (15432).

(2) Suppose none of σ1, σ2, σ3, σ4 is a cycle of length 5. Then without loss of generality
we may suppose that σ1 = (123)(45), 1σ2 = 3, 1σ3 = 4 and 1σ4 = 5. If σ2 is of the form
(13)(∗, ∗, ∗), then σ2σ

−1
1 would fix 3, which is impossible. So, σ2 is of the form (13∗)(∗∗).

As σ2σ
−1
1 has no fixpoints, σ2 6= (132)(45). Using the remaining freedom (given by the

fact that we classify up to conjugacy), we may suppose that σ2 = (135)(24). Then σ3
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and σ4 are uniquely determined by the fact that {σ1, σ2, σ3, σ4} satisfies Property (∗). We
should have σ3 = (14)(253) and σ4 = (152)(34).

(3) Suppose that among σ1, σ2, σ3, σ4, there are permutations of shape (∗, ∗, ∗, ∗, ∗) and
permutations of shape (∗, ∗, ∗)(∗, ∗). Without loss of generality, we may suppose that σ1

has shape (∗, ∗, ∗, ∗, ∗) and that σ2 has shape (∗, ∗, ∗)(∗, ∗). Since σ2σ
−1
1 has no fixpoints,

we may without loss of generality (we classify up to conjugacy) suppose that σ1 = (12345),
σ2 = (13)(254), 1σ3 = 4 and 1σ4 = 5. The fact that {σ1, σ2, σ3, σ4} satisfies Property (∗)
now implies that σ3 and σ4 are uniquely determined. We should have σ3 = (14352) and
σ4 = (15324). �

Definition 3.3 Let G denote the set of all ordered quadruples G = (σ1, σ2, σ3, σ4) for

which G̃ := {σ1, σ2, σ3, σ4} is a set of four permutations satisfying Property (∗). We have
|G| = 1344. Indeed, a straightforward argument shows that there are 144 elements G ∈ G
for which G̃ is conjugate with Σ∗1, 240 elements G ∈ G for which G̃ is conjugate with Σ∗2
and 960 elements G ∈ G for which G̃ is conjugate with Σ∗3.

Definition 3.4 For every permutation g ∈ Sym(X) having no fixpoints, let G(g) denote
the set of all (σ1, σ2, σ3, σ4) ∈ G for which σ1 = g. If g has shape (∗, ∗, ∗, ∗, ∗), then
|G(g)| = 36. If g has shape (∗, ∗)(∗, ∗, ∗), then |G(g)| = 24.

3.2 Determination of all GQ’s of order 5 with a regular point

Suppose Q is a generalized quadrangle of order 5 having a regular point x. Put Q′ =
P(Q, x). Then Q′ is a GQ of order (s, t) = (4, 6) having a regular spread S ′ and
so by Proposition 2.8 there exists a GAT T ′ = (S, X,∆′) such that Ω(T ′) is equiva-
lent with (Q′, S ′). As |X| = 5, we may without loss of generality suppose that X =
{1, 2, 3, 4, 5}. The Steiner system S = (P ,B) has type S(2, s + 1, st + 1) = S(2, 5, 25)
and hence is an affine plane of order 5. Let o be a fixed point of S and define ∆(x, y) :=
∆′(o, x)∆′(x, y)∆′(o, y)−1 for all points x and y of S. By Proposition 2.3 and Definition
2.4, T := (S, X,∆) is a GAT equivalent with T ′. Hence Ω(T ) is also equivalent with
(Q′, S ′) by Proposition 2.9. Observe also that ∆(o, x) = ∆′(o, o)∆′(o, x)∆′(o, x)−1 is the
identical permutation of X for every point x of S.

Lemma 3.5 Let L be a line of S not containing o and let x be a point of L. Then
Σx,L := {∆(x, y) | y ∈ L \ {x}} is a set of four permutations of X satisfying Property (∗)
and hence is conjugate to either Σ∗1, Σ∗2 or Σ∗3.

Proof. If y1 and y2 are two distinct points of L, then ∆(y1, y2) = ∆(o, y1)∆(y1, y2)∆(y2, o)
has no fixpoints by (GAT2). Hence:

• ∆(x, y) has no fixpoints for every y ∈ L \ {x}.

• Since ∆(x, y1)−1∆(x, y2) = ∆(y1, y2) (by (GAT1)), ∆(x, y1) and ∆(x, y2) are distinct
and also ∆(x, y1)∆(x, y2)−1 has no fixpoints. �
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Lemma 3.6 Let L be a line of S containing o and let x be a point not on L. Then
{∆(x, y) | y ∈ L \ {o}} is a set of four permutations of X satisfying Property (∗) and
hence is conjugate to either Σ∗1, Σ∗2 or Σ∗3.

Proof. If y ∈ L \ {o}, then ∆(x, y) = ∆(y, o)∆(o, x)∆(x, y) has no fixpoints by (GAT2).
If y1 and y2 are two distinct points of L \ {o}, then ∆(y1, y2) = ∆(y1, o)∆(o, y2) = 1 by
(GAT1). Moreover, ∆(x, y1)∆(y1, y2)∆(y2, x) = ∆(x, y1)∆(x, y2)−1 has no fixpoints by
(GAT2). �

Lemma 3.7 There are two possibilities for a line L of S that does not contain o:

(I) For any point x of L, we have that Σx,L
∼= Σ∗1.

(II) There exists a unique point x on L such that Σx,L
∼= Σ∗2. If y is another point of L,

then Σy,L
∼= Σ∗3.

Proof. Let u be an arbitrary point of L. Observe that if we know all values ∆(u, u′)
where u′ ∈ L, then we also know all values ∆(u1, u2) where u1, u2 ∈ L. Indeed, by (GAT1)
we know that ∆(u1, u2) = ∆(u, u1)−1∆(u, u2). We distinguish three cases.

(1) Suppose Σu,L
∼= Σ∗1. Then without loss of generality we may suppose that

Σu,L = Σ∗1 = {(12345), (13524), (14253), (15432)}. Using the above observation, one read-
ily computes that also Σu′,L = Σ∗1 for every u′ ∈ L \ {u}.

(2) Suppose Σu,L
∼= Σ∗2. Then without loss of generality we may suppose that Σu,L =

Σ∗2 = {(123)(45), (135)(24), (253)(14), (152)(34)}. Let u′ be an arbitrary point of L \ {u}.
Using the above observation, one readily finds that ∆(u′, u) has shape (∗, ∗, ∗)(∗, ∗) and
that ∆(u′, u′′) has shape (∗, ∗, ∗, ∗, ∗) for every u′′ ∈ L \ {u, u′}. So, Σu′,L

∼= Σ∗3 and x = u
is the unique point on L for which Σx,L

∼= Σ∗2.

(3) If Σu,L
∼= Σ∗3, then without loss of generality we may suppose that Σu,L = Σ∗3 =

{(12345), (13)(254), (14352), (15324)}. If u′ is the unique point of L for which ∆(u, u′) =
(13)(254), then one computes that Σu′,L = {(12)(354), (13)(245), (14)(253), (15)(234)} ∼=
Σ∗2. By part (2), we then know that Σu′′,L

∼= Σ∗3 for every point u′′ ∈ L \ {u′}. �

Proposition 3.8 If all lines of S not containing o are of Type (I), then Q ∼= W (5).

Proof. Consider a line L of S not containing o, let y1, y2 be two distinct points on L and
define δ := ∆(y1, y2). Since L is of Type (I), δ is a cycle of length 5. For every y ∈ P \{o},
we define Σy := {∆(y, z) | z ∈ P \ oy}. Then Σy only consists of cycles of length 5. By
Lemmas 3.5 and 3.6, we respectively have

(a) if ∆(y, z) ∈ {δ, δ2, δ3, δ4} for two distinct points y and z of S, then ∆(y, z′) ∈
{δ, δ2, δ3, δ4} for any point z′ ∈ yz \ {y};

(b) if ∆(y, z) ∈ {δ, δ2, δ3, δ4} for two distinct points y and z of S, then ∆(y, z′) ∈
{δ, δ2, δ3, δ4} for any point z′ ∈ oz \ {o}.

(Note that o 6∈ yz since ∆(y, z) 6= 1.) Properties (a) and (b) imply the following:
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(c) Let y and z be two distinct points of S such that o 6∈ yz, and let K be the unique
line through o parallel to yz. If ∆(y, z) ∈ {δ, δ2, δ3, δ4}, then ∆(y, z′) ∈ {δ, δ2, δ3, δ4}
for every z′ ∈ P \ (oy ∪K).

Let y and z be two arbitrary points of S such that o 6∈ yz and ∆(y, z) ∈ {δ, δ2, δ3, δ4},
and let z1 be an arbitrary point of P \{o} such that oz1 is parallel with yz. If z2 is a point
of yz1 distinct from y and z1, then ∆(y, z2) ∈ {δ, δ2, δ3, δ4} by Property (c). Property (a)
then implies that ∆(y, z1) ∈ {δ, δ2, δ3, δ4}. So, we have:

(d) Let y and z be two distinct points of S such that o 6∈ yz. If ∆(y, z) ∈ {δ, δ2, δ3, δ4},
then ∆(y, z′) ∈ {δ, δ2, δ3, δ4} for every z′ ∈ P \ oy.

Since ∆(y1, y2) = δ, we thus have that:

(e) ∆(y1, z) ∈ {δ, δ2, δ3, δ4} for every z ∈ P \ oy1.

If z ∈ P \ oy1, then ∆(z, y1) = ∆(y1, z)
−1 ∈ {δ, δ2, δ3, δ4}. By Property (d) we can thus

conclude that ∆(z, z′) ∈ {δ, δ2, δ3, δ4} for all z, z′ ∈ P for which z 6∈ oy1 and z′ 6∈ oz. If
z ∈ oy1\{o} and z′ ∈ P \oy1, then the latter fact implies that also ∆(z, z′) = ∆(z′, z)−1 ∈
{δ, δ2, δ3, δ4}. Summarizing, we thus have that:

(f) ∆(y, z) ∈ {δ, δ2, δ3, δ4} for every two distinct points y and z of ∆ for which o 6∈ yz.

This implies that:

(g) 〈Im(∆)〉 = 〈δ〉 is a group of order 5.

Since 〈Im(∆)〉 is a group of order 5, T must be an AT by Proposition 2.11. This implies
by Proposition 2.12 that S ′ is a spread of symmetry of Q′. So, x must be a center of
symmetry of Q by [7, Theorem 2.7]. By [4] there exists up to isomorphism a unique
generalized quadrangle of order 5 having a center of symmetry. We conclude that Q is
isomorphic to W (5). �

In the sequel, we will suppose that there exists a line L of Type (II) of S (not containing
o). We denote by x0 the unique point x ∈ L for which Σx,L

∼= Σ∗2. We will show that
this case cannot occur. However, we were only able to prove this by means of computer
computations using the computer algebra system GAP [9] (see Lemma 3.13 and the
discussion before Proposition 3.16).

Put L = {x0, x1, x2, x3, x4} and oxi = {o, xi, yi1, yi2, yi3} for every i ∈ {0, 1, 2, 3, 4}.
Let {o, z1, z2, z3, z4} denote the unique line through o parallel with L.

In view of Definition 2.4 and Proposition 2.9, we may without loss of generality suppose
that

Σx0,L = Σ∗2 = {(123)(45), (135)(24), (253)(14), (152)(34)},

and
∆(x0, x1) = (123)(45), ∆(x0, x2) = (135)(24).
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So, (∆(x0, x3),∆(x0, x4)) is equal to either ((253)(14), (152)(34)) or ((152)(34), (253)(14)).
We put ε := + if the former case occurs and ε := − if the latter case occurs. If we put

g+
00 := 1, g+

01 := (123)(45), g+
02 := (135)(24), g+

03 := (253)(14), g+
04 := (152)(34),

g−00 := 1, g−01 := (123)(45), g−02 := (135)(24), g−03 := (152)(34), g−04 := (253)(14),

and
gεij := (gε1i)

−1 · gε1j
for all i, j ∈ {0, 1, 2, 3, 4} with i 6= 0, then (GAT1) implies that ∆(xi, xj) = gεij for all
i, j ∈ {0, 1, 2, 3, 4}.

Definition 3.9 Let F denote the set of all maps f : P → Sym(X). A map f ∈ F is
called good with respect to a point x ∈ P \ {o} if for every line K through x distinct from
ox and any two distinct points y1, y2 ∈ K, the permutation f(y1)−1f(y2) does not have
fixpoints.

Definition 3.10 In this definition, we follow the convention that subindices are taken
modulo 5. For every i ∈ {0, 1, 2, 3, 4},

πεi : G(gεi,i+1)× G(gεi,i+2)× G(gεi,i+3)× G(gεi,i+4)× G → F

is the map which sends the element

((gεi,i+1, σ
(i+1)
1 , σ

(i+1)
2 , σ

(i+1)
3 ), (gεi,i+2, σ

(i+2)
1 , σ

(i+2)
2 , σ

(i+2)
3 ), (gεi,i+3, σ

(i+3)
1 , σ

(i+3)
2 , σ

(i+3)
3 ),

(gεi,i+4, σ
(i+4)
1 , σ

(i+4)
2 , σ

(i+4)
3 ), (σ1, σ2, σ3, σ4))

to the map f : P → Sym(X) defined by

• f(o) = f(yi1) = f(yi2) = f(yi3) = 1,

• f(xj) = gεij for every j ∈ {0, 1, 2, 3, 4},

• f(yjk) = σ
(j)
k for all j ∈ {0, 1, 2, 3, 4} \ {i} and all k ∈ {1, 2, 3},

• f(zj) = σj for every j ∈ {1, 2, 3, 4}.

Definition 3.11 For every i ∈ {0, 1, 2, 3, 4}, let Aεi denote the set of all f ∈ F belonging
to the image of πεi that are good with respect to xi. For distinct i, j ∈ {0, 1, 2, 3, 4}, let
Aεij denote the set of all pairs (fi, fj) such that

• fi ∈ Aεi and fj ∈ Aεj;

• for every point x not on L, fi(x) · (fj(x))−1 · gεji has no fixpoints.
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We have (fi, fj) ∈ Aεij if and only if (fj, fi) ∈ Aεji. For l ≥ 3 mutually distinct
i1, i2, . . . , il ∈ {0, 1, 2, 3, 4}, let Aεi1,i2,...,il denote the set of all l-tuples (fi1 , fi2 , . . . , fil)
such that (fj, fj′) ∈ Aεj,j′ for all j, j′ ∈ {i1, i2, . . . , il} with j 6= j′. The importance of these
sets follows from the following lemma.

Lemma 3.12 For every i ∈ {0, 1, 2, 3, 4} and every x ∈ P, we put fi(x) := ∆(xi, x).
Then (f0, f1, f2, f3, f4) ∈ Aε01234.

Proof. Let i ∈ {0, 1, 2, 3, 4}. Let K be a line through xi distinct from oxi and let
y1, y2 be two distinct points on K. Then ∆(y1, y2) = ∆(o, y1)∆(y1, y2)∆(y2, o) has no
fixpoints by (GAT2), implying that also fi(y1)−1fi(y2) = ∆(y1, xi)∆(xi, y2) = ∆(y1, y2)
has no fixpoints. So, fi is good with respect to xi. By Lemma 3.6 and the fact that
∆(xi, xj) = gεij for all i, j ∈ {0, 1, 2, 3, 4}, fi belongs to the image of πεi . Hence, fi ∈ Aεi .

By (GAT2), fi(x) · fj(x)−1 · gεji = ∆(xi, x)∆(x, xj)∆(xj, xi) has no fixpoints for every
point x not on L and every two distinct i, j ∈ {0, 1, 2, 3, 4}. So, (fi, fj) ∈ Aεij for any two
distinct i, j ∈ {0, 1, 2, 3, 4}. �

In the computer algebra system GAP, a model of the affine plane AG(2, 5) with point set
{1, 2, . . . , 25} and line set lines can be implemented as follows:

AutGroup:=AllPrimitiveGroups(DegreeOperation,25,Size,12000)[1];

Stab:=Stabilizer(AutGroup,[1,2],OnTuples);

l:=Filtered(Orbits(Stab,[1..25]),q->Size(q)=1);

lines:=Orbit(AutGroup,Union(l[1],l[2],l[3],l[4],l[5]),OnSets);

Using this model for AG(2, 5), GAP told us that {1, 2, 3, 4, 5} and {6, 7, 8, 9, 10} are (neces-
sarily parallel) lines. Also {1, 11, 16, 21, 6}, {1, 13, 19, 25, 7}, {1, 14, 20, 22, 8}, {1, 15, 17, 23,
9} and {1, 12, 18, 24, 10} are lines. So, we can in fact make the following choices:

o = 1, z1 = 2, z2 = 3, z3 = 4, z4 = 5, x0 = 6, x1 = 7, x2 = 8, x3 = 9, x4 = 10,

(y01, y02, y03) = (11, 16, 21), (y11, y12, y13) = (13, 19, 25), (y21, y22, y23) = (14, 20, 22),

(y31, y32, y33) = (15, 17, 23), (y41, y42, y43) = (12, 18, 24).

In GAP we can store the elements f ∈ F as arrays of length 25 whose i-th entry is the
permutation of {1, 2, 3, 4, 5} which is the image of the point i under the map f . With these
conventions in mind, we have implemented the sets G and G(g) and the maps πεi , which
ultimately allowed us to compute the sets Aεi1,i2,...,il , see [6]. Our results are summarized
as follows.

Lemma 3.13 We have

• |A+
0 | = |A−0 | = 75 and |A+

i | = |A−i | = 150 for every i ∈ {1, 2, 3, 4};

• |A+
0i| = |A−0i| = 291 for every i ∈ {1, 2, 3, 4};
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• |A+
ij| = |A−ij| ∈ {282, 332} for all i, j ∈ {1, 2, 3, 4} with i 6= j;

• |A+
012| = |A−012| = 36;

• |A+
0123| = |A−0123| = |A+

01234| = |A−01234| = 2.

By Lemma 3.12 we know that with ∆ there is associated an element of Aε01234. We now
show in the following two lemmas, that ∆ (if it exists) can be uniquely reconstructed from
this element of Aε01234.

Lemma 3.14 Let K = {o, u1, u2, u3, u4} be a line through o and let v be a point not on
K. Then ∆(v, u4) is uniquely determined by ∆(v, u1), ∆(v, u2) and ∆(v, u3).

Proof. It suffices to show that k∆(v,u4) is uniquely determined by k∆(v,u1), k∆(v,u2) and
k∆(v,u3) for every k ∈ {1, 2, 3, 4, 5}. The fact that ∆(o, v)∆(v, ui)∆(ui, o) = ∆(v, ui) and
∆(v, ui)∆(ui, uj)∆(uj, v) = ∆(v, ui)∆(v, uj)

−1 have no fixpoints if i, j ∈ {1, 2, 3, 4} with
i 6= j implies that k∆(v,u4) is the unique element of {1, 2, 3, 4, 5} distinct from k, k∆(v,u1),
k∆(v,u2) and k∆(v,u3). �

Lemma 3.15 For every i ∈ {0, 1, 2, 3, 4} and every x ∈ P, put fi(x) := ∆(xi, x). Then
∆ is uniquely determined by (f0, f1, f2, f3, f4) ∈ Aε01234.

Proof. Let y and z be two points of P . If o, y and z are collinear, then ∆(y, z) = 1. If
y 6= z and the line yz contains a point xi, then ∆(y, z) = ∆(xi, y)−1∆(xi, z) = fi(y)−1fi(z).

Suppose y 6= z and yz is a line parallel with L, distinct from L not containing o.
Put oz = {o, z, u, v, w}. Since ∆(y, u), ∆(y, v) and ∆(y, w) are uniquely determined
by (f0, f1, f2, f3, f4) (see previous paragraph), also ∆(y, z) is uniquely determined by
(f0, f1, f2, f3, f4) by Lemma 3.14. �

Since |Aε01234| = 2, there are at most two possibilities for ∆ for each ε ∈ {+,−}. Based
on the methods exposed in the proofs of Lemmas 3.14 and 3.15, we have implemented
a computer program in GAP to reconstruct ∆ from the possible elements of Aε01234, see
[6]. For both ε = + and ε = −, it turned out that none of the two elements of Aε01234

actually gives rise to a map ∆ that satisfies (GAT1) and (GAT2). So, our assumption on
the existence of lines of Type (II) was incorrect. We conclude:

Proposition 3.16 Every line of S not containing o has Type (I) and Q is isomorphic to
W (5).
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