191 research outputs found

    Generalized Inpainting Method for Hyperspectral Image Acquisition

    Full text link
    A recently designed hyperspectral imaging device enables multiplexed acquisition of an entire data volume in a single snapshot thanks to monolithically-integrated spectral filters. Such an agile imaging technique comes at the cost of a reduced spatial resolution and the need for a demosaicing procedure on its interleaved data. In this work, we address both issues and propose an approach inspired by recent developments in compressed sensing and analysis sparse models. We formulate our superresolution and demosaicing task as a 3-D generalized inpainting problem. Interestingly, the target spatial resolution can be adjusted for mitigating the compression level of our sensing. The reconstruction procedure uses a fast greedy method called Pseudo-inverse IHT. We also show on simulations that a random arrangement of the spectral filters on the sensor is preferable to regular mosaic layout as it improves the quality of the reconstruction. The efficiency of our technique is demonstrated through numerical experiments on both synthetic and real data as acquired by the snapshot imager.Comment: Keywords: Hyperspectral, inpainting, iterative hard thresholding, sparse models, CMOS, Fabry-P\'ero

    Core Imaging Library - Part II:multichannel reconstruction for dynamic and spectral tomography

    Get PDF
    The newly developed core imaging library (CIL) is a flexible plug and play library for tomographic imaging with a specific focus on iterative reconstruction. CIL provides building blocks for tailored regularized reconstruction algorithms and explicitly supports multichannel tomographic data. In the first part of this two-part publication, we introduced the fundamentals of CIL. This paper focuses on applications of CIL for multichannel data, e.g. dynamic and spectral. We formalize different optimization problems for colour processing, dynamic and hyperspectral tomography and demonstrate CIL’s capabilities for designing state-of-the-art reconstruction methods through case studies and code snapshots

    Recent Advances in Image Restoration with Applications to Real World Problems

    Get PDF
    In the past few decades, imaging hardware has improved tremendously in terms of resolution, making widespread usage of images in many diverse applications on Earth and planetary missions. However, practical issues associated with image acquisition are still affecting image quality. Some of these issues such as blurring, measurement noise, mosaicing artifacts, low spatial or spectral resolution, etc. can seriously affect the accuracy of the aforementioned applications. This book intends to provide the reader with a glimpse of the latest developments and recent advances in image restoration, which includes image super-resolution, image fusion to enhance spatial, spectral resolution, and temporal resolutions, and the generation of synthetic images using deep learning techniques. Some practical applications are also included

    Multispectral snapshot demosaicing via non-convex matrix completion

    Full text link
    Snapshot mosaic multispectral imagery acquires an undersampled data cube by acquiring a single spectral measurement per spatial pixel. Sensors which acquire pp frequencies, therefore, suffer from severe 1/p1/p undersampling of the full data cube. We show that the missing entries can be accurately imputed using non-convex techniques from sparse approximation and matrix completion initialised with traditional demosaicing algorithms. In particular, we observe the peak signal-to-noise ratio can typically be improved by 2 to 5 dB over current state-of-the-art methods when simulating a p=16p=16 mosaic sensor measuring both high and low altitude urban and rural scenes as well as ground-based scenes.Comment: 5 pages, 2 figures, 1 tabl

    Non-local tensor completion for multitemporal remotely sensed images inpainting

    Get PDF
    Remotely sensed images may contain some missing areas because of poor weather conditions and sensor failure. Information of those areas may play an important role in the interpretation of multitemporal remotely sensed data. The paper aims at reconstructing the missing information by a non-local low-rank tensor completion method (NL-LRTC). First, nonlocal correlations in the spatial domain are taken into account by searching and grouping similar image patches in a large search window. Then low-rankness of the identified 4-order tensor groups is promoted to consider their correlations in spatial, spectral, and temporal domains, while reconstructing the underlying patterns. Experimental results on simulated and real data demonstrate that the proposed method is effective both qualitatively and quantitatively. In addition, the proposed method is computationally efficient compared to other patch based methods such as the recent proposed PM-MTGSR method

    Application of Multi-Sensor Fusion Technology in Target Detection and Recognition

    Get PDF
    Application of multi-sensor fusion technology has drawn a lot of industrial and academic interest in recent years. The multi-sensor fusion methods are widely used in many applications, such as autonomous systems, remote sensing, video surveillance, and the military. These methods can obtain the complementary properties of targets by considering multiple sensors. On the other hand, they can achieve a detailed environment description and accurate detection of interest targets based on the information from different sensors.This book collects novel developments in the field of multi-sensor, multi-source, and multi-process information fusion. Articles are expected to emphasize one or more of the three facets: architectures, algorithms, and applications. Published papers dealing with fundamental theoretical analyses, as well as those demonstrating their application to real-world problems

    Morphological Diversity and Sparsity for Multichannel Data Restoration

    Get PDF
    International audienceOver the last decade, overcomplete dictionaries and the very sparse signal representations they make possible, have raised an intense interest from signal processing theory. In a wide range of signal processing problems, sparsity has been a crucial property leading to high performance. As multichannel data are of growing interest, it seems essential to devise sparsity-based tools accounting for such specific multichannel data. Sparsity has proved its efficiency in a wide range of inverse problems. Hereafter, we address some multichannel inverse problems issues such as multichannel morphological component separation and inpainting from the perspective of sparse representation. In this paper, we introduce a new sparsity-based multichannel analysis tool coined multichannel Morphological Component Analysis (mMCA). This new framework focuses on multichannel morphological diversity to better represent multichannel data. This paper presents conditions under which the mMCA converges and recovers the sparse multichannel representation. Several experiments are presented to demonstrate the applicability of our approach on a set of multichannel inverse problems such as morphological component decomposition and inpainting

    Super-resolução em vídeos de baixa qualidade para aplicações forenses, de vigilância e móveis

    Get PDF
    Orientadores: Siome Klein Goldenstein, Anderson de Rezende RochaTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Algoritmos de super-resolução (SR) são métodos para obter um aumento da resolução de imagens compostas por pixels. Na super-resolução por múltiplas imagens, um conjunto de imagens de baixa resolução de uma cena é combinado para construir uma imagem de resolução superior. Super-resolução é uma solução barata para superar as limitações dos sistemas de aquisição de imagens, e pode ser útil em diversos casos em que o dispositivo não pode ser melhorado ou substituído - mas em que é possível obter diversas capturas da mesma cena. Neste trabalho, é explorada a super-resolução por múltiplas imagens para imagens naturais, em cenários nos quais é possível obter diversas imagens de uma cena. São propostas cinco variações de um método que explora propriedades geométricas de múltiplas imagens de baixa resolução para combiná-las em uma imagem de resolução superior; duas variações de um método que combina técnicas de inpainting e super-resolução; e mais três variações de um método que utiliza filtros adaptativos e regularização para resolver um problema de mínimos quadrados. Super-resolução por múltiplas imagens é possível quando existe movimento e informações não redundantes entre as imagens de baixa resolução. Entretanto, combiná-las em uma imagem de resolução superior pode não ser computacionalmente viável por técnicas complexas de super-resolução. A primeira aplicação dos métodos propostos é para um conjunto de imagens capturadas pelos dispositivos móveis mais recentes. Este tipo de ambiente requer algoritmos eficazes que sejam executados rapidamente e utilizando baixo consumo de memória. A segunda aplicação é na Ciência Forense. Câmeras de vigilância espalhadas pelas cidades poderiam fornecer dicas importantes para identificar um suspeito, por exemplo, em uma cena de crime. Entretanto, o reconhecimento dos caracteres de placas veiculares é especialmente difícil quando a resolução das imagens é baixa. Por isso, este trabalho também propõe um arcabouço que realiza a super-resolução de placas veiculares em vídeos reais de vigilância, capturados por câmeras de baixa qualidade e não projetadas especificamente para esta tarefa, ajudando o especialista forense a compreender um evento de interesse. O arcabouço realiza todas as etapas necessárias para rastrear, alinhar, reconstruir e reconhecer automaticamente os caracteres de uma placa suspeita. O usuário recebe, como saída, a imagem de alta resolução reconstruída, mais rica em detalhes, e também a sequência de caracteres reconhecida automaticamente nesta imagem. São apresentadas validações quantitativas e qualitativas dos algoritmos propostos e de suas aplicações. Os experimentos mostram, por exemplo, que é possível aumentar o número de caracteres reconhecidos corretamente, colocando o arcabouço proposto como uma ferramenta importante para fornecer aos peritos uma solução para o reconhecimento de placas veiculares sob condições adversas de aquisição. Por fim, também é sugerido o número mínimo de imagens a ser utilizada como entrada em cada aplicaçãoAbstract: Super-resolution (SR) algorithms are methods for achieving high-resolution (HR) enlargements of pixel-based images. In multi-frame super resolution, a set of low-resolution (LR) images of a scene are combined to construct an image with higher resolution. Super resolution is an inexpensive solution to overcome the limitations of image acquisition hardware systems, and can be useful in several cases in which the device cannot be upgraded or replaced, but multiple frames of the same scene can be obtained. In this work, we explore SR possibilities for natural images, in scenarios wherein we have multiple frames of a same scene. We design and develop five variations of an algorithm which rely on exploring geometric properties in order to combine pixels from LR observations into an HR grid; two variations of a method that combines inpainting techniques to multi-frame super resolution; and three variations of an algorithm that uses adaptive filtering and Tikhonov regularization to solve a least-square problem. Multi-frame super resolution is possible when there is motion and non-redundant information from LR observations. However, combining a large number of frames into a higher resolution image may not be computationally feasible by complex super-resolution techniques. The first application of the proposed methods is in consumer-grade photography with a setup in which several low-resolution images gathered by recent mobile devices can be combined to create a much higher resolution image. Such always-on low-power environment requires effective high-performance algorithms, that run fastly and with a low-memory footprint. The second application is in Digital Forensic, with a setup in which low-quality surveillance cameras throughout the cities could provide important cues to identify a suspect vehicle, for example, in a crime scene. However, license-plate recognition is especially difficult under poor image resolutions. Hence, we design and develop a novel, free and open-source framework underpinned by SR and Automatic License-Plate Recognition (ALPR) techniques to identify license-plate characters in low-quality real-world traffic videos, captured by cameras not designed for the ALPR task, aiding forensic analysts in understanding an event of interest. The framework handles the necessary conditions to identify a target license plate, using a novel methodology to locate, track, align, super resolve, and recognize its alphanumerics. The user receives as outputs the rectified and super-resolved license-plate, richer in details, and also the sequence of license-plates characters that have been automatically recognized in the super-resolved image. We present quantitative and qualitative validations of the proposed algorithms and its applications. Our experiments show, for example, that SR can increase the number of correctly recognized characters posing the framework as an important step toward providing forensic experts and practitioners with a solution for the license-plate recognition problem under difficult acquisition conditions. Finally, we also suggest a minimum number of images to use as input in each applicationDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação1197478,146886153996/3-2015CAPESCNP
    corecore