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Jérome Bobin, Yassir Moudden, Jalal M. Fadili, Jean-Luc Starck. Morphological Diversity and
Sparsity for Multichannel Data Restoration. Journal of Mathematical Imaging and Vision,
Springer Verlag, 2009, 33 (2), pp.149-168. <10.1007/s10851-008-0065-6>. <hal-00813969>

HAL Id: hal-00813969

https://hal.archives-ouvertes.fr/hal-00813969

Submitted on 16 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract. Over the last decade, overcomplete dictionaries and the very
sparse signal representations they make possible, have raised an intense
interest from signal processing theory. In a wide range of signal process-
ing problems, sparsity has been a crucial property leading to high perfor-
mance. As multichannel data are of growing interest, it seems essential
to devise sparsity-based tools accounting for such specific multichannel
data. Sparsity has proved its efficiency in a wide range of inverse prob-
lems. Hereafter, we address some multichannel inverse problems issues
such as multichannel morphological component separation and inpaint-
ing from the perspective of sparse representation. In this paper, we intro-
duce a new sparsity-based multichannel analysis tool coined multichan-
nel Morphological Component Analysis (mMCA). This new framework
focuses on multichannel morphological diversity to better represent mul-
tichannel data. This paper presents conditions under which the mMCA
converges and recovers the sparse multichannel representation. Several
experiments are presented to demonstrate the applicability of our ap-
proach on a set of multichannel inverse problems such as morphological
component decomposition and inpainting.

Introduction

This paper addresses several multichannel data recovery problems such as mul-
tichannel morphological component decomposition and inpainting. We first need
to define with care what multichannel data are. Such data are often physically
composed of m observations (a colour layer in colour images, an observation at a
fixed frequency for multispectral data and so on). One classical example of such
multichannel data are the hyperspectral data provided by satellite observations;
a fixed geographic area is observed at m different frequencies. More formally,
we assume that each observation is made of t samples. We will write each obser-
vation as a 1 × t row vector {xi}i=1,··· ,m. For convenience, those m vectors are

stacked in a m × t matrix X =
[
xT

1 · · ·xT
m

]T
. In a wide range of applications,

the data X are often degraded by the acquisition system (convolution, missing
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data to quote a few) and contaminated by additive noise of finite variance. The
various restoration problems we address in this paper are modelled as follows :

Y = F (X) + N (1)

where F is the degradation mapping, X is the original multichannel data to be
recovered and N models noise or model imperfections. The mapping F will de-
pend on the recovery problem.
In the last decade sparsity has been one of the leading concepts in many areas of
signal and image processing (restoration [1], feature extraction [2], source sepa-
ration [3–5], to name only a few). In a wide range of applications and viewpoints,
researchers have advocated the use of overcomplete signal representations. In-
deed, the attractiveness of redundant signal representations lies in their ability
to sparsely represent a large class of signals. Furthermore, overcomplete repre-
sentations allow more flexibility in signal representation and entail effectiveness
at many signal processing tasks such as restoration, separation, compression,
estimation etc. In neuroscience, the mammalian primary visual system has been
shown to be probably in need of overcomplete representations [6].

In our representation, a monochannel row vector signal x ∈ R
1×t is assumed

to be the linear combination of T > t signal waveforms or atoms {φi}i=1,··· ,T :
x =

∑

i=1 αiφi, where αi =
〈
φi, x

〉
are called the decomposition coefficients of x

in the dictionary Φ = [φT
1 , · · · , φ

T
T ]T (the T × t matrix whose lines are the atoms

normalized to a unit ℓ2-norm). The signal x is said to be sparse in Φ if only a
few of the entries of the row vector α = [α1 · · ·αT ] are non-zero. We define Λx,
the support of x in Φ, as the set of indices of the non-zero entries in α :

Λx =
{
i
∣
∣|αi| 6= 0

}
(2)

From a heuristic viewpoint, the use of sparse representations are motivated by
their ability to compactly represent the structure in the data. For instance, in
image processing, a number of dictionaries have been designed that can capture
very different features in an image : discrete cosine basis for globally oscillating
patterns, wave atoms for local oscillatory textures [7], wavelets for pointwise
singularities [8], curvelets for edges and contours [9, 10].
Returning to the problem in Equation (1), a first and somewhat naive approach
would consist in treating separately m single-channel restoration problems3.
However, this is clearly suboptimal since, as we pointed out earlier, the m single
channel observations share some joint structure requiring a coherent processing
of the m channels simultaneously. For instance, the colour layers of colour images
have often similar patterns. Thus recovering each observation separately is far
from being optimal. Such inter-observation structures have to be properly mod-
elled in order to enhance multichannel data restoration. A first sparsity-based
solution consists in assuming that each channel must share the same sparsity

3 Note that this solution may only hold if the degradation mapping applies on each
channel separately: F (X) = [F(x1)

T · · · F(xm)T ]T .



pattern i.e. the same support in Φ. Such solutions have been proposed for sev-
eral applications in previous work on multichannel sparse decomposition includ-
ing [11, 12], in which all channels are constrained to have a common sparsity
pattern, and [13–15] in which a specific sparsity measure is used. In this paper,
we address a more general problem as we assume no constraint on the sparsity
pattern of the different channels. We adopt a different point of view and model
inter-observation structures as sparse patterns in a specific representation. The
multichannel data are no longer modelled as a concatenation of observations
that are individually sparse in a spatial/temporal representation but as a single
signal that is sparse in a multichannel representation.

Contributions : In this paper we propose solving multichannel data restora-
tion problems within the paradigm of multichannel sparse representations. Sec-
tion 1 introduces a new sparsity-based framework for analyzing multichannel
signals coined multichannel Morphological Component Analysis (mMCA). In
Section 1.2 we enlighten the connections between mMCA and other extensions
of sparse decomposition problems to the multichannel case. Section 1.3 extends
the MCA algorithm [16, 17] to the multichannel case and introduces convergence
results proving the efficiency of mMCA in providing sparse decompositions. Two
applications in data recovery issues of the proposed mMCA algorithm are de-
scribed : multichannel morphological component decomposition in Section 2.1
and inpainting in Section 2.2. We also put forward a mMCA-based adaptive
restoration algorithm to better match the sparse representation to the multi-
channel data at hand.

Notations and definitions

We here define some useful quantities and notations. In the multichannel case,
the data X live in the tensor product space of R

m and R
t : X ∈ R

m ⊗R
t, where

m is the number of channels. The upcoming proofs and results can be extended
easily to the case where X ∈ R

t1 ⊗ · · · ⊗ R
tp

︸ ︷︷ ︸

p

with p ≥ 2. Multichannel data often

consist of m “observations” {xi}i=1,··· ,m from m channels, each lying in R
t. For

convenience, we use the following matrix notation:

X =






x1

...
xm




 (3)

where each channel {xi}i=1,··· ,m is a 1× t row vector. A multichannel dictionary
is no more than a set of vectors living in R

m⊗R
t. For instance, a basis of R

m⊗R
t

is readily obtained as the tensor product of a basis of R
m,1 (say Ξ) and a basis of

R
1,t (say Φ). Projecting X onto each atom of the multichannel basis Ψ = Ξ⊗Φ

is done as follows:
α = ΞTXΦT (4)



Let ψγ={i,j} = ξi ⊗ φj be an atom (i.e. element) of the multichannel dictionary
Ψ. This atom can be written in matrix form as : ψij = ξiφj which is an m× t
rank-1 matrix. If Ξ or Φ is orthonormal then Ψ is also orthonormal. In fact, the
scalar product between two multichannel atoms is such that 4:

〈
ψip, ψjq

〉
=
〈
ξi, ξj

〉〈
φp, φq

〉
(5)

The mutual coherence (see [18] and references therein) of a dictionary Φ, defined
as follows :

µΦ = max
p6=q

∣
∣
〈
φp, φq

〉∣
∣ (6)

is a measure of how its atoms look like each other. Handling subsets of elements
that belong to Ψ will also be needed. Let Λ = {{i1, j1}, · · · , {iT , jT }} be a set of
index couples. The active subdictionary obtained by restricting the dictionary
Ψ to the atoms whose indices are the elements of Λ is written ΨΛ. This notation
will be useful to define the support of a signal X in Ψ. Assume that X is K-
sparse in Ψ then X =

∑

{i,j}∈Λx
αi,jψij =

∑

{i,j}∈Λx
αi,jξiφj where Λx is the

support of X, and ΨΛx
the corresponding active subdictionary.

According to the definition of the scalar product between two multichannel atoms
given in Equation (5), the mutual coherence for multichannel dictionaries Ψ =
Ξ⊗ Φ is as follows :

0 ≤ µΨ = max {µΞ, µΦ} < 1 (7)

for orthonormal Ξ and Φ. In the next, the Frobenius norm of a matrix X is
‖X‖

2
= Trace

(
XT X

)
. The ℓ1 norm of X is defined as the sum of the absolute

values of the entries of matrix X.

1 Morphological Component Analysis For Multichannel

Data

1.1 Morphological Diversity and Morphological Component
Analysis

An introduction to morphological diversity : A monochannel signal x is
said to be sparse in a waveform dictionary Φ if it can be well represented from
a few dictionary elements. More precisely, let us define α such that :

x = αΦ (8)

The entries of α are commonly called “coefficients” of x in Φ. In that setting,
x is said to be sparse in Φ if most entries of α are nearly zero and only a few
have “significant” amplitudes. Particular ℓ0-sparse signals are generated from a
few non-zero dictionary elements. Note that this notion of sparsity is strongly

4 In fact, by standard properties of the tensor product, one can easily show that the
Gram matrix of a tensor product is the tensor product of the Gram matrices. That
is, GΨ = GΞ ⊗ GΦ.



dependent on the dictionary Φ; see e.g. [19, 20] among others. As discussed in
[2], a single basis is often not well-adapted to large classes of highly structured
data such as “natural images”. Furthermore, over the past ten years, new tools
have emerged from modern computational harmonic analysis : wavelets, ridgelets
[21], curvelets [9, 10, 22], bandlets [23], contourlets [24], to name a few. It is
quite tempting to combine several representations to build a larger dictionary of
waveforms that will enable the sparse representation of larger classes of signals.
Nevertheless, when Φ is overcomplete (i.e. T > t), the solution of Equation (8)
is generally not unique. In that case, the authors of [19] were the first to seek
the sparsest α, in terms of ℓ0-pseudo-norm, such that x = αΦ. This approach
leads to the following minimization problem :

min
α

‖α‖0 s.t. x = αΦ (9)

Unfortunately, this is an NP-hard optimization problem which is combinatorial
and computationally unfeasible for most applications. The authors of [25] also
proposed to convexify the objective functional by substituting the convex ℓ1
norm for the ℓ0 pseudo-norm leading to the following linear program :

min
α

‖α‖1 s.t. x = αΦ (10)

This problem can be solved for instance using interior-point methods. It is known
as Basis Pursuit [25] in the signal processing community. Nevertheless, problems
(9) and (10) are seldom equivalent. Important research concentrated on finding
equivalence conditions between the two problems [19, 26, 20, 27, 28]. See also [29]
for an extensive review.
In [2] and [16], the authors proposed a practical algorithm coined Morphologi-
cal Component Analysis (MCA) aiming at decomposing signals in overcomplete
dictionaries made of a union of bases. In the MCA setting, x is the linear com-
bination of D morphological components:

x =

D∑

i=1

ϕi =

D∑

i=1

αiΦi (11)

where {Φi}i=1,··· ,D are orthonormal bases of R
t. Morphological diversity then

relies on the sparsity of those morphological components in specific bases. In
terms of ℓ0 norm, this morphological diversity can be formulated as follows:

∀{i, j} ∈ {1, · · · , D}; j 6= i⇒ ‖ϕiΦ
T
i ‖0 < ‖ϕiΦ

T
j ‖0 (12)

In other words, MCA relies on the incoherence between the sub-dictionaries
{Φi}i=1,··· ,D to estimate the morphological components {ϕi}i=1,··· ,D by solving
the following convex minimization problem:

{ϕi}1≤i≤D = arg min
{ϕi}1≤i≤D

∥
∥
∥
∥
∥
x−

D∑

i=1

ϕi

∥
∥
∥
∥
∥

2

2

+ 2λ
D∑

i=1

‖ϕiΦ
T
i ‖1 (13)



Note that the minimization problem in (13) is closely related to Basis Pursuit
Denoising (BPDN - see [25]). In [30], we proposed a particular block-coordinate
relaxation, iterative thresholding algorithm (MCA/MOM) to solve (13). Theo-
retical arguments as well as experiments were given showing that MCA provides
at least as good results as Basis Pursuit for sparse overcomplete decompositions
in a union of bases. Moreover, MCA turns out to be clearly much faster than
Basis Pursuit. Then, MCA is a practical alternative to classical sparse overcom-
plete decomposition techniques.

Morphological diversity in multichannel data : In the previous paragraph,
we gave a brief description of morphological diversity in the monochannel case.
In this paper, we extend morphological diversity to the multichannel case. In
this particular setting, we assume that each observation or channel {xi}i=1,··· ,m

is the linear combination of D morphological components:

∀i ∈ {1, · · · ,m}; xi =
D∑

j=1

ϕij (14)

where each morphological component ϕij is sparse in a specific basis Φj . Then
each channel {xi}i=1,··· ,m is assumed to be sparse in the overcomplete dictionary
Φ made of the union of the D bases {Φi}i=1,··· ,D.
We further assume that each column of the data matrix X is sparse in the dictio-
nary Ξ made of the union of D′ bases {Ξi}i=1,··· ,D′ to account for inter-channel
structures. The multichannel data X are then assumed to be sparse in the mul-
tichannel dictionary Ψ = [Ξ1 · · ·ΞD′ ]⊗ [Φ1 · · ·ΦD]. The multichannel data are
then modelled as the linear combination of D ×D′ multichannel morphological
components:

X =

D∑

j=1

D′

∑

k=1

̟jk (15)

where ̟jk is sparse in Ξk ⊗ Φj . In this setting, separating two multichannel
morphological components ̟ip and ̟jq 6=ip based on multichannel morphological
diversity may put on different faces :

– Spatial or temporal (resp. spectral) morphologies : in this case i 6= j and
p = q (resp. i = j and p 6= q). The morphological components have the
same spectral representation (resp. spatial basis) but one can discriminate
between them based on their spatial (resp. spectral) diversity. It is easily
seen that the coherence between subdictionaries Ξp⊗Φi and Ξp⊗Φj (resp.
Ξp ⊗ Φi and Ξq ⊗ Φi) is upper-bounded by µΦ (resp. µΞ).

– Both morphologies : i 6= j and p 6= q, the “separation” task seems easier
as the morphological components share neither the same spectral basis nor
the same spatial (or temporal) basis. Note that in this case, the coherence
between Ξp ⊗ Φi and Ξq ⊗ Φj is lower than µΞµΦ ≤ max {µΞ, µΦ}.



Analyzing multichannel signals requires accounting for their spectral and spatial
morphological diversities. For that purpose, the proposed multichannel extension
to MCA coined mMCA, which stands for multichannel Morphological Compo-
nent Analysis, aims at solving the following minimization problem :

min
{̟jk}

∥
∥
∥
∥
∥
∥

X−

D∑

j=1

D′

∑

k=1

̟jk

∥
∥
∥
∥
∥
∥

2

2

+ 2λ

D∑

j=1

D′

∑

k=1

‖ΞT
k̟jkΦ

T
j ‖1 (16)

In Section 1.2 we enlighten the connections between the problem in Equation (16)
and the extension of BPDN to the multichannel case. We also provide straight-
forward multichannel extensions of well-known recovery results. In Section 1.3
we introduce an MCA-based block-coordinate relaxation, iterative thresholding
algorithm to solve (16). We give new theoretical conditions under which the
mMCA algorithm provides the solution to the problem in Equation (16).

1.2 Multichannel overcomplete sparse recovery

General multichannel overcomplete sparse representation : Solving the
problem in Equation (16) is a particular case of a more general extension of the
problem in Equation (10) to the multichannel case : decomposing data in an
overcomplete multichannel dictionary Ψ = Ξ ⊗ Φ (recall that Ξ is a m ×M
overcomplete dictionary with M > m, Φ is a T × t overcomplete dictionary with
T > t). Similarly to (9), this requires solving the following problem:

min
α

‖α‖ℓ0 s.t X = ΞαΦ (17)

where α is an M × T matrix and ‖α‖ℓ0 refers to the number of non-zero entries
in α. The convex ℓ1 minimization problem (10) can also be rewritten in the
multichannel setting :

min
α

‖α‖ℓ1 s.t X = ΞαΦ (18)

where ‖α‖ℓ1 =
∑

i,j |αij |. From the optimization viewpoint, monochannel and
multichannel problems are similar. Recall that in the case of a monochannel
K-sparse signal to be decomposed in a dictionary with coherence µΨ, the two
aforementioned problems share the same unique solution when the following
condition holds [19]:

K <
1

2

(

1 +
1

µΨ

)

The uniqueness and equivalence condition of the sparse multichannel decompo-
sition problem in Equation (17) is then similar to the monochannel case. Assume
that X is K-sparse in the multichannel dictionary Ψ = Ξ ⊗ Φ. The ℓ0 sparse
decomposition problem in Equation (17) has a unique solution and problems in
Equation (17) and (18) are equivalent when :

K <
1

2

(

1 +
1

µΨ

)

where µΨ = max{µΞ, µΦ}



In this framework, most results in the monochannel case [27, 20, 28, 31, 18, 26]
can be straightforwardly extended to the multichannel case. Previous work on
multichannel sparse decomposition includes [32] which introduced the concept
of multichannel dictionary.

1.3 Multichannel Morphological Component Analysis

The problem at stake in Equation (16) can be solved by extending well-known
sparse decomposition algorithms to the multichannel case (Basis Pursuit [25],
Matching Pursuit [33], [34]), LARS/LASSO [35], Homotopy continuation [36, 37],
Polytope Faces Pursuit (PFP) [38] to quote a few). Extending MP and OMP
to the multichannel case has been proposed in [32]. Interestingly, most greedy
sparse decomposition techniques are closely linked to variable selection. Indeed,
LARS/LASSO [35] and Homotopy continuation [36, 37] were first introduced in
statistics to solve variable selection problems with an ℓ1 sparsity constraint. The
aforementioned greedy methods iteratively select one dictionary atom at a time.
Unfortunately, this stepwise selection of active atoms is burdensome and the
process may be sped up as in [39] where a faster stagewise Orthogonal Match-
ing Pursuit (StOMP) is introduced. It is shown to solve the ℓ0 sparse recovery
problem in Equation (9) with random dictionaries under mild conditions.

Owing to the particular structure of the problem in Equation (16), extending
the MCA algorithm [17] to the multichannel case would lead to faster and still
effective decomposition results. Recall that in the mMCA setting, the data X
are assumed to be the linear combination of D ×D′ morphological components
{̟jk}j=1,··· ,D;k=1,··· ,D′ . We define Λjk as the support (i.e. the indices of active
atoms) of ̟jk in the subdictionary Ψjk = Ξk ⊗ Φj . As X is K-sparse in the
whole dictionary,

∑

j,k Card(Λjk) = K. The data can be decomposed as follows:

X =

D∑

j=1

D′

∑

k=1

̟jk =

D∑

j=1

D′

∑

k=1

∑

i∈Λjk

αjk[i]ψjk[i] (19)

Substituting Equation (19) in Equation (16), the mMCA algorithm approaches
the solution to Equation (16) by iteratively and alternately estimating each
morphological component̟jk in a Block-coordinate relaxed way (see [40]). Each
matrix of coefficients αjk is then estimated as follows :

αjk = argmin
αjk

‖Rjk − Ξk αjkΦj‖
2

+ 2λ‖αjk‖ℓ1 (20)

where Rjk = X −
∑

p,q 6=j,k ΞqαpqΦp is a residual term.
Since we are assuming that the subdictionaries {Φj}j and {Ξk}k are orthonor-
mal, the problem in Equation (20) is equivalent to the following:

αjk = argmin
αjk

∥
∥ΞT

k RkΦ
T
j − αjk

∥
∥

2
+ 2λ‖αjk‖ℓ1 (21)



which has a unique solution αjk = ∆λ

(
ΞT

k RkΦ
T
j

)
known as soft-thresholding

with threshold λ as follows:

∆λ(u[i]) =

{
0 if u[i] < λ

u[i] − λ sign (u[i]) if u[i] ≥ λ
(22)

For a fixed λ, mMCA selects groups of atoms based on their scalar product with
the residual Rjk. Assuming that we select only the most coherent atom (with the
highest scalar product) with the residual Rjk then one mMCA iteration boils
down to a stepwise multichannel Matching Pursuit (mMP) step. In contrast with
mMP, the mMCA algorithm is allowed to select several atoms at each iteration.
Thus, when hard-thresholding is used instead of soft-thresholding, mMCA is
equivalent to a stagewise mMP algorithm. Allowing mMCA to select new atoms
is made by decreasing the threshold λ at each iteration. The mMCA algorithm
is summarized below:

1. Set the number of iterations Imax and threshold λ(0).
2. While λ(h) is higher than a given lower bound λmin (e.g. can depend on the noise
variance, see Section 1.5),

For j = 1, · · · , D and k = 1, · · · , D′

• Compute the residual term R
(h)
jk assuming the current estimates of ̟pq 6=jk,

˜̟
(h−1)
pq 6=jk are fixed:

R
(h)
jk = X −

P

pq 6=jk
˜̟

(h−1)
pq 6=jk.

• Estimate the current coefficients of ˜̟
(h)
jk by thresholding with threshold λ(h):

α̃
(h)
jk = ∆λ(h)

“

ΞT
k R

(h)
jk ΦT

j

”

.

• Get the new estimate of ̟jk by reconstructing from the selected coefficients α̃
(h)
jk

:
˜̟

(h)
jk = Ξkα̃

(h)
k Φj .

3. Decrease the threshold λ(h) following a given strategy.

The thresholding strategy : In [30] we proposed a thresholding strategy
that is likely to provide the solution to the ℓ0 sparse monochannel problem. The
strategy which goes by the name of MOM (for “Mean of Max”) can be extended
to the multichannel case. At each iteration h the residual is projected onto each
sub-dictionary and we define :

m
(h−1)
jk =

∥
∥
∥
∥
∥
ΞT

k

(

X −
∑

p,q

Ξqα̃
(h−1)
pq Φp

)

ΦT
j

∥
∥
∥
∥
∥

ℓ∞

(23)

The multichannel-MOM (mMOM) threshold is then computed as the mean of

the two largest values in the set {m
(h−1)
jk }j=1,··· ,D;k=1,··· ,D′

λ(h) =
1

2

{

m
(h−1)
j0k0

+m
(h−1)
j1k1

}

(24)



In the next section, we show conditions under which mMCA/mMOM selects
atoms without error and converges asymptotically to the solution of the multi-
channel ℓ0 sparse recovery problem in Equation (17).

1.4 Recovering sparse multichannel decompositions using mMCA

The mMOM rule defined in Equation (23)-(24) is such that mMCA will se-
lect, at each iteration, atoms belonging to the same subdictionary Ψjk = Ξk ⊗
Φj . Although it seems more computationally demanding, the mMOM strat-
egy has several nice properties. We show sufficient conditions under which i)
mMCA/mMOM selects atoms belonging to the active atom set of the solution
of the ℓ0 sparse recovery problem (Exact Selection Property), ii) mMCA/mMOM
converges exponentially to X and its sparsest representation in Ψ. Let’s mention
that the mMCA/mMOM exhibits an auto-stopping behaviour, and requires only
one parameter λmin whose choice is easy and discussed in Section 1.5.
The next proposition states that mMCA/mMOM verifies the Exact Selection
Property (ESP) at each iteration.

Proposition 1 (Exact Selection Property). Suppose that X is K-sparse
such that :

X =

D∑

j=1

D′

∑

k=1

∑

i∈Λjk

αjk[i]ψjk[i]

where K =
∑

j,k Card (Λjk) satisfying K <
µ−1

Ψ

2 . At the h-th iteration, assume

that the residual R(h) is K-sparse such that :

R(h) =

D∑

j=1

D′

∑

k=1

∑

i∈Λjk

βjk[i]ψjk[i]

Then mMCA/mMOM picks up coefficients belonging to the support of X at
iteration (h).

The proof is deferred to the appendix. When the previous Exact Selection Prop-
erty holds, the next proposition shows that mMCA/mMOM converges exponen-
tially to X and its sparsest representation in Ψ = [Ξ1 · · ·ΞD′ ] ⊗ [Φ1 · · ·ΦD].

Proposition 2 (Convergence). Suppose that X is K-sparse such that :

X =

D∑

j=1

D′

∑

k=1

∑

i∈Λjk

αjk[i]ψjk[i]

where K =
∑

j,k Card (Λjk).

If K <
µ−1

Ψ

2 then mMCA/mMOM converges exponentially to X and its spars-
est representation in Ψ. More precisely, the residual converges to zero at an
exponential rate.

The proof to this second proposition is also given in the appendix. Note that
the above conditions are far from being sharp. Exact Selection and convergence
may still be valid beyond the bounds retained in the latter two statements.

See end of the paper for corrected proof.

See end of paper for corrected proof.



1.5 Handling bounded noise with mMCA

When bounded noise perturbs the data, the data are modeled as follows :

X =

D∑

j=1

D′

∑

k=1

∑

i∈Λjk

αjk[i]ψjk[i] + Z (25)

where Z is a bounded noise : ‖Z‖ < ǫ. Sparse recovery then needs to solve the
following problem:

min
αjk

D∑

j=1

D′

∑

k=1

‖αjk‖ℓ0 s.t

∥
∥
∥
∥
∥
∥

X −

D∑

j=1

D′

∑

k=1

ΞkαjkΦj

∥
∥
∥
∥
∥
∥

< ǫ (26)

Sparse recovery and stability conditions have been studied in [41–43] in the
monochannel case. More particularly, conditions are proved in [41] under which
OMP verifies an Exact Selection Property in the presence of bounded noise
‖Z‖ < ǫ. They also showed that the OMP solution lies in a ℓ2 ball centered on
the exact solution to the ℓ0 sparse recovery problem with a radius on the or-
der of ǫ. Exhibiting similar stability results in the mMCA setting is challenging
and will be addressed in future work. In the mMCA framework, assuming the
noise level is known, the mMCA/mMOM algorithm stops when λ ≤ λmin with
λmin = 3ǫ.

1.6 Choosing the overcomplete dictionary

The choice of the overcomplete dictionary is a key step as it determines where
we will be looking for a sparse representation. It is the expression of some prior
information we have available on the signal. Interestingly, the ℓ1 sparse recovery
problem can be seen in the light of a Bayesian framework. Solving the following
problem

min
{αjk}

∥
∥
∥
∥
∥
∥

X −

D∑

j=1

D′

∑

k=1

ΞkαjkΦj

∥
∥
∥
∥
∥
∥

2

+ 2λ

D∑

j=1

D′

∑

k=1

‖αjk‖ℓ1 (27)

is equivalent, in a Bayesian framework, to making the assumption among oth-
ers of an independent sparse Laplacian prior on the coefficients of each mor-
phological component in the sparse representation domain. Choosing the set of
subdictionaries is then equivalent to assuming some specific prior for each mor-
phological component.
Furthermore, the attractiveness of mMCA lies in its ability to take advantage of
sparse representations which have implicit fast analysis and synthesis operators
without requiring the explicit manipulation of each atom: wavelets, curvelets
[10], bandlets [23], contourlets [24], ridgelets [21], wave atoms [7] to name a few.
As a consequence, mMCA is a fast non-linear sparse decomposition algorithm
whose computational complexity is dominated by that of the transforms involved



in the dictionary.
In the next image processing experiments, we will assume that a wide range
of images can be decomposed into a piecewise smooth (contour) part and an
oscillating texture part. We will assume a priori that the contour part is sparse
in the curvelet tight frame, and the texture part is sparsely described by the
local discrete cosine transform (DCT) [8]5. However, all the results we previ-
ously proved were given assuming that each subdictionary was an orthonormal
basis. When the selected subdictionaries are more generally tight frames, the
solution to (21) is no longer a simple thresholding. Nevertheless, in [44] and [45],
the authors showed that thresholding is the first step towards solving (21) when
the subdictionary is redundant. Rigorously, proximal-type iterative shrinkage is
shown to converge to a solution of (21). In practice, even when the subdictionary
is a tight frame (for instance the curvelet frame) we will only use a single thresh-
olding step to solve (21).
The spectral dictionary Ξ is chosen based on a spectral sparsity assumption. The
choice of the dictionary Ξ relies on sparsity prior information.

2 Applications To Some Sparse Multichannel Image

Inverse Problems

2.1 Multichannel Morphological Component Separation

In this section, we illustrate the ability of mMCA algorithm at extracting the
so-called morphological components. For the sake of simplicity, the multichannel
dictionary Ψ = Ξ⊗Φ is such that Ξ and Φ are both the union of the DCT-based
basis (Ξ2 and Φ2) and an orthogonal wavelet transform (Ξ1 and Φ1). Hereafter,
the data X are assumed to be the linear combination of 4 multichannel morpho-
logical components corresponding to the following multichannel bases : Ξ1⊗Φ1,
Ξ2 ⊗ Φ1, Ξ2 ⊗ Φ1 and Ξ2 ⊗ Φ2.
Without loss of generality, the experiment above involves mono-dimensional sig-
nals. Each multichannel morphological component is made of 256 channels. Each
channel has 256 entries. Each multichannel morphological component {̟ij}i=1,2;j=1,2

is the linear combination of multichannel atoms belonging to {Ξi⊗Φj}i=1,2;j=1,2

respectively. The related coefficients {αjk}j=1,2;k=1,2 have been drawn according
a Bernoulli-Gaussian distribution: the atoms are active (i.e. non zero) with prob-
ability p = 5.10−3 with random zero mean and unit variance Gaussian values.

The left panels of Figures 2 to 5 show the 5th channels (lines of ̟) and 200th

columns (columns of ̟) of these synthetic morphological components.
The multichannel MCA algorithm is then used to estimate the 4 aforementioned
morphological components. The recovered multichannel morphological compo-
nents are then depicted on the right panels of Figures 2 to 5. At first sight,
the pictured samples of the multichannel morphological components are visually
well estimated. More quantitatively, the following tabular provides the recovery
error :

5 An alternative choice would be the wave atoms [7].



̟11 ̟12 ̟21 ̟22

Recovery error SNR in dB 47.3 61.9 47.9 58.2

Following the first visual impression, the mMCA algorithm performs well at
extracting multichannel morphological components.
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Fig. 1. The original data X
.

2.2 Multichannel Inpainting

In this section, we address the problem of multichannel image inpainting. In this
context, a set of samples are missing (set to zero) in the data. According to
the general inverse problem framework in Equation (1), the observed data are
modelled as follows:

Y = M⊙ X + N (28)

where M is a multichannel binary mask that multiplies the data matrix X en-
trywise. The entries of the multichannel mask M take the value zero when the
corresponding data pixels are missing and one otherwise. In this setting, data
restoration is about recovering the missing pixels. Note that a multichannel mask
applies on the whole data X; the missing pixels may not be the same in each
channel. In the monochannel case, image inpainting is an old “interpolation”
problem for which a wide range of techniques have been devised : variational
approaches [46–50], sparsity-based methods [17, 51, 52]. Interestingly, the MCA
based inpainting method described in [17] can be interpreted within the Expec-
tation Maximization framework as shown in [53].
We first propose to extend this algorithm to the multichannel case. We assume
that the multichannel data are the linear combination of D ×D′ multichannel
morphological components as described in Equation (19). The sparsity driven
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Fig. 2. Multichannel Morphological Component Separation - Component
related to Ξ1 ⊗Φ1 : (a) The channel 5 of the original morphological component. (b)
Channel 5 of the estimated morphological component. (c) Multichannel sample 200
of the original morphological component. (d) Multichannel sample 200 of the original
morphological component.

inpainting objective can be written as follows :

min
{αjk}

∥
∥
∥
∥
∥
∥

Y −M⊙





D∑

j=1

D′

∑

k=1

ΞkαjkΦj





∥
∥
∥
∥
∥
∥

2

+ 2λ

D∑

j=1

D′

∑

k=1

‖αjk‖ℓ1 (29)

Let Mc denote the logical opposite of M such that Mc is also a binary mask
where entries equal to one indicate invalid or missing pixels while zeros indicate
ones that are present. Extending this inpainting algorithm to the multichannel
setting boils down to a two-step iterative algorithm:

– Update of the estimated inpainted data : Y(h) = Y + Mc ⊙ X(h−1)

– Sparse decomposition : a mMCA decomposition step of the current data

estimate with the threshold λ(h).

The mMCA-based inpainting algorithm is summarized as follows :
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Fig. 3. Multichannel Morphological Component Separation - Component
related to Ξ1 ⊗Φ2 : (a) The channel 5 of the original morphological component. (b)
Channel 5 of the estimated morphological component. (c) Multichannel sample 200
of the original morphological component. (d) Multichannel sample 200 of the original
morphological component.

1. Set the number of iterations Imax and threshold λ(0).
2. While λ(h) is higher than a given lower bound λmin (e.g. can depend on the noise
variance as in Section 1.5),

a. Compute the hypercube estimate : Y(h) = Y + Mc ⊙ X̃(h−1).
b. Initialize to zero each residual morphological components { ˜̟ jk}

(h−1).
For j = 1, · · · , D and k = 1, · · · , D′

• Compute the residual term R
(h)
jk assuming the current estimates of ̟pq 6=jk,

˜̟
(h−1)
pq 6=jk are fixed:

R
(h)
jk = X −

P

pq 6=jk ˜̟
(h−1)
pq .

• Estimate the current coefficients of ˜̟
(h)
jk by thresholding with threshold λ(h):

α̃
(h)
jk = ∆λ(h)

“

ΞT
k R

(h)
jk ΦT

j

”

.

• Get the new estimate of ̟jk by reconstructing from the selected coefficients α̃
(h)
jk

:
˜̟

(h)
jk = Ξkα̃

(h)
k Φj

c. Update the hypercube X̃(h) =
PD

j=1

PD′

j=1 ˜̟
(h)
jk .

3. Decrease the threshold λ(h) following mMOM strategy.
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Fig. 4. Multichannel Morphological Component Separation - Component
related to Ξ2 ⊗Φ1 : (a) The channel 5 of the original morphological component. (b)
Channel 5 of the estimated morphological component. (c) Multichannel sample 200
of the original morphological component. (d) Multichannel sample 200 of the original
morphological component.

In the next subsection, we apply the multichannel inpainting algorithm to Hy-
perspectral data.

Hyperspectral Data Inpainting : We deal with a hyperspectral data cube
X. Unfortunately, as usual when dealing with real data, multichannel pixels
are missing. In the experiment we carried out, the data X is a Mars Orbiter6

hyperspectral cube composed of a 128×128 spatial observations measured at 64
different frequencies (channels). X is then a 128 × 128 × 64 hyperspectral data
cube. Although the data are real hyperspectral data, the so called missing pixels
were synthetically picked out. We generated a hyperspectral mask such that a
random proportion of randomly selected pixels are missing. We used the mMCA
algorithm assuming the data are sparse in the dictionary Ψ = Ξ ⊗ Φ. Each
spectrum of the data is assumed to be sparse in the orthogonal one-dimensional
wavelet basis Ξ. Each spatial observation is nearly sparse in the orthogonal
bidimensional wavelet basis Φ. Figure 6(a) displays the 10-th original channel.
Figure 6(b) depicts the masked channel with 50% missing pixels. Figure 6(c)
shows the recovered image using mMCA. The SNR between the inpainted image

6 See the Mars Orbiter website at http://mars.jpl.nasa.gov/mro/.



0 50 100 150 200 250 300
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−4
Original Morphological Component Ξ

2
 ⊗ Φ

2
 − Channel 5

(a)
0 50 100 150 200 250 300

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−4
Estimated Morphological Component Ξ

2
 ⊗ Φ

2
 − Channel 5

(b)

0 50 100 150 200 250 300
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−4
Original Morphological Component Ξ

2
 ⊗ Φ

2
 − Multichannel Sample 200

(c)
0 50 100 150 200 250 300

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−4
Estimated Morphological Component Ξ

2
 ⊗ Φ

2
 − Multichannel Sample 200

(d)

Fig. 5. Multichannel Morphological Component Separation - Component
related to Ξ2 ⊗Φ2 : (a) The channel 5 of the original morphological component. (b)
Channel 5 of the estimated morphological component. (c) Multichannel sample 200
of the original morphological component. (d) Multichannel sample 200 of the original
morphological component.

and the original is 19.2dB. Visually, mMCA does a good job at recovering the
spatial features of the data cube.

Figure 7(a) depicts the original spectrum at pixel {10, 10} of the data cube.
The plot of Figure 7(b) shows the masked spectrum. From Figure 7(c), it can
be seen that the recovered spectrum is well estimated by mMCA.

We repeated the same experiment with different fractions of missing pixels.
Figure 8 shows the evolution of the SNR in dB between the original data and
the recovered hyperspectral data as the percentage of missing pixels is increased
from 5 to 75%. Even when 75% of the pixels are missing, mMCA is able to re-
cover the data with a SNR of 10 dB. Furthermore, we applied the monochannel
MCA-based inpainting algorithm [54] on each channel separately. The dashed
line in Figure 8 displays the behaviour of this MCA-based recovery method.
Clearly, mMCA performs far better than MCA in this experiment. Accounting
for interchannel structures then leads to tremendous enhancement in hyperspec-
tral image inpainting. The transition from the monochannel to the multichannel
setting relies on the ability to account for spatial and spectral information. This
experiment clearly demonstrates that the mMCA algorithm is well suited to
handle such particular data as it performs well in terms of spectral and spatial
feature recovery.



(a) (b)

(c)

Fig. 6. Restoring Mars-Orbiter hyperspectral data: spatial feature recovery. (a) 10th
original channel. (b) Masked channel - 50% of the pixels are missing. (c) Recovered
channel using mMCA
.

Relation to compressed sensing : In signal processing, every student learns that,
owing to the Nyquist-Shannon sampling theorem, the number of samples needed
to recover any signal is dictated by its bandwidth. That is, a bandlimited signal
whose bandwidth is Fx can be perfectly reconstructed from Fx equispaced sam-
ples.
Very recently, an alternative sampling theory has emerged which shows that
signals can be recovered from far fewer samples (measurements) than what the
Nyquist-Shannon sampling theorem states. This new theory, which goes by the
name of compressed/ive sensing/sampling was introduced in the seminal paper
[55]. It relies on the compressibility of signals or more precisely on the property
for some signals to be sparsely represented. From the compressed sensing (CS)
viewpoint, sparse signals could be acquired “economically” (from a few samples)
without loss of information. This has many important implications as it suggests
new ways of designing data acquisition and sampling protocols and systems.



(a) (b)

(c)

Fig. 7. Restoring Mars-Orbiter hyperspectral data: recovering the spectra. (a) Original
spectrum at pixel {10, 10}. (b) Masked spectrum - 50% of the samples are missing. (c)
Recovered spectrum using mMCA. Abscissa : channel number. Ordinate : spectrum
amplitude
.

In the few next lines, we give a very brief introduction of compressed sensing
in the monochannel case. Assume x ∈ R

t such that we “observe” or “measure”
only M < t samples {yk}k=1,··· ,M : yk =

〈
x, θk

〉
. ymThese measurements are

more conveniently represented in a matrix formulation:

y = xΘ (30)

where Θ is the t × M measurement or sensing matrix. In [56], the authors
showed that assuming x has a K-sparse representation in Φ (in [56], the sparse
representation is the Fourier domain) then x can be exactly recovered by solving
the following linear problem:

min
x

‖xΦT ‖ℓ1 s.t y = xΘ (31)

More precisely, Candès et al. showed in [56] that if M > CK log(t) then the pre-
vious ℓ1 minimization problem provides the exact signal x with C ≃ 22(δ + 1)
and probability of success 1 −O(t−δ). In other words, this result defines a new
non-linear sampling theorem as pointed out in the review paper [57].
Since the seminal work of Donoho et al. and Candès et al., we have witnessed
a flurry of research activity addressing theoretical and practical issues arising in
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Fig. 8. Recovering the hyperspectral data : SNR in dB between the original data
and the recovered hyperspectral data using mMCA (solid line) and MCA on each
channel separately (dashed line).

CS, see [58–62] to name a few7.
The observed data y defined in Equation (30) can be considered as subspace
“projection” of the original data x. When the the sensing matrix Θ is a sub-
matrix of the identity matrix I, the entries of the observed data y are then a
subset of the entries of x. The sensing step is then equivalent to “masking” some
entries and keeping the others : the decoding step (estimating x from y) is then
equivalent to the inpainting problem. Inpainting can be viewed as a particular
case of compressed sensing.

3 Steps Ahead - Learning The Sparse Representation :

3.1 Adaptive Multichannel Morphological Component Separation

Throughout this paper, we focused on accounting for both spectral and spatial
coherences/structures to better solve inverse problems such as inpainting or mor-
phological component extraction issues. The choice of a particular multichannel
representation relies on prior information. Recently, new sparsity driven ap-
proaches in signal recovery have focused on devising adaptive processes. Adapt-
ing the representation to the data has also been introduced in various fields.
Most adaptive approaches are based on different concepts :

7 A website at http://www.dsp.ece.rice.edu/cs/ is dedicated to Compressed Sensing
Resources.



– Global approaches : in various fields, adaptive schemes have been proposed
to globally update the representation (see e.g. [63–65]).

– Adaptive search in tree-based bases : in the monochannel case, adaptive dic-
tionary learning processes have been used (see e.g. [66, 67]) assuming that
the sparse representation lies in a class of tree-based multiscale transforms
(e.g. wavelet and cosine packets [8], bandlets [23] to cite only a few).

These sparsity-based adpative techniques have provided astounding results in
various fields. In this section, we introduced an adaptive version of the mMCA
algorithm. In the multichannel case, such an adaptive recovery would have to be
applied both on the spectral dictionary Ξ and the spatial dictionary Φ. Adapting
the spatial dictionary to the data could be done by e.g choosing a decomposi-
tion tree assuming Φ lies in a class of tree-based multiscale transforms. When
applicable, the same adaptive process can be performed for Ξ.

The data X are made of 3 observed channels corresponding to each colour
layer (for instance red, green and blue) which cannot be strictly called spectra.
Hopefully, the forthcoming results are still valid in a higher dimension problem.
In the mMCA framework, D′ = 1 and the data X are the linear combination of
D multichannel morphological components. In this section, each channel of the
data X is the linear combination of a texture part (assumed to be well sparsified
by a Discrete Cosine Transform) and a contour part (sparse in the curvelet tight
frame). Figure 9 displays a toy-example based colour image X. We then propose
recovering the colour morphological compoenents using the proposed mMCA
method which seeks to adapt the colour space to the data X. In this context, we
assume that Ξ is a 3 × 3 invertible matrix. Adapting the spectral basis Ξ (i.e.
the colour space) to the data then amounts to estimate an “optimal” matrix Ξ.
The mMCA algorithm is then adapted such that at each iteration h the matrix
Ξ is updated by its least-squares estimate:

Ξ(h+1) = arg min
Ξ

∥
∥
∥
∥
∥
∥

X − Ξ

D∑

j=1

̟
(h)
j Φj

∥
∥
∥
∥
∥
∥

2

(32)

This problem has a unique minimizer defined as follows:

Ξ(h+1) = X





D∑

j=1

̟
(h)
j Φj





†

(33)

where
[
∑D

j=1̟
(h)
j Φj

]†

is the pseudo-inverse of the matrix
∑D

j=1̟
(h)
j Φj .

The mMCA algorithm of Section 2.2 is then adapted as follows :



1. Set the number of iterations Imax and threshold λ(0).
2. While λ(h) is higher than a given lower bound λmin (e.g. can depend on the noise
variance),

a. For j = 1, · · · , D

• Compute the residual term R
(h)
j assuming the current estimates of ̟{p}6={j},

˜̟
(h−1)
p 6=j are fixed:

R
(h)
j = X −

P

p6=j
˜̟

(h−1)
p .

• Estimate the current coefficients of ˜̟
(h)
j by thresholding with threshold λ(h):

α̃
(h)
j = ∆λ(h)

“

Ξ(h)T
R

(h)
j ΦT

j

”

.

• Get the new estimate of ̟j by reconstructing from the selected coefficients

α̃
(h)
j :

˜̟
(h)
j = Ξ(h)T

α̃
(h)
j Φj .

b. Update the spectral basis Ξ :

Ξ(h+1) = Y(h)
h

PD

j=1 ̟
(h)
j Φj

i†

.

3. Decrease the threshold λ(h) following mMOM strategy.

The proposed Adaptive mMCA algorithm should be able to better account
for inter-channel structure or correlations. In the next experiment, we compare
a non-adaptive MCA-based algorithm with the new adaptive mMCA algortihm
decribed below:

– Non-adaptive approach : a monochannel MCA is applied to each channel
separately. It then amounts to applying the mMCA algorithm with the par-
ticular choice : Ξ = I.

– Adaptive approach : a global adaptive mMCA is applied to the whole data
X.

The input toy-example based data are displayed in Figure 9. The texture part
is composed of a globally oscillating pattern; it will be assumed to be well-
sparsified by a Discrete Cosine Transform (Φ1 with be the DCT-based basis).
The Decomposition results are illustrated in Figure 10. At first sight, both ap-
proaches (MCA and mMCA) perform similarly providing good visual results.
More quantitatively, the following tabular summarizes the respective perfor-
mances :

Recovery error SNR in dB Texture Part Contour Part

mMCA with Ξ = I 15.7 22.9
Adaptive mMCA 16.3 23.6

To conlude accounting for inter-channel structures greatly improves the decom-
position task. We introduce an adaptive sparsity-driven algorithm that is able
to adapt to the data. In the next section, we apply a similar adaptive scheme to
the multichannel inpainting problem.



Fig. 9. Adaptive Multichannel Morphological Component Separation - The
256 × 256 original colour image

3.2 Adaptive Colour Image Inpainting

In the previous section, we emphasized on the improvement led by adapting
the spectral dictionary to data. Hereafter, we consider the particular case of
colour image inpainting. The data X are assumed to be made of three channels
(i.e. correponding to each colour layer). We apply exactly the same spectral
dictionary update described in Section 3.1. In the context of inpainting, the
mMCA algorithm of Section 2.2 is then adapted as follows :

1. Set the number of iterations Imax and threshold λ(0).
2. While λ(h) is higher than a given lower bound λmin (e.g. can depend on the noise
variance),

a. Compute Y(h) = Y + Mc ⊙ X̃(h−1).
b. Initialize to zero each residual morphological components { ˜̟ jk}

(h−1).
For j = 1, · · · , D

• Compute the residual term R
(h)
j assuming the current estimates of ̟{p}6={j},

˜̟
(h−1)
p 6=j are fixed:

R
(h)
j = Y(h) −

P

p6=j
˜̟

(h−1)
p .

• Estimate the current coefficients of ˜̟
(h)
j by thresholding with threshold λ(h):

α̃
(h)
j = ∆λ(h)

“

Ξ(h)T
R

(h)
j ΦT

j

”

.

• Get the new estimate of ̟j by reconstructing from the selected coefficients

α̃
(h)
j :

˜̟
(h)
j = Ξ(h)T

α̃
(h)
j Φj .

c. Update the hypercube X̃(h) =
PD

j=1 ˜̟
(h)
j .

d. Update the spectral basis Ξ :

Ξ(h+1) = Y(h)
h

PD

j=1 ̟
(h)
j Φj

i†

.

3. Decrease the threshold λ(h) following mMOM strategy.



Figure 11(a) shows the original Barbara colour image. Figure 11(b) depicts the
masked colour image where 90% of the colour pixels are missing. Figure 11(c)
portrays the recovered image using mMCA in the original RGB colour space
(which amounts to perform a monochannel MCA-based inpainting on each chan-
nel). Figure 11(d) shows the image recovered with the colour space-adaptive
mMCA algorithm. The zoom on the recovered images in Figure 12 shows that
adapting the colour space avoids chromatic abberrations and hence produces a
better visual result. This visual impression is quantitatively confirmed by SNR
measures, where the colour space-adaptive mMCA improves the SNR by 1dB.

3.3 Relations with BSS

In the previous sections, the adaptive mMCA-based algorithm has been devised
to adapt the spectral dictionary Ξ to the data. Recall that this adaptive scheme
can be recast as a two-step iterative algorithm:

– Sparse Coding : the first step amounts to get a sparse decomposition of the
data X in the multichannel dictionary Ξ⊗ Φ.

– Spectral dictionary update : update the spectral dictionary Ξ.

Such a two-step iterative algorithm have the flavour of the GMCA algorithm we
proposed for solving Blind Source Separation Issues in [68]. In this paper, we also
showed that this kind of adaptive scheme is likely to provide sparser representa-
tions. Even if the notion of source is a non-sense (for instance in colour imaging),
it is always worth looking for sparser representations. Indeed, we emphasized on
the mMCA’s ability to adapt to data leads to better recovery results.

4 Conclusion

We recalled the tremendous effectiveness of sparsity-based methods in signal
restoration. In this paper we emphasize on multichannel sparse dictionaries
to better represent multichannel data. Indeed, more than a concatenation of
monochannel signals, multichannel data are spatially and spectrally structured.
We introduce a general sparsity-based framework coined multichannel Morpho-
logical Component Analysis (mMCA) that accounts for the specific structure
of multichannel data. We enlighten the links between mMCA and extensions of
general sparse decomposition problems to the multichannel case. New theoretical
results are put forward that prove the efficiency of mMCA in providing sparse
multichannel decompositions in dictionaries built as a union of tensor products
of orthonormal bases. Experiments are given showing that the mMCA frame-
work provides an effective tool for devising sparsity-based solutions to classical
recovery issues such as multichannel morphological component extraction and
colour image inpainting. We also extend the mMCA algorithm to solve hyper-
spectral data inpainting issues. An adaptive scheme is also proposed to adapt
the sparse representation to data. We illustrate the astounding enhancement pro-
vided by such an adaptive algorithm. Future work will be devoted to i) extending



the mMCA framework to deal with other inverse problems such as multichannel
convolution, ii) devising more adaptive mMCA-based algorithm for multichannel
data decomposition.
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Appendix : Proofs

Let us first simplify a few notations. We define γ = {j, k} as a couple of in-
dices. The multichannel dictionary Ξk ⊗Φj will be written Ψγ with γ = {j, k}.
The notation ψγ [i] will refer to the i-th atom of the multichannel subdictionary
Ψγ . Furthermore, the sparse representation of the multichannel data X will be
written as follows:

X =
∑

γ

∑

i∈Λγ

αγ [i]ψγ [i] (34)

Equivalently, the sparse decomposition of the residual term at iteration h is
written as follows:

R(h) =
∑

γ

∑

i∈Λγ

β(h)
γ [i]ψγ [i] (35)

Note that the following proofs are still valid in the monochannel case which
corresponds to the MCA algorithm.

Proof of Proposition 1

Proof. Let’s denote :

(γ⋆, i⋆) = arg max
γ,i∈Λγ

∣
∣
∣

〈

R(h), ψγ [i]
〉∣
∣
∣

(γ†, i†) = arg max
γ 6=γ⋆,i∈Λγ

∣
∣
∣

〈

R(h), ψγ [i]
〉∣
∣
∣

ω
(h)
γ⋆ =

∣
∣
∣

〈

R(h), ψγ⋆ [i⋆]
〉∣
∣
∣

ω(h) =
∣
∣
∣

〈

R(h), ψγ† [i†]
〉∣
∣
∣

Moreover, let β⋆ =
∣
∣
∣β

(h)
γ⋆ [i⋆]

∣
∣
∣ and β† =

∣
∣
∣β

(h)

γ† [i†]
∣
∣
∣. By definition, the mMOM

thresholding rule in (24) selects new coefficients such that:

∀i, γ; ω
(h)
γ⋆ ≥

∣
∣
∣

〈

R(h), ψγ [i]
〉∣
∣
∣ > ω(h)



where Iγ⋆ ⊆ Λγ⋆ , and ΨIγ⋆ is the restriction of Ψ to the atoms indexed by Iγ⋆ .
From the orthonormality of the atoms in ΨIγ⋆ , it is easy to see that,

‖R(h+1)‖2 = ‖R(h)‖2 −

∥
∥
∥
∥
∥
∥

∑

i∈Iγ⋆

〈
R(h), ψγ⋆ [i]

〉
ψγ⋆ [i]

∥
∥
∥
∥
∥
∥

2

≤ σ2
∥
∥
∥R(h)

∥
∥
∥

2

(39)

where σ2 is the highest eigenvalue of I − GΨIγ⋆

8, I is the identity matrix of

appropriate dimensions. From [18, Lemma 2.3] with arguments relying on Ger-
shgorin Disc Theorem, and [18, Proposition 2.1], the squared singular values
of ΨIγ⋆ are bounded below by 1 − (Card(Iγ⋆) − 1)µΨ . It follows that σ2 ≤
(Card (Iγ⋆) − 1)µΨ . Then, as KµΨ < 1/2,

‖R(h+1)‖2 ≤ (Card(Iγ⋆) − 1)µΨ‖R
(h)‖2

≤ (K − 1)µΨ‖R
(h)‖2

≤ 1/2‖R(h)‖2

≤ . . .

≤ 2−(h+1)‖X‖2 (40)

which completes the proof.
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(a) (b)

(c) (d)

(e) (f)

Fig. 10. Adpative Multichannel Morphological Component Separation -
Components Recovery : (a) Original multichannel texture component. (b) Origi-
nal multichannel pointwise component. (c) Multichannel texture component estimated
with MCA. (d) Multichannel pointwise component estimated with MCA. (e) Multi-
channel texture component estimated with mMCA. (f) Multichannel pointwise com-
ponent estimated with mMCA.



(a) (b)

(c) (d)

Fig. 11. Recovering colour images. (a) Original Barbara colour image. (b) Masked
image - 90% of the colour pixels are missing. (c) Inpainted image using the original
MCA algorithm on each color channel. (d) Inpainted image using the adaptive mMCA
algorithm
.



(a) (b)

(c) (d)

Fig. 12. Zoom on recovered Barbara colour image original colour image. (a) Original
Barbara colour image. (b) Masked image - 90% of the colour pixels are missing. (c)
Inpainted image using the original MCA algorithm on each color channel. (d) Inpainted
image using the adaptive mMCA algorithm.



Erratum to ”Morphological Diversity and

Sparsity for Multichannel Data Restoration”

We first define precisely what we intend by correct sparse recovery.

Definition 1. We say that

– the GMCA/mMOM algorithm has the Correct Rejection Property, if at each
iteration and for each morphological component γ⋆, the algorithm does not
select new atoms to enter the active set that are outside the support of the
γ⋆-th morphological component.

– the GMCA/mMOM algorithm has the Correct Selection Property, if at each
iteration and for the morphological component γ⋆, the algorithm selects at
least one atom to enter the active set from the support of the γ⋆-th morpho-
logical component.

– the GMCA/mMOM algorithm has the Exact Selection Property, if at each
iteration and for the morphological component γ⋆, it has both the Correct
Rejection Property and the Correct Selection Property.

Theorem 1. Suppose that X is K-sparse such that :

X =

D
∑

j=1

D′

∑

k=1

∑

i∈Λjk

αjk[i]ψjk[i] ,

where K =
∑

j,k |Λjk|. At the h-th iteration, assume that the residual R(h) is
K-sparse such that :

R(h) =

D
∑

j=1

D′

∑

k=1

∑

i∈Λjk

βjk[i]ψjk[i] .

Let ρ as defined in the appendix. Then we have,

(i) GMCA/mMOM has the Correct Rejection Property if N = KµΨ < 1/4
and ρ ≤ 1/5.

(ii) GMCA/mMOM has the Correct Selection Property if N = KµΨ < N0 < 1
and ρ ≤ 1−N0

1+3N0

. For N0 = 1/2, ρ ≤ 1/5.



The proof is given the appendix.
As a consequence, taking N0 = 1/4 in Theorem 1(ii) and combining with (i),

we have the following corollary on Exact Selection Property,

Corollary 1 (Exact Selection Property). GMCA/mMOM has the Exact

Selection Property if K <
µ
−1

Ψ

4 and ρ ≤ 1/5.

When the Exact Selection Property holds, the next proposition shows that
GMCA/mMOM converges exponentially to X and its sparsest representation
in Ψ = [Ξ1 · · ·ΞD′ ] ⊗ [Φ1 · · ·ΦD].

Proposition 1 (Convergence). Suppose that X is K-sparse such that :

X =

D
∑

j=1

D′

∑

k=1

∑

i∈Λjk

αjk[i]ψjk[i] ,

where K =
∑

j,k |Λjk|.

If K <
µ
−1

Ψ

4 and ρ ≤ 1/5 then GMCA/mMOM converges exponentially to X and
its sparsest representation in Ψ. More precisely, the residual converges to zero
at an exponential rate.

The proof to this proposition is also given in the appendix. Note that the above
conditions are based on worst-case analysis and are far from being sharp. Exact
Selection and convergence may still be valid beyond the bounds retained in the
latter two statements.

Appendix : Proofs

Let us first simplify a few notations. We define γ = {j, k} as a couple of indices.
The multichannel dictionary Ξk ⊗ Φj will be written Ψγ with γ = (j, k). The
notation ψγ [i] will refer to the i-th atom of the multichannel sub-dictionary
Ψγ . Furthermore, the sparse representation of the multichannel data X will be
written as follows:

X =
∑

γ

∑

i∈Λγ

αγ [i]ψγ [i] , (1)

with Λγ the support of the γ-th morphological component and Λ = ∪γΛγ . Under
the Exact Selection Property, the sparse decomposition of the residual term at
iteration h is written as follows:

R(h) =
∑

γ

∑

i∈Λγ

βγ [i]ψγ [i] . (2)

Note that the following proofs are still valid in the monochannel case which
corresponds to the MCA algorithm.



Proof of Theorem 1

Proof. Let’s denote :

(γ⋆, i⋆) = arg max
γ,i∈Λγ

|βγ [i]| , β⋆ =
∣

∣

∣
β

(h)
γ⋆ [i⋆]

∣

∣

∣
,

(γ†, i†) = arg max
γ 6=γ⋆,i∈Λγ

|βγ [i]| , β† =
∣

∣

∣
β

(h)

γ† [i†]
∣

∣

∣
.

Let ρ such that β† = ρβ⋆ for 0 < ρ < 1.

Definition 2. We will say that the γ-th morphological component is ρ0-separable
0 ≤ ρ0 < 1, if ‖βγ′‖

ℓ∞
≤ ρ0 ‖βγ‖ℓ∞

, ∀γ′ 6= γ.

Obviously, the morphological component γ⋆ is ρ-separable, hence ρ0-separable
if ρ ≤ ρ0. The parameter ρ0 can be interpreted as a separability threshold.

Let ωγ =
∥

∥R(h)Ψγ

∥

∥

ℓ∞
∀γ, m1 = ωγ1

= maxγ ωγ and m2 = maxγ 6=γ1
ωγ <

m1, as defined in (24) in the paper.

Proof of (i) We want to show the Correct Rejection Property for the γ⋆-th
morphological component. Then, we must first guarantee that this component is
identifiable, i.e. m1 occurs within γ⋆. The following lemma provides a sufficient
condition under which the component γ⋆ is actually γ1, hence ωγ⋆ = m1.

Lemma 1. Let 0 < N = KµΨ < N0 < 1, and ρ0 = 1−N0

1+N0

. If the γ⋆-th morpho-
logical component is ρ0-separable, then it is identifiable, i.e. γ⋆ = γ1, m1 = ωγ⋆

and m1 > m2 ≥ ωγ†.

Proof. We have,

ωγ⋆ = max
i

∣

∣

∣

〈

R(h), ψγ⋆ [i]
〉∣

∣

∣

≥
∣

∣

∣

〈

R(h), ψγ⋆ [i⋆]
〉
∣

∣

∣

≥ β⋆ −
∑

γ 6=γ⋆

∑

j∈Λγ

∣

∣

∣

〈

ψγ⋆ [i⋆], ψγ [j]
〉∣

∣

∣
|βγ [j]|

≥ β⋆ − |Λ|µΨβ
† , (3)

and ∀γ 6= γ⋆

ωγ = max
i

∣

∣

∣

〈

R(h), ψγ [i]
〉∣

∣

∣

≤ β† + max
i

∑

γ′ 6=γ

∑

j∈Λγ′

∣

∣

∣

〈

ψγ [i], ψγ′[j]
〉∣

∣

∣
|βγ′ [j]|

≤ β† + |Λ|µΨβ
⋆ , (4)



where we used
∣

∣

∣

〈

ψγ [i], ψγ′ [j]
〉
∣

∣

∣
≤ µΨ , ∀γ 6= γ′ or i 6= j, orthonormality of

each sub-dictionary Ψγ , and recall that β† = ρβ⋆ for 0 < ρ < 1. To have
ωγ⋆ > ωγ ∀γ 6= γ⋆, we need

β⋆ − |Λ|µΨβ
† > β† − |Λ|µΨβ

⋆ ⇔ β† <
1 −N

1 +N
β⋆ . (5)

1−N
1+N

is a strictly decreasing function of N ∈ (0, N0) strictly bounded below by
ρ0. As the γ⋆-th morphological component is ρ0-separable, the bound (5) holds.
Thus, ωγ⋆ > ωγ ∀γ 6= γ⋆ ⇔ γ⋆ = γ1 ⇔ m1 = ωγ⋆ > m2 ≥ ωγ† .

By definition, the mMOM thresholding rule selects new coefficients such that

∀i, γ;
∣

∣

∣

〈

R(h), ψγ [i]
〉∣

∣

∣
≥ λ(h) =

m1 +m2

2
.

To prove that GMCA/mMOM agrees with the Correct Rejection Property, we
need to show that

max
(γ,i)∈Cγ⋆

∣

∣

∣

〈

R(h), ψγ [i]
〉∣

∣

∣
< λ(h), Cγ⋆ = {γ⋆, i ∈ Λc

γ⋆} ∪ {γ 6= γ⋆, ∀i} , (6)

where Λc
γ⋆ is the complement of the support Λγ⋆ restricted to the sub-dictionary

Ψγ⋆ . Clearly, Cγ⋆ is the set of all atom indices but those that belong to the sup-
port of the γ⋆-th morphological component that we want to recover at iteration
h.

As ρ < 1/5 and N0 = 1/4, γ⋆ is
(

1−N0

1+N0

= 3/5
)

-separable. On the one hand,

we have using Lemma 1,

m1 = ωγ⋆ = max
i

∣

∣

∣

〈

R(h), ψγ⋆ [i]
〉∣

∣

∣
,

β⋆ −
∑

γ 6=γ⋆

∑

j∈Λγ

∣

∣

∣

〈

ψγ⋆ [i⋆], ψγ [j]
〉∣

∣

∣
|βγ [j]| ≤ m1 ≤ β⋆ + max

i

∑

γ 6=γ⋆

∑

j∈Λγ

∣

∣

∣

〈

ψγ⋆ [i], ψγ [j]
〉∣

∣

∣
|βγ [j]| ,

β⋆(1 − ρN) ≤ m1 ≤ β⋆(1 + ρN) ,
(7)

and

β† −
∑

γ 6=γ†

∑

j∈Λγ

∣

∣

∣

〈

ψγ† [i†], ψγ [j]
〉∣

∣

∣
|βγ [j]| ≤ ωγ† ≤ m2 ≤ max

γ 6=γ⋆

{

‖βγ‖ℓ∞

+ max
i

∑

γ′ 6=γ

∑

j∈Λγ′

∣

∣

∣

〈

ψγ [i], ψγ′ [j]
〉∣

∣

∣
|βγ′ [j]|

} ,

β† − |Λ|µΨβ
⋆ ≤ m2 ≤ β† + |Λ|µΨβ

⋆ ,

β⋆(ρ−N) ≤ m2 ≤ β⋆(ρ+N) .

(8)

From (7) and (8), we get

(1 + ρ)(1 −N)

2
≤ λ(h) ≤

(1 + ρ)(1 +N)

2
. (9)



On the other hand, a straightforward calculation leads to

∣

∣

∣

〈

R(h), ψγ [i]
〉∣

∣

∣
=



















∣

∣

∣

∑

γ 6=γ⋆

∑

j∈Λγ

〈

ψγ⋆ [i], ψγ [j]
〉

βγ [j]
∣

∣

∣
i ∈ Λc

γ⋆ .
∣

∣

∣

∑

γ′ 6=γ

∑

j∈Λγ′

〈

ψγ [i], ψγ′ [j]
〉

βγ′ [j]
∣

∣

∣
γ 6= γ⋆, i ∈ Λc

γ .
∣

∣

∣
βγ [i] +

∑

γ′ 6=γ

∑

j∈Λγ′

〈

ψγ [i], ψγ′ [j]
〉

βγ′ [j]
∣

∣

∣
γ 6= γ⋆, i ∈ Λγ .

≤











|Λ|µΨβ
† i ∈ Λc

γ⋆ .

|Λ|µΨβ
⋆ γ 6= γ⋆, i ∈ Λc

γ .

β† + |Λ|µΨβ
⋆ γ 6= γ⋆, i ∈ Λγ .

≤











Nρβ⋆ i ∈ Λc
γ⋆ .

Nβ⋆ γ 6= γ⋆, i ∈ Λc
γ .

(ρ+N)β⋆ γ 6= γ⋆, i ∈ Λγ .

(10)

Therefore,

max
(γ,i)∈Cγ⋆

∣

∣

∣

〈

R(h), ψγ [i]
〉
∣

∣

∣
≤ (ρ+N)β⋆ . (11)

This bound is attained for an atom that belongs to the support of an incorrect
morphological component.

Combining the lower-bound of (9) and the upper-bound (11), we get that for
(6) to hold, we need that

(ρ+N) <
(1 + ρ)(1 −N)

2
, (12)

or equivalently N < 1−ρ
3+ρ

. For 0 < ρ ≤ 1/5, this is a strictly decreasing function

of ρ bounded below by 1/4, yielding the bound of the theorem on K, hence
validating the Correct Rejection Property.

Remark 1. There is a room for improving the sparsity bound of Theorem 1(i) if
the Correct Rejection Property is relaxed. It is easy to see that :

– A sufficient condition for the GMCA/mMOM to reject all atoms indexed by
Λc

γ⋆ is N < 1/2 and ρ ≤ 1/3.

– GMCA/mMOM will never select any atom (γ, i) ∈ {γ 6= γ⋆, i ∈ Λc
γ} if

N < 1/3 and ρ ≤ 1/2.

Proof of (ii) We will show that at the h-step, under the conditions of (ii),

∃i ∈ Λγ⋆ such that
∣

∣

∣

〈

R(h), ψγ⋆ [i]
〉
∣

∣

∣
≥ λ(h) . (13)



As ρ ≤ 1−N0

1+3N0

< 1−N0

1+N0

for 0 < N0 < 1, the morphological component γ⋆ is
1−N0

1+N0

-separable. Thus, the upper-bound of (9) holds. Furthermore,

max
i∈Λγ⋆

∣

∣

∣

〈

R(h), ψγ⋆ [i]
〉∣

∣

∣
≥

∣

∣

∣

〈

R(h), ψγ⋆ [i⋆]
〉∣

∣

∣

≥

∣

∣

∣

∣

∣

∣

β⋆ +
∑

γ 6=γ⋆

∑

i∈Λγ

〈

ψγ [i], ψγ⋆ [i⋆]
〉

βγ [i]

∣

∣

∣

∣

∣

∣

≥ β⋆(1 − ρN) . (14)

For (13) to hold, it is sufficient to have

(1 + ρ)(1 +N)

2
< 1 − ρN , (15)

or equivalently N < 1−ρ
1+3ρ

. This upper-bound is a strictly decreasing function

bounded below by N0 for ρ ∈ (0, 1−N0

1+3N0

]. Since N was chosen < N0, the bound
(13) follows.

Proof of Proposition 1

Proof. Our GMCA/mMOM strategy and its proof is a stagewise extension of
the greedy MP. As for MP and OMP, the proposition is shown by induction.
GMCA/mMOM begins by setting R(0) = X. By hypothesis in the proposition,
at each step h ≥ 0, GMCA/mMOM has the Exact Selection Property. Thus,

∀h ≥ 0; R(h) =
∑

γ

∑

i∈Λγ

ψγ [i]βγ [i] = ΨΛβ[Λ] ∈ span
(

ΨΛγ
, ∀γ

)

.

where β[Λ] is the restriction of β to its support Λ, and ΨΛ is the restriction of
Ψ to the atoms indexed by Λ. GMCA/mMOM then chooses correct atoms only
from Λγ⋆ by hard-thresholding, and then calculates a new residual such that :

R(h+1) = R(h) −
∑

i∈Iγ⋆⊆Λγ⋆

〈

R(h), ψγ⋆ [i]
〉

ψγ⋆ [i] ,

From the orthonormality of the atoms in ΨIγ⋆ , it is easy to see that,

‖R(h+1)‖2 = ‖R(h)‖2 −
∑

i∈Iγ⋆

∣

∣

∣

〈

R(h), ψγ⋆ [i]
〉∣

∣

∣

2

≤
∥

∥

∥
R(h)

∥

∥

∥

2

−
∥

∥

∥
R(h)ΨIγ⋆

∥

∥

∥

2

ℓ∞
. (16)

The inequality follows from the fact that Iγ⋆ 6= ∅ under the Correct Selection
Property.



We also have,

∥

∥

∥
R(h)ΨIγ⋆

∥

∥

∥

ℓ∞
=

∥

∥

∥
R(h)ΨΛγ⋆

∥

∥

∥

ℓ∞
=

∥

∥

∥
R(h)ΨΛ

∥

∥

∥

ℓ∞
.

The first equality is a consequence of the Correct Selection Property (see (14)),
and the second one follows from Lemma 1 as ρ ≤ 1/5 < 3/5 the separability
threshold of the morphological component γ⋆.

We then obtain,

‖R(h+1)‖2 ≤
∥

∥

∥
R(h)

∥

∥

∥

2

−
∥

∥

∥
R(h)ΨΛ

∥

∥

∥

2

ℓ∞
. (17)

The rest of the proof is merely the same as in [1, Theorem 2], with arguments
relying on DeVore and Temlyakov Lemma [3], and Gershgorin Disc Theorem,
see [2, Lemma 2.3 and Proposition 2.1]. We finally obtain,

‖R(h+1)‖2 ≤ τ‖R(h)‖2 ≤ . . . ≤ τ−(h+1)‖X‖2 , (18)

where 0 ≤ τ = (K−1)(1+µΨ )
K

< 1 − 3
4K

as KµΨ < 1/4. This completes the proof.
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