12 research outputs found

    Generalised Lyndon-SchĂźtzenberger Equations

    Get PDF
    We fully characterise the solutions of the generalised Lyndon-Schützenberger word equations u1⋯uℓ=v1cdotsvmw1⋯wnu_1 \cdots u_\ell = v_1 cdots v_m w_1 \cdots w_n, where ui∈{u,θ(u)}u_i \in \{u, \theta(u)\} for all 1≤i≤ℓ1 \leq i \leq \ell, vj∈{v,θ(v)}v_j \in \{v, \theta(v)\} for all 1≤j≤m1 \leq j \leq m, wk∈{w,θ(w)}w_k \in \{w, \theta(w)\} for all 1≤k?≤n1 \leq k ?\leq n, and θ\theta is an antimorphic involution. More precisely, we show for which ℓ\ell, mm, and nn such an equation has only θ\theta-periodic solutions, i.e., uu, vv, and ww are in {t,θ(t)}∗\{t, \theta(t)\}^\ast for some word tt, closing an open problem by Czeizler et al. (2011)

    Avoiding and Enforcing Repetitive Structures in Words

    Get PDF
    The focus of this thesis is on the study of repetitive structures in words, a central topic in the area of combinatorics on words. The results presented in the thesis at hand are meant to extend and enrich the existing theory concerning the appearance and absence of such structures. In the first part we examine whether these structures necessarily appear in infinite words over a finite alphabet. The repetitive structures we are concerned with involve functional dependencies between the parts that are repeated. In particular, we study avoidability questions of patterns whose repetitive structure is disguised by the application of a permutation. This novel setting exhibits the surprising behaviour that avoidable patterns may become unavoidable in larger alphabets. The second and major part of this thesis deals with equations on words that enforce a certain repetitive structure involving involutions in their solution set. Czeizler et al. (2009) introduced a generalised version of the classical equations u` Æ vmwn that were studied by Lyndon and Schützenberger. We solve the last two remaining and most challenging cases and thereby complete the classification of these equations in terms of the repetitive structures appearing in the admitted solutions. In the final part we investigate the influence of the shuffle operation on words avoiding ordinary repetitions. We construct finite and infinite square-free words that can be shuffled with themselves in a way that preserves squarefreeness. We also show that the repetitive structure obtained by shuffling a word with itself is avoidable in infinite words

    On the Pseudoperiodic Extension of u^l = v^m w^n

    Get PDF
    We investigate the solution set of the pseudoperiodic extension of the classical Lyndon and Sch"utzenberger word equations. Consider u_1 ... u_l = v_1 ... v_m w_1 ... w_n, where u_i is in {u, theta(u)} for all 1 = 12 or m,n >= 5 and either m and n are not both even or not all u_i\u27s are equal, all solutions are pseudoperiodic

    The word problem and combinatorial methods for groups and semigroups

    Get PDF
    The subject matter of this thesis is combinatorial semigroup theory. It includes material, in no particular order, from combinatorial and geometric group theory, formal language theory, theoretical computer science, the history of mathematics, formal logic, model theory, graph theory, and decidability theory. In Chapter 1, we will give an overview of the mathematical background required to state the results of the remaining chapters. The only originality therein lies in the exposition of special monoids presented in §1.3, which uni.es the approaches by several authors. In Chapter 2, we introduce some general algebraic and language-theoretic constructions which will be useful in subsequent chapters. As a corollary of these general methods, we recover and generalise a recent result by Brough, Cain & Pfei.er that the class of monoids with context-free word problem is closed under taking free products. In Chapter 3, we study language-theoretic and algebraic properties of special monoids, and completely classify this theory in terms of the group of units. As a result, we generalise the Muller-Schupp theorem to special monoids, and answer a question posed by Zhang in 1992. In Chapter 4, we give a similar treatment to weakly compressible monoids, and characterise their language-theoretic properties. As a corollary, we deduce many new results for one-relation monoids, including solving the rational subset membership problem for many such monoids. We also prove, among many other results, that it is decidable whether a one-relation monoid containing a non-trivial idempotent has context-free word problem. In Chapter 5, we study context-free graphs, and connect the algebraic theory of special monoids with the geometric behaviour of their Cayley graphs. This generalises the geometric aspects of the Muller-Schupp theorem for groups to special monoids. We study the growth rate of special monoids, and prove that a special monoid of intermediate growth is a group

    On Special k-Spectra, k-Locality, and Collapsing Prefix Normal Words

    Get PDF
    The domain of Combinatorics on Words, first introduced by Axel Thue in 1906, covers by now many subdomains. In this work we are investigating scattered factors as a representation of non-complete information and two measurements for words, namely the locality of a word and prefix normality, which have applications in pattern matching. In the first part of the thesis we investigate scattered factors: A word u is a scattered factor of w if u can be obtained from w by deleting some of its letters. That is, there exist the (potentially empty) words u1, u2, . . . , un, and v0,v1,...,vn such that u = u1u2 ̈ ̈ ̈un and w = v0u1v1u2v2 ̈ ̈ ̈unvn. First, we consider the set of length-k scattered factors of a given word w, called the k-spectrum of w and denoted by ScatFactk(w). We prove a series of properties of the sets ScatFactk(w) for binary weakly-0-balanced and, respectively, weakly-c-balanced words w, i.e., words over a two- letter alphabet where the number of occurrences of each letter is the same, or, respectively, one letter has c occurrences more than the other. In particular, we consider the question which cardinalities n = | ScatFactk (w)| are obtainable, for a positive integer k, when w is either a weakly-0- balanced binary word of length 2k, or a weakly-c-balanced binary word of length 2k ́ c. Second, we investigate k-spectra that contain all possible words of length k, i.e., k-spectra of so called k-universal words. We present an algorithm deciding whether the k-spectra for given k of two words are equal or not, running in optimal time. Moreover, we present several results regarding k-universal words and extend this notion to circular universality that helps in investigating how the universality of repetitions of a given word can be determined. We conclude the part about scattered factors with results on the reconstruction problem of words from scattered factors that asks for the minimal information, like multisets of scattered factors of a given length or the number of occurrences of scattered factors from a given set, necessary to uniquely determine a word. We show that a word w P {a, b} ̊ can be reconstructed from the number of occurrences of at most min(|w|a, |w|b) + 1 scattered factors of the form aib, where |w|a is the number of occurrences of the letter a in w. Moreover, we generalise the result to alphabets of the form {1, . . . , q} by showing that at most ∑q ́1 |w|i (q ́ i + 1) scattered factors suffices to reconstruct w. Both results i=1 improve on the upper bounds known so far. Complexity time bounds on reconstruction algorithms are also considered here. In the second part we consider patterns, i.e., words consisting of not only letters but also variables, and in particular their locality. A pattern is called k-local if on marking the pattern in a given order never more than k marked blocks occur. We start with the proof that determining the minimal k for a given pattern such that the pattern is k-local is NP- complete. Afterwards we present results on the behaviour of the locality of repetitions and palindromes. We end this part with the proof that the matching problem becomes also NP-hard if we do not consider a regular pattern - for which the matching problem is efficiently solvable - but repetitions of regular patterns. In the last part we investigate prefix normal words which are binary words in which each prefix has at least the same number of 1s as any factor of the same length. First introduced in 2011 by Fici and Lipták, the problem of determining the index (amount of equivalence classes for a given word length) of the prefix normal equivalence relation is still open. In this paper, we investigate two aspects of the problem, namely prefix normal palindromes and so-called collapsing words (extending the notion of critical words). We prove characterizations for both the palindromes and the collapsing words and show their connection. Based on this, we show that still open problems regarding prefix normal words can be split into certain subproblems

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF

    LIPIcs, Volume 244, ESA 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 244, ESA 2022, Complete Volum

    Subject Index Volumes 1–200

    Get PDF
    corecore