113 research outputs found

    EyeRIS: A General-Purpose System for Eye Movement Contingent Display Control

    Full text link
    In experimental studies of visual performance, the need often emerges to modify the stimulus according to the eye movements perfonncd by the subject. The methodology of Eye Movement-Contingent Display (EMCD) enables accurate control of the position and motion of the stimulus on the retina. EMCD procedures have been used successfully in many areas of vision science, including studies of visual attention, eye movements, and physiological characterization of neuronal response properties. Unfortunately, the difficulty of real-time programming and the unavailability of flexible and economical systems that can be easily adapted to the diversity of experimental needs and laboratory setups have prevented the widespread use of EMCD control. This paper describes EyeRIS, a general-purpose system for performing EMCD experiments on a Windows computer. Based on a digital signal processor with analog and digital interfaces, this integrated hardware and software system is responsible for sampling and processing oculomotor signals and subject responses and modifying the stimulus displayed on a CRT according to the gaze-contingent procedure specified by the experimenter. EyeRIS is designed to update the stimulus within a delay of 10 ms. To thoroughly evaluate EyeRIS' perforltlancc, this study (a) examines the response of the system in a number of EMCD procedures and computational benchmarking tests, (b) compares the accuracy of implementation of one particular EMCD procedure, retinal stabilization, to that produced by a standard tool used for this task, and (c) examines EyeRIS' performance in one of the many EMCD procedures that cannot be executed by means of any other currently available device.National Institute of Health (EY15732-01

    Multimodality with Eye tracking and Haptics: A New Horizon for Serious Games?

    Get PDF
    The goal of this review is to illustrate the emerging use of multimodal virtual reality that can benefit learning-based games. The review begins with an introduction to multimodal virtual reality in serious games and we provide a brief discussion of why cognitive processes involved in learning and training are enhanced under immersive virtual environments. We initially outline studies that have used eye tracking and haptic feedback independently in serious games, and then review some innovative applications that have already combined eye tracking and haptic devices in order to provide applicable multimodal frameworks for learning-based games. Finally, some general conclusions are identified and clarified in order to advance current understanding in multimodal serious game production as well as exploring possible areas for new applications

    Event Fixation Related Potential During Visual Emotion Stimulation

    Get PDF
    Cílem této diplomové práce je najít a popsat souvislost mezi fixací očí v emočně zabarveném stimulu, kterým je obrázek či video, a EEG signálu. K tomuto studiu je třeba vyvinout softwarové nástroje v prostředí Matlab k úpravě a zpracování dat získaných z eye trackeru a propojení s EEG signály pomocí nově vytvořených markerů. Na základě získaných znalostí o fixacích, jsou v prostředí BrainVision Analyzeru EEG data zpracovány a následně jsou segmentovány a průměrovány jako evokované potenciály pro jednotlivé stimuly (ERP a EfRP). Tato práce je vypracována ve spolupráci s Gipsa-lab v rámci výzkumného projektu.This diploma thesis is a part of a ongoing research project concerning new joint technique of eye fixations and EEG. The goal of this work is to find and analyze a connection between eye fixation in a face expressing an emotion (static or dynamic). For this study certain software developments need to be done to adjust fixation data in Matlab and connect them to EEG signals with newly created markers. Based on the obtained information on fixations, EEG data are processed in BrainVision Analyzer and segmented to obtain ERPs and EfRPs for each stimuli.

    Deformable Beamsplitters: Enhancing Perception with Wide Field of View, Varifocal Augmented Reality Displays

    Get PDF
    An augmented reality head-mounted display with full environmental awareness could present data in new ways and provide a new type of experience, allowing seamless transitions between real life and virtual content. However, creating a light-weight, optical see-through display providing both focus support and wide field of view remains a challenge. This dissertation describes a new dynamic optical element, the deformable beamsplitter, and its applications for wide field of view, varifocal, augmented reality displays. Deformable beamsplitters combine a traditional deformable membrane mirror and a beamsplitter into a single element, allowing reflected light to be manipulated by the deforming membrane mirror, while transmitted light remains unchanged. This research enables both single element optical design and correct focus while maintaining a wide field of view, as demonstrated by the description and analysis of two prototype hardware display systems which incorporate deformable beamsplitters. As a user changes the depth of their gaze when looking through these displays, the focus of virtual content can quickly be altered to match the real world by simply modulating air pressure in a chamber behind the deformable beamsplitter; thus ameliorating vergence–accommodation conflict. Two user studies verify the display prototypes’ capabilities and show the potential of the display in enhancing human performance at quickly perceiving visual stimuli. This work shows that near-eye displays built with deformable beamsplitters allow for simple optical designs that enable wide field of view and comfortable viewing experiences with the potential to enhance user perception.Doctor of Philosoph

    Quantifying perception and oculomotor instability in infantile nystagmus

    Get PDF
    The purpose of the studies described herein was to better understand the impact of involuntary eye movements on oculomotor control and perception in infantile nystagmus. Therapeutic interventions that result in slowed nystagmus oscillations often fail to elicit significant quantifiable improvements in visual function, despite patients reporting subjective benefits. It is difficult to justify surgical or pharmacological intervention when the only outcome measures are subjective. Objective quantification of nystagmus eye movements per se usually involves time-consuming manual marking of recordings to both calibrate and analyse data. As a result, analyses are rarely (if ever) performed in the clinical setting. Software was therefore developed to automate calibration and assessment. Psychophysical experiments were undertaken to quantify the spatiotemporal constraints of vision in infantile nystagmus. Visual acuity was measured in the absence of retinal image motion to reveal the maximum improvement to spatial vision that might be expected if nystagmus were halted altogether. The results indicate that poor spatial vision underlies infantile nystagmus, even in cases without comorbid pathology. Gaze acquisition time was compared to stimulus recognition time. The results indicate that infantile nystagmus does not increase visual processing time; rather, redeploying gaze takes longer. An incidental finding revealed a temporal relationship between voluntary saccades and involuntary nystagmus quick phases. Both typically occur together, presumably to maximise efficiency and minimise saccadic suppression. Clinical tests of gaze acquisition time must now be developed, to be used in conjunction with the software developed here, as objective outcome measures of therapeutic interventions

    "Gaze-Based Biometrics: some Case Studies"

    Get PDF

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    AUTOMATIC DETECTION OF NYSTAGMUS IN BEDSIDE VOG RECORDINGS FROM PATIENTS WITH VERTIGO

    Get PDF
    Benign Paroxysmal Positional Vertigo (BPPV) is the most common cause of vertigo. It can be diagnosed and treated using simple maneuvers done by vestibular experts. However, patients with this condition presenting to the emergency department have high chance of being misdiagnosed. Such high rate of misdiagnosis results in significant morbidity to the patient and also incurs huge medical costs from unnecessary neuroimaging tests. Hence, automatic medical diagnosis is the next step to aid ED practitioners to reduce diagnostic errors. However, current software employed for this diagnosis has been found to have very low specificity. This can be attributed to factors such as low sampling frequency of recording device and the fact that bedside recordings from patients are susceptible to noise and artifacts. This study aims to improve methods for automatic quantification of nystagmus, a key sign of BPPV. Testing the current method using eye movement data recorded in patients during the diagnostic maneuver yielded better results than the commercial software
    corecore